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ABSTRACT

mmWave 5G networks promise to enable a new generation of net-

worked applications requiring a combination of high throughput

and ultra-low latency. However, in practice, mmWave performance

scales poorly for large numbers of users due to the significant over-

head required to manage the highly-directional beams. We find that

we can substantially reduce or eliminate this overhead by using out-

of-band infrared measurements of the surrounding environment

generated by a LiDAR sensor. To accomplish this, we develop a ray-

tracing system that is robust to noise and other artifacts from the

infrared sensor, create a method to estimate the reflection strength

from sensor data, and finally apply this information to the multi-

user beam selection process. We demonstrate that this approach

reduces beam-selection overhead by over 95% in indoor multi-user

scenarios, reducing network latency by over 80% and increasing

throughput by over 2× in mobile scenarios.

CCS CONCEPTS

• Hardware → Wireless devices; Sensor applications and de-

ployments; • Human-centered computing → Ubiquitous and
mobile computing systems and tools; • Networks → Wireless access
points, base stations and infrastructure.

ACM Reference Format:

Timothy Woodford, Xinyu Zhang, Eugene Chai, Karthikeyan Sundare-

san, and Amir Khojastepour. 2021. SpaceBeam: LiDAR-Driven One-Shot

mmWave Beam Management. In The 19th Annual International Confer-
ence on Mobile Systems, Applications, and Services (MobiSys ’21), June 24-
July 2, 2021, Virtual, WI, USA. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3458864.3466864

1 INTRODUCTION

Future 5Gwireless networkswill interconnect amassive, distributed

set of edge sensors that seek to sense, understand and digitize our

physical world, to realize the promise of a smart society [6, 11].
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5G networks have evolved to be cohesive integrated solutions that

closely match innovative applications with customized networking

features. And mmWave networks offering several Gbps of through-

put at low latency are the key to unlocking these smart capabilities

such as AR/VR remote control of robotic platforms, cloud-centric

realtime AI for autonomous vehicles and high-resolution video. In

particular, multi-user wireless VR/AR environments require high

bandwidth, realtime data streams, and are a perfect use-case for

multi-user mmWave networks [40].

In practice, mmWave performance scales poorly with increasing

device densification envisioned for 5G, primarily because of the

overhead of managing “pencil-like” mmWave beams. Candidate

beams are probed sequentially during the search process. Hence, the

larger the number of beams probed to achieve optimality, the greater

the overhead. Furthermore, beam search is sensitive to interference

and time coordination between neighboring mmWave devices is

necessary to ensure interference-free channel measurements. As

the density of mmWave networks increases [53], the untenable

coordination overhead across increasing number of devices will

limit the scalability of mmWave networks. Machine learning (ML)

models have been used to reduce beam search overhead to some

success [21, 47]. These blackbox solutions have proven to work well

outdoors, e.g., in V2X scenarios with well structured channel [45].

However, indoor environments are much less predictable, with a

higher incidence of blockage, multipath, varying reflector types

that make training such ML models more difficult. Other beam

search approaches [29, 38, 42] reduce this overhead under specific

conditions (i.e., quasi-static environments) but do not eliminate it,

and thus still encounter scalability challenges in larger networks

comprised of many directional links.

These ML approaches, as well as several works on identifying

mmWave reflectors [49, 51, 52], all allude to an important facet

of mmWave beam search: If one can explicitly model the reflec-

tion environment and thus the candidate mmWave paths, beam

management can become a one-shot process: we can simply pick

the optimal beam from the set of known beams and their known

propagation characteristics [8, 24, 32]. However, it is difficult to let

mmWave radios “see” the environment due to their low spatial res-

olution [26]. Fortunately, LiDARs and depth cameras, are extremely

efficient at this task, and can capture dense spatial details of the

environment with higher accuracy than with in-band mmWave

measurements. Such depth sensors are increasingly found in edge
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sensors [25, 30, 44] and cellphones [5], and become instrumental

for machine perception tasks such as object detection [46], scene

understanding [50], etc. Inspired by this trend, we pose a fundamen-

tal research question: can we leverage the visual 3D scene models
constructed by LiDAR sensors to predict the mmWave channel and
guide the beam selection? Intuitively, we can apply RF ray-tracing

over the visual 3D scene, but such a cross-domain modeling entails

several non-trivial challenges:

Transformation from 3D maps to RF channel. 3D models

built from depth sensors are plagued with noise, and result in er-

roneous ray tracing outcomes. Depth sensors, including RGB-D

camera and high end, long-range LiDAR sensors [30] have system-

atic error on the order of centimeters (e.g., ±1.1 cm in an Azure

Kinect Camera[25], ±10 cm in an Ouster OS1 [30]). While this

accuracy is sufficient for their use in autonomous platforms (e.g.,
self-driving cars), RF modeling requires wavelength-level precision,

i.e., mm-level for mmWave channels. As an example, a wall that

is flat and smooth in practice might be captured as a bumpy sur-

face in the 3D model. The geometrical angles/lengths of ray traced

mmWave signals reflected off such noisy 3D surfaces may deviate

significantly from their real-world propagation paths.

Matching mmWave beam SNR from 3D maps. mmWave

signal path loss consists of free-space attenuation plus reflection

losses. While the former follows the classic Friis model, the lat-

ter depends on the “roughness” of the reflecting surface which

is not represented in the 3D model. Furthermore, the reflection

losses are frequency dependent [22, 34]: the reflection characteris-

tics of mmWave signals do not necessarily match the optical signals.

Hence, in order to utilize the 3D maps for accurate ray tracing, one

needs to determine the mmWave reflection behavior. Note that this

differs from the problem of object detection [46] as even if we can

identify the object, we do not necessarily know the specular or

diffuse reflection properties of its surface material [36].

