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Lemma Generation Method in Rewriting

Induction for Constrained Term Rewriting

Systems

Naoki Nakabayashi Naoki Nishida Keiichirou Kusakari

Toshiki Sakabe Masahiko Sakai

Recently, rewriting induction, which is one of the induction principles for proving inductive theorems in

equational theory, has been extended to deal with constrained term rewriting systems. Rewriting induction

has been applied to developing a method for proving the equivalence of imperative programs. To prove

inductive theorems, there are many cases where appropriate lemmas need to be added. To this end, several

methods for lemma generation in term rewriting have been studied. However, these existing methods are

not effective for cases in constrained term rewriting. In this paper, we propose a framework of lemma

generation for constrained term rewriting systems, in which we formalize the correspondences of terms in

diverging equations by means of given constrained rewrite rules. We show an instance of the formalization,

and also show that due to the framework with the instance, there is no necessity to give lemmas in advance

for the examples shown by previous works.

1 Introduction

Program verification methods for imperative

programs and functional programs are being re-

searched using different approaches. The repre-

sentative methods for verifying imperative pro-

grams are verification methods based on model

checking [11] [26] [18] or on Hoare logic [15] [14] [18].

However, heuristic tasks are often necessary, such

as providing checking algorithms that satisfy the

specifications in model checking, as well as dis-

covering loop invariant expressions and providing

pre-conditions and post-conditions in Hoare logic.

These heuristic tasks cannot, at times, be auto-

mated in such a way that they invariably pro-
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vide the expected information. Conversely, Is-

abelle/Hol [24], AOL2 [21], PVS [13], Coq [12],

SPIKE [6] [7] [29] and so on are representative the-

orem provers for functional programs. In term

rewriting systems (TRS), which are one kind of

computation model for functional programs, proof

methods based on the principles of implicit induc-

tion, such as inductionless induction and rewriting

induction, are being widely studied [23] [16] [27] [30]

[8] [36] [1] [2] [3] [9] as automated verification methods

for inductive theorems. Automated proving meth-

ods for inductive theorems can be used in equiva-

lence verification because the equivalence of func-

tions can be formulated as inductive theorems in

term rewriting systems in such a way that they

terminate with no adverse effects. However, there

are times when, depending on the input, the ver-

ification procedure enters an endless loop and the

verification fails.

A verification method that reduces the equiva-

lence of imperative programs operating on natural

numbers to inductive theorems in constrained term

rewriting systems (constrained TRS), including the

comparison of natural numbers in their constraints,

has been proposed [41] based on inductionless in-
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duction. This method is based on a completion

procedure in constrained term rewriting systems,

and it is possible to prevent endless looping of the

verification procedure in a TRS using a compari-

son operator for natural numbers. Meanwhile, a

new problem has arisen of automating the decom-

position processing of the constrained part of the

equation. It is also inherently difficult to handle in-

tegers under the restrictions of the completion pro-

cedure. And so, a verification method has been

proposed in the literature [37] to verify by rewrit-

ing induction of inductive theorems in constrained

term rewriting systems. With this method, it is

no longer necessary to decompose the constraints

and integers can be easily handled. This, however,

presumes that the lemma equations needed for the

proof have already been provided.

Generally speaking, it often necessary to provide

appropriate lemma equations for automated proofs

of inductive theorems. One way to obtain candi-

date lemma equations is to generalize (partially

replace into variables) diverging equations. Al-

though appropriate lemmas can be generated sim-

ply by generalizing maximal subterms with multi-

ple appearances, erroneous lemmas are often gen-

erated depending on the timing of lemma genera-

tion during the theorem proof. Methods for gen-

erating more appropriate lemmas in unconstrained

term rewriting systems have been proposed in the

past, such as divergence critic [32], sound gener-

alization [1] [31] [39], and the papers [10] [19] [20]. It

may be possible to extend these methods to con-

strained TRSs, but the proofs in the papers [37] [41]

show that these methods are not effective for gen-

erating the necessary lemmas. For example, the

divergence critic is not effective for the divergence

in the examples in the papers [37] [41]. Also sound

generalization cannot be applied to rewriting rules

that enable all of the arguments on the left side to

be variables as the examples in [37] [41] show. Sec-

tion 7 provides a more detailed comparison.

This paper formulates term relations from the

rewriting rules and proposes a framework to gen-

eralize constrained equations based on those rela-

tions. In particular, constrained equations are gen-

eralized using the following procedure.

1. Generate rewriting rules that show term rela-

tions from the rewriting rules. At this point, a

special constant that expresses the parts that

are not to be generalized is introduced.

2. Extract the subterms in the equation parts

and list them.

3. In the rules generated in step 1, those items

matching the term at the top of the list are

taken to be generalized terms. For the second

and following terms, if a term that generalized

the term one ahead is rewritten by rules gen-

erated in step 1 and the obtained item can be

matched, that term is taken to be a general-

ized term. Each of the terms in the equation

parts are generalized, complying with the gen-

eralized terms.

4. By generalizing the constraint, the con-

strained equation is generalized in accordance

with both of the sides originally held by the

equation and with the equivalent relations of

the subterms in the constraint.

Also, rules of inference for adding lemmas are in-

cluded among the rules of inference for the writing

induction proposed in the paper [37], and the proofs

are shown to be correct by means of the rewriting

induction constructed from all those rules of infer-

ence. Finally, we include functions to generate, and

add lemma equations in a proving procedure based

on rewriting induction; we propose one generation

method for rules that express term relations from

the rewriting rules, and we show successful proofs

for the exemplary proofs shown in [37] by auto-

matic generation with this method without provid-

ing lemma equations in advance.

This paper has the following organization. Sec-

tion 2 describes the rules for abstract reduction sys-

tems, terms, and constraints. Section 3 describes

constrained term rewriting systems. Section 4 pro-

poses a generalization of constrained equations.

Section 5 proposes a rewriting induction procedure,

in addition to the method proposed in Section 4 and

proves its correctness. Section 5 also shows exam-

ples of proofs with this method. Section 6 com-

pares this research with related research. Finally,

Section 7 takes a look at future issues.

2 Preliminaries

This paper follows the general notation for term

rewriting systems [4].

An abstract reduction system S is a pair (A,→),

where the the reduction → is a binary relation on

the set A. The reflexive transitive closure of → is
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denoted by →∗. An element a ∈ A is called a nor-

mal form of S if there is no element b ∈ A such that

a → b. An element c ∈ A is said to have a normal

form w.r.t. S if there exists a normal form a such

that c →∗ a. The set of normal forms with respect

to S is denoted by NFS . S is called Church-Rosser

(CR) if for each x, y ∈ A with x ↔∗ y, there exists

an element z ∈ A such that x→∗ z ←∗ y. S is said

to be terminating if there exists no infinite reduc-

tion sequence of → starting from any element a ∈
A. The relation →! is defined as follows:

→! = {(a, b) | a→∗ b ∈ NFS}
The set of terms over a set F of function sym-

bols (signature) and the countably infinite set V of

variables is denoted by T (F ,V). A term is called

ground if it contains no variable, and the set of

ground terms is denoted by T (F). For a term t,

the set of variables appearing in t is denoted by

Var(t). We write s ≡ t if terms s and t are iden-

tical. The set of positions in term t is denoted by

Pos(t):
• Pos(t) = {ε} if t ∈ V, and
• Pos(t) = {ε} ∪ {iu | 1 ≤ i ≤ n, u ∈ Pos(ti)}
if t ≡ f(t1, . . . , tn)

where ε denotes the empty sequence. Note that the

root position is represented as ε. The hole □ ̸∈ F is

taken to be a special constant symbol. A context is

a term in T (F ∪ {□},V) that includes exactly one

□. The hole itself is also a context, and this kind of

context is called an empty context. For a context

C[ ]p with the hole at position p, the term obtained

by replacing the hole with a term t is denoted by

C[t]p. We may omit p from C[ ]p and C[t]p if p

is clear from the context. The set of contexts over

F and V is denoted by T□(F ,V). For a term t, a

term u is called a subterm of t, denoted by t|p, if
there exists a context C[ ]p such that t ≡ C[u]p.

For a variable x appearing in a term t at position

p, the occurrence of x at position p is called shallow

if the length of p is at most one.†1 The size of a

term is the total number of occurrences of function

symbols and variables in the term.

