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Abstract

Dealing with large tabular datasets often requires extensive preprocessing. This prepro-
cessing happens only once, so that loading and indexing the data in a database or triple
store may be an overkill. In this paper, we present an approach that allows preprocessing
large tabular data in Datalog – without indexing the data. The Datalog query is translated
to Unix Bash and can be executed in a shell. Our experiments show that, for the use
case of data preprocessing, our approach is competitive with state-of-the-art systems in
terms of scalability and speed, while at the same time requiring only a Bash shell, and
a Unix-compatible operating system. We also provide a basic SPARQL and OWL 2 to
Datalog converter to make our system interoperable with semantic web standards.

1 Introduction

Many data analytics tasks work on tabular data. Such data can take the form of relational
tables, TAB-separated files, or knowledge bases from the Semantic Web in the form of subject-
predicate-object triples. Quite often, such data has to be preprocessed before the analysis can
be made. In this paper, we focus on preprocessing in the form of select-project-join-union
operations with recursion. This may include the removal of superfluous columns, the selection
of rows of interest, or the amendment of certain rows by performing a join with another tabular
dataset. In the case of knowledge bases, the preprocessing may involve extracting all instances
of a certain class; in the case of graph data, the preprocessing may involve finding all nodes
that are reachable from a certain node. These operations require recursion.

The defining characteristic of such pre-processing steps is that they are executed only once
on the data in order to constitute the dataset of interest for the later analysis. It is only after
such preprocessing that the actual data analysis task begins. This one-time pre-processing is
the task that this paper is concerned with.

While there exist databases (or triple stores) to help with this preprocessing, loading large
amounts of data into these systems may take hours or even days. Wikidata [41], for example,
one of the largest knowledge bases on the Semantic Web, contains 267GB of data. If only
a small portion of the data is needed afterwards, then it is an overkill in terms of time and
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space consumption to first load and index the entire dataset. After loading, purging the
superfluous elements may again take several days, because indexes have to be rebuilt. All of
this is frustratingly slow, as people who have worked with such data can confirm.

There are a number of systems that can work directly on the data, such as DLV [24] or
RDFox [30]. However, these systems load the data into memory. While this works well for small
datasets, it does not work for larger ones, such as Wikidata (as we show in our experiments).
We are thus facing the problem of preprocessing large datasets that are not indexed, and that
do not fit into main memory. There are tools to help with this (such as Spark [46], Flink [8],
Dryad [20], Impala [22]), but these require the installation of particular software, the knowledge
of particular programming languages, or even a particular distributed infrastructure.

In this paper, we develop a method to preprocess tabular file data without indexing it. We
propose to express the preprocessing steps in Datalog [2]. Datalog is a particularly simple
language, which has just a single syntactic construction, and no reserved keywords. Nevertheless,
it is expressive enough to deal with joins, unions, projections, selections, negation, and in
particular also with the recursivity that is required for preprocessing knowledge bases and graphs.
We propose to compile this Datalog program automatically to Unix Bash Shell commands.
We offer a Web page to this end: https://www.thomasrebele.org/projects/bashlog. The
user can just enter the Datalog program, and click a button to obtain the Bash code. The
Bash code can be copy-pasted into a Unix Shell, and executed without any prerequisites.
Our method automatically optimizes the Datalog program with standard relational algebra
optimization techniques, re-uses previously computed intermediate results, and produces a
highly parallelized Shell script. For this purpose, our method employs pipes and process
substitution. Our experiments on a variety of datasets show that this method is competitive
in terms of runtime with state-of-the-art database systems, Datalog query answering engines,
and triple stores.

More concisely, our approach allows the one-time preprocessing of tabular data in the form
of select-project-join operations with negation and recursion

1. without any software installation beyond a Unix Bash shell on a POSIX compliant
operating system

2. without any knowledge of programming or query languages other than Datalog
3. in a time that is competitive with conventional systems

The contributions of this paper are:
• a method that compiles Datalog to Unix Bash Shell commands
• the optimization of such programs
• extensive experiments on real datasets that show the viability of our method
This paper is structured as follows. We start with a motivating example in Section 2.

Section 3 discusses related work, before Section 4 introduces preliminaries. Section 5 presents
our approach, and Section 6 evaluates it. Section 7 shows how to use the Web interface, before
Section 8 concludes.

2 Example

Setting. Since our approach may appear slightly unorthodox, let us illustrate our method by
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a concrete example. Consider a knowledge base of the Semantic Web – for example BabelNet,
DBpedia, YAGO, or Wikidata. These knowledge bases contain instances (such as New York
City> orUSA>), and these instances belong to certain classes (such as City> orCountry>). The
classes of a knowledge base form a hierarchy, where more specific classes (such as President>)
are included in more general classes (such as Politician>). This data is typically stored in
RDF. For simplicity and readability, assume that the data resides in a TAB-separated file
facts.tsv :

Empire State Building locatedIn Manhattan
Manhattan locatedIn New York City
New York City locatedIn USA

Figure 1: An excerpt from a knowledge base (facts.tsv)

Now consider a data engineer who wants to recursively extract all places located in the United
States. Figure 2 shows how this query can be expressed in our Datalog dialect. The first line
says that the predicate fact can be computed by printing out the file facts.tsv. Note the tilde,
which signals that the body of the rule is a Unix command. The second line of the program says
that the locatedIn predicate is obtained by selecting those facts with the predicate locatedIn.
The third and fourth line say that we are interested in all places that are located in the United
States.

fact(X, R, Y) :∼ cat facts.tsv
locatedIn(X, Y) :- fact(X, "locatedIn", Y) .
locatedIn(X, Y) :- locatedIn(X, Z), locatedIn(Z, Y) .
main(X) :- locatedIn(X, "USA") .

Figure 2: A Datalog program for finding places in the United States.

Translation. We propose to compile such Datalog programs automatically into Unix Bash
Shell commands. For this purpose, the user can just visit our Web page and copy-paste the
Datalog program there. She will then obtain a script similar to the code shown in Figure 3
(for readability, we have omitted a number of parameters, sort commands, and optimizations
in this example). The code first extracts the locatedIn> facts from facts.tsv. From these facts,
it extracts the places directly located in the USA>, and stores them in a file delta.tmp and
in a file full.tmp. In the following while loop, the delta file is joined with all locatedIn> facts.
The classes that had already been found previously are filtered out, and the remaining ones
are added to full.tmp and put into the delta file. If that delta file is empty, a fixed point has
been reached, and the loop stops.

This code can either be saved in a Shell script file, or else directly copy-pasted into the
command-line prompt. When run, the code produces the list of places in the United States.
This list is written to the standard output, and can be saved in a file.
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awk '$2 == "locatedIn" {print $1 "\t" $3}' facts.tsv > li.tmp
awk '$2 == "USA" {print $0}' li.tmp | tee full.tmp > delta.tmp
while

join li.tmp delta.tmp | comm -23 - full.tmp > new.tmp
mv new.tmp delta.tmp
sort -m -o full.tmp full.tmp delta.tmp
[ -s delta.tmp ];

do continue; done
cat full.tmp

Figure 3: The Datalog program in Bash (simplified).

Rationale. Such a solution has several advantages. First, it does not require any software
installation. Installing and getting to run a complex system, such as BigDatalog [37], e.g., can
take several hours. Our solution just requires a visit to a Web site. Second, the Bash shell has
been around for several decades, and the commands are not just tried and tested, but actually
continuously developed. Modern implementations of the sort command, e.g., can split the
input into several portions that fit into memory, and sort them individually. Finally, the Bash
shell allows executing several processes in parallel, and their communication is managed by
the operating system.

3 Related Work

Relational Databases. Relational database management systems can handle data in the
form of tables. Such systems include Oracle, IBM DB2, Postgres, and MySQL, as well as
newer systems, such as MonetDB [6], and NoDB [5].

All of these systems (except NoDB) require loading the data and indexing it in its entirety.
If the preprocessing is executed only once, then this time overhead may not pay off. We show in
our experiments that just loading the data can take much longer than the entire preprocessing
with our method. Furthermore, all of these systems (including NoDB) require the installation
and setting up of software. Our approach, in contrast, can be run as a simple jar file, or even
just as a service on the Web. The resulting Bash script then runs in a common shell console
without any further prerequisites.