1.1 Our Contribution

In this work, we aim to unify the environment sensing capabilities

of LiDARs and the high bandwidth of mmWave networks with the

question: How do we transform 3D environment data into RF models
to achieve one-shot mmWave beam selection in massive high density
networks?

We utilize LiDAR-equipped RGB-D cameras to construct a 3D

model [7, 31] of the physical environment in realtime. This 3D

model is then used to ray-trace the propagation paths of mmWave

signals in the environment, so that optimal mmWave paths for

each Tx/Rx pair can be identified. A single construction of the en-

vironment from any point-of-view is sufficient to facilitate beam

management of mmWave devices throughout the mapped space.

We call our solution SpaceBeam. SpaceBeam realizes several im-

mediate benefits to mmWave beam management:

One-Shot Beam Assignment. SpaceBeam enables one-shot se-
lection, where we select a single best beam per link using ray-

tracing, without sequentially probing available beams. With suffi-

cient edge-compute resources, the optimized ray-tracing algorithm

of SpaceBeam can determine optimal beam assignments for any

Tx/Rx pair with negligible latency. To further reduce beam assig-

ment delays, SpaceBeam pre-computes beam assignments over a

dense 3D grid of possible Tx/Rx positions within the 3D model. A

beam assignment request is then fulfilled via a simple look-up table

to find the solution of the closest precomputed point.

Scalable Concurrent Beam Management. SpaceBeam beam

assignments do not require pairwise beam probing and coordina-

tion between mmWave links which may interfere with each other.

Hence, beam assignments among nearby Tx/Rx pairs are looked-up

concurrently, thereby eliminating the scalabilty bottleneck in large,

dense mmWave networks.

While SpaceBeam uses off-the-shelf 3D scanning and reconstruc-

tion algorithms to build 3D models of the environment, it innovates

solutions to address the following two challenges to enable one-shot

mmWave beam selection:

C1:Mapping from 3D toRF. SpaceBeam employs a novel path

averaging and pruning step to (a) increase ray-tracing tolerance to

errors in Tx/Rx positioning and (b) reduce the impact of 3D scanning

noise. It operates by first allowing for a small error tolerance in

the angle of the path from the final reflection to the receiver, and

then identifying erroneous paths by pruning paths based on the

characteristics of their reflection points.

C2: Estimating mmWave path losses. SpaceBeam includes

a robust approach to discriminate surface materials in the envi-

ronment. RGB-D LiDAR cameras use an IR laser illuminator for

ranging. In RGB-D cameras, the intensity of the IR transmitter is

detectable by the visible light sensor. The specular and scattering

properties of the surface scatter the impinging IR beams, resulting

in an intensity pattern of IR light with varying bright and dark

patches. The IR receiver on LiDAR systems [16, 25, 44] enables di-

rect access to these IR intensity values. SpaceBeam uses a heuristic

that maps these intensity patterns to estimated mmWave reflection

losses of these surfaces with high accuracy.

We implement SpaceBeam using an Azure Kinect LiDAR camera

[25] and a commercial 802.11ad radio [2]. Using the techniques that

we develop, SpaceBeam can achieve an 88% reduction in latency

and 18% increase in available throughput in a network with 4 users

in a room over a state-of-the-art multi-user beam training algorithm

[19]. Compared to the default 802.11ad interference management

methods, SpaceBeam achieves a 66% reduction in latency and 50%

increase in throughput. For a larger networkwith 12 users in a room,

SpaceBeam improves throughput by 115% and reduces latency by

86%.

The main contributions of SpaceBeam can be summarized as

follows.

(i) We propose a novel framework to transform visual/optical

3D models into mmWave channel profiles. Our framework bridges

the gaps between these traditionally orthogonal domains, through

a set of mechanisms that contain the geometrical mismatch, and

through a cross-domain intensity estimation scheme that masks

the discrepancy in reflection properties.

(ii) We apply the SpaceBeam model to capture the invariant

environment-dependent structures in the mmWave channel, lead-

ing to a one-short beam assignment scheme which can use a pre-

computed look-up table to select the best beams for all mmWave

links in the environment. We further introduce mechanisms to

adapt to environmental dynamics.
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Figure 1: Comparison of exhaustive beam measurements to

a hierarchical training method (using BRP) and measure-

ments using only a sector sweep. Overhead is the percentage

of channel time dedicated to beam retraining for an indoor

environment where users move at a speed of 2 m/s.

(iii) We implement SpaceBeam using commercial mobile LiDAR

and mmWave radio platforms, and verify its advantages in com-

parison with standard protocols and state-of-the-art multi-user

mmWave beam assignment solutions.

2 MOTIVATION

2.1 Scalability Limits of mmWave Beam

Selection

Current approaches to mmWave beam selection rely almost exclu-

sively on direct measurements of RSS. Due to the directionality

of mmWave beams and sparsity of the mmWave channel, these

approaches must frequently re-scan beams to avert significant per-

formance drop. The scanning overhead grows as a product of the

number of users/links, node moving speed, and number of MIMO

arrays per node, and can even overwhelm the useful payload.

In Figure 1, we evaluate the overhead required for beam training

with a variable number of mobile users, using a radio with multiple

phased array panels for 360° coverage. Using sector sweeps alone

requires 3 ms per user to select from among multiple panels. Hi-

erarchical search starts with a sector sweep, then refines its beam

selections in a pairwise manner. Exhaustive beam training is clearly

infeasible in this situation, but even more-efficient methods clearly

struggle as the number of users increases.

2.2 Transforming Models from 3D Optical

Space to RF Space

The reliability of 3D maps in mmWave beam selection lies in

the ability of SpaceBeam to transform 3D environment models

into mmWave channel models that reflect the propagation an-

gles/strengths of signal paths.

