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Abstract 

Background: Pyroptosis plays a crucial role in immune responses. However, the effects of pyroptosis on 
tumor microenvironment remodeling and immunotherapy in gastric cancer (GC) remain unclear. 
Patients and Methods: Large-sample GEO data (GSE15459, GSE54129, and GSE62254) were used to 
explore the immunoregulatory roles of pyroptosis. TCGA cohort was used to elucidate multiple molecular 
events associated with pyroptosis, and a pyroptosis risk score (PRS) was constructed. The prognostic 
performance of the PRS was validated using postoperative GC samples from three public databases (n=925) 
and four independent Chinese medical cohorts (n=978). Single-cell sequencing and multiplex 
immunofluorescence were used to elucidate the immune cell infiltration landscape associated with PRS. 
Patients with GC who received neoadjuvant immunotherapy (n=48) and those with GC who received 
neoadjuvant chemotherapy (n=49) were enrolled to explore the value of PRS in neoadjuvant immunotherapy.  
Results: GC pyroptosis participates in immune activation in the tumor microenvironment and plays a powerful 
role in immune regulation. PRS, composed of four pyroptosis-related differentially expressed genes (BATF2, 
PTPRJ, RGS1, and VCAN), is a reliable and independent biomarker for GC. PRSlow is associated with an activated 
pyroptosis pathway and greater infiltration of anti-tumor immune cells, including more effector and CD4+ T 
cells, and with the polarization of tumor-associated macrophages in the tumor center. Importantly, PRSlow 
marks the effectiveness of neoadjuvant immunotherapy and enables screening of GC patients with combined 
positive score ≥1 who benefit from neoadjuvant immunotherapy.  
Conclusion: Our study demonstrated that pyroptosis activates immune processes in the tumor 
microenvironment. A low PRS correlates with enhanced infiltration of anti-tumor immune cells at the tumor 
site, increased pyroptotic activity, and improved patient outcomes. The constructed PRS can be used as an 
effective quantitative tool for pyroptosis analysis to guide more effective immunotherapeutic strategies for 
patients with GC. 
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Introduction 
In recent years, we have entered a new era of 

using immunotherapy to treat advanced gastric 
cancer (GC), and PD-1 checkpoint blockade has 
gradually become the first-line treatment for GC [1]. 
Despite the advantages of this treatment over 
previous treatments, many patients do not respond to 
anti-PD-1 therapy. Combination therapies and 
screening of specific populations for benefits are now 
becoming more common means of overcoming factors 
such as the immune evasion of tumors. In the latest 
NEONIPIGA phase II clinical trial, nivolumab 
combined with ipilimumab neoadjuvant chemo-
therapy was found to be feasible and had a high pCR 
rate [2]. The Checkmate-649 trial established the 
importance of immunotherapy in advanced GC, and 
the nivolumab plus chemotherapy group showed a 
significant improvement in overall survival [3]. 
Multiple combination regimens and screening of 
specific patients (e.g., those with a combined positive 
score [CPS]≥5) have shown significant advantages for 
patients receiving immunotherapy [4]. However, the 
potential audience for immunotherapy remains 
limited [5]. It is still necessary to further explore the 
population that can benefit from immunotherapy, and 
it is crucial to clarify the key pathways that limit 
anti-tumor immunity. 

A major contributing factor to the limited 
efficacy of anti-tumor immunotherapy is the paucity 
of tumor-infiltrating lymphocytes (TILs) in the tumor 
microenvironment (TME) [6]. The ability to convert 
immune “cold” tumors into “hot” tumors, which are 
more amenable to immunotherapy, represents a 
significant breakthrough in cancer treatment [7]. In 
recent years, inducing necroptosis and/or pyroptosis 
in a tumor-specific manner has profoundly impacted 
the tumor immune microenvironment and response 
to immunotherapy [8]. However, the potential of 
pyroptosis in enhancing anti-tumor immunity in GC 
needs to be further explored.  

Recently, pyroptosis has been widely studied as 
a mechanism of inflammatory cell death in cancer 
immunotherapy [8]. Using a biorthogonal system to 
induce GSDME-mediated pyroptosis, Wang et al. 
applied the system to tumor cells and showed that 
pyroptosis-induced inflammation could elicit robust 
anti-tumor immunity and act synergistically with 
PD-1 inhibitors [9]. Lu et al. designed a novel 
NK-tailored chimeric costimulatory switching 
receptor containing PD-1 to convert inhibitory 
PD-1/PD-L1 signals into activating signals, thereby 
effectively enhancing the anti-tumor activity against 
lung cancer cells by triggering pyroptosis [10]. In 
addition, GSDMD in antigen-presenting cells 
suppressed the ability of macrophages and DCs to 

present tumor-associated antigens during PD-L1 
inhibition and suppressed cytotoxic CD8+ T cell 
anti-tumor responses [11]. Therefore, comprehensive 
studies on pyroptosis will enhance our understanding 
of how to develop successful immunotherapy 
strategies for GC in clinical settings when optimizing 
combination regimens. 

In this study, we explored the immunomodu-
latory effects and multiple molecular events involved 
in pyroptosis and constructed a pyroptosis risk score 
(PRS). We validated the ability of the PRS stability to 
predict the prognosis of patients with GC at multiple 
medical centers. Single-cell sequencing and multiplex 
immunofluorescence were used to elucidate the 
immune cell infiltration landscape. The PRSlow is a 
marker of the effectiveness of immunotherapy and 
can be used to screen patients with GC who will 
benefit from neoadjuvant immunotherapy. Our study 
elucidated the immunoregulatory role of pyroptosis 
in the TME and identified the PRS as a useful 
quantitative tool for pyroptosis analysis to guide 
surgeons in selecting more effective immunotherapy 
strategies for patients with GC. 

Results 
The overall design of this study  

Figure 1 illustrates the flow chart of this study. 
Figure S1 illustrates the inclusion and exclusion 
criteria for the clinical GC patient samples. In this 
study, we utilized large-sample GEO data (GSE15459, 
GSE54129, and GSE62254) to investigate the immuno-
regulatory role of pyroptosis. The Cancer Genome 
Atlas (TCGA) cohort was used to elucidate immune 
regulation and multiple molecular events involved in 
pyroptosis, and to constructed a pyroptosis risk score 
(PRS). The involvement of pyroptosis and immune 
regulation was confirmed by analyzing transcriptome 
and whole-exome sequencing data obtained from our 
center, as reflected by the PRS. The prognostic 
performance of the PRS was validated using 
postoperative GC samples from three public 
databases (n = 925) and four independent Chinese 
medical cohorts (n = 978). Single-cell sequencing and 
multiplex immunofluorescence techniques were 
employed to elucidate the immune infiltration 
landscape associated with PRS. Patients with GC who 
received neoadjuvant immunotherapy (n = 48) and 
those who received neoadjuvant chemotherapy (n = 
49) were enrolled to explore the predictive value of 
the PRS in neoadjuvant immunotherapy. 

Pyroptosis plays an immune regulation role in 
GC tumor microenvironment 

In this exploratory study, we used a series of 
pyroptosis-related genes that play key roles in GC to 
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construct a model describing the degree of pyroptosis 
(Figure S2-S3, see “Construction of pyroptosis 
regulator phenotypes” in the Methods section). We 
collected a large sample of multicenter transcriptome 
data for comprehensive evaluation (N=603 cases), and 
the batch effect was corrected (Figure S4A-C). Three 
distinct pyroptosis patterns were identified by 
unsupervised clustering based on pyroptosis-related 
genes, and the clusters were well distinguished 
(Figure S4D-G). Most of the pyroptosis-related genes 
were associated with a good prognosis in patients 
with GC, and these genes were significantly enriched 
in Cluster A, which we defined as the high-pyroptosis 
group, followed by Cluster B (medium-pyroptosis 
group) and Cluster C (low-pyroptosis group) (Figure 
S5A-B). Survival analysis showed that the high 
pyroptosis group had a good prognosis for patients 
with GC, whereas the low pyroptosis group had the 
worst prognosis (Figure S5C-D).  