Triple Stores. Another class of systems target RDF knowledge bases. These are called triple
stores and include OpenLink Virtuoso [13], Stardog, Jena [9], and others. Again, these require
the loading and indexing of the data, and we will show that this is slower than our method for
the purpose of preprocessing. Several approaches aim to speed up this loading: HDT [14] is
a binary format for RDF, which can be used with Jena. Still, we find that this combination
cannot deliver the speed of Bash. Linked Data Fragments [40] aim to strike a balance between
downloading an RDF data dump and querying it on a server. The method thus addresses a
slightly different problem. Apart from this, all of these approaches require the installation of
software, while our approach works in a Bash shell.
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NoSQL Databases. Several other data management systems target non-tabular data. These
can be full-text indexing systems or key-value stores. Approaches, such as Cassandra, HBase,
and Google’s BigTable [10], target particularly large data. Our method, in contrast, aims at
tabular data.

Distributed Processing. Distributed batch processing is a well known problem. The major
paradigm used is Map-Reduce [12]. Dryad [20] provides a DAG dataflow system where the
user can specify their own functions. These ideas have been implemented in systems, such as
Apache Tez [33]. SCOPE [47], Impala [22], Apache Spark [46], and Apache Flink [8] provide
advanced features, such as support for SQL or streams. While all these systems address our
problem, they require the installation of particular software. What is more, they also require
a distributed infrastructure. Our approach, in contrast, requires neither the installation of
software nor a particular physical infrastructure. It just requires a Bash shell.

Datalog. The execution of Datalog is an active research topic, and the parallel processing of
Datalog has been studied for over twenty years [44, 15, 16]. Several recent works have taken to
improve the performance of Datalog execution by the use of modern data processing systems.
For example, the work of [35] ports the usual semi-naive evaluation algorithm [2] to Hadoop.
The work of [7] executes Datalog on top of both Map-Reduce [12] and Pregel [26]. Myria [42]
provides a parallel distributed pipeline to evaluate Datalog programs and uses Postgres for
storing facts. Recent works have used Apache Spark [46]. BigDatalog [37], in particular, tackles
the problem of recursion in Spark. DatalogRA [32] deals with Datalog with data aggregation,
and the work of [45] uses the naive evaluation strategy to evaluate Datalog programs and OWL
ontologies. There is also recent work on recursive query evaluation on top of Spark [21]. The
RDFox system [30] is specialized on Datalog queries on RDF data. There are also systems that
can preprocess RDF datasets by filtering their content by SPARQL queries [27]. An example
of such systems is RDFSlice [28]. It supports simple filtering and certain types of joins.

All of these systems address the same problem as us. Then again, all of these systems require
the installation of software. The parallelized systems also require a distributed infrastructure.
Our approach, in contrast, requires none of these. Nevertheless, we show in our experiments
that the performance of our approach is competitive with the state of the art in the domain.

OWL Reasoners. OWL is an ontology language for Semantic Web data. Several systems
can perform OWL reasoning. These include, e.g., Pellet [31], HermiT [36], RACER [18], and
Fact++ [39]. Jena also supports OWL reasoning. These systems support negation, existential
variables, and functional constraints. In this paper, we aim at a much simpler pre-processing
language, Datalog. Datalog corresponds to a subset of the OWL 2 RL profile [29]. Thus, OWL
reasoners are an overkill for our scenario. We make this point by comparing our approach with
Jena and the Pellet successor Stardog.

4 Preliminaries

Datalog. We follow the definition of Datalog with negation from [1, 2]. In all of the following,
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we assume 3 distinct sets of identifiers: predicates P, variables V, and constants C. An n-ary
atom is of the form p(a1, . . . , an), with p ∈ P and ai ∈ C ∪ V for i = 1 . . . n. An atom is
grounded if it does not contain variables. A rule takes the form

H :—B1, . . . , Bn,¬N1, . . . ,¬Nm.

Here, H is the head atom, and B1, . . . , Bn, N1, . . . , Nm are the body atoms. For n = 0, the rule
simply takes the form “H.”. We say that the body atoms N1, . . . , Nm are negated. A rule is
safe if each variable in the head or in a negated atom also appears in at least one positive
body atom. We consider only safe rules in this work. A Datalog program is a set of rules.
A set M of grounded atoms is a model of a program P , if the following holds: M contains
an atom a if and only if P contains a rule H :—B1, . . . , Bn,¬N1, . . . ,¬Nm, such that there
exists a substitution σ : V → C with σ(Bi) ∈M for i = 1 . . . n and σ(Ni) 6∈M for i = 1 . . .m
and a = σ(H). A model is minimal if no proper subset is a model. In order to ensure the
existence and the uniqueness of a minimal model for each given program with negation, we
restrict ourselves to stratified Datalog programs [1, 2]. A Datalog program is stratified, if there
exists a function σ from predicates to N such that for all rules of the form H :— . . . , Bi, . . . , we
have σ(H) ≥ σ(Bi), and for all rules of the form H :— . . . ,¬Nj , . . . , we have σ(H) > σ(Nj).

Relational Algebra. Relational algebra [11, 2] provides the semantics of relational database
operations. There exist many different variants of relational algebra. Here, we want to use a
variant that is equivalent to Datalog. A table is a set of tuples of the same arity. We write
arity(·) for the arity of a tuple or the arity of the tuples in a set. We call SPJAU unnamed
relational algebra the following set of operators on tables T and T ′ [2]:

Select (column equality): For i, j ∈ [1, . . . , arity(T )],
σi=j(T ) = {t ∈ T | t(i) = t(j)}.

Select (column-value equality): For i ∈ [1, . . . , arity(T )],
σi=a(T ) = {t ∈ T | t(i) = a}.

Project: For i1, . . . , ik ∈ [1, . . . , arity(T )],
πi1,...,ik(T ) = {〈t(i1), . . . , t(ik)〉 | t ∈ T}

Constant Introduction: For i ∈ [1, . . . , arity(T ) + 1],
πi:a(T ) = {〈t(1), . . . , t(i− 1), a, t(i), . . . , t(arity(T ))〉 | t ∈ T}.

Join: For i1, . . . , ik ∈ [1, . . . , arity(T )], i′1, . . . , i′k ∈ [1, . . . , arity(T ′)],
T oni1=i′1,...,ik=i

′
k
T ′ = {〈t, t′〉 | t ∈ T ∧ t′ ∈ T ′ ∧ t(i1) = t′(i′1) ∧ · · · ∧ t(ik) = t′(i′k)}

Anti-join: For n = arity(T ′) and i1, . . . , in ∈ [1, . . . , arity(T )],
T .i1,...,in T

′ = {t | t ∈ T ∧ ¬∃t′ ∈ T ′ : t(i1) = t′(1) ∧ · · · ∧ t(in) = t′(n)}

Union: T ∪ T ′ is the usual set union,
T ∪ T ′ = {t | t ∈ T ∨ t ∈ T ′}

We often consider relational algebra expressions as syntax tree. The outermost operator
represents the root. A node a is a child of another node b, if the output of a serves as input of
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b. Descendants of a node a are all nodes, who are children of a or children of a descendant of
a.

To map Datalog programs to relational algebra, we need an operator for recursive programs.
For this, the work of [4] introduces a least fixed point operator (LFP).1 For a function f from a
table to a table, µx(f(x)) is the least fixed point of f for the ⊆ relation. The least fixed point
can be computed with the semi-naive algorithm [2], as shown in Algorithm 1. This operator
allows expressing all Datalog programs with stratified negation. We call SPJAUR unnamed
relational algebra the SPJAU algebra extended with this operator. This algebra has the same
expressivity as safe stratified Datalog programs [2].

Algorithm 1: Computation of µx(f(x)) using the seminaive algorithm
1 Result ← ∅ ;
2 ∆ ← ∅ ;
3 repeat
4 ∆ ← f(∆) \ Result ;
5 Result ← Result ∪∆ ;
6 until ∆ = ∅;
7 return Result;

Example (Relational Algebra): Assume that there is a table subclass (which contains
classes with their superclasses). Then the following expression computes the transitive
closure of this table:

µx(subclass ∪ π1,4(x on2=1 x))

This expression computes the least fixed point of a function. The function is given by
a lambda expression. To compute the result of this expression, we execute the function
first with the empty table, x = ∅. Then the function returns the subclass table. Then
we execute the function again on this result. This time, the function joins subclass with
itself, projects the resulting 4-column table on the first and last column, and adds in the
original subclass table. We repeat this process until no more changes occur. This process
terminates eventually, because the operators of our algebra are all monotonous – with
the exception of the anti-join. Since our programs are stratified, x does not occur as the
second argument of an anti-join, and thus the second argument does not change between
iterations.

Unix. Unix is a family of multitasking computer operating systems. Unix and Unix-like systems
are widely used on servers, on smartphones (e.g., Android OS), and on desktop computers
(e.g., Apple’s MacOS). One of the characteristics of Unix is that “Everything is a file”, which
means that files, pipes, the standard output, the standard input, and other resources can all
be seen as streams of bytes2. For the present work, we are interested only in TAB-separated

1 The work of [3] introduces a different relational algebra operator called α. However, α can express only
transitive closures, and not arbitrary recursions.

