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Abstract—Visual road assessment, which is carried out by
many countries, involves the evaluation of millions of surface
images. This exhaustive task is usually done manually and
therefore is costly in terms of time and prone to failure. Different
methods for automatic distress detection have been presented
in the literature recently. However, most of the approaches are
focused on crack detection only. This paper focuses on detecting
multiple distress types and object classes on asphalt roads,
aiming to fully automate distress detection on road surfaces in
Austria, Switzerland, and Germany using image segmentation
with neural networks. The paper introduces a distress and
object catalog developed by experts of the involved countries
that guarantees convertibility into federal distress catalogs. We
evaluate the performance gain of different neural network
architectures and advanced training techniques by conducting
extensive experiments.

Index Terms—distress detection, segmentation, asphalt pave-
ment

I. INTRODUCTION

The public road infrastructure is constantly aging and needs
frequent inspections to guarantee its permanent availability.
Following the federal regulations of Austria, Switzerland,
and Germany, federal roads’ surface characteristics have to
be evaluated regularly, i.a. regarding substance conditions.
The substance condition describes the visible part of the
surface characteristics. It is evaluated by visual inspection of
surface images recorded with the help of mobile mapping
systems (Fig. 1). Even though automatic image processing has
been applied to various application domains, evaluating these
images is done manually and requires excessive manual labor.
This process is very time-consuming and exhausting, which
leads to inconsistent and faulty distress detection. The manual
evaluation also delays the assessment process considerably
and can take up to several months. Consequently, the results
are already outdated once the assessment has finished.

This work has received funding from Austrian Research Promotion Agency
(Österreichische Forschungsförderungsgesellschaft or FFG) as part of the
ASFaLT project under grant agreement no 869514.

Fig. 1: The mobile mapping systems S.T.I.E.R. (top left)
and RoadSTAR (bottom left) are used for capturing road
surface images in Austria, Switzerland and Germany. While
RoadSTAR is using a line scan camera, S.T.I.E.R. is equipped
with two shutter-based cameras. Therefore, images have to be
stitched to generate larger surface images.

In the research project ASFaLT1, we aim to tackle the
problems emerging from manual road image assessment with
the help of deep-learning-based machine vision. In our pre-
vious works [1]–[3], we have already shown that deep neural
networks are perfectly capable of road distress detection.

In contrast to our previous work, which was primarily
focused on distress detection as a binary decision problem,
this work aims to detect all distress classes of relevance for
visual road assessment in Austria, Switzerland, and Germany.
Therefore, we present a distress catalog for road damages
and objects that can be converted into the three countries’
federal regulations. Afterward, we show the challenges of
the application domain and analyze the benefit of different
augmentation and training techniques to improve detection

1ASFaLT: Automatisierte Schadstellenerkennung für unterschiedliche
Fahrbahnbeläge mittels Deep Learning Techniken (Automated distress de-
tection for different road surfaces using deep learning)
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performance. We conclude by comparing the results achieved
with the system presented in this paper to images manually
labeled by different field experts.

In addition to the German Asphalt Pavement
Distress (GAPs) dataset [1] and the extended and
refined version presented in [2] that provides high-quality
standardized images and attracted much attention by several
research groups (e.g. [4]–[6]), we provide the publicly
available GAPs 10m dataset2 with this paper. The dataset
consists of 20 high-resolution images (5030 x 11505 pixels
corresponding to 10 meters of the road surface) that cover
200 meters of asphalt roads with different asphalt surface
types and a wide variety of distress classes. All images are
captured using recording vehicles following German and
Austrian federal regulations (see Fig. 1) and feature a high
spatial resolution close to one pixel per millimeter. The
images are labeled by experts in the field and can be used
freely for evaluation purposes.

