

Supporting Information for DOI: 10.1055/a-1337-5504 © 2020. Thieme. All rights reserved. Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

Supporting Information

Ni-catalyzed C-F/N-H annulation of 2-(2-fluoroaryl)-*N*-heteroaromatic compounds with alkynes: Activation of C-F bonds

Haruka Kawakami, Itsuki Nohira, and Naoto Chatani* Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

1. X-ray structure of **3af**

2. Copies of ¹H and ¹³C NMR Spectra

S8-S35

S1-S7

1. X-ray structure of 3af

To provide further evidence, compound **3af** was crystalized from acetone and structural and crystallographic information for compound **3af** is given below.

Figure S1. The structure of **3af** was determined by the X-ray diffraction. Hydrogen atoms are not labelled for clarity. Thermal ellipsoids are drawn at the 50% probability level.

CCDC 2046289 contains supplementary crystallographic data for compound **3af**. A colorless prism crystal of $C_{24}H_{20}N_2$ having approximate dimensions of 0.700 x 0.600 x 0.300 mm was mounted on a glass fiber. All measurements were made on a Rigaku XtaLAB P200 diffractometer using multi-layer mirror monochromated Mo-Ka radiation. The data were collected at a temperature of -150 ± 1 °C to a maximum 20 value of 61.6° . A total of 592 oscillation images were collected. A sweep of data was done using w scans from 16.0 to 42.0° in 0.50° step, at $\chi = -114.0^{\circ}$ and $\varphi = -102.0^{\circ}$. The exposure rate was 2.5 [sec./°]. The detector swing angle was 5.34° . A second sweep was performed using w scans from 0.0 to 26.0° in 0.50° step, at $\chi = -99.0^{\circ}$ and $\varphi = -30.0^{\circ}$. The exposure rate was 2.5 [sec./°]. The detector swing angle was from -3.0 to 28.0° in 0.50° step, at $\chi = -99.0^{\circ}$ and $\varphi = -99.0^{\circ}$ and $\varphi = 120.0^{\circ}$. The exposure rate was 2.5 [sec./°]. The detector swing angle was -5.18°. Another sweep was performed using w scans from -3.0 to 28.0° in 0.50° step, at $\chi = -99.0^{\circ}$ and $\varphi = 120.0^{\circ}$. The exposure rate was 2.5 [sec./°]. The detector swing angle was -5.18°. Another sweep was performed using w scans from -3.0 to 28.0° in 0.50° step, at $\chi = -99.0^{\circ}$ and $\varphi = 120.0^{\circ}$. The exposure rate was 2.5 [sec./°]. The detector swing angle was -5.18°. Another sweep was performed using w scans from -3.0 to 28.0° in 0.50° step, at $\chi = -99.0^{\circ}$ and $\varphi = 120.0^{\circ}$. The exposure rate was 2.5 [sec./°]. The detector swing angle was -5.18°. Another sweep was performed using w scans from -3.0 to 28.0° in 0.50° step, at $\chi = -99.0^{\circ}$ and $\varphi = 120.0^{\circ}$. The exposure rate was 2.5 [sec./°]. The detector swing angle was -5.18°. Another sweep was performed using w scans from -26.0 to 23.0° in 0.50° step, at $\chi = -99.0^{\circ}$ and $\varphi = 120.0^{\circ}$. The exposure rate was 2.5 [sec./°]. The detector swing angle was 5.34°. Another sweep was performed using w scans from -26.0 to 27.0° in 0.50° step, at

