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Summary
Objectives: We present a review of recent advances in clinical 
Natural Language Processing (NLP), with a focus on semantic 
analysis and key subtasks that support such analysis.
Methods: We conducted a literature review of clinical NLP 
research from 2008 to 2014, emphasizing recent publications 
(2012-2014), based on PubMed and ACL proceedings as well as 
relevant referenced publications from the included papers.
Results: Significant articles published within this time-span were 
included and are discussed from the perspective of semantic 
analysis. Three key clinical NLP subtasks that enable such 
analysis were identified: 1) developing more efficient methods for 
corpus creation (annotation and de-identification), 2) generating 
building blocks for extracting meaning (morphological, syntactic, 
and semantic subtasks), and 3) leveraging NLP for clinical utility 
(NLP applications and infrastructure for clinical use cases). Final-
ly, we provide a reflection upon most recent developments and 
potential areas of future NLP development and applications. 
Conclusions: There has been an increase of advances within key 
NLP subtasks that support semantic analysis. Performance of NLP 
semantic analysis is, in many cases, close to that of agreement 
between humans. The creation and release of corpora annotated 
with complex semantic information models has greatly supported 
the development of new tools and approaches. Research on 
non-English languages is continuously growing. NLP methods have 
sometimes been successfully employed in real-world clinical tasks. 
However, there is still a gap between the development of advanced 
resources and their utilization in clinical settings. A plethora of 
new clinical use cases are emerging due to established health care 
initiatives and additional patient-generated sources through the 
extensive use of social media and other devices.

Keywords
Clinical Natural Language Processing; Semantics; Information 
Extraction; Annotation, Domain Adaptation; Review

Yearb Med Inform 2015;10:183-93
http://dx.doi.org/10.15265/IY-2015-009
Published online August 13, 2015

Introduction
Communication is a fundamental process that 
supports our daily existence. We represent 
information and knowledge by using natural 
language to describe entities and events and 
their relationships to each other and across 
time. The concepts underlying the linguistic 
expressions convey meaning, or semantics, 
of how entities (people, places, or things) 
interact with each other. In today’s world, we 
use a variety of text types - emails, blogs, SMS 
texts, reports, etc. - to facilitate communica-
tion about these interactions. The meaning 
conveyed in communication is only available 
for human consumption and not for machine 
interpretation unless we can map the text to 
the underlying semantics. Natural Language 
Processing (NLP) is an approach for automat-
ically encoding the semantics represented in 
natural language texts. 

Clinical NLP is the application of text 
processing approaches on documents writ-
ten by healthcare professionals in clinical 
settings, such as notes and reports in health 
records. The interest for clinical NLP is 
spurred by the need for real-time, large-
scale, and accurate information extraction 
from health records to support clinical care, 
e.g., through automated generation of a 
patient problem list, to support biomedical 
and health services research, e.g., through 
precise cohort identification, and to support 
public health practice, e.g., through disease 
surveillance. Clinical NLP can provide 
clinicians with critical patient case details, 
which are often locked within unstructured 
clinical texts and dispersed throughout a 
patient’s health record. Semantic analysis 
is one of the main goals of clinical NLP 
research and involves unlocking the meaning 
of these texts by identifying clinical entities 

(e.g., patients, clinicians) and events (e.g., 
diseases, treatments) and by representing 
relationships among them.

The most crucial step to enable semantic 
analysis in clinical NLP is to ensure that 
there is a well-defined underlying schematic 
model and a reliably-annotated corpus, that 
enables system development and evaluation. 
It is also essential to ensure that the created 
corpus complies with ethical regulations and 
does not reveal any identifiable information 
about patients, i.e. de-identifying the corpus, 
so that it can be more easily distributed for 
research purposes. 

Once these issues are addressed, semantic 
analysis can be used to extract concepts that 
contribute to our understanding of patient 
longitudinal care. For example, lexical and 
conceptual semantics can be applied to en-
code morphological aspects of words and 
syntactic aspects of phrases to represent the 
meaning of words in texts. However, clinical 
texts can be laden with medical jargon and can 
be composed with telegraphic constructions. 
Furthermore, sublanguages can exist within 
each of the various clinical sub-domains 
and note types [1-3]. Therefore, when ap-
plying computational semantics, automatic 
processing of semantic meaning from texts, 
domain-specific methods and linguistic fea-
tures for accurate parsing and information 
extraction should be considered.

In clinical practice, there is a growing 
curiosity and demand for NLP applications. 
Today, some hospitals have in-house solutions 
or legacy health record systems for which 
NLP algorithms are not easily applied. How-
ever, when applicable, NLP could play an 
important role in reaching the goals of better 
clinical and population health outcomes by 
the improved use of the textual content con-
tained in EHR systems. 
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In this paper, we review the state of the art 
of clinical NLP to support semantic analysis 
for the genre of clinical texts. 

Background – Identifying 
Existing Barriers and Recent 
Developments that Support 
Semantic Analysis
In the comprehensive clinical NLP review 
by Meystre et al. in 2008 [4], a number of 
future challenges were mentioned, such as 
the need for more efficient methods for 
corpus creation in terms of effort required 
as well as patient confidentiality, the need 
for further research in complex semantic 
tasks such as discourse and temporality, 
and the need for improvements in system 
performance to enhance the acceptance of 
NLP in clinical research contexts. Similar-
ly, the recent position paper by Chapman 
et al. in 2011 [5] enumerates barriers to 
clinical NLP progress, such as the lack 
of annotated training and benchmarking 
datasets, the lack of inexpensive and re-
liable de-identif ication techniques, and 
insufficient common clinical standards, 
and calls for more creative solutions to 
address these barriers. Additionally, the 
lack of resources developed for languages 
other than English has been a limitation in 
clinical NLP progress. 

