
Handle Flags: Efficient and Flexible Selections for Inking Applications

Tovi Grossman

Autodesk Research

Patrick Baudisch

Microsoft Research

Ken Hinckley

Microsoft Research

ABSTRACT
There are a number of challenges associated with content selection
in pen-based interfaces. Supplementary buttons to enter a selection
mode may not be available, and selections may require a careful
and error prone lasso stroke. In this paper we describe the design
and evaluation of Handle Flags, a new localized technique used to
select and perform commands on ink strokes in pen-operated
interfaces. When the user positions the pen near an ink stroke,
Handle Flags are displayed for the potential selections that the ink
stroke could belong to (such as proximal strokes comprising a
word or drawing). Tapping the handle allows the user to access the
corresponding selection, without requiring a complex lasso stroke.
Our studies show that Handle Flags offer significant benefits in
comparison to traditional techniques, and are a promising
technique for pen-based applications.

KEYWORDS: Pen input, selection, ink, Handle Flag, lasso.

INDEX TERMS: H.5.2 [User Interfaces]: Input, Interaction styles

1 INTRODUCTION
Pen-based systems allow for fluid and expressive input in tasks
such as note taking and design sketching. However, the unique
properties of pen-based interfaces, such as the lack of
supplementary buttons, and the presence of many overlapping ink
strokes, can make ink selection difficult [10]. Handle Flags offer a
rapid and facile new technique for users to form ink selections,
and thereby address two key problems with selection techniques.

The first problem arises because a system must decide whether
a pen stroke should leave ink behind, or whether it should define a
selection. A traditional solution is to employ a toolbar with an icon
that the user taps to enter a lasso selection mode [18], but the
resulting round trip time interrupts the users’ attention from their
work [7, 8, 12]. Furthermore, users must remember to return to
inking mode, which slows performance and risks mode errors [12,
20, 28]. Even if a pen barrel button or tablet bezel button is
available, mode errors occur if the user forgets to press the button,
or trips the button while writing [11, 15]. Research has also
explored implicit mode switching [25, 29], but such approaches
can be prone to recognition errors and may not outperform the
status quo techniques [5].

The second problem is the need to explicitly delineate the
desired strokes. Lasso selection in a dense page of ink may entail a
constrained, error prone steering task [1, 14]. For example, a user
may lasso-select and move a word, only to leave behind a single
stroke, such as the dot above an i. But if the system automatically
parses and groups ink strokes (e.g., Microsoft Windows Journal),
when the parser fails, it may prevent the user from selecting a
word without also selecting undesired annotations that are nearby.

Handle Flags address these problems by judiciously fading in

localized widgets while the user is inking (Figure 1). The user acts
on a selection by tapping on an associated handle, which activates
a radial pop-up menu. Handle Flags thus enable rapid selection of
strokes, and activation of commands, without a hardware button or
a round trip to a lasso mode icon.

In this paper, we outline the challenges associated with pen-
based interfaces, and the previous research attempting to address
these challenges. We then describe the design of Handle Flags,
and discuss the key qualitative properties which they possess. This
is followed by a description of the studies which we carried out to
evaluate Handle Flags. The results of our studies indicate that
Handle Flags can be a useful addition to pen-based user interfaces.

2 RELATED WORK

2.1 Selection in Pen-Based Interfaces
Ink selection can use tapping [17, 26], crossing [2, 23], or lassoing
[4, 13]. It can be difficult for users to cross or tap every individual
stroke in a word or drawing, but tapping works well for scattered
discrete targets [17]. The speed of lassoing depends on the
selection’s complexity [1, 14]. For example, lassoing within a
dense surround of notes is tedious, because steering [1] along a
winding path is slow and error prone for lassos with accuracy
constraints [14]. Handle Flags, by contrast, are much less
dependent on the size of the selection and the density of
surrounding strokes.

Some systems use automatic parsing to select high level
structures in ink documents [3, 21]. Simple heuristic-based
grouping algorithms, with appropriate feedback, provide useful
functionality in Tivoli [18] and Flatland [19]; we implement a
similar grouping heuristic for Handle Flags.

Unfortunately, when objects are not parsed correctly, automatic
grouping can be annoying. For example, the system may
erroneously group a stroke with a word when it actually belongs to
a nearby diagram. If tap selection or lasso selection only offers the
automatically formed group associated with a stroke (e.g.
Windows Journal), then there is no way for the user to exclude the
undesired stroke(s). Mankoff et al. present an impressive set of
interaction techniques to resolve input ambiguity for recognition
systems in general [16], which Handle Flags build upon.

Figure 1. a) Multiple ink strokes. b) Handle Flags appear when
the pen moves over ink. (c, d, e) Tapping on a handle selects
and acts on the associated stroke(s) via pop-up menus.

tovi.grossman@autodesk.com
baudisch@microsoft.com
kenh@microsoft.com

167

Graphics Interface Conference 2009
25-27 May, Kelowna, British Columbia, Canada
Copyright held by authors. Permission granted to CHCCS/SCDHM
to publish in print form, and ACM to publish electronically.

