

Supporting Information for DOI: 10.1055/a-2350-1323 © 2024. Thieme. All rights reserved. Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

Silylium-Ion-Initiated Twofold Halodealkylation of Fully Alkylated Silanes

Tobias Randt,^a Tao He,^{*ab} Hendrik F. T. Klare,^a and Martin Oestreich^{*a}

^aInstitut für Chemie, Technische Universität Berlin Straße des 17. Juni 115, 10623 Berlin, Germany martin.oestreich@tu-berlin.de

^bSchool of Pharmacy, China Pharmaceutical University 639 Longmian Avenue, Nanjing, 211198, P. R. of China tao.he@cpu.edu.cn

Supporting Information

Table of Contents

1	General Information	S5
2	Preparation of Tetraalkylsilanes and Trialkylhydrosilanes	S6
2.1	1-Adamantyltrimethylsilane (1k)	S6
2.2	Diisopentyldimethylsilane (1p)	S6
2.3	Diisopropyl(methyl)silane (6b)	S7
2.4	Di- <i>tert</i> -butyl(methyl)silane (6c)	S7
2.5	Di-sec-butyl(methyl)silane (6d)	S8
2.6	Diisobutyl(methyl)silane (6e)	S8
3	Experimental Details for the Silylium-Ion-Initiated Twofold Halodealkylation	S9
3.1	Optimization of the Twofold Chlorodeethylation of Tetraethylsilane (1a)	S9
3.2	General Procedure for the Twofold Halodealkylation of Tetraalkylsilanes with 1,2-Dihaloethane (GP 1)	S10
3.3	General Procedure for the Chlorodehydrogenation and Chlorodealkylation of Trialkylhydro- silanes with 1,2-Dichloroethane (GP 2)	S10
4	Characterization Data of the Halodealkylation Products of Tetraalkylsilanes	S11
4.1	Dichlorodiethylsilane (4aa) by Chlorodeethylation of Tetraethylsilane (1a) with 1,2-Dichloro- ethane (2a)	S11
4.2	Dibromodiethylsilane (4ab) by Bromodeethylation of Tetraethylsilane (1a) with 1,2-Dibromo- ethane (2b)	S11
4.3	Diethyldiiodosilane (4ac) by lododeethylation of Tetraethylsilane (1a) with 1,2-Diiodoethane (2c)	S11
4.4	Dibutyldichlorosilane (4ba) by Chlorodebutylation of Tetrabutylsilane (1b) with 1,2-Dichoro- ethane (2a)	S12
4.5	Dichloro(methyl)(octyl)silane (4ca) by Chlorodemethylation of Trimethyl(octyl)silane (1c) with 1,2-Dichloroethane (2a)	S12
4.6	Dichloro(cyclohexyl)(methyl)silane (4da) by Chlorodemethylation of Cyclohexyltrimethylsilane (1d) with 1,2-Dichoroethane (2a)	S12
4.7	<i>tert</i> -Butyldichloro(methyl)silane (4ea) by Chlorodemethylation of <i>tert</i> -Butyltrimethylsilane (1e) with 1,2-Dichoroethane (2a)	S13
4.8	Butyldichloro(ethyl)silane (4fa) by Chlorodeethylation of Butyltriethylsilane (1f) with 1,2-Dichoro- ethane (2a)	S13
4.9	Dichloro(hexyl)(methyl)silane (4ga) by Chlorodemethylation of Hexyltrimethylsilane (1g) with 1,2-Dichoroethane (2a)	S14
4.10	Dichlorodihexylsilane (4ha) by Chlorodemethylation of Dihexyldimethylsilane (1h) with 1,2-Dichoroethane (2a)	S14

- 4.11 Dichlorodiisopropylsilane (4ia) by Chlorodemethylation of Diisopropyldimethylsilane (1i) with S15 1,2-Dichoroethane (2a)
- 4.12 Dichlorodiisopropylsilane (**4ja**) by Chlorodeethylation of Diethyldiisopropylsilane (**1j**) with 1,2- S15 Dichoroethane (**2a**)
- 4.13 1-Adamantyldichloro(methyl)silane (4ka) by Chlorodemethylation of 1-Adamantyltrimethylsilane S15 (1k) with 1,2-Dichoroethane (2a)
- 4.14 Dichloro(ethyl)(methyl)silane (**4la**) by Chlorodemethylation and Chlorodeethylation of Diethyl- S16 dimethylsilane (**1l**) with 1,2-Dichoroethane (**2a**)
- 4.15 Dichlorodiethylsilane (**4ma**) by Chlorodemethylation and Chlorodeethylation of S16 Triethyl(methyl)silane (**1m**) with 1,2-Dichoroethane (**2a**)
- 4.16 Dibutyldichlorosilane (**4na**) by Chlorodemethylation of Dibutyldimethylsilane (**1n**) with 1,2- S17 Dichoroethane (**2a**)
- 4.17 Dichloro(isopentyl)(methyl)silane (**4oa**) by Chlorodemethylation and Chlorodeisopentylation of S17 Diisopentyldimethylsilane (**1o**) with 1,2-Dichoroethane (**2a**)
- 4.18 Dichlorodimethylsilane (**4pa**) by Chlorodemethylation and Chlorodebenzylation of S18 Benzyltrimethylsilane (**1p**) with 1,2-Dichoroethane (**2a**)
- 4.19 Bis(dichloro(methyl)silyl)methane (**4qa**) by Chlorodemethylation of Bis(trimethylsilyl)methane S18 (**1q**) with 1,2-Dichoroethane (**2a**)
- 4.20 Dichloro(methyl)(pentyl)silane-*d*₁ (**4ra**-*d*₁) by Chlorodemethylation and Ring Opening of 1,1- S18 Dimethylsilinane (**1r**) with 1,2-Dichoroethane (**2a**)
- 4.21 Tested unsuccessful substrates
- 5 Characterization Data of the Chlorodehydrogenation and Chlorodealkylation Products of S19 Trialkylhydrosilanes
- 5.1 Dichloro(isopropyl)(methyl)silane (**7aa**) by Chlorodehydrogenation and Chlorodemethylation of S19 Isopropyldimethylsilane (**6a**) with 1,2-Dichoroethane (**2a**)
- 5.2 Dichlorodiisopropylsilane (**7ba**) by Chlorodehydrogenation and Chlorodemethylation of S19 Diisopropyl(methyl)silane (**6b**) with 1,2-Dichoroethane (**2a**)
- 5.3 Di-*tert*-butyldichlorosilane (**7ca**) by Chlorodehydrogenation and Chlorodemethylation of Di-*tert* S20 butyl(methyl)silane (**6c**) with 1,2-Dichoroethane (**2a**)
- 5.4 Di-sec-butyldichlorosilane (**7da**) by Chlorodehydrogenation and Chlorodemethylation of Di-sec-S20 butyl(methyl)silane (**6d**) with 1,2-Dichoroethane (**2a**)
- 5.5 Dichloro(isobutyl)(methyl)silane (**7ea**) by Chlorodehydrogenation and Chlorodeisobutylation of S20 Diisobutyl(methyl)silane (**6e**) with 1,2-Dichoroethane (**2a**)
- 6 Synthesis of Heteroleptic Silanes by Successive Twofold Chlorodealkylation of S21 Tetraalkylsilanes and Nucleophilic Substitution
- 6.1 Dibutyldiphenyl-silane (8b) by Chlorodebutylation of Tetrabutylsilane (1b) and Nucleophilic S21 Substitution with PhLi

S19

6.2	Dibutyl(methyl)(3-phenylpropyl)silane (8s) by Chlorodemethylation of Trimethyl(3-phenylpropyl)- silane (1s) and Nucleophilic Substitution with <i>n</i> BuLi						
7	Attempted Preparation of Mixed Dihalosilanes by Halodemethylation of Trimethyl- halosilanes with 1,2-Dihaloethane	S23					
7.1	General Procedure for the Halodemethylation of Trimethylhalosilanes with 1,2-Dihaloethane (GP 3)	S23					
7.1.1	Chlorodemethylation of Bromotrimethylsilane (3qb) with 1,2-Dichloroethane (2a)	S23					
7.1.2	Chlorodemethylation of Iodotrimethylsilane (3qc) with 1,2-Dichloroethane (2a)	S24					
7.1.3	Bromodemethylation of lodotrimethylsilane (3qc) with 1,2-Dibromoethane (2b)	S24					
8	Analytical Spectra	S25					
9	References	S152					

1 General Information

All reactions were performed in flame-dried glassware using an MBraun glove box (argon atmosphere, $O_2 < 1.0$ ppm, $H_2O < 1.0$ ppm) or conventional Schlenk techniques under a static pressure of nitrogen gas unless otherwise stated. All given temperatures refer to external bath temperatures. Standard solvents and reagents were obtained from commercial suppliers and used as received unless otherwise stated. Liquids and solutions were transferred via syringes. Dry *n*-pentane, *n*-hexane, CH₂Cl₂, and benzene were obtained from an *MBraun* solvent purification system (SPS-800), degassed by three freeze-pump-thaw cycles, and stored in a glovebox over thermally activated 4 Å molecular sieves. Technical grade solvents for extraction or chromatography (CH₂Cl₂, cyclohexane, and *n*-pentane) were distilled prior to use. Et₂O and THF were dried over potassium/ benzophenone and freshly distilled prior to use. Benzene- d_6 (C₆D₆) was degassed by three freeze-pump-thaw cycles and stored in a glovebox over thermally activated 4 Å molecular sieves. CDCl₃ was obtained from commercial suppliers and used as received. Trityl salt [Ph₃C]⁺[HCB₁₁H₅Br₆]^{-,S1} and carborane-stabilized silylium ion [Me₃Si(HCB₁₁H₅Br₆)]^{S2} were prepared according to reported procedures. 1,2-Dihaloethanes 2a-c were obtained from commercial suppliers and 2a and 2b were stored in the glovebox over thermally activated 4 Å molecular sieves. All tetraalkylsilanes and trialkylhydrosilanes were dried over CaH₂, distilled, degassed by three freeze-pump-thaw cycles, and stored in the glovebox over thermally activated 4 Å molecular sieves. Flash column chromatography was performed on silica gel 60 (40-63 µm, 230-400 mesh ASTM) by VWR Chemicals using the indicated solvents. Infrared (IR) spectra were recorded on an Agilent Technologies Cary 630 FT-IR spectrometer equipped with an ATR unit or a Jasco FT/IR-4100 spectrometer, and the signals are reported in wavenumbers (cm⁻¹). ¹H, ²H, ¹³C, and ²⁹Si NMR spectra were recorded in C₆D₆ or CDCl₃ on Bruker AV500 and Bruker AV700 instruments, respectively. Chemical shifts are reported in parts per million (ppm) and are referenced to the residual solvent resonance as the internal standard (C₆D₅H: δ = 7.16 ppm for ¹H and ²H NMR and C₆D₆: δ = 128.06 ppm for ¹³C NMR; CHCl₃: δ = 7.28 ppm for ¹H NMR and CDCl₃: δ = 77.00 ppm for ¹³C NMR). ²⁹Si NMR spectra are referenced in compliance with the unified scale for NMR chemical shifts as recommended by the IUPAC stating the chemical shift relative to TMS.^{S3} Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sex = sextet, sept = septet, oct = octet, non = nonet, m = multiplet, m_c = centrosymmetric multiplet), coupling constants (Hz) and integration. High resolution mass spectra (HRMS) were obtained from the Center of Mass Spectrometry at the Institut für Chemie, Technische Universität Berlin. Gas-liquid chromatography mass spectrometry (GLC-MS) measurements were conducted on an Agilent Technologies 5975C TAD - GC/MSD-System with electron impact ionization (EI) connected to a fused silica HP-5ms capillary column (length: 30 m, inner diameter: 0.25 mm, thickness of the stationary phase: 0.25 µm).

Measurements were performed using the following protocol: Carrier gas: He, injector temperature: 280°C, detector temperature: 280°C, flow rate: 4 mL/min, temperature program: starting temperature: 40°C, heating rate: 10°C/min, final temperature: 280°C for 10 min.