In recent years, the clinical NLP com-
munity has made considerable efforts to 
overcome these barriers by releasing and 
sharing resources, e.g., de-identified clinical 
corpora, annotation guidelines, and NLP 
tools, in a multitude of languages [6]. More-
over, the progress and amount of research 
on the essential steps enabling semantic 
analysis (i.e. corpus creation) has led to an 
increased number of studies on semantics, 
both on linguistic levels such as morphology 
and syntax, and on deeper semantic levels 
such as complex concept classification, 
co-reference resolution, and temporal rea-
soning. The development and maturity of 
NLP systems has also led to advancements in 
the employment of NLP methods in clinical 
research contexts.

Methods
We present a review of clinical NLP research 
that supports semantic analysis of clinical 
texts, with an emphasis on recent publications 
(2012-2014), but also including relevant work 
published after 2010. Selection criteria are de-
scribed in Zweigenbaum and Névéol [7]. For a 
related survey on articles published earlier, we 
refer to Meystre et al. [4]. Our scope limitations 
restrict in-depth coverage of research in closely 
related areas. For instance, although similar in 
medical and scientific topics, biomedical texts, 
patient-generated documentation, and forum 
discussions are not included in this review. 
For recent advances also in biomedical NLP, 
we refer to Cohen & Demner-Fushman [8].

We will structure our review by address-
ing three main tasks for applying semantic 
analysis to clinical texts: 1) developing more 
efficient methods for corpus creation, 2) 
generating linguistic and semantic building 
blocks for extracting meaning, and 3) apply-
ing NLP applications to clinical use cases. 
More specifically, we will review recent 
clinical NLP research that has addressed the 
aforementioned barriers to progress including 
the development of more efficient methods for 
corpus creation in the context of annotation 
and de-identification. We will then elaborate 
upon notable developments in generating the 
building blocks of semantic analysis address-
ing subtasks of morphological and syntactic 
processing as well as semantic processing 
subtasks of named entity recognition and 
contextual analysis, co-reference resolution, 
temporal reasoning and document-level anal-
ysis. Further, we will describe efforts toward 
developing NLP applications and systems that 
demonstrate clinical utility of NLP leveraging 
semantic processing for clinical use cases. 
Use cases addressed include identifying dis-
ease and associated symptomology, assigning 
diagnostic billing codes, detecting adverse 
drug events, and monitoring for hospital-ac-
quired infections. We will conclude with a 
summary of the state of the art and discuss 
potential up-and-coming frontiers for clinical 
NLP and semantic analysis in the near future.

In the following sections, we describe the 
current state of the art in clinical NLP towards 
the support of semantic analysis within these 
three thematic areas: corpus creation, se-
mantic building blocks, and clinical utility.

Corpus Creation - Supporting 
Semantic Analysis with Effi-
ciency and Accessibility
Two of the most important first steps to enable 
semantic analysis of a clinical use case are 
the creation of a corpus of relevant clinical 
texts, and the annotation of that corpus with 
the semantic information of interest. For 
example, if we are interested in developing 
an NLP system that helps maintain accurate 
problem lists for patients in intensive care 
units (ICU), one could obtain clinical notes 
from retrospective ICU patient records and 
encode common problems of interest, e.g., 
signs, symptoms, and diagnoses, for develop-
ing and evaluating an NLP system for that use 
case. Identifying the appropriate corpus and 
defining a representative, expressive, unam-
biguous semantic representation (schema) is 
critical for addressing each clinical use case.

Annotation – Developing 
Reliable and Sufficient 
Datasets
Once a corpus is selected and a schema is de-
fined, it is assessed for reliability and validity 
[9], traditionally through an annotation study 
in which annotators, e.g., domain experts and 
linguists, apply or annotate the schema on a 
corpus. Ensuring reliability and validity is 
often done by having (at least) two annotators 
independently annotating a schema, discrep-
ancies being resolved through adjudication. 
Pustejovsky and Stubbs present a full review of 
annotation designs for developing corpora [10]. 

However, manual annotation is time con-
suming, expensive, and labor intensive on 
the part of human annotators. Methods for 
creating annotated corpora more efficiently 
have been proposed in recent years, address-
ing efficiency issues such as affordability and 
scalability. With such methods, advance-
ments in semantic analysis are enabled. 

Affordability
One major barrier to corpus annotation is 
affordability. Minimizing the manual effort 
required and time spent to generate annota-
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tions would be a considerable contribution 
to the development of semantic resources. 

Pre-annotation, providing machine-gen-
erated annotations based on e.g. dictionary 
lookup from knowledge bases such as the 
Unified Medical Language System (UMLS) 
Metathesaurus [11], can assist the manual 
efforts required from annotators. A study by 
Lingren et al. [12] combined dictionaries with 
regular expressions to pre-annotate clinical 
named entities from clinical texts and trial 
announcements for annotator review. They 
observed improved reference standard quality, 
and time saving, ranging from 14% to 21% per 
entity while maintaining high annotator agree-
ment (93-95%). In another machine-assisted 
annotation study, a machine learning system, 
RapTAT, provided interactive pre-annotations 
for quality of heart failure treatment [13]. 
This approach minimized manual workload 
with significant improvements in inter-anno-
tator agreement and F1 (89% F1 for assisted 
annotation compared to 85%). In contrast, a 
study by South et al. [14] applied cue-based 
dictionaries coupled with predictions from a 
de-identification system, BoB (Best-of-Breed), 
to pre-annotate protected health information 
(PHI) from synthetic clinical texts for annotator 
review. They found that annotators produce 
higher recall in less time when annotating 
without pre-annotation (from 66-92%). 