PerSketch [27] stores an Object Lattice, where each element in
the lattice represents an alternative parsing of the strokes. Any
perceivable object corresponds to an element within the lattice.
The system predicts which element in the lattice a user’s selection
gesture corresponds to. Follow-up work investigated the challenge
of selecting the correct group among automatically generated
selection candidates [24, 26]. Users could tap a stroke to cycle
through the possible selections corresponding to that stroke. Saund
et al. state that this method is adequate when the number of
potential groups is small, and when the desired selection is
available [26]. However, they also state that how to present
multiple selection options to the user, as well as the use of
graphical representations, both bear further investigation [24, 26].
Saund et al. implemented the multiple tap technique within a
mouse-based image editor that did not support ink input, with
right-click to access commands. The technique does not support
transitions between inking and selection modes without requiring
a round trip to command icons or the use of additional hardware
buttons. Handle Flags adopt a similar strategy to the multiple tap
technique, but provide a localized transition between inking and
selection, and offer the user more explicit and graphical access to
the underlying selection lattice.

The Office 2007 Mini Toolbar provides a localized contextual
toolbar which fades in to allow the user to perform commands on
a selection. However, this toolbar only fades in after a selection is
made using the traditional methods. Another related technique is
smart tags, used in some applications such as Microsoft OneNote
2003. A tag appears at a stroke as the pen approaches, and the user
can tap it to access the associated selection. Unfortunately the
design space of such techniques has not been investigated,
resulting in a number of limitations which have yet to be
addressed. For example, associated selections are determined by
automatic parsers and cannot be modified; it can be difficult to
know what a tag’s associated selection is; if the smart tag is in a
static location then it is impossible to begin an ink stroke at that
location. Smart tags were removed from OneNote 2007, possibly
due to such difficulties. In this paper, we explore the design space
of localized selection widgets, resulting in our new design, Handle
Flags, which differ significantly from smart tags and address their
limitations.

2.2 Mode Switching in Pen-Based Interfaces
Many pen interfaces require users to switch between inking and
selection modes, which can be prone to mode errors [20, 28]. A
toolbar icon for lasso selection is a common approach, but this is
time consuming and deflects the user’s attention from his primary
task [7, 8]. Li et al. compare several techniques for mode
switching and conclude that a button controlled by the non-
dominant hand works best [15].

Button-free alternatives have also been explored. Some gestural
interfaces implicitly interpret the user’s pen strokes [25, 29] to
avoid explicit mode transitions. It is not clear if such interfaces
can provide benefits without also introducing hidden states,
delayed feedback, or specific orderings of operations that may be
unclear to the user. For example, Deming and Lank found that an
explicit mode switch is faster and preferred by most users in
comparison to an inferred mode protocol [5].

The tracking menu [7] is a floating widget that gives users
localized access to commands or modes, but only in a mode that
the user must explicitly enable, and that the user cannot fluidly
integrate with ink input. Hover Widgets use gestures in a pen’s
tracking state to perform global commands and mode switches [8].
Handle Flags contribute a new technique, focused on selection and
contextual commands, which is faster than a round trip, and that
can be as fast as or faster than even the non-preferred hand button
technique.

3 HANDLE FLAGS
Handle Flags are a new technique that addresses the difficulties
noted above. The main idea of Handle Flags is to provide a handle
for accessing each potential selection in an inking application.
When the pen approaches such selections, the Handle Flags fade
in, offset from the pen location. The user can then tap on the
handle that is associated with a desired selection, to select it or
perform a command.

3.1 Design Principles
We make a number of careful considerations in the design of
Handle Flags, resulting in key qualitative properties:

Button-Free: Researchers have argued that designing button-
free interaction is important for pen input [8, 29]. In the realm of
an inking application, Fitzmaurice et al. [6], and Guiard [9], have
both made the point that writing itself is a two-handed task, with
the non-dominant hand controlling the frame of reference of the
paper. As a result the non-dominant hand may not be available to
manipulate a control. Practically speaking, the non-dominant hand
is often needed to hold the device in a mobile setting. Barrel
buttons (on the stylus itself) typically require the user to shift their
grip on the pen, interrupting the user’s input flow, and can easily
be hit accidentally, causing unexpected results. As such, Handle
Flags were designed to be button-free.

Explicit and Integrated Functionality: Explicitly moded
interfaces are prone to errors [20, 28], while gestural techniques
that use an inferred mode protocol are prone to misinterpretation
[5]. Tapping on a Handle Flag integrates the transition to selection
mode and the definition of the selection scope into a single action.
This can potentially reduce the risk of mode errors, while still
allowing the user to explicitly communicate their intentions.

Localized: Previous research has demonstrated the drawbacks of
requiring round trips to non-localized widgets [7, 8]. As such,
Handle Flags were made to be localized, appearing in place when
the stylus approaches ink.

Flexible Selection within Structured Scopes: In systems that use
traditional groupings, it can be difficult to select individual
elements that belong to a group, and users are often required to
first use an “ungroup” command. Similar to PerSketch [27] and
ScanScribe [24], Handle Flags are provided for multiple potential
selections, allowing the user to select their intended scope.

Support Selection within Overlapping Ink: Selections in
standard inking applications can be difficult due to overlapping
and intersecting ink strokes. Handle Flags are positioned using a
layout algorithm to guarantee that no handles occlude one another,
even if the associated selections do.

Support Compound Selections: Without supplementary buttons,
it can be difficult to define whether a selection should be added to
a current selection scope, removed from the current selection
scope, or be used to begin a new selection scope. Building upon
GEdit [13] and Tivoli [18], Handle Flags support such compound
selection operations.

3.2 Fade-In Heuristic
To prevent screen clutter, Handle Flags only appear when the
system believes that the user wants to access them. The system
determines this based on a simple algorithm using the spatial
location and velocity of the stylus. If the stylus drops below a
threshold velocity while in the tracking state, then handles for all
ink strokes within 10 pixels will fade in. Using a velocity
threshold rather than a dwell timeout threshold [15] reduces the
need for users to wait for a desired handle to appear. We use a
threshold velocity of 333 pixels/second, which, in informal usage
observations, was found to be adequately responsive while at the
same time limiting unwanted appearances.