2 Preparation of Tetraalkylsilanes and Trialkylhydrosilanes

2.1 1-Adamantyltrimethylsilane (1k)

Prepared according to a modified procedure by Oestreich and Yoshida.^{S4} Hexamethyldisilane (S2, 5.00 mL, 3.65 g, 24.9 mmol, 1.00 equiv) was dissolved in TMEDA (20 mL) and TPPA (20 mL) and cooled to -78°C. Methyllithium (1.6M in diethylether, 15.5 mL, 24.8 mmol, 0.996 equiv) was added at once and the reaction mixture was warmed to 20°C using a water bath. The reaction mixture was stirred for 5 min at 20°C and cooled to -78°C. 1-Bromoadamantane (S1, 2.10 g, 9.76 mmol, 0.392 equiv) was dissolved in diethylether (15 mL) and added to the reaction mixture. The reaction mixture was warmed to 20°C using a water bath and stirred for 3 h at room temperature. The reaction mixture was cooled with an ice bath and water (50 mL) was added dropwise. The aqueous layer was extracted with *n*-pentane (1×200 mL) and the combined organic layers were washed with water (3×20 mL). The organic phase was dried over MgSO₄ and filtered. The solvent was removed under reduced pressure and the crude product was recrystallized in methanol. The product was further purified by sublimation (41°C, 33.0 mbar) and collected as a white solid (1k, 412 mg, 3%). ¹**H NMR** (500 MHz, C₆D₆, 298 K): δ = 1.86 (m, 3H), 1.74 (m, 6H), 1.61 (m, 6H), -0.06 (s, 9H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 38.0, 37.4, 28.7, 20.9, -5.4 ppm. ²⁹Si **DEPT NMR** (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 15.0°): $\delta = 3.4$ ppm. **GLC MS** (EI): m/z = 208.1, 193.1, 165.0, 135.1, 73.0. **HRMS** (APCI): calculated for C₆H₁₅⁺ [M–SiMe₃]⁺: 135.1168; found: 135.1168.

2.2 Diisopentyldimethylsilane (10)

Magnesium turnings (9.98 g, 410 mmol, 4.55 equiv) were heated and stirred in vacuo for 10 min. THF (150 mL) and three small iodine crystals were added. 1-Bromo-3-methylbutane (**S3**, 43.0 mL, 49.0 g, 325 mmol, 3.59 equiv) was added dropwise to the reaction mixture, to maintain gentle reflux. The reaction mixture was stirred for 1 h at 120°C and cooled to room

temperature. Dichlorodimethylsilane (11.0 mL, 11.7 g, 90.4 mmol, 1.00 equiv) was added dropwise and the reaction mixture was stirred for 17 h at room temperature. Hydrochloric acid (2.0M 100 mL and 5.0M 50 mL) was added, and the phases were separated. The aqueous layer was extracted with *n*-pentane (2 × 50 mL) and the combined organic layers were dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the crude product was purified by distillation over CaH₂ (b.p. 102°C, 25 mbar). The product **10** was obtained as a colorless oil (8.49 g, 47%). **IR** (ATR): $\tilde{v} = 2952$, 2908, 1466, 1247, 1186, 1022, 881, 831, 765 cm⁻¹. ¹H **NMR** (500 MHz, C₆D₆, 298 K): $\delta = 1.47$ (non, *J* = 6.6 Hz, 2H), 1.23 (m, 4H), 0.92 (d, *J* = 6.6 Hz, 12H), 0.52 (m_c, 4H), 0.03 (s, 6H) ppm. ¹³C{¹H} **NMR** (126 MHz, C₆D₆, 298 K): $\delta = 33.4$, 31.4, 22.4, 12.9, -3.4 ppm. ²⁹Si **DEPT NMR** (99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz, 15.5°): $\delta = 2.7$ ppm. **GLC MS** (EI): *m/z* = 185.1, 129.1, 115.0, 99.0, 86.0, 73.0, 59.0. **HRMS** (APCI): calculated for C₁₁H₂₅Si⁺ [M–CH₃]⁺: 185.1720; found: 185.1719.

2.3 Diisopropyl(methyl)silane (6b)

Diisopropylchlorosilane (**S5**, 3.10 mL, 2.70 g, 17.9 mmol, 1.00 equiv) was cooled with an ice bath and methyllithium (1.60M in diethylether, 11.8 mL, 18.9 mmol, 1.06 equiv) was added dropwise over a period of 30 min. The reaction mixture was stirred for 4 days at room temperature. After filtration, the solvent of the filtrate was removed under reduced pressure, and the crude product was purified by distillation at atmospheric pressure (b.p. 122°C). The product **6b** was obtained as a colorless oil (942 mg, 40%). **IR** (ATR): $\tilde{v} = 2939, 2863, 2096, 1461, 1249, 1000, 873, 820, 725 cm⁻¹. ¹$ **H NMR** $(500 MHz, C₆D₆, 298 K): <math>\delta = 3.74$ (sext, J = 3.3 Hz, 1H), 1.02 (d, J = 7.3 Hz, 6H), 0.98 (d, J = 7.3 Hz, 6H), 0.90–0.81 (m, 2H), -0.04 (d, J = 3.7 Hz, 3H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 19.0, 18.4, 11.2, -10.4$ ppm. ²⁹Si{¹H} DEPT NMR (99 MHz, C₆D₆, 298 K, optimized for J = 200 Hz, 90.0°): $\delta = 4.0$ ppm. **HRMS** (APCI): calculated for C₇H₁₇Si⁺ [M–H]⁺: 129.1094; found: 129.1093.

2.4 Di-*tert*-butyl(methyl)silane (**6c**)

Dichloromethylsilane (**S6**, 4.00 mL, 4.40 g, 38.3 mmol, 1.00 equiv) was dissolved in *n*-pentane (10 mL) and cooled with an ice bath. *tert*-Butyllithium (1.90M in *n*-pentane, 40.2 mL, 76.4 mmol, 1.99 equiv) was added dropwise over a period of 30 min. The reaction mixture was stirred for 66 h at room temperature. The mixture was filtered, the solvent was removed under reduced

pressure and the crude product was purified by distillation at atmospheric pressure (b.p. 155°C). The product **6c** was obtained as a colorless oil (4.64 g, 77%). **IR** (ATR): $\tilde{v} = 2929$, 2855, 2093, 1467, 1363, 1252, 1009, 870, 831, 720 cm⁻¹. ¹H **NMR** (500 MHz, C₆D₆, 298 K): $\delta = 3.64$ (q, J = 3.7 Hz , 1H), 0.99 (s, 18H), 0.00 (d, J = 3.7 Hz, 3H) ppm. ¹³C{¹H} **NMR** (126 MHz, C₆D₆, 298 K): $\delta = 28.6$, 18.3, –9.7 ppm. ²⁹Si DEPT NMR (99 MHz, C₆D₆, 298 K, optimized for J = 200 Hz, 90.0°): $\delta = 10.2$ ppm. **HRMS** (APCI): calculated for C₉H₂₁Si⁺ [M–H]⁺: 157.1407; found: 157.1408.

2.5 Di-*sec*-butyl(methyl)silane (**6d**)

sec-Butyllithium (1.30M in cyclohexane, 45.0 mL, 58.5 mmol, 2.18 equiv) was cooled with an ice bath and dichloromethylsilane (**S6**, 2.80 mL, 3.08 g, 26.8 mmol, 1.00 equiv) was added dropwise over a period of 10 min. The reaction mixture was stirred for 92 h at room temperature. The mixture was filtered, the solvent was removed under reduced pressure and the residue was purified by distillation at atmospheric pressure (b.p. 157°C). The product **6d** was obtained as a colorless oil (999 mg, 24%). **IR** (ATR): $\tilde{v} = 2955$, 2866, 2097, 1457, 1376, 1249, 1093, 1032, 1000, 965, 850, 820, 724 cm⁻¹. ¹H **NMR** (700 MHz, C₆D₆, 298 K): δ = 3.89–3.79 (m, 1H), 1.54 (m_c, 2H), 1.23 (m_c, 2H), 1.01 (m_c, 3H), 0.98–0.93 (m, 9H), 0.73 (m_c, 2H), 0.00 (m_c, 3H) ppm. ¹³C{¹H} **NMR** (175 MHz, C₆D₆, 298 K): δ = 27.25, 26.67, 26.55, 25.93, 18.91, 18.88, 18.71, 18.61, 15.39, 15.29, 14.92, 14.90, 13.50, 13.48, 13.46, 13.43, -9.35, -9.80, -10.19 ppm. ²⁹Si{¹H} **IG NMR** (99 MHz, C₆D₆, 298 K): δ = 0.9, -0.3, -0.9 ppm. **HRMS** (APCI): calculated for C₉H₂₁Si⁺ [M–H]⁺: 157.1407; found: 157.1406.

2.6 Diisobutyl(methyl)silane (6e)

Magnesium turnings (11.2 g, 460 mmol, 5.66 equiv) were heated and stirred in vacuo for 15 min. Diethylether (60 mL) and three small iodine crystals were added. Isobutyl bromide (**S7**, 20.0 mL, 25.2 g, 184 mmol, 2.26 equiv) was added dropwise over a period of 15 min, to maintain gentle reflux. Diethylether (70 mL) was added, and the solution was heated for 3 h to 70°C. The reaction mixture was cooled to room temperature and dichloromethylsilane (**S6**, 8.50 mL, 9.35 g, 81.3 mmol, 1.00 equiv) was added dropwise over a period of 15 min. The reaction mixture was stirred for 21 h at room temperature and heated for 3 h at 70°C. The reaction mixture was cooled with an ice bath and hydrochloric acid (1.00M) was added slowly

until the magnesium was dissolved. The phases were separated, and the aqueous layer was extracted with diethylether (2 × 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure and the crude product was purified by distillation at atmospheric pressure (b.p. 161°C). The product **6e** was obtained as a colorless oil (7.52 g, 58%). **IR** (ATR): $\tilde{v} = 2952$, 2868, 2110, 1462, 1380, 1327, 1251, 1214, 1163, 1089, 1034, 858 cm⁻¹. ¹H **NMR** (700 MHz, C₆D₆, 298 K): $\delta = 4.13$ (oct, J = 3.6 Hz, 1H), 1.75 (non, J = 6.7 Hz, 2H), 0.97 (d, J = 6.7 Hz, 12H), 0.59 (ddd, J = 14.6 Hz, 7.2 Hz, 3.1 Hz, 2H), 0.53 (ddd, J = 14.6 Hz, 6.9 Hz, 3.9 Hz, 2H), 0.07 (d, J = 3.8 Hz, 3H) ppm. ¹³C{¹H} **NMR** (126 MHz, C₆D₆, 298 K): $\delta = 26.2$, 26.0, 25.7, 24.3, –4.9 ppm. ²⁹Si{¹H} **IG NMR** (99 MHz, C₆D₆, 298 K): $\delta = -14.9$ ppm. **HRMS** (APCI): calculated for C₉H₂₁Si⁺ [M–H]⁺: 157.1407; found: 157.1407.

3 Experimental Details for the Silylium-Ion-Initiated Twofold Halodealkylation

3.1 Optimization of the Twofold Chlorodeethylation of Tetraethylsilane (1a)

Table S1 Optimization of the reaction conditions for the catalytic twofold chlorodeethylation of tetraethylsilane (**1a**) in the presence of 1,2-dichloroethane **2a** initiated by catalytic amounts [Me₃Si(HCB₁₁H₅Br₆)] (**5**).^{*a*}

Et Et ^{_Si,,} Et ^{_Et}	≡t ⁺ CI	CI [Me ₃ Si(HC) CI [Me ₃ Si(HC] C	B ₁₁ H ₅ Br ₆)] (5 2 ₆ D ₆ p., time	Et Et Si,/Et	Et + Et ^{∕Si,} ″CI
1a	2a			3aa	4 aa
Entry	5 / mol%	Temp. / °C	Time / h	3aa ^b / %	4aa ^b / %
1	1.0	r.t.	14	84	16
2	1.0	50	14	68	32
3	1.0	70	14	57	43
4	1.0	70	24	56	44
5	1.0	70	48	48	52
6	5.0	70	48	<5	>95
7	5.0	70	24	<5	>95
8	2.5	70	24	17	83

^aReactions were performed on a 20.0 µmol scale and 1.0 equiv of each **1a** and **2a** were used. ^bYields were determined by quantitative ¹H NMR analysis of the crude reaction mixture using cyclohexane as an internal standard. 3.2 General Procedure for the Twofold Halodealkylation of Tetraalkylsilanes with 1,2-Dihaloethane (**GP 1**)

In a high-quality glovebox (O₂, H₂O < 1.0 ppm), [Me₃Si(HCB₁₁H₅Br₆)] (**5**, 3.0 mg, 4.35 µmol, 5.00 mol%) was suspended in C₆D₆ (0.6 mL, 0.145M) and the indicated silane (**1a**–**r**, 87.0 µmol, 1.00 equiv) and the indicated 1,2-dihaloethane (**2a**–**c**, 87.0 µmol, 1.00 equiv) were added consecutively. The reaction mixture was stirred for 24 h at 70°C and cyclohexane (8.0 µL, 6.2 mg, 74.1 µmol) or the indicated amount of 1,2,4,5-tetrachlorobenzene was added as an internal NMR standard. The reaction mixture was transferred to a J. Young NMR tube and immediately subjected to NMR analysis.