Different calculation methods were used to 
estimate the levels of immune cell infiltration 
associated with different degrees of pyroptosis 
(Figure 2A). The results of multiple analysis showed 
that the high-pyroptosis group could be interpreted as 
immune “hot” tumors, related to the high infiltration 
of a variety of immune cells with anti-tumor activity, 
such as T, CD4+T, CD8+T, and NK cells, and were 
labeled as “immune activated” TIDE, IPS, ESTIMATE, 
and other algorithms (Figure 2A). In contrast, the low 
pyroptosis group was associated with an 
“immunosuppressive pattern” and with “low 

dysfunction” and “high immune rejection scores” 
according to the TIDE algorithm (Figure 2A). 
Furthermore, we identified the secretory factors in 
subgroups with different degrees of pyroptosis. The 
results revealed that the high-pyroptosis group 
exhibited elevated expression levels of immune 
checkpoint- and activation-related factors, which play 
important roles in immune regulation in the TME 
(Figure S6A). Moreover, we utilized the TIP algorithm 
to visualize the anti-tumor immune status during 
pyroptosis. The results revealed that the high- 
pyroptosis group exhibited a stronger anti-tumor 
immune state, which facilitated the recruitment of 
anti-tumor immune cells (Figure 2B). Gene set 
expression analysis (GSEA) revealed that the high 
pyroptosis group exhibited enriched immune 
inflammatory response signals and activation of the 
pyroptosis pathway (Figure S6B). Gene set variation 
analysis (GSVA) revealed that the high-pyroptosis 
group was significantly enriched in a series of 
signaling pathways related to the anti-tumor immune 
response (Figure S7A). Both Gene Ontology (GO) 
enrichment and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses revealed that the 
differentially expressed genes were enriched in 
various immune response-related pathways (Figure 
S7B-C). In addition, the abundance of a variety of 
immune-infiltrating cells increased with the degree of 
pyroptosis, as revealed by single-sample gene set 
expression analysis (ssGSEA) of immune cell markers 
(Figure S7D).  

 

 
Figure 1. The overall design of the study. GC, gastric cancer; DEGs, differentially expressed genes; IHC, immunohistochemistry; mIHC, multiplex immunohistochemistry 
staining; PRS, pyroptosis risk score. 
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In summary, using multiple algorithms, we 
demonstrated that pyroptosis plays a key immune 
regulatory role in the TME of GC, indicating that 
pyroptosis may guide immunotherapeutic strategies 
in patients with GC. 

Multi-omics and immune landscape of 
pyroptosis 

Since TCGA database provides large omics data, 
we continued to explore the multi-omics events 
associated with different levels of pyroptosis. To 
calculate the degree of pyroptosis in each sample, we 
determined the PyScore for each sample based on the 
mRNA expression levels of 24 pyroptosis-related 
genes using principal component analysis (PCA) 
method (orthogonal rotation) [12]. (Figure S8A; see 
“Quantification of the degree of pyroptosis” in the 
Methods section for details). The PyScore strongly 
correlated with the degree of pyroptosis according to 
the expression of pyroptosis-related genes and the 
pyroptosis signaling pathway from the Reactome 
pathway database (Figure S8B-D). The PyScore was 
significantly different among the three pyroptosis 
degrees and was positively correlated with most of 
the pyroptosis-related genes (Figure S8E-F). 
Therefore, construction of the PyScore is convenient 
for accurately reflecting the degree of pyroptosis in 
each patient.  

The population was divided into high- and 
low-pyroptosis groups according to the median 
PyScore. The expression of pyroptosis-related genes 
increased with an increase in the PyScore (Figure 2C). 
We identified the molecular events most likely 
involved in the regulation of pyroptosis, including a 
series of differentially expressed lncRNAs, 
protein-coding RNAs, miRNAs, methylation of CpG 
sites, and genes in methylated regions (Figure 2C). All 
the differential results are presented in 
Supplementary File 1. The top 10 molecular events 
with the most significant differences in each group are 
marked in the heatmap (Figure 2C). We found that the 
TTN mutation was the most frequent in the high 
pyroptosis group (51%), and the frequency of the 
TP53 mutation was the highest in the low pyroptosis 
group (47%) (Figure S9A-B). The tumor mutation 
burden (TMB) was higher in the high-pyroptosis 
group (Figure S9C, Figure S10A-B), and the 
mutant-allele tumor heterogeneity (MATH) was 
higher in the low-pyroptosis group (Figure S9D), 
indicating the susceptibility of high pyroptosis to both 
immunotherapy and targeted therapy. We further 
investigated the association between the degree of cell 
pyroptosis and the microsatellite instability (MSI) 
score, sourced from the cBioPortal database (N = 375). 
The results indicated no significant difference in the 

MSI scores between the two groups (Figure S9E). We 
compared the composite copy number distribution 
and frequency between the high- and low-pyroptosis 
groups by using the R package “maftools” (Figure 
S9F). Our analysis revealed a range of genomic 
changes involved in pyroptosis. 

Next, we validated the immunomodulatory role 
of pyroptosis in the TME using TCGA data. We 
acquired HE staining data from the TCGA-STAD to 
evaluate the histopathological architecture of GC with 
varying degrees of pyroptosis (Figure 2D). GC tissue 
sections exhibiting high levels of pyroptosis 
(PyScore=1.750) displayed tertiary lymphoid 
structures. In contrast, this landscape was not 
observed in gastric sections with low pyroptosis 
(PyScore=-2.192) (Figure 2D). The number of 
tumor-infiltrating lymphocytes significantly increased 
in GC tissue sections with high pyroptosis 
(PyScore=10.449) (Figure 2E). The deep learning 
technology utilized by Joel et al. enabled the 
identification of tumor-infiltrating lymphocyte data in 
HE pathological images [13]. The histopathological 
sections confirmed a higher infiltration rate of 
immune cells in the high pyroptosis group (Figure 
2E). The extent of pyroptosis positively modulated the 
infiltration of multiple immune cells and exhibited a 
significant positive correlation with the expression of 
various immune checkpoints in GC (Figure S11A-B). 
Multiple enrichment analyses showed that pyroptosis 
was involved in the enrichment of multiple pathways 
related to immune regulation, including the MHC 
antigen presentation response, cytotoxicity, TCR 
signaling, and cell death (Figure S11C-E). These 
findings indicate a robust positive correlation 
between pyroptosis and immune cell infiltration. 

To validate these results, we performed 
transcriptome and whole-exome sequencing of 60 GC 
samples obtained from our center. The PyScore was 
associated with the degree of pyroptosis, with higher 
expression levels of pyroptosis-related genes in the 
high-PyScore group (Figure S12A). We identified the 
differentially expressed lncRNAs and protein-coding 
RNAs between the two groups. The differentially 
expressed genes, which were consistent with the 
previous TCGA cohort, were identified and are 
highlighted in Figure S12A (see Supplementary File 2 
for details). Multiple enrichment analysis showed that 
pyroptosis was enriched in a series of immune 
activation pathways (Figure S12B). Furthermore, 
whole-exome sequencing results revealed that 7q21.2, 
8p23.1, and 11q13.3 exhibited a similar amplification 
pattern in the high pyroptosis group, as previously 
identified in TCGA data. A comparable trend was 
observed at 3q26.2 in the low pyroptosis group 
(Figure S12C). 
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Figure 2. Comprehensive analysis of gastric cancer cell pyroptosis on the characteristics of the tumor microenvironment and the establishment of 
pyroptosis risk score (PRS). (A) Integrated heatmap showed the frequency and immunoscore of the tumor microenvironment (TME)-infiltrating cells in the three pyroptosis 
phenotypes. (B) The Tracking Tumor Immunophenotype (TIP) algorithm was used to visualize the anti-tumor immune status of pyroptosis using an integrated heatmap. (C) The 
comprehensive heatmap showed the differential molecular events related to different degrees of pyroptosis in TCGA-STAD, including long noncoding RNA (lncRNA), 
protein-coding RNA expression, microRNA (miRNA) expression, methylated CpG sites, and differentially expressed genes in methylated regions. (D) Representative images of 
pathological hematoxylin & eosin (HE) staining of high- and low-degree pyroptosis. (E) Deep learning was used to identify the data of tumor-infiltrating lymphocytes from the HE 
pathological images of The Cancer Genome Atlas stomach adenocarcinoma (TCGA-STAD). (F) Least absolute shrinkage and selection operator (LASSO) Cox regression were 
used to determine the optimal lambda and corresponding coefficients of the four indicators. (G) The heatmap showed the expression of four key genes in the PRS in 
TCGA-STAD. (H) The stepwise multivariate Cox proportional regression risk application model was used to obtain the risk score of each patient with gastric cancer in TCGA, 
and the patients were classified according to the median. *, p <0.05; **, p <0.01; ***, p <0.001. 

 
In summary, our results strongly confirm the 

immunomodulatory role of pyroptosis in the TME 
and elucidate the large omics data related to 
pyroptosis. 