Another strategy to mitigate time and cost 
is to use different annotation methods for cre-
ating corpora meant to train a statistical system 
versus creating a gold standard. A recent study 
found that double annotation and consensus 
annotation are not always necessary when 
creating corpora to train a statistical system 
[15]. They showed that there was no statistically 
significant difference in results when training 
a model on single annotated data compared to 
double annotated plus consensus. A three step 
process is suggested: 1) use double annotation 
for only a small targeted sample to ensure 
guideline adherence, 2) allow annotators to 
work independently on different sections of 
the corpus, 3) train a machine learning model 
on the human annotations and apply this to a 
new dataset. 

Scalability
Additionally, scalability can impose con-
straints upon the degree of semantic analysis. 

Scalability can be defined by aspects of 
resources needed to develop a reliable and 
valid reference standard including the type 
of annotator expertise, the number of anno-
tators, and the number of texts. For instance, 
more experienced annotators can command 
higher pay. Employing more annotators and 
annotating a larger corpus than what is need-
ed for high reliability and validity can result 
in greater, unnecessary costs. Recent efforts 
leveraging crowdsourcing technologies as-
sess the training of a crowd of non-domain 
experts rather than a set of domain experts to 
create a large and reliable reference standard 
quickly. Zhai et al. [16] built a reference stan-
dard of medication annotations for clinical 
trial announcements from the ClinicalTrials.
gov website using CrowdFlower, an Amazon 
Mechanical Turk-based crowdsourcing plat-
form, resulting in high human agreement 
(>73% F1) and showing that there was no 
statistically significant difference between 
crowd- and expert-generated annotations for 
this task. Similarly, in the biomedical NLP 
community, crowdsourcing has been used 
to produce annotated data successfully [17]. 
Although this solution is difficult to apply on 
clinical texts due to confidentiality reasons, 
the clinical NLP community could still benefit 
from these experiences to make headway. For 
instance, in the 2009 i2b2 challenge on med-
ication extraction [18], participating teams 
were required to also produce annotations, 
thus minimizing costs for the challenge or-
ganizers to hire external annotators.

Other efforts systematically analyzed 
what resources, texts, and pre-processing 
are needed for corpus creation. Jucket [19] 
proposed a generalizable method using 
probability weighting to determine how 
many texts are needed to create a reference 
standard. The method was evaluated on a 
corpus of dictation letters from the Michigan 
Pain Consultant clinics. Gundlapalli et al. 
[20] assessed the usefulness of pre-process-
ing by applying v3NLP, a UIMA-AS-based 
framework, on the entire Veterans Affairs 
(VA) data repository, to reduce the review 
of texts containing social determinants of 
health, with a focus on homelessness. Spe-
cifically, they studied which note titles had 
the highest yield (‘hit rate’) for extracting 
psychosocial concepts per document, and of 
those, which resulted in high precision. This 

approach resulted in an overall precision for 
all concept categories of 80% on a high-yield 
set of note titles. They conclude that it is not 
necessary to involve an entire document 
corpus for phenotyping using NLP, and that 
semantic attributes such as negation and 
context are the main source of false positives.

De-identification – Enabling 
Data Access and Modeling 
Semantic Entities
A consistent barrier to progress in clinical 
NLP is data access, primarily restricted by 
privacy concerns. De-identification meth-
ods are employed to ensure an individual’s 
anonymity, most commonly by removing, 
replacing, or masking Protected Health 
Information (PHI) in clinical text, such as 
names and geographical locations. Once 
a document collection is de-identified, it 
can be more easily distributed for research 
purposes. Since the thorough review of state-
of-the-art in automated de-identification 
methods from 2010 by Meystre et al. [21], 
research in this area has continued to be very 
active. The United States Health Insurance 
Portability and Accountability Act (HIPAA) 
[22] definition for PHI is often adopted for 
de-identification – also for non-English 
clinical data. For instance, in Korea, recent 
law enactments have been implemented to 
prevent the unauthorized use of medical 
information – but without specifying what 
constitutes PHI, in which case the HIPAA 
definitions have been proven useful [23].

Following the pivotal release of the 2006 
de-identification schema and corpus by Uzuner 
et al. [24], a more-granular schema, an anno-
tation guideline, and a reference standard for 
the heterogeneous MTSamples.com corpus of 
clinical texts were released [14]. The schema 
extends the 2006 schema with instructions 
for annotating fine-grained PHI classes (e.g., 
relative names), pseudo-PHI instances or clin-
ical eponyms (e.g., Addison’s disease) as well 
as co-reference relations between PHI names 
(e.g., John Doe COREFERS to Mr. Doe). The 
reference standard is annotated for these pseu-
do-PHI entities and relations. To date, few other 
efforts have been made to develop and release 
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new corpora for developing and evaluating 
de-identification applications.

Several systems and studies have also 
attempted to improve PHI identification 
while addressing processing challenges 
such as utility, generalizability, scalability, 
and inference. 

Utility
Utility of clinical texts can be affected when 
clinical eponyms such as disease names, 
treatments, and tests are spuriously redacted, 
thus reducing the sensitivity of semantic 
queries for a given use case. For example, if 
mentions of Huntington’s disease are spuri-
ously redacted from a corpus to understand 
treatment efficacy in Huntington’s patients, 
knowledge may not be gained because 
disease/treatment concepts and their causal 
relationships are not extracted accurately. 
One de-identification application that in-
tegrates both machine learning (Support 
Vector Machines (SVM), and Conditional 
Random Fields (CRF)) and lexical pattern 
matching (lexical variant generation and 
regular expressions) is BoB (Best-of-Breed) 
[25-26]. BoB applies the highest performing 
approaches from known de-identification 
systems for each PHI type, resulting in 
balanced recall and precision results (89%) 
for a configuration of individual classifiers, 
and best precision (95%) was obtained with 
a multi-class configuration. This system was 
also evaluated to understand the utility of 
texts by quantifying clinical information loss 
following PHI tagging i.e., medical concepts 
from the 2010 i2b2 Challenge corpus, in 
which less than 2% of the corpus concepts 
partially overlapped with the system [27]. 

