

Supporting Information for DOI: 10.1055/a-1975-4377 © 2022. Thieme. All rights reserved. Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

Supporting Information

Pd-Catalyzed Double Carbopalladation/*syn*-Insertion Cascades toward Pragmatic Synthesis of Aminated Polyheterocyclic 1,2-benzothiazepine 1-oxides

Zhigang Huang,^a Longji Dai,^a and Zhiyuan Chen*,^{a,b}

 ^a College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, China.
 ^b School of Medicine, Zhejiang University City College, Hangzhou 310015, China. E-mail: chenzy@zucc.edu.cn

Contents:

- 1. General remarks (S2).
- 2. General procedure for the preparation of starting material **1a-1i** (**S3-S5**).
- 3. Spectroscopic data for compounds 1 (S5-S8).
- 4. Optimization of the reaction conditions. (S9-S13).
- 5. ¹H and ¹³C NMR Spectra of all new compounds 1 (S16-S24).
- 6. ¹H and ¹³C NMR spectra of all new compounds 3 (S25-S53).
- 7. X-ray ORTEP illustration of compound **3a** (**S54-S55**).

1. General remarks.

Unless otherwise noted, commercial reagents were purchased from commercial suppliers and were used as received. All solvents were dried and distilled according to standard procedures before use. The Flash column chromatography was performed using silica gel (60 Å pore size, 32-63 μ m, standard grade). Analytical thin-layer chromatography (TLC) was performed using glass plates pre-coated with 0.25 mm 230-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Organic solutions were concentrated on rotary evaporators at ~20 Torr (house vacuum) at 25-35 °C. Nuclear magnetic resonance (NMR) spectra were recorded in parts per million (ppm) from internal trimethylsilane (TMS) on the δ scale. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on a Bruker DRX-400 spectrometer operating at 400 MHz and 100 MHz, respectively. High resolution mass spectrometry (HRMS) spectra analysis was performed by electrospray ionization (ESI-micrOTOF).

2. General procedure for the preparation of starting material 1a-1h.

Preparation of starting material **1a-1c**.¹²

To a solution of Et₃N (40 mL), PdCl₂(PPh₃)₂ (2 mol %), CuI (2 mol %) and 20 mmol of 2-bromoiodobenzene was slowly added 22 mmol of ethynyltrimethylsilane and stirring was continued for another 5 min before flushing with nitrogen three times and the flask was then sealed. The reaction mixture was allowed to stir at room temperature overnight and the resulting solution was filtered and washed with saturated aq NaCl solution and extracted with ethyl acetate (2 x 30 mL). The combined organic phases was dried over anhydrous Na₂SO₄ and concentrated under vacuum to yield the crude product. The crude product was purified by flash chromatography on silica gel and compound **5** was obtained using hexane as the eluent

To a solution of **5** (2.53 g, 10 mmol) in MeOH (20 mL) were added K_2CO_3 (2.76 g, 20 mmol). The reaction was stirred at room temperature for 2 h then was added water and extracted with ethyl acetate (2 x 15 mL). The organic layer was collected, dried over MgSO₄, and filtrated. The solvent was evaporated under vacuum to afford **6** without further purification.

In the dark, to a solution of **6** (996 mg, 5.5 mmol) in 25 mL acetone was added NBS (1077 mg, 6.05 mmol) and AgNO₃ (94 mg, 0.55 mmol). The resulting mixture was stirred at room temperature for 3 h, filtered, and the filtrate was evaporated. Then

Tian, X.; Song, L.; Rudolph, M.; Wang, Q.; Song, X.; Rominger, F.; Hashmi, A. S. K. Org. Lett. 2019, 21, 1598–1601.

^{2.} Meesin, A.; Pohmakotr, M.; Reutrakul, V.; Soorukram, D.; Leowanawat, P.; Saithong, S.; Kuhakarn, C. Org. Lett. 2017 19, 6546-6549.