For a substitution σ, thee domain and range of

σ are denoted by Dom(σ) (= {x | x ̸≡ σ(x)})
and Ran(σ) (= {σ(x) | x ∈ Dom(σ)}), respec-

tively, where the domain is finite. We may write

{x1 7→ t1, . . . , xn 7→ tn} instead of σ if Dom(σ) =

†1 In other words, p is either ε or a natural number.

{x1, . . . , xn} and σ(xi) ≡ ti. The application σ(t)

of σ to term t is called an instance of t and we may

abbreviate it to tσ. We say that t is more general

than tσ. For substitutions σ and σ′, we write σ

= σ′ if Dom(σ) = Dom(σ′) and xσ ≡ xσ′ for all

variables x (in Dom(σ)). The composition σσ′ of σ
and σ′ is defined as x(σσ′) ≡ (xσ)σ′. For a set X

of variables, the restriction σ|X of σ to X is defined

defined as {x 7→ xσ | x ∈ Dom(σ) ∩ X}. For sub-

stitutions σ and θ, we write σ ≤ θ if there exists a

substitution δ such that σδ = θ. We say that σ is

ground to term t if tσ is ground. The substitution

σ is simply called ground if σ is ground to any term

appearing after σ. Given an abstract reduction sys-

tem S = (T (F ,V),→), a ground substitution σ is

called normalized w.r.t. S if Ran(σ) ⊆ NFS .

Terms s and t are called unifiable if there exits a

substitution σ such that sσ ≡ tσ. Then, σ is said

to be a unifier of s and t. A unifier σ of s and t is

called most general (mgu) if σ is more general than

any unifier of s and t. Note that a most general uni-

fier is unique up to variable renaming. We denote

a most general unifier of s and t by mgu(s, t).

A partial order ≻ over terms is called a reduc-

tion order if ≻ is well-founded and closed under

contexts and substitutions.

Let G be a signature and P be a set of predicate

symbols. Formulas over G, P and V are defined by

BNF notation as follows:

ϕ ::= P (t1, . . . , tn) | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ

| ϕ⇔ ϕ | ⊤ | ⊥
where P ∈ P and t1, . . . , tn ∈ T (G,V).

P (t1, . . . , tn) is called an atomic formula. We as-

sume that the binary equality predicate symbol EQ

is included in P. Note that this paper deals with

quantifier-free formulas only. The set of free vari-

ables in formula ϕ is denoted by fv(ϕ).†2 The set

of formulas over G,P is denoted by Fol(G,P,V). A
formula is called closed if it contains any free vari-

able. The application of substitution σ to formula

ϕ, denoted by ϕσ, is defined as the replacement of

free variables with the corresponding terms regis-

tered in σ, and, in applying σ to ϕ, we implicitly

assume that Ran(σ|fv(ϕ)) ⊆ T (G,V). Positions of

formulas are defined as well as those of terms by

considering formulas as terms.

†2 All the variables in quantifier-free formulas are

free variables.
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A structure M for G and P consists of the non-

empty set A, called the universe, and the interpre-

tation for G and P. Every n-ary function symbol g

∈ G is interpreted by an n-ary function gM : An 7→
A. Every n-ary predicate symbol P ∈ P is inter-

preted by an n-ary function PM : An 7→ {⊤,⊥},
where ⊤ and ⊥ correspond to true and false, re-

spectively. The interpretation of EQ is done by the

function EQM that returns ⊤ if the value of the ar-

guments are equivalent, and otherwise returns ⊥.
Given a structureM for G and P, we call a for-

mula over G, P and V a constraint (overM).

The interpretation of ground terms (in T (G))
w.r.t. M is defined as (f(t1, . . . , tn))

M =

fM(tM1 , . . . , tMn ), and the interpretation of a closed

atomic formula is defined as (P (t1, . . . , tn))
M

= PM(tM1 , . . . , tMn ). The interpretations of

¬,∧,∨,⊤,⊥ are defined as usual. We say that a

closed formula ϕ holds w.r.t.M, written asM |= ϕ,

if ϕM = ⊤, and otherwise it does not hold w.r.t.M,

written as M ̸|= ϕ. In this paper, we assume that

the truth values of closed formulas are decidable.

A formula ϕ is called valid w.r.t. M ifM |= ϕσ

for every substitution σ such that fv(ϕ) ⊆ Dom(σ)

and Ran(σ|fv(ϕ)) ⊆ T (G). We say that ϕ is called

satisfiable w.r.t. M if there exists a substitution σ

such that fv(ϕ) ⊆ Dom(σ), Ran(σ|fv(ϕ)) ⊆ T (G),
and M |= ϕσ. Furthermore, ϕ is called unsatisfi-

able w.r.t.M if ϕ is not satisfiable w.r.t.M.

Example 2.1 Let GPA = {0, s, p,+}, PPA = {=
, ̸=, <,≤, >,≥}, and MPA be a structure for GPA
and PPA such that the universe ofMPA is the set

of integers, 0MPA = 0, sMPA(x) = x+ 1, pMPA(x)

= x − 1, and the interpretations of the predicate

symbols are the usual ones over integer. Here, PPA

does not include EQ , but we consider = as EQ

since =MPA coincides with the interpretation of

EQ . Note that constraints over MPA correspond

to formulas in Presburger arithmetic

A closed formula in Presburger arithmetic is

called p Presburger sentence. It is well known [25]

[35] [40] that Presburger sentences†3 is decidable.

†3 In this paper, we assumed that constraints are

quantifier-free. However, when constraints we

treat are in Presburger arithmetic, we can allow

constraints to contain quantifiers while the discus-

sion later also holds for such constraints. This is

because Presburger sentences are decidable even

For this reason, the validity, satisfiability, and un-

satisfiability for any constraint overMPA is decid-

able.

3 Constrained Term Rewriting Sys-

tems and their Properties

This section introduces the definition of con-

strained term rewriting systems, which has been

shown in the paper [37], and describes the char-

acteristics that should be satisfied regarding con-

straints.

Let F and G be sets of function symbols consist-

ing of F∩G = ∅, let P be a set of predicate symbols,

and letM be a structure for G and P. Then, a con-

strained rewriting rule over (F ,G,P,M) is a triple

(l, r, ϕ), written as l → r [[ϕ]], of the left-hand side

l, the right-hand side r, and the constrained part ϕ,

such that l ̸∈ V, l, r ∈ T (F ∪ G,V), and Var(l) ⊇
Var(r), ϕ ∈ Fol(G,P), and Var(l) ⊇ fv(ϕ). When

ϕ is ⊤, the constraint may be omitted and it may

be written as l→ r.

Let R be a finite set of constrained rewriting

rules over (F ,G,P,M). The rewrite relation →R

of R is defined as {(C[lσ]p, C[rσ]p) | l → r [[ϕ]] ∈
R, C[ ] ∈ T□(F ∪ G,V), M |= ϕσ}.†4 If the

rewrite position p is to be made clear, we write

→p,R instead of →R. A constrained term rewriting

system over (F ,G,P,M) is an abstract reduction

system (T (F ∪ G,V),→R) determined by the set

T (F ∪ G,V) of terms and the rewrite relation →R,

and is simply denoted by the set R of rewriting

rules. When the constrained parts of all the rules

in R are ⊤, R is a term rewriting system (TRS).

A constrained equation over (F ,G,P,M) is a

triple (s, t, ϕ), written as s ≈ t [[ϕ]], of terms s, t and

the constrained part ϕ, such that s, t ∈ T (F∪G,V).
When ϕ is ⊤, the constrained part may be omit-

ted and the equation may be written as s ≈ t.

Also, s ≃ t [[ϕ]] expresses s ≈ t [[ϕ]] or t ≈ s [[ϕ]],

e.g., s ≃ t [[ϕ]] ∈ E means that s ≈ t [[ϕ]] ∈ E

or t ≈ s [[ϕ]] ∈ E. Hereinafter, when the mean-

ing is clear enough, constrained rewriting rules

(equations) are simply called rewriting rules (equa-

tions). Each rewriting rule (equation) may have

a unique label and be expressed as ρ : l → r [[ϕ]]

(ρ′ : s ≈ t [[ψ]]). Also, s ≈ t is called the equation

if they contain quantifiers.