Generalizability
Generalizability is a challenge when cre-
ating systems based on machine learning. 
In particular, systems trained and tested on 
the same document type often yield better 
performance, but document type infor-
mation is not always readily available. By 
creating training and testing sets on clinical 
documents that were partitioned into similar 
types – categorized by measures of writing 
complexity and clinical vocabulary usage – 

de-identification results were improved (avg. 
F1 92%), compared to using randomly se-
lected clusters (avg. F1 88%), on a collection 
of over 4500 various document types from 
Vanderbilt University Medical Center [28].

Another challenge related to generalizabil-
ity is to apply and evaluate de-identification 
methods not only on various document types, 
but also on corpora in non-English languages. 
Toward this goal, Grouin and Névéol [29] 
developed a reference corpus in French for 
de-identification. Two pre-annotation tools 
were used, one rule-based and one CRF-based, 
evaluated by two annotators. The rule-based 
system produced better pre-annotations, but 
the manual revision of the CRF-based system 
was faster. In both cases, human agreement 
was high (> 90% F1), and only 20 documents 
were needed to build a statistical system that 
outperformed pre-annotation tools. Two gold 
standard sets of French clinical notes were cre-
ated. For Swedish, CRF models were also used 
to refine a set of de-identification annotations, 
along with manual revision, resulting in a new 
gold standard and system performance of 80% 
F1 [30]. PHI annotations on a subset of this 
corpus (100 notes) have been pseudonymized 
[31] and approved for release to the research 
community. In Korea, clinical notes are written 
both in English and Korean. To handle Korean 
names in a de-identification system, a heuristic 
approach using regular expressions was adopt-
ed and verified on 6,502 clinical notes from 
the Asian Medical Center, resulting in 89% 
precision and 97% recall [23].

Scalability
Scalability of de-identification for larger 
corpora is also a critical challenge to ad-
dress as the scientific community shifts its 
focus toward “big data”. Deleger et al. [32] 
showed that automated de-identification 
models perform at least as well as human 
annotators, and also scales well on millions 
of texts. This study was based on a large 
and diverse set of clinical notes, where CRF 
models together with post-processing rules 
performed best (93% recall, 96% precision). 
Moreover, they showed that the task of ex-
tracting medication names on de-identified 
data did not decrease performance compared 
with non-anonymized data.

Inference
Inference that supports semantic utility of 
texts while protecting patient privacy is per-
haps one of the most difficult challenges in 
clinical NLP. Privacy protection regulations 
that aim to ensure confidentiality pertain to 
a different type of information that can, for 
instance, be the cause of discrimination (such 
as HIV status, drug or alcohol abuse) and is 
required to be redacted before data release. 
This type of information is inherently seman-
tically complex, as semantic inference can 
reveal a lot about the redacted information 
(e.g. The patient suffers from XXX (AIDS) 
that was transmitted because of an unpro-
tected sexual intercourse). Sánchez et al 
[33] describe a method to sanitize clinical 
texts without disclosure from semantic infer-
ence using information theoretic measures, 
knowledge bases, and the Web as corpora 
with promising results when evaluated on 
Wikipedia descriptions of medical entities 
considered as sensitive by United States state 
and federal laws.

Semantic Building Blocks 
– Extracting Meaning From 
Texts
Semantic analysis can be a powerful tool 
for representing information and conveying 
meaning from clinical texts. Clinical NLP 
pipelines apply semantic analysis of clinical 
texts by integrating several meta-layers of 
textual information into standard infor-
mation models. These information models 
not only describe semantic concepts, their 
attributes, and their interactions and relations 
with each other to convey meaning, but also 
how linguistic information, such as syntax, 
can be used to accurately fill these arguments 
and relations within a semantic structure. For 
example, syntactic and semantic information 
can represent events experienced by a person 
using a frame structure, e.g., “patient under-
went chemotherapy” can be represented as:

S 	Arg1[patient/SBJ NP (experiencer)], 
Rel[undergo.1/VP (experience, undergo)], 

 	 Arg2[chemotherapy/OBJ NP (experi-
enced)]
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Several types of textual or linguistic infor-
mation layers and processing - morpholog-
ical, syntactic, and semantic - can support 
semantic analysis.

Morphological and Syntactic 
Processing– Encoding 
Linguistic Layers for Semantics 
Morphological and syntactic preprocessing 
can be a useful step for subsequent semantic 
analysis. For example, prefixes in English can 
signify the negation of a concept, e.g., afebrile 
means without fever. Furthermore, a concept’s 
meaning can depend on its part of speech 
(POS), e.g., discharge as a noun can mean 
fluid from a wound; whereas a verb can mean 
to permit someone to vacate a care facility. 
Many of the most recent efforts in this area 
have addressed adaptability and portability of 
standards, applications, and approaches from 
the general domain to the clinical domain or 
from one language to another language.

Adaptability to the Clinical Domain
Several standards and corpora that exist in the 
general domain, e.g. the Brown Corpus and 
Penn Treebank tag sets for POS-tagging, have 
been adapted for the clinical domain. Fan et 
al. [34] adapted the Penn Treebank II guide-
lines [35] for annotating clinical sentences 
from the 2010 i2B2/VA challenge notes with 
high inter-annotator agreement (93% F1). 
This adaptation resulted in the discovery of 
clinical-specific linguistic features. This new 
knowledge was used to train the general-pur-
pose Stanford statistical parser, resulting in 
higher accuracy than models trained solely on 
general or clinical sentences (81%). 

