

Supporting Information for DOI: 10.1055/a-1467-2432 © 2021. Thieme. All rights reserved. Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

Supporting Information

Synthesis of Dibenzyls by nickel-catalyzed homocoupling of benzyl alcohols

Feng-Feng Pan,^{a,b} Peng Guo,^a Xiaochuang Huang,^c Xing-Zhong Shu^{*,a}

^a State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China.

^b College of Chemical Engineering and Technology, Tianshui Normal University, 60 South Xihe Road, Tianshui, 741001, China.

^c Jiangsu Tasly Diyi Pharmaceutical Co., Ltd.; 168 West Chaoyang Road, Huai'An, Jiangsu, 223003, China.

1. Mechanistic Investigation

1.1 Reaction of oxalate 3a

General procedure: The procedure was conducted in an argon-filled glove box. To a reaction tube equipped with a magnetic stir bar was charged with Ni(dppe)Cl₂ (5.3 mg, 0.01 mmol), Mn (27.5 mg, 0.5 mmol), oxalate **3a** (41.6 mg, 0.2 mmol), LiBr (17.5 mg, 0.2 mmol) and DMF (1.0 mL). The reaction tube was sealed and removed from the glove box. The reaction mixture was stirred at 110 °C for 16 h. After cooling down to room temperature, it was diluted with ethyl acetate (15 mL), washed with water, brine, and dried over anhydrous Na₂SO₄. A 0.2 mL of solution was collected, diluted with ethyl acetate (1.0 mL), and analyzed by GC. The yield was determined versus the internal standard (dodecane).

1.2 Radical clock experiments

1.2.1 Reaction of 3e in the presence of α-cyclopropylstyrene

General procedure: The procedure was conducted in an argon-filled glove box. To a reaction tube equipped with a magnetic stir bar was charged with Ni(dppe)Cl₂ (5.3 mg, 0.01 mmol), Mn (27.5 mg, 0.5 mmol), oxalate **3e** (44.8 mg, 0.2 mmol), α -cyclopropylstyrene **4** (28.8 mg, 0.2 mmol), LiBr (17.5 mg, 0.2 mmol), and DMF (1.0 mL). The reaction tube was sealed and removed from the glove box. The reaction mixture was stirred at 110 °C for 16 h. After cooling down to room temperature, it was

diluted with EtOAc (20 mL). The mixture solution was washed with water, brine, dried over anhydrous Na_2SO_4 , and concentrated in vacuum. The residue was purified by flash chromatography on silica gel to afford product **5** (25.2 mg, 48% yield) as an oil, known compound.¹

¹**H NMR (400 MHz, CDCl**₃) δ 7.31 (d, *J* = 7.6 Hz, 1 H), 7.22-7.11 (m, 5 H), 6.84 (d, J = 8.4 Hz, 2 H), 5.83 (t, J = 4.4 Hz, 1 H), 3.80 (s, 3 H), 2.81-2.68 (m, 6 H), 2.51-2.20 (m, 2 H).

¹³C NMR (100 MHz, CDCl₃) δ 157.9, 137.0, 136.0, 134.9, 134.5, 129.5, 127.8, 126.7, 126.5, 125.4, 122.7, 113.8, 55.4, 35.2, 34.1, 28.6, 23.2.

1.2.2 The effect of hantzsch ester

General procedure: The procedure was conducted in an argon-filled glove box. To a reaction tube equipped with a magnetic stir bar was charged with Ni(dppe)Cl₂ (5.3 mg, 0.01 mmol), Mn (27.5 mg, 0.5 mmol), oxalate **3e** (44.8 mg, 0.2 mmol), LiBr (17.5 mg, 0.2 mmol), [hantzsch ester (50.6 mg, 0.2 mmol) for conditions a], and DMF (1.0 mL). The reaction tube was sealed and removed from the glove box. The reaction mixture was stirred at 110 °C for 16 h. After cooling down to room temperature, it was diluted with ethyl acetate (15 mL), washed with water, brine, and dried over anhydrous Na₂SO₄. A 0.2 mL of solution was collected, diluted with ethyl acetate (1.0 mL), and analyzed by GC. The yield was determined versus the internal standard (dodecane).

2. Reference:

(1) Guo, P.; Wang, K.; Jin, W.-J.; Xie, H.; Qi, L.; Liu, X.-Y.; Shu, X.-Z. J. Am. Chem. Soc. 2021, 143, 513.

3. Copies of NMR Spectra

2a; ¹H NMR (400 MHz, CDCl₃); ¹³C NMR (100 MHz, CDCl₃)

2j; ¹⁹F NMR (376 MHz, CDCl₃)

S14

2k; ¹⁹F NMR (376 MHz, CDCl₃)

S17

2l; ¹⁹F NMR (376 MHz, CDCl₃)

2v; ¹⁹F NMR (376 MHz, CDCl₃)

5; ¹H NMR (400 MHz, CDCl₃); ¹³C NMR (100 MHz, CDCl₃)