†4 At this point, Ran(σ|fv(ϕ)) ⊆ T (G).
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part of s ≈ t [[ψ]].
Let E be a finite set of constrained equations over

(F ,G,P,M). The binary relation ↔E determined

by E is defined as {(C[sσg], C[tσg]) | s ≃ t [[ϕ]] ∈
E, C[ ] ∈ T□(F ,V), M |= ϕσ}.
A constrained equation s ≈ t [[ϕ]] is called

an inductive theorem of R if M |= ϕσg and

sσg ↔∗
R tσg for any arbitrary ground substitu-

tion σg such that Var(s, t)∪ fv(ϕ) ⊆ Dom(σg) and

Ran(σg|Var(s,t)∪fv(ϕ)) ⊆ T (F ∪ G) [9] [37]. Given a

term t and a constraint ϕ, a position p of t is called

an R-complete occurrence in t under ϕ if tσNF can

be rewritten at position p for any ground normal-

ized substitution σNF such thatM |= ϕσNF .

Next, we introduce the characteristics requested

of constrained TRSs that uses rewriting induction.

Definition 3.1 ( [37]) Let R be a constrained

term rewriting system over (F ,G,P,M).

• R is called complete w.r.t. M if M |=
EQ(sg, tg) for any arbitrary ground terms

sg, tg ∈ T (G) such that sg ↔∗
R tg.

• R is called locally sound w.r.t. M if, for any

ground term sg ∈ T (G), tg ∈ T (G) and M |=
EQ(sg, tg) for any ground term t ∈ T (F ∪ G)
such that sg →R tg.

Completeness ensures that if two terms are seman-

tically equivalent, then they are also equivalent

w.r.t. the rewrite relation. Local soundness ensures

that a term obtained by rewriting an interpretable

term has the same value of the original term.

Theorem 3.2 ( [37]) Let R be a constrained term

rewriting system over (F ,G,P,M).

• R is complete w.r.t. M if all of the following

hold:

– R is locally sound w.r.t.M,

– R is terminating, and

– for any ground terms sg, tg ∈ T (G), if

sg, tg ∈ NFR and M |= EQ(sg, tg), then

sg ≡ tg.

• R is locally sound w.r.t. M if and only if,

for any rewriting rule l → r [[ϕ]] ∈ R, if l ∈
T (G,V), then r ∈ T (G,V) and ϕ⇒ EQ(l, r) is

valid w.r.t.M.

Example 3.3 ( [37]) Let us consider the fol-

lowing constrained term rewriting system over

(∅,GPA,PPA,MPA) such that constrained parts

correspond to formulas for Presburger arithmetics

shown in GPA,PPA,MPA of Example 2.1:

Radd =


0+ y→ y

s(x) + y→ s(x+ y)

p(x) + y→ p(x+ y)


Radd is locally sound w.r.t.MPA since all the left-

hand sides and the right-hand sides are included

in T (GPA,V), and because 0 + y = y, s(x) + y =

s(x + y), p(x) + y = p(x + y) all are valid w.r.t.

MPA. Also, because Radd has the CR property, R

is sound w.r.t. MPA. However, when we consider

0 and s(p(0)), although MPA |= 0 = s(p(0)), Radd

does not satisfy 0 ↔∗
Radd

s(p(0)). For this reason,

Radd is not complete w.r.t.MPA.

Next we consider the following constrained term

rewriting system over (∅,GPA,PPA,MPA):

RPA = Radd ∪

{
s(p(x))→ x

p(s(x))→ x

}
RPA is terminating and locally sound w.r.t.MPA.

Moreover, if sg, tg ∈ NFR and MPA |= sg = tg,

then sg ≡ tg can be said. For this reason, RPA is

complete w.r.t.MPA.

4 Generalization of Constrained Equa-

tions

This section describes how lemma equations are

generated, and defines properties and functions

that are necessary for the generation.

Let us consider the following constrained TRS

over ({sum, sum1, u},GPA,PPA,MPA):

Rsum =RPA

∪



sum(x)→ 0 [[x ≤ 0]]

sum(s(x))→ sum(x) + s(x) [[x ≥ 0]]

sum1(n)→ u(n, s(0), 0)

u(n, i, z)→ u(n, s(i), z + i) [[i ≤ n]]
u(n, i, z)→ z [[i > n]]


When proving that sum(n) ≈ sum1(n) is a induc-

tive theorem of Rsum by using the method in [37],

the generation of equations to be proved diverges

as illustrated in Fig. 1. For the proof to succeed,

it is sufficient to show that the first equation in

Fig. 1 is an inductive theorem of Rsum. To this

end, it suffices to prove that the second equation is
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u(n, s(0), 0) + s(n) ≈ u(s(n), s2(0), 0+ s(0)) [[s(0) ≤ s(n)]]

u(n, s2(0), 0+ s(0)) + s(n) ≈ u(s(n), s3(0), (0+ s(0)) + s2(0)) [[s2(0) ≤ s(n)]]

u(n, s3(0), (0+ s(0) + s2(0)) + s(n) ≈ u(s(n), s4(0), ((0+ s(0)) + s2(0)) + s3(0)) [[s3(0) ≤ s(n)]]
...

Fig. 1 Example of divergence in the proof sum(n) ≈ sum1(n)

an inductive theorem of Rsum, and to this end, we

prove that the third equation is an inductive theo-

rem of Rsum. This kind of repetition is a divergence

of equations. If we generate an equation that is

more general than some of equations in this diver-

gence and if we succeed in proving that the more

general equation is an inductive theorem, the all

the original equations in the divergence are proved

to be inductive theorems. As a result, divergence

converges, and an overall proof can be completed.

Generally speaking, the cause of divergence in

a proof is frequently the case that appropriate

rewriting rules corresponding to induction hypothe-

ses which are already obtained cannot be applied

to equations to be proved. There is a possibility

that the appropriate rewriting rules can be ap-

plied to more general equations, and thus, this

technique can be expected to lead to a successful

proof. For this reason, we try to generate a can-

didate of lemma equations from the second equa-

tion u(n, s2(0), 0+ s(0)) + s(n) ≈ u(s(n), s3(0), (0+

s(0)) + s2(0)) [[s2(0) ≤ s(n)]] in Fig. 1. To prove

that this equation is an inductive theorem, making

u(n, x, y) + s(n) ≈ u(s(n), s(x), y + x) [[x ≤ s(n)]]

a candidate of lemma equations enables us to use

it as an induction hypothesis in later steps in the

proof, and we can succeed in proving that the initial

equation is an inductive theorem.

Next, we describe the idea of generating the can-

didate equation mentioned above. u(n, s2(0), 0 +

s(0)) and u(s(n), s3(0), (0 + s(0)) + s2(0)) are gen-

eralized into u(n, x, y) and u(s(n), s(x), y + x), re-

spectively. This is caused from the fact that vari-

ations of the second and third arguments of u are

the same. This correspondence coincides with the

variation of the second and third arguments of u

in the fourth rule of Rsum. On the other hand, we

want to ignore the first argument of u since the first

argument of u is not made a target of generaliza-

tion. Viewed in this light, by using the constant

Ω representing an arbitrary term, we deduce the

following relation from the fourth rule in Rsum:

ρΩ : u(Ω, i, z)→ u(Ω, s(i), z + i)

In Section 5. 3, we will show a concrete method for

generating ρΩ from R.

We denote by ≥Ω the relation ensuring that Ω is

more generalized than any arbitrary term. Then,

the following relation holds between the terms men-

tioned above:

u(n, s2(0), 0+s(0)) u(s(n), s3(0), (0+ s(0))+s2(0))

⋎θ ⋎θ

u(n, x, y) u(s(n), s(x), y + x)

∨|Ω ∨|Ω
u(Ω, x, y) →ε,ρΩ u(Ω, s(x), y + x)

where θ = {x 7→ s2(0), y 7→ 0 + s(0)} and t ≺θ s

denotes the relation between s, t such that s ≡ tθ.