II. RELATED WORK

A wide variety of different approaches for automatic dis-
tress detection has been presented since the first attempt
on automatic visual distress detection [7]. Classic image
processing techniques have been developed by combining
preprocessing algorithms for illumination independence with
different thresholding techniques to extract local minima as
crack candidates [8]–[12]. Due to the tremendous success
of deep-learning-based image processing in almost all image
processing domains, manually designed features have fallen
out of favor. The algorithms developed for deep learning-
based evaluation of the pavement surface can be divided
into the following major groups (1-3). An overview of the
different publicly available datasets is given at the end of this
section (4). Approaches based on Convolutional Neural Net-
works (CNNs) mainly differ regarding network architecture,
predicted distress classes, and whether downward or frontal-
facing input images are processed.

1) Crack Detection: The first attempts for CNN based
crack detection in [13] and [14] are using LeNet-5 [15] based
or VGG-based [16] CNNs for patched based crack detection.
Both approaches need to be converted to fully convolutional
networks to obtain an image segmentation result. Thus, the
use of network structures for image segmentation is becoming
more common recently. U-Net [17]-based architectures, which
are also quite common in the biomedical image segmentation
domain, have been successfully used for crack detection by
several researchers [5], [18], [19]. Also, adapted versions of
SegNet have been applied in that domain [20].

2) Distress Detection in Orthoframes: The vast majority
of research papers are focused on crack detection only.
However, [21] applied a U-Net-like network architecture with
different context resolution levels to integrate more context.
The authors consider different types of distress but classify

2The GAPs 10m dataset is available at:
https://www.tu-ilmenau.de/neurob/data-sets-code/gaps

into distress and normal area only. An approach distinguishing
between cracks, sealed cracks, and potholes can be found in
[22]. Therefore, the authors used a combination of U-Net and
the YOLO approach.

3) Distress Detection in frontal-facing Images: Distress
detection in frontal-facing images is often carried out in two
stages. The road area is detected by traditional image segmen-
tation techniques like graph-based hierarchical clustering [23]
or using CNNs like SegNet [24] in the first stage. The network
architectures used for detecting road distress on the extracted
road area in the second stage are based on state-of-the-
art image processing networks. [25] compares InceptionV2
and MobileNet for the detection of eight different distress
classes while [24] applies Squeeze-Net for distress detection.
[26] presents a Feature Pyramid and Hierarchical Boosting
Network.

This paper is focused on processing orthoframes that are
also required for standardized road assessment in Austria,
Switzerland, and Germany. Furthermore, approaches working
on frontal facing images often concentrate on severe damages
that are uncommon on federal roads of the involved countries.

4) Datasets: Although many different methods have been
presented so far, there is still a lack of publicly available
datasets that are sufficiently large and are recorded in a
standardized way. The datasets published so far do often
consist of less than 500 images, e.g., [8], [10], [26], [27],
and do not offer the necessary diversity to train a universal
pavement distress detector. Although some datasets have been
released recently that do offer a decent size, e.g. [28], with
700k Google Street View images or [29] with 13k frontal
facing images, these datasets are using frontal-facing images.
Furthermore, they do not provide the level of resolution
required for standardized road assessment and mostly show
images with severe distress only.

III. NOVEL STANDARDIZED DISTRESS DATASET

The datasets publicly available do not cover all the different
classes needed for distress detection on the level required
by federal regulations in Austria, Switzerland, and Germany.
Therefore, the data used for road assessment in the involved
countries have been brought together within the research
project’s scope ASFaLT.

