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Figure S1. Sampling region information for the 14 patients. (A) Medical imaging 

and biopsy locations of all sampling points in each patient based on MRI. Red and 

yellow dots mark locations of tumoral and peritumoral sampling points. (B) Pathology 

information of 14 patients collected in this study. 
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Figure S2. Identification of different clusters. (A) RNA-derived single-cell CNV 

information. Cell clusters were classified into CNV- and CNV+ categories, based on 

CNV information. (B) Quantification of CNV scores in cell clusters. CNV+ (red) or 

CNV- (blue). Data are represented as means ± s.e.m. (C) Dot plot was constructed 

according to cell cluster. With shared and specifically marker genes, clusters could be 

divided into non-tumor 1 (MOG+), non-tumor 2 (CD45+), regular glioma tumor 

(PTPRZ1+, OLIG2+ or AQP4+) and lung cancer metastasis cells (KRT5+). 
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Figure S3. Patterns of marker gene expression. (A) Depicts a set of glioma clusters, 

whereas (B) signifies a collection of immune clusters within the entire cluster set. (C) 

Illustrates the M2 TAMs cluster within non-tumor cells. 
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Figure S4. Heatmap shows marker genes of clusters of non-tumor cells. 
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Figure S5. M2 TAMs are associated with poor prognosis in glioma patients. Based 

on the TCGA GBMLGG database, (A)-(B) demonstrated the immune infiltration status 

of 22 immune cell types. Data are expressed as means and interquartile range (25-75 

percentile). *p < 0.05, **p < 0.01, ***p < 0.001, ns: p > 0.05; two-tailed unpaired t-

test. (C)-(D) shows the M2 macrophages infiltration score in glioma patients of 

different grades (n = 222, Grade II; n = 243, Grade III; n = 122; Grade IV). Data are 

represented as means ± s.e.m. **p < 0.01, ***p < 0.001; two-tailed unpaired t-test. (E) 

Representative immunohistochemistry (IHC) of M2 macrophages marker (CD163) in 

glioma patients of different grades in The Human Protein Atlas. Boxed areas are further 

magnified. Scale bars, 100 μm (up) and 25 um (down). (F) Quantification of CD163 

positivity rate in (E) using ImageJ. n = 3 (normal), n = 4 (Low grade) and n = 14 (High 

grade) biological independent tumor samples. Data are represented as means ± s.e.m. 

**p < 0.01; one-way ANOVA with Tukey’s method for multiple comparisons. (G) 

shows the M2 macrophages infiltration score in glioma patients with IDH1 status (IDH1 

mutation or IDH1 wild type) and chromosome 1p/19q status (codeletion or non- 

codeletion) in the TCGA GBMLGG database (n = 386, IDH1 mutation; n = 201, IDH1 

wild type; n = 156, chromosome 1p/19q codeletion; n = 431, chromosome 1p/19q non- 

codeletion). Data are represented as means ± s.e.m. ***p < 0.001; two-tailed unpaired 

t-test. 
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Figure S6. (A)-(B) display represented marker genes for Oligodendroglioma (OD: 

OLIG2, DLL3), Astrocytoma (AST: AQP4, CLU), glioma (PTPRZ1) in all glioma cells. 

The t-SNE plot shows the enrichment of 3 subtypes (C) and 4 cellular states (D). 
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Figure S7. Correlation analysis of 13 glioma subclusters with M2 TAMs. (A)-(M) 

Spearman’s correlation analysis of each glioma cluster proportion (%) and M2 

macrophage proportion (%) in 51 tumor regions. 
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Figure S8. The cluster 6 is prevalent in a majority of GBM patients with poorer 

prognoses. (A) The scatter plot displays the proportion of subcluster 6 in each region 

per sample (%) with each spots colored according to the WHO grade of the sample. (B)  

The proportion of subcluster 6 in each region is displayed for representative patients. 