3.3 General Procedure for the Chlorodehydrogenation and Chlorodealkylation of Trialkylhydrosilanes with 1,2-Dichloroethane (**GP 2**)

In a high-quality glovebox (O₂, H₂O < 1.0 ppm), [Me₃Si(HCB₁₁H₅Br₆)] (**5**, 3.0 mg, 4.35 µmol, 5.00 mol%) was suspended in C₆D₆ (0.6 mL, 0.145M) and the indicated silane (**6a–e**, 87.0 µmol, 1.00 equiv) and 1,2-dichloroethane (**2a**, 87.0 µmol, 1.00 equiv) were added consecutively. The reaction mixture was stirred for 24 h at 70°C and cyclohexane (8.0 µL, 6.2 mg, 74.1 µmol) or the indicated amount of 1,2,4,5-tetrachlorobenzene was added as an internal NMR standard. The reaction mixture was transferred to a J. Young NMR tube and immediately subjected to NMR analysis.

4 Characterization Data of the Halodealkylation Products of Tetraalkylsilanes

4.1 Dichlorodiethylsilane (**4aa**) by Chlorodeethylation of Tetraethylsilane (**1a**) with 1,2-Dichloroethane (**2a**)

Prepared from tetraethylsilane (1a) with 1,2-dichloroethane (2a) according to GP 1. Quantitative ¹H NMR spectroscopy revealed a yield of >99% of 4aa with cyclohexane as an internal standard. ¹H NMR (500 MHz, C₆D₆, 298 K): δ = 0.86 (t, *J* = 7.8 Hz, 6H), 0.70 (q, *J* = 7.7 Hz, 4H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 12.2, 6.1 ppm. ²⁹Si{¹H} IG NMR (99 MHz, C₆D₆, 298 K): δ = 36.0 ppm. The NMR spectroscopic data are in accordance with those reported.^{S5}

4.2 Dibromodiethylsilane (**4ab**) by Bromodeethylation of Tetraethylsilane (**1a**) with 1,2-Dibromoethane (**2b**)

Prepared from tetraethylsilane (1a) with 1,2-dibromoethane (2b) according to GP 1. Quantitative ¹H NMR spectroscopy revealed a yield of 96% of 4ab with cyclohexane as an internal standard. ¹H NMR (500 MHz, C₆D₆, 298 K): δ = 0.86 (m, 10H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 14.4, 7.0 ppm. ²⁹Si{¹H} DEPT NMR (99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz, 18.4°): δ = 31.2 ppm. The NMR spectroscopic data are in accordance with those reported.^{S6}

4.3 Diethyldiiodosilane (4ac) by lododeethylation of Tetraethylsilane (1a) with 1,2-Diiodoethane (2c)

Prepared from tetraethylsilane (1a) with 1,2-diiodoethane (2c) according to GP 1. Quantitative ¹H NMR spectroscopy revealed a yield of 95% of 4ac with cyclohexane as an internal standard. ¹H NMR (500 MHz, C₆D₆, 298 K): δ = 1.11 (q, *J* = 7.7 Hz, 4H), 0.79 (t, *J* = 7.7 Hz, 6H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 16.3, 8.8 ppm. ²⁹Si{¹H} DEPT NMR (99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz, 18.4°): δ = -4.5 ppm. The NMR spectroscopic data are in accordance with those reported.^{S7}

4.4 Dibutyldichlorosilane (**4ba**) by Chlorodebutylation of Tetrabutylsilane (**1b**) with 1,2-Dichoroethane (**2a**)

Prepared from tetrabutylsilane (**1b**) with 1,2-dichloroethane (**2a**) according to **GP 1**. Quantitative ¹H NMR spectroscopy revealed a yield of >95% of **4ba** with cyclohexane as an internal standard. ¹H NMR (500 MHz, C₆D₆, 298 K): $\delta = 1.40-1.33$ (m, 4H), 1.19 (sex, J = 7.4 Hz, 4H), 0.89–0.82 (m, 4H), 0.79 (t, J = 7.4 Hz, 6H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 25.8$, 24.9, 20.3, 13.7 ppm. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz): $\delta = 1.37/33.4$, 0.85/33.4 ppm. The NMR spectroscopic data are in accordance with those reported.^{S8}

4.5 Dichloro(methyl)(octyl)silane (4ca) by Chlorodemethylation of Trimethyl(octyl)silane (1c) with 1,2-Dichloroethane (2a)

Prepared from trimethyl(octyl)silane (1c) with 1,2-dichloroethane (2a) according to **GP 1**. Quantitative ¹H NMR spectroscopy revealed a yield of 90% of 4ca with cyclohexane as an internal standard. ¹H NMR (500 MHz, C₆D₆, 298 K): δ = 1.39–1.11 (m, 11H), 0.91 (t, *J* = 7.1 Hz, 3H), 0.80 (m_c, 2H), 0.40 (s, 3H) ppm. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz): δ = 0.80/32.5, 0.40/32.5 ppm. The NMR spectroscopic data are in accordance with those reported.^{S9}

4.6 Dichloro(cyclohexyl)(methyl)silane (**4da**) by Chlorodemethylation of Cyclohexyltrimethylsilane (**1d**) with 1,2-Dichoroethane (**2a**)

Prepared from cyclohexyltrimethylsilane (1d) with 1,2-dichloroethane (2a) according to GP 1. Quantitative ¹H NMR spectroscopy revealed a yield of 87% of 4da with cyclohexane as an internal standard. ¹H NMR (500 MHz, C₆D₆, 298 K): δ = 1.71–1.65 (m, 2H), 1.60–1.51 (m, 3H), 1.15–0.96 (m, 5H), 0.78 (tt, *J* = 12.5 Hz, *J* = 3.1 Hz, 1H), 0.39 (s, 3H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 30.7, 27.2, 26.5, 25.9, 2.8 ppm. ²⁹Si{¹H} DEPT NMR (99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz, 30.0°): δ = 32.4 ppm. The NMR spectroscopic data are in accordance with those reported.^{S10}

4.7 *tert*-Butyldichloro(methyl)silane (**4ea**) by Chlorodemethylation of *tert*-Butyltrimethylsilane (**1e**) with 1,2-Dichoroethane (**2a**)

Prepared from *tert*-butyltrimethylsilane (**1e**) with 1,2-dichloroethane (**2a**) according to **GP 1**. Quantitative ¹H NMR spectroscopy revealed a yield of 90% of **4ea** with cyclohexane as an internal standard. ¹H NMR (500 MHz, C₆D₆, 298 K): $\delta = 0.89$ (s, 9H), 0.38 (s, 3H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 24.6$, 22.4, 1.4 ppm. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz): $\delta = 0.89/36.4$, 0.38/36.4 ppm. The NMR spectroscopic data are in accordance with those of a commercially obtained sample.

4.8 Butyldichloro(ethyl)silane (**4fa**) by Chlorodeethylation of Butyltriethylsilane (**1f**) with 1,2-Dichoroethane (**2a**)

Prepared from butyltriethylsilane (**1f**) with 1,2-dichloroethane (**2a**) according to **GP 1**. Quantitative ¹H NMR spectroscopy revealed a yield of 74% of **4fa** and 21% of dichlorodiethylsilane (**4aa**) as a side product with 1,2,4,5-tetrachlorobenzene (15.4 mg) as an internal standard. NMR data for **4fa**: ¹H **NMR** (500 MHz, C₆D₆, 298 K): δ = 1.36–1.28 (m, 2H), 1.15 (sex, *J* = 7.4 Hz, 2H), 0.90 (t, *J* = 7.8 Hz, 3H), 0.82–0.76 (m, 2H), 0.78–0.74 (m, 3H), 0.77-0.72 (m, 2H)

ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 25.7, 24.8, 19.7, 13.7, 12.7, 6.2 ppm. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz): δ = 1.32/34.7, 0.90/34.7, 0.80/34.7, 0.76/34.7 ppm. The NMR spectroscopic data are in accordance with those reported.^{S11} NMR data for 4aa: ¹H NMR (500 MHz, C₆D₆, 298 K): δ = 0.86 (t, *J* = 7.7 Hz, 6H), 0.70 (q, *J* = 7.4 Hz, 4H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 12.2, 6.1 ppm. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz): δ = 0.86/36.0, 0.70/36.0 ppm. The NMR spectroscopic data are in accordance with those reported.^{S5}

4.9 Dichloro(hexyl)(methyl)silane (4ga) by Chlorodemethylation of Hexyltrimethylsilane (1g) with 1,2-Dichoroethane (2a)

Prepared from hexyltrimethylsilane (**1g**) with 1,2-dichloroethane (**2a**) according to **GP 1**. Quantitative ¹H NMR spectroscopy revealed a yield of 78% of **4ga** with cyclohexane as an internal standard. ¹H NMR (500 MHz, C₆D₆, 298 K): δ = 1.36–1.28 (m, 2H), 1.21 (sex, *J* = 7.0 Hz, 2H), 1.16–1.06 (m, 4H), 0.87 (t, *J* = 7.3 Hz, 3H), 0.78 (m_c, 2H), 0.40 (s, 3H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 32.3, 31.6, 22.8, 22.6, 21.7, 14.3, 4.9 ppm. ²⁹Si{¹H} DEPT NMR (99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz, 22.2°): δ = 32.8 ppm. The NMR spectroscopic data are in accordance with those reported.^{S5,S9}

4.10 Dichlorodihexylsilane (**4ha**) by Chlorodemethylation of Dihexyldimethylsilane (**1h**) with 1,2-Dichoroethane (**2a**)

Prepared from dihexyldimethylsilane (**1h**) with 1,2-dichloroethane (**2a**) according to **GP 1**. Quantitative ¹H NMR spectroscopy revealed a yield of 61% of **4ha** and 24% of dichloro(hexyl)(methyl)silane (**4ga**) as a side product with 1,2,4,5-tetrachlorobenzene (19.5 mg, 90.3 µmol) as an internal standard. NMR data for **4ha**: ¹H NMR (500 MHz, C₆D₆, 298 K): $\delta = 1.46-1.38$ (m, 4H), 1.28–1.10 (m, 12H), 0.91–0.85 (m, 10H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 32.4$, 31.6, 22.9, 22.7, 20.6, 14.3 ppm. ²⁹Si{¹H} DEPT NMR (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 20.7°): $\delta = 33.5$ ppm. The NMR spectroscopic data are in accordance with those reported. ^{S8} NMR data for **4ga**: ¹H NMR (500 MHz, C₆D₆, 298 K): $\delta = 1.36-1.06$ (m, 8H), 0.91–0.84 (m, 3H), 0.78 (m_c, 2H), 0.40 (s, 3H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 32.3, 31.6, 22.9, 22.7, 21.7, 14.4, 4.9 ppm. ²⁹Si{¹H} DEPT NMR (99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz, 20.7°): δ = 32.8 ppm. The NMR spectroscopic data are in accordance with those reported.^{S5,S9}

4.11 Dichlorodiisopropylsilane (4ia) by Chlorodemethylation of Diisopropyldimethylsilane (1i) with 1,2-Dichoroethane (2a)