A. Standardized Data Acquisition

The data acquisition within the ASFaLT project is based
on the specification of the Road Monitoring and Assessment
of the countries Germany [30], and Austria [31], [32]. The
image data of the dataset have been captured by the mobile
mapping system S.T.I.E.R (Fig. 1), one of the systems certified
annually by the German Federal Highway Research Insti-
tute (BASt) and by the mobile mapping system RoadSTAR
[33], mainly deployed in Austria. The vehicle S.T.I.E.R.
is equipped with several high-resolution cameras, i.a. two
slightly overlapping bird-eye-view photogrammetrically cali-
brated monochrome cameras capturing the pavement’s surface
in detail. The surface camera system is synchronized with
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a high-performance lighting unit to reduce ambient light’s
influence. The mobile mapping system RoadSTAR, in turn,
uses a line scan camera in combination with permanent
lighting devices. Both mapping systems allow continuous
capturing of road surface images even at high velocities (about
80 km/h). For more details regarding the data acquisition
process and the measurement vehicle, we refer to [1] and [33].
The mapping devices’ images are transformed to have a fixed
metric correspondence to comply with federal regulations.
Therefore, standardized images in Austria correspond to a
metric resolution of 4 meters in width and approx. 3 meters
in height. In Germany, however, the images exhibit a height
corresponding to 10 meters of road. Since the cameras of
the mapping system S.T.I.E.R. do only capture a smaller
road fraction, the images recorded have to be stitched to
comply with federal regulations (Fig. 1). Both systems differ
slightly in respect to the physical area captured by a single
image pixel. While RoadSTAR images are captured with
roughly 900 pixels per meter, the images of S.T.I.E.R. exhibit
a resolution of approximately 1200 pixels per meter. Both
systems can carry out the data acquisition in Switzerland.
Therefore, no other mapping system has to be considered
for that country. Since image acquisition is carried out by
different companies with different mobile mapping systems in
Germany, the dataset also includes ten images from another
mapping system. These images should be used for testing to
see how detection generalizes with different mapping systems.

B. Unified Object Catalog and Labeling

Although the road surface assessment is carried out sim-
ilarly in all three countries, the distress classes and the
associated metrics are different. Therefore, unified distress
classes have to be defined in a first step. The resulting catalog
covers a wide variety of distress- and object classes and can
be mapped to the federal road assessment regulations of the
involved countries. Various additional object classes have been
defined that are not used in the current assessment process
but might be of future interest (Fig. 2). All dataset images
have been labeled with pixel-level accuracy by several trained
annotators to guarantee high-quality labels.

C. Dataset Size

Following our previous work presented in [3], we opted
for an iterative dataset creation process to minimize labeling
effort. Starting with a small initial dataset, uncertainty estima-
tion on unlabeled images has been used to select images worth
labeling. The final dataset consists of 193 surface images
following Austrian federal regulations (4m x 3m images) and
201 images following German federal regulations (10m x
4.5m images). The images are recorded at 99 road sections
(groups) that are at least 10 km apart to offer a wide variety of
surface characteristics. The dataset has been split into training,
validation, and test such that a single group only occurs in
one of the subsets. Since the complete dataset cannot be
made publicly available for legal reasons, we selected a subset
VAL(p) of the validation dataset published together with this
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Fig. 2: A listing of all classes in the dataset. Each entry shows
a sample image, a scale in decimeters, followed by the color
of the visualization, the class name, and a short description.

paper for reproduction and comparison. This smaller subset
consists of 20 images following German federal regulations
and covers various distress- and object types. The class
distribution of the different subsets can be seen in Tbl. I.
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TABLE I: Class distribution of the dataset. The dataset has been split according to different location groups to guarantee that
the same road sections are only present in a single dataset. An explanation of the class names can be taken from Fig. 2.

Set #Grps IPCH APCH S-Cr Cr OJT PoHL RVL SCR BLE MRK WDr MHL EXJ CRb COB DLH MOB OBJ JNT VRG VEG IND
TRAIN 53 181 320 291 3855 110 281 172 22 135 824 35 27 11 76 225 48 28 26 167 201 332 14
VAL 19 39 8 45 315 3 22 2 7 2 86 3 0 1 9 13 3 3 2 17 26 18 0
VAL(p) 11 10 3 24 191 2 11 0 7 0 47 2 0 1 5 2 3 1 2 6 16 13 0
TEST 27 61 30 23 366 20 47 49 2 8 143 6 4 2 13 29 1 4 3 14 27 51 2

D. Challenges

Although the road is captured under controlled conditions,
resulting in high-quality surface images, the dataset comprises
some challenges. Despite the fact that the mobile mapping
systems use artificial light sources, harsh sunlight can in-
troduce image artifacts (Fig. 3) that look similar to applied
patches. Actual patches, however, can be hard to detect since
their appearance can be very similar to the surrounding asphalt
pavement (Fig. 3). Patches induce another challenge since the
inside of a patch appears almost identical to intact asphalt
regions. Inlaid patches can cover several meters in width and
height, making it impossible to distinguish between the patch
and normal asphalt regions from a single image. Therefore,
patch areas are encoded using their transition area between
regular asphalt and patch only.

