
- Python - Home
- Python - Overview
- Python - History
- Python - Features
- Python vs C++
- Python - Hello World Program
- Python - Application Areas
- Python - Interpreter
- Python - Environment Setup
- Python - Virtual Environment
- Python - Basic Syntax
- Python - Variables
- Python - Data Types
- Python - Type Casting
- Python - Unicode System
- Python - Literals
- Python - Operators
- Python - Arithmetic Operators
- Python - Comparison Operators
- Python - Assignment Operators
- Python - Logical Operators
- Python - Bitwise Operators
- Python - Membership Operators
- Python - Identity Operators
- Python - Operator Precedence
- Python - Comments
- Python - User Input
- Python - Numbers
- Python - Booleans
- Python - Control Flow
- Python - Decision Making
- Python - If Statement
- Python - If else
- Python - Nested If
- Python - Match-Case Statement
- Python - Loops
- Python - for Loops
- Python - for-else Loops
- Python - While Loops
- Python - break Statement
- Python - continue Statement
- Python - pass Statement
- Python - Nested Loops
- Python Functions & Modules
- Python - Functions
- Python - Default Arguments
- Python - Keyword Arguments
- Python - Keyword-Only Arguments
- Python - Positional Arguments
- Python - Positional-Only Arguments
- Python - Arbitrary Arguments
- Python - Variables Scope
- Python - Function Annotations
- Python - Modules
- Python - Built in Functions
- Python Strings
- Python - Strings
- Python - Slicing Strings
- Python - Modify Strings
- Python - String Concatenation
- Python - String Formatting
- Python - Escape Characters
- Python - String Methods
- Python - String Exercises
- Python Lists
- Python - Lists
- Python - Access List Items
- Python - Change List Items
- Python - Add List Items
- Python - Remove List Items
- Python - Loop Lists
- Python - List Comprehension
- Python - Sort Lists
- Python - Copy Lists
- Python - Join Lists
- Python - List Methods
- Python - List Exercises
- Python Tuples
- Python - Tuples
- Python - Access Tuple Items
- Python - Update Tuples
- Python - Unpack Tuples
- Python - Loop Tuples
- Python - Join Tuples
- Python - Tuple Methods
- Python - Tuple Exercises
- Python Sets
- Python - Sets
- Python - Access Set Items
- Python - Add Set Items
- Python - Remove Set Items
- Python - Loop Sets
- Python - Join Sets
- Python - Copy Sets
- Python - Set Operators
- Python - Set Methods
- Python - Set Exercises
- Python Dictionaries
- Python - Dictionaries
- Python - Access Dictionary Items
- Python - Change Dictionary Items
- Python - Add Dictionary Items
- Python - Remove Dictionary Items
- Python - Dictionary View Objects
- Python - Loop Dictionaries
- Python - Copy Dictionaries
- Python - Nested Dictionaries
- Python - Dictionary Methods
- Python - Dictionary Exercises
- Python Arrays
- Python - Arrays
- Python - Access Array Items
- Python - Add Array Items
- Python - Remove Array Items
- Python - Loop Arrays
- Python - Copy Arrays
- Python - Reverse Arrays
- Python - Sort Arrays
- Python - Join Arrays
- Python - Array Methods
- Python - Array Exercises
- Python File Handling
- Python - File Handling
- Python - Write to File
- Python - Read Files
- Python - Renaming and Deleting Files
- Python - Directories
- Python - File Methods
- Python - OS File/Directory Methods
- Python - OS Path Methods
- Object Oriented Programming
- Python - OOPs Concepts
- Python - Classes & Objects
- Python - Class Attributes
- Python - Class Methods
- Python - Static Methods
- Python - Constructors
- Python - Access Modifiers
- Python - Inheritance
- Python - Polymorphism
- Python - Method Overriding
- Python - Method Overloading
- Python - Dynamic Binding
- Python - Dynamic Typing
- Python - Abstraction
- Python - Encapsulation
- Python - Interfaces
- Python - Packages
- Python - Inner Classes
- Python - Anonymous Class and Objects
- Python - Singleton Class
- Python - Wrapper Classes
- Python - Enums
- Python - Reflection
- Python Errors & Exceptions
- Python - Syntax Errors
- Python - Exceptions
- Python - try-except Block
- Python - try-finally Block
- Python - Raising Exceptions
- Python - Exception Chaining
- Python - Nested try Block
- Python - User-defined Exception
- Python - Logging
- Python - Assertions
- Python - Built-in Exceptions
- Python Multithreading
- Python - Multithreading
- Python - Thread Life Cycle
- Python - Creating a Thread
- Python - Starting a Thread
- Python - Joining Threads
- Python - Naming Thread
- Python - Thread Scheduling
- Python - Thread Pools
- Python - Main Thread
- Python - Thread Priority
- Python - Daemon Threads
- Python - Synchronizing Threads
- Python Synchronization
- Python - Inter-thread Communication
- Python - Thread Deadlock
- Python - Interrupting a Thread
- Python Networking
- Python - Networking
- Python - Socket Programming
- Python - URL Processing
- Python - Generics
- Python Libraries
- NumPy Tutorial
- Pandas Tutorial
- SciPy Tutorial
- Matplotlib Tutorial
- Django Tutorial
- OpenCV Tutorial
- Python Miscellenous
- Python - Date & Time