2 according to Linus Torvalds, the creator of Linux, http://yarchive.net/comp/linux/everything_is_
file.html
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byte streams, i.e., byte streams that consist of several rows (sequences of bytes separated by
a newline character), which each consist of the same number of columns (sequences of bytes
separated by a tabulator character). When printed, these byte streams look like a table.

The Bourne-again shell (Bash) is a command-line interface for Unix-like operating systems.
It is the default interactive shell for users on most Linux and MacOS systems [43]. A Bash
command is either a built-in keyword, or a small program. We are here concerned mainly with
those commands of the POSIX standard that take one or several byte streams as input, and
that produce one byte stream by printing to the standard output. We will use the following
commands with the following parameters:

cat b1 ... bn
Prints the byte streams b1 ... bn one after the other.

sort -t $'\t' -kc1 . . . -kcn b
Sorts the byte stream b on columns c1, . . . , cn and prints the result.

sort -u -m -o b0 b1 b2
Merges the sorted byte streams b1 and b2, eliminating duplicate lines, and prints the
output to b0.

comm -23 b1 b2
Prints the lines that appear in the sorted byte stream b1, but not in the sorted byte
stream b2.

join -t $'\t' -1c1 -2c2 -o d [-v1] b1 b2
Joins the byte streams b1 and b2 on column c1 of b1 and column c2 of b2, and prints the
output columns d of the result. For this, b1 has to be sorted on column c1, and b2 has to
be sorted on column c2. The command supports joining on a single column only. With
-v1, the command outputs those lines of b1 that could not be joined.

echo -n > f
Creates an empty file f , overwriting f if it exists.

mv f1 f2
Renames file f1 to f2.

AWK. We will also use the command awk. It implements an interpreter for the AWK pro-
gramming language. We use awk commands of the following form

awk -F$'\t' 'p' b

The -F option makes awk use the TAB character for column separation. This character can
then be referred to as FS. b denotes the input byte stream, and p is an awk program of the
following form:

c { print $i1 FS . . . FS $ik [>> "f"] }
This AWK program prints out the columns i1, . . . , ik of the input byte stream, if a certain
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condition c is fulfilled. A condition is either a column equality $i == $j, a column-value
equality $i == "value", or a combination of several conditions c1 && . . . && cn. An
empty condition always succeeds. If the optional >> "f" is given, the output is appended
to file f .

{ print $0 FS $i1 s . . . s $ik [>> "f"] }
This AWK program prints a line of the input byte stream, and appends a single column
to it. This single column is the concatenation of the columns i1, . . . , ik, separated by the
character s. We used the ASCII character 002 for this purpose, but another character
can be used, as long as it does not appear in the Datalog program3. If a file f is given,
the result is appended to f . We use this program to create a column on which we can
run the join command.

Finally, we make use of the Bash control structure while, which we use as follows:

while c [ -s f ];
do continue;

done

This code runs the sequence of commands c repeatedly until the file f is empty.

Pipes. When a command or control structure is executed, it becomes a process. In the Unix-
like operating systems, processes can communicate through pipes. A pipe is a byte stream
that can be filled by one process, and read by another process. If the producing process is
faster than the receiving one, the pipe buffers the stream, or blocks the producing process if
necessary. In Bash, pipes can be constructed as follows:

p1 | p2

This construction sends the output of process p1 as input to process p2. If p2 is a command, the
input byte stream no longer has to be specified explicitly. A process p can also send its output
byte stream to two other byte streams b1 and b2 (including pipes or files), as follows:

p | tee b1 [b3 . . .] > b2

A pipe can also be constructed “on the fly” by a so-called process substitution, as follows:

p1 <( p2 )

This construction runs the process p2, and pipes its output stream into the first argument of
the process p1. Finally, it is possible to create a named pipe n with the command mkfifo
n. Such a pipe can be closed with the Bash command exec d >n; exec d >&-, where d is an
integer greater than 2, representing a not yet used file descriptor.
We will now see how these constructions can be used to execute Datalog programs.

3 other excluded characters are ASCII characters 000, 001, and TAB
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5 Approach

5.1 Datalog Dialect

In our concrete application of Datalog, we assume that the set P of predicates is the set of
strings that consist of letters, and that start with a lower-case letter. The set of variables V is
the set of strings that consist of letters, and that start with an upper-case letter. The set C
of constants is the set of all strings that start and end with an ASCII double quotation mark.
Constants may not contain ASCII double quotation marks other than the two delimiters. They
may also not contain TAB characters, newline characters, or the separator character that we
use in the AWK programs. Future versions of our compiler may relax these restrictions, but
for the present work we stay with these conventions for readability.

For our purposes, the Datalog program has to refer to files or byte streams of data. For this
reason, we introduce an additional type of rules, which we call command rules. A command
rule takes the following form:

p(x1, ..., xn) :∼ c

Here, p is a predicate, x1, . . . , xn are variables, and c is a Bash command. Such a rule ends
syntactically not with a dot (because Bash commands often contain dots), but with a new line.
Notice the tilde in the place of the usual hyphen to distinguish command rules from ordinary
rules. Semantically, this rule means that executing c produces a TAB-separated byte stream
of n columns, which will be referred to by the predicate p in the Datalog program. In the
simplest case, the command c just prints a file, as in cat facts.tsv. However, the command
can also be any other Bash command, such as ls -1.

Our goal is to compute a certain output with the Datalog program. This output is designated
by the distinguished head predicate main. An answer of the program is a grounded variant
of the head atom of this rule that appears in the minimal model of the program. See again
Figure 2 on page 3 for an example of a Datalog program in our dialect. We emphasize that
our dialect is a generalization of standard Datalog, so that any normal Datalog program can
be run directly in our system.

Our approach can also work in “RDF mode”. In that mode, the input consists of a SPARQL
query [19], a TBox in the form of OWL 2 RL [29], and an ABox in the form of an N-Triples file
F . We convert the OWL ontology and the SPARQL query to Datalog rules, and we include
the following AWK command in the Bash script to transform file F to a TSV file:

fact(S, P, O) :∼ awk '{ sub(" ", "\t"); sub(" ", "\t"); sub
(/ \.$/, ""); print $0 }' F

The command replaces the spaces that separate the three parts by TAB characters, and removes
the dot character at the end. If necessary, a similar AWK command can transform the output
of the Bash script back to the N-Triples format.

The Datalog program contains predicate main, which returns the result of the SPARQL
query on the file F , while having used the provided ontology for expansion. For example,
we are able to produce the rule hasParent(X,Y ) :— hasFather(X,Y ) from the OWL axiom
subPropertyOf (hasFather , hasParent). Like RDFox [30], we assume that all classes and proper-
ties axioms are provided by the ontology, and that they are not queried by the SPARQL query.
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This assumption allows us to produce efficient programs. We do not yet support OWL axioms
related to literals. Our SPARQL implementation supports basics graph patterns, property
paths without negations, OPTIONAL, UNION and MINUS.

5.2 Loading Datalog

Algorithm 2: Translation from datalog to SPJAUR algebra
1 fn mapPred (p, cache, P ) is
2 if p ∈ cache then
3 return xp
4 end
5 plan← ∅
6 newCache← cache ∪ {p}
7 foreach rule

p(H1, ..., Hnh
) :— r1(X

1
1 , ..., X

1
n1

), ..., rn(Xn
1 , ..., X

n
nn

),
¬q1(Y 1

1 , ..., Y
1
m1

), ...,¬qm(Y m
1 , ..., Y m

mm
)

in P do
8 bodyPlan← {()}
9 foreach ri(X

i
1, . . . , X

i
ni

) do
10 atomPlan← mapPred(ri, newCache, P )
11 foreach (Xi

j , X
i
k) | Xi

j = Xi
k, j 6= k do

12 atomPlan← σXi
j=X

i
k
(atomPlan)

13 end
14 bodyPlan← bodyPlan on atomPlan
15 end
16 foreach ¬qi(Y i

1 , . . . , Y
i
mi

) do
17 atomPlan← mapPred(qi, ∅, P )
18 foreach (Y i

j , Y
i
k ) | Y i

j = Y i
k , j 6= k do

19 atomPlan← σY i
j =Y

i
k
(atomPlan)

20 end
21 bodyPlan← bodyPlan . atomPlan
22 end
23 plan← plan ∪ πH1,...,Hnh

(bodyPlan)

24 end
25 foreach rule p(H1, . . . ,Hnh

) :∼ c in P do
26 plan← plan ∪ πH1,...,Hnh

(c)

27 end
28 return µxp(plan)

29 end

Our approach takes as input a Datalog program, and produces as output a Bash Shell
script. For this purpose, our approach first builds a relational algebra expression for the main
predicate of the Datalog program with Algorithm 2. The algorithm takes as input a predicate p,
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a cache, and a Datalog program P . The method is initially called with p=main, cache=∅, and
the Datalog program that we want to translate. The cache stores already computed relational
algebra plans. In all of the following, we assume that p always appears with the same arity in
P . If that is not the case, p can be replaced by different predicates, one for each arity. The
full materialization of predicate p is the least fixed point of the union of the application of all
the rules producing p.