Construction of pyroptosis risk score based on 
pyroptosis phenotype 

Given that pyroptosis is co-mediated by 
multi-molecular events, we next aim to explore 
whether it is possible to construct a convenient model 

for the clinical application of pyroptosis. We used a 
mulberry diagram to show the relationship between 
pyroptosis and the TCGA-STAD molecular 
classification (N=295) [14], TNM stage, and 
pathological stage (Figure S13A). Based on an analysis 
of the four molecular subtypes of GC, it was found 
that the proportion of the chromosomal instability 
(CIN) subtype was relatively higher in the low 
pyroptosis group (Figure S13B). The MSI and EBV 
types accounted for a relatively high proportion of the 
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high pyroptosis group (Figure S13B). Among the four 
molecular subtypes, the EBV subtype showed the 
highest pyroptosis (Figure S13B). In addition, there 
was no significant correlation between the degree of 
pyroptosis and histological grade or TNM stage 
(Figure S13C). Survival analysis showed that high 
pyroptosis was associated with better prognosis 
(Figure S13D). Using the R package “pRRophetic”, we 
have identified that the group exhibiting a high 
degree of pyroptosis displays increased sensitivity to 
chemotherapeutic agents such as cisplatin and 
paclitaxel (Figure S14A). However, Submap analysis 
showed that only the low-pyroptosis group was 
significantly correlated with a lack of response to 
chemotherapy (Figure S14B). In addition, there was 
no significant difference in the benefit of 
postoperative chemotherapy between the two groups 
when the postoperative chemotherapy information 
was combined (Figure S14C). This indicates that the 
use of pyroptosis to guide clinical diagnosis and 
treatment remains insufficient. The observed 
correlation between pyroptosis and tumor immunity 
necessitates the development of novel clinical 
diagnostic and therapeutic approaches that 
specifically target pyroptosis. 

We investigated the pivotal genes involved in 
pyroptosis that impact the prognosis of GC via 
immunity and utilized them to construct a model 
capable of effectively and efficiently assessing the 
diagnosis and treatment of GC. Therefore, key 
differentially expressed genes between the high- and 
low-pyroptosis groups were screened and then 
entered into the LASSO-Cox regression to generate 
prediction models (see “Construction of the PRS” in 
the Methods section for details). Ultimately, the best 
model included four genes (PTPRJ, BATF2, RGS1, and 
VCAN) that were significantly associated with 
prognosis and constituted the PRS (Figure 2F, Figures 
S15A-B). All four risk-related genes played key roles 
in pyroptosis (Figure 2G-H). Patients exhibiting high 
pyroptosis levels were partially categorized into the 
PRSlow group, whereas those with low pyroptosis 
levels were partially categorized into the PRShigh 
group (Figure S15C). Figure S15D elucidated the 
reliable predictive capability of the PRS for the 
prognosis of patients with GC in TCGA cohort. The 
PRS had a positive effect on the prognosis of patients 
with GC (Figure S15E-F). PCA showed that the PRS 
could distinguish the entire GC patient population 
(Figure S15G). The correlation plots demonstrated the 
associations among PTPRJ, BATF2, RGS1, and VCAN 
expression levels and the PRS (Figure S15H). We 
further developed a nomogram of six readily 
available clinical features to guide the individualized 
management of patients with GC (Figure S15I). Next, 

we comprehensively explored the clinical significance 
and immune landscape of the PRS in patients with 
GC. 

Validation of prognostic efficacy and clinical 
features of PRS 

To further validate the prognostic value of the 
PRS in GC, we explored its prognostic value in three 
public databases and a large number of samples from 
four Chinese medical cohorts. First, our analysis of the 
GC datasets demonstrated the ability of the PRS to 
effectively prognosticate patients with GC (Figure 
S16A). The PRS was an independent prognostic factor 
for patients with GC in univariate and multivariate 
Cox regression analyses (Figure S16B). Subsequently, 
we examined the prognostic potential of the PRS 
using immunohistochemistry (IHC) of postoperative 
specimens from the five medical cohorts (Figure 3 and 
S17, Table S1-5). They included two medical cohorts 
from our center, Northeast China, Central China, and 
Southwest China Medical Cohorts. The results 
showed that the diagnostic and time-dependent 
receiver operating characteristic (ROC) curves 
indicated that could PRS reliably predict prognosis in 
the five cohorts (Figure 3A). The prediction accuracy 
of PRS was significantly better than that of the 
AJCC8th, age, and gender (Figure 3A). Survival 
analysis revealed a significant survival advantage for 
the PRSlow group in all five cohorts (Figure 3B). 
Univariate and multivariate Cox regression analyses 
in multiple cohorts confirmed the prognostic value of 
PRS (Figure 3C, Table S6-10). The prognostic power of 
the PRS in each center is summarized in Table 1. 
Subsequently, we performed stratified analysis based 
on AJCC8th, differentiation, and the PRS all showed 
the same trend (Figure S18A-E). The lack of statistical 
significance in Stage I in the Northeast, Central, and 
Southwest China cohorts may be due to the small 
sample size and low mortality rates after stratification 
(Figure S18C-E).  

Overall, multicenter data support PRS as a 
reliable prognostic biomarker for GC, independent of 
clinicopathological features. 

Deconstructing pyroptosis and the immune 
landscape of PRS 

We performed IHC staining for key markers of 
pyroptosis by collecting tissue microarrays from 361 
patients with postoperative GC. The expression levels 
of four risk-related genes (PTPRJ, BATF2, RGS1, and 
VCAN) in the PRS and key proteins in the classical 
pyroptotic pathway (GSDMD, Caspase1, GSDME, 
Caspase3) in GC patient tissues were evaluated (Figure 
S19A, B). The expression of key proteins in the 
pyroptosis pathway significantly increased in the 
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PRSlow group, and there was a significant negative 
correlation between the expression of key pyroptosis 
proteins and PRS (Figure S20A, B). We clustered GC 
patients with FMUUN_RNA-Seq at our center 
according to different PRS levels and found that the 
expression levels of each pyroptotic protein were 
higher in the PRSlow group (Figure S20C). GSEA 
found that in the HALLMARK and KEGG pathway 
sets, apoptosis and immune-related pathways were 
enriched in the PRSlow group (Figure S20D-E), 
indicating that PRS could be used to evaluate the 
immune regulation of pyroptosis.  

To further structure the immune landscape of 
PRS, we performed immune cell abundance 
clustering of patients at our center using the ssGSEA 
algorithm. We divided these patients into three 
groups, namely “high”, “medium” and “low” 

immune groups (Figure S21A). IHC was used to 
evaluate the expression of CD8+ immune cells at the 
center of the tumor (CT) and invasive margin (IM) to 
verify the infiltration of immune cells in the three 
groups. The immune “high” group was confirmed to 
exhibit a pathologically “immune-inflamed” pheno-
type, while the immune “middle” group displayed an 
“immune-excluded” pathology and the immune 
“low” group demonstrated an “immune-desert type” 
phenotype (Figure S21B-C). We observed significant 
variations in the PRS across the three immune 
subtypes, with elevated scores for the 
immune-excluded subtype and reduced scores for the 
immune-inflamed subtype (Figure S21D, Figure 4A). 
The proportion of immune-inflamed type tumors in 
the PRSlow group was 53.5% (68 cases), which was 
significantly higher than the proportion of 

 

 
Figure 3. Data from five cohorts of four independent medical centers confirmed the prognostic power of the pyroptosis risk score (PRS) in patients with 
gastric cancer. (A) The diagnostic receiver operating characteristic (ROC) curve and time-related ROC curve confirmed the accuracy and stability of PRS in predicting the 
prognosis of patients with gastric cancer. (B) Kaplan–Meier curves for overall survival (OS) according to PRS in the five cohorts. (C) Univariate and multivariate Cox regression 
analyses were performed to explore the prognostic value of PRS. Variables that were statistically significant in univariate analyses were integrated into multivariate Cox 
regression analyses. The results of the analyses of other clinicopathological variables are shown in Tables S6-S10. *, p <0.05; **, p <0.01; ***, p <0.001. P-values for all survival 
analyses were calculated using the log-rank test. 
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immune-inflamed tumors in the PRShigh group (26.2%, 
33 cases) (Figure 4B). Furthermore, we quantitatively 
assessed several immunophenotypes (including 
CD45+ leukocytes, CD3+ and CD8+ cytotoxic T cells, 
CD4+ helper T cells, CD45RO+ activated and memory 
T cells, and FOXP3+ regulatory T cells; Figure S22A). 
The infiltrating abundance of CD4+, CD45+, CD3+, and 
CD8+ cells in the CT and IM groups was significantly 
increased in the PRSlow group. FOXP3+ cells in the 
PRShigh group were more abundant than those in the 
CT and IM groups, indicating an immunosuppressive 
state (Figure S22B). Spearman’s correlation analysis of 
the PRS and immune cell expression showed similar 
trends (Figure S22C). In addition, we assessed the 
correlation between the PRS and the infiltration and 
polarization status of tumor-associated macrophages 
(TAMs; Figure S22D). The analysis revealed a 
significant positive correlation between the PRS and 
the infiltrating abundance of CD206+ cells 
(representing M2-type macrophages) on CT (Figure 
S22E). It has been suggested that PRS may reflect the 
spatial distribution characteristics and functions of T 
cells and TAMs. 