2.2.1 The Impact of Imperfect 3D Models. The accuracy of ray-

tracing mmWave signal paths depends on the quality of the 3D

copy of the physical space. Typically, RF path-tracing requires a 3D

CADmodel as input, consisting of large, exact faces, such that it can

locate an exact point where any given reflection or transmission

occurs. In practice, given the limited accuracy of LiDAR scanners,

a perfect replica of the physical world is not possible, and the

deficiencies have a large impact on ray-tracing performance.

3D modeling commonly adopts mesh representation, which ap-

proximately constructs 3D shape polygons. Each polygon is defined

by its 3D position boundaries and a surface normal. Consider a flat

wall as shown in Figure 2(a). The best 3D mesh reconstruction of

(a) (b)

Figure 2: Mesh reconstruction (b) of a flat wall (a). The mesh

reconstruction includes an artifact due to systemic error

(the diagonal line) and smaller random errors which appear

as a texture on a flat surface.
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Figure 3: The percentage of paths discovered using a stan-

dard ray-tracing algorithmas a function of the ranging error

of the sensor.

this wall from LiDAR measurements shows significant noise and

artifacts, as seen in Figure 2(b). Ray traced mmWave beams reflect-

ing off such a noisy surface will diverge significantly from their

real-world paths, and be inadvertently dropped from consideration.

For example, Figure 3 shows that when range error is a mere 1 cm

or greater, fewer than 50% of the candidate mmWave paths that

are discovered by ray tracing. Even very recent 3D reconstruction

frameworks such as Kimera [35] generate meshes with cm-level or

greater mean-squared errors.

2.2.2 Estimating mmWave Beam SNR. Additionally, different ob-
jects in the scene have different mmWave reflective properties.

Direct estimation of reflection coefficients using 3D mapping data

is challenging because the visible and near-infrared sensing data

cannot fully represent the mmWave interaction properties of an

object. For example, dry/wet concrete [22] and multi-pane/single-

pane windows [43], though hardly distinguishable by LiDAR, may

reflect/attenuate the mmWave signals differently.

As an example, in §7.2 we show that by identifying reflection

coefficients of materials, SpaceBeam can select mmWave beams

with higher SNR on average than if we had no information on

material reflectivity.

3 SYSTEM OVERVIEW

SpaceBeam is a LiDAR-driven mmWave beam selection solution

that operates in three phases.

Building 3D Maps for RF Modeling: SpaceBeam first generates

a 3D map of the surrounding physical environment and captures

the characteristics of the physical materials to better inform the

ray-tracer in the later step. SpaceBeam scans the environment
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Ray-tracing
LiDAR sensor data

3D Reconstruction

Material Identification

Beam LUT

Real-time Beam Selection

Blockage Handling

Figure 4: SpaceBeam consists of three components: 3D re-

construction, robust RF ray-tracing, and real-time beam se-

lection. The radio shown in the real-time beam selection

block was used in our testbed.

with a LiDAR-equipped RGB-D camera [25]. Since commercial Li-

DAR sensors may have a ranging error variance of up to 3 cm

[44], we use a robust reconstruction method [7, 31] incorporat-

ing Truncated Signed Distance Function (TSDF) mesh reconstruc-

tion. Centimeter-level accuracy is typical for many commercially

available LiDAR sensors, including those manufactured by Velo-

dyne [44], Microsoft [25], and Intel [16]. Concurrently, SpaceBeam

uses a novel method to estimate the reflection characteristics of

mmWave signals by measuring environmental materials’ near-IR

scattering characteristics with the LiDAR camera.

RF Ray Tracing: The 3Dmap contains reconstruction noise due to

the limited accuracy (±1cm) of the RGB-D camera [25]. SpaceBeam

uses a customized ray-tracing algorithm that works effectively

on the noisy 3D map generated in the first phase, we develop an

algorithm that can identify real RF paths in a 3D mesh, and reject

false reflection paths caused by reconstruction noise.

Real-Time Beam Selection: Finally, SpaceBeam uses the outcomes

of ray-tracing to select the best beams for each Tx/Rx location.

Given a static (or quasi-static) environment, SpaceBeam can pre-

compute beam assignments for each location in a 3D grid of points

that spans the entire 3D map. These grid points are spaced 28cm

apart, which we show well balances the trade-off between com-

putation overhead and beam accuracy (§6.1). Most environments

include some amount of mobility. In particular, people moving in

the environment tend to create significant blockages. We handle

these environment dynamics in real time by detecting unexpectedly

low SNR and switching to an alternate precomputed beam. For this

reason, LiDAR sensors are not required during the ordinary operation
of the system. Any localization method with cm-level accuracy may

be used, such as a VR headset’s position-tracking system. When

significant changes in the quasi-static environment occur, we can

recompute the complete lookup table for the environment in under

15 minutes.

4 3D RECONSTRUCTION OF THE

ENVIRONMENT

Broadly, any 3D reconstruction method proceeds by first aligning

the sequence of ranging data based on an estimation of the sensor

pose at each sampling time stamp. Once an optimal alignment is

calculated, the separate measurement samples can be integrated

into a single 3D mesh model. The 3D sensor used in SpaceBeam

is a hand-held RGBD (RGB + depth) camera with LiDAR ranging

capabilities, which is becoming popular in consumer grade mobile

devices. To reconstruct the 3D model, we use an algorithm [7, 31]

that leverages the RGB data to improve the sample alignment. The

process first aligns adjacent images to form fragments, and then

reconstructs the global map by merging these fragments. To join

the depth images into a single, global image, we first construct a

voxel cloud of size 5 mm. Then we use the KinectFusion method to

find the location of the surfaces based on the volumetric truncated

signed distance function (TSDF), while reducing the effect of depth

noise in individual images [27]. The process results in a relatively

uniform mesh, where the spacing between vertices is about 5 mm,

and the sizes of the triangles are approximately uniform.