Our algorithm first checks whether p appears in the cache (Line 2-4). In that case, p is
currently being computed in a previous recursive call of the method, and the algorithm returns
a variable x indexed by p (Line 3). This is the variable for which we compute the least fixed
point.

Then, the algorithm traverses all rules with p in the head (Line 7). For every rule

ph(H1, . . . ,Hnh
) :— r1(X

1
1 , . . . , X

1
n1

), . . . rn(Xn
1 , . . . , X

n
nn

),

¬q1(Y 1
1 , . . . , Y

1
m1

), . . . ,¬qm(Y m
1 , . . . , Y m

mm
)

the algorithm recursively retrieves the plan for the ri (Line 9-15), and the qj (Line 16-22). It
then adds a nested σj=k if there are j, k such that Xi

j = Xi
k (Line 11-13), and Y

i
j = Y i

k (Line 18-
20) respectively. Then it combines these expressions pair-wise from left to right by adding
the relevant join constraints between the ri (Line 14). It also adds the anti-join constraints
between the results of the combinations of the left elements and the qj (Line 21). At the end
of the for-loop, the algorithm puts the resulting formula into a project-node that extracts the
relevant columns (Line 23). Then, the algorithm processes all command rules, wraps each
command in a project-node, and adds it to the plan (Line 26). Finally, the algorithm wraps
the plan in a least fixed point operator (Line 28). A subsequent optimization step removes
this operator if it is not necessary.

We can add the anti-join constraints here, because the program is stratified. That means,
applying mapPred on a negated atom qj never reaches a rule with head p again. Furthermore,
the program is safe, so all columns returned by the second parameter of the anti-join appear
in the columns of the first parameter.

The implementation of the algorithm builds a directed acyclic graph (DAG) instead of
a tree. When the function mapPred is called with the same arguments as in a previous call,
it returns the result of the previous call. This implementation allows us to re-use the same
sub-plan multiple times in the final query plan, thereby reducing its size. The technique also
allows the Bash programs to re-use results that have already been computed.

Example (Datalog Translation): Assume that there is a two-column TAB-separated file
subclass.tsv, which contains each class with its subclasses. Consider the following
Datalog program P :

1 directSubclass(x,y) :∼ cat subclass.tsv
2 main(x,y) :- directSubclass(x,y).
3 main(x,z) :- directSubclass(x,y), main(y,z).

We call mapPred(main, ∅, P ). Our algorithm goes through all rules with the head pred-
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icate main. These are Rule 2 and Rule 3. For Rule 2, the algorithm recursively calls
mapPred(directSubclass, {main}, P ). This returns

µxdirectSubclass(∅ ∪ [cat subclass.tsv]).

Since the lambda-expression does not contain the variable xdirectSubclass, this is equivalent
to [cat subclass.tsv].

For Rule 3, we call mapPred(directSubclass, {main}, P ), which returns [cat
subclass.tsv] just like before. Then we call mapPred(main, {main}, P ), which returns
xmain, because main is in the cache. Thus, Rule 3 yields

π1,4([cat subclass.tsv] on2=1 xmain)).

Finally, the algorithm constructs the result

µλxmain([cat subclass.tsv]π1,4([cat subclass.tsv] on2=1 xmain))

5.3 Producing Bash Commands

The previous step has translated the input Datalog program to a relational algebra expression.
Now, we translate this expression to a Bash command by the function b, which is defined as
follows:

b([c]) = c
An expression of the form [c] is already a Bash command, and hence we can return
directly c.

b(e1 ∪ . . . ∪ en)
To remove possible duplicates, we translate a union into

sort -u <(b(e1)) ... <(b(en))

b(e1 onx=y e2)
A join of two expressions e1 and e2 on a single variable at position x and y, respectively,
gives rise to the command

join -t$'\t' -1x -2y \
<(sort -t$'\t' -kx <(b(e1))) \
<(sort -t$'\t' -ky <(b(e2)))

This command sorts the byte streams of b(e1) and b(e2), and then joins them on the
common column.

b(e1 onx=y,... e2)
The Bash join command can perform the join on only one column. If we want to join
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on several columns, we have to add a new column to each of the byte streams. This new
column concatenates the join columns into a single column. This can be achieved with
the following AWK program, which we run on both b(e1) and b(e2):

{ print $0 FS $j1 s $j2 s ... s $jn }

Here, the indices j1, . . . , jn are the positions of the join columns in the input byte stream,
and s is the separation character (see Section 4). Once we have done this with both byte
streams, we can join them on this new column in the same way as described above for
simple joins. This join also removes the additional column.

b(e1 .x e2)
Just as a regular join, an anti-join becomes a join command. We use the parameter
-v1, so that the command outputs only those tuples emerging from e1 than cannot be
joined with those from e2. We deal with anti-joins on multiple columns in the same way
as with multi-column joins.

b(πi1,...in(e))
A projection becomes the following AWK program, which we run on b(e):

{ print $i1 FS ... FS $in }

b(πi:a(e))
A constant introduction becomes the following AWK program, which we run on b(e):

{ print $1 FS ... $(i-1) FS a FS $i FS ... $n }

b(σi=v(e))
A selection node gives rise to the following AWK program, which we run on b(e):

$i == "v" { print $0 }

This command can be generalized easily to a selection on several columns.

Note that several of these translations produce process substitutions. In such cases, Bash starts
the parent process and the inner process in parallel. The parent process will block while it
cannot read from the inner processes. Thus, only the innermost processes run in the beginning.
Every process is run asynchronously as soon as input and CPU capacity is available. Thus,
our Bash program is not subject to the forced synchronization that appears in Map-Reduce
systems.

5.4 Recursion

We have just defined the function b that translates a relational algebra expression to a Bash
command. We will now see how to define b for the case of recursion. A node µx(f(x)) becomes
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echo -n > delta.tmp; echo -n > full.tmp
while

sort b(f(delta.tmp)) | comm -23 - full.tmp > new.tmp;
mv new.tmp delta.tmp;
sort -u -m -o full.tmp full.tmp <(sort delta.tmp);
[ -s delta.tmp ];

do continue; done
cat full.tmp

This code uses 3 temporary files to compute the least fixed point of f : full.tmp contains all
facts inferred until the current iteration. delta.tmp contains newly added facts of an iteration.
new.tmp is used as swap file.

The code first creates delta.tmp and full.tmp as empty files. It then runs f on the
delta file. The comm command compares the sorted outcome of f to the (initially empty)
file full.tmp, and writes the new lines to the file new.tmp. This file is then renamed to
delta.tmp. This procedure updates the file delta.tmp to contain the newly added facts. The
comm command cannot write directly to delta.tmp, because this file also serves as input to
the command produced by b(f(delta.tmp)).

The following sort command merges the new lines into full.tmp, and writes the output
to full.tmp (the sort command can write to a file that also serves as input). Now, all facts
generated in this iteration have been added to full.tmp. The [...] part of the code lets the
loop run while the file delta.tmp is not empty, i.e., while new lines are still being added. If
no new lines were added, the code quits the loop, and prints all facts. Note that, due to the
monotonicity of our relational algebra operators, and due to the stratification of our programs,
we can afford to run f only on the newly added lines.

Our method generates such a loop for each recursion. Since such loops can run in several
processes in parallel, we generate different temporary file names for each recursion. We also
take care to delete the temporary files after the Bash program finishes.

5.5 Materialization

Materialization nodes. To avoid re-computing a relational algebra expression that has
already been computed we materialize some intermediate computations. For this purpose, we
introduce a new type of operator to the algebra, the materialization node. A materialization
node £(m,(λy : pm→y)) has two sub-plans: m is the plan that is used multiple times, and that
we will materialize. The function (λy : pm→y) is the main plan, and takes the materialized
plan as parameter. The plan pm→y is the original plan p with all occurrences of m replaced
by the variable y.

A sub-plan m will be materialized if one of the following applies:

• m is used by different nodes of the query plan, i.e.,m has multiple parents in the relational
algebra expression DAG.

• there exists a node µxq(f) where f contains m, but m does not contain xq.