 

Table 1. Summary of the PRS performance to predict prognosis. 

 Performance to predict prognosis 
Variables Validation-1 

FJMUUH1 
(n=361) 

Validation-2 
FJMUUH2 
(n=253) 

Validation-3 
North China 
Cohort 
(n=98) 

Validation-4 
Central 
China 
Cohort 
(n=100) 

Validation-5 
South China 
Cohort 
(n=166) 

PRS      
AUC 0.778 0.779 0.776 0.785 0.766 
95%CI 0.73-0.826 0.723-0.835 0.664-0.889 0.698-0.873 0.693-0.839 
Accuracy 0.731 0.719 0.847 0.68 0.479 
Sensitivity 0.751 0.775 0.615 0.93 0.479 
Specificity 0.714 0.661 0.931 0.491 0.926 
PPV 0.698 0.704 0.762 0.58 0.829 
NPV 0.765 0.739 0.87 0.903 0.704 
PLR 2.623 2.289 8.862 1.828 6.499 
NLR 0.348 0.34 0.413 0.142 0.563 
PRS plus AJCC     
AUC 0.81 0.837 0.821 0.855 0.822 
95%CI 0.766-0.853 0.789-0.885 0.727-0.914 0.784-0.927 0.758-0.886 
Accuracy 0.74 0.767 0.755 0.77 0.777 
Sensitivity 0.728 0.721 0.808 0.86 0.732 
Specificity 0.75 0.815 0.736 0.702 0.811 
PPV 0.719 0.802 0.525 0.685 0.743 
NPV 0.758 0.737 0.914 0.87 0.802 
PLR 2.911 3.887 3.061 2.885 3.865 
NLR 0.363 0.343 0.261 0.199 0.33 

 
In recent years, unsolved questions on tumor 

immunology have been elucidated with the rapid 
development of single-cell sequencing analysis 
methods. We performed scRNA-seq analysis on eight 
samples at our center, comprising four with the 
highest PRS and four with the lowest PRS. To 
delineate the transcriptome profile of tumor cells, we 
performed an unsupervised cell clustering analysis, 
which revealed 14 unique cell clusters (endothelials, 

epithelials, effector T cells, CD4+ T cells, plasmacytes, 
endocrine cells, proliferative cells, fibroblasts, mast 
cells, B cells, DCs, pericytes, monocytes, and 
macrophages; Figure 4C), each defined by marker 
genes (Figure S23A; see Supplementary File 3). We 
analyzed the expression of key PRS genes in different 
cell clusters (Figure S23B-F). We quantified the 
contents of various cell clusters in the eight samples 
(Figure 4D). The most significant differences in 
effector T cell and CD4+ T cell contents were observed 
between the PRShigh and PRSlow populations (Figure 
4E). For other cell clusters, no statistically significant 
differences were observed between the two groups 
(Figure S24A). Therefore, we used CD8 and 
Granzyme B (GZMB) to characterize effector T cells as 
well as CD4 to identify CD4+ T cells. Multiplex 
immunofluorescence staining was performed to 
investigate the effects of the PRS on infiltration and 
spatial distribution of these cells (Figure 4F). Effector 
T cells and CD4+ T cells were highly enriched in 
tumor nests and stroma in both the CT and IM in the 
PRSlow group (Figure 4F-G, Figure S24B). We further 
explored the characteristics of TAM infiltration 
polarization in different PRS populations. The results 
showed that low PRS had greater M1 macrophage 
enrichment (characterized by CD68+iNOS+), whereas 
high PRS had a higher M2 macrophage enrichment 
(characterized by CD68+CD206+), as observed only on 
CT (Figure 4H, Figure S24C-D). This suggests that the 
polarization of M2-type macrophages predominates 
in the PRShigh population and accumulates in the 
tumor center. 

Immune landscape analysis of PRS showed that 
low PRS levels corresponded to increased infiltration 
of anti-tumor immune cells, which is usually 
considered a beneficial signal for immunotherapy in 
the diagnosis and treatment of GC. Therefore, it is 
necessary to evaluate the benefits of immunotherapy 
in patients with low PRS. 

PRS predicts the benefit of neoadjuvant 
immunotherapy in patients with GC  

Gastroscopic slides were collected from 48 
patients with GC prior to neoadjuvant immuno-
therapy. Multiplex immunofluorescence staining 
images showed that PRS can feasibly evaluate 
gastroscopic tissues (Figure 5A; see “Patients and 
gastric tissue samples” in the Methods section for 
details.) Patients were assessed for tumor-regression 
grade (TRG) and RECIST criteria by imaging after 
immunotherapy (Figure 5B-C). We found greater 
tumor regression in the PRSlow group (TRG1a/1b: low 
PRS = 54.1%, High PRS = 12.5%, chi-square test: p = 
0.032), and the PRS was significantly reduced in the 
tumor regression group (TRG1a/1b) (Figure 5D).  



Theranostics 2024, Vol. 14, Issue 7 
 

 
https://www.thno.org 

2923 

 

 
Figure 4. Pyroptosis risk score (PRS)-specific landscape of the tumor immune microenvironment. (A) The differences of PRS among the three 
immunophenotypes (inflamed/excluded/desert) were compared. Data are presented as the mean ± SD and were analyzed using the Kruskal–Wallis test. (B) The 
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immunophenotype composition of PRSlow and PRShigh were compared. Data were analyzed using Chi-square test. (C) The t-SNE plot demonstrates the expression patterns of 14 
specific cell clusters. (D) Bar graphs show the proportion of each cell cluster in eight samples, comprising four with the highest PRS (Sample01T, PRS = 74.321; Sample03T, PRS 
= 77.978; Sample06T, PRS = 88.530; Sample08T, PRS = 76.615) and four with the lowest PRS (Sample02T, PRS = -48.94; Sample04T, PRS = -49.564; Sample05T, PRS = -40.841; 
Sample07T, PRS = -42.742). (E) The percentage of effector and CD4+ T cells were compared between PRSlow (n = 4) and PRShigh (n = 4). Data are presented as the mean ± SD 
and were analyzed using Student’s t-test. (F) Representative images show the expression of effector (GZMB+CD8+) and CD4+ T cells in the tumor center (CT) and invasive 
margin (IM) in both PRShigh and PRSlow groups on multiple immunofluorescence staining (CD8-red, GZMB-cyan, CD4-green, panCK-white, and DAPI-blue; n = 26; Scale bar = 100 
μm). (G) Box plots show the densities of effector (Teffs) and CD4+ T cells in PRSlow and PRShigh groups, as well as their distribution at different sites in the tumor nest and stroma. 
(Data were analyzed using Student’s t-test; The upper and lower ends of the box indicate the interquartile range of values. The lines in the box indicate the median and each dot 
signifies the corresponding value obtained from individual samples; PRSlow: n = 13, PRShigh: n = 13). (H) Representative images show the expression of tumor-associated 
macrophages in the tumor center (CT) in both PRShigh and PRSlow groups with multiple immunofluorescence staining (CD68-green, CD206-red, iNOS-yellow, panCK-white, and 
DAPI-blue; n = 26; Scale bar = 100 μm). **, p <0.05; **, p <0.01; ***, p <0.001. 