20 mL petroleum ether was added, filtered again and the filtrate was evaporated under vacuum to give the alkynyl bromide 7.

Following the previous step, compound 7 (5.0 mmol), amide (4.55 mmol), copper sulfate pentahydrate (187.0 mg, 0.75 mmol), 1,10- phenanthroline (270.0 mg, 1.5 mmol) and K₂CO₃ (1.38 g, 10.0 mmol), toluene (25 mL) were added under a nitrogen atmosphere. The reaction flask was evacuated under vacuum and flushed with nitrogen three times, then sealed under nitrogen and heated to 80 °C. The reaction mixture was stirred overnight, then cooled down to room temperature, filtered through a pad of silica gel, the filtrate was evaporated and purified by flash silica gel column chromatrography to give the desired Compound (**1a-1c**).

Preparation of starting material 1d-1i.³

To a cooled (0 °C) orange-colored suspension of tetrabromomethane (3.58 g, 10.8 mmol) and triphenylphosphine (5.67 g, 21.6 mmol) in CH₂Cl₂ (30 mL) was added a CH₂Cl₂ (10 mL) solution of 2-bromobenzaldehyde (1.0 g, 5.4 mmol). After stirring at room temperature for a few minutes, the reaction was quenched with water and extracted with CH₂Cl₂. The organic layer was washed with saturated aqueous NaHCO₃ and brine, dried over Na₂SO₄, and concentrated partially. The solution was poured slowly into hexane (100 mL). The resulting suspension was filtrated and the filtrate was concentrated partially. The resulting suspension was filtrated, concentrated, and quickly purified on a silica gel column chromatography (hexane) to furnish compound $\mathbf{8}$.

^{3.} Chen, X.; Wang, L.; Frings, M.; Bolm, C. Org. Lett. 2014, 16, 3796-3799.

To the vigorously stirred solution of the **8** (5 mmol) in CH₂Cl₂ (25 mL) at 0 °C, BnEt₃NCl (1.00 g, 4.4 mmol) was added. Subsequently, a solution of KOH (12.9 g, 230 mmol) in H₂O (10 mL) was added to the reaction mixture. After stirring for 5 h at 0 °C, H₂O (20 mL) was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layer was washed with brine and dried over MgSO₄. All volatiles were removed under reduced pressure. The product was purified by SiO₂ column chromatography to give the desired compound **9**.

Compound 9 (5.0 mmol), amide (4.55 mmol), copper sulfate pentahydrate (187.0 mg, 0.75 mmol), 1, 10-phenanthroline (270.0 mg, 1.5 mmol) and K_2CO_3 (1.38 g, 10.0 mmol), toluene (25 mL) were added under a nitrogen atmosphere. The reaction flask was evacuated under vacuum and flushed with nitrogen three times, then sealed under nitrogen and heated to 80 °C. The reaction mixture was stirred overnight, then cooled down to room temperature, filtered through a pad of silica gel, the filtrate was evaporated and purified by flash silica gel column chromatrography to give the desired Compound **1e-1h** in high yield.

3. Spectroscopic data for compounds 1

N-((2-Bromophenyl)ethynyl)-*N*,4-dimethylbenzenesulfonamide (**1a**) Yield: 98%, 1.66 g; white solid; mp: 61-63 °C. Eluent: ethyl acetate/petroleum ether =1: 20. ¹**H NMR** (400 MHz, CDCl₃) δ 7.76 - 7.74 (m, 2H), 7.39 – 7.29 (m, 1H), 7.25 – 7.11 (m, 3H), 7.10 – 6.98 (m, 1H), 6.95 - 6.90 (m, 1H), 3.04 (s, 3H), 2.23 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 145.2, 133.2, 132.6, 132.3, 130.0, 128.9, 127.8, 127.2, 125.0, 124.6, 88.7, 77.8, 77.5, 77.2, 68.4, 39.4, 21.6.

