

Supporting Information for DOI: 10.1055/a-1484-6216 © 2021. Thieme. All rights reserved. Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

Supporting Information

for

Nickel-Catalyzed Decarbonylative Thioetherification of Acyl Fluorides

via C-F Bond Activation

Jingwen You,^a Qiang Chen,^a and Yasushi Nishihara^{*b}

 ^a Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
^b Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan

> Phone: +81-86-251-7855 Fax: +81-86-251-7855 Email: ynishiha@okayama-u.ac.jp

Table of Contents

1. Optimization of Reaction Conditions	<i>S2–S5</i>
2. Copies of ¹ H, ¹³ C ${^{1}H}$, and ¹⁹ F ${^{1}H}$ NMR Charts for the Products	S6–S26

1. Optimization of Reaction Conditions

Table S1. Screening of the Ligand^a

0 40 to 1				
entry	ligand (x moi %)	3a	4 a	5
1	DPPE (30 mol %)	44	15	26
2	DPPP (30 mol %)	84	0	24
3	DPPF (30 mol %)	50	16	26
4	DCYPE (30 mol %)	0	52	27
5	PPh ₃ (30 mol %)	1	60	37
6 ^c	DPPP (15 mol %)	1	0	43
7	DPPP (15 mol %)	32	35	57
8 ^d	DPPP (40 mol %)	84	trace	8

^{*a*}Reactions were carried out with **1a** (0.2 mmol, 1.0 equiv), **2a** (0.4 mmol, 2.0 equiv) and NiCl₂·DME (0.02 mmol, 10 mol %), Na₂CO₃ (0.3 mmol, 1.5 equiv). ^{*b*}GC yields, using n-dodecane as an internal standard. ^{*c*}Pd(OAc)₂ (10 mol %). ^{*d*}**2a** (0.3 mmol, 1.5 equiv).

Table S2. Screening of the Base^a

^{*a*}Reactions were carried out with **1a** (0.2 mmol, 1.0 equiv), **2a** (0.4 mmol, 2.0 equiv) and NiCl₂·DME (0.02 mmol, 10 mol %), DPPP (0.06 mmol, 30 mol %), base (0.3 mmol, 1.5 equiv) in toluene at 140 °C for 24 h. ^{*b*}GC yields, using n-dodecane as an internal standard. ^{*c*}Base (3.0 equiv).

Table S3. Screening of the Amount of Compound 2a^a

^{*a*}Reactions were carried out with **1a** (0.2 mmol, 1.0 equiv), NiCl₂·DME (0.02 mmol, 10 mol %), DPPP (0.06 mmol, 30 mol %), Na₂CO₃ (0.3 mmol, 1.5 equiv) in toluene at 140 °C for 24 h. ^{*b*}GC yields, using n-dodecane as an internal standard. ^{*c*}120 °C. ^{*d*}12 h.

Table S4. Control Experiments^a

entry	Deviations from standard condition	yield $(\%)^b$			
		3 a	4 a	5	
1	none	90	0	8	
2	Without Na ₂ CO ₃	45	24	8	
3	Without NiCl ₂ DME and DPPP	0	68	24	
4	Benzoyl chloride instead of 1a	0	67	trace	

^{*a*}Reactions were carried out with **1a** (0.2 mmol, 1.0 equiv), **2a** (0.3 mmol, 1.5 equiv), NiCl₂·DME (0.02 mmol, 10 mol %), DPPP (0.06 mmol, 30 mol %), Na₂CO₃ (0.3 mmol, 1.5 equiv) in toluene at 140 °C for 24 h. ^{*b*}GC yields, using n-dodecane as an internal standard.

 1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz) spectra of **3b** (rt, CDCl₃).

 1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz) spectra of 3d (rt, CDCl₃).

 1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz) spectra of 3e (rt, CDCl₃).

$\begin{array}{c} 7.880\\ 7.859\\ 8.75\\ 8.7$

 1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz) spectra of **3f** (rt, CDCl₃).

 1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz) spectra of 3g (rt, CDCl_3).

 $^{19}\mathrm{F}\{^{1}\mathrm{H}\}$ NMR (376 MHz) spectrum of 3g (rt, CDCl₃).

 1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz) spectra of **3h** (rt, CDCl₃).

 1 H NMR (400 MHz) and 13 C{ 1 H} NMR (101 MHz) spectra of **3i** (rt, CDCl₃).

 1 H NMR (400 MHz) and 13 C{ 1 H} NMR (101 MHz) spectra of **3**j (rt, CDCl₃).

 1 H NMR (400 MHz) and 13 C{ 1 H} NMR (101 MHz) spectra of **3k** (rt, CDCl₃).

 1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz) spectra of **3l** (rt, CDCl₃).

 1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz) spectra of 3m (rt, CDCl₃).

¹H NMR (400 MHz) and ¹³C{¹H} NMR (101 MHz) spectra of 3n (rt, CDCl₃).

 1 H NMR (400 MHz) and 13 C{ 1 H} NMR (101 MHz) spectra of **30** (rt, CDCl₃).

 1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz) spectra of 3p (rt, CDCl₃).

 1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz) spectra of 3q (rt, CDCl₃).

 1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz) spectra of 3r (rt, CDCl_3).

 1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz) spectra of 3s (rt, CDCl_3).

 $^{19}\mathrm{F}\left\{^{1}\mathrm{H}\right\}$ NMR (376 MHz) spectrum of **3s** (rt, CDCl_3).