New morphological and syntactic pro-
cessing applications have been developed 
for clinical texts. cTAKES [36] is a UI-
MA-based NLP software providing modules 
for several clinical NLP processing steps, 
such as tokenization, POS-tagging, depen-
dency parsing, and semantic processing, 
and continues to be widely-adopted and 
extended by the clinical NLP community. 
The variety of clinical note types requires 

domain adaptation approaches even within 
the clinical domain. One approach called 
ClinAdapt uses a transformation-based 
learner to change tag errors along with a 
lexicon generator, increasing performance 
by 6-11% on clinical texts [37]. 

Portability to New Languages
A statistical parser originally developed for 
German was applied on Finnish nursing 
notes [38]. The parser was trained on a cor-
pus of general Finnish as well as on small 
subsets of nursing notes. Best performance 
was reached when trained on the small 
clinical subsets than when trained on the 
larger, non-domain specific corpus (Labeled 
Attachment Score 77-85%). To identify 
pathological findings in German radiology 
reports, a semantic context-free grammar 
was developed, introducing a vocabulary 
acquisition step to handle incomplete termi-
nology, resulting in 74% recall [39].

Semantic Processing – 
Representing Meaning from 
Texts
To fully represent meaning from texts, 
several additional layers of information 
can be useful. Such layers can be complex 
and comprehensive, or focused on specific 
semantic problems. In recent years, several 
efforts have addressed semantic processing 
subtasks from the perspective of information 
models and shareable resources – an instru-
mental part for semantic analysis method 
development, in areas such as named entity 
recognition and contextual attributes, coref-
erence resolution, temporal reasoning, and 
document-level analysis. 

Semantic Analysis Method 
Development – Information 
Models and Resources 
One notable effort for a rich information 
model with several annotation layers is the 
MiPACQ (Multi-source Integrated Platform 

for Answering Clinical Questions) dataset 
consisting of annotated Treebank POS 
tagged tokens, PropBank predicate-argu-
ment frames, and UMLS encoded entities on 
a corpus of randomly-selected Mayo Clinic 
clinical and pathology notes related to colon 
cancer with high agreement (93%, 89-93% 
and 70-75%, respectively) [40]. This dataset 
has promoted the dissemination of adapted 
guidelines and the development of several 
open-source modules.

Other development efforts are more depen-
dent on the integration of several information 
layers that correspond with existing standards. 
The latter approach was explored in great 
detail in Wu et al. [41] and resulted in the 
implementation of the secondary use Clinical 
Element Model (CEM) [42] with UIMA, and 
fully integrated in cTAKES [36] v2.0.

The organization of shared tasks, or 
community challenges, has also been an 
influential part of the recent advancements in 
clinical NLP not only in corpus creation and 
release, annotation guideline development 
and schema modeling, but also in defining 
semantically-related tasks. Furthermore, 
NLP method development has been enabled 
by the release of these corpora, producing 
state-of-the-art results [17]. 

Many of these corpora address the follow-
ing important subtasks of semantic analysis 
on clinical text.

Named Entity Recognition and 
Contextual Analysis 
Correctly identifying the entities or concepts 
to which semantic modifiers or relations 
belong is crucial for information extraction. 
Often, concepts are defined as noun phrases 
(e.g. diabetes mellitus), requiring algorithm 
solutions that deal with sequences of words, 
either rule- or machine learning-based, as 
shown in the solutions for previous challeng-
es – the 2010 i2b2 challenge [43], the 2014 
ShARe/CLEF eHealth challenge [44] and 
the SemEval 2015 Task 14: Analysis of Clin-
ical Text [45] - on concept classification, with 
system performance as high as 85% F1. In 
clinical settings, semantic type information 
is also essential, for instance, knowing that a 
concept is a problem, a test or a treatment, as 
in the definition of the 2010 i2b2 challenge 
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[43]. Clinical entity recognition has also 
been studied for non-English languages. For 
instance, one study employed CRF models 
on Swedish clinical data for the types dis-
orders, findings, pharmaceuticals and body 
structures, resulting in F1s ranging between 
69-81% [46], in line with or slightly lower 
than results reported for English.

For accurate information extraction, con-
textual analysis is also crucial, particularly 
for including or excluding patient cases from 
semantic queries, e.g., including only patients 
with a family history of breast cancer for 
further study. Contextual modifiers include 
distinguishing asserted concepts (patient 
suffered a heart attack) from negated (not a 
heart attack) or speculative (possibly a heart 
attack). Other contextual aspects are equally 
important, such as severity (mild vs severe 
heart attack) or subject (patient or relative). 

The ShARe (Shared Annotated Resourc-
es) corpus - a subset of discharge summaries, 
radiology, echocardiogram, and electrocar-
diogram reports from the MIMIC II database 
[47] - consists of templates with disease/
disorder events encoded with SNOMED CT 
concept unique identifiers (CUI), with rich 
contextual attributes from the Clinical Ele-
ment Model (CEM) [42] and with temporal 
expression mentions [44]. This dataset is 
unique in its integration of existing semantic 
models from both the general and clinical 
NLP communities. 

In the 2014 ShARe/CLEF eHealth task 
2, in an effort to leverage this annotated 
dataset, several approaches were taken to 
normalize semantic modifiers such as body 
site and severity which included optimizing 
cTAKES modules, developing rules based 
on resources from UMLS, and employing 
grammatical relations [48]. For example, 
Dligach et al. [49] treat these two problems 
as a relation extraction task, building SVM 
models and evaluating on two clinical cor-
pora, resulting in F1 scores of 74-91% for 
body site and 91-93% for severity. The cre-
ated models have been released as cTAKES 
modules. In addition to normalization of 
specific modifiers, the SemEval 2015 Task 
14: Analysis of Clinical Texts also included 
an end-to-end system evaluation [45] that 
assessed NLP system performance for iden-
tifying and normalizing disease/disorders 
and their modifiers from the ShARe corpus. 