Once the locations of surfaces are obtained, we must determine

the propagation properties of the surface materials, i.e., the re-

flection and transmission coefficients. Although inferring exact

reflection coefficients from optical sensor data is difficult, we ob-

serve that even coarse reflection estimation can help to guide the

mmWave beam selection. In fact, it is well known that the mmWave

channel is sparse in both indoor and outdoor environment–between

a pair of transmitter and receiver, only the LoS and 3-5 dominant

NLoS reflection paths determine the angle and strength of signals

[33, 39, 41]. Therefore, for beam selection, the primary purpose of

material identification is to discriminate objects with significant

reflection loss, which will diminish the NLoS path strength. The

secondary purpose is to rank the remaining objects and find the

strongest available reflectors.

4.1 A Primer on RF Reflection Loss

Many prior studies have shown that common building materials

and indoor objects have found widely-varying reflection loss [22,

24, 36, 43] at mmWave frequencies. Therefore, given a 3D mesh

that embodies the locations and orientations of environmental

surfaces, SpaceBeam must determine the reflection loss of a signal

that reflects from each surface.

To understand how SpaceBeam resolves the issue, we first review

the physical interactions that determine the reflection properties of

a surface. When a radio signal reaches a perfectly flat surface, the

signal power partly penetrates the surface, and partly reflects along

a specular direction. The relation between the transmitted and

reflected power is given by the Fresnel coefficients, which depend

on the complex permittivity of the surface material. In reality, most

surfaces are not perfectly flat, and the signal will experience diffuse
scattering which further reduces its strength. For example, a rough

plaster surface can have more than 20 dB greater reflection loss

than a smooth plaster surface. Such loss due to surface roughness

can be modeled as [22]

𝑅/𝑅0 = exp

[
−8

(
𝜋Δℎ cos𝜃𝑖

𝜆0

)
2

]
, (1)

where Δℎ is the standard deviation of the surface height, and 𝑅0
is the reflection coefficient calculated using the Fresnel equations.

Therefore, for a given surface, the diffuse scattering of IR is greater

than or equal to the diffuse scattering of mmWave signals.
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4.2 Sensing Surface Roughness using IR

Measurements

Clearly, it is not trivial to calculate the Fresnel coefficients, since

the relevant electrical characteristics vary with frequency. It is

possible to coarsely infer the values by using an image classification

algorithm, but this requires intensive training over a large database

of object types, together with environment-specific tuning.

To overcome the challenge, SpaceBeam instead models the fre-

quency independent surface scattering properties based on the

LiDAR camera data. Unfortunately, the depth resolution of such

sensors is insufficient to reveal the sub-mm level surface variation.

Instead, we can indirectly infer surface roughness by examining

the surface backscatter characteristics. This is accomplished using

IR intensity data captured by typical LiDAR devices, including the

CMOS sensors found in the Azure Kinect, iPhone Pro, as well as

more traditional mechanical LiDARs (e.g., Velodyne HDL-32E). In-
tuitively, the ratio between the total reflected IR signal power to

the backscattered signal power will allow us to infer the surface

height variation, which determines the specular reflection loss due

to diffuse scattering.

Since the IR camera is measuring returns from an onboard IR

laser, a specular reflection exists at the point on the surface where

the normal of the surface points towards the camera. We compare

the IR luminosity at this point to the luminosity at nearby points on

the surface to find the ratio between the specular reflection point,

which includes both forward- and back-scatter, and surround points,

which only include backscattered light. We extract a 100×100 pixel
square centered around this point, and then apply a Gaussian blur

to this image to reduce the effect of macro-scale surface roughness

and other small details on the object. We further calculate the

specularity ratio by finding the maximum intensity within the

square (the specular reflection point), and then dividing by the

average intensity across the entire image. To further reduce the

effects of noise, we average this ratio over 10 consecutive frames,

or less than half a second of time.

As a feasibility verification, we use our mmWave radios to mea-

sure the reflection loss of a number of representative materials,

while using the LiDAR camera to desirve the IR specularity ratios.

Table 1 summarizes the results. Clearly, surfaces with higher IR

specularity tend to have lower mmWave reflection losses. How-

ever, we found that there is no exact mapping between mmWave

roughness and IR roughness, because IR backscatter may also cap-

ture the surface variation too minor to have an effect at mmWave

frequencies. Instead, we approximate the surface roughness effect

by quantizing it into three groups: highly specular, non-specular,

and partially specular, corresponding to objects with IR specular-

ity > 20 dB, < 4 dB, and in between, respectively. Although this

method is coarse, and only provides a lower bound on reflection

loss, we will show later that it can already substantially improve

beam selection performance (§ 7.2).

5 ROBUST RAYTRACINGWITH NOISY 3D

MODELS

To enable accurate mmWave ray-tracing, we need to account for the

mismatch between the dense, noisy mesh generated by LiDAR sens-

ing, and standard RF ray-tracing algorithms which expect smooth

Table 1: Reflection loss values for different objects. Where

available, ourmeasurements are compared to priormeasure-

ment studies (in parenthesis). IR Specularity is our estimate

of the ratio of the total reflected power to the backscattered

power at 850 nm.

Material Type Reflection Loss IR Spec

Refrigerator <1 dB 38.3-40.5 dB

Car Body <1 dB 33.3-34.4 dB

Window 4 dB (2-8 dB[22, 43]) 25-26 dB

Drywall 14 dB (9-15[24, 43]) 4.6-6 dB

Cinderblock 22 dB (7-11 dB[24]) 3.8-4.3 dB

Couch (Fabric) 30-40 dB 3.4-3.6 dB

Stucco Wall 30 dB (25-35 dB[22]) 3.3 - 3.9 dB

noiseless surfaces. A straightforward solution would be to create

a mesh reconstruction that is as close to the expected CAD-like

format as possible. To this end, we can generate a point cloud from

our 3D model, then repeatedly run the RANSAC algorithm [12] to

find subsets of points that form planes. For each subset, we first

create a plane by finding a normal vector and location that best

fits the subset. We then divide this plane into 10 cm squares, and

remove the squares that are not supported by any points. By re-

moving unsupported squares, we avoid unintentionally blocking

open doorways and similar areas that lie behind part of a planar

surface. This technique can mitigate the mesh noise. Accordingly,

we find that the accuracy of standard RF path tracing improves

significantly in an environment consisting primarily of large, flat

surfaces. Unfortunately, this method is not applicable in a more

crowded environment with many non-flat objects. Our experiments

show that the proportion of missing paths nearly doubles in a room

that contains furniture and other objects (Section 5.4).

