
- Python Pandas - Home
- Python Pandas - Introduction
- Python Pandas - Environment Setup
- Python Pandas - Basics
- Python Pandas - Introduction to Data Structures
- Python Pandas - Index Objects
- Python Pandas - Panel
- Python Pandas - Basic Functionality
- Python Pandas - Indexing & Selecting Data
- Python Pandas - Series
- Python Pandas - Series
- Python Pandas - Slicing a Series Object
- Python Pandas - Attributes of a Series Object
- Python Pandas - Arithmetic Operations on Series Object
- Python Pandas - Converting Series to Other Objects
- Python Pandas - DataFrame
- Python Pandas - DataFrame
- Python Pandas - Accessing DataFrame
- Python Pandas - Slicing a DataFrame Object
- Python Pandas - Modifying DataFrame
- Python Pandas - Removing Rows from a DataFrame
- Python Pandas - Arithmetic Operations on DataFrame
- Python Pandas - IO Tools
- Python Pandas - IO Tools
- Python Pandas - Working with CSV Format
- Python Pandas - Reading & Writing JSON Files
- Python Pandas - Reading Data from an Excel File
- Python Pandas - Writing Data to Excel Files
- Python Pandas - Working with HTML Data
- Python Pandas - Clipboard
- Python Pandas - Working with HDF5 Format
- Python Pandas - Comparison with SQL
- Python Pandas - Data Handling
- Python Pandas - Sorting
- Python Pandas - Reindexing
- Python Pandas - Iteration
- Python Pandas - Concatenation
- Python Pandas - Statistical Functions
- Python Pandas - Descriptive Statistics
- Python Pandas - Working with Text Data
- Python Pandas - Function Application
- Python Pandas - Options & Customization
- Python Pandas - Window Functions
- Python Pandas - Aggregations
- Python Pandas - Merging/Joining
- Python Pandas - MultiIndex
- Python Pandas - Basics of MultiIndex
- Python Pandas - Indexing with MultiIndex
- Python Pandas - Advanced Reindexing with MultiIndex
- Python Pandas - Renaming MultiIndex Labels
- Python Pandas - Sorting a MultiIndex
- Python Pandas - Binary Operations
- Python Pandas - Binary Comparison Operations
- Python Pandas - Boolean Indexing
- Python Pandas - Boolean Masking
- Python Pandas - Data Reshaping & Pivoting
- Python Pandas - Pivoting
- Python Pandas - Stacking & Unstacking
- Python Pandas - Melting
- Python Pandas - Computing Dummy Variables
- Python Pandas - Categorical Data
- Python Pandas - Categorical Data
- Python Pandas - Ordering & Sorting Categorical Data
- Python Pandas - Comparing Categorical Data
- Python Pandas - Handling Missing Data
- Python Pandas - Missing Data
- Python Pandas - Filling Missing Data
- Python Pandas - Interpolation of Missing Values
- Python Pandas - Dropping Missing Data
- Python Pandas - Calculations with Missing Data
- Python Pandas - Handling Duplicates
- Python Pandas - Duplicated Data
- Python Pandas - Counting & Retrieving Unique Elements
- Python Pandas - Duplicated Labels
- Python Pandas - Grouping & Aggregation
- Python Pandas - GroupBy
- Python Pandas - Time-series Data
- Python Pandas - Date Functionality
- Python Pandas - Timedelta
- Python Pandas - Sparse Data Structures
- Python Pandas - Sparse Data
- Python Pandas - Visualization
- Python Pandas - Visualization
- Python Pandas - Additional Concepts
- Python Pandas - Caveats & Gotchas
Python Pandas - Area Plot
An Area Plot, also known as an area chart or area graph, is a visualization tool that graphically represents quantitative data. It is an extension of a line chart where the area between the line and the axis is filled with colors, textures, or patterns. Area plots are commonly used to compare two or more quantities visually.
Pandas provides an easy way to create stacked and unstacked area plots using the area() method. In this tutorial, we will learn about how to create and customize area plots using the Pandas library, with multiple examples demonstrating different plotting options.
Area Plot in Pandas
In Pandas, area plots can be created using the area() method for both the Series and DataFrames objects. This method resulting an area plot matplotlib.axes.Axes or an array numpy.ndarray of plots if subplots are enabled. It wraps the Matplotlib area() function.
Syntax
Following is the syntax of the area() method −
DataFrame.plot.area(x=None, y=None, stacked=True, **kwargs)
Where,
x: Specifies the X-axis coordinates. By defaults it is uses the index.
y: Specifies the column to plot. Defaults to all columns.
stacked: It takes a boolean value. If True, creates a stacked area plot. Set to False for unstacked plots.
**kwargs: Additional arguments to customize the plot.
Stacked Area Plot
In Pandas Area plots are stacked by default. To produce stacked area plot correctly, all column values must either be entirely positive or entirely negative.
Example
This example creates a stacked area plot with the sum of all columns plotted at each x-coordinate using the DataFrame.plot.area() method.
import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7, 4] # Create a DataFrame with random data df = pd.DataFrame(np.random.rand(10, 3), columns=["a", "b", "c"]) # Generate a stacked area plot df.plot.area() plt.title("Stacked Area Plot") plt.show()
Following is the output of the above code −

Unstacked Area Plot
To create an unstacked area plot, set the stacked parameter to False. Which is useful for comparing the columns independently.
Example
This example plots the unstacked area plot by using the DataFrame.plot.area() method. Here, the alpha parameter is used to adjust the transparency of the areas.
import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7, 4] # Create a DataFrame with random data df = pd.DataFrame(np.random.rand(10, 3), columns=["a", "b", "c"]) # Generate an unstacked area plot df.plot.area(stacked=False, alpha=0.5) plt.title("Unstacked Area Plot") plt.show()
On executing the above code we will get the following output −

Handling Missing Data
If your data contains NaN values, Pandas will automatically fill these with 0. To handle missing data differently, use methods like fillna() or dropna() before plotting.
Example
This example demonstrates handling the missing data before plotting the area plot.
import pandas as pd import numpy as np import matplotlib.pyplot as plt # Create a DataFrame with random data df = pd.DataFrame(np.random.rand(10, 4), columns=["a", "b", "c", "d"]) # Add some NaN values df.iloc[2:4, 1] = np.nan # Fill NaN with a custom value df.fillna(0).plot.area(stacked=True) plt.title("Area Plot with NaN Values Filled") plt.show()
Following is the output of the above code −

Customizing Area Plots
You can customize area plots using the various parameters available in Matplotlib, such as colors, colormap, labels, and gridlines.
Example
This example customizes the area plot in Pandas using the additional keyword arguments.
import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7, 4] # Create a DataFrame with random data df = pd.DataFrame(np.random.rand(10, 3), columns=["a", "b", "c"]) # Customize area plot df.plot.area(colormap="Greens", figsize=(10, 6)) plt.title("Customized Area Plot") plt.xlabel("Index") plt.ylabel("Values") plt.show()
After executing the above code, we get the following output −