angle was -5.18°. Another sweep was performed using w scans from -20.0 to 5.0° in 0.50° step, at $\chi = -99.0^{\circ}$ and $\varphi = -150.0^{\circ}$. The exposure rate was 2.5 [sec./°]. The detector swing angle was -5.18°. Another sweep was performed using ω scans from -23.0 to 38.0° in 0.50° step, at $\chi = -99.0^{\circ}$ and $\varphi = -180.0^{\circ}$. The exposure rate was 2.5 [sec./°]. The detector swing angle was 5.34°. Another sweep was performed using ω scans from 49.0 to 74.0° in 0.50° step, at $\chi = 38.0^{\circ}$ and $\varphi = -180.0^{\circ}$. The exposure rate was 2.5 [sec./°]. The detector swing angle was 5.34°. Another sweep was performed using ω scans from 49.0 to 74.0° in 0.50° step, at $\chi = 38.0^{\circ}$ and $\varphi = -180.0^{\circ}$. The exposure rate was 2.5 [sec./°]. The detector swing angle was 5.34°. The crystal-to-detector distance was 35.00 mm. Readout was performed in the 0.172 mm pixel mode.

The structure was solved by direct methods¹ and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined isotropically. All calculations were performed using the CrystalStructure² crystallographic software package except for refinement, which was performed using SHELXL97³.

Table S1. Crystal Data

Empirical Formula	$C_{24}H_{20}N_{2}$
Formula Weight	336.44
Crystal Color, Habit	colorless, prism
Crystal Dimensions	0.700 x 0.600 x 0.300 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	a = 9.7325(4) Å
	b = 15.4375(6) Å
	c = 11.7681(4) Å
	$\beta = 100.832(3)^{\circ}$
	$V = 1736.60(12) \text{ Å}^3$
Space Group	P2 ₁ /c (#14)
Z value	4
D _{calc}	1.287 g/cm^3
F ₀₀₀	712.00
m(MoKα)	0.754 cm^{-1}

¹ Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. Completion and refinement of crystal structures with SIR92. *J. Appl. Cryst.* **26**, 343–350 (1993).

² Crystal Structure Analysis Package, Rigaku Corporation (2000-2016). Tokyo 196-8666, Japan.

³ Sheldrick, G. M. A Short History of SHELX. Acta Cryst. A64, 112–122 (2008).

Table S2. Intensity Measurements

Diffractometer	XtaLAB P200
Radiation	MoKa ($\lambda = 0.71073$ Å)
	multi-layer mirror monochromated
Voltage, Current	50kV, 1mA
Temperature	-150.0 °C
Detector Aperture	83.8 x 70.0 mm
Data Images	592 exposures
$ω$ oscillation Range (χ = -114.0, $φ$ = -102.0)	16.0 - 42.0°
Exposure Rate	2.5 sec./°
Detector Swing Angle	5.34°
ω oscillation Range (χ = -99.0, ϕ = -30.0)	0.0 - 26.0°
Exposure Rate	2.5 sec./°
Detector Swing Angle	-5.18°
ω oscillation Range (χ = -99.0, ϕ = 0.0)	-3.0 - 28.0°
Exposure Rate	2.5 sec./°
Detector Swing Angle	-5.18°
$ω$ oscillation Range (χ = -99.0, $φ$ = 120.0)	-26.0 - 23.0°
Exposure Rate	2.5 sec./°
Detector Swing Angle	5.34°
$ω$ oscillation Range (χ = -99.0, $φ$ = 150.0)	-26.0 - 27.0°
Exposure Rate	2.5 sec./°
Detector Swing Angle	-5.18°
$ω$ oscillation Range (χ = -99.0, $φ$ = -150.0)	-20.0 - 5.0°
Exposure Rate	2.5 sec./°
Detector Swing Angle	-5.18°
$ω$ oscillation Range (χ = -99.0, $φ$ = -180.0)	-23.0 - 38.0°
Exposure Rate	2.5 sec./°
Detector Swing Angle	5.34°
$ω$ oscillation Range ($\chi = 38.0, \varphi = -180.0$)	49.0 - 74.0°
Exposure Rate	2.5 sec./°
Detector Swing Angle	5.34°
Detector Position	35.00 mm
Pixel Size	0.172 mm
$2\theta_{max}$	61.6°
No. of Reflections Measured	Total: 17745
	Unique: 4481 ($R_{int} = 0.0334$)

Corrections

Lorentz-polarization Absorption (trans. factors: 0.580 - 0.978)