168

Figure 2. Handle Flags consist of a line, starting from the point
on the ink closest to the pen, and a handle, at an offset
location. The handle is rendered as a thumbnail image of its
associated selection.

3.3 Placement
If an unwanted handle appears, it may occlude an area where the
user wishes to begin an ink stroke. Even worse, if the handle
appears just before the pen begins a new ink stroke, the user could
tap it accidentally. To reduce the chances of this, we offset the
handle from the pen position. A line originates from the point on
the ink stroke closest to the pen position, but the actual handle,
where the user would tap to activate it, is always displaced from
its associated object– thus the name Handle Flag (Figure 2).
Handles are displaced 50 pixels down and to the left for right-
handed users, and 50 pixels down and to the right for left-handed
users. This prevents occlusion from the user’s hand.

3.4 Appearance and Activation
To aid the association between handles and ink strokes, we render
the handles as thumbnail images of the strokes that they represent.
The dimensions of the handle are proportional to the bounding box
of the ink (Figure 2). The user activates a Handle Flag by tapping
on this handle. Once this occurs, a radial pop-up menu is
displayed. Within this menu, the user can select the associated ink
strokes, or perform commands on them.

3.5 Fade-Out Heuristic
The fade-out heuristic must be sensitive enough that a user can
dismiss an unwanted handle without interrupting the flow of
interaction. However, the heuristic cannot be so sensitive that
desired handles unexpectedly fade-out. The heuristic that we
converged upon causes a Handle Flag to fade out if, over any
period of time, the distance between the pen and handle increases
by more than 35 pixels.

3.6 Multiple Objects
When the pen drops below the threshold velocity in an area
containing multiple ink strokes, a separate Handle Flag for each of
these objects will be displayed. The Handle Flags are placed using
a layout algorithm that guarantees no two handles overlap. This
gives the user the ability to easily select objects that would be
difficult or impossible to select using traditional techniques.

For a left-handed user, the system first tries to position each
Handle Flag at the default location – 50 pixels down and to the
right. If this position causes an occlusion with a previously placed
handle, the system traverses through a set of ordered candidate
positions, until a position that does not cause an occlusion is found
(Figure 3a). In essence the algorithm tries to choose the closest
available position which is down from and/or to the right of the
default location. While a handle is visible, its position is locked.

With all handles being down and to the right users can
potentially move towards this area while searching for their goal
handle. This is not possible in a technique such as splatter [22],
where the objects encircle the pen location. In scenarios where the
pen location is close to a border of the screen, the default offset
vector can be modified to ensure that the Handle Flags remain
within the window borders.

Figure 3. Layout for multiple objects. a) Traversal order, with
position 1 being the default location. b) Handle Flag layout for
3 potential sections.

3.7 Working with Hierarchies
In addition to selection of individual strokes, Handle Flags can be
used to select compound objects, such as words or diagrams. An
individual stroke could be a member of multiple compound
objects. That is, each individual stroke can be an element of
multiple potential selections.

To give the user the flexibility to select and work with any of
these potential selections, we provide a Handle Flag for each one.
Unlike traditional groups, potential selections do not need to form
a strict hierarchy. For example, a stroke B could belong to
potential selections AB and BC. Three types of potential selections
can exist:

1. Selections created and accessed by the user
2. Selections inferred by the system
3. Individual ink strokes

Selections of type (2) are the groups that some inking
applications automatically form based on the structure of the user
input [3, 21]. Our system, which groups strokes based on their
spatial proximity, is similar to the algorithms used in previous
systems [18, 19]. We chose this technique over more complex
machine learning algorithms, since our interest lies in the
interaction design, and because Handle Flags do not rely on
accurate inferred groupings.

The Handle Flags for all potential selections are stored in a
ranked priority list. The priority rankings come from the above
numbering of the three selection types. Selections that were most
recently used are given highest priority, followed by selections
inferred by the system, with individual strokes given lowest
priority. Each time the user employs a selection, it is brought to
the front of the list.

When the pen hovers over an ink stroke that belongs to multiple
selections, only the Handle Flag for that stroke with the highest
priority is displayed, at the root level. Selections lower on the
priority list are organized into a hierarchy which originates from
the root level. Handle Flags which represent a subset of the
individual strokes in the root level are stored lower in the
hierarchy, and Handle Flags which represent a superset of the
individual strokes in the root level are stored higher (Figure 4).

Figure 4. Handle Flag hierarchies. a) Only the Handle Flag
with highest priority is displayed at the root level. b) Hovering
over the root level Handle Flag reveals superset handles
above the root, and subset handles below the root. c) The
process can be repeated to traverse the entire hierarchy.

169

Initially, this hierarchy is invisible to the user, and only the root
level fades in (Figure 4a). To access the remaining hierarchy, the
user hovers over the handle at the root level. Using the same fade-
in heuristic, this handle then expands (Figure 4b) to show the next
level of the hierarchy, both above and below. The user can repeat
this process to traverse the entire hierarchy (Figure 4c). To prevent
users from getting lost in an endless path, only the root level
Handle Flag expands both upwards and downwards. Remaining
handles above the root only expand upwards, and remaining
handles below the root expand downwards.