On the other hand, constraint s2(0) ≤ s(n) must

be generalized into x ≤ s(n). When the equa-

tion being focused on was generated, information

can be obtained that s2(0) in the constraint and

the subterm s2(0) in the second argument s3(0)

(≡ s(s2(0))) of the right-hand side u(s(n), s3(0), (0+

s(0)) + s2(0)) are equivalent (see Section 5. 1). Us-

ing this information, we obtain x ≤ s(n) along with

the variable replacement mentioned in generalizing

the equation part.

In the following, by following the above idea,

we formalize a generalization method for con-

strained equations in a constrained TRS R over

(F ,G,P,M).

First we provide definitions for Ω and ≥Ω.

Definition 4.1 ( [22]) Let Ω ̸∈ F be a fresh con-

stant, and define the relation ≥Ω over T (F ∪
{Ω},V) as follows:

• t ≥Ω Ω and t ≥Ω t for any term t, and

• f(t1, . . . , tn) ≥Ω f(s1, . . . , sn) if t1 ≥Ω

s1, . . ., tn ≥Ω sn.
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Example 4.2 u(n, x, y)≥Ω u(Ω, x, y), u(s(n), s(x), y+

x) ≥Ω u(Ω, s(x), y + x).

Next we give a generalization method of equa-

tions.

Definition 4.3 An equation s ≈ t [[ϕ]] is called an

instance of an equation s′ ≃ t′ [[ϕ′]], and moreover,

s′ ≈ t′ [[ϕ′]] is said to be more general than s ≃ t [[ϕ]]
if there exists a substitution θ such that

• s ≡ s′θ,

• t ≡ t′θ, and

• ϕ⇔ ϕ′θ is valid w.r.t.M.†5

Example 4.4 u(n, s2(0), 0 + s(0)) + s(n) ≈
u(s(n), s3(0), (0 + s(0)) + s2(0)) [[s2(0) ≤ s(n)]] is

an instance of u(n, x, y) + s(n) ≈ u(s(n), s(x), y +

x) [[x ≤ s(n)]].

Let s ≈ t [[ϕ]] be an instance of s′ ≃ t′ [[ϕ′]]. Then,

it is clear by definition that if s′ ≈ t′ [[ϕ′]] is an in-

ductive theorem of R, then so is s ≈ t [[ϕ]].
Next, using a tuple of terms and rewriting rules

RΩ over (F ∪ {Ω},G,P,M), we define a function

for generalizing the tuple of the terms. Let us write

a tuple of n terms s1, . . . , sn as (s1, . . . , sn). Also,

we will describe in Section 5. 3 some heuristics for

generating RΩ from R.

Definition 4.5 Let RΩ be a TRS over (F ∪
{Ω},G,P,M), and let s1, . . . , sn be terms in T (F∪
G,V). We define the function genTerms as follows

(see also Fig. 2):

genTerms((s1, . . . , sn), R
Ω) =(t1, . . . , tn)

∃θ.∃v1, . . . , vn ∈ T (F ∪ G ∪ {Ω},V).
Dom(θ) ⊆ Var(v1, . . . , vn),
(∀i ∈ {1, . . . , n}. si ≡ tiθ, vi ≤Ω ti),

(∀i ∈ {1, . . . , n− 1}. vi →ε,RΩ vi+1)


where v1 is a variant of a left-hand side in RΩ,

and t1, . . . , tn are terms in T (F ∪ G,V) such that

all of the following hold for all 1 ≤ i ≤ n:

• if ∀p ∈ Pos(vi). vi|p ≡ Ω, then ti|p ≡ si|p,
and

• ti is most general in the terms satisfying the

previous condition.

Proposition 4.6 genTerms is computable, and

†5 At this point, Ran(θ|fv(ϕ′)) ⊆ T (G,V) and fv(ϕ)

= fv(ϕ′θ).

s1 s2 . . . sn

⋎θ ⋎θ ⋎θ

t1 t2 . . . tn

∨|Ω ∨|Ω ∨|Ω
v1 →ε,RΩ v2 →ε,RΩ · · · →ε,RΩ vn

Fig. 2 Relations between si, ti, vi in the

definition of genTerms.

the returned set is finite up to variable renaming.

Proof. The pair (t1, v1) of t1 and v1 belongs to the

set T1 = {(t, v) | ∃θ. s ≡ tθ ∧ t ≥Ω v ∧ (∃σ. ∃l →
r ∈ RΩ. v ≡ lσ)}. The size of t is equal to or

less than the size of s. If t ≥Ω v, then the size

of v is equal to or less than the size of t. There-

fore, T1 is finite up to variable renaming. Let

Vi+1 = {v | vi →ε,RΩ v}. Then, Vi+1 is finite up to

variable renaming since→ε,RΩ is finitely branching.

Since Vi+1 is finite up to variable renaming , the set

Ti+1 = {(t, v) | ∃θ. si+1 ≡ tθ ∧ t ≥Ω v ∧ v ∈ Vi+1}
is finite, and (ti+1, vi+1) belongs to Ti+1. Due to

the discussion above, genTerms is computable since

the candidates of (t1, . . . , tn) are finite up to vari-

able renaming. ⊓⊔

Example 4.7 For Rsum, we provide the following

TRS RΩ
sum:

RΩ
sum =

{
sum1(Ω)→ u(Ω, s(0), 0)

u(Ω, i, z)→ u(Ω, s(i), z + i)

}
Consider s1 ≈ u(n, s2(0), 0 + s(0)), s2 ≈

u(s(n), s3(0), (0

+ s(0)) + s2(0)). Let v1 ≡ u(Ω, x, y), v2

≡ u(Ω, s(x), y + x), θ = {x 7→ s2(0), y 7→
0 + s(0)}. Then, genTerms((s1, s2), R

Ω
sum) =

{(u(n, x, y), u(s(n), s(x), y + x))}.

Next, we give a method for generalizing con-

straints.

Definition 4.8 Let the labels expressing the left-

hand side, right-hand side, and the constrained part

for equations be l, r, and c, respectively. For an

equation s ≈ t [[ϕ]], we use l.p to express the posi-

tion p in the left-hand side s of the equation, use

r.p to express the position p in the right-hand side

t, and use c.p to express the position p in the con-
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straint ϕ:

(s ≈ t [[ϕ]])|l.p ≡ s|p
(s ≈ t [[ϕ]])|r.p ≡ t|p
(s ≈ t [[ϕ]])|c.p ≡ ϕ|p

Let Q be a set of positions in equation e such that

e|p ≡ e|q for all p, q ∈ Q. Then, Q is said to be a

position equivalence w.r.t. e.

We denote by O(s ≈ t [[ϕ]]) the set of all positions in
the equation: O(s ≈ t [[ϕ]]) = {l.p | p ∈ O(s)}∪{r.p |
p ∈ O(t)} ∪ {c.p | p ∈ O(ϕ)}. In generating equa-

tions in proofs inferred by rewriting induction, we

can compute position equivalences w.r.t. equations

(see Subsection 5. 1). Note that we take the posi-

tion equivalence of the initial set of equations to be

empty. In this way, each equation ρ is assumed to

have its own position equivalence. We denote the

position equivalence by O=(ρ).

Definition 4.9 Suppose that the equation part of

ρ : s ≈ t [[ϕ]] is generalized into s′ ≈ t′. Then,

the function genCnst that generalizes ϕ is defined

as follows:

function genCnst(ρ : s ≈ t [[ϕ]], s′, t′) =
ϕ′ := ϕ;

e′ :== s′ ≈ t′;
for all Q ∈ O=(ρ), the following is done:

for all c.q ∈ Q, the following is done:

if i.p ∈ Q ∧ i ∈ {l, r} ∧ i.p ∈ O(e′)
∧(∀i′.p′ ∈ Q. i′.p′ ∈ O(e′), e′|i.p ≡ e′|i′.p′)

then ϕ′ := ϕ′[e′|i.p]q;
end

end

return ϕ′;

Example 4.10 Let ρ be u(n, s2(0), 0 + s(0)) +

s(n) ≈ u(s(n), s3(0), (0 + s(0)) + s2(0)) [[s2(0) ≤
s(n)]] and O=(ρ) = {{r.2.1, r.3.2, c.1}}. Then,

genCnst(ρ, u(n, x, y) + s(n), u(s(n), s(x), y + x)) =

x ≤ s(n).