- Python - Maths
- Python - Iterators
- Python - Generators
- Python - Closures
- Python - Decorators
- Python - Recursion
- Python - Reg Expressions
- Python - PIP
- Python - Database Access
- Python - Weak References
- Python - Serialization
- Python - Templating
- Python - Output Formatting
- Python - Performance Measurement
- Python - Data Compression
- Python - CGI Programming
- Python - XML Processing
- Python - GUI Programming
- Python - Command-Line Arguments
- Python - Docstrings
- Python - JSON
- Python - Sending Email
- Python - Further Extensions
- Python - Tools/Utilities
- Python - GUIs
- Python Advanced Concepts
- Python - Abstract Base Classes
- Python - Custom Exceptions
- Python - Higher Order Functions
- Python - Object Internals
- Python - Memory Management
- Python - Metaclasses
- Python - Metaprogramming with Metaclasses
- Python - Mocking and Stubbing
- Python - Monkey Patching
- Python - Signal Handling
- Python - Type Hints
- Python - Automation Tutorial
- Python - Humanize Package
- Python - Context Managers
- Python - Coroutines
- Python - Descriptors
- Python - Diagnosing and Fixing Memory Leaks
- Python - Immutable Data Structures
- Python Useful Resources
- Python - Questions & Answers
- Python - Interview Questions & Answers
- Python - Online Quiz
- Python - Quick Guide
- Python - Reference
- Python - Cheatsheet
- Python - Projects
- Python - Useful Resources
- Python - Discussion
- Python Compiler
- NumPy Compiler
- Matplotlib Compiler
- SciPy Compiler
Python random.lognormvariate() Method
The random.lognormvariate() method in Python generates random numbers that follows the Log normal (lognormal) Distribution. This distribution is a family of continuous probability distributions of a random variable whose logarithm is normally distributed.
It depends on two parameters, mu and sigma, where mu is the mean and sigma is the standard deviation of the underlying normal distribution.
The log-normal distribution is often used in natural sciences, engineering, medicine, economics, and other fields.
This function is not accessible directly, so we need to import the random module and then we need to call this function using random static object.
Syntax
Following is the syntax of lognormvariate() method −
random.lognormvariate(mu, sigma)
Parameters
The Python random.lognormvariate() method takes two parameters −
mu: This is the mean of the underlying normal distribution (the natural logarithm of the log-normal distribution). It can take any real value.
sigma: This is the standard deviation of the underlying normal distribution. It must be greater than zero.
Return Value
This random.lognormvariate() method returns a random number that follows the Log normal distribution.
Example 1
Let's see a basic example of using the random.lognormvariate() method for generating a random number from a normal distribution with a mean of 0 and a standard deviation of 1.
import random # mean mu = 0 # standard deviation sigma = 1 # Generate a log normal-distributed random number random_number = random.lognormvariate(mu, sigma) # Print the output print("Generated random number from log normal distribution:",random_number)
Following is the output −
Generated random number from log normal distribution: 9.472544796309364
Note: The Output generated will vary each time you run the program due to its random nature.
Example 2
This example generates a list of 10 random numbers that follows the log normal distribution using the random.lognormvariate() method.
import random # mean mu = 0 # standard deviation sigma = 0.5 result = [] # Generate a list of random numbers from the log normal distribution for i in range(10): result.append(random.lognormvariate(mu, sigma)) print("List of random numbers from log normal distribution:", result)
While executing the above code you will get the similar output like below −
List of random numbers from log normal distribution: [0.500329149795808, 1.7367179979113172, 0.5143664713594474, 0.5493391936855808, 1.3565058546966193, 1.4841135680348012, 0.5950837276748621, 0.8880005878135713, 1.0527856543498058, 0.7471389015523113]
Example 3
Here is another example that uses the random.lognormvariate() method, and demonstrates how changing the mean and standard deviation affects the shape of the normal distribution.
import random import matplotlib.pyplot as plt # Define a function to generate and plot data for a given mu and sigma def plot_log_norm(mu, sigma, label, color): # Generate log normal-distributed data data = [random.lognormvariate(mu, sigma) for _ in range(10000)] # Plot histogram of the generated data plt.hist(data, bins=100, density=True, alpha=0.8, color=color, label=f'(mu={mu}, sigma={sigma})') fig = plt.figure(figsize=(7, 4)) # Plotting for each set of parameters plot_log_norm(0, 1, '0, 1', 'blue') plot_log_norm(0, 0.5, '0, 0.5', 'green') plot_log_norm(0, 0.25, '0, 0.25', 'yellow') # Adding labels and title plt.title('Log Normal Distributions') plt.legend() # Show plot plt.show()
The output of the above code is as follows −