N-((2-Bromophenyl)ethynyl)-*N*-methylmethanesulfonamide (1b)

Yield: 90%, 1.18 g; white solid; mp: 50-52 °C.

Eluent: ethyl acetate/petroleum ether =1: 20.

¹**H** NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.0 Hz, 1H), 7.42 - 7.40 (m, 1H), 7.28 - 7.21 (m, 1H), 7.15 - 7.12 (m, 1H), 3.33 (s, 3H), 3.19 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 132.6, 132.3, 129.1, 127.1, 125.1, 124.7, 87.6, 77.5, 77.2, 76.9, 68.9, 39.2, 37.1.

N-((2-Bromophenyl)ethynyl)-*N*-methyl-4-nitrobenzenesulfonamide (**1c**)

Yield: 90%, 1.43 g; yellow solid; mp: 142-144 °C.

Eluent: ethyl acetate/petroleum ether =1: 20.

¹**H** NMR (400 MHz, CDCl₃) δ 8.43 - 8.41 (m, 2H), 8.22 - 8.20 (m, 2H), 7.57 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.27 - 7.24 (m, 1H), 7.17 (d, J = 7.9 Hz, 1H), 3.27 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 150.8, 141.7, 132.9, 132.5, 129.3, 129.1, 127.2, 125.0, 124.5, 124.3, 86.8, 77.4, 77.1, 76.7, 69.0, 39.6.

N-((2-Bromo-4-methylphenyl)ethynyl)-*N*,4-dimethylbenzenesulfonamide (1d)

Yield: 96%, 1.65 g; white solid; mp: 89-91 °C.

Eluent: ethyl acetate/petroleum ether =1: 20.

¹H NMR (400 MHz, CDCl₃) δ 7.92 - 7.90 (m, 2H), 7.39 - 7.37 (m, 3H), 7.29 (d, J = 7.9 Hz, 1H), 7.05 (d, J = 7.9 Hz, 1H), 3.20 (s, 3H), 2.47 (s, 3H), 2.33 (s, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 144.9, 139.5, 133.3, 132.8, 132.5, 129.9, 127.9, 124.8,

121.9, 87.5, 77.4, 77.1, 76.8, 68.2, 39.4, 21.7, 21.1.

N-((2-Bromo-4-methoxyphenyl)ethynyl)-*N*,4-dimethylbenzenesulfonamide (**1e**) Yield: 85%, 1.53 g; white solid; mp: 85-87 °C. Eluent: ethyl acetate/petroleum ether =1: 20. ¹**H NMR** (400 MHz, CDCl₃) δ 7.90 - 7.88 (m, 2H), 7.38 - 7.36 (m, 3H), 6.90 (d, *J* = 3.0 Hz, 1H), 6.70 - 6.67 (m, 1H), 3.75 (s, 3H), 3.18 (s, 3H), 2.43 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 158.5, 145.0, 133.3, 132.9, 129.9, 127.9, 125.6, 117.3, 115.7, 115.4, 88.2, 77.5, 77.2, 76.8, 68.5, 55.6, 39.3, 21.7.

N-((2-Bromo-5-chlorophenyl)ethynyl)-*N*,4-dimethylbenzenesulfonamide (**1f**) Yield: 85%, 1.54 g; white solid; mp: 122-124 °C. Eluent: ethyl acetate/petroleum ether =1: 20.

¹H NMR (400 MHz, CDCl₃) δ 7.89 - 7.87 (m, 2H), 7.45 (d, J = 8.6 Hz, 1H), 7.39 - 7.37 (m, 2H), 7.34 (d, J = 2.3 Hz, 1H), 7.09 - 7.06 (m, 1H), 3.19 (s, 3H), 2.46 (s, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 145.2, 133.3, 133.0, 131.8, 123.0, 128.7, 127.9, 126.7, 122.5, 89.7, 77.4, 77.1, 76.8, 67.8, 39.2, 21.7.