(C) The subcluster 6 enrichment score in grade (n = 467, II-III; n = 149, IV; n = 47, NA) 

from the TCGA GBM database. Black bars indicate mean ± s.d. ***p < 0.001 ; one-

way ANOVA with Tukey’s method for multiple comparisons. (D) The subcluster 6 

enrichment score in subtype (n = 137, proneural (PN); n = 144, classical (CL); n = 156, 

mesenchymal (MES); n = 88, NA) from the TCGA GBM database. Black bars indicate 

mean ± s.d. ***p < 0.001 ; one-way ANOVA with Tukey’s method for multiple 

comparisons. (E) GBM patients are categorized into two groups, high and low, based 

on the mean value of the enrichment score for subcluster 6. Among them, the high group 

represents 56.38% of the GBM patients, while the low group accounts for 43.62%. (F) 

Kaplan–Meier curves of GBM patient survival stratified by the mean value of 

subcluster 6 enrichment score from TCGA GBM databases. P values were determined 

by log-rank. 
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Figure S9. Single-cell RNA and Spatial transcriptomics information. (A) T-SNE 

clustering analysis of GBM tissue 1, GBM tissue 2, GBM tissue 3 in the ST region. (B) 

MIA analysis of GBM tissue 1, GBM tissue 2, GBM tissue 3. Red indicates enrichment, 

while blue represents depletion. Below, the ssGSEA enrichment scores for M2 

macrophages in different regions are displayed. 
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Figure S10. The expression profile of the MES subtype (A) and MES-like states (B) of 

GBM are displayed. (C) The feature plot displays the differential expression of 

signaling pathways across all glioma cells. (D) Expression levels of monocyte 

chemoattractant proteins (CCL2, CCL7, CCL8) in subcluster 6. 

  

 

 

 



12 

 

 

Figure S11. Trajectory analysis shows the distribution of each glioma cluster, 

respectively. 
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Figure S12. The pathway enrichment status of GBM cluster 6. (A) Gene set 

enrichment analysis (GSEA) shows functional enrichment in GBM cluster 6. (B)-(C) 

CEBPB-regulons and ETV-regulons enriched expression pattern on binary regulon 

activity are shown. 
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Figure S13. CEBPB promotes malignant progression of GBM cells in vitro. (A) 

Relative mRNA expression of CEBPB in GBM cells (U251 and A1207) transduced 

with non-targeting shRNA (shNT) or CEBPB shRNA (shCEBPB) through lentiviral 

infection. Data are represented as means ± s.e.m. n = 3 independent experiments. **p 

< 0.01, ***p < 0.001. Statistical significance was determined by one-way ANOVA 

analysis. (B)-(C) Cell viability assay of GBM cells transduced with shNT or shCEBPB. 

n = 6 (U251) or n = 6 (A1207) biological independent samples. Data are shown as 

means ± s.e.m.***p < 0.001, two-way ANOVA analysis followed by Tukey’s multiple 

test. (D) qPCR was used to detect the expression of M1 markers (iNOS, TNFα and 

CD80) in monocytes treated with 100ng/ml PMA and GBM CM for 72 h. Data are 

represented as means ± s.e.m. n = 3 independent experiments. *p < 0.05, ns: p > 0.05. 

(E)-(G) Left, representative images on day 14, 21, 28, 35 post transplantation are shown; 

bioluminescence is measured in p/s/cm2/sr. Middle, quantification of relative luciferase 

signals during 35 days. U251: shNT (n = 8), shCEBPB-97 (n = 9), shCEBPB-99 (n = 

9); Data are represented as means ± s.e.m. *p < 0.05, one-way ANOVA with Tukey’s 

method for multiple comparisons. Right, Kaplan–Meier survival curves of mice bearing 

U251-derived xenografts expressing shNT or shCEBPB. ***p < 0.001, log-rank test. 

U251: shNT (n = 10), shCEBPB-97 (n = 10), shCEBPB-99 (n = 10). 
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Figure S14. Cell communication between M2 TAMs and different glioma cluster. 

(A) All the significant ligand-receptor pairs that contribute to the signaling sending 

from 13 glioma clusters to M2 TAMs. The dot color and size represent the calculated 

communication probability and p-values. p-values are computed from one-sided 

permutation test. (B) The inferred SPP1 – CD44, SPP1 - (ITGAV+ITGB5), SPP1 - 

(ITGA4+ITGB1) and SPP1 - (ITGA4+ITGB1) interaction network. Circle sizes are 

proportional to the number of cells in each cell cluster and edge width represents the 

communication probability. (C) The expression distribution of SPP1 in non-tumor cells. 