An ensemble machine learning approach 
leveraging MetaMap and word embeddings 
from unlabeled data for disorder identifi-
cation, a vector space model for disorder 
normalization, and SVM approaches for 
modifier classification achieved the highest 
performance (combined F1 and weighted 
accuracy of 81%) [50].

When encoding semantic concepts, lex-
icon- and rule-based NLP systems have the 
advantage of being almost language indepen-
dent since the underlying algorithms do not 
necessarily depend on the source language. 
However, they require language-specific 
rules and lexicons. pyConTextNLP [51], a 
rule-based system for classifying assertions 
(negation and/or uncertainty modifiers) of 
disease mentions, was ported from English 
to Swedish [52]. The system relies on a cue 
lexicon with scoping rules. To create a Swed-
ish lexicon, the authors translated and added 
cues from several sources, and final overall 
results were reported as 81% F1. When 
comparing negation and uncertainty cues 
across languages, the most frequent cues are 
often similar, but rarer cues are more prone to 
individual language particularities [53-54]. 
Further, the negation detection algorithm 
NegEx was evaluated on additional languag-
es, where negation cues were translated also 
to French and German [53]. The system has 
also been adapted to Dutch, where adapta-
tions for the contextual attributes negation, 
experiencer, and temporality were developed 
through translations from English along with 
enhanced rules and regular expressions [55]. 
Final results for negation and experiencer 
were high (> 87% and > 99% F1, respective-
ly), but lower for historical and hypothetical 
temporality properties (26-54% and 13-44% 
F1, respectively).

Experiencer and temporality attributes 
were also studied as a classification task on a 
corpus of History and Physical Examination 
reports, where the ConText algorithm was 
compared to three machine learning (ML) 
algorithms (Naive Bayes, k-Nearest Neigh-
bours and Random Forest). There were no 
statistically significant differences in results 
for classifying experiencer between these ap-
proaches, but the ML approach (specifically, 
Random Forest) outperformed ConText on 
classifying temporality (historical or recent), 
resulting in 87% F1 compared to 69% [56].

Coreference Resolution
A challenging issue related to concept detec-
tion and classification is coreference resolu-
tion, e.g. correctly identifying that it refers 
to heart attack in the example “She suffered 
from a heart attack two years ago. It was se-
vere.” NLP approaches applied on the 2011 
i2b2 challenge corpus included using exter-
nal knowledge sources and document struc-
ture features to augment machine learning 
or rule-based approaches [57]. For instance, 
the MCORES system employs a rich feature 
set with a decision tree algorithm, outper-
forming unweighted average F1 results 
compared to existing open-domain systems 
on the semantic types Test (84%), Persons 
(84%), Problems (85%) and Treatments 
(89%) [58]. Another approach deals with 
the problem of unbalanced data and defines 
a number of linguistically and semantically 
motivated constraints, along with techniques 
to filter co-reference pairs, resulting in an 
unweighted average F1 of 89% [59]. Domain 
knowledge and domain-inspired discourse 
models were employed by Jindal & Roth on 
the same task and corpus with comparable 
results (unweighted average F1 between 84-
88%), where the authors concluded that most 
recall errors could be handled by addition of 
further domain knowledge [60].

Temporal Reasoning
Temporal modeling has been the focus of 
many recent studies. In order to understand 
disease progression, adverse drug reactions, 
and other clinically relevant events over time, 
semantic models of temporality are needed. 
For instance, knowing when particular symp-
toms were present for a specific disease can 
be used to build predictive models to ensure 
timely treatment. The TimeML model [61], a 
rich model to represent temporal information 
in text through events (high blood pressure, 
heart attack), time expressions (two years 
ago), and their temporal relation (high blood 
pressure BEFORE heart attack), has been 
adapted in at least two ways to the clinical 
domain. Styler et al. [62] adapted the model 
to pathology and clinical texts from Mayo 
clinic, creating the THYME (Temporal His-
tory of Your Medical Events) corpus, while 
another adaptation was used in the 2012 i2b2 
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challenge [63-64]. For example, in contrast 
to previous corpora, the THYME events are 
encoded to the linguistic head of a phrase, 
and a new temporal expression type was 
introduced to capture time expressions such 
as preoperative. The THYME corpus was 
released as part of the SemEval-2015 Task 
6: Clinical TempEval challenge [65], where 
the system approach results met or were 
close to human agreement on all subtasks 
except temporal relationships using machine 
learning approaches [66].

The first step in a temporal reasoning 
system is to detect expressions that denote 
specif ic times of different types, such 
as dates and durations. A lexicon- and 
regular-expression based system (TTK/
GUTIME [67]) developed for general NLP 
was adapted for the clinical domain. The 
adapted system, MedTTK, outperformed 
TTK on clinical notes (86% vs 15% recall, 
85% vs 27% precision), and is released to 
the research community [68]. In the 2012 
i2b2 challenge on temporal relations, suc-
cessful system approaches varied depend-
ing on the subtask. For instance, hybrid 
approaches combining rule-based systems 
such as HeidelTime [69], SUTIME [70] 
and GUTIME [67] with CRF or SVM 
machine learning models proved useful 
for time expression classification (up to 
90% span F1), CRF models for event span 
detection (up to 92% F1), SVM models for 
event attribute detection (86% accuracy), 
while temporal relationships were classi-
fied with a variety of approaches, resulting 
in up to 68% F1 [63]. 