To overcome the challenge, we instead modify the ray tracing

process itself to be robust to significant noise in the 3D model.

To capture the missed paths, we introduce a small tolerance in

reflection angle based on the measured error characteristics of our

3D reconstruction system. On the other hand, our 3D model will

include many surfaces too small to produce a reflection strong

enough for use in communications, and the model may include

small reconstruction artifacts.Wemust find away to reject the weak

and spurious reflection paths from these surfaces. We develop a pair

of simple tests that, when used together, detect and remove the vast

majority of such paths. We now elaborate on these mechanisms.

5.1 Approximate Path Generation

Classical RFmodelingmethods such as Shooting and Bouncing Rays

(SBR) [23] use ray tracing to find the primary propagation paths

in an environment. In general, SBR works by initializing a set of

rays with a uniform spacing of Δ𝜃𝑟𝑎𝑦 in the elevation and azimuth

directions. For each ray, it then finds the first location where the ray

intersects another object in the environment. If this first intersection

is located at the receiver, then the SBR algorithm terminates for that

ray. Otherwise, it creates a new ray in the direction of the specular

reflection 𝑟𝑠 = 2(𝑟𝑖 · �̂�)�̂� − 𝑟𝑖 , where 𝑟𝑖 is the unit vector indicating

the direction of the incident wave. It may also create a refracted

wave that passes through the surface. For each new ray, it proceeds

to recursively find a path to the receiver, unless a predetermined

limit on the number of reflections and refractions is reached.
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Figure 5: (a) The variation in normal vectorsmeasured using

our calibration procedure, and (b) the probability of missing

a path as a function of the normal tolerance Δ𝜃�̂� .

The immediate problem that we face with the conventional RF

raytracers is that they assume for each propagation path𝑚, there

exists some set of rays {®𝑟𝑛}𝑚 , that lead from the transmitter to the

exact location of the receiver, and that each of the rays point in

the direction of the specular reflection. In a dense triangle mesh

model of the environment where the normal vector of each face may

contain a substantial amount of noise, such a set of rays frequently

does not exist. To accommodate mesh noise, we introduce an error

tolerance of Δ𝜃�̂� for the angle of the normal vector used to calculate

the direction of the specular reflection. If the final ray to the receiver

has an angle that falls within
1

2
Δ𝜃�̂� , the ray is counted as having

arrived at the receiver.

5.1.1 Selecting the Error Tolerance. A key question is how to select

the tolerance parameter Δ𝜃�̂� . An excessively large value leads to

the detection of many false paths, requiring increasing processing

complexity to correct. On the other hand, a value that is too small

may lead to miss detection of valid RF paths.

Therefore, we want to select the minimum Δ𝜃�̂� such that we

miss a path due to normal noise in fewer than 1% of all cases. In

conventional mesh reconstruction algorithms, errors in positions of

vertices in the mesh are a result of errors in both range estimation

and pose estimation of the 3D sensor. Due to the large number

of factors involved in 3D mesh reconstruction, it is generally not

possible to find mesh error probabilities analytically. Instead, prior

work determined mesh error characteristics using a simple calibra-

tion procedure involving measuring a flat surface from multiple

distances and running the reconstruction algorithm on each mea-

surement [18, 28]. Using this procedure, we find the differences

between the normals of individual triangles and the reference nor-

mal value, and use this distribution to estimate the prevalence of

missed paths at a given Δ𝜃�̂� value. Since mesh error depends on

the system configuration, and not on the environment, this calibra-

tion only needs to be completed once per combination of sensor,

measurement platform, and reconstruction method.

Figure 5 shows the distribution of errors in the normal vector,

alongside the probability of miss-detecting an RF path. The calibra-

tion scenario finds that 99% of the normal errors fall below 4°. At

4°, the rate of missed reflected paths has converged to a small value

of 4%. The remaining paths errors have other causes, e.g. mmWave

reflectors hidden behind objects that are transparent at mmWave

but not infrared.

5.2 Path Clustering

The aforementioned method finds missing paths neglected by exact

path discovery methods, but it also finds many additional reflection

(a) (b)
(c)

Figure 6: Comparison of the reflection points of a spuri-

ous path to the reflection points of a valid path. Reflection

points (a) correspond with a valid path with reflects off of

a flat wall. Reflection points (b) and (c) reflect off of small

portions of a window frame.

points near the exact reflection point, since the increased error

tolerance in the reflection angle will allow a larger number of the

initial rays to reach the receiver.

To consolidate these paths into a single path, we first group the

paths into clusters. We use hierarchical agglomerative clustering

with a single-linkage criteria to identify the clusters in O(𝑛2) time,

where 𝑛 is the total number of paths [37]. The single-linkage crite-

ria successively merges any paths within a given distance of any

existing path in the cluster. Since the set of mmWave paths is sparse,

clusters are nearly always far apart and the single-linkage threshold

does not need to be determined precisely. We then take the mean

of each reflection point in the path cluster to merge each cluster

into a single path.

5.3 Spurious Path Pruning

Whereas the aforementioned mechanism dealt with many near-

duplicate reflection points corresponding to a single path, as in

Figure 6(a), in this section we consider spurious paths reflecting
off very small surfaces such as the edge of a table or LCD panel,

or reflecting off small artifacts caused by 3D reconstruction errors.