(D) The inferred ANNEXIN signaling pathway network. (E) The expression 

distribution of ANXA1 on t-SNE coordinates (left) and their expression in various 

glioma clusters (right). (F) The violin plot displays the expression of CSF1, CXCL8, 

and POSTN, which have been reported to induce M2 polarization in macrophages, 

across 13 glioma subclusters. 
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Figure S15. Patient information from the database. (A) The ELISA standard curve 

of SPP1. (B) Immunoblot analysis of M2 macrophages markers (CD206, CD163 and 

ARG1) and Akt phosphorylation (Ser473) in monocytes (U937 cells) treated with 100 

ng/ml PMA and 200 ng/ml rSPP1 protein for 72 h. Akt and α-tubulin were blotted as 

the loading control. (C) ELISA was used to measure the inhibitory effects of different 

concentrations of ASK8007 on SPP1. (D) Patient screening criteria for the survival 

analysis in CGGA and Gravendeel databases. (E) Classification criteria for the patients 

in public databases. Patients with gene expression levels greater than the mean + SEM 

were classified as the high group, while those with levels lower than the mean - SEM 

were classified as the low group. Patients who are both in the CEBPBhigh group and the 

SPP1high group are classified as the CEBPB-SPP1high group. Similarly, those who are 

both in the CEBPBlow group and the SPP1low group are classified as the CEBPB-SPP1low 

group. The grouping for Integrin αvβ1 follows the same criteria as mentioned above.  
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Figure S16. Representative magnified images from multiplex immunofluorescence 

show the relative cell number of SPP1+ Integrin avβ1+ CD163+ P-Akt+ M2 TAMs 

in GBM727. 
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Supplementary tables 

Table S1. RNAi sequence 

Gene 

Symbol 

Sequence 

Sense (5'-3') Antisense (5'-3') 

Hs-ITGAV-

si-1 
GACAAACUCACUCCAAUUAdTdT UAAUUGGAGUGAGUUUGUCdTdT 

Hs-ITGAV-

si-2 
GAUCGAGCUAUCUUAUACAdTdT UGUAUAAGAUAGCUCGAUCdTdT 

Hs-ITGB1-

si-1 
GGAACCCUUGCACAAGUGAdTdT UCACUUGUGCAAGGGUUCCdTdT 

Hs-ITGB1-

si-2 
GGAUAUUACUCAGAUCCAAdTdT UUGGAUCUGAGUAAUAUCCdTdT 

 

Table S2. scRNA_13_giloma_cluster_allmarkergene 

This table is too large to be presented here. Therefore, please refer to the separate Table 

S2 for detailed information. 

 

Table S3. C6 interacts with macrophages 

source target ligand receptor prob pval interaction_name 

C6 M2 ANXA1 FPR1 0.095979946 0 ANXA1 - FPR1 

C6 M2 SPP1 ITGAV_ITGB1 0.088686273 0 SPP1 - 

(ITGAV+ITGB1) 

C6 M0 C3 ITGAX_ITGB2 0.087813966 0 C3 - (ITGAX+ITGB2) 

C6 M0 C3 C3AR1 0.087707451 0 C3 - C3AR1 

C6 M2 C3 ITGAX_ITGB2 0.079967038 0 C3 - (ITGAX+ITGB2) 

C6 M2 C3 C3AR1 0.063869734 0 C3 - C3AR1 

C6 M2 SPP1 ITGAV_ITGB5 0.057493575 0 SPP1 - 

(ITGAV+ITGB5) 

C6 M2 MDK LRP1 0.049939893 0 MDK - LRP1 

C6 M2 SPP1 CD44 0.045254967 0 SPP1 - CD44 

C6 M2 C3 ITGAM_ITGB2 0.04457857 0 C3 - (ITGAM+ITGB2) 

C6 M2 SPP1 ITGA5_ITGB1 0.038178321 0 SPP1 - (ITGA5+ITGB1) 

C6 M0 C3 ITGAM_ITGB2 0.031103896 0 C3 - (ITGAM+ITGB2) 

C6 M2 SPP1 ITGA4_ITGB1 0.01874675 0 SPP1 - (ITGA4+ITGB1) 