N-((2-Bromo-5-fluorophenyl)ethynyl)-*N*,4-dimethylbenzenesulfonamide (**1g**) Yield: 80%, 1.39 g; white solid; mp: 83-85 °C.

Eluent: ethyl acetate/petroleum ether =1: 20.

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 - 7.87 (m, 2H), 7.49 - 7.46 (m, 1H), 7.39 - 7.36 (m, 2H), 7.09 - 7.06 (m, 1H), 6.86 - 6.81 (m, 1H), 3.20 (s, 3H), 2.46 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 162.6, 160.1, 145.2, 133.6, 133.5, 133.3, 130.0, 129.7, 127.9, 127.6, 127.3, 126.8, 126.6, 119.1, 119.0, 119.0, 118.9, 116.3, 116.1, 89.5, 77.4, 77.1, 76.8, 67.9, 39.2, 29.4, 21.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -115.01 – -115.12.

N-((3-Bromothiophen-2-yl)ethynyl)-*N*,4-dimethylbenzenesulfonamide (1h)

Yield: 78%, 1.31 g; white solid; mp: 63-65 °C.

Eluent: ethyl acetate/petroleum ether =1:40.

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 - 7.87 (m, 2H), 7.39 - 7.37 (m, 2H), 7.21 (d, J = 5.4 Hz, 1H), 6.94 (d, J = 5.4 Hz, 1H), 3.16 (s, 3H), 2.46 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 145.1, 133.3, 130.0, 130.0, 127.9, 127.6, 120.4, 117.0, 91.2, 77.5, 77.1, 76.8, 61.2, 39.4, 21.7.

4. Optimization of the reaction conditions.

a) Screening of catalysts.

Ts N Me Br 1a	O Me Catalysts (10 m NAc Mephos (20 m Cs2CO3 (3.0 e CH3CN (2.0 m CH3CN (2.0 m MeOH (0.4 m 80 °C, N2, 2 2a	nol%) ol%) mL) 2 h Me S=N N Me Me Me Me Me Me Me Me Me Me
Entry	Catalysts	Yield (%) ^a
1	$Pd(OAc)_2$	28
2	PdCl ₂	n.r
3	Pd/C	n.r
4	Pd(PPh3)2Cl2	n.r
5	Pd(PPh ₃) ₄	11
6	Pd(CH ₃ CN) ₂ Cl ₂	n.r
7	Pd(OCOCF3)2	n.r
8	Pd ₂ (dba) ₃	14
9	Pd(dba) ₂	40
10	$Pd(dba)_2(2 mol\%)$	15
11	Pd(dba)2 (5 mol%)	35

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), CH₃CN (2.0 mL), CH₃OH (0.4 mL), Catalysts (10 mol%), Mephos (20 mol%), Cs₂CO₃ (3.0 equiv.), under N₂ atmosphere. Yields are given for isolated products after column chromatography.

b) Screening of ligand.

Ts NMe Br 1a	2a NAc 2a	Pd(dba) ₂ (10 mol%) ligand (20 mol%) CH ₃ CN (2.0 mL) MeOH (0.4 mL) 80 °C, N ₂ , 2 h
Entry	ligand	Yield (%) ^a
1	PPh ₃	n.r
2	PCy ₃	35
3	DPPF	n.r
4	S-phos	n.r

5	P(4-CF ₃ C ₆ H ₄) ₃	n.r
6	Mephos	40
7	P(3-MeC ₆ H ₄) ₃	n.r
8	Xantphos	n.r
9	tBuXphos	n.r
10	DPEPHOS	n.r
11	DPPY-phos	n.r
12	Davephos	20
13	PhDAVE-phos	21
14	Ruphos	53
15	X-phos	62
16	X-phos (10 mol%)	32
17	X-phos (15 mol%)	54
18	X-phos (25 mol%)	52
19	X-phos (30 mol%)	40

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), CH₃CN (2.0 mL), CH₃OH (0.4 mL), Pd(dba)₂ (10 mol%), ligand (20 mol%), Cs₂CO₃ (3.0 equiv.), under N₂ atmosphere. Yields are given for isolated products after column chromatography.