Example 4.11 Let ρ be f(x, a, a) ≈ g(x) [[p(a)]]

and O=(ρ) = {{l.2, l.3, c.1}}. Then, p(a) is

not generalized — genCnst(ρ, f(x, y, z), g(x)) =

p(a) — since (f(x, y, z) ≈ g(x))|l.2 ̸≡ (f(x, y, z) ≈
g(x))|l.3.

Finally, using genTerms, we define the function

that generates generalized equations from equa-

tions and the rewriting rules RΩ. If i ̸= j and ti

and tj are not subterms of each other, then the no-

tation s[t1/u1, . . . , tn/un] uniquely represents the

term obtained from s by replacing each ti by ui.

Definition 4.12 Let v1, . . . , vn be subterms of the

equation s ≈ t [[ϕ]] and not be subterms of each

other. Then, we define the function genEqn that

generates equations obtained from s ≈ t [[ϕ]],

(v1, . . . , vn), and R
Ω as shown in Fig. 3.

Example 4.13 Let ρ be u(n, s2(0), 0 + s(0)) +

s(n) ≈ u(s(n), s3(0), (0 + s(0)) + s2(0)) [[s2(0) ≤
s(n)]], O=(ρ) = {{r.2.1, r.3.2, c.1}}, and (s1, s2)

be (u(n, s2(0), 0 + s(0)), u(s(n), s3(0), (0 + s(0))).

Then, genEqn(ρ,RΩ
sum, (s1, s2)) = {u(n, x, y) ≈

u(s(n), s(x), y + x) + s(n) [[x ≤ s(n)]]}.

The following theorem holds for genEqn.

Theorem 4.14 Let RΩ be a TRS, e be an

equation, v1, . . . , vn be subterms on both sides

of e such that v1, . . . , vn are not subterms

of each other. Then, any equation e′ ∈
genEqn(e,RΩ, (v1, . . . , vn)) is more general than e.

Proof. Let e be s ≈ t [[ϕ]], and e′ be s′ ≃ t′ [[ϕ′]].

Then, by the definitions of genTerms and genCnst ,

there exists a substitution θ such that s ≡ s′θ and

t ≡ t′θ and ϕ ≡ ϕ′θ. Thus, e′ is more general than

e. ⊓⊔

The assumption that v1, . . . , vn are not subterms

of each other ensures that the uniqueness of the

replacement of subterms generated by genTerms.

Finally, we provide an intuitive description of

the method above that is using RΩ. This method

bridges the disparity in the number of applications

of the rewriting rules by applying RΩ. For example,

because of the constraint s3(0) ≤ s(n) for the s(n) in

the first argument, the term s2 (≡ u(s(n), s3(0), (0+

s(0))+s2(0))) in Example 4.7 has the rewriting rule

u(n, i, z) → u(n, s(i), z + i) [[i ≤ n]] applied once

more than for the term s1 (≡ u(n, s2(0), 0+ s(0))).

For this reason, by applying to s1 the rewriting rule

u(Ω, i, z) → u(Ω, s(i), z + i) in RΩ
sum corresponding

to u(n, i, z)→ u(n, s(i), z+ i) [[i ≤ n]], the disparity

in the number of applications of the rule to s1 and



9

genEqn(s ≈ t [[ϕ]], RΩ, (v1, . . . , vn)) ={
s′ ≈ t′ [[ϕ′]]

(v′1, . . . , v
′
n) ∈ genTerms((v1, . . . , vn), R

Ω), s′ ≡ s[v1/v′1, . . . , vn/v′n],
t′ ≡ t[v1/v′1, . . . , vn/v′n], ϕ′ = genCnst(s ≈ t [[ϕ]], s′, t′)

}

Fig. 3 Definition of genEqn

s2 is bridged, and the equation is generalized.

5 Rewriting Induction in Constrained

Term Rewriting Systems

This section introduces a rewriting induction

method [37] for validating inductive theorems of

constrained term rewriting systems, and expands

the method so that lemma equations can be added.

Then, we propose a strategy for automatically

validating inductive theorems of constrained term

rewriting systems.

A proof by rewriting induction is done by apply-

ing inference rules to a pair of a set E of equations

to be proved, and a setH of rewriting rules that can

be used in the proof. The rules in H can be seen

as the induction hypotheses or lemmas that can

be used in the proof of E. The proof starts from

(E, ∅), and if it can be transformed into (∅,H), the

the proof is successfully completed.

5. 1 Inference Rules

The inference rules of rewriting induction for con-

strained term rewriting systems are illustrated in

Fig. 4 [37]. The function Expd used in Expansion

is defined as follows.

Definition 5.1 The function Expd is defined as

follows:

Expd(s ≈ t [[ϕ]], p) =ρ : C[r]pσ ≈ tσ [[&(ϕσ, ψσ)]]

s ≡ C[u]p,

l→ r [[ψ]] ∈ R,
σ = mgu(u, l)


where l → r [[ψ]] and s ≈ t [[ϕ]] have no shared

variable, and & is defined as follows:†6

†6 Although the paper [37] defines & as &(ϕσ, ψσ)

= ϕσ ∧ ψσ, this paper modifies the definition to

optimize constraints in order to make the gener-

alization of constraints more concise.

&(ϕσ, ψσ) =

ψσ if ψσ ⇒ ϕσ is valid w.r.t. M and

fv(ψσ) = fv(ϕσ)
ϕσ if ϕσ ⇒ ψσ is valid w.r.t. M and

fv(ψσ) = fv(ϕσ)
ϕσ ∧ ψσ otherwise

Moreover, when &(ϕσ, ψσ) = ϕσ∧ψσ, the position

equivalence for an equation ρ is defined as follows:

O=(ρ) =∪
x∈Var(r){{l.p.q | r|q ≡ x} ∪ {c.2.q | ψ|q ≡ x}}
∪
∪

x∈Var(t){{r.q | t|q ≡ x} ∪ {c.1.q | ϕ|q ≡ x}}

When &(ϕσ, ψσ) = ϕσ or ψσ, O=(ρ) is defined by

replacing c.2.q and c.1.q with c.q. Furthermore, we

remove from O=(ρ) a set A satisfying one of the

following conditions since such a relation is inef-

fective for generalizing constraints:

• A does not contain any position in the form of

c.p,

• the number of elements is at most one, i.e., A

is a singleton set, or

• ρ|p ∈ V for p ∈ A.†7

Furthermore, when ϕσ ⇔ ψσ is valid w.r.t. M,

whichever of ϕσ or ψσ is larger than the set of

O=(ρ) is taken to be the result of &(ϕσ, ψσ).

When the inference rules in Fig. 4 are applied

once to (E,H), resulting in (E′, H ′), we write

(E,H) ⊢RI (E′, H ′). The reflexive and transitive

closure of ⊢RI is denoted by ⊢∗RI. ⊢eRI represents

the application of Expansion. E⊎E′ is identical to

E ∪ E′ and E ∩ E′ = ∅.
Next, we propose an inference rule of for soundly

adding lemma equations into equation sets.†8 The

inference rule is illustrated in Fig. 5. Postulate in

Fig. 5 is based on the one in [27], and the rule is im-

proved so that the disproving faculty in [37]. The

†7 Note that ρ|p1 ≡ · · · ≡ ρ|pn for A = {p1, . . . , pn}.
†8 A lemma generation method is called sound if all

the equations generated by the method from in-

ductive theorems are inductive theorems.
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Simplification

(E ⊎ {C[lσ] ≃ t [[ϕ]]},H)

(E ∪ {C[rσ] ≈ t [[ϕ]]}, H)
if l→ r [[ψ]] ∈ R ∪H, ϕ are satisfiable w.r.t.M, fv(ψσ) ⊆ fv(ϕ), and

ϕ⇒ ψσ is valid w.r.t.M
Deletion

(E ⊎ {s ≃ t⇐ ϕ}, H)

(E,H)
if s ≡ t or ϕ is unsatisfiable w.r.t.M

Expansion

(E ⊎ {s ≃ t⇐ ϕ}, H)

(E ∪ Expd(s ≈ t [[ϕ]], p), H ∪ {s→ t⇐ ϕ})
if s ≻ t, s ̸∈ V, Var(s) ⊇ Var(t), fv(ϕ) ⊆ Var(s),
and p is an R-complete position of s under ϕ