C6 M2 CSF1 CSF1R 0.015606687 0 CSF1 - CSF1R 

C6 M2 NAMPT ITGA5_ITGB1 0.013985613 0 NAMPT - 

(ITGA5+ITGB1) 

C6 M0 ANGPTL2 TLR4 0.007080792 0 ANGPTL2 - TLR4 

C6 M2 MDK ITGA6_ITGB1 0.006209335 0 MDK - 

(ITGA6+ITGB1) 
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C6 M0 PROS1 AXL 0.006027493 0 PROS1 - AXL 

C6 M2 MDK ITGA4_ITGB1 0.005436138 0 MDK - 

(ITGA4+ITGB1) 

C6 M2 LGALS9 PTPRC 0.003993861 0 LGALS9 - CD45 

C6 M2 PROS1 AXL 0.00384002 0 PROS1 - AXL 

C6 M0 LGALS9 HAVCR2 0.003303798 0.02 LGALS9 - HAVCR2 

C6 M0 RARRES2 CMKLR1 0.002953039 0 RARRES2 - CMKLR1 

C6 M2 ANGPTL2 TLR4 0.002777832 0 ANGPTL2 - TLR4 

C6 M0 GAS6 AXL 0.002728528 0 GAS6 - AXL 

C6 M2 LGALS9 HAVCR2 0.002252528 0 LGALS9 - HAVCR2 

C6 M0 GAS6 MERTK 0.002188856 0 GAS6 - MERTK 

C6 M2 ANGPTL2 ITGA5_ITGB1 0.002071452 0 ANGPTL2 - 

(ITGA5+ITGB1) 

C6 M2 GAS6 AXL 0.001736863 0 GAS6 - AXL 

C6 M2 GAS6 MERTK 0.001215757 0 GAS6 - MERTK 

C6 M2 IL16 CD4 0.001076989 0 IL16 - CD4 

C6 M2 NAMPT INSR 0.0008065 0 NAMPT - INSR 

C6 M2 LGALS9 CD44 0.000672032 0 LGALS9 - CD44 

C6 M2 GDF15 TGFBR2 0.000640687 0 GDF15 - TGFBR2 

C6 M2 TGFB3 TGFbR1_R2 0.000539678 0 TGFB3 - 

(TGFBR1+TGFBR2) 

C6 M0 GDF15 TGFBR2 0.00052361 0 GDF15 - TGFBR2 

C6 M0 CX3CL1 CX3CR1 0.000442944 0 CX3CL1 - CX3CR1 

C6 M0 TGFB3 TGFbR1_R2 0.000421211 0 TGFB3 - 

(TGFBR1+TGFBR2) 

C6 M2 CX3CL1 CX3CR1 0.000329473 0 CX3CL1 - CX3CR1 

C6 M2 ANGPTL2 LILRB3 0.000322107 0 ANGPTL2 - PIRB 

C6 M2 RARRES2 CMKLR1 0.000304666 0 RARRES2 - CMKLR1 

C6 M2 SEMA3A NRP1_PLXNA1 0.000237792 0 SEMA3A - 

(NRP1+PLXNA1) 

C6 M2 OSM LIFR_IL6ST 0.000179623 0 OSM - (LIFR+IL6ST) 

C6 M2 POSTN ITGAV_ITGB5 0.0000869 0 POSTN - 

(ITGAV+ITGB5) 

C6 M2 TGFB1 TGFbR1_R2 0.0000412 0 TGFB1 - 

(TGFBR1+TGFBR2) 

C6 M0 FGF1 FGFR2 3.09E-05 0 FGF1 - FGFR2 

C6 M0 FGF2 FGFR2 1.64E-05 0 FGF2 - FGFR2 

C6 M0 POSTN ITGAV_ITGB5 1.57E-05 0 POSTN - 

(ITGAV+ITGB5) 
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Supplementary method 

scRNA-seq data process 

The scRNA-seq data of GSE117891 were explored using the R package Seurat (version 

4.0.5). The first step was to filter out low quality cells with a cutoff value of less than 