Ts N.Me Br	NAc	Pd(dba) ₂ (10 mol%) XPhos (20 mol%) base (3.0 equiv) CH ₃ CN (2.0 mL) MeOH (0.4 mL) 80 °C, N ₂ , 2 h
1a	2a	3a
Entry	base	Yield $(\%)^a$
1	Ру	n.r.
2	TEA	n.r.
3	K ₂ CO ₃	trace
4	Cs ₂ CO ₃	60
5	Li ₂ CO ₃	n.r.
6	Na ₂ CO ₃	n.r.
7	DBU	trace

c) Screening of base.

8	tBuOK	trace
9	NaOH	40
10	LiOH	47
11	NaOAc	n.r.
12	NaOCH ₃	56
13	LiOCH ₃	48
14	Cs ₂ CO ₃ (2.5 equiv)	47
15	Cs ₂ CO ₃ (4.0 equiv.)	41

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), CH₃CN (2.0 mL), CH₃OH (0.4 mL), Pd(dba)₂ (10 mol%), XPhos (20 mol%), Base (3.0 equiv), under N₂ atmosphere. Yields are given for isolated products after column chromatography.

d) Screening of solvent.

_

Ts N Me + 1a	Ac NAc 2a	Catalysts (10 mol%) XPhos (20 mol%) Cs ₂ CO ₃ (3.0 equiv) Solvent (2.0 mL) MeOH (0.4 mL) 80 °C, N ₂ , 2 h	S=N Ts Me Me 3a
Entry	solvent		Yield(%) ^a
1	1,4-dioxoan	, ,	84
2	toluene		trace
3	DMSO		Trace
4	DMF		77
5	THF		76
6	CH ₃ CN		63
7	DCE		69
8	DCM		76
9	Et2O		trace
10	acetone		41
11	CH ₃ OH		trace
12	1,4-dioxane:DCE(9:1)		82
13	1,4-dioxane:DCE	(3:1)	80
14	1,4-dioxane:DCE	(1:1)	75

15	1,4-dioxane:DCE(1:3)	68	
16	1,4-dioxane:CH ₃ OH(1:1)	74	

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), solvent (2.0 mL), CH₃OH (0.4 mL), Pd(dba)₂ (10 mol%), X-phos (20 mol%), Cs₂CO₃ (3.0 equiv), under N₂ atmosphere. Yields are given for isolated products after column chromatography.

Pd(dba) ₂ (10 X-phos (20 Cs ₂ CO ₃ (3) 1,4-dioxane de-PG agen 80 °C, N	D mol%) D mol%) (0.0 equiv) (2.0 mL) t (0.4 mL) 2, 2 h
1 DC	5a
de-PG agent	Yield(%) ^a
CH ₃ OH	84
EtOH	25
PirOH	n.r
HFIP	trace
phenol	trace
	O Me Pd(dba)2 (11 X-phos (20) Cs2CO3 (3) 1,4-dioxane de-PG agen 2a de-PG agent CH3OH EtOH PirOH HFIP phenol HFIP

e) Screening of de-PG agent

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), 1, 4-dioxane (2.0 mL), de-PG agent (0.4 mL), Pd(dba)₂ (10 mol%), XPhos (20 mol%), Cs₂CO₃ (3.0 equiv.), under N₂ atmosphere. Yields are given for isolated products after column chromatography.