EQ-Deletion

(E ⊎ {C[s1, . . . , sn] ≃ C[t1, . . . , tn] [[ϕ]]}, H)

(E ∪ {C[s1, . . . , sn] ≈ C[t1, . . . , tn] [[ϕ ∧ ¬(
∧n

i=1 EQ(si, ti))]]}, H)
if {s1, t1, . . . , sn, tn} ⊆ T (G,V)
and Var(si, ti) ⊆ fv(ϕ)

Fig. 4 Inference rules of rewriting induction for constrained term rewriting systems [37]

inference rule is essentially the same as the infer-

ence rule in [2] for adding sound lemma equations

to equation sets. The difference from [2] is that E

can include equations that are not inductive theo-

rems. This is caused from the fact that the lemma

generation method in this paper is not sound in

general. Moreover, L is not added to E; instead,

for the sake of efficiency in the implementation, H ′

obtained in the proof of L is added to H. Actu-

ally, we choose one of the equations obtained by

generating candidates of lemma equations as the

element of L (see Subsection 5. 2). As mentioned

above, the lemma generation method in this paper

is not sound. However, the generated lemma can-

didates are themselves first proved independently

of the main proof, and their induction hypotheses

generated in the proof are added to the main proof

stream only if they are inductive theorems. Due to

this mechanism (use of Postulate), we preserve the

soundness of proofs. When the inference rules in

Fig. 4 and Fig. 5 are applied once to (E,H), result-

ing in (E′, H ′), we write (E,H) ⊢RI+Pos (E′, H ′).

The reflexive and transitive closure of ⊢RI+Pos is

denoted by ⊢∗RI+Pos. ⊢Pos represents the applica-

tion of Postulate. ⊢∗RI+Pos is used for ⊢∗ in Fig. 5.

(E,H) ⊢∗RI+Pos (E
′, H ′) is called the proof.

The following lemma and theorem hold for the

inference rules in Fig. 4 and Fig. 5.

Lemma 5.2 If (E,H) ⊢∗RI+Pos (E′, H ′), there ex-

Postulate

(E,H)

(E,H ∪H ′)
if (L, ∅) ⊢∗ (∅, H ′)

Fig. 5 An inference rule for adding lemmas.

ists an equation set E0 ⊆ E0 such that (E0, H) ⊢∗RI

(E′, H ′) and every equation in E0 \E is an induc-

tive theorem of R.

Proof. Suppose that (Ei, Hi) ⊢Pos (Ei+1, Hi+1).

Then, Ei = Ei+1, and there exists a set L such that

(L, ∅) ⊢∗RI+Pos (∅,H ′
i) and Hi+1 = Hi ∪H ′

i. More-

over, every equation in L is an inductive theorem

of R. Thus, the proof holds even if Ei,Hi is added

to the proof: (Ei ∪ L,Hi) ⊢∗RI+Pos (Ei, Hi ∪H ′
i) =

(Ei+1, Hi+1). By repeating this operation, we ob-

tain a proof that does not use Postulate. Also, let

E′
1 be the set of equations added by the application

of Postulate. Then, (E ∪ E′
1, H) ⊢∗RI+Pos (E′, H ′).

Moreover, every equation in E′
1 is an inductive the-

orem of R. ⊓⊔

Theorem 5.3 Let R be a constrained term rewrit-

ing system over (F ,G,P,M). Let E be a finite set

of constrained equations over (F ,G,P,M), and let

≻ be a reduction order such that→R ⊆ ≻. Suppose

that R is complete and locally sound w.r.t. M. If

(E, ∅) ⊢∗RI+Pos (∅, H), then all the equations in E
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are inductive theorems of R.

Proof. This theorem is clear from the soundness

of ⊢∗RI [37] and Lemma 5.2. ⊓⊔

5. 2 Strategy for Applying the Inference

Rules

To implement automated proofs in a computer,

the order of application of the inference rules must

be fixed. This section improves the strategy in [37]

for applying the inference rules for rewriting induc-

tion of constrained TRSs by adapting it to the gen-

eration of lemma equations.

The following considerations were obtained in ex-

periments up to now:

(1) More proofs are successful when the induc-

tion hypotheses (rules H) are given application

priority over the rewriting rules in R.

(2) When we apply basic rewriting rules such

as addition (for example, the rule RPA) to

equations, there are cases where the genera-

tion method for candidates of lemma equa-

tions proposed in the previous section is in-

effective. For example, when both sides of an

equation introduced in Section 4 (the second

equation in Fig. 1) are reduced by RPA to nor-

mal forms, we obtain u(n, s2(0), s(0)) + s(n) ≈
u(n, s3(0), s4(0)) [[s2(0) ≤ s(n)]], and it is diffi-

cult to deduce the desired lemma equation by

using the generation method.

To formalize the proof strategy for consideration

(1) above, let us define a rewriting relation that

takes into consideration the priority for a set of

rewriting rules.

Definition 5.4 We define the rewriting rela-

tion →R[ϕ] under a satisfiable constraint ϕ

as follows: →R[ϕ] = {(C[lσ], C[rσ]) | l →
r [[ψ]] ∈ R, C[ ] ∈ T□(F ,V), fv(ψσ) ⊆
fv(ϕ), ϕ⇒ ψσ is valid w.r.t.M}.

Definition 5.5 Let [R1, . . . , Rn] be a list of sets

for rewriting rules. We define the rewriting relation

→[R1,...,Rn][ϕ] that takes in consideration the prior-

ity of [R1, . . . , Rn], as follows: s →[R1,...,Rn][ϕ] t if

either of the following holds:

• s →R1[ϕ]
t, or

• there exists no term t′ with s →R1[ϕ]
t′, and s

→[R2,...,Rn][ϕ] t.

→[R1,...,Rn][ϕ] is slightly different from the reduc-

tion of priority term rewriting system [5] [28]; an or-

der is given between the sets of rewriting rules. By

applying Simplification with using →[H,R][ϕ], the

rules H can be prioritized and applied.

Let R be a constrained TRS. Let RG be the sub-

set over (∅,G,P,M), and RF = R \ RG . We sup-

pose that every equation in E has its own label

attached. We denote the set of labels for E by

Label(E): Label(E) = {ρ | ρ : s ≈ t [[ϕ]] ∈ E}.
Table 1 shows the definitions that apply to

each of the inference rules multiple times: ⇒Simp,

⇒EQ−Del, and ⇒Del is the application of Simplifi-

cation, EQ-Deletion, and Deletion multiple times,

respectively. ⇒Simp[R1,...,Rn]&Del is an application

of the inference rules, that adapts to the problem

described in consideration (2) above, and is used

concretely as [R1, . . . , Rn] = [H,RF , RG ]. Equa-

tions that could not be deleted by Deletion in

⇒Simp[R1,...,Rn]&Del are restored to the equations

before Simplification was applied. Also, we assume

that, when both sides of an equation e are rewrit-

ten, the position equivalence O=(e) of eis appro-

priately updated by following the calculation [17]

of the descendant of positions.

Definition 5.6 Let R be a constrained TRS, let e

= s ≈ t [[ϕ]], and let e′ = s′ ≈ t′ [[ϕ]] be an equa-

tion obtained from e by reducing either s or t once.

Let the rewriting at this time be C[u]p →p,R C[u′]p,

and the applied rewriting rule be l → r [[ψ]]. More-

over, when the left side is rewritten, let i = l, and

otherwise, i = r. Then, we define the relation be-

tween variable positions in l and the corresponding

positions in r as follows:

η = {(i.pq, {i.pq′ | r|q′ ≡ l|q}) | l|q ∈ V}
When consider η a mapping, the domain of η is de-

noted by Dom(η): Dom(η) = {i.pq | l|p ∈ V}. We

define the function updateη that replaces the prefix

of the positions in accordance with η as follows:
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Table 1 the definitions of multiple application of inference rules.

Relation Definition

(E,H)⇒Simp[R1,...,Rn] (E
′, H ′)

E′ = {s′ ≈ t′ [[ϕ]] | s ≈ t [[ϕ]] ∈ E, s →!
[R1,...,Rn][ϕ]

s′, t→!
[R1,...,Rn][ϕ] t

′}

(E,H)⇒EQ−Del (E
′, H ′)

Apply EQ-Deletion to each equation in E, to which EQ-Deletion

can be applied, obtaining E′.
(E,H)⇒Del (E

′, H ′) Apply Deletion as much as possible to E, obtaining E′.