Another challenge originates from the image stitching pro-
cess required if the mapping system does not use a line
camera. Since different types of mapping systems are used
in Germany, the artifacts induced by stitching can differ and
hamper classification.

IV. NETWORK ARCHITECTURE

We analyzed different network architectures on our dataset
to determine which network design works best with the
suggested class catalog. We tested U-Net [17], which is
often used in crack detection, and a U-Net variant that uses
Xception [34] blocks. Furthermore, we are applying a network
structure that shares similarities with the classic PSPNet [35].
The network has a typical encoder-decoder structure. As the
default encoder, we use Residual Networks (ResNet) [36] with
dilated convolutions as presented in [37] and with 18 and 50
layers. The context module of the segmentation network is
represented by the Pyramid Pooling Module (PPM) [35], or

Fig. 3: Bounding boxes for various distress objects (True
labels are at pixel level).
left – shadows from the object carrier (next to the joint (cyan))
are similar to an applied patch.
right – Patch in the center of the image is difficult to detect.

Stitching Map

Location Map

Image Input Encoder DecoderContext 
Module

ResNet18
PPM /
ASPP PSPNet

3 3

3 3

Fig. 4: Overview of our inputs and our model. The stitching
map and the location map can optionally be applied as input
to the encoder (blue) or to the context module (green).

the Atrous Spatial Pyramid Pooling (ASPP) [38]. The final
segmentation output is produced by a PSPNet decoder [35].
An overview of our final model is presented in Figure 4.

1) Location map: Some classes in our dataset are hard to
detect using local information only and might benefit from
additional context. In [39] it has been shown that explicit
coding of location information can improve location context.
Therefore, we generated a location map, which equals zero in
the center of the images and increases linearly to the left and
right border of the road image (Fig. 4). The map is integrated
into the model in two different ways. First, it can be presented
as an additional input channel. Second, it can be integrated
directly into the context module. To do that, we have scaled
the map to the corresponding context module feature map size
and prepended two Convolution-ReLU Blocks (filter size 3,
dilation rates 1,2).

2) Stitching map: A second problem arises from the stitch-
ing edges in the images produced by the mobile mapping
system S.T.I.E.R. since they can easily mix up with patches
or joints. Therefore, we added a stitching map as a further
context that is derived from classic image processing. To
detect the vertical stitching edges we used the algorithm we
presented in [3]. We apply a vertically oriented Sobel filter to
the entire image and sum up the results within every row to
obtain a one-dimensional edge candidate vector. This vector
is transformed into the frequency domain using a discrete fast
Fourier transformation. After maximum filtering, the peaks are
back-projected and used to generate a stitching edge map (Fig.
4). Since the horizontal stitching edges are always located at
the image center, they do not have to be detected separately.

V. EXPERIMENTS

This section analyzes the influence of different data aug-
mentation methods, network architectures, and training algo-
rithms on the classification performance to outline techniques
worth examining by other researchers working in the road
distress detection domain.