Because the system promotes recent selections employed by the
user to the top of the priority list, it is fast for the user to repeat a
selection, as the desired Handle Flag will always be at the root
level. It is only when a user wishes to access a new selection that
the cost of traversing the selection hierarchy is incurred.

3.8 Compound Selections
From a Handle Flag’s menu, the user can choose three selection
options: New Selection, Add to Selection, and Remove from
Selection. This allows users to create new selection sets that do not
already have a Handle Flag.

Alternatively, the user can also employ a traditional lassoing
tool to do so. It is important to note that we do not intend Handle
Flags to be a replacement to the lasso tool, but rather a tool to
compliment lasso selection. Handle Flags are most effective when
a desired selection already exists, but the lasso tool can be used
otherwise. To provide localized access to the lasso tool, a small
lasso icon in the top right corner of each Handle Flag fades in, if
the user hovers over the handle for 0.4s. During the dwell period,
users can first check if their desired Handle Flag exists (Figure 5a-
c). If it does not, then they can tap on the lasso icon (Figure 5d)
and make the desired lasso selection (Figure 5e). Thus, the user
can habitually move to the Handle Flag to initiate all selections.

When the user makes a selection, the system outlines the
selected strokes, draws a dashed bounding box around the
selection, and attaches a selection handle to a corner of the
bounding box border (Figure 5f). Tapping on the selection handle
brings up a radial menu with options that act on the entire
selection. The system also adds a Handle Flag for the newly
defined selection, and brings it to the top of the priority list, so it
will subsequently be available.

Figure 5. a) A user wishes to select “12345” b) The user
hovers over “3” to display the root level Handle Flag. c) The
user hovers over the Handle Flag, but no further Handle Flags
are expanded. d) Instead, a lasso icon fades in. e) The user
taps the lasso icon and then draws a lasso to make the
desired selection. f) A bounding box is drawn around the
selection, with a selection handle attached to its border.

4 EXPERIMENT 1: ABSTRACTED ENVIRONMENT
In this experiment we investigate the potential quantitative
benefits of Handle Flags, by obtaining an initial understanding of
their underlying mechanics in comparison to existing techniques.
To do so, we use an abstracted task in a controlled environment.
While this will provide important data which could be relevant for
future design considerations, the results cannot be used to draw
firm conclusions about the technique in actual application use. We
will investigate this practical issue in a second experiment which
is performed in a more realistic usage setting.

4.1 Apparatus
We used a Wacom Cintiq 18SX interactive LCD graphics display
tablet with a 32.9 x 29.9 cm (1280 x 1024 pixel) display. The
display ran on a 3.6Ghz Windows XP desktop machine. A stylus
with its barrel buttons disabled was used for input. For the non-
dominant hand button technique, which is described in the
Procedure section, a standard QWERTY keyboard was placed on
the appropriate side of the tablet, based on the user’s handedness.

4.2 Participants
Twelve volunteers (eight male, four female), aged 23-35,
participated in the experiment. One participant was left-handed,
and all participants controlled the stylus with their dominant hand.

4.3 Procedure
The task environment consisted of a green start circle, a 6x6 grid
of X’s representing individual strokes, and a red end circle. Only
the 16 internal black X’s were candidates for the selection. The
bordering grey X’s, were only used as distracters to control the
spacing between the selections and surrounding targets (Figure
6a). Using X’s allowed us to carefully control these spacings.

Figure 6. a) The experimental environment. b) Goal targets
turn green after the user taps the start button.

To begin a trial, the user tapped on the start target, and a set of
the X’s from the grid would turn green. One of three possible
levels of selection complexity (Complexity) was presented: either
a single target, a row or column of 4 targets, or an ‘L’ shape of 5
targets (Figure 6b). We varied the spacing between targets
(Spacing), at levels of 25, 50, or 75 pixels, measured by the
distance between the target centers. The targets slightly
overlapped in the 25 pixel spacing condition. To complete a trial,
the user had to select the green targets using one of the four
techniques described below, perform a command to revert their
color to black, and tap on the red end target. We instructed users to
perform the task as quickly as possible, while minimizing errors.

4.4 Lasso Icon Technique (icon)
For this technique the user had to first tap on a 48x48 pixel lasso
icon in the top left corner of the display, about 570 pixels from the
start location, to enter the lasso mode. This approximates the
distance required to travel from the center of an average sized
Tablet PC to the display border. The user could then lasso the goal
target or targets with a single stroke. The criterion for selection
was that 50% of each target in the selection had to be contained by
the region defined by the lasso. After completing a successful

170

lasso, a 48x48 square handle would appear, centered directly
under the stylus. This “handle delimiter” has been shown to be an
efficient way to integrate selection with command activation [10,
13]. Tapping on this handle would activate a radial menu, with the
revert command in the north direction. Users dragged the pen
towards this option and then released to execute the command.
The user could then tap on the end target to complete the trial.

4.5 Non-Dominant Hand Button Technique (button)
With this technique, the user entered the lasso mode by holding
down the Control key on the keyboard. While holding the button
down, the user could lasso the selection. Everything else was the
same as the previous technique, except for the added constraint
that the control button had to be released before tapping on the end
target. While our goal was to design a button free technique, we
included this technique in the experiment to see how well Handle
Flags would compare to this previously studied technique that is
known to be efficient [15].