Two examples of spurious paths are shown in Figure 6(b,c). The

reflected mmWave power should be small as it is proportional to the

surface area [17]. The prior results of ray-tracing find paths off both

large surfaces and very small surfaces, so we introduce an additional

step to differentiate between these two types of reflections.

Since a detailed mesh reconstruction consists of many small

triangles, even for a large, flat surface, it is usually not possible

to directly measure the size of the face causing the reflection. In-

stead, to eliminate these spurious paths, we leverage two geometric

intuitions about the nature of the ray-tracing results. First, our

ray-tracing model assumes all interactions occur in the far field,

such that there is a coherent combination of signals from all the

antenna elements across the phased array at each reflection point.

If this assumption is not satisfied, the reflection may not be strong

enough to use for communications. To verify that the signals coher-

ently combine at each reflecting point, we select six points around

the edges of the Tx/Rx phased arrays (which are 4 × 4 cm in our

case), and run ray tracing using these pairs of Tx/Rx locations. We

use the same clustering method discussed above to associate the

paths discovered across these multiple raytracing rounds. Then, if

a cluster is present in all of the Tx/Rx location pairs, we accept it

as a valid path. Otherwise, we reject it as spurious.
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Table 2: Comparison of spurious path rejection methods.

False Pos Rate is the fraction of spurious paths accepted by

the classifier and False NegRate is the fraction of good paths

rejected by it.

Method False Pos Rate False Neg Rate

Tx/Rx Rand 23% 1%

Face Count 9% 1%

Combined 9% 1%

Table 3: Comparison of false negative rates using different

RF ray tracing techniques in three different rooms.

Raytracing Method Simple Crowded Garage

Wireless InSite 56% 62% 80%

Plane Fitting 10% 20% 68%

RT Approximation 5% 7% 11%

RT Approx + Pruning 5% 7% 11%

Second, recall that increasing the angle tolerance Δ𝜃�̂� will lead to

a roughly circular disc-shaped set of reflection points on a large, flat

surface. Spurious paths will be confined to either a single point or

a line of points, as shown in Figure 6. To distinguish between small

and large reflection surfaces, we want to determine the total area

of the reflection surface. Directly determining the total reflection

surface across all ray traced paths using a method such as finding

the convex hull is inefficient for large numbers of paths. Instead,

we observe that the size of the faces in our mesh will be roughly

uniform as a result of the reconstruction process described in § 3.

Thus, we can use the number of faces detected as reflectors as a

proxy for the area of the reflection surface.

To this end, we need to find a threshold for the minimum number

of faces 𝑁𝑓 ,𝑚𝑖𝑛 needed for claiming a a sufficiently large reflecting

face. First, we note that the any flat reflecting surface should have

an area at least as large as the phased array (e.g., 16cm2
in our

implementation). To calculate the probability distribution of the

number of reflection points corresponding to a single path, we

begin by finding an approximation for the change in incidence

angle as a function of the distance from the ideal reflection point.

For a small distance Δ𝑥 , the incidence angle will change by Δ𝜃𝑖 =
180

𝜋

(
tan

2 𝜃𝑖 + 1

)−1
. For any mesh triangle a distance 𝑟 from the

ideal reflecting point on a flat surface, the probability of the normal

vector falling within the range of a specular reflection is

𝑃𝑚𝑎𝑡𝑐ℎ = 𝑃

[
𝜃𝑒𝑟𝑟 < Δ𝜃�̂� − 360

𝜋

𝑟

1 + tan
2 (𝜃𝑖 )

]
. (2)

Using the empirical normal error CDF found using our calibration

procedure in Sec 5.1.1, we compute that there is a 99% chance that

a flat reflector with an area of 16cm
2
will have at least 30 triangles

detected as reflectors during ray tracing, given that vertices are all

spaced approximately 5 mm apart. Any cluster of reflections with

fewer than 30 triangles is highly unlikely to be a flat surface of

sufficient size to produce a strong reflection.

Table 4: Comparison of false positive rate (percentage of dis-

covered paths that are invalid) using different RF ray tracing

techniques in three different rooms.

Raytracing Method Simple Crowded Garage

Wireless InSite 0% 0% 25%

Plane Fitting 1.5% 3% 3%

RT Approximation 45% 16% 12%

RT Approx + Pruning 12% 4% 7%
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Figure 7: Comparison of azimuth angle error under different

ray tracing methodologies. Plane-fitting denotes standard

ray-tracing on ameshmodel constructed using themodified

plane-fitting method.

5.4 Benchmarks

We develop a set of ground-truth paths by finding peaks in the

Angle of Departure (AoD) spectrum measured using our mmWave

radios over 44 transmit/receiver location pairs for each location

(§ 7.1). We use this ground truth data to evaluate the performance of

our ray-tracing solution. Table 4 shows the percentage of first-order

paths that we discover which are invalid, while Table 3 shows the

percentage of known paths which are missed by ray-tracing. After

the pruning process, the results from our process significantly out-

performs methods based on the unmodified RF ray tracing process.

We include evaluations from a garage, in addition to two standard

indoor rooms, to show that our system works in a variety of en-

vironments. Figure 7 shows that fewer than 10% of all estimated

paths have an estimation error greater than 6°. Since our mmWave

phased arrays have a 12°half-power beam width, errors of less than

6° will generally not have a significant effect on the system per-

formance. Thus, we experience angle error significant enough to

reduce available SNR in fewer than 9% of the paths we detect.

6 REAL-TIME BEAM SELECTION

We now apply the beam power estimation techniques to mmWave

network configuration. There is already substantial previous work

that considers base station assignment, beam selection, and sched-

uling [13, 14, 19]. Here, we are primarily interested in the unique

challenges presented when we use ray-tracing prediction, rather

than run-time network measurement, to handle this configuration.