Other studies define coarser time rep-
resentations. For instance, Raghavan et 
al. [71] created a model to distinguish 
time-bins based on the relative temporal 
distance of a medical event from an ad-
mission date (way before admission, before 
admission, on admission, after admission, 
after discharge). The model was evaluated 
on a corpus of a variety of note types from 
Methicillin-Resistant S. Aureus (MRSA) 
cases, resulting in 89% precision and 79% 
recall using CRF and gold standard fea-
tures. In a study to classify patient history 
episodes in Bulgarian discharge notes, the 
authors defined rules to identify temporal 
markers (absolute or relative moments of 
time), resulting in 87% precision and 68% 

recall, and the direction of time for the ep-
isode starting point (backwards or forward) 
resulting in 74% precision [72].

Most studies on temporal relation clas-
sification focus on relations within one 
document. Cross-narrative temporal event 
ordering was addressed in a recent study with 
promising results by employing a finite state 
transducer approach [73].

Document-level Analysis
Other NLP annotation efforts aim to demon-
strate the potential clinical utility of underly-
ing semantic information for document-level 
analysis. Sentiment is well-studied in the 
general NLP domain, but not yet in the 
clinical domain. One note-worthy effort 
was the creation and release of guidelines 
and transcribed suicide notes to support 
emotion classification at the snippet (clauses 
and phrases) and document levels [74-75]. 
The dataset was released as part of the Fifth 
i2b2/VA/Cincinnati shared task. Another 
effort targeting clinical information retrieval 
problems was the 2011-2012 TREC medical 
records track [76] in which one of the largest 
datasets was distributed to the clinical NLP 
community through shared tasks [77].

To enable cross-lingual semantic analysis 
of clinical documentation, a first important 
step is to understand differences and simi-
larities between clinical texts from different 
countries, written in different languages. Wu 
et al. [78], perform a qualitative and statisti-
cal comparison of discharge summaries from 
China and three different US-institutions. 
Chinese discharge summaries contained a 
slightly larger discussion of problems, but 
fewer treatment entities than the American 
notes. Social history was never documented 
in this corpus of Chinese notes.

A further level of semantic analysis is 
text summarization, where, in the clinical 
setting, information about a patient is gath-
ered to produce a coherent summary of her 
clinical status. This is a challenging NLP 
problem that involves removing redundant 
information, correctly handling time infor-
mation, accounting for missing data, and 
other complex issues. Pivovarov and Elhadad 
present a thorough review of recent advances 
in this area [79].

Clinical Utility – Applying 
NLP Applications to Clinical 
Use Cases
In order to employ NLP methods for actual 
clinical use-cases, several factors need to 
be taken into consideration. Many (deep) 
semantic methods are complex and not easy 
to integrate in clinical studies, and, if they 
are to be used in practical settings, need to 
work in real-time. Several recent studies with 
more clinically-oriented use cases show that 
NLP methods indeed play a crucial part for 
research progress. Often, these tasks are on 
a high semantic level, e.g. finding relevant 
documents for a specific clinical problem, 
or identifying patient cohorts. For instance, 
NLP methods were used to predict wheth-
er or not epilepsy patients were potential 
candidates for neurosurgery [80]. Clinical 
NLP has also been used in studies trying to 
generate or ascertain certain hypotheses by 
exploring large EHR corpora [81]. In other 
cases, NLP is part of a grander scheme deal-
ing with problems that require competence 
from several areas, e.g. when connecting 
genes to reported patient phenotypes extract-
ed from EHRs [82-83].

Identifying Disease and Associated 
Symptomology
A method for identifying progress notes 
pertaining to diabetes was developed using 
a supervised machine learning framework 
(SVM), using a bag-of-words (BoW) rep-
resentation, on notes from different insti-
tutions, resulting in F1 scores > 93% [84]. 
Interestingly, richer NLP features (named 
entities, synonym resolution, negation) were 
not found to be useful for this task. Similarly, 
Yetisgen-Yildiz et al. [85] obtained best re-
sults (79% F1) using n-gram features (uni-, 
bi- and trigrams) in a study to identify pa-
tients confirmed to have Acute Lung Injury. 
They found that assertion values were not 
useful for this task. Their study was evaluat-
ed on a corpus of 1,748 free-text chest x-ray 
reports related to patients at an intensive 
care unit at the Harborview Medical Center. 

Another example in psychiatry showed that 
models incorporating NLP (using the HiTeX 
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system [86]) improved determining mood 
states for diagnosing major depressive disor-
ders compared to using diagnostic codes alone 
(area under receiver operating characteristic 
curve of 85-88% vs 54-55%) [87]. The under-
lying NLP methods were mostly based on term 
mapping, but also included negation handling 
and context to filter out incorrect matches.

NLP has also been used for mining 
clinical documentation for cancer-related 
studies. Spacíc et al. [88] present a review 
of current state-of-the art in this area, where 
they conclude that named entity recognition 
methods perform well (F1 between 80-90%) 
but that there is room for improvement for 
handling non-standard wordings and that the 
main bottleneck for progress in this area is 
the lack of available corpora.

Assigning Diagnostic Billing Codes
ICD-9 and ICD-10 (version 9 and 10 respec-
tively) denote the international classification of 
diseases [89]. ICD codes are usually assigned 
manually either by the physician herself or 
by trained manual coders. They are used 
primarily for billing purposes for hospital 
administrations. Manually assigned codes are, 
however, often erroneous. In an investigation 
carried out by the National Board of Health 
and Welfare (Socialstyrelsen) in Sweden, 4,200 
patient records and their ICD-10 coding were 
reviewed, and they found a 20 percent error rate 
in the assignment of main diagnoses [90]. NLP 
approaches have been developed to support 
this task, also called automatic coding, see 
Stanfill et al. [91], for a thorough overview. The 
best performing systems obtain F1-scores of 
around 90%. Perotte et al. [92], elaborate on 
different metrics used to evaluate automatic 
coding systems. Other recent approaches for 
automatic coding support are described in e.g. 
Martinez et al. [93].