4.6 Level 1 Handle Flag Technique (handle1)
In both Handle Flag techniques, Handle Flags were available for
each of the 36 X’s. Furthermore, the internal 4x4 grid of X’s was
grouped by row and by column, for a total of 8 more Handle
Flags. In the 5 target L-shaped condition, a corresponding Handle
Flag was available. This resulted in either 44 or 45 available
Handle Flags in each trial. For the handle1 technique, the
priorities of the Handle Flags were initialized such that the Handle
Flag for the goal target was always at the root level. Tapping on it
activated the same pop-up menu used in the lasso techniques. At
this point, everything else was the same as the previous techniques.

4.7 Level 2 Handle Flag Technique (handle2)
With this technique, the goal target appeared in the second level of
the Handle Flag hierarchy. For example, if the goal selection was a
row, the user would first have to hover over an ‘X’ in that row,
and then hover over the Handle Flag for that individual ‘X’ to
display the Handle Flag for the row. The user could then tap on
the goal Handle Flag and continue as in the previous techniques.

4.8 Experimental Design
A repeated measures within-participant design was used. The
independent variables were Technique (icon, button, handle1,
handle2), Complexity (single, line, l-shaped), and Spacing (25, 50,
75). A fully crossed design resulted in 36 conditions. Participants
completed the experiment in one session lasting approximately 50
minutes. The session was broken up by the four techniques, with
two blocks of trials appearing for each of these techniques. Each
block consisted of the 9 combinations of Complexity and Spacing
in random order, repeated 4 times each, for a total of 36 trials per
block. Presentation order of the techniques was counterbalanced
using a 4x4 Latin square, with 3 participants randomly assigned to
each of the four orderings. Before the first block of each

technique, a 2 minute warm-up session was completed, to
familiarize participants with the task.

4.9 Results
Trial completion time was defined as the time between releasing
the pen after tapping the start button, and pressing down the pen
on the end button. We discarded trials in which errors occurred
(16.1% of trials), as there was no significant effect of Technique
on the error rate.

Repeated measures analysis of variance showed main effects for
Technique (F3,33 = 58.5, p < .0001), Complexity (F2,22 = 235.7, p <
.0001), and Spacing (F2,22 = 4.25, p < .05). Average trial
completion times were 2.21s for handle1, 3.03s for button, 3.25s
for handle2, and 3.78s for icon (Figure 7a). Post hoc analysis
using Bonferroni adjustment showed that handle1 was
significantly faster than all techniques (p < .0001), and that button
was significantly faster than icon (p < .0001).

These results are important. First, they demonstrate, that the
mechanics of Handle Flags can significantly reduce performance
times. Further, the results show that there is about a 1s cost
associated with traversing levels in the Handle Flag hierarchy.
However, even with this additional cost, the handle2 technique
offered comparable results to the button technique (no significant
difference, p = 0.919), and was a 0.5s faster than the button-free
icon technique, although this did not reach significance (p = .055).

Both the Technique X Complexity (F6,66 = 90.5, p < .0001) and
Technique X Spacing (F6,66 = 3.10, p < .01) interactions were
significant (Figure 7b, c). Changing the complexity of the
selection had little effect on the Handle Flag techniques, but
significantly affected the lassoing techniques. A similar but lesser
effect was observed with the Spacing. This demonstrates another
important benefit regarding the mechanics of Handle Flags - the
performance times are robust to the complexity of the selection.

5 EXPERIMENT 2: SKETCHING ENVIRONMENT
The results from the first experiment show that Handle Flags have
the potential to be a beneficial technique for inking applications.
However, this experiment was focused on understanding the
mechanics of the technique, and thus, a number of simplifications
were made for control purposes. First, the targets were abstract
objects, and not real ink strokes from actual sketches. Second, for
the Handle Flag techniques, users knew before each trial what
level the goal Handle Flag would be at, potentially eliminating a
cost of searching through the hierarchy. Finally, for the Handle
Flag technique, the goal selection was always available from a
Handle Flag, which eliminates a cost of users deciding whether or
not they should even use a Handle Flag for the selection.

In this experiment, we investigate these issues in a more
realistic usage setting. The overall task remains identical.
However, selections are made from actual sketches. Furthermore,
we integrate trials with the goal Handle Flag at the root level, at
the 2nd level, and not available at all.

Figure 7. Completion times by (a) Technique, (b) Technique and Complexity, and (c) Technique and Spacing.

171

5.1 Apparatus
The experiment was performed on a 2.0 GHz Toshiba M400
Tablet PC running Windows XP. A stylus, with its barrel buttons
disabled, was used for all input.

5.2 Participants
Ten male volunteers, aged 20-26, participated in the experiment.
Three participants were left-handed, and all participants controlled
the stylus with their dominant hand.

5.3 Procedure
The task environment consisted of actual sketches, obtained from
a previous study where users were asked to make various sketches
using Windows Journal on Tablet PCs [8]. Users tapped on a
green circle to begin a trial, and a red circle to end the trial. In
each trial, a goal selection was highlighted green (see Figure 8).

We tested two techniques for making the selection: the lasso
icon technique (icon), and the Handle Flag (handle). We omitted
the lasso hotkey technique from this study because we wanted to
focus our study on button-free techniques. Pilot testing also
showed that it would result in the same difference from the lasso
toolbar technique as Experiment 1. Thus there was little insight to
be gained by repeating the technique in this experiment.

Figure 8. Experiment 2 environment. Users selected the green
highlighted area from a sketch.

The icon technique was identical to the technique tested in the
first experiment. If more than 50% of an ink stroke was contained
by the lasso, the stroke was selected.