Prepared from diisopropyldimethylsilane (**1i**) with 1,2-dichloroethane (**2a**) according to **GP 1**. Quantitative ¹H NMR spectroscopy revealed a yield of 94% of **4ia** with cyclohexane as an internal standard. ¹H NMR (500 MHz, C₆D₆, 298 K): $\delta = 1.05-0.98$ (m, 2H), 0.95 (d, J = 6.3 Hz, 12H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 17.4$, 16.3 ppm. ²⁹Si{¹H} DEPT NMR (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 15.5°): $\delta = 38.0$ ppm. The NMR spectroscopic data are in accordance with those reported.^{S5}

4.12 Dichlorodiisopropylsilane (**4ja**) by Chlorodeethylation of Diethyldiisopropylsilane (**1j**) with 1,2-Dichoroethane (**2a**)

Prepared from diethyldiisopropylsilane (**1**j) with 1,2-dichloroethane (**2a**) according to **GP 1**. Quantitative ¹H NMR spectroscopy revealed a yield of 97% of **4**ja (= **4**ia) with cyclohexane as an internal standard. ¹H NMR (500 MHz, C₆D₆, 298 K): δ = 1.04–0.98 (m, 2H), 0.95 (d, *J* = 6.4 Hz, 12H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 17.4, 16.3 ppm. ²⁹Si{¹H} DEPT NMR (99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz, 15.5°): δ = 38.0 ppm. The NMR spectroscopic data are in accordance with those reported.^{S5}

4.13 1-Adamantyldichloro(methyl)silane (**4ka**) by Chlorodemethylation of 1-Adamantyltrimethylsilane (**1k**) with 1,2-Dichoroethane (**2a**)

Prepared from 1-adamantyltrimethylsilane (**1k**) with 1,2-dichloroethane (**2a**) according to **GP 1**. Quantitative ¹H NMR spectroscopy revealed a yield of 83% of **4ka** with 1,2,4,5-tetrachlorobenzene (7.2 mg, 33.4 µmol) as an internal standard. ¹H NMR (500 MHz, C₆D₆, 298 K): $\delta = 1.77-1.65$ (m, 9H), 1.64–1.50 (m, 6H), 0.40 (s, 3H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 36.8$, 35.2, 27.4, 26.9, 0.6 ppm. ²⁹Si{¹H} DEPT NMR (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 15.5°): $\delta = 32.1$ ppm.

4.14 Dichloro(ethyl)(methyl)silane (**4la**) by Chlorodemethylation and Chlorodeethylation of Diethyldimethylsilane (**1l**) with 1,2-Dichoroethane (**2a**)

Prepared from diethyldimethylsilane (1I) with 1,2-dichloroethane (2a) according to GP 1. Quantitative ¹H NMR spectroscopy revealed a yield of 52% of 4la and 32% of dichlorodiethylsilane (4aa) as a side product with cyclohexane as an internal standard. NMR data for 4la: ¹H NMR (700 MHz, C₆D₆, 298 K): $\delta = 0.82$ (t, J = 7.8 Hz, 3H), 0.67 (q, J = 7.8 Hz, 2H), 0.33 (s, 3H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 13.9$, 6.1, 4.2 ppm. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz): $\delta = 0.82/34.0$, 0.67/34.0, 0.33/34.0 ppm. The NMR spectroscopic data are in accordance with those reported.^{S12} NMR data for 4aa: ¹H NMR (700 MHz, C₆D₆, 298 K): $\delta = 0.86$ (t, J = 7.8 Hz, 6H), 0.70 (q, J = 7.8 Hz, 4H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 12.2$, 6.1 ppm. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz): $\delta = 0.86/35.9$, 0.70/35.9 ppm. The NMR spectroscopic data are in accordance with those reported.^{S5}

4.15 Dichlorodiethylsilane (**4ma**) by Chlorodemethylation and Chlorodeethylation of Triethyl(methyl)silane (**1m**) with 1,2-Dichoroethane (**2a**)

Prepared from triethyl(methyl)silane (1m) with 1,2-dichloroethane (2a) according to GP 1. Quantitative ¹H NMR spectroscopy revealed a yield of 73% of 4ma and 24% of dichloro(ethyl)(methyl)silane (4la) as a side product with cyclohexane as an internal standard. NMR data for 4ma: ¹H NMR (500 MHz, C₆D₆, 298 K): δ = 0.86 (t, *J* = 7.7 Hz, 6H), 0.70 (q, *J* = 7.8 Hz, 4H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 12.2, 6.1 ppm. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz): δ = 0.86/35.9, 0.70/35.9 ppm. The NMR spectroscopic data are in accordance with those reported.^{S5} NMR data for **4la** (24% yield): ¹**H NMR** (500 MHz, C₆D₆, 298 K): δ = 0.82 (t, *J* = 7.7 Hz, 3H), 0.70–0.64 (m, 2H), 0.33 (s, 3H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 13.9, 6.1, 4.2 ppm. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz): δ = 0.82/34.0, 0.67/34.0, 0.33/34.0 ppm. The NMR spectroscopic data are in accordance with those reported.^{S12}

4.16 Dibutyldichlorosilane (**4na**) by Chlorodemethylation of Dibutyldimethylsilane (**1n**) with 1,2-Dichoroethane (**2a**)

Prepared from dibutyldimethylsilane (1n) with 1,2-dichloroethane (2a) according to GP 1. Quantitative ¹H NMR spectroscopy revealed a yield of 80% of 4na (= 4ba) with cyclohexane as an internal standard. ¹H NMR (500 MHz, C₆D₆, 298 K): δ = 1.40–1.32 (m, 4H), 1.18 (sex, *J* = 7.3 Hz, 4H), 0.84 (m_c, 4H), 0.78 (t, *J* = 7.4 Hz, 6H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 25.8, 24.8, 20.2, 13.7 ppm. ²⁹Si{¹H} DEPT NMR (99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz, 20.7°): δ = 33.5 ppm. The NMR spectroscopic data are in accordance with those reported.^{S8}

4.17 Dichloro(isopentyl)(methyl)silane (4oa) by Chlorodemethylation and Chlorodeisopentylation of Diisopentyldimethylsilane (1o) with 1,2-Dichoroethane (2a)

Prepared from diisopentyldimethylsilane (**10**) with 1,2-dichloroethane (**2a**) according to **GP 1**. Quantitative ¹H NMR spectroscopy revealed a yield of 52% of **4oa** and 32% of dichlorodiisopentylsilane (**4oa'**) as a side product with 1,2,4,5-tetrachlorobenzene (19.2 mg, 88.9 µmol) as an internal standard. NMR data for **4oa**: ¹H **NMR** (500 MHz, C₆D₆, 298 K): $\delta = 1.36-1.31$ (m, 1H), 1.26–1.20 (m, 2H), 0.82–0.73 (m, 8H), 0.40 (s, 3H) ppm. ¹³C{¹H} **NMR** (126 MHz, C₆D₆, 298 K): $\delta = 31.4$, 30.4, 22.0, 19.4, 4.7 ppm. ²⁹Si{¹H} **DEPT NMR** (99 MHz, C₆D₆, 298 K): $\delta = 1.37-1.30$ (m, 6H), 0.92–0.84 (m, 16H) ppm. ¹³C{¹H} **NMR** (126 MHz, C₆D₆, 298 K): $\delta = 31.5$, 30.3, 22.0, 18.1 ppm. ²⁹Si{¹H} **DEPT NMR** (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 22.2°): $\delta = 34.5$ ppm. 4.18 Dichlorodimethylsilane (4pa) by Chlorodemethylation and Chlorodebenzylation of Benzyltrimethylsilane (1p) with 1,2-Dichoroethane (2a)

Prepared from benzyltrimethylsilane (1p) with 1,2-dichloroethane (2a) according to GP 1. Quantitative ¹H NMR spectroscopy revealed a yield of 84% of 4pa with cyclohexane as an internal standard. ¹H NMR (500 MHz, C₆D₆, 298 K): δ = 0.32 (s, 9H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 6.1 ppm. ²⁹Si{¹H} IG NMR (99 MHz, C₆D₆, 298 K): δ = 32.1 ppm. The NMR spectroscopic data are in accordance with those reported.^{S13}

4.19 Bis(dichloro(methyl)silyl)methane (4qa) by Chlorodemethylation of Bis(trimethylsilyl)methane (1q) with 1,2-Dichoroethane (2a)

Prepared from bis(trimethylsilyl)methane (**1q**, 4.5 µL, 3.4 mg, 21.1 µmol, 1.00 equiv) with 1,2dichloroethane (**2a**, 5.3 µL, 6.6 mg, 66.3 µmol, 3.1 equiv) and [Me₃Si(HCB₁₁H₅Br₆)] (**5**, 4.3 mg, 17.7 µmol, 20.6 mol%) according to **GP 1**. Quantitative ¹H NMR spectroscopy revealed a yield of 84% of **4qa** with cyclohexane as an internal standard. ¹H **NMR** (500 MHz, C₆D₆, 298 K): δ = 0.60 (s, 2H), 0.46 (s, 6H) ppm. ¹³C{¹H} **NMR** (126 MHz, C₆D₆, 298 K): δ = 16.8, 7.1 ppm. ²⁹Si{¹H} **INEPT NMR** (99 MHz, *J* = 7 Hz, C₆D₆, without decoupling in F1 dimension): δ = 25.9 (sex, *J* = 7.9 Hz) ppm. **HRMS** (APCI): calculated for C₃H₈Si₂Cl₃⁺ [M–CI]⁺: 204.9225; found: 204.9224.

4.20 Dichloro(methyl)(pentyl)silane- d_1 (**4ra**- d_1) by Chlorodemethylation and Ring Opening of 1,1-Dimethylsilinane (**1r**) with 1,2-Dichoroethane (**2a**)

Prepared from 1,1-dimethylsilinane (**1r**) with 1,2-dichloroethane (**2a**) according to **GP 1**. Quantitative ¹H NMR spectroscopy revealed a yield of 88% of **4ra**- d_1 with cyclohexane as an internal standard. ¹H NMR (500 MHz, C₆D₆, 298 K): δ = 1.35–1.28 (m, 2H), 1.16–1.07 (m, 4H), 0.80 (tt, ${}^{3}J_{HH} = 6.9$ Hz, ${}^{2}J_{HD} = 2.0$ Hz, 2H), 0.77 (m_c, 2H), 0.39 (s, 3H) ppm. ²H NMR (77 MHz, C₆D₆, 298 K): $\delta = 0.84-0.71$ (m) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 34.7$, 22.34, 22.32, 21.6, 13.7 (t, ${}^{1}J_{CD} = 19.2$ Hz), 4.9 ppm. ²⁹Si{¹H} DEPT NMR (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 20.7°): $\delta = 32.8$ ppm.

4.21 Tested unsuccessful substrates

5 Characterization Data of the Chlorodehydrogenation and Chlorodealkylation Products of Trialkylhydrosilanes

5.1 Dichloro(isopropyl)(methyl)silane (**7aa**) by Chlorodehydrogenation and Chlorodemethylation of Isopropyldimethylsilane (**6a**) with 1,2-Dichoroethane (**2a**)

Prepared from isopropyldimethylsilane (**6a**) with 1,2-dichloroethane (**2a**) according to **GP 2**. Quantitative ¹H NMR spectroscopy revealed a yield of 90% of **7aa** with cyclohexane as an internal standard. ¹H NMR (500 MHz, C_6D_6 , 298 K): $\delta = 0.91-0.84$ (m, 7H), 0.34 (s, 3H) ppm. ¹³C{¹H} NMR (126 MHz, C_6D_6 , 298 K): $\delta = 19.6$, 15.9, 2.6 ppm. ²⁹Si{¹H} DEPT NMR (99 MHz, C_6D_6 , 298 K, optimized for J = 7 Hz, 18.4°): $\delta = 35.2$ ppm.