200 total feature RNA and genes that were expressed in less than three cells. Ultimately, 

we obtained 6,148 high-quality cells for downstream analysis. To reduce dimensions, 

principal component analysis (PCA) was performed (npcs = 30) and followed by t-

distributed stochastic neighbor embedding (tSNE) algorithms (dims = 1:10). Then, 20 

cell clusters were found in the first place after applying the FindNeighbors and 

FindClusters functions. The resolution parameter in the find clusters procedure was set 

to 1.0 by multiple trial and observation. The genes differentially expressed (DE) in each 

cluster were identified using FindAllMarkers function (only.pos = TRUE, min.pct = 

0.25 and logfc.threshold = 0.5). For these cells, we use a t-test between each of 2 groups 

of cells; genes that met the condition of log2FC > 1 and p value < 0.01 were kept as 

significant DE genes. Then, we manually annotated each cell cluster based on marker 

genes specific to each cluster. 2587 immune cells (immune cluster) and 3312 glioma 

cells (glioma cluster, T-Cilium cluster, proliferation cluster) were further divided into 

10 subclusters (resolution = 0.3) and 13 clusters (resolution = 0.5), respectively. 

Signature scores of cells were performed with AddModuleScore function. 

 

Spatial transcriptomics data processing 

The spatial transcriptomic (ST) data of glioma were analyzed in R using the Seurat 4.0 

package according to the recommended data processing guidelines 

(https://satijalab.org/seurat/articles/spatial_vignette.html). In summary, we performed 

data normalization using the SCTranform function, followed by dimensionality 

reduction with PCA and tSNE algorithms. Clustering was then performed using the 

default resolution of the first 30 principal components. Then, we employed the MIA 

method to perform joint analysis of the scRNA-seq data and spatial transcriptomics data. 
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Multimodal intersection analysis (MIA) 

To integrate the scRNA-seq and spatial transcriptomic (ST) datasets, we employed the 

MIA approach. This involved identifying sets of genes specific to each cell cluster and 

tissue region, and then measuring the degree of their overlap to determine enrichment 

or depletion beyond what is expected by chance. We assessed the significance of the 

overlap between the ST genes and cell cluster marker genes by calculating the p value 

using the hypergeometric cumulative distribution, with all genes serving as the 

background. Additionally, we determined the degree of cell cluster depletion by 

computing -log10(1-p). In this study, there are the parameters for selecting differentially 

expressed genes from single-cell sequencing: scRNA_marker = scRNA _marker %>% 

filter (p_val_adj < 1e-05), scRNA_marker$d = scRNA_marker$pct.1 - 

scRNA_marker$pct.2, scRNA_marker = scRNA_marker %>% filter (d > 0.2), 

scRNA_marker = scRNA_marker %>% arrange (cluster,desc(avg_log2FC)) and 

spatial transcriptomic: region_marker = region_marker %>% filter (p_val_adj < 0.01), 

region_marker$d = region_marker$pct.1 - region_marker$pct.2, region_marker = 

region_marker %>% filter(d > 0.05), region_marker = region_marker %>% 

arrange(cluster,desc(avg_log2FC)). 

 

Inferring CNV from single-Cell sequencing data 

In order to differentiate malignant cells from normal cells, we utilized the R package 

inferCNV (version 1.8.0) to estimate copy number variation (CNV). Genes with low 

expression, defined as expression in less than 10 cells and a median expression value 

below 0.1, were filtered out. Initial CNVs for each region were estimated by inferCNV. 

We estimated the CNV for all cell clusters based on expression levels derived from 

single-cell sequencing data. The parameters used were --cutoff 0 and –noise_filter 0.2. 

To analyze gene expression within each sample, we standardized the expression values 

of cells and restricted them to a range of -1 to 1. The CNV score for each cell was then 

calculated as the quadratic sum of CNV regions. 
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Single-cell trajectory analysis 

Data collected from Seurat can be easily imported into R package Monocle (version 

2.20.0). The R package Monocle was applied to estimate the developmental pseudotime 

of all glioma cells. Initially, we filtered out genes with expression levels below 0.5 and 

those expressed in fewer than 200 cells. Using highly variable genes with a p value of 

1e-40, we reordered the dataset according to different gene expression patterns. 

Subsequently, we utilized the DDRtree algorithm for dimensional reduction. Finally, 

we conducted pseudotime analysis to identify significant genes and their trajectories. 