We proceed in two phases: We first check whether to materialize a sub-plan, and then
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decide where to materialize it. First, we discuss the simple case where no µ node is the ancestor
of another µ node. We start with the deepest node m that fulfills one of these conditions.
If m does not contain a node x of an LFP node, then and we replace the query plan p by
£(m, (λy : pm→y). If m contains a node xq of an µxq(q), and occurs at least twice in q, we
materialize m within the µ node: µxq(£(m, (λy : qm→y))). We repeat this procedure until no
more nodes can be materialized. Finally, if m contains variables x of several µ nodes, these
LFP nodes are nested. We materialize m directly below the deepest µ node whose variable x
is contained in m.

Translation. A node £(m,(λy : p)) gives rise to the following translation to Bash commands:

mkfifo lock_t
(

b(m) > t
mv lock_t done_t
cat done_t &
exec 3> done_t
exec 3>&-

) &
by→t(p)
rm t

Here, t is a temporary file name. Each materialization node uses its own temporary file t,
because £-nodes can be nested. Our translation allows us to execute several materialization
operations in parallel. The function b is the Bash translation function defined in Section 5.3.
Commands that use t have to wait until b(m) finishes. We ensure this by making these
commands read from the named pipe lock_t. Since this pipe contains no data, the commands
block. When b(m) finishes, the two exec commands close the named pipe, thus unblocking
the commands that need t. There can be a rare race condition: b(m) may finish before any
process that listens on the pipe was started. In that case, the two exec commands try to close
a pipe that has no listeners. In such cases, the exec command would block. We solve this
problem by reading from the pipe with a cat command that runs in the background. This
way, the pipe has at least one listener, and the exec commands close the pipe. This, however,
brings a second problem: If the processes that listen on the pipe were still not started, they
would try to listen to a closed pipe. To avoid this problem, we rename the pipe from lock_t
to done_t. Such a renaming does not affect any processes that already listen on the pipe, but
it prevents any new processes from listening on the pipe under the old name.

Finally, we actually use the materialized plan. The function by→t extends b as follows:
by→t(y) generates the bash code cat t; and all plan nodes pi that have a child y generate the
bash code

cat lock_t 2> /dev/null
b(pi)

As explained above, the cat command blocks the execution until t is materialized. The part
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“2> /dev/null” removes the error message in case cat is executed when the pipe was already
renamed.

5.6 Optimization

Algebra Optimizations. We apply the usual optimizations on our relational algebra expres-
sions: we push selection nodes as close to the source as possible; we merge unions; we merge
projects; we apply a simple join re-ordering. Additionally, we remove LFP when there is no
recursion; and we extract from an LFP node the non-recursive part of the inner plan (so that
it is computed only once at the beginning of the fixed point computation).

Removing superfluous calls. In the Datalog program, a recursive call of a predicate occurs,
if the predicate takes itself as input (eventually with mediating rules). In the algebra, a
recursive call corresponds to the x of a LFP node. We remove recursive calls when they are not
contributing new output. We call these calls “superfluous”. The following example illustrates
the concept of superfluous calls.

Example (Superfluous calls): We want to obtain a list of professors. The rules of the
knowledge base are as follows:

Professor(X) :- Person(X), teachesCourse(X,Y).
Professor(X) :- successorOf(X,Y), Professor(Y).
Person(X) :- Employee(X).
Person(X) :- Professor(X).

The predicates teachesCourse, successorOf, and Employee represent input relations.
The first and last rule combined are equivalent to the rule

Professor(X) :- Professor(X), teachesCourse(X,Y)}.

It is obvious that this rule does not add any new professors to the output. If X is not a
professor, then the first atom of the body Professor(X) is not part of the model, and
so the rule will not apply. If X is a professor, then the first atom is part of the model.
However, in that case, applying the rule will infer Professor(X), which is already in the
model, so nothing changes.

If a rule contains the head atom in the body (with the same variables in the same
order), we can safely ignore the rule. We will apply this principle on the algebra plan. The
algebra plan of this example is shown in Figure 4 on the next page. Only the recursive
call x in the left subtree is superfluous.

First, we determine whether a recursive call x is superfluous, by tracing its columns until the
LFP node. If they arrive completely, and in order, at the LFP node, all output computed in
previous iterations would just pass trough the path from x to the LFP node.

In more detail, we detect superfluous recursive calls of a µx(f) node as follows. First, we
define a function that returns all paths from an algebra tree node to its leaves, including the
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µ

∪
π1

on1=1

∪

employee x

teachesCourse

π1

on2=1

successorOf x

Figure 4: Algebra plan for removing superfluous calls example

position of the arguments:

• paths(t) = {t}, if t is an input table

• paths(�(t)) = {�/ p | p ∈ paths(t)}, where � is a relational algebra operator of the form
σi=..., or πi...

• paths(�(t1, t2)) =
⋃
i{� i/ p | p ∈ paths(ti)}, where � is an operator of the form on...=...,

....=..., or ∪

• paths(µx(f)) = {µ/p | p ∈ paths(f)}

Example (Paths): We will list here all paths of the child node of the least fixed
point in Figure 4: { ∪ 1/π1/on1=1 1/ ∪ 1/employee, ∪ 1/π1/on1=1 1/ ∪ 2/x,
∪ 1/π1/on1=1 2/teachesCourse, ∪ 2/π1/on2=1 1/successorOf, ∪ 2/π1/on2=1 2/x }

Next, we define how the columns of a variable x of an µx(f) node propagate through the
relational algebra expression. Let z be any constant, representing a column with an unknown
value, and let l = arity(µx(f)). The function columns maps a path to a word over the alphabet
{z, c1, . . . , cl}. The character ci represents the i-th column of x. Let n be the arity of the first
relational operator of the argument of columns, and let zn = z . . . z, the word that repeats the
character z n-times. The function columns is defined recursively as follows:

• columns(x) = c1 . . . cl

• columns(σi=... /p) = columns(p)

• columns(πi1,...,ik /p) = wi1 . . . wik , where w1 . . . wj = columns(p)

• columns(πi:a /p) = w1 . . . wi−1 z wi . . . wj , where w1 . . . wj = columns(p)

• columns(on...=... 1/p) = columns(p) ◦ zn−j

• columns(on...=... 2/p) = zn−j ◦ columns(p)
• columns(.... 1/p) = columns(p)

• columns(∪ i /p) = columns(p), for i = 1 and i = 2

• otherwise, columns(p) = zn
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Example (Columns): We apply the function columns to the recursive calls x in Figure 4:
In our example, columns(x) = c1, as the query outputs only a single column. For the
left, columns(∪ 1/π1/on1=1 1/ ∪ 2/x) = c1, so the variables of the left recursive call are
passed through the tree. For the right, columns(∪ 2/π1/on2=1 2/x }) = z, which means
that the column of x did not arrive at the µ node.

The superfluous variables x of µx(f) are the paths from the LFP node to a x node whose
output columns are all columns of x in the right order:

superfluous_calls = {p | p = p1 . . . pn ∈ paths(f) ∧
pn = x ∧ columns(p) = columns(x)}

After detecting superfluous calls, we replace them with an empty table, and apply the usual
optimizations.

Example (Superfluous calls): The only path with columns(p) = columns(x) is
∪ 1/π1/on1=1 1/ ∪ 2/x. It is the only superfluous call. We therefore simplify the plan in
Figure 4 by replacing the left x with the empty table ∅. Figure 5 shows the simplified
result.

µ

∪
π1

on1=1

employee teachesCourse

π1

on2=1

successorOf x

Figure 5: Algebra plan after removing superfluous calls

Semi-naive evaluation. We also optimize the fix point computation by using the same idea
as the semi-naive Datalog evaluation [2]: For every expression of the form p = µxp(f), we
introduce a placeholder δp that represents the facts created by the last iteration of the fix-point
computation. Then we apply the operation Iδ on f , which is defined as follows:

• Iδ(x) = δp

• Iδ(R1 ons R2) = (Iδ(R1) ons R2)∪ (R1 ons Iδ(R2)) if both R1 and R2 contain occurrences
of x.

• in all other cases Iδ(φ), we apply Iδ recursively on the children of φ.

It is easy to see that µx(f) = µxp(Iδ(f)).
If f represents a simple transitive closure, i.e.,

f = π1,4(xp on2=1 xp) or f = π2,3(xp on1=2 xp),

we avoid the second join, and use the plan

µxp(π1,4(δp on2=1 xp)).
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Join reordering. Reordering join operations can greatly reduce the cardinality of intermediate
results. There is an extensive corpus of work about different techniques to this end. For now,
we apply only a simple join-reordering, and reserve more advanced reordering algorithms for
future work. Let n be the top-most join-node in our relational algebra expression. We do a
depth-first search that stops at every non-join node, and collect them into a list L, from left
to right. From L, we construct a new ordered list L′ as follows: We choose node p of L \ L′
that has the most join conditions with the nodes in L′. If there are no common join conditions,
we choose the node that has the most join conditions overall. We add p to L′, and repeat the
procedure until L′ contains all nodes of L.