For the handle technique, we manually created a reasonable
hierarchal grouping of the ink strokes for each sketch. This
allowed us to approximate a decent parser, as our focus was not
on testing our own parsing algorithm. Handle Flags were added
for all of these groups, and also for the individual strokes. All of
these Handle Flags were “live” during the handle technique trials.
We then choose goal selections which would result in one of 3
possible conditions for the handle technique - the goal was either
at the root level (root), at the second level of the hierarchy
(second), or non-existent, requiring the user to use the integrated
lasso tool to make the selection (lasso). The groupings were
prioritized based on the number of strokes they contained, so goal
selections at the root level were larger. Also, goal selections
requiring the integrated lasso tool consisted of objects which were
not directly adjacent. We felt this would most closely match
actual application use, where users may have some information as
to how the Handle Flags were ordered and what selections
existed, but would not be sure.

5.4 Experimental Design
A repeated measures within-participant design was used. The
independent variables were Technique (icon, handle) Level (root,
second, lasso), and Block (1 – 4). The study was completed in one
session lasting approximately 75 minutes. The session was broken

up by the two techniques. For each technique, participants
progressed through the same 4 sketches, in a random order. Two
of the sketches were of grocery lists, and two of the sketches were
of directions to a house. Within each sketch there were 12
possible goal selections, 3 for each possible value of Level. This
Level variable is most relevant to the handle technique, but the 12
possible selections were the exact same for the Lasso technique.
For each of the sketches participants performed 4 blocks of trials.
Within each block, each of the 12 possible goal selections was
presented once, in random order. Because goal selections were at
the same Handle Flag level in each block, users had a chance to
learn and possibly remember where they were. Thus, the block
stood as a variable for both overall technique learning and for the
users’ understanding of the underlying groupings. Presentation
order of the techniques was fully counterbalanced.

Before trials began for each technique, users completed a 5
minute warm-up session, using a fifth sketch of a house which
was only used for the warm-ups (Figure 8).

5.5 Results

5.5.1 Trial Completion Time
Trial completion time was defined as the time between releasing
the pen after tapping the start button, and pressing down the pen
on the end button. We discarded trials in which errors occurred.
Due to a software error, one of the ten participant’s data files was
corrupted. Thus, our analysis was performed on the first 8
participants, so that the technique remained fully counterbalanced.

Repeated measures analysis of variance showed main effects
for Technique (F1,7 = 7.18, p < .05), Block (F3,21 = 6.47, p < .005),
and Level (F2,14 = 378, p < .0001). Average trial completion times
were 5.11s for handle and 5.92s for icon (Figure 9a). However,
this improvement should not be taken as a metric of “overall
benefit”, because of a strong Technique X Level interaction effect
(F2,14 = 89.3, p < .0001), described below.

Figure 9. Completion times by (a) Block (b) Level.

The Technique X Level interaction is illustrated in Figure 9b. It
can be seen that Level had a strong effect on both techniques.
Even though Level was meant as a variable for the Handle Flag
technique, the variable also had a correlation with the complexity
of the required lassos. This is because the Handle Flag groups
were ordered by the number of strokes they contained, so larger
selections were at the top level (Level = root), and smaller
selections were at the second level (Level = second). Furthermore,
selections which did not have associated Handle Flags (Level =
lasso) contained non adjacent objects, which made the selections
more complex for the lasso technique as well. The handle
technique was faster at Level = root (2.4s vs. 5.8s) and Level =
second (3.4s vs. 4.8s), both at the p < .05 level.

It is interesting to note that these Handle Flag completion times
are consistent with the results from Experiment 1, where, unlike
this experiment, users knew the level of the goal Handle Flag

172

before the trial began. For Level = root, the completion times from
this experiment were 0.19s longer, and for Level = second,
completion times were 0.15s longer. In just the first block, when
users would not have known where the goal Handle Flag existed,
completion times were 2.6s for Level = root and 3.6s for second,
which is 0.28s and 0.22s longer than in the first block of the first
experiment respectively. Although this data is from two separate
experiments, it does seem to indicate there will only be a minimal
overhead cost introduced when users do not know where the goal
handle will be located, and shows that the hierarchy is an effective
mechanism for navigating to a goal selection.

In comparison, the completion times for the lasso techniques
were much greater than in Experiment 1. As a result, for Level =
root and Level = second, the results were more favorable towards
Handle Flags than in the abstracted environment of Experiment 1.
The overwhelming effect of using real sketches was that lassoing
selections became quite difficult. Often the goal selections, which
were all chosen to be reasonable and plausible selections from
actual sketches, existed in dense areas of surrounding strokes, and
were quite difficult to lasso. This is demonstrated in Figure 10,
which shows the sorted average times taken to lasso each of the
48 goal selections used in the experiment (4 sketches x 12 goals
per sketch). It can be seen that there is a large variation, and the
most difficult selections were quite time consuming, with one
selection taking on average more than 10 seconds.

Figure 10. Average lasso times sorted across the 48 goal
selections. Inset: The goal selections which were fastest and
slowest to lasso.

In trials when the integrated lasso was required, handle was
slower (9.5s vs. 7.1s). This shows that the main overhead cost
associated with Handle Flags arises when a selection does not
exist. We noticed from both observations and user comments, that
often users wished that there was no dwell period before the
integrated lasso icon faded in (which was set at 0.4s). This is a
consideration for future designs.

5.6 Error Rates
Error rates were significantly affected by Technique (F1,7 = 9.3, p
< .05). The total error rates were high – 18.2% for handle, and
32% for icon. The majority of errors for handle occurred when
Level = lasso, in which the error rate was 39%. For Level = root
and Level = second the error rates for handle were only 6.1% and
9.4%. For icon the error rates were between 25% and 35% for all
values of Level. These high error rates further justify our
motivation of providing alternatives to lassoing.

