

Supporting Information for DOI: 10.1055/s-0041-1738440 © 2023. Thieme. All rights reserved. Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

Chemoenzymatic Synthesis of arabino-configured Bicyclic Nucleosides

Harbansh Singla,^a Jyotirmoy Maity,^b Sandeep Kumar,^a Kavita,^a Riya Chaudhary^a and Ashok K. Prasad*^a

^aBioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India ^bDepartment of Chemistry, St. Stephen's College, University of Delhi, Delhi - 110 007, India Email: <u>ashokenzyme@gmail.com</u>

*Corresponding Author

<u>Ashok K. Prasad:</u> Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India; Phone: 00-91-11-27662486; E-mail: <u>ashokenzyme@gmail.com</u>

Table of contents

¹ H- and ¹³ C-NMR spectra of compound 2	2
¹ H- and ¹³ C-NMR spectra of compound 3a	3
¹ H- and ¹³ C-NMR spectra of compound 3b	4
¹ H- and ¹³ C-NMR spectra of compound 4a	5
¹ H- and ¹³ C-NMR spectra of compound 4b	6
¹ H- and ¹³ C-NMR spectra of compound 5a	7
¹ H- and ¹³ C-NMR spectra of compound 5b	8
¹ H- and ¹³ C-NMR spectra of compound 6a	9
¹ H- and ¹³ C-NMR spectra of compound 6b	10
¹ H- and ¹³ C-NMR spectra of compound 7a	11
¹ H- and ¹³ C-NMR spectra of compound 7b	12
¹ H- and ¹³ C-NMR spectra of compound 8a	13
¹ H- and ¹³ C-NMR spectra of compound 8b	14
DEPT-135 NMR of compound 8b	15
D_2O ¹ H-NMR spectra of compound 8b	15
Single crystal X-ray diffraction analysis of 8b	17

Figure 1: ¹H NMR spectrum of compound 2 (400 MHz, CDCl₃)

Figure 2: ¹³C NMR spectrum of compound 2 (100.6 MHz, CDCl₃)

Figure 3: ¹H NMR spectrum of compound 3a (400 MHz, CDCl₃)

Figure 4: ¹³C NMR spectrum of compound **3a** (100.6 MHz, CDCl₃)

Figure 6: ¹³C NMR spectrum of compound **3b** (100.6 MHz, CDCl₃)

Figure 7: ¹H NMR spectrum of compound 4a (400 MHz, DMSO-*d*₆)

Figure 8: ¹³C NMR spectrum of compound 4a (100.6 MHz, DMSO-*d*₆)

Figure 9: ¹H NMR spectrum of compound 4b (400 MHz, DMSO-*d*₆)

Figure 10: ¹³C NMR spectrum of compound 4b (100.6 MHz, DMSO-*d*₆)

Figure 11: ¹H NMR spectrum of compound 5a (400 MHz, DMSO-*d*₆)

Figure 12: ¹³C NMR spectrum of compound 5a (100.6 MHz, DMSO-*d*₆)

Figure 13: ¹H NMR spectrum of compound 5b (400 MHz, DMSO-*d*₆)

Figure 14: ¹³C NMR spectrum of compound **5b** (100.6 MHz, DMSO-*d*₆)

Figure 15: ¹H NMR spectrum of compound 6a (400 MHz, DMSO-*d*₆)

Figure 16: ¹³C NMR spectrum of compound 6a (100.6 MHz, DMSO-*d*₆)

Figure 17: ¹H NMR spectrum of compound **6b** (400 MHz, DMSO-*d*₆)

Figure 18: ¹³C NMR spectrum of compound **6b** (100.6 MHz, DMSO-*d*₆)

Figure 19: ¹H NMR spectrum of compound 7a (400 MHz, DMSO-*d*₆)

Figure 20: ¹³C NMR spectrum of compound 7a (100.6 MHz, DMSO-*d*₆)

Figure 21: ¹H NMR spectrum of compound 7b (400 MHz, DMSO-*d*₆)

Figure 22: ¹³C NMR spectrum of compound 7b (100.6 MHz, DMSO-*d*₆)

Figure 23: ¹H NMR spectrum of compound 8a (400 MHz, DMSO-*d*₆)

Figure 24: ¹³C NMR spectrum of compound 8a (100.6 MHz, DMSO-*d*₆)

Figure 26: ¹³C NMR spectrum of compound **8b** (100.6 MHz, DMSO-*d*₆)

Figure 27: DEPT-135 ¹³C NMR spectrum of compound 8b (100.6 MHz, DMSO-*d*₆)

Figure 28: D₂O Exchange ¹H NMR spectrum of compound 8b (400 MHz, DMSO-*d*₆)

Single crystal X-ray diffraction analysis of 1-((1*S*,3*R*,4*S*,7*R*)-7-hydroxy-6-(hydroxymethyl)-2,5-dioxabicyclo[2.2.1]heptan-3-yl)-5-methylpyrimidine-2,4(1*H*,3*H*)-dione (8b)

Compound **8b** was dissolved in a mixture of methanol and chloroform (1:1) to grow single crystals appropriate for X-ray diffraction studies by allowing slow evaporation of the solvent at room temperature. The X-ray diffraction data was collected on X'calibur CCD diffractometer with graphite monochromatized Mo/K α radiation ($\lambda = 0.71073$ Å) at temperature 298 K. The structure was solved by direct methods using SHELXS-97 and refined by the full-matrix least-squares method on F² (SHELXL-97). All calculations were done with the help of WINGX package of crystallographic programs. For the molecular graphics, the program Mercury was used. The selected bond lengths, bond angles, etc. are given in Table 1.

Identification code	8b
Empirical Formula	$C_{11}H_{14}N_2O_6$
Formula Weight	270.24
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P21
Unit cell dimensions	$a = 5.9070(2) \text{ Å}, \alpha = 90^{\circ}$
	$b = 11.2782(4) \text{ Å}, \beta = 90.116(3)^{\circ}$
	$c = 8.7658(3) \text{ Å}, \gamma = 90^{\circ}$
Volume	583.98 (3) Å ³
Z	2
Density (calculated)	1.537 g/cm ³
Absorption coefficient	0.127 mm ⁻¹
F (000)	284.0
Crystal size	0.1 imes 0.1 imes 0.1
Theta range for data collection	3.449 to 31.142

Table 1. Crystal data and structure refinement for compound 8b.

Index ranges	$-8 \le h \le 7, -14 \le k \le 14, -11 \le l \le 12$
Reflections collected	13929
Independent reflections	3788 [R(int) = 0.0346, $R_{sigma} = 0.0263$]
Refinement method	Full-matrix least-squares on F ²
Data/restrains/parameters	3788/1/179
Goodness-of-fit on F ²	0.854
Final R indices [1≥2sigma(I)]	$R_1 = 0.0347, wR_2 = 0.1053$
R indices (all data)	$R_1 = 0.0400, wR_2 = 0.1118$
CCDC No.	2240085