We select the first two elements of L′, and join them with all join conditions that can be
applied to their columns. We join every following element in L′ to the right of the previous
join with all applicable join conditions. Finally, we wrap the so constructed join tree into a
projection node, in order to retrieve the same columns that the original join n would have
produced. We apply this method recursively to all nodes in L′.

Parallel file scanning. Preliminary experiments showed that the first phase of query execution
was IO bound. It may happen that several commands read simultaneously from the same
file, selecting on different conditions, or projecting different columns. If all commands access
the file at the same position, the operating system can buffer the relevant block of the file.
However, since our commands are not synchronized, they usually read from different blocks
of the file, which makes the access very slow. To mitigate this problem, we collect different
AWK commands that select or project on the same file into a single AWK command. This
command runs only once through the file, and writes out all selections and projections into
several files, one for each original AWK command.

Post-processing. Our Bash program may nest several sort commands. This can happen,
e.g., if a union is the object of a join. We detect such cases, and remove redundant sort
commands. To make sure that the final output of our program contains only unique results,
we run sort -u on the final output.

Astonishingly, sort and join use a different character order. This means that join with
input from sort warns about unsorted input. To mitigate this problem, we add the following
as a first line to our program:

export LC_ALL=C

This construction forces all commands to use the default language for input and output, and
to sort bytewise. This ensures, in particular, that our command works with UTF-8 encoded
files. It also improves the processing speed.

6 Experiments

To show the viability of our approach, we ran our method on several datasets, and compared
it to several competitors. All experiments were run on a laptop with Ubuntu 16.04, an Intel
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Core i7-4610M 3.00GHz CPU, 16GB of memory, and 3.8TB of disk space. We used GNU
coreutils 8.25 for POSIX commands, and mawk 1.3.3 for AWK.

We emphasize that our goal is not to be faster than each and every system that currently
exists. For this, the corpus of related work is simply too large (see Section 3). This is also
not the purpose of Bash Datalog. The purpose of Bash Datalog is to provide a preprocessing
tool that runs without installing any additional software besides a Bash shell. This is an
advantage that no competing approach offers. Our experiments then serve mainly to show
that our approach is generally comparable in terms of speed and scalability with the state of
the art.

6.1 Lehigh University Benchmark

Dataset. Our first dataset is the Lehigh University Benchmark (LUBM) [17]. LUBM is
a standard dataset for Semantic Web repositories. It models universities, their employees,
students, and courses. The dataset is parameterized by the number of universities, and hence
its size can be varied. LUBM comes with 14 queries, which test a variety of different usage
patterns. These queries are expressed in SPARQL. For our purposes, we translated the queries
to Datalog.

Competitors. We compare our approach to the following competitors:

DLV4 is a disjunctive logic programming system. It can handle Datalog queries out of the
box [24].

Souffle5 is a translator for a rule based language to C++. It supports the parallel execution
of Datalog programs [34].

RDFox6 is an in-memory RDF triple store that supports shared memory parallel Datalog
reasoning [30].

Jena7 is an open-source RDF triple store written in Java. It can execute SPARQL queries [9].
We used the TDB implementation of Jena.

Jena+HDT8 is a combination of Jena with the binary format HDT for triple data [14].

Stardog9 is commercial knowledge graph platform that allows answering SPARQL queries
on RDF data.

Virtuoso10 is a commercial platform that also allows answering SPARQL queries on RDF
data [13].

4 http://www.dlvsystem.com/dlv/, v. Dec 17 2012
5 http://souffle-lang.org/, v. 1.2.0
6 https://www.cs.ox.ac.uk/isg/tools/RDFox/
7 https://jena.apache.org/, v. 3.4.0
8 http://www.rdfhdt.org/, v. 1.1.2
9 https://www.stardog.com/, v. 5.2.0
10 https://virtuoso.openlinksw.com/, v. 7.2.5 OS Edition
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Postgres11 is a relational database system that is developed as open-source. It supports SQL
queries.

NoDB12 is an extension of Postgres, which can execute SQL queries directly on TAB-separated
files.

MonetDB13 is an open source column-oriented database management system, which also
supports SQL queries [6].

RDFSlice14 is a tool for filtering RDF triples, implementing the Extract-Transform-Load
paradigm for RDF data [28].

For the database systems (Postgres, NoDB, and MonetDB), we translated the queries to
SQL. For this purpose, we used the relational algebra expression computed in Algorithm 2.
Not all systems support all types of queries. MonetDB does not support recursive SQL
queries. Postgres supports only certain types of recursive queries15. The same applies to
NoDB. Virtuoso currently does not support intersections. RDFSlice aims at the slightly
different problem of RDF-Slicing. It supports only a specific type of join. Also, it does not
support recursion.

We ran every competitor on all queries that it supports, and averaged the runtime over 3
runs. Since most systems finished in a matter of seconds, we aborted systems that took longer
than 10 minutes. The databases were run with and without indexing. NoDB comes with its
own adaptive indexing mechanism that cannot be switched off.

LUBM10. Table 1 shows the runtimes of all queries for the different systems on LUBM with
10 universities. The runtimes include the loading and indexing times. For systems where we
could determine these times explicitly, we noted them in the last row of the table. Since most
systems finished in a matter of seconds, we aborted systems that took longer than 10 minutes.
Among the 4 triple stores (Jena+TDB, Jena+HDT, Stardog, and Virtuoso), only Stardog can
finish on all queries in less than 10 minutes. Jena is mostly too slow, no matter with which
back-end. Virtuoso performs slightly faster than Stardog, but it cannot deal with all queries.
RDFSlice can answer only 2 queries, and runs a bit faster than Stardog. The 5 database
competitors (Postgres, NoDB, and MonetDB – with and without indexes) are generally faster.
Among these, MonetDB is much faster than Postgres and NoDB. Postgres and MonetDB are
fastest without indexes, which is to be expected when running the query only once.

Among the best performing systems are two Datalog systems (Bash Datalog, and RDFox).
Not only can they answer all queries, but they are generally also faster than the other systems.
Among the three, DLV is the slowest. RDFox shines with a very short and nearly constant
11 https://www.postgresql.org/, v. 10.1
12 https://github.com/HBPMedical/PostgresRAW/tree/6ae475, v. 9.6.5
13 https://www.monetdb.org/, v. Jul2017-SP3
14 http://aksw.org/Projects/RDFSlice.html, https://bitbucket.org/emarx/rdfslice/src, v. 2016-12-

01
15 For example, Datalog programs of the following shape cannot be translated into an SQL query supported

by Postgres:
level(X,Y) :- level(X,Z), level(Y,Z).
level(Y,X) :- level(X,Z), level(Y,Z).
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time for all queries. We suspect that this time is given by the loading time of the data, and
that it dominates the answer computation time. Nevertheless, Bash Datalog is faster than
RDFox on nearly all queries on LUBM 10.

LUBM100 to LUBM1000. Based on the previous experiment, we chose the fastest systems
in each group as competitors: RDFox for the Datalog systems, Stardog and Virtuoso for the
triple stores, and MonetDB with and without indexes for the databases. We then increased
the number of universities in our LUBM dataset from 10 to 100, 200, 500, and 1000. Table 2
and 3 shows the sizes of the datasets and the runtimes of the systems. Across all datasets, our
system performs best on more than half of the queries. The only system that can achieve a
similar performance is RDFox. As before, RDFox always needs just a constant time to answer
a query, because it loads the dataset into main memory. This makes the system very fast.
However, this technique does not work if the dataset is too large, as we shall see next.

6.2 Reachability

Datasets. Our next datasets are graph datasets. We used the LiveJournal and com-orkut
graphs from [25], and the friendster graph [23]. These datasets represent the graph structure
of online social networks. They allow us to test the performance of our algorithm on real world
data. Table 4 shows the number of nodes and edges of these datasets.

As our competitors, we chose again RDFox, Stardog, and Virtuoso. We could not use
MonetDB, because the reachability query is recursive. As an additional competitor, we chose
BigDatalog [37]. BigDatalog is a distributed Datalog implementation running on Apache Spark.
BigDatalog was already run on the same LiveJournal and com-orkut graphs in the original
paper [37].

Query. For all of these datasets, we used a single query: We asked for the set of nodes that
can be reached from a given node id. We used the following Datalog program to this end,
adapted from [37]:

reach(Y) :- arc(id, Y).
reach(Y) :- reach(X), arc(X, Y).