6 APPLICATION INTEGRATION AND OBSERVATIONS
To obtain feedback on Handle Flags outside of the experimental
settings, we ran 5 users through a 30 minute think-aloud usage
observation session with a sketching application which
implemented Handle Flags as the selection mechanism. We gave
users a short briefing on Handle Flags, and then asked them to
carry out a series of sketching tasks that were constructed to elicit
selection hierarchies and transitions between selections. For

example, in one task, we asked users to draw and then move a
house and its windows, but we subsequently asked users to move
only the windows. Overall, these sessions were encouraging.
Users seemed to form a solid understanding of the Handle Flag
hierarchy, and often knew which selections would and would not
be available ahead of time. Participants used a combination of the
compound selection tools (adding or removing strokes offered by
Handle Flags from the current selection) and the integrated lasso
tool to form new selections. Users understood that after forming
new selections, they would be available though Handle Flags.

Users did make some errors with the Handle Flags. Most
common was confusion about when to hover and when to tap.
Users sometimes tapped on the origin of the Handle Flag, instead
of the handle. To expand the hierarchy, users sometimes tapped
on the handle instead of hovering. However, almost all such errors
were made in the first couple of minutes of the sessions.

6.1 False Activations
An important consideration to examine is if Handle Flags will be
activated by accident while users are performing other actions,
such as quickly jotting down notes. We obtained the data set from
a previously published study [8] of roughly 3 hours of Windows
Journal pen data from 15 different users. This data was used to
simulate user input in our sketching application. Any time a
Handle Flag was activated indicated that a false activation would
have occurred if Handle Flags were being used.

This simulation resulted in only three Handle Flag activations,
or approximately one per hour of continuous pen activity. This is
a very low rate of false activation; even status-quo methods such
as pen buttons can suffer from high rates of accidental activation
[15]. Since a false activation of a Handle Flag only brings up a
menu, the cost of these infrequent errors is relatively small for the
user, and in the worst case, can easily be undone.

7 IMPLICATIONS AND LIMITATIONS
The results of our studies indicate that Handle Flags could be a
useful addition to pen based interfaces. The first experiment
hinted at potential quantitative benefits, but its main purpose was
to gather data about the mechanics of the Handle Flag technique,
so it was performed in a controlled abstract environment.

As such, we conducted a second experiment to investigate the
benefits of Handle Flags in an actual application setting. In this
experiment Handle Flags were significantly faster when selections
were at both the root (142% improvement) and second level (41%
improvement) of the hierarchy. The added cost as a result of users
not knowing where the goal selections would be before each trial
was minimal, in the range of 0.15s-0.3s. While the second
experiment did not compare Handle Flags to a non-dominant hand
button-activated lassoing mode, we can estimate the comparison
based on the data from the first experiment, when the button
technique took approximately 0.75s less than the icon technique.
Under this assumption Handle Flags would have still been faster
when selections were both at the root and second level of the
hierarchy. In addition, a button-activated lasso would still suffer
from the high error rates associated with the lassoing, which
Handle Flags significantly reduced.

The main limitation of the Handle Flags is when a selection is
not available from the Handle Flag hierarchy. In our second
experiment, we found that using the integrated lasso tool was
significantly slower than using the toolbar icon. However, even
though 1/3 of all the trials in Experiment 2 required a lasso,
Handle Flags were still significantly faster overall. Furthermore,
Handle Flags are not meant to replace the lasso tool, but to
complement it. In an actual application, the user could access the
lasso icon from the toolbar when required.

173

That being said an important consideration is that the need to
choose whether to use the lasso or Handle Flag could introduce a
cost in itself. However, our usage observation sessions indicated
that when users have created the sketches themselves, they will
form a cognitive model of which strokes are available by Handle
Flags, so such a cost may be minimal.

8 FUTURE WORK
Our results indicate that alternatives to lassoing should be
considered for ink applications, as lassoing is time consuming and
error prone. Handle Flags are only one such option. Another
alternative is to tap to cycle possible selections [26]. Previous
implementations of tapping were developed for mouse-based
image editors, where commands were accessed using a right
button click. We have started to explore the integration of the
tapping mechanism into Handle Flags, as an alternative to
displaying and navigating the hierarchy (Figure 11). In the future,
we hope to evaluate this approach in comparison to navigating the
actual hierarchy. It is unclear if tapping would be a more efficient
technique, because it forces users to do a linear search through all
potential selections.

Figure 11. Tapping the icon in the top left corner of the Handle
Flag cycles through possible selections.

In our implementation, the prioritization order of the Handle
Flags was entirely determined by recency of use. However, if
users are frequently changing selection scope, it may make the
location of the desired Handle Flag unpredictable. This could
outweigh the benefit of having the most recent selection at the
root level. It would be useful to explore other possible heuristics
for ordering selections. For example, in our second experiment,
we found that ordering the selections by the number of strokes
contained within allowed users to quickly find the goal selection.

One final issue that should be explored is the implicit grouping
algorithm implemented by the system. In our application, these
implicit groupings were formed using a simple heuristic based on
spatial properties of the ink strokes. While informal usage
observation of our sketching application showed that even coarse
recognitions can enable the use of Handle Flags, it would be
interesting to combine Handle Flags with state-of-the-art sketch
recognition or more sophisticated ink parsing systems. A system
which recognizes not only groups, but also hierarchies of groups,
would have a natural integration with Handle Flags, since Handle
Flags allow users to select from these hierarchies. For example, if
the user wrote a sentence, the system could recognize the
individual strokes, the characters, the words, and the entire phrase.