5.2 Dichlorodiisopropylsilane (**7ba**) by Chlorodehydrogenation and Chlorodemethylation of Diisopropyl(methyl)silane (**6b**) with 1,2-Dichoroethane (**2a**)

Prepared from diisopropyl(methyl)silane (**6b**) with 1,2-dichloroethane (**2a**) according to **GP 2**. Quantitative ¹H NMR spectroscopy revealed a yield of 90% of **7ba** with cyclohexane as an internal standard. ¹H NMR (500 MHz, C₆D₆, 298 K): $\delta = 1.05-0.97$ (m, 2H), 0.95 (d, J = 6.3 Hz, 12H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 17.4$, 16.3 ppm. ²⁹Si{¹H} DEPT NMR (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 15.5°): $\delta = 38.0$ ppm. The NMR spectroscopic data are in accordance with those reported.^{S5} 5.3 Di-*tert*-butyldichlorosilane (7ca) by Chlorodehydrogenation and Chlorodemethylation of Di-*tert*-butyl(methyl)silane (6c) with 1,2-Dichoroethane (2a)

Prepared from di-*tert*-butyl(methyl)silane (**6c**) with 1,2-dichloroethane (**2a**) according to **GP 2**. Quantitative ¹H NMR spectroscopy revealed a yield of 83% of **7ca** with cyclohexane as an internal standard. ¹H NMR (500 MHz, C₆D₆, 298 K): δ = 1.03 (s, 18H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 26.9, 24.7 ppm. ²⁹Si{¹H} DEPT NMR (99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz, 13.6°): δ = 39.0 ppm.

5.4 Di-sec-butyldichlorosilane (**7da**) by Chlorodehydrogenation and Chlorodemethylation of Di-sec-butyl(methyl)silane (**6d**) with 1,2-Dichoroethane (**2a**)

Prepared from di-*sec*-butyl(methyl)silane (**6d**) with 1,2-dichloroethane (**2a**) according to **GP 2**. Quantitative ¹H NMR spectroscopy revealed a yield of 80% of **7da** with 1,2,4,5-tetrachlorobenzene (18.4 mg, 85.2 µmol) as an internal standard. ¹H **NMR** (500 MHz, C₆D₆, 298 K): δ = 1.64 (m_c, 2H), 1.20 (m_c, 2H), 0.99–0.88 (m, 8H), 0.82 (td, ³*J* = 7.4 Hz, ⁴*J* = 1.6 Hz, 6H) ppm. ¹³C{¹H} **NMR** (126 MHz, C₆D₆, 298 K): δ = 24.78, 24.76, 23.60, 23.57, 12.89, 12.87, 12.53, 12.48 ppm. ²⁹Si{¹H} **DEPT NMR** (99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz, 13.6°): δ = 36.2 ppm.

5.5 Dichloro(isobutyl)(methyl)silane (**7ea**) by Chlorodehydrogenation and Chlorodeisobutylation of Diisobutyl(methyl)silane (**6e**) with 1,2-Dichoroethane (**2a**)

Prepared from diisobutyl(methyl)silane (**6e**) with 1,2-dichloroethane (**2a**) according to **GP 2**. Quantitative ¹H NMR spectroscopy revealed a yield of 91% of **7ea** with cyclohexane as an internal standard. ¹H NMR (500 MHz, C₆D₆, 298 K): δ = 1.79 (non, *J* = 6.7 Hz, 1H), 0.81 (d, J = 6.7 Hz, 6H), 0.79 (d, J = 6.9 Hz, 2H), 0.42 (s, 3 H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 31.6, 25.4, 24.4, 6.1$ ppm. ²⁹Si{¹H} DEPT NMR (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 24.1°): $\delta = 32.0$ ppm. HRMS (APCI): calculated for C₄H₉SiCl₂+ [M–Me]+: 154.9845; found: 154.9838. The NMR spectroscopic data are in accordance with those reported.^{S5}

6 Synthesis of Heteroleptic Silanes by Successive Twofold Chlorodealkylation of Tetraalkylsilanes and Nucleophilic Substitution

6.1 Dibutyldiphenylsilane (**8b**) by Chlorodebutylation of Tetrabutylsilane (**1b**) and Nucleophilic Substitution with PhLi

Chlorodemethylation:

The chlorodemethylation of tetrabutylsilane (**1b**, 256 mg, 1.00 mmol, 1.00 equiv) was performed using silylium carborate [Me₃Si(HCB₁₁H₅Br₆)] (**5**, 34.5 mg, 0.05 mmol, 5.0 mol%) and 1,2-dichloroethane (**2a**, 79.0 μ L, 99.0 mg, 1.00 mmol, 1.00 equiv) in C₆H₆ (2.0 mL) at 70°C for 24 h according to **GP 1**. Complete conversion was observed by ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz): δ = 1.37/33.4, 0.84/33.4 ppm.

Nucleophilic substitution:

To the reaction mixture, anhydrous THF (2.0 mL) was added, followed by the addition of PhLi (1.30 mL of a 1.90M solution in dibutylether, 2.47 mmol, 2.47 equiv) at 0°C. The reaction mixture was then gradually warmed to room temperature and stirred for 12 h. The reaction mixture was quenched by the addition of water (5 mL) and saturated aqueous NH₄Cl solution (10 mL). The organic phase was separated, and the aqueous phase was extracted with Et₂O (3 × 10 mL). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. Purification by flash column chromatography on silica gel using *n*-pentane as eluent afforded dibutyldiphenylsilane (**8b**, 155 mg, 0.522 mmol, 52%) as a colorless oil. **R**_f = 0.60 (cyclohexane). ¹**H NMR** (500 MHz, CDCl₃, 298 K): δ = 7.53–7.48 (m, 4H), 7.40–7.32 (m, 6H), 1.39–1.28 (m, 8H), 1.13–1.05 (m, 4H), 0.87 (t, *J* = 7.0 Hz, 6H) ppm. ¹³C{¹H} **NMR** (126 MHz, CDCl₃, 298 K): δ = 136.7, 134.8, 129.0, 127.7, 26.7, 25.9, 13.7, 12.3 ppm. ²⁹Si{¹H} **DEPT NMR** (99 MHz, CDCl₃, 298 K, optimized for *J* = 7 Hz, 30.0°): δ = –6.7 ppm. The NMR spectroscopic data are in accordance with those reported.^{S14}

6.2 Dibutyl(methyl)(3-phenylpropyl)silane (**8s**) by Chlorodemethylation of Trimethyl(3-phenylpropyl)silane (**1s**) and Nucleophilic Substitution with *n*BuLi

Chlorodemethylation:

The chlorodemethylation of trimethyl(3-phenylpropyl)silane (**1s**, 192 mg, 1.00 mmol, 1.00 equiv) was performed using silylium carborate [Me₃Si(HCB₁₁H₅Br₆)] (**5**, 24.5 mg, 34.5 mmol, 5.0 mol%) and 1,2-dichloroethane (**2a**, 79.2 μ L, 99.0 mg, 99.0 mmol, 1.00 equiv) in C₆H₆ (2.5 mL) at 70°C for 24 h according to **GP 1**. Complete conversion was observed by ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz): δ = 0.29/32.6, 0.73/32.6 ppm.

Nucleophilic substitution:

To the reaction mixture, anhydrous THF (2.0 mL) was added, followed by the addition of *n*BuLi (1.00 mL of a 2.50M solution in *n*-hexane, 2.50 mmol, 2.50 equiv) at 0°C. The reaction mixture was then gradually warmed to room temperature and stirred for 12 h. The reaction mixture was quenched by the addition of water (5 mL) and saturated aqueous NH₄Cl solution (10 mL). The organic phase was separated, and the aqueous phase was extracted with Et₂O (3 × 10 mL). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. Purification by flash column chromatography on silica gel using *n*-pentane as eluent afforded dibutyl(methyl)(3-phenylpropyl)silane (**8s**, 135.0 mg, 0.488 mmol, 49%) as a colorless oil. **R**_f = 0.75 (cyclohexane). ¹**H NMR** (500 MHz, CDCl₃, 298 K): δ = 7.30–7.26 (m, 2H), 7.20–7.16 (m, 3H), 2.62 (t, *J* = 7.7 Hz, 2H), 1.65–1.56 (m, 2H), 1.35–1.20 (m, 8H), 0.88 (t, *J* = 7.2 Hz, 6H), 0.55 (m_c, 2H), 0.48 (m_c, 4H), –0.08 (s, 3H) ppm. ¹³**C**{¹**H**} **NMR** (126 MHz, CDCl₃, 298 K): δ = 142.8, 128.4, 128.2, 125.6, 40.1, 26.7, 26.13, 26.11, 13.81, 13.79, 13.5, –5.2 ppm. ²⁹**Si**{¹**H**} **DEPT NMR** (99 MHz, CDCl₃, 298 K, optimized for *J* = 7 Hz, 19.5°): δ = 2.9 ppm.

7 Attempted Preparation of Mixed Dihalosilanes by Halodemethylation of Trimethylhalosilanes with 1,2-Dihaloethane

7.1 General Procedure for the Halodemethylation of Trimethylhalosilanes with 1,2-Dihaloethane (**GP 3**)

In a high-quality glovebox (O_2 , $H_2O < 1.0$ ppm), [Me₃Si(HCB₁₁H₅Br₆)] (**5**, 3.0 mg, 4.35 µmol, 5.00 mol%) was suspended in C₆D₆ (0.6 mL, 0.145M) and the indicated trimethylhalosilane (**3pb–pc**, 87.0 µmol, 1.00 equiv) and the indicated 1,2-dihaloethane (**2**, 43.5 µmol, 0.50 equiv) were added consecutively. The reaction mixture was stirred for 24 h at 70°C and cyclohexane (8.0 µL, 6.2 mg, 74.1 µmol) was added as an internal NMR standard. The reaction mixture was transferred to a J. Young NMR tube and immediately subjected to NMR analysis.

7.1.1 Chlorodemethylation of Bromotrimethylsilane (3pb) with 1,2-Dichloroethane (2a)

Prepared from bromotrimethylsilane (**3pb**) with 1,2-dichloroethane (**2a**) according to **GP 3**. Quantitative ¹H NMR spectroscopy revealed a yield of 27% of **4pb**, 48% of **9pa** and 25% of **4pa**. NMR data for **4pb**: ¹H NMR (500 MHz, C₆D₆, 298 K): $\delta = 0.60$ (s, 6H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 9.0$ ppm. ²⁹Si{¹H} INEPT NMR (99 MHz, J = 7 Hz, C₆D₆, without decoupling in F1 dimension): $\delta = 19.9$ (sept, J = 7.7 Hz) ppm. NMR data for **9pa**: ¹H NMR (500 MHz, C₆D₆, 298 K): $\delta = 0.45$ (s, 6H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 7.7$ ppm. ²⁹Si{¹H} INEPT NMR (99 MHz, J = 7 Hz, C₆D₆, 298 K): $\delta = 0.32$ (s, 6H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 0.32$ (s, 6H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, without decoupling in F1 dimension): $\delta = 26.7$ (sept, J = 7.4 Hz) ppm. NMR data for **4pa**: ¹H NMR (500 MHz, C₆D₆, 298 K): $\delta = 0.32$ (s, 6H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, without decoupling in F1 dimension): $\delta = 32.1$ (sept, J = 7.7 Hz) ppm.

Me Si,,, Me Me	+ CI CI	[Me ₃ Si(HCB ₁₁ H ₅ Br ₆)] (5, 5.0 mol%) C ₆ D ₆ 70°C, 24 h	Me Si,,, Me ^{-Si} ,,, I	He + Si,,, Me [∕] Si,,, CI	+ Me ^{∽Si,} , Me ^{∽Si,} ,Cl
Зрс	2a		4pc (30%)	9pb (33%)	4pa (35%)
(1.0 equiv)	(0.5 equiv)		C ₂ H ₆ I ₂ Si	C ₂ H ₆ CIISi	C ₂ H ₆ Cl ₂ Si
		N	1 = 311.96 g/mol	M = 220.51 g/mol	M = 129.06 g/mol

7.1.2 Chlorodemethylation of lodotrimethylsilane (3pc) with 1,2-Dichloroethane (2a)

Prepared from iodotrimethylsilane (**3pc**) with 1,2-dichloroethane (**2a**) according to **GP 3**. Quantitative ¹H NMR spectroscopy revealed a yield of 30% of **4pc**, 33% of **9pb** and 35% of **4pa**. NMR data for **4pc**: ¹H NMR (500 MHz, C₆D₆, 298 K): $\delta = 1.06$ (s, 6H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 12.3$ ppm. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz): $\delta = 1.06/-33.9$ ppm. NMR data for **9pb**: ¹H NMR (500 MHz, C₆D₆, 298 K): $\delta = 0.65$ (s, 6H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 10.2$ ppm. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K): $\delta = 0.65/5.4$ ppm. NMR data for **4pa**: ¹H NMR (500 MHz, C₆D₆, 298 K): $\delta = 0.32$ (s, 6H) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 6.1$ ppm. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K): $\delta = 0.32/32.0$ ppm.