In order to avoid that RDFox materializes the entire transitive closure, we modified the program
as follows for RDFox:

reach(id, Y) :- arc(id, Y).
reach(id, Y) :- reach(id, X), arc(X, Y).

For the experiment, we chose 3 random nodes (and thus generated 3 queries) for LiveJournal
and com-orkut. We chose one random node for Friendster.

Results. Table 5 shows the runtime for each system (averaged over the 3 queries for LiveJournal
and com-orkut). Virtuoso was the slowest system, and we aborted it after 25min and 50min,
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dataset Nodes Edges

LiveJournal [25] 4.8M 69M
orkut [25] 3.1M 117M
friendster [23] 68M 2 586M

Table 4: Statistics for the reachability datasets.

dataset Bash RDFox BigDatalog Stardog Virtuoso

LiveJournal 117 70 532 941 >1500
orkut 225 121 1838 1123 >3000
friendster 16306 OOM OOS >36000

Table 5: Runtime for the reachability query, in seconds (OOM=Out of memory;
OOS=Out of space).

respectively. We did not run it on the Friendster dataset, because Friendster is 20 times larger
than the other two datasets. Stardog performs better. Still, we had to abort it after 10 hours
on the Friendster dataset. BigDatalog performs well, but fails with an out of space error on the
Friendster dataset. The fastest system is RDFox. This is because it can load the entire data
into memory. This approach, however, fails with the Friendster dataset. It does not fit into
memory, and RDFox is unable to run. Bash Datalog runs 50% slower than RDFox. In return,
it is the only system that can finish in reasonable time on the Friendster dataset (4:30h). We
believe that this is because Bash Datalog can rely on the highly optimized implementations of
the Bash commands, which can deal with large files even if they cannot be loaded into memory.

6.3 YAGO and Wikidata

Datasets.Our final series of experiments tests our system on knowledge bases. For this purpose,
we used YAGO 3.1 [38], a knowledge base extracted from Wikipedia, and Wikidata [41]. The
YAGO data comes in 3 different files, one with the 12M facts (814MB), one with the taxonomy
with 1.8M facts (154MB), and a last one with the 24M type relations (1.6GB in size). The
Wikidata simple dataset contains 2.1 billion triples and has an uncompressed size of 267GB.

Queries. We designed 4 queries that are typical for such datasets (Table 6). Table 7 shows the
TBox that we used. These queries and the TBox are slightly adapted to work with the different
schema of the two knowledge bases. Query 1 asks for all subclasses of the class Person>.
Query 2 asks for the parents of Louis XIV, and Query 3 asks recursively for the ancestors of
Louis XIV. Query 4 asks for all people born in a place in Andorra. These queries are not
difficult. The difficulty comes from the fact that the data is so large.

Results. Table 6 shows the results of RDFox and our system on both datasets. On YAGO,
RDFox is much slower than our system, because it needs to instantiate all rules in order to
answer queries. On Wikidata, the data does not fit into main memory, and hence RDFox
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query1(X) :- subClassOf(X, "Person") .
query1(X) :- subClassOf(X, Y), query1(Y) .
query2(X) :- hasParent(X, "Louis XIV") .
query3(X) :- hasAncestor(X, "Louis XIV") .
query4(X) :- hasBirthPlace(X, Y),

isLocatedIn(Y, "Andorra") .

Figure 6: Knowledge Base queries

hasParent(X,Y) :- hasChild(Y,X) .
hasAncestor(X,Y) :- hasParent(X,Y) .
hasAncestor(X,Z) :- hasAncestor(X,Y),

hasParent(Y,Z) .
isLocatedIn(X,Y) :- containsLocation(Y,X) .
containsLocation(X,Y) :- isLocatedIn(Y,X) .
isLocatedIn(X,Y) :- isLocatedIn(X,Y),

isLocatedIn(Y,Z) .

Figure 7: Knowledge Base rules

YAGO Wikidata

query Bash RDFox Bash RDFox

1 8 483 2259 OOM
2 5 483 2254 OOM
3 293 483 10171 OOM
4 5 481 2270 OOM

Table 6: Runtime for the Wikidata/YAGO benchmark in seconds. (OOM = out
of memory error)

cannot run at all. Our system, in contrast, scales effortlessly to the larger sizes of the data.
One may think that a database system, such as Postgres, may be better adapted for such

large datasets. This is, however, not the case. Postgres took 104 seconds to load the YAGO
dataset, and 190 seconds to build the indexes. In this time, our system has already answered
nearly all the queries.

Discussion. All of our experiments evaluate only the setting that we consider in this paper,
namely the setting where the user wants to execute a single query in order to preprocess the
data. Our experiments show that Bash Datalog can preprocess tabular data without the need
to install any particular software.

Our approach has some limitations. For example, we could not implement a disk-based
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hash-join efficiently in Bash commands. Another limitation is the heuristic join reordering. It
sometimes introduces large intermediate results, resulting in a less efficient query execution.

Overall, however, our approach is competitive in both speed and scalability to the state of
the art. We attribute this to the highly optimized POSIX commands, and to our optimizations
described in Section 5.6. Furthermore, the startup cost of our system is quite low, as it consists
mainly of translating the query to a Bash script.

7 Web Interface

Our system can be used online at https://www.thomasrebele.org/projects/bashlog. Fig-
ure 8 shows a screenshot. Our interface provides three modes: a Datalog mode, a SPARQL
mode, and an API.

Figure 8: Screenshot of the web interface

Datalog mode. The user can enter her Datalog program in a text box. After she clicks on
“Convert to Bash script”, the Datalog program is transmitted to a server, which translates it
to a Bash script. The Bash script then appears in the second text box. The user can copy and
paste the script into a terminal and execute it. To help the user get started, we provide an
example dataset based on YAGO, together with example queries.
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Example (Datalog mode): Let us, e.g., walk through the query shown in Figure 9. It
extracts all people that have an ancestor born in Italy from the knowledge base. Line 1
specifies the only command rule, which is responsible for reading the data from the disk.
Lines 3-5 are shorthand predicates for the relations that we want to use in the query.
Lines 7-9 define the TBox, which states that hasAncestor can be computed as a transitive
closure. Lines 11-13 are the actual query. Once the user clicks on “Generate”, our interface
translates the query into the Bash script shown in Appendix A.1 on page 35.

1 fact(Id, S, P, O) :~ cat *.tsv
2
3 hasChild(X, Y) :- fact(_, X, "<hasChild>", Y).
4 wasBornIn(X,Y) :- fact(_, X, "<wasBornIn>", Y).
5 isLocatedIn(X,Y) :- fact(_, X, "<isLocatedIn>", Y).
6
7 hasParent(X,Y) :- hasChild(Y,X).
8 hasAncestor(X,Y) :- hasParent(X,Y).
9 hasAncestor(X,Z) :- hasAncestor(X,Y), hasParent(Y,Z).
10
11 main(X,Y) :- hasAncestor(X,Y),
12 wasBornIn(Y,Z),
13 isLocatedIn(Z, "<Italy>").

Figure 9: Example of a Datalog query that can be used with the Web interface. It
finds all people in the YAGO knowledge base that have an ancestor that was born
in Italy.

SPARQL/OWL mode. This mode allows preprocessing knowledge bases using Semantic
Web standards. It takes a SPARQL query, and a TBox in the OWL 2 RL format. For the
input of the ABox, we currently support RDF data in the form of N-Triples.

1 @prefix owl: <http://www.w3.org/2002/07/owl#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
4 @prefix kb: <http://yago-knowledge.org/resource/> .
5
6 kb:hasParent
7 owl:inverseOf kb:hasChild;
8 rdfs:subPropertyOf kb:hasAncestor.
9
10 kb:hasAncestor
11 rdf:type owl:TransitiveProperty.

Figure 10: Example of an OWL TBox
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PREFIX kb: <http://yago-knowledge.org/resource/>
SELECT ?X ?Y WHERE {

?X kb:hasAncestor ?Y .
?Y kb:wasBornIn ?Z .
?Z kb:isLocatedIn kb:Italy .

}

Figure 11: Example of a SPARQL query

Example (SPARQL/OWL mode): Let us consider the same example as in Figure 9. Let
us assume this time that the user formulates the query not in Datalog, but in SPARQL.
Figure 11 shows the query. To add the semantics to the hasAncestor predicate, the user
specifies the transitivity of the predicate in OWL (shown in Figure 10). When our system
receives this input, it translates it to a Datalog program, and proceeds as before. The
generated Bash script is shown in Appendix A.2 on page 36.