REFERENCES
[1] Accot, J. and Zhai, S. (1997). Beyond Fitts' Law: Models for

trajectory-based HCI tasks. ACM CHI. 295-302.
[2] Accot, J. and Zhai, S. (2002) More than dotting the i's - foundations

for crossing-based interfaces. ACM CHI. 73-80.
[3] Alvarado, C. (2004). Sketch Recognition User Interfaces: Guidelines

for Design and Development. AAAI Fall Symposium on Intelligent
Pen-based Interfaces. 8-14.

[4] Buxton, W., Fiume, E., Hill, R., Lee, A. and Woo, C. (1983).
Continuous Hand-Gesture Driven Input. Graphic Interface. 191-195.

[5] Deming, K. and Lank, E. (2004). Managing Ambiguous Intention in
Mode Inferencing. Proc of the AAAI Fall Symposium Series. 49 - 54.

[6] Fitzmaurice, G., Balakrishnan, R. and Kurtenbach, G. (1999). An
exploration into supporting artwork orientation in the user interface.
ACM CHI.167-174.

[7] Fitzmaurice, G., Khan, A., Pieke, R., Buxton, B. and Kurtenbach, G.
(2003). Tracking menus. ACM UIST. 71-79.

[8] Grossman, T., Hinckley, K., Baudisch, P., Agrawala, M. and
Balakrishnan, R. (2006). Hover widgets: using the tracking state to
extend the capabilities of pen-operated devices. ACM CHI. 861-870.

[9] Guiard, Y. (1987). Asymmetric division of labor in human skilled
bimanual action: The kinematic chain as a model. Journal of Motor
Behavior. 19(4): 486-517.

[10] Hinckley, K., Baudisch, P., Ramos, G. and Guimbretiere, F. (2005).
Design and analysis of delimiters for selection-action pen gesture
phrases in scriboli. ACM CHI. 451-460.

[11] Hinckley, K., Guimbretiere, F., Agrawala, M., Apitz, G. and Chen,
N. (2006). Phrasing techniques for multi-stroke selection gestures.
Graphic Interface. 147-154.

[12] Hinckley, K., Guimbretiere, F., Baudisch, P., Sarin, R., Agrawala,
M. and Cutrell, E. (2006). The springboard: multiple modes in one
spring-loaded control. ACM CHI. 181-190.

[13] Kurtenbach, G. and Buxton, W. (1991). Issues in combining marking
and direct manipulation techniques. ACM UIST.137-144.

[14] Lank, E. and Saund, E. (2005). Sloppy Selection: Providing an
Accurate Interpretation of Imprecise Stylus Selection Gestures.
Computers and Graphics. 29(4): 490-500.

[15] Li, Y., Hinckley, K., Guan, Z. and Landay, J. A. (2005).
Experimental analysis of mode switching techniques in pen-based
user interfaces. ACM CHI. 461-470.

[16] Mankoff, J., Hudson, S. and Abowd, G. (2000). Interaction
techniques for ambiguity resolution in recognition based interfaces.
ACM UIST. 11-20.

[17] Mizobuchi, S. and Yasumura, M. (2004). Tapping vs. circling
selections on pen-based devices: evidence for different performance-
shaping factors. ACM CHI. 607-614.

[18] Moran, T. P., Chiu, P., Melle, W. v. and Kurtenbach, G. (1997). Pen-
based interaction techniques for organizing material on an electronic
whiteboard. ACM UIST. 127-136.

[19] Mynatt, E., Igarashi, T., Edwards, W. and LaMarca, A. (1999). Flatland:
New dimensions in office whiteboards. ACM CHI. 346-353.

[20] Norman, D. A. (1981). Categorization of Action Slips. Psychology
Review. 88(1): 1-15.

[21] Plamondon, R. and Srihari, S. (2000). On-line and Offline
Handwriting Recognition: A Comprehensive Survey. IEEE Pattern
Analysis. 22(1): 63-84.

[22] Ramos, G., Robertson, G., Czerwinski, M., Tan, D., Baudisch, P.,
Hinckley, K. and Agrawala, M. (2006). Tumble! Splat! helping users
access and manipulate occluded content in 2D drawings. AVI. 428-435.

[23] Ren, X. and Moriya, S. (2000). Improving selection performance on
pen-based systems: a study of pen-based interaction for selection
tasks. ACM TOCHI. 7(3): 384-416.

[24] Saund, E., Fleet, D., Larner, D. and Mahoney, J. (2003).
Perceptually-supported image editing of text and graphics. ACM
UIST. 183-192.

[25] Saund, E. and Lank, E. (2003). Stylus input and editing without prior
selection of mode. ACM UIST. 213-216.

[26] Saund, E., Mahoney, J., Fleet, D., Larner, D. and Lank, E. (2002).
Perceptual Organization as a Foundation for Intelligent Sketch
Editing. AAAI Symposium on Sketch Understanding. 118-125.

[27] Saund, E. and Moran, T. P. (1994). A perceptually-supported sketch
editor. ACM UIST. 175-184.

[28] Sellen, A., Kurtenbach, G. and Buxton, W. (1992). The prevention
of mode errors through sensory feedback. Human Computer
Interaction. 7(2): 141-164.

[29] Zeleznik, R. and Miller, T. (2006). Fluid inking: augmenting the
medium of free-form inking with gestures. Graphics Interface. 155-
162.

174

