

TI Precision Labs – TI Magnetic Sense Simulator

Presented and prepared by Scott Bryson

TI Magnetic Sense Simulator

Why are magnetic simulation tools necessary?

Magnetic sensors produce electrical outputs that correlate to mechanical input:

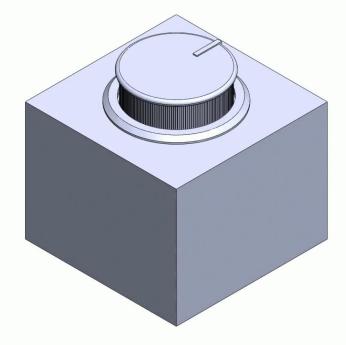
 Magnetic fields vary with geometry, distance, material and temperature

Options for system level design:

Why are magnetic simulation tools necessary?

Magnetic sensors produce electrical outputs that correlate to mechanical input:

 Magnetic fields vary with geometry, distance, material and temperature


Options for system level design:

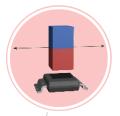
- Hardware experimentation through trial and error
- Accelerate design using simulation tools to analyze combinations of system tolerances

TI Magnetic Sense Simulator

Model your magnetic design in TIMSS

- No license
- Easy parameterized inputs for common motion types
- Fast simulation results

Save and share


Store and share project designs and export results to .csv or .pdf reports

Animated visualization

3D animations show magnet movement

Reference examples

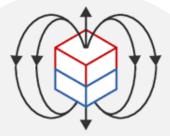
Example reference designs provide a starting point to explore

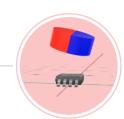
Magnet selection

Included library of magnetic materials provides common magnet grades or customization

Optimization

Magnet motion


Supports motion including rotation, hinge, joystick, and linear


Parts library

Included parts library has over 400 device variants

Simulate your magnetic position sensing systems in seconds now! http://webench.ti.com/timss

Compare

Design

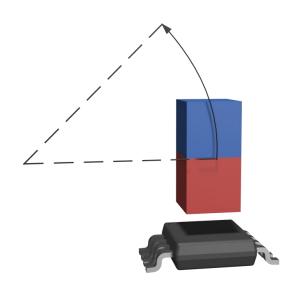
helps with system optimization

Customization Simulate rotation or mechanical offsets to evaluate tolerances

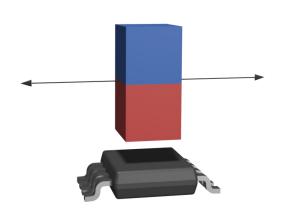
Comparing results from design variants

Device selection

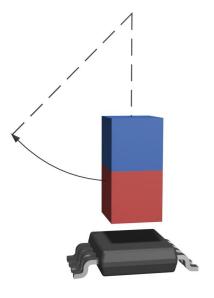
Simulate up to 6 devices simultaneously to compare results


Fast simulations

Capable of running nested parametric sweep permutations in moments



Types of Motion


Pivot on a hinge

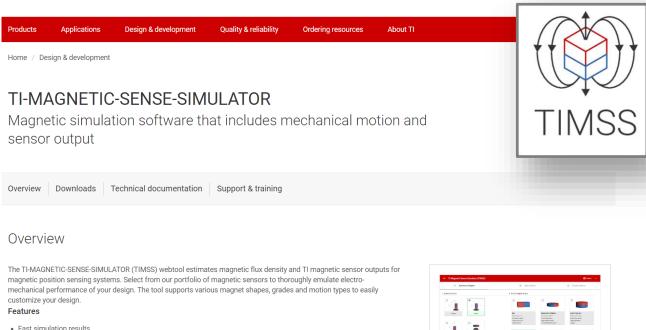
 Lid and door closures

Glide on a linear path

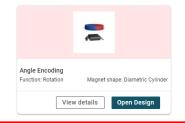
- Linear encoding
- End of travel
- Switch and button

Tilt and swing

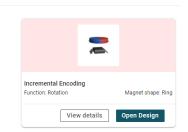
Joystick and lever control


Rotate in place

- Angle encoding
- Motor position
- Knob and dial

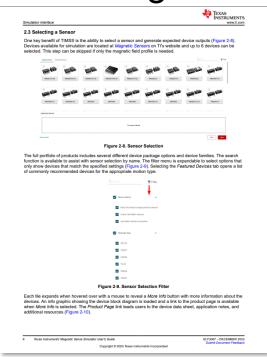

Getting started

- 1. Register for a MyTI account
 - https://www.ti.com/myti/nsdocs/register
- Navigate to TIMSS
 - http://webench.ti.com/TIMSS
- Start designing
 - Create a new design
 - Select your magnet and sensor
 - Model your system


Don't know where to begin?

Example Reference Designs

 Sweep up to three parameters simultaneously Simulate up to six devices simultaneously



Learn more

For more resources to get started:

https://www.ti.com/tool/TI-MAGNETIC-SENSE-SIMULATOR

• User's guide

Demos and videos

To start your simulation now, visit: webench.ti.com/TIMSS.