f) Screening of T

Ts N Me Br	Q, Me NAc	$\begin{array}{c} Pd(dba)_{2} (10 \text{ mol}\%) \\ X\text{-phos} (20 \text{ mol}\%) \\ Cs_{2}CO_{3} (3.0 \text{ equiv}) \\ 1,4\text{-dioxane} (2.0 \text{ mL}) \\ CH_{3}OH (0.4 \text{ mL}) \\ T \ ^{\circ}C, N_{2}, 2 \text{ h} \end{array}$
1a	2a	3 a
Entry	T/℃	Yield(%) ^a
1	25	Trace
2	50	92
3	80	85

4	100	81
5	120	40

^aReaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), 1, 4-dioxane (2.0 mL), CH₃OH (0.4 mL), Pd(dba)₂ (10 mol%), XPhos (20 mol%), Cs₂CO₃ (3.0 equiv.), under N₂ atmosphere. Yields are given for isolated products after column chromatography.

The influence of different amounts of MeOH.

The control parallel experiments to test the amount of MeOH on its influence were conducted. That is, the different equivalents of MeOH were selected as 0 equiv, 5 equiv., 10 equiv., 20 equiv., 40 equiv., 60 equiv., 80 equiv., and 100 equiv. as compared with substrate **1a** (0.2 mmol) and **2a** (0.2 mmol) under the standard conditions. And as a result, the yield of **3a** and **4** were isolated and collected.

Me I−Ac + (NPh	Br N ^{Ts} Me 2a	Pd(dba) ₂ (10 mol%) Xphos (20 mol%) Cs ₂ CO ₃ (3.0 equiv) 1,4-dioxane (2.0 mL) CH ₃ OH (x equiv.) 50 °C, 1-4 h	O, Me S=N, Ts N, Me Ph 3a	on Me N Sideproduct
	x/equiv.	3a /%	4/%	
1	0	0	0	
2	5 (40 uL)	23	10	
3	10 (80 uL)	39	22	
4	20 (0.16 mL)	54	44	
5	40 (0.32 mL)	74	25	
6	60 (0.48 mL)	73	22	
7	80 (0.64 mL)	52	48	
8	100 (0.8 mL)	41	55	

^{*a*} Reaction conditions: sulfoximine **1a** (0.20 mmol), ynamide **2a** (0.20 mmol), and Pd(dba)₂ (10 mol%), XPhos (20 mol%), base (3.0 equiv) in 2.0 mL of solvent (2.0 mL) under N₂.

The figure was depicted in Figure 2.

Figure S1. Influence of MeOH on the yields of 3a and 4,

Since it was discovered that the MeOH additive was crucial in this reaction, the influence of MeOH on the yields of **3a** and **4** was studied (Figure 2). As can be seen from Figure 2, with the addition of MeOH increased from 0 to 20 equiv, the yields of both **3a** and **4** increased. A good result was obtained when 0.4 mL of MeOH was added, the yields of **3a** reached tis maximum while the *5-exo-dig* byproduct **4** was suppressed. After this stage, the yield of **3a** was decreasing with the addition of extra MeOH.

5. ¹H and ¹³C NMR Spectra of all new compounds 1.

¹H NMR spectrum (400 MHz, CDCl₃) of 1a

S17

¹H NMR spectrum (400 MHz, CDCl₃) of 1c

¹³C NMR spectrum (101 MHz, CDCl₃) of 1c

¹H NMR spectrum (400 MHz, CDCl₃) of 1d

S22

¹⁹F NMR spectrum (376 MHz, CDCl₃) of 1g

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190

¹H NMR spectrum (400 MHz, CDCl₃) of 1h

6. ¹H and ¹³C NMR Spectra of all new compounds 3.