The first is achieving real-time beam selection with ray-tracing,

which itself may take significant computation time. To ensure that

the beams can be updated in time, we employ a lightweight lookup

table scheme to cache the path parameters available at each location.

Second, our 3D model is quasi-static, and receives only infrequent

updates due to the computational overhead in model construction.

This would not affect reflector localization and identification, since

most dynamic objects indoor, such as people and furniture, are

not strong mmWave reflectors. However, blockages such as people
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Figure 8: Error in angle of departure for valid paths as a func-

tion of the offset of the position used in ray-tracing. The con-

fidence bounds are the 25
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are often highly mobile, and run-time LiDAR sensing of blockages

would require that each node have its own LiDAR sensor to re-

construct the scene in real time. In addition, our system cannot

predict reflection or blockage losses with complete accuracy in all

situations. To address these problems, we make use of a fast failover
mechanism to quickly handle unexpectedly weak or blocked paths.

6.1 Ray-tracing Precomputation

Although our method nearly eliminates the communication over-

head in traditional beam scanning, the computational complexity

associated with ray-tracing is substantially greater. In mobile sce-

narios, the additional latency introduced between a change of node

location and update of beam selection for each user can lead to

highly sub-optimal network configurations. To avoid this prob-

lem, we precompute a look-up table to store the available paths

between any pair of transmitter/receiver locations, rather than

computing these values in real time. This solution works for even

low-profile embedded devices, and may easily be executed in MAC-

layer firmware.

The look-up table requires that we partition the 3D space into a

discrete number of spots. At runtime, the transmitter and receiver

can simply associate themselves to the nearest spots and retrieve

the cached path information. A finer grained partition may ensure

higher precision, but result in a larger table. To understand the

relevant real-time constraints, we first conduct a set of experiments

to determine the effect of an offset between the actual current

location and the location used to find a ray-tracing solution. As

described in § 7.1, we collect real mmWave measurements and use

a LiDAR device to measure the precise location of the radio to

within ±2 cm. Figure 8 shows increase in angle prediction error

as a function of the distance between the actual position of the

radio and the location used for ray-tracing, calculated using the

same methodology used to evaluate our ray-tracing performance in

§ 5.4. Since our half-power beam width is 12°, when the angle errors

greater than 6° occur, beginning around 50 cm location offset, the

communications performance begins to degrade. Figure 9 shows

this effect in a network consisting of two users and two access

points, using the same methodology used in § 7.6. In this test case,

the system performance begins to drop once the users are more

than 20 cm from their ray-tracing locations. Based on this data, we

conclude that any given ray-tracing solution may be used with a

sphere of radius 20 cm, centered around the radio location used

during ray-tracing. To ensure that the user is never more than 20 cm

from a precomputed solution, we create a grid of points 28 cm apart.

A lookup table containing the precomputed beams and their signal

strengths for any point in the entire volume of either room would
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Figure 9: Throughput reduction due to offset between lo-

cations used during ray tracing and actual radio locations.

Throughput is expressed as a percentage of the throughput

obtained when using the exact location.

be less than 50 kilobytes in memory. Since this data only needs to

be loaded once per room, the overhead of retrieving and storing

this data would be negligible.

6.2 Fast Failover

The second problemwemust handle lies in the blocked or otherwise

missing paths. Our reflection strength measurements show that

the strongest reflectors in indoor environments are generally quasi-

stationary objects such as walls, windows, and large metal objects.

Smaller, more mobile objects only produce specular reflections at a

limited range of locations. However, manymobile objects, especially

people, are strong blockages, and may cause substantial attenuation

(as demonstrated in § 7.4).

To handle new blockages that occur when a blocker moves into

the currently-active beam, we sense drops in SNR of packets that we

receive on the connection. Since a small drop in SNR precedes a full

blockage, we can select a new beam before the old beam disappears

[42]. When we switch to a new beam, either to enable multi-user

multiplexing, or to handle a new blockage, we also need to check

for dynamic blockages along the new selected beam path before we

use it. To check for blockage along a new path, we leverage limited,

low-overhead measurements using the Beam Refinement Protocol

(BRP) built-in existing mmWave devices such as 802.11ad. BRP is

intended to scan a smaller number of sectors to improve the beam

selection after a broad beam sweep is completed and a rough beam

alignment is available. The device which initiates BRP may specify

the exact beams to check. As such, it requires significantly less time

to complete than a standard sector sweep. Tominimize the overhead

of this process in the case where blockage is discovered, we scan

the top-3 available paths, ranked by the expected signal strength

calculated as specified in § 4.2. Any path where the measured signal

strength is significantly lower than the expected signal strength is

considered blocked.

7 EVALUATION

7.1 Experimental Setup

To demonstrate the effectiveness of SpaceBeam, we collected 3D

modelling data and RF propagation data in multiple real environ-

ments. To create the 3D models, we used a Microsoft Azure Kinect

Time of Flight camera [25]. We created an RGBD sequence by

moving the camera around the environment, and used a robust

multi-step reconstruction algorithm [7, 31] to build a 3D mesh

model with a 5 mm resolution.
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(a) (b)

Figure 10: Two rooms used to evaluate our system. Empty

Room (a) is 4m in length, 2.7m in width, and 2.7m in height.

CrowdedRoom (b) is 4.4m in length, 3.2m inwidth, and 2.5m

in height, excluding the stairs at the rear.

To collect RF data, we employ a commercial 802.11ad radio us-

ing an ARM-based single-board Linux computer as the host. The

radio consists of 24 phased array panels, divided into 6 groups.