IEEE Int. Conf. on Automation Science and Engineering (CASE) , pp. 1789-1796, IEEE 2021



A. Occurrence Score

The intersection over union (IoU) can measure the overlap
between ground truth and predicted object areas and, there-
fore, is commonly used to evaluate the segmentation quality
among various research areas. However, when it comes to
failure detection, it is even more important to measure if
the failure can be detected at all. Therefore, we introduced
another measure inspired by the German road assessment
standard, where distress is assigned to grid cells with a cell
size of approximately 1x1 meters. Following that procedure,
we divide the image into grid cells with a size of 1x1 meters
and observe if a class is detected in that area only. We compare
the detection to the ground truth to compute true positives
(TP), false positives (FP), and false negatives (FN) for every
cell of an image. Afterward, we calculate the critical success
index as TP

TP+TN+FP for every single image and take the
average over all images as Occurrence Score (Occ).

Small false detections can heavily affect the occurrence
score. Since these small detections can be filtered in post-
processing, we count class detections only if the pixel count
of an object exceeds half of the area of the smallest entity of
that type in the training dataset (e.g., potholes are filtered if
the area is smaller than 38 pixels).

B. Test setup

All models were trained for 300 epochs. Images were scaled
to half resolution to evaluate various methods and techniques
in a shorter period. For training, random non-overlapping
patches with a size of 480x480 pixels were drawn from the
dataset in each epoch. The patches were grouped into batches
of size 8, and training was performed with the SGD optimizer
using multiple learning rates (0.005, 0.01, 0.02, 0.04). A
logarithmically decreasing learning rate was used3. Networks
were randomly initialized for training since ImageNet pre
initialization is not beneficial in the surface image domain, as
shown in [2]. Class weights were used for training and were
determined according to [40]. All results are presented with
occurrence scores and mean intersection over union (mIoU) as
indicators for segmentation quality. If training was unstable,
the training was repeated several times, and the standard
deviation is given in parentheses after the best result.

C. Baseline

The baseline experiments have been conducted with the
ResNet18 encoder and the PPM context module. Without data
augmentation, the network can reach an occurrence score of
Occ 0.61 (0.004) and a mIoU of 0.574 (0.003).

D. Data Augmentation

One of the most straightforward data augmentation tech-
niques is to flip the image patches horizontally and vertically,
which improves the performance to Occ 0.632 (0.007) and a

3Starting with the maximum learning rate, the learning rate reaches a
minimum of 0.0001 in the last epoch. Additionally, a warmup of 5 epochs
at the beginning of the training was applied that scaled linearly from the
minimum learning rate to the maximum learning rate.
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Fig. 5: Comparison of different augmentation techniques. The
parameter steps are as follows: brightness - [0, 0.1, 0.2, 0.3],
contrast - [0, 0.1, 0.2, 0.3], noise - [0.01, 0.02, 0.03], rotation
- [0°, 22°, 45°, 67°, 90°], scaling - [1.0, 0.95, 0.9, 0.85, 0.8]

mIoU of 0.586 (0.004). Since this technique improves perfor-
mance for all classes, it is applied to all further experiments.
Further different standard data augmentation techniques have
been tested one by one to analyze their effect on the network
training. We have modified brightness, contrast, noise, patch
rotation, and patch scaling by random factors drawn randomly
from a uniform distribution with varying upper bound (Fig. 5).
Since the input images always contain a multitude of different
classes, augmentation has been applied to the whole image
regardless of the contained classes.

The augmentation techniques under study, however, did
not show any significant performance improvement. Most of
them have proven to hamper good segmentation results. This
result is quite specific to the distress detection domain with
well-controlled image acquisition conditions. If, for example,
rotation is introduced, the network is no longer able to learn
that some structures like joints do have a certain alignment
on the road. Brightness and noise also do not improve
classification results. Slight improvements could be achieved
with contrast augmentation of 0.1, which, in combination with
image flipping, builds the new baseline for the experiments in
(E)-(H): Occ - 0.634 (0.005), mIoU - 0.588 (0.003)

E. Network Architecture

Besides our baseline, we examined other architectures as
described in Section IV and summarized the results in Tbl. II.
We found that the U-Nets, which are often used for crack
detection, perform well in the crack classes but far worse in
all other classes, giving a poor overall result. The far more
computationally expensive networks with ResNet50 as the
encoder or ASPP as context module have not yielded any
noticeable gain over our baseline architecture and are not
further examined.