¹H NMR spectrum (400 MHz, CDCl₃) of 3a

S25

¹H NMR spectrum (400 MHz, CDCl₃) of 3b

¹³C NMR spectrum (101 MHz, CDCl₃) of 3b

¹⁹F NMR spectrum (376 MHz, CDCl₃) of 3c

¹H NMR spectrum (400 MHz, CDCl₃) of 3d

¹H NMR spectrum (400 MHz, CDCl₃) of 3f

¹H NMR spectrum (400 MHz, CDCl₃) of 3g

¹³C NMR spectrum (101 MHz, CDCl₃) of 3g

¹H NMR spectrum (400 MHz, CDCl₃) of 3h

¹H NMR spectrum (400 MHz, CDCl₃) of 3i

¹⁹F NMR spectrum (376 MHz, CDCl₃) of 3j

¹H NMR spectrum (400 MHz, CDCl₃) of 3k

¹H NMR spectrum (400 MHz, CDCl₃) of 3l

¹³C NMR spectrum (101 MHz, CDCl₃) of 3l

¹³C NMR spectrum (101 MHz, CDCl₃) of 3m

¹³C NMR spectrum (101 MHz, CDCl₃) of 3n

¹H NMR spectrum (400 MHz, CDCl₃) of 30

¹³C NMR spectrum (101 MHz, CDCl₃) of 30

¹⁹F NMR spectrum (376 MHz, CDCl₃) of 30

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -21

ï

¹H NMR spectrum (400 MHz, CDCl₃) of 3p

¹³C NMR spectrum (101 MHz, CDCl₃) of 3p

¹H NMR spectrum (400 MHz, CDCl₃) of 3q

¹³C NMR spectrum (101 MHz, CDCl₃) of 3q

¹H NMR spectrum (400 MHz, CDCl₃) of 3r

¹³C NMR spectrum (101 MHz, CDCl₃) of 3r

¹H NMR spectrum (400 MHz, CDCl₃) of 3s

S46

¹³C NMR spectrum (101 MHz, CDCl₃) of 3t

¹H NMR spectrum (400 MHz, CDCl₃) of 3u

¹H NMR spectrum (400 MHz, CDCl₃) of 3v

¹³C NMR spectrum (101MHz, CDCl₃) of 3v

¹H NMR spectrum (400 MHz, CDCl₃) of 3w

¹H NMR spectrum (400 MHz, CDCl₃) of 3y

¹H NMR spectrum (400 MHz, CDCl₃) of 3z

100 90

80

70 60 50

40 30 20

120

110

190 180

160

170

150 140 130

0

10

7. X-ray ORTEP illustration of compound 3a.

3a

aU	ie 1. Crystal data and structure refinement for	2.	
	Identification code	2	
	Empirical formula	C31 H26 N2 O3 S2	
	Formula weight	538.66	
	Temperature	273(2) K	
	Wavelength	0.71073 Å	
	Crystal system	Monoclinic	
	Space group	P21/n	
	Unit cell dimensions	a = 14.553(6) Å	α= 90°.
		b = 12.155(5) Å	β= 100.612(7)°.
		c = 16.702(7) Å	$\gamma = 90^{\circ}.$
	Volume	2904(2) Å ³	
	Z	4	
	Density (calculated)	1.232 Mg/m ³	
	Absorption coefficient	0.217 mm ⁻¹	
	F(000)	1128	
	Crystal size	$0.260 \ x \ 0.250 \ x \ 0.240 \ mm^3$	
	Theta range for data collection	2.481 to 24.994°.	
	Index ranges	-17<=h<=9, -13<=k<=14, -19<	<=l<=19
	Reflections collected	14441	
	Independent reflections	5103 [R(int) = 0.0267]	
	Completeness to theta = 24.994°	99.6 %	
	Refinement method	Full-matrix least-squares on F ²	
	Data / restraints / parameters	5103 / 1 / 346	
	Goodness-of-fit on F ²	1.004	
	Final R indices [I>2sigma(I)]	R1 = 0.0461, wR2 = 0.1319	
	R indices (all data)	R1 = 0.0643, wR2 = 0.1432	
	Extinction coefficient	n/a	
	Largest diff. peak and hole	0.217 and -0.348 e.Å ⁻³	

Table 1. Crystal data and structure refinement for 2.