(E,H)⇒Simp[R1,...,Rn]&Del (E
′′, H ′)

(E,H) ⇒Simp[R1,...,Rn]⇒EQ−Del⇒Del (E
′, H ′), E′′ = {ρ ∈ E |

ρ ∈ Label(E′)}

updateη(p) ={
{q′′q | q′′ ∈ P} if (p′, P ) ∈ η and p = p′q

{p} otherwise

updateη(Q) =
∪
p∈P

η(p)

updateη({Q1, . . . , Qn}) =
n∪

i=1

{updateη(Qi)}

Using updateη and O=(e), the position equivalence

O=(e
′) for e′ is defined as updateη(O=(e)).

Let R be a constrained term rewriting system

over (F ,G,P,M), E be a finite set of constrained

equations over (F ,G,P,M), and let ≻ be a reduc-

tion order such that →R ⊆ ≻. Moreover, suppose

that R is complete and locally sound w.r.t. M.

Then, we propose a verification procedure for in-

ductive theorems that uses the inference rules in

Fig. 4, 5 and in Fig. 6. Users can freely specify

RΩ and subterm, which makes tuples of subterms

that are not subterms of each other. Section 5. 3

introduces a concrete example. If this verification

procedure results in (∅, H), all of the equations in-

cluded in E are inductive theorems of R. This is

because from Theorem 5.3, regardless of the ap-

plication of inference rules, the resulting proof is

correct.

5. 3 Heuristics for Generating Lemmas

This paper provides the following heuristics for

generating lemma equations.

• RΩ is the set obtained from rewriting rules

l → r [[ϕ]] in R such that both the root sym-

bols of l and r belong to F , by replacing vari-

ables appearing at shallow positions only by Ω

and by removing the constrained part (Exam-

ple 4.7). The variables that can be replaced

in Ω correspond to arguments that are not

changed by the rewriting.

• The sequence subterm(e) of subterms in equa-

tion e that is a target of lemma generation, is a

sequence of maximal subterms whose root sym-

bols belong to F and are the same as the root

of a left-hand side in RΩ, that is incremental

in the sense of the size of terms.

• The prediction of whether the equation is di-

verging when an equation is added during an

expansion, is determined by referencing the re-

membered rules in R in the history,†9 and we

consider an equation diverging if a remembered

rule appears two or more times consecutively.

In other words, Expansion by the same rule to

an equation (and its descendants) is allowed

up to twice, and if a third time seems likely,

we attempt to generate a lemma. To simplify

the description in the examples in this paper,

this was limited to one or more times. How-

ever, even for two or more times the proof is

successful in the same way.

• The candidates e′ in 3. in Fig. 6 are restricted

to ones whose constrained parts are general-

ized.

5. 4 Exemplary Proofs

This subsection describes examples of various

proofs using this method. The proofs in this pa-

per use the following strategy.

• Expansion uses termination of R ∪H ∪ {s →
t [[ϕ]]} instead of the reduction orders ≻ [34]

[33].

• A leftmost outermost strategy is used in the

rewriting for the →Ri[ϕ]
in [R1, . . . , Rn] in

⇒Simp[R1,...,Rn].

†9 When an equation is generated by Expd , l →
r [[ψ]] can be added to the history of s ≈ t [[ϕ]]

and thus, can be remembered.
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Let H := ∅. Then, we apply inference rules to (E,H) in the following way:

1. (E,H)⇒Simp[H,RF ] (E
′, H ′), E := E′.

2. (E,H) ⇒Simp[H,RF ,RG ]&Del (E
′, H ′). If E′ = ∅, then the procedure halts successfully. Otherwise,

let E := E′ and go to 3.

3. For an equation e selected due to a heuristics and for which divergence is predicted, given e′ ∈
genEqn(e,RΩ, subterm(e)), if ({e′}, ∅) ⊢∗RI (∅, H ′), then let H := H ∪H ′ and go to 1 (i.e., we apply

Postulate). Otherwise, go to 4.

4. Apply Expansion once and go to 1.

Fig. 6 A verification procedure based on rewriting induction.

• When equations and so forth are selected from

sets, we selected the one detected at the first

time (i.e., the head element of lists representing

sets). However, in the examples in this paper,

the choice was always at most one.

• If there exists two or more R-complete posi-

tions in an equation, we choose the leftmost

outermost one.

Also, all the proofs were made automatically with

humans following the proof strategy of this paper.

Example 5.7 An example proving that sum(n) ≈
sum1(n) is an inductive theorem is illustrated in

Fig. 7. As shown in Fig. 7, this proof was success-

ful without providing lemma equations in advance.

Example 5.8 Let us consider whether fib(n) ≈
fib1(n) can be proved to be an inductive theorem

of the following constrained TRS:

Rfib = RPA∪

fib(x)→ 0 [[x ≤ 0]]

fib(s(0))→ s(0)

fib(s(s(x)))→ fib(s(x)) + fib(x) [[x ≥ 0]]

fib1(n)→ u1(n, s(0), 0, s(0))

u1(n, i, y, z)→ u1(n, s(i), z, y + z) [[i ≤ n]]
u1(n, i, y, z)→ y [[i < n]]


When genEqn is applied to the equations

in the diverging equation u1(s(n), s3(0), 0 +

s(0), s(0)+ (0+ s(0)))+u1(n, s2(0), s(0), 0+ s(0)) ≈
u1(s2(n), s4(0), s(0)+ (0+ s(0)), (0+ s(0))+ (s(0)+

(0 + s(0))) [[s3(0) ≤ s2(n)]], the candidate of

lemma equations u1(s(n), s(x1), x3, x2 + x3) +

u1(n, x1, x2, x3) ≈ u1(s2(n), s2(x1), x2 + x3, x3 +

(x2 + x3)) [[s(x1) ≤ s2(n)]] is generated and the

proof is successful without providing any lemma

equations in advance.

Example 5.9 Let us consider whether fact(n) ≈

fact1(n) can be proved to be an inductive theorem

of the following constrained TRS:

Rfact = RPA∪

fact(x)→ 0 [[x ≤ 0]]

fact(s(x))→ sum(x)× s(x) [[x ≥ 0]]

fact1(n)→ u2(n, s(0), 0)

u2(n, i, z)→ u2(n, s(i), z × i) [[i ≤ n]]
u2(n, i, z)→ z [[i > n]]

0× y→ 0

s(x)× y→ x× y + y


This example closely resembles Example 5.7, but

the point of difference is that the × appearing

on the right-hand side of u2 is a function sym-

bol in RF . Then, as for the example of Rsum,

when genEqn is applied to the equations in the

diverging equation u2(n, s2(0), 0 + s(0)) × s(n) ≈
u2(s(n), s3(0), (0+ s(0))× s2(0)) [[s2(0) ≤ s(n)]], the

candidate of lemma equations u2(n, x1, x2)×s(n) ≈
u2(s(n), s(x1), x2×x1) [[x1 ≤ s(n)]] is generated, and

the proof is successful without providing any lemma

equations in advance.

Finally, we introduce an example that cannot

generate lemmas for successful proofs in the frame-

work (Fig. 2) for this method.