7.1.3	Bromodemeth	ylation of lodotrimethy	ylsilane (3pc)) with 1,2-Dibromoet	hane (2b)
-------	-------------	-------------------------	-------------------------	----------------------	--------------------

Prepared from iodotrimethylsilane (**3pc**) with 1,2-dibromoethane (**2b**) according to **GP 3**. Quantitative ¹H NMR spectroscopy revealed a yield of 24% of **4pc**, 42% of **9pc** and 28% of **4pb**. NMR data for **4pc**: ¹H **NMR** (500 MHz, C₆D₆, 298 K): $\delta = 1.06$ (s, 6H) ppm. ¹³C{¹H} **NMR** (126 MHz, C₆D₆, 298 K): $\delta = 12.3$ ppm. ²⁹Si{¹H} **INEPT NMR** (99 MHz, J = 7 Hz, C₆D₆, without decoupling in F1 dimension): $\delta = -33.8$ (sept, J = 7.7 Hz) ppm. NMR data for **9pc**: ¹H **NMR** (500 MHz, C₆D₆, 298 K): $\delta = 0.81$ (s, 6H) ppm. ¹³C{¹H} **NMR** (126 MHz, C₆D₆, 298 K): $\delta = 12.3$ ppm. NMR data for **9pc**: ¹H **NMR** (500 MHz, C₆D₆, 298 K): $\delta = -33.8$ (sept, J = 7.7 Hz) ppm. NMR data for **9pc**: ¹H **NMR** (500 MHz, C₆D₆, 298 K): $\delta = -4.3$ (sept, J = 7.3 Hz) ppm. NMR data for **4pb**: ¹H **NMR** (500 MHz, C₆D₆, 298 K): $\delta = 0.60$ (s, 6H) ppm. ¹³C{¹H} **NMR** (126 MHz, C₆D₆, 298 K): $\delta = 0.60$ (s, 6H) ppm. ¹³C{¹H} **NMR** (126 MHz, C₆D₆, 298 K): $\delta = 0.60$ (s, 6H) ppm. ¹³C{¹H} **NMR** (126 MHz, C₆D₆, 298 K): $\delta = 0.60$ (s, 6H) ppm. ¹³C{¹H} **NMR** (126 MHz, C₆D₆, 298 K): $\delta = 0.60$ (s, 6H) ppm. ¹³C{¹H} **NMR** (126 MHz, C₆D₆, 298 K): $\delta = 19.0$ ppm. ²⁹Si{¹H} **INEPT NMR** (99 MHz, J = 7 Hz, C₆D₆, without decoupling in F1 dimension): $\delta = 19.9$ (sept, J = 7.7 Hz) ppm.

8 Analytical Spectra

Figure S1. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of 1-adamantyltrimethylsilane (1k) (* 1,2,4,5-tetrachlorobenzene)

Figure S2. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of 1-adamantyltrimethylsilane (**1k**) (* 1,2,4,5-tetrachlorobenzene)

Figure S3. ²⁹Si{¹H} DEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 15.0°) of 1-adamantyltrimethylsilane (1k)

Figure S4. GLC-MS spectrum (EI) of 1-adamantyltrimethylsilane (1k)

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm
	***********************	******	****		*****		·····	******	*******			*****	*****	**************************************	******				
																			I
																	I		
																	·	·	
																	5		ې ا
																3.4 1.4	2.4	5.0	3.4

Figure S6. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of diisopentyldimethylsilane (10)

Figure S7. ²⁹Si{¹H} DEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 15.5°) of diisopentyldimethylsilane (10)

2.7 Т 90 80 70 60 50 40 30 20 10 -20 -30 -50 -60 -70 0 -10 -40 -80 ppm

Figure S8. GLC-MS spectrum (EI) of diisopentyldimethylsilane (10)

Figure S10. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of diisopropyl(methyl)silane (**6b**)

Figure S11. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of diisopropyl(methyl)silane (6b)
Figure S12. ²⁹Si{¹H} DEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 12.9°) of diisopropyl(methyl)silane (6b)

- 4.0

ومعاليه والمعرفة والمتراجع والمتراجع ومدارية والمتراجع والمتراجع والمتراجع والمترجع والمترجع والمتراجع والمترجع والمترجع والمتراجع والمترجع	ينافلها والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمحمد والتلامين والمحمد والمراجع
ער איז	┙╗╴┝┪╺┍╕┲╺┙┲┙╗┲╽╗╏╔╗╪┲╗┲┲┙┙┲┲╕╞╔╔╗╗╏╔┇┲╗┶╍┍╗┲┿┲╅┲┿┲┪┍╸┙╖╸╗┙╖╗┙╖╗┙╡╗╗╗┲┲┲┙╸╸╸╸╸╸╻╸ ┍

	l	l		l										·····l····				
90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	ppm

Figure S13. IR spectrum (ATR) of diisopropyl(methyl)silane (6b)

						— 128. 										28.6	- 18.3			
ઌઌૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡ ૡૡૡ	ala a afri pristany, are	ti ja ang ang ang ang ang ang ang ang ang an	nyhyntaethan an tarwad	an a	alan da himan		elend bission character		تستعارضه والمعارية و	and the state of the second	ni, generati e tiblig tas glas syste finan	the state of the second state is a	anton an air an an air a	riores filingines of million into adaptive					ality of the state	and water from the start of the st
 190	 180	 170	 160	 150	 140	 130	 120	110	 100	 90	 80	 70	 60	 50	 40		 20	 10	 0	, mqq

Figure S15. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of di-*tert*-butyl(methyl)silane (6c)

Figure S16. ²⁹Si{¹H} DEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for J = 200 Hz, 90.0°) of di-*tert*-butyl(methyl)silane (6c)

Figure S17. **IR** spectrum (ATR) of di-*tert*-butyl(methyl)silane (**6c**)

Figure S18. ¹H NMR spectrum (700 MHz, C₆D₆, 298 K) of di-sec-butyl(methyl)silane (6d)

Figure S19. ¹³C{¹H} NMR spectrum (175 MHz, C₆D₆, 298 K) of di-sec-butyl(methyl)silane (6d)

Figure S20. ²⁹Si{¹H} IG NMR spectrum (99 MHz, C₆D₆, 298 K) of di-sec-butyl(methyl)silane (6d)

Figure S21. IR spectrum (ATR) of di-sec-butyl(methyl)silane (6d)

Figure S22. ¹H NMR spectrum (700 MHz, C₆D₆, 298 K) of diisobutyl(methyl)silane (6e)

······	 190	 180	 170	 160	 150	 140	 130	 120	 110	 100	 90	 80	₁ 70	 60	 50	 40	 30	 20	 10	ppm
winnen k	an a	esfecting/actives/actives/actives/actives/actives/actives/actives/actives/actives/actives/actives/actives/activ		Marana an	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	nan an an thair air air air air a		internetic the source	4 	***************	+~~~~	na da an		944-1847-1947-1947-1947-1947-1947-1947-1947-19	Men and the America	1900-100-100-100-100-100-100-100-			1677,757,778,877,178,777,179,77	

Figure S23. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of of diisobutyl(methyl)silane (**6e**)

— -4.9

26.2 26.0 25.7 24.3 Figure S24. ²⁹Si{¹H} IG NMR spectrum (99 MHz, C_6D_6 , 298 K) of diisobutyl(methyl)silane (6e)

- -14.9

						l						l				l		لىيىتىنىكى المنتقد
90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	ppm

Figure S25. **IR** spectrum (ATR) of diisobutyl(methyl)silane (**6e**)

Figure S26. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of dichlorodiethylsilane (**4aa**) by chlorodeethylation of tetraethylsilane (**1a**) with 1,2-dichloroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane)

[]	 190	180	170	160	150	140	130	120	110	100		 80	 60	 50	40	30	20		ppm
		**********								****	*******		 		k_				
															*				
							I								Ï				Ì
															38.1	27.3		2.2	5.1

Figure S27. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of dichlorodiethylsilane (**4aa**) by chlorodeethylation of tetraethylsilane (**1a**) with 1,2-dichloroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane)

Figure S28. ²⁹Si{¹H} IG NMR spectrum (99 MHz, C₆D₆, 298 K) of dichlorodiethylsilane (**4aa**) by chlorodeethylation of tetraethylsilane (**1a**) with 1,2-dichloroethane (**2a**)

Figure S30. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of dibromodiethylsilane (**4ab**) by bromodeethylation of tetraethylsilane (**1a**) with 1,2-dibromoethane (**2b**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane)

Figure S31. ²⁹Si{¹H} DEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 18.4°) of dibromodiethylsilane (**4ab**) by bromodeethylation of tetraethylsilane (**1a**) with 1,2-dibromoethane (**2b**)

						1								27.3		 0.0
													*			
190	180	170	160	150	 140	 	120	 110	100	 90	 	 60	 		 20	 ppm

Figure S33. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of diethyldiiodosilane (**4ac**) by iododeethylation of tetraethylsilane (**1a**) with 1,2-diiodoethane (**2c**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane)

Figure S34. ²⁹Si{¹H} DEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 18.4°) of diethyldiiodosilane (**4ac**) by iododeethylation of tetraethylsilane (**1a**) with 1,2-diiodoethane (**2c**)

Figure S35. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of dibutyldichlorosilane (**4ba**) by chlorodebutylation of tetrabutylsilane (**1b**) with 1,2-dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane)

190) <u>180</u>	170	 160	150	140	130	 120	110	100	 90	 80	 70	 60	 50	 40	30	 20	nom
	*******							-antonia (f) - ang (ang (ang (ang (-better and the second structure of structure			1914 (1917 - Anna 1917 - An	1900 - Albert Martin Barra	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
						I										21		
																7.3	0.3	с. r

Figure S36. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of dibutyldichlorosilane (**4ba**) by chlorodebutylation of tetrabutylsilane (**1b**) with 1,2-dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane)

Figure S37. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz) of dibutyldichlorosilane (**4ba**) by chlorodebutylation of tetrabutylsilane (**1b**) with 1,2-dichoroethane (**2a**)

Figure S38. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of dichloro(methyl)(octyl)silane (**4ca**) by chlorodemethylation of trimethyl(octyl)silane (**1c**) with 1,2dichloroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀)

Figure S39. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz) of dichloro(methyl)(octyl)silane (4ca) by chlorodemethylation of trimethyl(octyl)silane (1c) with 1,2-dichloroethane (2a)

															27.2	25.9	
941-101-101-101-101-101-101-101-101-101-1		atra-ter order order – atra-te					l			 							
 19() 180	170	160	150	140	130	120	 110	 100	 80	70	 60	 50	 40		20	ppm

Figure S41. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of dichloro(cyclohexyl)(methyl)silane (**4da**) by chlorodemethylation of cyclohexyltrimethylsilane (**1d**) with 1,2-dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane)

Figure S42. ²⁹Si{¹H} DEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 30.0°) of dichloro(cyclohexyl)(methyl)silane (**4da**) by chlorodemethylation of cyclohexyltrimethylsilane (**1d**) with 1,2-dichoroethane (**2a**)

Figure S43. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of *tert*-butylmethyldichlorosilane (**4ea**) by chlorodemethylation of *tert*-butyltrimethylsilane (**1e**) with 1,2-dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane)

Figure S44. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of *tert*-butylmethyldichlorosilane (**4ea**) by chlorodemethylation of *tert*-butyltrimethylsilane (**1e**) with 1,2dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane)

Figure S45. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz) of *tert*-butylmethyldichlorosilane (**4ea**) by chlorodemethylation of *tert*-butyl-trimethylsilane (**1e**) with 1,2-dichoroethane (**2a**)