Detecting Adverse Drug Events
An important aspect in improving patient care 
and healthcare processes is to better handle 
cases of adverse events (AE) and medication 
errors (ME). A study where NLP was used to 
automate detection of IV infiltrations, narcotic 
medication over sedation and dosing errors 
in a neonatal intensive care setting provided 

higher sensitivity and positive predicted value 
compared with manual trigger tools (as high 
as 100% precision and recall for some AE/
ME types) [94]. A study on Danish psychi-
atric hospital patient records [95] describes a 
rule- and dictionary-based approach to detect 
adverse drug effects (ADEs), resulting in 89% 
precision, and 75% recall. Another notable 
work reports an SVM and pattern matching 
study for detecting ADEs in Japanese dis-
charge summaries [96].

Monitoring for Hospital-Acquired 
Infections
Healthcare-associated infections are a severe 
problem worldwide, and NLP methods show 
great potential to help in hospital surveil-
lance [97], and predictions are proposed to 
be important in future proactive decision 
support for risk patients. The use of NLP in 
automated surveillance is partly driven by 
regulations [98-99] that in many countries 
require hospitals to report on adverse events, 
and several systems have been implemented 
with good results [100-103].

Discussion and Conclusion
In this survey, we outlined recent advances 
in clinical NLP for a multitude of languages 
with a focus on semantic analysis. Substan-
tial progress has been made for key NLP sub-
tasks that enable such analysis (i.e. methods 
for more efficient corpus construction and 
de-identification). Furthermore, research on 
(deeper) semantic aspects – linguistic levels, 
named entity recognition and contextual 
analysis, coreference resolution, and tempo-
ral modeling – has gained increased interest. 

Current State of Clinical 
Semantic Analysis
Specifically, we have observed a great synergy 
within the research community to address the 
barriers of progress in clinical NLP addressed 
by both Meystre et al. [4] and Chapman et 
al. [5], by developing and disseminating new 

textual and technical resources – in several 
languages, particularly through the creation 
of community shared tasks and adaptation of 
general NLP resources. Many NLP systems 
meet or are close to human agreement on a 
variety of complex semantic tasks. The clini-
cal NLP community is actively benchmarking 
new approaches and applications using these 
shared corpora. In real-world clinical use 
cases, rich semantic and temporal modeling 
may prove useful for generating patient time-
lines and medical record visualizations, but 
may not always be worth the computational 
runtime and complexity to support knowledge 
discovery efforts from a large-scale clinical 
repository. For some real-world clinical use 
cases on higher-level tasks such as medical 
diagnosing and medication error detection, 
deep semantic analysis is not always neces-
sary – instead, statistical language models 
based on word frequency information have 
proven successful. There still remains a gap 
between the development of complex NLP 
resources and the utility of these tools and 
applications in clinical settings. 

Future Opportunities For 
Clinical NLP
Although there has been great progress in the 
development of new, shareable and richly-an-
notated resources leading to state-of-the-art 
performance in developed NLP tools, there is 
still room for further improvements. Resources 
are still scarce in relation to potential use cases, 
and further studies on approaches for cross-in-
stitutional (and cross-language) performance 
are needed. Furthermore, with evolving health 
care policy, continuing adoption of social 
media sites, and increasing availability of al-
ternative therapies, there are new opportunities 
for clinical NLP to impact the world both inside 
and outside healthcare institution walls.

Bridging the Healthcare Policy and 
Practice Gap
There are new governmental policies and 
initiatives, e.g., Meaningful Use, advocating 
for next generation EHR technologies to en-
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hance the efficiency and accuracy of healthcare 
delivery to the patient through clinical decision 
support, patient engagement, self-reported/
self-monitored data integration, and quality 
measure reporting [104]. For example, the 
Precision Medicine Initiative advocates for 
the development of tools to integrate patient 
genetic, environmental, and lifestyle data 
(e.g., data from medical/personal devices 
or social media) into the electronic medical 
record to support precision medicine e.g., 
patient-centered prevention, diagnostic, and 
treatment models for disease [105]. Similarly, 
the European Commission emphasizes the im-
portance of eHealth innovations for improved 
healthcare in its Action Plan [106]. Such initia-
tives are of great relevance to the clinical NLP 
community and could be a catalyst for bridging 
health care policy and practice.

Integrating New Media for 
Accessing Population Health Status 
Furthermore, with growing internet and so-
cial media use, social networking sites such 
as Facebook and Twitter have become a new 
medium for individuals to report their health 
status among family and friends. These 
sites provide an unprecedented opportuni-
ty to monitor population-level health and 
well-being, e.g., detecting infectious disease 
outbreaks, monitoring depressive mood and 
suicide in high-risk populations, etc. Addi-
tionally, blog data is becoming an important 
tool for helping patients and their families 
cope and understand life-changing illness. 

Addressing Evolving Consumer 
Needs 
Finally, with the rise of the internet and of 
online marketing of non-traditional thera-
pies, patients are looking to cheaper, alter-
native methods to more traditional medical 
therapies for disease management. Little 
is understood about these interventions. 
NLP can help identify benefits to patients, 
interactions of these therapies with other 
medical treatments, and potential unknown 
effects when using non-traditional therapies 
for disease treatment and management e.g., 
herbal medicines.

In conclusion, we eagerly anticipate the 
introduction and evaluation of state-of-the-
art NLP tools more prominently in existing 
and new real-world clinical use cases in the 
near future.
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