 

In addition, patients with a low PRS had a higher 
objective response rate, as assessed using the 
radiographic RECIST. Three patients with low PRS 
had a complete response (CR), 13 patients had a 
partial response (PR), and the objective response rate 
(ORR) was 66.7%, which was significantly better than 
that of patients with high PRS (ORR =33.3%) (Figure 
5E). The PRS was significantly lower in the CR/PR 
group than in the control group (CR/PR) (Figure 5E). 
The ROC diagnostic curves showed that the area 
under the curve (AUC) of PRS was significantly better 
than that of CPS and the immune-inflamed phenotype 
(Figure 5F-G). Univariate and multivariate logistic 
regression analyses supported a strong association 
between the PRS and benefit from immunotherapy 
(Figure 5H-I). Moreover, patients with a low PRS had 
significantly better postoperative relapse-free survival 
than those with a higher PRS (Figure 5J). These results 
suggest that the PRS can be used to evaluate patients 
with GC who have significantly benefited from 
neoadjuvant immunotherapy. 

The patients who received immunotherapy also 
received neoadjuvant chemotherapy. Therefore, 49 
patients who only received the same neoadjuvant 
chemotherapy regimen were included as the control 
group. The baseline characteristics of the patients 
were well balanced between the two groups (Table 
S11). The analysis showed that patients in the PRSlow 
group had relatively better tumor regression and a 
higher ORR than those in the PRShigh group (Figure 
S25A-D). Recurrence-free survival did not reach 
statistical significance when the PRS was used to 
assess the benefit to patients of receiving neoadjuvant 
chemotherapy alone (Figure S25E). In addition, the 
ROC diagnostic curve of patients receiving 
neoadjuvant chemotherapy showed that the AUC 
values of PRS were 0.658 (for TRG evaluation) and 
0.661 (for ORR evaluation), which are lower than the 
AUC values of patients receiving neoadjuvant 
immunotherapy (AUC=0.787 for TRG evaluation; 
AUC=0.780 for ORR) (Figure 5F, 5G, Figure S25F). 
Additionally, we confirmed the effectiveness of the 
PRS in predicting the response to immunotherapy 
among patients with GC in the PRJEB25780 cohort 
who received immunotherapy (Figure S25G). Overall, 
this trend suggests that the predictive power of the 
PRS may be more specific to neoadjuvant 

immunotherapy (Table 2, Table S12). 
 

Table 2. Clinicopathological Characteristics of the Neoadjuvant 
ICI Therapy Combined with Chemotherapy in Patients. 

Variables Total PRS 
Low High χ2 P 

Response    4.083 0.043 
CR/PR 24 16 8   
SD/PD 24 8 16   
TRG    6.621 0.010 
1a/1b 16 13 3   
2/3 30 11 19   
ypT Stage    2.281 0.131 
T0/T1 14 10 4   
T2/T3 31 13 18   
ypN Stage    0.019 0.889 
N0 21 13 11   
N1 24 10 11   
pTNM stage    2.989 0.084 
pCR/I 17 12 5   
II/III 28 11 17   

P < 0.05 marked in bold font shows statistical significance. 
 
We aimed to determine patient groups receiving 

neoadjuvant chemotherapy that would benefit 
significantly from immunotherapy. By comparing the 
benefit of immunotherapy between the two groups, 
we found that patients in the PRSlow group who 
received neoadjuvant immunotherapy had an 
increased benefit compared with those who received 
neoadjuvant chemotherapy alone (Figure 5K). 
However, this phenomenon was not observed in the 
PRShigh group (Figure S25H). Recent reports on 
pyroptosis and tumor immunity show that pyroptosis 
cannot cause tumor regression in the case of the 
immune-desert type [9, 15, 16]. Therefore, we 
stratified all neoadjuvant patients according to their 
PRS and CPS score (Figure S26A-B). Encouraging this, 
we found a significant benefit of immunotherapy in 
patients receiving neoadjuvant chemotherapy only in 
those with low PRS and CPS≥1 (Figure 5L). Stratified 
comparative analyses of the other groups showed no 
significant differences in these patients with or 
without neoadjuvant immunotherapy (Figure 
S26C-E).  

Although stratification at our center was limited 
by the sample size, the results suggest that the PRS is 
a powerful model for evaluating the benefit of 
immunotherapy in patients with GC and can 
effectively identify patients with CPS≥1 who require 
neoadjuvant immunotherapy. 
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Figure 5. The pyroptosis risk score (PRS) can effectively predict the treatment benefit of neoadjuvant immunotherapy in patients with gastric cancer. (A) 
Typical representative images show PRS in multiple immunofluorescence staining (BATF2- red, PTPRJ- yellow, RGS1- cyan, VCAN- green, panCK- white, DAPI- blue). In addition, 
the white field of panCK stained by immunohistochemistry (IHC) on gastroscopic specimens is shown. Scale bar = 50 μm. (B) Typical representative images show the tumor 
regression grade of postoperative pathological tissues of PRSlow and PRShigh patients, and the CT imaging changes of PRSlow and PRShigh patients before and after neoadjuvant 
immunotherapy are shown in (C). (D, E) Tumor regression grade (TRG) composition and objective response rate after neoadjuvant immunotherapy were compared between 
PRSlow and PRShigh patients. In addition, PRS was compared between patients who benefited from neoadjuvant immunotherapy and those who did not. Data were analyzed using 
Student’s t-test. The upper and lower ends of the box indicate the interquartile range of values. The lines in the box indicate the median. (F, G) The receiver operating 
characteristic (ROC) curve was used to compare the accuracy of biomarkers (PRS, CPS, and inflammatory phenotype) in predicting response to neoadjuvant immunotherapy. (H, 
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I) Univariate and multivariate logistic regression analyses were performed to confirm the predictive value of biomarkers (PRS, CPS, and inflammatory phenotype) for neoadjuvant 
immunotherapy (Results: TRG1a/1b). OR: odds ratio. (J) Kaplan–Meier survival analysis compared recurrence-free survival in PRSlow patients compared with PRShigh patients. 
p-value survival analyses were performed using the log-rank test. (K, L) Comparison of benefits between the group receiving neoadjuvant immunotherapy and the group 
receiving neoadjuvant chemotherapy alone. *, p <0.05; **, p <0.01; ***, p <0.001; ICI, immune checkpoint inhibitor; CT, chemotherapy. 

 
Figure 6. The schematic illustration depicts the attributes linked to the pyroptosis risk score (PRS) in this study.     

 

Discussion 
An increasing number of studies have 

demonstrated the pivotal role of pyroptosis in tumor 
immunity; however, further investigation is required 
to understand its anti-tumor immune function in GC. 
In this study, we utilized a large-scale public database 
to unveil the critical involvement of pyroptosis in 
shaping the tumor immune microenvironment, and 
delineated the multiple molecular events that govern 
the regulation of GC pyroptosis. Based on the key 
regulatory molecules of pyroptosis, we developed a 
pyroptosis risk score (PRS) that can be applied to 
pathological tissues.  

The PRS serves as an effective quantitative tool 
for analyzing pyroptosis in clinical diagnosis and 
treatment processes, guiding the implementation of 
more effective immunotherapeutic strategies for 
patients with GC. Its ability to predict the prognosis of 

patients with GC is supported by large samples from 
multiple independent medical centers, and it can be 
used to identify patients eligible for neoadjuvant 
immunotherapy prior to surgery. PRSlow is associated 
with the activation of the pyroptosis pathway and 
infiltration of anti-tumor immune cells, enabling the 
identification of GC patients with CPS≥1 who may 
benefit from neoadjuvant immunotherapy.  

In TME, pyroptosis can convert “cold” tumors to 
“hot” tumors, which enhances the likelihood of 
response to immunotherapy and is expected to 
overcome major obstacles in cancer treatment. Recent 
studies have demonstrated that pyroptosis in GC cells 
can trigger immune system activation, leading to T 
cell infiltration and activation [15, 16]. However, the 
role of inflammatory release mediated by pyroptosis 
in cancer is complex and may promote or inhibit 
tumorigenesis and metastasis [17]. For instance, Liu et 
al. demonstrated that pyroptosis of tumor cells can 
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trigger cytokine release syndrome during chimeric 
antigen receptor (CAR) T-cell therapy and suggested 
that modifications to the natural CAR are necessary to 
decrease the likelihood of cytokine release syndrome 
resulting from pyroptosis [18]. Researchers have 
shown that the induction of pyroptosis also requires 
the use of a combination of activators and inhibitors to 
release inflammatory cytokines that are harmful to the 
immune system [19]. The release of HMGB1, IL1β, and 
IL-18 mediated by pyroptosis is not well controlled, 
and they usually increase angiogenesis, invasion, and 
inhibition of cancer cell destruction by the immune 
system [20, 21]. Therefore, cell death modalities that 
induce inflammation may exert disparate impacts on 
tumor progression and metastasis contingent upon 
the specific context. Additional methods that induce 
tumor cell pyroptosis without inducing the release of 
inflammatory cytokines should be screened and 
applied in clinical research. Given the intricate 
molecular mechanisms underlying pyroptosis in the 
immune regulation of GC and the heterogeneity of 
individual cancer cells, a comprehensive analysis of 
pyroptosis in GC is imperative. 