Table S3. Structure Solution and Refinement

Structure Solution Refinement Function Minimized Least Squares Weights

2θ_{max} cutoff Anomalous Dispersion No. Observations (All reflections) No. Variables Reflection/Parameter Ratio Residuals: R1 (I>2.00σ(I)) Residuals: R (All reflections) Residuals: wR2 (All reflections) Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map

Direct Methods (SIR92) Full-matrix least-squares on F^2 $S w (F_o^2 - F_c^2)^2$ $w = 1/\left[\sigma^{2}(F_{o}^{2}) + (0.0761 \cdot P)^{2}\right]$ + 0.2112 · P] where $P = (Max(F_o^2, 0) + 2 F_c^2)/3$ 61.6° All non-hydrogen atoms 4481 315 14.23 0.0456 0.0534 0.1300 1.102 0.001 $0.23 \text{ e}^{-1}/\text{Å}^{3}$

 $-0.39 \text{ e}^{-1}/\text{Å}^{3}$

Table S4. Bond lengths (Å)

atom	atom	distance	atom	atom	distance
N1	C1	1.3793(14)	N1	C7	1.3182(13)
N2	C6	1.4008(13)	N2	C7	1.3902(14)
N2	C15	1.4047(12)	C1	C2	1.4028(15)
C1	C6	1.4052(14)	C2	C3	1.3778(19)
C3	C4	1.3991(18)	C4	C5	1.3844(15)
C5	C6	1.3957(16)	C7	C8	1.4362(15)
C8	С9	1.4012(15)	C8	C13	1.4080(14)
С9	C10	1.3745(17)	C10	C11	1.3943(17)
C11	C12	1.3768(18)	C12	C13	1.4104(16)
C13	C14	1.4568(15)	C14	C15	1.3543(14)
C14	C22	1.5084(14)	C15	C16	1.4876(15)
C16	C17	1.3911(16)	C16	C21	1.3941(16)
C17	C18	1.3876(16)	C18	C19	1.3861(19)
C19	C20	1.3853(17)	C20	C21	1.3847(17)
C22	C23	1.5309(16)	C23	C24	1.5206(15)

atom	atom	atom	angle	atom	atom	atom	angle
C1	N1	C7	104.50(9)	C6	N2	C7	105.82(8)
C6	N2	C15	131.65(9)	C7	N2	C15	122.52(8)
N1	C1	C2	128.14(10)	N1	C1	C6	111.58(9)
C2	C1	C6	120.28(10)	C1	C2	C3	117.95(11)
C2	C3	C4	121.20(10)	C3	C4	C5	121.96(12)
C4	C5	C6	116.91(11)	N2	C6	C1	104.56(9)
N2	C6	C5	133.75(9)	C1	C6	C5	121.67(9)
N1	C7	N2	113.53(9)	N1	C7	C8	127.54(10)
N2	C7	C8	118.92(9)	C7	C8	С9	120.32(9)
C7	C8	C13	118.76(10)	C9	C8	C13	120.91(10)
C8	С9	C10	120.15(10)	C9	C10	C11	119.81(11)
C10	C11	C12	120.57(11)	C11	C12	C13	121.12(10)
C8	C13	C12	117.43(10)	C8	C13	C14	119.76(9)
C12	C13	C14	122.81(9)	C13	C14	C15	120.37(9)
C13	C14	C22	119.15(9)	C15	C14	C22	120.46(10)
N2	C15	C14	119.64(10)	N2	C15	C16	115.94(8)
C14	C15	C16	124.37(9)	C15	C16	C17	121.16(10)
C15	C16	C21	119.31(10)	C17	C16	C21	119.47(10)
C16	C17	C18	119.96(12)	C17	C18	C19	120.19(11)
C18	C19	C20	120.10(11)	C19	C20	C21	119.86(11)
C16	C21	C20	120.37(10)	C14	C22	C23	113.86(9)
C22	C23	C24	112.20(10)				

P A

P A

P A

P A

P A