Moreover, we employed the Branch Expression Analysis Modeling (BEAM) test to 

identify differential expression levels at a branch-specific level. Furthermore, we 

estimated the unsupervised inference of developmental directions of tumor cells using 

the VECTOR algorithm. In summary, we treated all tSNE dimensions related to tumor 

cells as an image, which was then divided into pixels. We generated the largest 

connected pixel network by linking adjacent pixels in the tSNE plot to infer the 

developmental direction. 

 

SCENIC 

Activated regulons in different tumor clusters were identified using R package SCENIC 

(version 1.3.1). Firstly, we input the expression matrix from single-cell sequencing, 

along with the corresponding transcription factor database of human 

(https://resources.aertslab.org/cistarget/). We used the GENIE3 algorithm with the 

following parameters: treeMethod = "RF", K = "sqrt", and nTrees = 1000, to calculate 

co-expression activity based on the raw count matrix input, using Spearman correlation. 

The filtered target genes were subsequently analyzed for motif enrichment using 

RcisTarget. To estimate regulatory activity scores for gene motifs located within 500 bp 

upstream and 10 kb around the TSS, we used an AUCell with a Wilcoxon rank-sum test. 

Last, important regulons modulated by key TFs were identified. 
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Predicting intercellular communication 

To investigate the potential cell-cell communication in our single-cell transcriptomic 

data, we utilized the Cellchat (version 1.5.0) package, which is a computational tool for 

predicting and analyzing ligand-receptor interactions between different clusters. We 

performed ligand-receptor interaction analysis on all glioma cells and M2 macrophages 

using the CellChat package with default parameters. We used the CellChatDB.human 

database for ligand-receptor interaction analysis. The output of the analysis included a 

list of potential ligand-receptor pairs between glioma cells and M2 macrophages, as 

well as statistical significance scores for each interaction. We considered ligand-

receptor pairs with a p < 0.05 to be statistically significant in our analysis. 

 

Gene set enrichment analysis GSEA and pathway analysis 

We conducted GSEA (Gene Set Enrichment Analysis) and pathway enrichment analysis 

on the top 200 marker genes in cluster 6, as well as the top 200 genes obtained using 

the differentialGeneTest function in Monocle using R package clusterProfiler (version 

4.0.5) and David (https://david.ncifcrf.gov/). Gene signatures from Hallmark, GO and 

KEGG datasets were used as inputs to evaluate the pathway activity of different clusters. 

In single-cell sequencing, pathway signature scores were calculated using the 

AddModuleScore function. 

 

Immune cell infiltration proportions in bulk-RNA level 

To investigate the degree of immune cell infiltration in our bulk RNA sequencing data, 

we utilized the CIBERSORT function in R, which is a commonly used computational 

method for immune cell profiling. CIBERSORT uses gene expression data to predict 

the proportions of different immune cell types in a sample based on a pre-defined 

reference gene expression signature matrix. This allowed us to quantify the abundance 

of 22 distinct immune cell types within each sample. To perform the CIBERSORT 

analysis, we first preprocessed our raw RNA sequencing data and obtained gene 

expression profiles for each sample. We then ran the CIBERSORT algorithm using the 
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default parameters and the LM22 signature matrix, which was developed based on the 

gene expression profiles of purified immune cells. The output of the analysis included 

the predicted proportions of each immune cell type in each sample, as well as a 

CIBERSORT p value, which indicated the confidence level of the prediction. To ensure 

the accuracy of our results, we only included samples with a CIBERSORT p < 0.05 in 

our downstream analysis. 

 

Survival analysis 

We obtained glioma expression data from both the TCGA and Rembrandt datasets, 

which were accessed through the Gliovis platform. The expression of each gene is 

formatted as Log2(TPM+1) scale with or without normalization. We performed survival 

analysis using the survival (version 3.2) package in R, fitting Kaplan-Meier survival 

curves with 50-50 percentiles. To visualize the survival plots, we utilized the ggsurvplot 

function from the survminer (version 0.4.9) package. 

 

Correlation analysis 

After downloading the expression data from GlioVis for the 20 different databases, we 

performed a Pearson correlation test between the expression levels of CEBPB and SPP1, 

across the different databases. If the Spearman correlation coefficient r < 0.4 and the p 

< 0.01, we considered the expression levels of CEBPB and SPP1 to be positively 

correlated in the database. 

 

 

 