In our study, we developed a PRS based on a 
comprehensive analysis of pyroptosis. Previous 
studies of pyroptosis in GC have elucidated the 
crucial role of pyroptosis in the TME through 
bioinformatics analysis, providing insights into 
predicting the prognosis of patients with GC and their 
response to immunotherapy [22-24]. The strength of 
our study lies in the validation of the findings from 
public databases using transcriptomic and exomic 
data from our center. The findings of the present 
study emphasize the benefits of the PRS in clinical 
sample analysis, in contrast to previous models that 
were solely validated at the transcriptome level 
[25-27]. Using large sample datasets from multiple 
centers in China, we demonstrated the utility of the 
PRS in evaluating pathological tissues and validated 
its efficacy in assessing the prognosis of patients with 
GC. Another strength of this study was the inclusion 
of gastric endoscopic biopsy samples from a 
neoadjuvant immunotherapy cohort, demonstrating 
the potential of PRS in guiding immunotherapy 
strategy for patients with GC before surgery. 
Considering the complex spatial structure and tumor 
heterogeneity of GC cells, we deconstructed immune 
cell regulation mediated by PRS using single-cell and 
multiplex immunofluorescence and found that PRS 
was significantly associated with the infiltration of 
effector and CD4 T cells. As one of the effector T cell 
markers in our study, GZMB is a serine protease that 
induces cell death in cytotoxic T cells. Recent studies 
have shown that GZMB cleaves GSDME-mediated 
pyroptosis in target cells, leading to enhanced 

anti-tumor immunity and reduced tumor growth [16]. 
The higher abundance of GZMB positive cells in the 
PRSlow group may account for its capacity to 
effectively screen and identify patients exhibiting 
pyroptosis and activation of anti-tumor immune 
response. 

The protein panel investigated in this study 
comprised four pivotal proteins, namely BATF2, 
PTPRJ, RGS1 and VCAN, which potentially exert 
direct or indirect effects on pyroptosis and immune 
regulation within the TME across various cell 
populations. BATF2, a protein pivotal to the PRS 
calculation, plays a significant role in orchestrating 
the maturation of dendritic cells, T cells, B cells, and 
various immune cells and intricately participates in 
crucial biological processes and signaling pathways, 
including inflammatory responses, tumor immunity, 
and tumor cell proliferation and apoptosis [28-32]. 
The regulatory function of BATF2 in the progression 
of GC was extensively elucidated in our previous 
study [33]. Furthermore, upregulation of PTPRJ 
enhances the activation of the caspase-3-related 
apoptotic pathway upon stimulation with 
chemotherapeutic drugs, indicating the potential role 
of PTPRJ in calculating the PRS to screen 
chemotherapy-sensitive populations [34, 35]. In 
addition, RGS1, another component of the PRS 
calculation, was found to be a novel marker of CD8+ T 
cell depletion, leading to sustained antigenic 
stimulation and T-cell depletion, according to 
single-cell transcriptome analysis by Bai et al [36]. 
RGS is also a member of the pyroptosis-related gene 
model proposed by Xu et al., thereby implying its 
pivotal role in the process of pyroptosis [37]. 
Additionally, we observed that the association 
between the PRS and macrophage polarization was 
limited to the tumor center, possibly because of the 
presence of VCAN, a constituent molecule of the PRS. 
Previous studies have reported that VCAN can be 
used as a marker of monocytes and myeloid 
suppressor cells [38, 39]. Patients with GC from the 
PRSlow group may be characterized by the infiltration 
of VCAN-mediated monocytes into the tumor center, 
where they form macrophages and are polarized to 
exert an anti-tumor phenotype. We present 
compelling evidence that patients with GC identified 
as being in the PRSlow group have a stronger 
interaction between anti-tumor immune cells and GC 
cell pyroptosis. These findings are of particular 
interest given that immunotherapy strategies 
typically seek to improve T cell responses to cancer. 

The recent approval of immune checkpoint 
inhibitors has improved the therapeutic landscape of 
GC, ushering in a new era of immunotherapy for 
patients with advanced GC [40]. However, the 
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predictive value of PD-L1 expression in GC has been 
challenged in other clinical trials. ATTRACTION-2 
showed that nivolumab was superior to placebo 
regardless of PD-L1 positivity and that patients with 
PD-L1-negative GC also benefited from immuno-
therapy [41]. In KEYNOTE-062, despite the failure of 
pembrolizumab in patients with CPS ≥ 1, 
immunotherapy was beneficial to those with PD-L1 
CPS ≥ 10 [42]. This suggests that the current PD-L1 
and CPS statuses cannot sufficiently predict the 
efficacy of immune checkpoint inhibitor therapy, and 
the response population remains limited [43, 44]. It is 
crucial to consider whether to base surgical 
decision-making and clinical practice on PD-L1 
expression or CPS score when selecting patients who 
will benefit from immunotherapy. Based on 
NEONIPIGA phase II and Checkmate-649 trials, 
first-line immunotherapy with PD-L1 CPS≥5 is more 
beneficial than in those with CPS <5 [2, 3]. 
Encouragingly, PRSlow demonstrated the efficacy of 
neoadjuvant immunotherapy and was able to identify 
GC patients with CPS≥1 who might benefit from 
neoadjuvant immunotherapy. We believe that 
patients identified as belonging to the PRSlow group 
can undergo activation of anti-tumor immune 
processes through pyroptosis to expand the selection 
of patients who can benefit from immunotherapy. In 
addition, we suggest that pyroptosis, as assessed by 
PRS, is effective in predicting the benefit of 
immunotherapy in the presence of immune “fever.” 
In vivo studies in mice by Wang et al. showed that 
pyroptosis of less than 15% of tumor cells was 
sufficient to eliminate whole-breast tumors [9]. 
However, critically, tumor suppression was absent in 
immunodeficient mice or when T cells were 
exhausted. Therefore, the rational use of pyroptosis in 
immunotherapy is crucial for GC immunotherapy 
and can provide better scientific grounding for clinical 
treatment. 

In conclusion, our study demonstrated that 
pyroptosis activates immune processes in the TME. A 
low PRS correlates with enhanced infiltration of 
anti-tumor immune cells at the tumor site, increased 
pyroptotic activity, and improved patient outcomes. 
The constructed PRS can be used as an effective 
quantitative tool for pyroptosis analysis, which is 
applicable to pathological tissues and can guide more 
effective immunotherapy strategies for patients with 
GC. 

Methods 
Patients and gastric tissue samples 

A total of 645 formalin-fixed and paraffin- 
embedded (FFPE) specimens were collected from 

Fujian Medical University Union Hospital from 
January 2012 to October 2015. Of these, 380 patients 
were used for tissue microarray. In addition, a total of 
364 GC tissue and clinicopathological specimens 
collected between September 2008 and March 2016 
from four external centers were used to test the 
prognostic value of PRS. Among them, 98 patients 
were from Liaoning Cancer Hospital and Research 
Institute (LCH, Shenyang, China), 100 patients were 
from the First Affiliated Hospital of Bengbu Medical 
College (BMCFAH, Bengbu, China), 60 patients were 
from the Affiliated Tumor Hospital of Guangxi 
Medical University (GMUATH, Nanning, China), and 
106 from the First Affiliated Hospital of Kunming 
Medical University (KMUFAH, Kunming, China). 
Clinicopathological information about the patients 
with GC who were enrolled in these cohorts is 
provided in Tables S1 - S5. Inclusion criteria were as 
follows: (a) GC histological identification; (b) 
availability of follow-up data and clinicopathological 
features; (c) TNM staging of GC tumors was 
performed according to the 2016 Union for 
International Cancer Control (UICC) guidelines. 
Exclusion criteria were as follows: (1) non-formalin- 
fixed, paraffin-embedded tumor specimens at initial 
diagnosis, including tumor center (CT) and invasive 
margin (IM); (2) patients receiving preoperative 
chemotherapy or radiotherapy; All procedures 
performed in studies involving human subjects were 
in accordance with the Declaration of Helsinki. 
Regarding the gastroscopic tissue collection of 
patients with neoadjuvant chemotherapy, according 
to previous studies, gastroscopic sections with tumor 
area greater than 0.16 mm2 were well evaluated [45], 
and the evaluation of gastroscopic biopsy specimens 
and surgical specimens is highly consistent. All 
patients for whom tissue samples were used in this 
study provided written informed consent. This study 
was approved by the Ethics Committee of Fujian 
Medical University Union Hospital (Ethics Approval 
number: 2022KY085). All centers approved the study. 