Figure S46. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of butyldichloro(ethyl)silane (**4fa**) by chlorodeethylation of butyltriethylsilane (**1f**) with 1,2-dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ 1,2,4,5-tetrachlorobenzene)

Figure S47. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of butyldichloro(ethyl)silane (**4fa**) by chlorodeethylation of butyltriethylsilane (**1f**) with 1,2-dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ 1,2,4,5-tetrachlorobenzene)

Figure S48. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz) of butyldichloro(ethyl)silane (4fa) by chlorodeethylation of butyltriethylsilane (1f) with 1,2-dichoroethane (2a)

Figure S49. ¹H,¹³C HSQC NMR (500/126 MHz, C₆D₆, 298 K) of butyldichloro(ethyl)silane (**4fa**) by chlorodeethylation of butyltriethylsilane (**1f**) with 1,2dichoroethane (**2a**)

Figure S50. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of dichloro(hexyl)(methyl)silane (**4ga**) by chlorodemethylation of hexyltrimethylsilane (**1g**) with 1,2dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane)

Figure S55. ²⁹Si{¹H} DEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz, 20.7°) of dichloro(hexyl)(methyl)silane (**4ga**) by chlorodemethylation of hexyltrimethylsilane (**1g**) with 1,2-dichoroethane (**2a**)

Figure S56. ¹H,¹³C HSQC NMR (500/126 MHz, C₆D₆, 298 K) of dichloro(hexyl)(methyl)silane (**4ga**) by chlorodemethylation of hexyltrimethylsilane (**1g**) with 1,2dichoroethane (**2a**)

Figure S57. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz) of dichloro(hexyl)(methyl)silane (**4ga**) by chlorodemethylation of hexyltrimethylsilane (**1g**) with 1,2-dichoroethane (**2a**) (* Me₂SiCl₂)

Figure S58. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of dichlorodiisopropylsilane (**4ia**) by chlorodemethylation of diisopropyldimethylsilane (**1i**) with 1,2dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane)

	 		discussion of the second second				مر و مرد المرد						an an a sha ba a sha	*		
را 10	 170	 160	₁	 140	130	 120	 110	100	 90	 80	 70	 60	 50	 40	 30	 maa

Figure S59. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of dichlorodiisopropylsilane (**4ia**) by chlorodemethylation of diisopropyldimethylsilane (**1i**) with 1,2dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane) Figure S60. ²⁹Si{¹H} DEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz, 20.7°) of dichlorodiisopropylsilane (**4ia**) by chlorodemethylation of diisopropyldimethylsilane (**1i**) with 1,2-dichoroethane (**2a**)

Figure S61. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of dichlorodiisopropylsilane (**4ja**) by chlorodeethylation of diethyldiisopropylsilane (**1j**) with 1,2dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane)

 190	 180	₁	 160	₁	 140	 130	 120	 110	₁	 90	₁ 80	₁ 70	 60	₁ 50	 40	 30	 20	ו mממ
	***	ad accel to pre-stage Assoc	14 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 1	1949-19-19-19-19-19-19-19-19-19-19-19-19-19	J		4000 Jacob 4000 4000		na ^{na} yu da bayan ^a nda an angan da an angan da	held to fair wat of the Age - sear of	ge waa dit an	~#####################################	an internet and a second second second	1919 - 1919 - 1919 - 1918 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 -	* 			
																•		
						I											17.4	

Figure S62. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of dichlorodiisopropylsilane (**4**ja) by chlorodeethylation of diethyldiisopropylsilane (**1**j) with 1,2dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane) Figure S63. ²⁹Si{¹H} DEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz, 20.7°) of dichlorodiisopropylsilane (**4ja**) by chlorodeethylation of diethyldiisopropylsilane (**1j**) with 1,2-dichoroethane (**2a**)

Figure S64. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of 1-adamantyldichloro(methyl)silane (**4ka**) by chlorodemethylation of 1-adamantyltrimethylsilane (**1k**) with 1,2-dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ 1,2,4,5-tetrachlorobenzene)

Figure S66. ²⁹Si{¹H} DEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz, 19.5°) of 1-adamantyldichloro(methyl)silane (**4ka**) by chlorodemethylation of 1-adamantyltrimethylsilane (**1k**) with 1,2-dichoroethane (**2a**)

Figure S67. ¹H NMR spectrum (700 MHz, C₆D₆, 298 K) of dichloro(ethyl)(methyl)silane (**4la**) by chlorodemethylation and chlorodeethylation of diethyldimethylsilane (**1l**) with 1,2-dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane)

ppm

Figure S68. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of dichloro(ethyl)(methyl)silane (**4la**) by chlorodemethylation and chlorodeethylation of diethyldimethylsilane (**1l**) with 1,2-dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane)

Figure S69. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz) of dichloro(ethyl)(methyl)silane (**4la**) by chlorodemethylation and chlorodeethylation of diethyldimethylsilane (**1l**) with 1,2-dichoroethane (**2a**) (+ Me₂SiCl₂)

Figure S71. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of dichlorodiethylsilane (**4ma**) by chlorodemethylation and chlorodeethylation of triethyl(methyl)silane (**1m**) with 1,2-dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane)

Figure S72. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz) of dichlorodiethylsilane (**4ma**) by chlorodemethylation and chlorodeethylation of triethyl(methyl)silane (**1m**) with 1,2-dichoroethane (**2a**) (+ Me₂SiCl₂)

Figure S74. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of dibutyldichlorosilane (**4na**) by chlorodemethylation of dibutyldimethylsilane (**1n**) with 1,2dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane) Figure S75. ²⁹Si{¹H} DEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 20.7°) of dibutyldichlorosilane (**4na**) by chlorodemethylation of dibutyldimethylsilane (**1n**) with 1,2-dichoroethane (**2a**)

Figure S76. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of dichloro(isopentyl)(methyl)silane (**4oa**) by chlorodemethylation and chlorodeisopentylation of diisopentyldimethylsilane (**1o**) with 1,2-dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ 1,2,4,5-tetrachlorobenzene; + Me₂SiCl₂)

Figure S77. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of dichloro(isopentyl)(methyl)silane (40a) by chlorodemethylation and chlorodeisopentylation of

S101

Figure S78. ²⁹Si{¹H} DEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 20.7°) of dichloro(isopentyl)(methyl)silane (**4oa**) by chlorodemethylation and chlorodeisopentylation of diisopentyldimethylsilane (**1o**) with 1,2-dichoroethane (**2a**)

Figure S79. ¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz) of dichloro(isopentyl)(methyl)silane (**4oa**) by chlorodemethylation and chlorodeisopentylation of diisopentyldimethylsilane (**1o**) with 1,2-dichoroethane (**2a**) (+ Me₂SiCl₂)

Figure S80. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of dichlorodimethylsilane (**4pa**) by chlorodemethylation and chlorodebenzylation of benzyltrimethylsilane (**1p**) with 1,2-dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane; # toluene-*d*₆; + 1,2-dichloroethane)

Figure S81. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of dichlorodimethylsilane (**4pa**) by chlorodemethylation and chlorodebenzylation of benzyltrimethylsilane (**1p**) with 1,2-dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane; # toluene-*d*₆; + 1,2-dichloroethane)

Figure S82. ²⁹Si{¹H} IG NMR spectrum (99 MHz, C₆D₆, 298 K) of dichlorodimethylsilane (**4pa**) by chlorodemethylation and chlorodebenzylation of benzyltrimethylsilane (**1p**) with 1,2-dichoroethane (**2a**)

100	180	170	 160	150	1/10	130	120	110	100	••••••••••••••••••••••••••••••••••••••	••••	 70		<u>.</u>	40	l	 ວດ	
den gelen fan se gelen fan ste	nan taka karan yang da saga yang sa	and a start of the start of the	teret big vers during a se	Linging any day of the analysis (and	lor any histophical de		den for some skale some	n a tradiçi a san a s	an ing ball search sing start and	hengind etter and hugh air	ngan di kangangangan sa kangangangan sa kangangangan sa kangangangan sa kangangangan sa kangangangan sa kangang	an wali ba di wasa nga kata ya	in the state of the	19-10-10-10-10-10-10-10-10-10-10-10-10-10-	* shire we the year of the sec	north copy the issue	na gina san sa ang a	+
																	I	
															#			
																Î	Ι	I
																		7.1
	,_																	

Figure S84. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of bis(dichloro(methyl)silyl)methane (4qa) by chlorodemethylation of bis(trimethylsilyl)methane (1q)

Figure S85. ²⁹Si{¹H} INEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz) of bis(dichloro(methyl)silyl)methane (**4qa**) by chlorodemethylation of bis(trimethylsilyl)methane (**1q**) with 1,2-dichoroethane (**2a**) (+ Me₂SiCl₂)

Figure S86.¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of dichloro(methyl)(pentyl)silane-*d*₁ (4ra-*d*₁) by chlorodemethylation and ring opening of 1,1-dimethylsilinane (1r) with 1,2-dichoroethane (2a) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane; + Me₂SiCl₂)

Figure S87.²H NMR spectrum (77 MHz, C₆D₆, 298 K) of dichloro(methyl)(pentyl)silane-*d*₁ (**4ra**-*d*₁) by chlorodemethylation and ring opening of 1,1-dimethylsilinane (**1r**) with 1,2-dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀)

Figure S88.¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of dichloro(methyl)(pentyl)silane-*d*₁ (4ra-*d*₁) by chlorodemethylation and ring opening of 1,1dimethylsilinane (1r) with 1,2-dichoroethane (2a) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane; + Me₂SiCl₂)

Figure S89. ²⁹Si{¹H} DEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 20.7°) of dichloro(methyl)(pentyl)silane- d_1 (**4ra**- d_1) by chlorodemethylation and ring opening of 1,1-dimethylsilinane (**1r**) with 1,2-dichoroethane (**2a**)

ppm - 30.5 - 31.0 - 31.5 - 32.0 - 32.5 °, · 33.0 - 33.5 - 34.0 - 34.5 - 35.0 1.5 0.7 1.4 1.3 1.2 1.0 0.9 0.8 0.6 0.4 0.3 0.2 1.6 1.1 0.5 0.1 ppm

Figure S90.¹H,²⁹Si HMQC NMR (500/99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz) of dichloro(methyl)(pentyl)silane- d_1 (**4ra**- d_1) by chlorodemethylation and ring opening of 1,1-dimethylsilinane (**1r**) with 1,2-dichoroethane (**2a**) (+ Me₂SiCl₂)

.Λ ppm Neo. 0.3 8 000 0.4 - 0.5 Ø - 0.6 Ø - 0.7 3 0 20 · 0.8 and the second - 0.9 - 1.0 - 1.1 8-600 **ଦ୍**ୟ ଟ୍ର - 1.2 - 1.3 1.4 1.0 0.7 0.6 0.4 0.9 1.3 1.2 0.8 0.5 0.3 1.1 ppm

Figure S91.¹H,¹H COSY NMR (500 MHz, C₆D₆, 298 K) of dichloro(methyl)(pentyl)silane-*d*₁ (**4ra**-*d*₁) by chlorodemethylation and ring opening of 1,1-dimethylsilinane (**1r**) with 1,2-dichoroethane (**2a**)

Figure S92.¹H,¹³C HSQC NMR (500 MHz, C₆D₆, 298 K) of dichloro(methyl)(pentyl)silane-*d*₁ (4ra-*d*₁) by chlorodemethylation and ring opening of 1,1-dimethylsilinane (1r) with 1,2-dichoroethane (2a) (^ cyclohexane; + Me₂SiCl₂)

Figure S93. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of dichloro(isopropyl)(methyl)silane (**7aa**) by chlorodemethylation of isopropyldimethylsilane (**6a**) with 1,2dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane; + Me₂SiCl₂)

													1	
 an de seu de	alançalar, berkerder, err, alandari	 	 	united and a second and a second and	ng tigitin gagaine ng ng kara n	₩₩₽₩₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽	un de la	and and a second descent	degener for the second second	-160-160-160-160-160-160-160-160-160-160	*******	*		+