F. Additional context

In Sec. IV we have proposed two context map types that
might help the network to involve further context information.
Tbl. II reveals that location information does not have a
positive effect and even deteriorates results if used directly
as network input. One reason might be that classes that
may benefit from that location information are already well
detected (e.g., water drain).

IEEE Int. Conf. on Automation Science and Engineering (CASE) , pp. 1789-1796, IEEE 2021



TABLE II: Scores of experiments (E)-(G)
Experiment Occ mIoU Experiment Occ mIoU
(E) U-Net .450 .338 (F) Loc. + Ctx. .637 .577
(E) U-Net (Xception) .499 .531 (F) Loc. + Inp. .614 .598
(E) ResNet50 .633 .585 (F) Stitch + Ctx. .662 .585
(E) ASPP .630 .584 (F) Stitch + Inp. .640 .589
(G) Cat. cross-entropy .634 0.588
(G) Focal loss .628 .590
(G) Tversky + Focal .646 .595

In contrast, the stitching context map generated a significant
occ score improvement when applied to the context module
directly. Slim classes like Crack, Joint, and Scratch do benefit
the most. Furthermore, this modification positively influenced
the images of the mapping system that were not contained
in the training data. False detections on stitching edges were
reduced significantly for these images.

G. Loss functions

Since the input always comprises a larger road section, we
can only work with highly unbalanced data. Therefore, it is
reasonable to experiment with other appropriate loss functions
besides categorical cross-entropy. These loss functions were
Focal Loss [41] and Tversky Loss [42].

During a street segmentation model training, simple classes
such as normal, biomass, road marking, etc., occur frequently
and are easy to learn. We used the Focal Loss function to
prevent the training loss from dropping too quickly after
the model has mastered the simple examples. Focal Loss
introduces a γ-parameter for the categorical cross-entropy,
which can be used to control the well-predicted classes’
penalty.

Another problem is that regular asphalt often appears to
have tiny cracks, so training can lead to models that tend to
detect false positives in the crack class. To solve this problem,
Tversky Loss is applied, which is calculated using the Tversky
Index and is a generalization of the Dice Coefficient and
the Jaccard Index. Using Tversky Loss, false positives or
false negatives can be penalized to varying degrees. Tbl. II
presents that both loss functions have a positive effect on the
occurrence score but that the gains for the given scenario are
minimal.

H. Label smoothing

As we will show in Sec. VI, the labeling of the roads
by experts is a challenging undertaking, where experts often
disagree. Therefore, wrong labels are a significant problem
constraining the training. Label smoothing [43], that regu-
larizes the classifier layer has been applied to counter this
problem. Our experiment can confirm this assumption and
yields significantly better results compared to our baseline:
Occ - 0.696, mIoU - 0.613 with best ε = 0.2.

Mixup [44] has been reported to work even better than label
smoothing by blending two inputs and the associated labels
with a blending factor drawn from a symmetric Beta distribu-
tion Beta(α, α). Although mixup significantly improves the
detection (Occ - 0.684, mIoU - 0.586; best α=0.3), it does not
achieve the performance of label smoothing in our scenario.

TABLE III: VAL(p)-dataset scores
Experiment Occ mIoU Experiment Occ mIoU
(C) Base .630 .566 (F) Stitching (context) .639 .564
(D) Flipping .645 .558 (G) Tversky + Focal .678 .582
(D) Flip+Contrast .640 .561 (H) Lbl smoothing .682 .584

I. Scores on public validation subset

For comparison, we also provide scores for the publicly
available VAL(p) subset in Tbl. III. Although the values are
very similar, the model can not benefit from the stitching
context since the stitching edges in the VAL(p) set are not
that severe. Example images for the detection on the dataset
are presented in Fig. 6.