Data collection from public databases 
For RNA-seq data from The Cancer Genome 

Atlas stomach adenocarcinoma (TCGA), fragments 
per kilobase per million transcripts (FPKM) were 
converted to transcripts per megabase (TPM) values 
by the R package “limma”. For microarray data from 
Affymetrix arrays, we downloaded the company chip 
raw “CEL” file, corrected it on raw scale, and 
employed the multiarray averaging method through 
affy and simpleaffy packages to perform background 
adjustment and quantile normalization. Taking into 
account batch effects between datasets, the combatseq 
function in the SVA software package was used to 
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remove batch effects in different datasets for data 
normalization. 

Construction of pyroptosis regulator 
phenotypes 

To search for genes that are associated with 
pyroptosis and play key roles in GC, we searched the 
GeneCards database (www.genecards.org). To filter 
out pyroptosis genes, the screening criteria used were 
protein-coding genes that have been reported to play 
a key role in programmed cell death confirmed by 
PubMed literature search (see Table S13 for details). 
Subsequently, TCGA tumor (n=408) and TCGA 
normal and GTEx paracancerous data were collected 
(Figure S2), as well as RNA-seq data of cancer and 
paracancerous tissues from 60 pairs of postoperative 
resected GC samples from our center (Figure S3). 
These genes were found to be expressed at 
significantly higher levels in cancer tissues than in 
adjacent tissues (Figure S2, S3). Therefore, 24 
pyroptosis genes that are highly likely to play a key 
role in the initiation and progression of GC were 
selected as our research subjects (AIM2, CASP1, 
CASP3, CASP4, CASP5, CASP6, CASP8, DHX9, DPP8, 
GSDMB, GSDMD, DFNA5, GZMA, GZMB, HMGB1, 
IL18, IL1B, NAIP, NLRP1, NLRP3, PYCARD, STAT3, 
TREM2, ZBP1). Then, unsupervised cluster analysis 
(K-means, based on Euclidean distance) was used to 
identify the pyroptosis phenotype of GC and to 
classify patients according to the expression levels of 
24 pyroptosis-related molecules. Each step was 
performed using the R package 
“ConsensusClusterPlus” and the process was 
repeated 50 times. 

Quantification of the degree of pyroptosis 
To facilitate the assessment of pyroptosis in 

TCGA cohort, we used the principal component 
analysis (PCA) (orthogonal rotation) method [12] to 
construct a scoring system, named PyScore, to 
evaluate the mRNA expression levels of 24 pyroptosis 
related molecules in patients with GC. As shown in 
Figure S8A, the variance contribution of the first four 
principal components were significant. Therefore, we 
determined that the PyScore for each patient with GC 
was the sum of PC1-PC4. This approach allowed for 
the quantification of pyroptosis in each GC sample in 
the TCGA cohort.  

Evaluation of immunological characteristics of 
the tumor microenvironment 

We used CIBERSORT, EPIC, MCPcounter, 
QuanTIseq, TIMER, and Xcell to calculate the 
infiltrating abundance of immune cells in GC. To 
explore the signal of the pyroptosis subtype 
associated with the tumor immune cycle, the Tracking 

tumor Immuno-Phenotype algorithm (TIP) (http:// 
biocc.hrbmu.edu.cn/TIP/index.jsp) and quantitative 
ssGSEA algorithm were used to measure the overall 
level. The tumor immune dysfunction score (TIDE) 
(http://tide.dfci.harvard.edu/login/) was used to 
predict the response of patients with GC to 
immunotherapy. Details of the above algorithm can 
be found in Table S14. The Cancer Genome Atlas 
stomach adenocarcinoma (TCGA-STAD) HE staining 
pathology is derived from the TCGA database 
(https://portal.gdc.cancer.gov/). Data on the use of 
deep learning to identify tumor-infiltrating lympho-
cytes from hematoxylin & eosin (HE) pathological 
images of TCGA-STAD were derived from the study 
by Joel et al [13]. The results of differential analysis of 
protein coding mRNA, long noncoding RNA 
(lncRNA) and microRNA (miRNA) are detailed in 
Supplementary Files 1-3. 

Collection of methylation data 
Methylation data (HM450K) downloaded from 

the GDAC database (gdac.broadinstitute.org). 
According to the TCGA database, CpG probes were 
collected in the Illumina Human Methylation 450. The 
probes showed “NA” values were removed. The 
Illumina Human Methylation 450 data of tumor and 
adjacent normal samples in lung adenocarcinoma 
were gathered at the same time by the same 
standards. Differentially methylation CpG sites 
between high pyroptosis sample and low pyroptosis 
sample were defined using R package “ChAMP”. 

Identification of differentially expressed RNA 
The empirical Bayesian approach of R package 

“limma” was used to identify differentially expressed 
genes (DEGs) for each modification pattern. An 
adjusted p-value < 0.05 and an absolute fold change > 
2 were used as the criteria for the significance of 
DEGs. 

Construction of the PRS 
The Pyroptosis Risk Score is divided into three 

steps: i) TCGA GC samples were divided according to 
the median PyScore, and the R package “limma” was 
used to calculate the DEGs between high and low 
pyroptosis groups. Genes with adjusted p < 0.05 and 
absolute fold change > 2 were considered pyroptosis- 
related. ii) pyroptosis-related DEGs with p < 0.05 in 
univariate Cox regression analysis were selected. The 
Cox regression model with least absolute shrinkage 
and selection operator (LASSO) penalty was used to 
determine the optimal weight coefficient, and the R 
package “glmnet” constructed the pyroptosis risk 
score based on the penalized maximum likelihood 
estimation. This process was repeated for 1000 
iterations to ensure robustness of the predicted genes 
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and stability of the model. iii) The frequency of each 
model was then calculated, and the pyroptosis-related 
genes with non-zero regression coefficients in the best 
gene model (the highest frequency) were selected, and 
the best model was determined by 10-fold 
cross-validation. The pyroptosis risk score was 
calculated using the following formula: pyroptosis 
risk score =exp(i) × coef(i), where exp(i) represents the 
eligible gene expression and coef(i) represents the 
corresponding coefficient in the LASSO model. The 
final Pyroptosis Risk Score was calculated using the 
following formula:  

PRS= (-0.32187)*PTPRJ+ (-0.24528)*BATF2+ 
0.17219*RGS1+ 0.30769*VCAN. 

Gene Set Enrichment Analysis 
Gene Set enrichment analysis (GSEA) was 

performed using the molecular Signature database 
(MSigDB) to identify significantly enriched pathways 
among different tumor sample groups. A gene set is 
considered “enriched” if its enrichment score is 
positive, the expression level of most members of the 
gene set is high and the risk score is also high. 
Pathways with a false discovery rate (FDR) adjusted p 
< 0.05 were considered significantly enriched. 

Analysis of mutation and copy number 
difference 

Waterfall plots of gene mutations and copy 
number variations in the TCGA-STAD cohort were 
plotted using the R package “maftools”. To analyze 
copy number, we used the GISTIC 2.0 definition to 
identify amplified genomes and missing gene 
sequences. Copy number gain or loss was determined 
by the total number of genes with altered copy 
number at the lesion and arm level. Using genpattern 
website (https://cloud.genepattern.org/) gistic2 
plug-in copy number analysis, and using the hg38 
human genome sequence as the reference set. 

Correlation analysis of drug sensitivity 
The R package “pRRophetic” was used for 

prediction [46], and the “linearRidge” function in the 
R package “ridge” was used to construct a ridge 
regression model to estimate the IC50 of patients with 
GC to commonly used chemotherapy drugs. 

Immunohistochemistry and evaluation 

Serial sections of FFPE samples were 4 μm in size 
and mounted on glass slides for IHC analysis. 
Sections were deparaffinized with xylene and 
rehydrated with alcohol. We blocked endogenous 
peroxidase by immersing the sections in 3% H2O2 
aqueous solution for 10 min and then microwave the 
sections in 0.01 mol/L sodium citrate buffer, pH 6.0, 

for 10 min for antigen recovery. The slides were then 
washed with phosphate buffered saline (PBS) and 
incubated with 10% normal goat serum (Zhongshan 
Biotechnology Co., LTD., China) to eliminate 
nonspecific reactions. Subsequently, sections were 
incubated with primary antibodies overnight at 4°C. 
Negative controls were treated in the same way, but 
the primary antibody was omitted. After rinsing three 
times with PBS, secondary antibodies were diluted, 
incubated on slides for 30 min at room temperature, 
and stained with diamine benzidine (DAB) solution. 
Finally, the slides were counterstained with heme, 
dehydrated, and fixed with cover glass and neutral 
resin. 