Figure S94. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of dichloro(isopropyl)(methyl)silane (**7aa**) by chlorodemethylation of isopropyldimethylsilane (**6a**) with 1,2-dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane; + Me₂SiCl₂)

Figure S95. ²⁹Si{¹H} DEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz, 18.4°) of dichloro(isopropyl)(methyl)silane (**7aa**) by chlorodemethylation of isopropyldimethylsilane (**6a**) with 1,2-dichoroethane (**2a**)

Figure S97. ¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of dichlorodiisopropylsilane (**7ba**) by chlorodemethylation of diisopropyl(methyl)silane (**6b**) with 1,2dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane)

Figure S99. ¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of di-*tert*-butyldichlorosilane (**7ca**) by chlorodemethylation of di-*tert*-butyl(methyl)silane (**6c**) with 1,2dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane; + *t*Bu₂SiMeCl)

			^	
			*	

Figure S100.¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of di-*tert*-butyldichlorosilane (**7ca**) by chlorodemethylation of di-*tert*-butyl(methyl)silane (**6c**) with 1,2dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane) Figure S101.²⁹Si{¹H} DEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for *J* = 7 Hz, 15.5°) di-*tert*-butyldichlorosilane (**7ca**) by chlorodemethylation of di-*tert*-butyl(methyl)silane (**6c**) with 1,2-dichoroethane (**2a**) (+ *t*Bu₂SiMeCl)

Figure S102.¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of di-*sec*-butyldichlorosilane (**7da**) by chlorodemethylation of di-*sec*-butyl(methyl)silane (**6d**) with 1,2dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ 1,2,4,5-tetrachlorobenzene; # sBu₂SiMeCl + Me₂SiCl₂)

Figure S103.¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of di-*sec*-butyldichlorosilane (**7da**) by chlorodemethylation of di-*sec*-butyl(methyl)silane (**6d**) with 1,2dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ 1,2,4,5-tetrachlorobenzene; # *s*Bu₂SiMeCl + Me₂SiCl₂) Figure S104.²⁹Si{¹H} DEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 13.6°) of di-*sec*-butyldichlorosilane (**7da**) by chlorodemethylation of di-*sec*-butyl(methyl)silane (**6d**) with 1,2-dichoroethane (**2a**)

Figure S105.¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of dichloro(isobutyl)(methyl)silane (**7ea**) by chlorodemethylation and chlorodeisobutylation of diisobutyl(methyl)silane (**6e**) with 1,2-dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane; # *i*BuD)

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm
							L								*		#	
																		9
	diisobut	tyl(methy	/I)silane	(6e) wit	h 1,2-dio	choroeth	nane (2a	ı) (* 1,2-	diphenyl	ethane-	d ₁₀ ; ^ cy	clohexa	ne;	uD)		- 31.6 - 25.4	- 24.4	- 6.1
	diisobut	tyl(methy	/l)silane	(6e) wit	h 1,2-dio	choroeth	nane (2a	i) (* 1,2-0	diphenvl	ethane-	d ₁₀ ; ^ cv	clohexa	ne: # <i>i</i> Bi	uD)				

Figure S106.¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of dichloro(isobutyl)(methyl)silane (**7ea**) by chlorodemethylation and chlorodeisobutylation of diisobutyl(methyl)silane (**6e**) with 1,2-dichoroethane (**2a**) (* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane; # *i*BuD)

Figure S107.²⁹Si{¹H} DEPT NMR spectrum (99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz, 24.1°) of dichloro(isobutyl)(methyl)silane (**7ea**) by chlorodemethylation

Figure S108.¹H NMR spectrum (500 MHz, CDCl₃, 298 K) of dibutyldiphenylsilane (8b) (* water)

 190	 180	 170	 160	 150	 140	 130	 120	 110	 100	 90	 80	 70	 60	 50	 40	 30	 20	 maa
N ognatiskiller fotosofta asjonal		durber courses years yours	unga si ni kan dje sy dovin	1000 - 11 - 11 - 11 - 11 - 11 - 11 - 11		h, description of the second		and a stand of the stand of the stand	el de fongene en se	And a start of the	Step Tree marks and	nyn-dideynanynan (allkyna	na mananakati jejek kangka	sayahaya bayya bayya da	nişan yarış məsiri dəsin də			
						\/										\/)	\/
					136.7	134.8 129.0 127.7										26.7	25.9	13.7 12.3

Figure S109.¹³C{¹H} NMR spectrum (126 MHz, CDCl₃, 298 K) of dibutyldiphenylsilane (8b)

Figure S110.²⁹Si{¹H} DEPT NMR spectrum (99 MHz, CDCl₃, 298 K, optimized for J = 7 Hz, 30.0°) of dibutyldiphenylsilane (8b)

Figure S111.¹H,²⁹Si HMQC NMR (500/99 MHz, CDCl₃, 298 K, optimized for J = 7 Hz) of dibutyldiphenylsilane (8b)

Figure S112.¹H NMR spectrum (500 MHz, CDCl₃, 298 K) of dibutyl(methyl)(3-phenylpropyl)silane (8s) (* water)

190 180	0 170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm
Mytowellin and and the state of and the state of the stat	ut and the first						1. (size, and the set of the set	for the second	**** ********************************			<u>n an an</u>	t de la desenie de color de color de la desenie de la desenie de color de la desenie de la desenie de la desenie	4			waya da ka	
				I	Y	(I	N	(¥	Ι
					^{128.4} ^{128.4} ^{128.2}	125.6								40.1	26.7	50.1 26.1	13.5	-5.2

Figure S113.¹³C{¹H} NMR spectrum (126 MHz, CDCl₃, 298 K) of dibutyl(methyl)(3-phenylpropyl)silane (8s)

								L	

Figure S114.²⁹Si{¹H} DEPT NMR spectrum (99 MHz, CDCl₃, 298 K, optimized for J = 7 Hz, 19.5°) of dibutyl(methyl)(3-phenylpropyl)silane (8s)

Figure S115.¹H,²⁹Si HMQC NMR (500/99 MHz, CDCl₃, 298 K, optimized for J = 7 Hz) of dibutyl(methyl)(3-phenylpropyl)silane (8s)

Figure S116.¹H,¹³C HMQC NMR (500/126 MHz, CDCl₃, 298 K) of dibutyl(methyl)(3-phenylpropyl)silane (8s)

Figure S117.¹H,¹³C HMBC NMR (500/126 MHz, CDCl₃, 298 K) of dibutyl(methyl)(3-phenylpropyl)silane (8s)

Figure S118.¹H,¹H COSY NMR (500 MHz, CDCl₃, 298 K) of dibutyl(methyl)(3-phenylpropyl)silane (8s)

Figure S119.¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of the chlorodemethylation of bromotrimethylsilane (**3pb**) with 1,2-dichloroethane (**2a**)

190	180	170	 160	150	140	130	120	110	100	90	80	 70	60	 50	40		20	naa
					e angewei de san angeweige angeweige							9,000,000,000,000,000,000,000,000,000,0			*			9pa 4pb 4pa
																 ^ 		\[/
															- 38.10	- 27.25		→ 9.03 → 7.69 → 6.13
	· · ·																	

Figure S120.¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of the chlorodemethylation of bromotrimethylsilane (**3pb**) with 1,2-dichloroethane (**2a**)

Supporting Information for Synthesis

Figure S121.²⁹Si{¹H} INEPT NMR spectrum (126 MHz, C₆D₆, 298 K, without decoupling in F1 dimension) of the chlorodemethylation of bromotrimethylsilane (**3pb**) with 1,2-dichloroethane (**2a**)

Figure S123.¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of the chlorodemethylation of bromotrimethylsilane (**3pc**) with 1,2-dichloroethane (**2a**)

Figure S124.¹H,²⁹Si HMQC NMR spectrum (500/99 MHz, C₆D₆, 298 K, optimized for J = 7 Hz) of the chlorodemethylation of bromotrimethylsilane (**3pc**) with 1,2-dichloroethane (**2a**)

Figure S125.¹H NMR spectrum (500 MHz, C₆D₆, 298 K) of the bromodemethylation of iodotrimethylsilane (**3pc**) with 1,2-dibromoethane (**2b**)

(* 1,2-diphenylethane-*d*₁₀; ^ cyclohexane)

[190	 180	 170	₁ 160	 150	 140	 130	 120	 110	100	 90	 80	 70	 60	 50	 40	 30	 20		ppm
angestaat	proved a design of the second	8-17-20-17-18-18-18-18-18-18 -18-18-18-18-18-18-18-18-18-18-18-18-18-	aya waya kata da sa ta sa	anticka and and a	n qili wing ballan dara dar			honnas;cast:secharismu;	awater state and and taking		11.4.14.14.14.14.14.14.14.14.14.14.14.14	ijĸĴĸſŀŧĸijĹġġĬĨĸĸĴŢĿŦġŖŦĸŗġĬ	لىدۇر بېرلىرامىلىرىنىيە <mark>بار مىلىرىم بىر</mark>		Mi all'sile di statu ma ista	dranski pagense ^k karanj		iiile aptrije athe lake		unapha kansunaan
																*			9qc 4c	βb
							I										27		///	
																	က		ю. г. с	`

Figure S126.¹³C{¹H} NMR spectrum (126 MHz, C₆D₆, 298 K) of the bromodemethylation of iodotrimethylsilane (**3pc**) with 1,2-dibromoethane (**2b**)

(* 1,2-diphenylethane- d_{10} ; ^ cyclohexane)

Supporting Information for Synthesis

Figure S127.²⁹Si{¹H} INEPT NMR spectrum (126 MHz, C₆D₆, 298 K, without decoupling in F1 dimension) of the bromodemethylation of iodotrimethylsilane (**3pc**) with 1,2-dibromoethane (**2b**)

9 References

- S1 Reed, C. A. Acc. Chem. Res. 2010, 43, 121–128.
- S2 Wu, Q.; Qu, Z.-W.; Omann, L.; Irran, E.; Klare, H. F. T.; Oestreich, M. Angew. Chem.
 Int. Ed. 2018, 57, 9176–9179.
- S3 Harris, R. K.; Becker, E. D.; Cabral de Menezes, S. M.; Goodfellow, R.; Granger, P.
 Solid State Nucl. Magn. Reson. 2002, 22, 458–483.
- S4 Kamio, S.; Imagawa, T.; Nakamoto, M.; Oestreich, M.; Yoshida, H. *Synthesis* **2021**, *53*, 4678–4681.
- S5 Naganawa, Y.; Sakamoto, K.; Nakajima, Y. *Org. Lett.* **2020**, *23*, 601–606.
- S6 Iwata, A.; Toyoshima, Y.; Hayashida, T.; Ochi, T.; Kunai, A.; Ohshita, J. *J. Organomet. Chem.* **2003**, *667*, 90–95.
- S7 Kunai, A.; Sakurai, T.; Toyoda, E.; Ishikawa, M.; Yamamoto, Y. *Organometallics* **1994**, *13*, 3233–3236.
- S8 Out, G. J. J.; Klok, H.-A.; Schwegler, L.; Frey, H.; Möller, M. *Macromol. Chem. Physic.* **1995**, *196*, 185–194.
- S9 Li, L.; Li, Y.; Wang, H.; Liu, S.; Bao, J. J. Colloids Surf. A 2019, 570, 322–330.
- S10 Belyakova, Z. V.; Chernyshev, E. A.; Storozhenko, P. A.; Knyazev, S. P.; Turkel'taub,
 G. N.; Parshina, E. V.; Kisin, A. V. *Russ. J. Gen. Chem.* 2006, *76*, 925–930.
- S11 Asuke, T.; West, R. J. Inorg. Organomet. Polym. 1994, 4, 45–59.
- S12 (a) Wrobel, D.; Tacke, R.; Wannagat, U.; Harder, U. *Chem. Ber.* 1982, *115*, 1694–1704.
 (b) Schraml, J.; Chvalovský, V.; Mägi, M.; Lippmaa, E. *Collect. Czechoslov. Chem. Commun.* 1979, *44*, 854–865.
- S13 Enthaler, S. J. Appl. Polym. Sci. 2014, 132, 41287–41295.
- S14 Lee, H.-J.; Kwak, C.; Kim, D.-P.; Kim, H. *Green Chem.* **2021**, *23*, 1193–1199.