API. We also provide a way to use the Web interface from a command line interface, without
opening a browser. Using the API requires a command which supports sending HTTP POST
requests, such as curl. Unfortunately the POSIX standard does not include a command for
HTTP requests. The command curl is widely spread and provides the right functionality for
our purpose. Here we show the curl command for a SPARQL/OWL query:

curl --data-urlencode owl@ontology.owl \
--data-urlencode sparql@query.sparql \
--data-urlencode nTriples=kb.ntriples \
https://www.thomasrebele.org/projects/bashlog/api/sparql

The command expects the TBox and the query as files ontology.owl, and query.sparql,
respectively. The file kb.ntriples is the path to the knowledge base in N-Triples format.
The “=” specifies that only the path, but not the file content, will be sent to the server.
The command sends the content of the files ontology.owl and query.sparql, and the string
kb.ntriples to the server. The server executes our algorithm, and sends the Bash script in
the response of the HTTP request. The result of the command is a Bash script that can be
saved in a file and executed locally.

8 Conclusion

In this paper, we have presented a method to compile Datalog programs into Unix Bash scripts.
This allows executing Datalog queries on tabular datasets without installing any software.
We show that our method is competitive in terms of speed with state-of-the-art systems. In
particular, our method takes often less time to answer a query than a database system needs to
load the data. Furthermore, our system can process datasets even if they do not fit in memory.
This means that our approach is a good choice for preprocessing large tabular datasets.

Our system can be used online at https://www.thomasrebele.org/projects/bashlog.
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The source code can be obtained at https://github.com/thomasrebele/bashlog. For future
work, we aim to explore extensions of this work such as adding support of numerical comparisons
to the Datalog language.
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A Generated Unix Shell Script

This appendix shows the complete code listings of two Unix shell scripts that were created
with our system.

A.1 Datalog Mode

The following script was translated from the Datalog query in Figure 9 on page 30 in Section 7.
Lines 1-17 are the header. The header is included in all generated scripts, and checks for
available optimizations. Lines 20-24 read the relevant facts from the input file, and saves them
in three temporary files. Lines 27-32 sort one of the just created files, so that it can be reused in
the while loop. Lines 34-58 show the actual query plan, and Line 60 cleans up the temporary
files.

1 #!/bin/bash
2 ###############################################################
3 # This script was generated by bashlog
4 # For more information, visit thomasrebele.org/projects/bashlog
5 ###############################################################
6
7 export LC_ALL=C
8 mkdir -p tmp
9 rm -f tmp/*
10 if type mawk > /dev/null; then awk="mawk"; else awk="awk"; fi
11 sort="sort "
12 check() { grep -- $1 <(sort --help) > /dev/null; }
13 check "--buffer-size" && sort="$sort --buffer-size=20% "
14 check "--parallel" && sort="$sort --parallel=2 "
15
16 read_ntriples() { $awk -F" " '{ sub(" ", "\t"); sub(" ", "\t"); sub(/ \.$/, "");

print $0 }' "$@"; }
17 conv_ntriples() { $awk -F$'\t' '{ print $1 " " $2 " " $3 " ." }'; }
18
19
20 touch tmp/mat0 tmp/mat1 tmp/mat2
21 $awk -v FS=$'\t' ' ($4 == "<Italy>" && $3 == "<isLocatedIn>") { print $2 >> "tmp/

mat0" }
22 ($3 == "<hasChild>") { print $4 FS $2 >> "tmp/mat1" }
23 ($3 == "<wasBornIn>") { print $2 FS $4 >> "tmp/mat2" }
24 ' *.tsv
25
26
27 mkfifo tmp/lock_mat3; (
28 $sort -t $'\t' -k 1 tmp/mat1 > tmp/mat3;
29 mv tmp/lock_mat3 tmp/done_mat3;
30 cat tmp/done_mat3 > /dev/null & exec 3> tmp/done_mat3;
31 exec 3>&-;
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32 ) &
33
34 # plan
35 $sort -t $'\t' -k 1 -k 2 -u \
36 <(join -t $'\t' -1 1 -2 1 -o 1.2,1.3 \
37 <($sort -t $'\t' -k 1 \
38 <(join -t $'\t' -1 1 -2 2 -o 1.2,2.1,2.2 \
39 <($sort -t $'\t' -k 1 tmp/mat2) \
40 <($sort -t $'\t' -k 2 \
41 <($sort -t $'\t' -k 1 -k 2 -u tmp/mat1 \
42 | tee tmp/full4 > tmp/delta4
43 while
44
45 $sort -t $'\t' -k 1 -k 2 -u \
46 <(cat tmp/lock_mat3 1>&2 2>/dev/null ; \
47 join -t $'\t' -1 2 -2 1 -o 1.1,2.2 \
48 <($sort -t $'\t' -k 2 tmp/delta4) tmp/mat3) \
49 | comm -23 - tmp/full4 > tmp/new4;
50
51 mv tmp/new4 tmp/delta4 ;
52 $sort -u --merge -o tmp/full4 tmp/full4 tmp/delta4;
53 [ -s tmp/delta4 ];
54 do continue; done
55
56 rm tmp/delta4
57 cat tmp/full4)))) \
58 <($sort -t $'\t' -k 1 -u tmp/mat0))
59
60 rm -f tmp/*

A.2 SPARQL/OWL Mode

The following script was translated from the SPARQL query and OWL TBox from Figures 11
and 10 on page 30. Lines 1-17 are the header. Lines 20-33 store the relevant facts in temporary
files. Lines 35-58 show the query plan, and Line 60 cleans up temporary files.

1 #!/bin/bash
2 ###############################################################
3 # This script was generated by bashlog
4 # For more information, visit thomasrebele.org/projects/bashlog
5 ###############################################################
6
7 export LC_ALL=C
8 mkdir -p tmp
9 rm -f tmp/*
10 if type mawk > /dev/null; then awk="mawk"; else awk="awk"; fi
11 sort="sort "
12 check() { grep -- $1 <(sort --help) > /dev/null; }
13 check "--buffer-size" && sort="$sort --buffer-size=20% "
14 check "--parallel" && sort="$sort --parallel=2 "
15
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16 read_ntriples() { $awk -F" " '{ sub(" ", "\t"); sub(" ", "\t"); sub(/ \.$/, "");
print $0 }' "$@"; }

17 conv_ntriples() { $awk -F$'\t' '{ print $1 " " $2 " " $3 " ." }'; }
18
19
20 touch tmp/mat0 tmp/mat1 tmp/mat2
21 $awk -v FS=$'\t' '
22 BEGIN {
23 mat0_out0c2_cond1["<http://yago-knowledge.org/resource/hasAncestor>"] = "1";
24 mat0_out0c2_cond1["<http://yago-knowledge.org/resource/hasParent>"] = "1";
25 mat0_out2c0_cond1["<http://yago-knowledge.org/resource/hasChild>"] = "1";
26 }
27
28 (($2) in mat0_out0c2_cond1){ print $1 FS $3 >> "tmp/mat0" }
29 (($2) in mat0_out2c0_cond1){ print $3 FS $1 >> "tmp/mat0" }
30 ($3 == "<http://yago-knowledge.org/resource/Italy>" && $2 == "<http://yago-

knowledge.org/resource/isLocatedIn>") { print $1 >> "tmp/mat1" }
31 ($2 == "<http://yago-knowledge.org/resource/wasBornIn>") { print $1 FS $3 >> "tmp

/mat2" }
32 ' \
33 <(read_ntriples yago-sample.ntriples)
34
35 $sort -t $'\t' -k 1 -k 2 -u \
36 <(join -t $'\t' -1 1 -2 1 -o 1.2,1.3 \
37 <($sort -t $'\t' -k 1 \
38 <(join -t $'\t' -1 1 -2 2 -o 1.2,2.1,2.2 \
39 <($sort -t $'\t' -k 1 tmp/mat2) \
40 <($sort -t $'\t' -k 2 \
41 <($sort -t $'\t' -k 1 -k 2 -u tmp/mat0 \
42 | tee tmp/full3 > tmp/delta3
43 while
44
45 $sort -t $'\t' -k 1 -k 2 -u \
46 <(join -t $'\t' -1 2 -2 1 -o 1.1,2.2 \
47 <($sort -t $'\t' -k 2 tmp/delta3) \
48 <($sort -t $'\t' -k 1 tmp/full3)) \
49 | comm -23 - tmp/full3 > tmp/new3;
50
51 mv tmp/new3 tmp/delta3 ;
52 $sort -u --merge -o tmp/full3 tmp/full3 tmp/delta3 ;
53 [ -s tmp/delta3 ];
54 do continue; done
55
56 rm tmp/delta3
57 cat tmp/full3)))) \
58 <($sort -t $'\t' -k 1 -u tmp/mat1))
59
60 rm -f tmp/*
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