J. Scores on test subset

The best-performing methods on the validation dataset have
also been applied to the test set. Although the characteristics
of the distress and object instances differ significantly from
the validation data, label smoothing performs equally well and
increases detection performance considerably (see Tbl. IV).
The direct input of stitching maps into the context layer also
has a positive effect and reduces false positive detections of
patches, thus boosting the occurrence scores of these classes.
However, the suggested modification of the loss function does
not significantly affect the test data score.

VI. COMPARISON WITH HUMAN LABELING

To put the achieved results into perspective, we compared
the best result of the automatic distress detection to three
human experts in the field. A further evaluation dataset
consisting of 13 4x3-meter images (3600 x 2850 pixels) has
been created. The dataset was labeled independently by all
three experts for the 23 classes. Hence, with the output of
our model, there are four different classification results per

Image Ground Truth Detection

Fig. 6: Exemplary detections on VAL(p) (top) and test dataset
(bottom). Image are reduced to half of the original image
height.
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TABLE IV: Class based comparison of occurrence scores. Classes with less than 10 instances are colored in gray.

Exp. IPCH APCH S-Cr Cr OJT PoHL RVL SCR BLE MRK WDr MHL EXJ CRb COB DLH MOB OBJ JNT VRG VEG IND NRM ∅ Img
Validation

(C) Base .498 .257 .493 .426 .263 .281 .425 .733 .740 .963 .658 - .815 .602 .699 .815 .407 .815 .351 .201 .658 - .989 .610
(D) Aug .524 .207 .491 .393 .304 .316 .499 .733 .443 .960 .749 - .815 .638 .686 .815 .468 .815 .386 .213 .707 - .989 .634
(E) ResNet50 .526 .381 .447 .372 .188 .235 .254 .776 .569 .955 .505 - .815 .646 .743 .815 .618 .815 .381 .273 .758 - .989 .633
(F) St-Cntxt .482 .251 .514 .509 .287 .272 .407 .798 .695 .959 .505 - .815 .652 .705 .814 .409 .815 .419 .251 .648 - .989 .662
(G) Tv+Fo .429 .250 .549 .524 .223 .158 .433 .733 .631 .963 .646 - .815 .646 .623 .543 .414 .815 .368 .236 .752 - .989 .646
(H) L-Smooth .513 .391 .535 .595 .308 .169 .404 .776 .745 .966 .646 - .815 .724 .707 .407 .554 .815 .414 .276 .759 - .989 .696

Test
(D) Aug .213 .469 .573 .362 .103 .234 .282 .555 .714 .880 .936 .346 .838 .590 .562 .610 .443 .922 .247 .712 .438 .0 .981 .513
(F) St-Cntxt .401 .650 .415 .381 .075 .224 .305 .415 .690 .896 .882 .700 .837 .615 .592 .221 .458 .825 .251 .712 .504 .221 .979 .523
(G) Tv+Fo .180 .446 .388 .367 .040 .231 .290 .325 .734 .911 .882 .700 .885 .651 .602 .480 .377 .886 .155 .710 .506 .221 .982 .516
(H) L-Smooth .185 .491 .640 .609 .064 .317 .316 .263 .733 .900 .936 .787 .885 .881 .850 .376 .379 .944 .318 .740 .534 .561 .983 .585
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Fig. 7: Comparison between trained experts and the classifi-
cation result produced by our model. The labels of the experts
and the output of our model were rendered in the colors of
Fig. 2 and then overlaid upon the input with 50% transparency.

image. An example comparison of a tough image is shown in
Fig. 7. The image shows that a precise segmentation of the
road classes is a challenging undertaking, even for experts,
and that experts also disagree about where different classes
begin or end. Furthermore, it can be seen that our model has
predicted a classification comparable to the experts.

In addition to a visual evaluation, the three experts and our
model have been compared against each other using the mIoU
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Fig. 8: Labeling results of three human experts and our model
compared to each other. The results are divided into three
groups, with each expert once representing the ground truth
against which all others must compare.

and our Occurrence Score. Therefore, one of the three experts
was regarded as ground truth and compared to the results
of the other experts and the network output. The process
has been repeated three times for each expert. The results
of this experiment are given in Fig. 8. The network always
performs at least better than one expert in every comparison
and, therefore, performs similarly to the trained experts. The
experiment also reveals the difference between the labels
of the experts, which again highlights the difficulty of the
problem at hand.

