
- C++ Home
- C++ Overview
- C++ Environment Setup
- C++ Basic Syntax
- C++ Comments
- C++ Hello World
- C++ Omitting Namespace
- C++ Tokens
- C++ Constants/Literals
- C++ Keywords
- C++ Identifiers
- C++ Data Types
- C++ Numeric Data Types
- C++ Character Data Type
- C++ Boolean Data Type
- C++ Variable Types
- C++ Variable Scope
- C++ Multiple Variables
- C++ Basic Input/Output
- C++ Modifier Types
- C++ Storage Classes
- C++ Numbers
- C++ Enumeration
- C++ Enum Class
- C++ References
- C++ Date & Time
- C++ Operators
- C++ Arithmetic Operators
- C++ Relational Operators
- C++ Logical Operators
- C++ Bitwise Operators
- C++ Assignment Operators
- C++ sizeof Operator
- C++ Conditional Operator
- C++ Comma Operator
- C++ Member Operators
- C++ Casting Operators
- C++ Pointer Operators
- C++ Operators Precedence
- C++ Unary Operators
- C++ Control Statements
- C++ Decision Making
- C++ if Statement
- C++ if else Statement
- C++ Nested if Statements
- C++ switch Statement
- C++ Nested switch Statements
- C++ Loop Types
- C++ while Loop
- C++ for Loop
- C++ do while Loop
- C++ Foreach Loop
- C++ Nested Loops
- C++ break Statement
- C++ continue Statement
- C++ goto Statement
- C++ Strings
- C++ Strings
- C++ Loop Through a String
- C++ String Length
- C++ String Concatenation
- C++ String Comparison
- C++ Functions
- C++ Functions
- C++ Multiple Function Parameters
- C++ Recursive Function
- C++ Return Values
- C++ Function Overloading
- C++ Function Overriding
- C++ Default Arguments
- C++ Arrays
- C++ Arrays
- C++ Multidimensional Arrays
- C++ Pointer to an Array
- C++ Passing Arrays to Functions
- C++ Return Array from Functions
- C++ Structure & Union
- C++ Structures
- C++ Unions
- C++ Pointers
- C++ Pointers
- C++ Dereferencing
- C++ Modify Pointers
- C++ Class and Objects
- C++ Object Oriented
- C++ Classes & Objects
- C++ Class Member Functions
- C++ Class Access Modifiers
- C++ Static Class Members
- C++ Static Data Members
- C++ Static Member Function
- C++ Inline Functions
- C++ this Pointer
- C++ Friend Functions
- C++ Pointer to Classes
- C++ Constructors
- C++ Constructor & Destructor
- C++ Default Constructors
- C++ Parameterized Constructors
- C++ Copy Constructor
- C++ Constructor Overloading
- C++ Constructor with Default Arguments
- C++ Delegating Constructors
- C++ Constructor Initialization List
- C++ Dynamic Initialization Using Constructors
- C++ Inheritance
- C++ Inheritance
- C++ Multiple Inheritance
- C++ Multilevel Inheritance
- C++ Object-oriented
- C++ Overloading
- C++ Polymorphism
- C++ Abstraction
- C++ Encapsulation
- C++ Interfaces
- C++ Virtual Function
- C++ Pure Virtual Functions & Abstract Classes
- C++ File Handling
- C++ Files and Streams
- C++ Reading From File
- C++ Advanced
- C++ Exception Handling
- C++ Dynamic Memory
- C++ Namespaces
- C++ Templates
- C++ Preprocessor
- C++ Signal Handling
- C++ Multithreading
- C++ Web Programming
- C++ Socket Programming
- C++ Concurrency
- C++ Advanced Concepts
- C++ Lambda Expression
- C++ unordered_multiset
Class Member Access Operator (->) Overloading in C++
The class member access operator (->) can be overloaded but it is bit trickier. It is defined to give a class type a "pointer-like" behavior. The operator -> must be a member function. If used, its return type must be a pointer or an object of a class to which you can apply.
The operator-> is used often in conjunction with the pointer-dereference operator * to implement "smart pointers." These pointers are objects that behave like normal pointers except they perform other tasks when you access an object through them, such as automatic object deletion either when the pointer is destroyed, or the pointer is used to point to another object.
The dereferencing operator-> can be defined as a unary postfix operator. That is, given a class −
class Ptr { //... X * operator->(); };
Objects of class Ptr can be used to access members of class X in a very similar manner to the way pointers are used. For example −
void f(Ptr p ) { p->m = 10 ; // (p.operator->())->m = 10 }
The statement p->m is interpreted as (p.operator->())->m. Using the same concept, following example explains how a class access operator -> can be overloaded.
#include <iostream> #include <vector> using namespace std; // Consider an actual class. class Obj { static int i, j; public: void f() const { cout << i++ << endl; } void g() const { cout << j++ << endl; } }; // Static member definitions: int Obj::i = 10; int Obj::j = 12; // Implement a container for the above class class ObjContainer { vector<Obj*> a; public: void add(Obj* obj) { a.push_back(obj); // call vector's standard method. } friend class SmartPointer; }; // implement smart pointer to access member of Obj class. class SmartPointer { ObjContainer oc; int index; public: SmartPointer(ObjContainer& objc) { oc = objc; index = 0; } // Return value indicates end of list: bool operator++() { // Prefix version if(index >= oc.a.size()) return false; if(oc.a[++index] == 0) return false; return true; } bool operator++(int) { // Postfix version return operator++(); } // overload operator-> Obj* operator->() const { if(!oc.a[index]) { cout << "Zero value"; return (Obj*)0; } return oc.a[index]; } }; int main() { const int sz = 10; Obj o[sz]; ObjContainer oc; for(int i = 0; i < sz; i++) { oc.add(&o[i]); } SmartPointer sp(oc); // Create an iterator do { sp->f(); // smart pointer call sp->g(); } while(sp++); return 0; }
When the above code is compiled and executed, it produces the following result −
10 12 11 13 12 14 13 15 14 16 15 17 16 18 17 19 18 20 19 21