For staining of PRS, the H-score was quantified 
using: H− score = (1 × % weak staining)+(2 × % 
medium staining)+(3 × % strong staining). 
Immunohistochemical scoring criteria (BATF2, PTPRJ, 
RGS1, and VCAN) are shown in Figure S17. 

To assess immune cell infiltration, five 
representative and independent fields were captured 
at ×200 magnification at the tumor center (CT) and the 
invasive margin (IM), as shown in Figure S21B. Next, 
we assisted label counting using the "Measure" 
plug-in in the Image-Pro Plus software to obtain the 
number of positive cells in the field. The average 
number of positive cells in the five field areas was 
divided by the field area (0.27mm2) to obtain the 
infiltration density of immune cells in CT and IM. The 
percentage/number of all positive cells is expressed 
as the mean of five randomly selected microscopy 
fields. 

Inflammation, exclusion, and desert phenotypes 
were determined based on immunocytochemical 
staining slides for CD8+, and the three 
immunophenotypes were classified based on features 
reported in previous studies, as shown in Figure 
S21C. 

PD-L1 expression was measured using CPS. 
PD-L1-positive cells included PD-L1-expressing 
tumor cells, lymphocytes, and macrophages. The 
formula was calculated as: (total number of PD-L1 
positive cells/total number of viable cells) *100%. The 
intensity criteria for immunohistochemical staining 
are shown in Figure S25C. 

Information and concentrations of reagents used 
for IHC are provided below: BATF2 (sc-293274, Santa 
Curz, 1:100), PTPRJ (55123-1-AP, Proteintech, 1:100), 
VCAN (ET7107-09, HuaBio, 1:400), RGS1 (ER64803, 
HuaBio, 1:200), Caspase-1 (ET1608-69, HuaBio, 1:100), 
Caspase-3 (ET1603-26, HuaBio, 1:100), GSDME 
(ER1901-12, HuaBio, 1:200), GSDMD (ER1901-37, 
HuaBio, 1:200), CD4 (ab183685, Abcam, 1:400), CD45 
(ab10558, Abcam, 1:200), CD3 (ab16669, Abcam, 
1:150), CD8 (ab4055, Abcam, 1:200), CD45RO (ab23, 
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Abcam, 1:800), FOXP3 (ab215206, Abcam, 1:200), 
CD68 (ab213363, Abcam, 1:300), CD206 (ab64693, 
Abcam, 1:500). 

The IHC results were evaluated by two 
independent gastroenterology pathologists who were 
blinded to the clinical prognosis of the patients. 
Approximately 90% of the scoring results were the 
same. When the scores of the two independent 
pathologists diverged, another pathologist checked 
the results again and selected one of the scores 
proposed by the first two doctors, or the three 
pathologists discussed the decision together. 

Multiplex immunofluorescence staining 
We performed multiplex immunofluorescence 

staining to identify the expression of GZMB 
(ab209236, Abcam, 1:250), CD8 (70306S, CST, 1:100), 
CD4 (ab183685, Abcam, 1:200), CD68 (M0876, DAKO, 
1:500), CD206 (CL488-60143, Proteintech, 1:300) and 
INOS (ER1706-89, HuaAn, 1:100) in GC tissues. 
Tumor cytokeratin was stained with CKpan. All 
nuclei were stained with DAPI. Briefly, formalin-fixed 
paraffin-embedded tissue sections were cut into 4-mm 
thick sections, thawed at 70 °C for 45 min, 
deparaffinized and fixed with formaldehyde: 
methanol (1:10). Then, in a pH 8.0 EDTA buffer and 
heat-induced antigen recovery was performed at 
100% power in an 800 W standard microwave until 
the boiling point, and then 30% power was used for 15 
min. The tissue sections were then cooled and washed 
in 0.02% Tris-buffered saline-Tween 20 (TBST) with 
gentle stirring. Then, the sections were blocked with 
blocking buffer (Dako, X0909) for 10 min at room 
temperature and then incubated with the primary 
antibody at 4 °C overnight. Then, the horseradish 
peroxidase (HRP)-conjugated secondary antibody 
(PerkinElmer) was incubated at room temperature for 
1 h, and then the tyramide-based HRP was activated 
at 37 °C for 20 min. The stained signal was further 
amplified using Opal 540 Acetamide Signal 
Amplification (TSA) reagent (PerkinElmer) and 
incubated with TSA dilution at room temperature. 
Using TSA, HRP-conjugated secondary antibodies 
mediate the covalent binding between the Pax-5 
protein and different fluorophores. After this covalent 
reaction, additional antigen recovery (pH 6.0 citrate 
buffer) was performed for 20 min to remove the 
bound antibody. Note: Repeat all steps in sequence 
for each primary antibody. Then, after 
counterstaining with 4′,6-diamidino-2-phenylindole 
(Life Technologies) at room temperature, all sections 
were washed five times in 0.02% TBST each for 2 min 
and stored in a 4 °C lightproof box C until imaging. 

The Mantra System (PerkinElmer, USA) was 
applied to capture multispectral panoramic images 

after staining. The scanned slides were then analyzed 
by InForm software (PerkinElmer, USA) to obtain 
quantitative data on the region of interest (ROI). 
InForm can accurately count the positive cells and 
identify them by setting reasonable thresholds, which 
allows for the computation of the density and ratio of 
the target cells in the ROI. It also allows automated 
segmentation of the tumor-nest (panCK+) and stroma 
(panCK−) to collect quantitative data from different 
ROIs. 

Preparation and processing of single-cell RNA 
sequencing data 

Single-cell gel bead emulsions were generated 
from single-cell suspensions using a 10×Genomics 
Chromium Controller. cDNA was obtained from 
mRNA by dribble and amplified by reverse 
transcription reaction according to the manufacturer's 
instructions. Te 10× libraries were sequenced on a 
NovaSeq sequencing platform (Illumina, San Diego, 
CA). CellRanger (version 4.0.0) was used to obtain 
fastq files of the raw data and annotated with the 
human genome reference sequence (GRCh38). Gene 
barcoding matrices were then obtained following the 
Seurat (version 4.0.4) pipeline in R software (version 
4.0.5, R-Foundation, Vienna, Austria). Cells with a 
detected gene number below 250 or above 4000, or a 
high ratio of mitochondrial transcripts (more than 
20%), were not included in the analysis. Following 
normalization and scaling, the harmony algorithm 
was used to remove batch effects between patients. 
The top 2000 highly variable genes were selected for 
principal component analysis (PCA) method and the 
top 20 principal components (PCs) were used for 
cluster analysis. To identify differentially expressed 
marker genes for each cell type, the FindAllMarkers 
function in Seurat was used under default 
parameters. Marker genes were selected as those with 
adjusted p values less than 0.05, average logFC larger 
than 1, and percentage of cells with expression higher 
than 0.25. The marker genes for cell types were as 
follows: epithelial cells (EPCAM, KRT5, KRT8), B cells 
(CD19, MS4A1, CD79A), endothelial cells (PECAM1, 
VWF), T cells (CD3D, CD3E), macrophages (APOE, 
C1QA, C1QB) and fibroblasts (DCN). 

Statistical analysis 
All data were processed using SPSS 25.0 (SPSS 

Inc. Chicago, IL) and R software (version 4.0.0). 
Student’s t-test or Wilcoxon rank-sum test was used 
for continuous variables. We used the χ² test or Fisher 
exact test to compare categorical variables of clinical 
characteristics. The Kaplan-Meier method was used to 
estimate median survival. The log-rank test was used 
to compare survival between two groups. The 
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association of relevant clinicopathological variables 
with overall survival was assessed using the Cox 
proportional hazard model. Interactions between the 
clinicopathological parameters and responsiveness to 
chemotherapy were tested with the Cox model. 
Clustering charts based on the Z-score normalization 
method were used to describe the level of the 
expression in each case. We defined the survival time 
of patients who were lost to follow-up as the time 
from surgery to the last follow-up time, and the 
survival time of patients who were still alive at the 
end of the study was defined as the time from surgery 
to the database deadline. Two-tailed p values < 0.05 
were indicated significant differences. 
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