VII. DISCUSSION

We introduced a novel standardized distress catalog de-
scribing 23 different distress and object classes essential
for road assessment in Austria, Switzerland, and Germany.
Furthermore, we have published an evaluation dataset for
pixel-perfect segmentation, which includes these classes. We
have examined various deep-learning methods and techniques
on our datasets and have identified the following as the
most important for road segmentation. First, we have shown
that classic image augmentation techniques can even hamper
classification results because of the well-controlled image
acquisition conditions. Second, many classes are challenging
to classify without proper context, especially if image artifacts
like stitching edges are present in the images. Therefore,
integrating context information about these artifacts into the
model can significantly improve classification performance.
Finally, our research on the labels of various experts has
shown that experts struggle and often disagree on the exact
segmentation of classes. This also seems to be a problem
in training, as it implies that the labels in the training data
also contradict each other. Therefore, the results improved
significantly when using label smoothing to counteract this
problem.
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[21] R. Lõuk, A. Riid, R. Pihlak, and A. Tepljakov, “Pavement Defect
Segmentation in Orthoframes with a Pipeline of Three Convolutional
Neural Networks,” Algorithms, vol. 13, no. 8, p. 198, 2020.

[22] H. Majidifard, Y. Adu-Gyamfi, and W. Buttlar, “Deep machine learning
approach to develop a new asphalt pavement condition index,” Con-
struction and Building Materials, vol. 247, 2020.

[24] S. Anand, S. Gupta, V. Darbari, and S. Kohli, “Crack-pot: Autonomous
road crack and pothole detection,” arXiv preprint:1810.05107, 2018.

[23] S. Chatterjee, A. B. Brendel, and S. Lichtenberg, “Smart infrastructure
monitoring: Development of a decision support system for vision-based
road crack detection,” in Proceedings of the International Conference
on Information Systems (ICIS), San Francisco, CA, USA, 2018.

[25] H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, and H. Omata, “Road
damage detection and classification using deep neural networks with
smartphone images,” Computer-Aided Civil and Infrastructure Engi-
neering, vol. 33, no. 12, pp. 1127–1141, 2018.

[26] F. Yang, “Feature pyramid and hierarchical boosting network for pave-
ment crack detection,” 2019.

[27] S. Chambon and J. M. Moliard, “Automatic road pavement assessment
with image processing: Review and comparison,” International Journal
of Geophysics, vol. 2011, 2011.

[28] K. Ma, M. Hoai, and D. Samaras, “Large-scale continual road inspec-
tion: Visual infrastructure assessment in the wild,” in Proceedings of
British Machine Vision Conference, 2017.

[29] H. Maeda, T. Kashiyama, Y. Sekimoto, T. Seto, and H. Omata, “Gener-
ative adversarial network for road damage detection,” Computer-Aided
Civil and Infrastructure Engineering, 2020.

[30] Forschungsgesellschaft für Straßen- und Verkehrswesen, ZTV ZEB-StB
- Zusätzliche Technische Vertragsbedingungen und Richtlinien zur Zu-
standserfassung und -bewertung von Straßen [FGSV-Nr. 489]. FGSV
Verlag, 2006.

[31] RVS 13.01.11, “Quality assurance for structural maintenance, pavement
distress catalogue for flexible and rigid pavements,” Vienna, 2009.

[32] RVS 13.01.16, “Quality assurance for structural maintenance, assess-
ment of surface defects and cracks on asphalt and concrete roads,”
Vienna, 2013.

[33] P. Maurer, M. Meissner, M. Fuchs, J. Gruber, and P. Foissner, Straßen-
zustandserfassung mit dem RoadSTAR – Messsystem und Genauigkeit.
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