Example 5.10 Let us consider whether double(n) ≈
double1(n) can be proved to be an inductive theo-

rem of the following constrained TRS:

Rdouble =

RPA ∪



double(x)→ 0 [[x ≤ 0]]

double(s(x))→ s(s(double(x))) [[x > 0]]

double1(n)→ u3(n, s(0), 0)

u3(n, i, z)→ u3(n, s(i), inc2(z)) [[i ≤ n]]
u3(n, i, z)→ z [[i > n]]

inc2(n)→ s(s(n))


Then, even if genEqn is applied to the equa-
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({sum(n) ≈ sum1(n)}, ∅)
⇒Simp[H,RF ]( {

sum(n) ≈ u(n, s(0), 0)
}
, ∅
)

⊢eRI( {
0 ≈ u(n, s(0), 0) [[n ≤ 0]]

(2) sum(n) + s(n) ≈ u(s(n), s(0), 0) [[n ≥ 0]]

}
,
{

(1) sum(n) → u(n, s(0), 0)
} )

⇒Simp[H,RF ]( {
0 ≈ 0 [[n ≤ 0]]

(2) u(n, s(0), 0) + s(n) ≈ u(s(n), s2(0), 0+ s(0)) [[n ≥ 0]]

}
, {(1)}

)
⇒Simp[H,RF ,RG ]&Del(
{(2)} , {(1)}

)
⊢eRI
{

u(n, s(0), 0) + s(n) ≈ 0+ s(0) [[n ≥ 0 ∧ s(0) > n]]

(3) u(n, s(0), 0) + s(n) ≈ u(s(n), s3(0), (0+ s(0)) + s2(0)) [[s2(0) ≤ s(n)]]

}
,{

(1)

(2) u(s(n), s2(0), 0+ s(0)) → u(n, s(0), 0) + s(n) [[n ≥ 0]]

}


⇒Simp[H,RF ]⇒Simp[H,RF ,RG ]&Del( {
(3) u(n, s2(0), 0+ s(0)) + s(n) ≈ u(s(n), s3(0), (0+ s(0)) + s2(0)) [[s2(0) ≤ s(n)]]

}
,

{
(1)

(2)

} )
By {u(n, x, y) + s(n) ≈ u(s(n), s(x), y + x) [[x ≤ s(n)]]} = genEqn((3), RΩ

sum, (u(n, s
2(0), 0 +

s(0)), u(s(n), s3(0), (0+ s(0)) + s2(0))),( {
u(n, x, y) + s(n) ≈ u(s(n), s(x), y + x) [[x ≤ s(n)]]

}
,
{
∅
} )

⊢eRI
{

y + x ≈ u(n, x, y) + s(n) [[x ≤ s(n) ∧ s(x) > s(n)]]

u(n, x, y) + s(n) ≈ u(s(n), s2(x), (y + x) + s(x)) [[s(x) ≤ s(n)]]

}
,{

(4) u(s(n), s(x), y + x) → u(n, x, y) + s(n) [[x ≤ s(n)]]
}


⇒Simp[H,RF ]( {

y + x ≈ u(n, x, y) + s(n) [[s(x) ≤ s(n) ∧ s(x) > s(n)]]

u(n, s(x), y + x) + s(n) ≈ u(n, s(x), y + x) + s(n) [[s(x) ≤ s(n)]]

}
,
{

(4)
} )

⇒Simp[H,RF ,RG ]&Del(
∅, { (4) }

)
⊢Pos(

(3), { (1), (2), (4) }
)

⇒Simp[H,RF ,RG ]&Del(
∅, { (1), (2), (4) }

)
The position equivalences are the following: O=((2)) = ∅, O=((3)) = {{r.2.1, r.3.2, c.1}}

Fig. 7 Exemplary proofs for sum(n) = sum1(n)

tions s2(u3(n, s3(0), s4(0))) ≈ u3(s(n), s4(0), s6(0))

in the diverging equation, the results are t2θ =

u3(n, s3(0), inc2(s4(0))), s2 = u3(s(n), s4(0), s6(0)),

and generalization is not possible. However, the re-

lation t2θ →∗
R s2 works. Now, if the condition tiθ

≡ si in Definition 4.5 is expanded to tiθ →∗
R si,

the candidate of lemma equations s2(u3(n, i, z)) ≈
u3(s(n), s(i), inc2(z)) [[i ≤ s(n)]] is generated, and

the proof succeeds without providing a lemma

equation in advance.

By testing this method on all of the examples

mentioned in this section, we have confirmed that

the method was successful in automatic proofs for

all the examples. Example 5.10 was also expanded

and, after the expansion, we succeed in proofs for

all the examples.
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6 Comparison with Related Research

This section compares this research with related

research.

Divergence critic [32] is an effective method if

one side of the equation diverges at its root. Be-

cause the function symbol u for Rsum in this paper

has a rule that a symbol does not appear in u and

rewriting cannot occur for both sides of the root,

in the divergences occasioned by the u rules, the

divergences do not occur on one side of the root

of the equation. Thus, the divergence critic is not

effective for the examples in this paper.

Sound generalization [31] is a method to obtain

items such as the top path and bottom path from

the form of the rewrite rules and to generate a

sound lemma. Sound generalization is effective for

a single-sorted TRS, and the instances introduced

in this paper are single-sorted TRSs if their con-

straints are well thought out. However, because,

in the rules for the function symbol u for Rsum in

this paper, a pattern that is not a variable can-

not appear in the argument on the left-hand side,

the top path and bottom path cannot be obtained.

For this reason, Sound generalization is not effec-

tive for the examples in this paper. Moreover, a

method [1] that extends sound generalization and

a method [39] that combines sound generalization

and the divergence critic have both been proposed

but these methods are not effective for the instances

in this paper for the same reason. However, because

a method that generates sound lemmas is very pow-

erful, how to incorporate sound generalization re-

mains an issue for the future.

The methods in the papers [20] [19] are effective

lemma generating methods for function definitions

with tail recursion that perform pattern matching

with 0 or s(x) as the first argument on the left-hand

side. A constrained TRS obtained from an impera-

tive program by means of the transformations used

in the papers [37] [41] has only variables in the first

argument and it is a function definition that does

case analysis on the constrained part. Thus, the

methods in [20] [19] are not effective for the exem-

plary proofs in this paper.

In rippling [10], effective annotation cannot be

done for rewriting rules that greatly change the

structure of the terms, nor can they be general-

ized. Thus, it is not effective for exemplary proofs

where generalization is intrinsically necessary, such

as the examples in this paper.

Finally, we investigate whether this method can

be applied to an unconstrained TRS. In a con-

strained TRS, further rewriting is possible in the

normal form under the constraint by the RΩ rule,

which ignores the constraint. For that reason,

lemma generation was successful. But because the

normal form in an unconstrained TRS cannot be

rewritten even once using RΩ based on Section5. 3,

RΩ does not work. Thus, this method not effec-

tive for an unconstrained TRS. However, it is pos-

sible that this method could be extended so that it

becomes an effective method even for an uncon-

strained TRS by applying ingenuity to the con-

struction of RΩ and to the application strategy for

the rules of inference. This kind of extension re-

mains an issue for the future.

7 Conclusion

This paper proposed a lemma equation candidate

generation method for rewriting induction in con-

strained rewriting systems. It demonstrated that

the correctness of the rewriting induction does not

fail even if rules of inference for adding lemmas are

added. Regarding the examples in this paper, proof

was conclusively constructed based on this method.

We implemented this method and confirmed that

it was effective for the examples in this paper. We

performed tests on various examples and analyzed

the heuristics and strategy for proving they work.

A discussion of the extension described in Exam-

ple 5.10 remains an issue for the future.

During expansion, equations that cannot be ori-

ented may appear and proving may fail because

those equations cannot be oriented. The commuta-

tive law of addition is one typical example. In the

paper [3], rewriting induction was extended to han-

dle the kind of equations that cannot be oriented.

The paper [37] supplements the commutative law of

addition with EQ-Deletion and shows that proofs

can be possible even if there are no equations corre-

sponding to commutative laws. However, it is not

always possible to compensate for equations that

cannot be oriented with EQ-Deletion. Thus, by in-

troducing the methods in the papers [2] [3] even into

rewriting induction for constrained TRSs, we can

expect an increase in provable examples. Expand-
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ing this method to handle equations that cannot be

oriented also remains an issue for the future.

In the simplification of this method, application

of the rewrite rules H, which corresponds to an as-

sumption in induction, was given priority over the

rewrite rules R. This is a heuristic that was ob-

tained when multiple instances were proved. The

paper [38], however, points out by example that

this strategy is not always effective and discusses

this point. Thus, in a rewrite strategy for simpli-

fication, testing many instances to analyze what

kind of strategy or what priority sequence for the

rewriting rules is effective is necessary. This point,

too, is an issue for our future research.

This method was successful in generating lem-

mas for the exemplary proofs; it transformed loops

in imperative programs, for which current methods

are ineffective in generating lemmas, and obtained

a constrained TRS. Conversely, this method was

not very effective for examples for which previous

unconstrained methods successfully generated lem-

mas or for rewriting systems without loop invariant

expressions. As another future issue, it is also nec-

essary to investigate how to combine this method

with previous methods.
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