

Supporting Information for DOI: 10.1055/a-1472-1059 © 2021. Thieme. All rights reserved. Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany



Supporting Information

# *Peri*-Selective Direct Acylmethylation and Amidation of Naphthalene Derivatives Using Iridium and Rhodium Catalysts

Chandrababu Naidu Kona, Rikuto Oku, Yuji Nishii,\* and Masahiro Miura\*

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan y\_nishii@chem.eng.osaka-u.ac.jp. miura@chem.eng.osaka-u.ac.jp.

#### **Contents:**

| 1. Optical properties  | S2 |
|------------------------|----|
| 2. ORTEP drawings      | S3 |
| 3. Copy of NMR Spectra | S5 |

## **1. Optical properties**



Figure S1. Normalized absorption and fluorescence spectra of 3da-1 (blue) and 3ea-1 (red) as  $1.0 \times 10^{-5}$  MCHCl<sub>3</sub> solutions.

**Table S1.** Summary of the optical properties (excited at 390 nm).

| conc. | $\lambda_{abs} [nm] (\epsilon [10^{3}M^{-1}cm^{-1}])$ | $\lambda_{abs}{}^{onset}\left[nm\right]$ | $E_g \left[ eV \right]$ | $\lambda_{Fl} \left[ nm \right]$ | Φ (%) |
|-------|-------------------------------------------------------|------------------------------------------|-------------------------|----------------------------------|-------|
| 3da-1 | 370 (18), 392 (22), 430 (3.0)                         | 481                                      | 2.58                    | 481, 518, 551                    | 24    |
| 3ea-1 | 332 (5.8), 374 (6.6), 393 (7.6)                       | 460                                      | 2.70                    | 465, 494, 525                    | 22    |

# 2. ORTEP drawings



Figure S2. ORTEP drawing for 3ea with 40% thermal ellipsoid. Hydrogen atoms are omitted for clarity.

| Table S2. Crystal data for 3aa |                                                                |
|--------------------------------|----------------------------------------------------------------|
| CCDC number                    | 2027648                                                        |
| Crystal system                 | orthorhombic                                                   |
| Space group                    | <i>P</i> 2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> (No. 19) |
| Unit cell parameter [Å]        | a = 8.6647(3)                                                  |
|                                | <i>b</i> = 11.9879(3)                                          |
|                                | c = 17.1653(5)                                                 |
| Cell volume [Å <sup>3</sup> ]  | 1782.99(9)                                                     |
| Z                              | 4                                                              |
| R factor $(I > 2.0\sigma(I))$  | R1 = 0.0345, wR2 = 0.0867                                      |
| R factor (all data)            | R1 = 0.0387, wR2 = 0.0896                                      |
| Rint                           | 0.0354                                                         |
| Goodness of fit                | 1.071                                                          |



Figure S3. ORTEP drawing for 3ea-1 with 40% thermal ellipsoid. Hydrogen atoms are omitted for clarity.

| Table S3. Crystal data for 3ab-dimer |                                     |
|--------------------------------------|-------------------------------------|
| CCDC number                          | 2027649                             |
| Crystal system                       | monoclinic                          |
| Space group                          | $P 2_1/c$ (No. 14)                  |
| Unit cell parameter [Å, deg]         | <i>a</i> = 14.8770(11)              |
|                                      | $b = 4.8413(3), \beta = 108.486(8)$ |
|                                      | c = 21.7040(17)                     |
| Cell volume [Å <sup>3</sup> ]        | 1482.5(2)                           |
| Z                                    | 4                                   |
| R factor $(I > 2.0\sigma(I))$        | R1 = 0.0512, wR2 = 0.1388           |
| R factor (all data)                  | R1 = 0.0835, wR2 = 0.1542           |
| Rint                                 | 0.0437                              |
| Goodness of fit                      | 1.050                               |

#### 3. Copy of NMR spectra













210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm







S11





























#### <sup>1</sup>H NMR of **3aa-1** (400 MHz, CDCl<sub>3</sub>)



















#### <sup>1</sup>H NMR of **3ba-1** (400 MHz, CDCl<sub>3</sub>)





# <sup>1</sup>H NMR of 5aa (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR of **5aa** (100 MHz, CDCl<sub>3</sub>)



<sup>1</sup>H NMR of **5da** (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR of **5da** (100 MHz, CDCl<sub>3</sub>)







## <sup>1</sup>H NMR of **5ha** (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR of **5ha** (100 MHz, CDCl<sub>3</sub>)







 $^{13}\mathrm{C}$  NMR of **5ab** (100 MHz, CDCl<sub>3</sub> and CS<sub>2</sub>)



## <sup>1</sup>H NMR of **5ac** (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR of **5ac** (100 MHz, CDCl<sub>3</sub>)



## <sup>1</sup>H NMR of **5ad** (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR of 5ad (100 MHz, CDCl<sub>3</sub>)



## <sup>1</sup>H NMR of **5ae** (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR of **5ae** (100 MHz, CDCl<sub>3</sub>)



## <sup>1</sup>H NMR of **5af** (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR of **5af** (100 MHz, CDCl<sub>3</sub>)



## <sup>1</sup>H NMR of **5ag** (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR of **5ag** (100 MHz, CDCl<sub>3</sub>)



## <sup>1</sup>H NMR of **5ah** (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR of **5ah** (100 MHz, CDCl<sub>3</sub>)