5 of these groups are mounted vertically around the sides of the

device at 72° angles. The 6th group are mounted horizontally facing

above, and are not used in our experiments. Together, the horizontal

phased arrays achieve 360° field-of-view around the azimuth of the

device and ±60° coverage in elevation. We create a codebook for

these phased arrays with a 5
◦
spacing between beams, where each

beam has a 6
◦
half-power beam width. Each phased array scans 36

beams, for a total of 180 beams across all active phased arrays.

At eachmeasurement location, we collected per-beam per-packet

RSS and SNR measurements for each transmitter/receiver pair. Our

commercial 802.11ad device does not support cooperative TDMA

scheduling between APs, but we can use these measurements to

calculate the SNR and interference to noise ratio (INR) for any set

of beam configurations and TDMA schedules. We compare Space-

Beam’s performance with two baseline beam selection/scheduling

schemes. (i) The default 802.11ad protocol, where each user greedily

selects the AP and beam configuration with the highest RSS. To

mitigate interference, the protocol creates a PCP/AP cluster, which
allows neighboring APs and clients to detect and share when a net-

work node overhears signals from a neighboring node. APs within

the cluster then use the Extended Schedule mechanism to place

users in non-interfering slots [1]. (i) The recently proposed many-
to-many beam alignment protocol [19], which manages interference

via AP and beam selection, as well as interference-aware TDMA

for multi-AP mmWave networks.

Our 802.11ad device requires 1 ms to complete a sector sweep

(SSW) for each group of phased arrays. To complete a full omni-

directional scan, we must perform the sector sweep using at least

3 groups of transmit phased arrays, resulting in 3 ms of channel

overhead. We must also use at least 3 groups of phased arrays at the

receiver to achieve omnidirectional coverage at the receiver. Since

the sector sweep phase does not transfer full SNR measurements,

each client must also complete a beam refinement phase (BRP) to

share per-sector SNR values with the APs. This process takes an

additional 0.7 ms.

We conducted experiments in three different indoor environ-

ments. The first, shown in Figure 10(a), is an empty room that leads

to a short hallway. A window set is recessed 22 cm into the wall on

the side opposite the hallway. The second environment, shown in

Figure 10(b), is a crowded room containing a couch, a television,

Figure 11: Garage used to validate that SpaceBeamworks in

a significantly different indoor environment than the one it

was developed in.

a large metal reflector, a small refrigerator, and stairs. The third

(Figure 11) is a garage, which is used to benchmark SpaceBeam’s

performance across environment types.

7.2 Reflection Loss Estimation

We first verify the effectiveness of the IR-based reflection loss esti-

mation technique in guiding beam selection.We consider a common

scenario where the single best available NLoS transmit beam needs

to be selected between two nodes in the garage environment. We

exhaustively measure all possible transmit beam configurations as

a baseline. We conduct experiments in the garage environment and

compare our approach with two alternative estimation methods: (i)
using ray-tracing as in § 5 to discover potential paths, then directly

measuring the reflection strength in the real environment, (ii) free-
space path loss only, assuming a fixed 5 dB reflection loss. Figure 12

compares the resulting SNR to the SNR of the globally optimal NLoS

beam selected using exhaustive measurements. The measurement

method achieves the global optimum in most cases, but includes

errors due to improper raytracing, such as angle errors and unde-

tected paths. The garage environment is more challenging than

the previous rooms because of the large number of objects with

complex geometries, the degradation in detected NLoS paths due to

these errors is relatively small, but ray-tracing performs optimally

in the majority of the scenarios we tested. Therefore, the improper

ray-tracing, on its own, does not have a significant impact on the

beams selected by SpaceBeam. Our IR-based estimation technique

selects beams that are 4 dB weaker on average than the exhaustive

measurements. Using only free-space path loss to calculate signal

strength yields beams that are another 5 dB weaker than our ap-

proach. Therefore, even the coarse IR-based reflection estimation

technique (§4.2) has significant benefits, although there is still room

for improvement compared with the exhaustive measurement.

7.3 Beam Selection Mechanisms

To demonstrate the effectiveness of SpaceBeam in beam selection,

we use it to find beam configurations in the crowded room scenario

with two users and twoAPs, in comparisonwith 4 baselines: (i)Max-

SSW, i.e., the 802.11ad sector sweep feedback mechanism, which

only feeds back index of the strongest beam. (ii) The Many to Many
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Figure 12: Quality of the selected NLoS path based on dif-

ferent reflection loss estimation techniques. Measurement
directly measures reflection loss of all paths, MaterialID is

ourmethod formaterial identification, and Pathloss ignores
reflection loss. All SNRs are relative to the SNR of the best

NLoS path.

method [19], which configures both transmit and receive beam

patterns using on transmit sector sweeps, i.e. without taking any
measurements with receive beamforming. (iii) A Raytrace method

that selects the best beam using only estimates derived from our IR-

based sensing, without any mmWave sensing. (iv) The Exhaustive
method denotes complete measurements of all transmit and receive

beam patterns, coupled with an exhaustive search for the best SINR.

We place the user nodes in a grid pattern with approximately

30 cm edges on the far half of the empty room, and APs on the

opposite side of the room. In the crowded room, we placed the

APs on the near side of the room, as shown from Fig. 10(b), and

placed the user nodes at a height of 1 m in a 20 cm grid in the

remainder of the open floor space in the room. We collected addi-

tional measurements where the user nodes were placed at heights

of 0.8 m and 0.3 m in 8 total locations near the center of the room.

In total, we collected measurements from four AP locations and 52

UE locations.

Fig. 13 shows the resulting SINR values. Notice that even with a

limited number of nodes, the default sector sweep method produces

very low SINR values. In these cases, other multiplexing methods

must be used to accommodate multiple users. The median SINR

obtained with our techniques is only about 2 dB lower than the

measurements obtained with the many-to-many beam alignment

method. The many to many method performs slightly worse than

the exhaustive searchmethod because it assumes an nearly-uniform

omnidirectional receive pattern, whereas our commerical phased

array has significant variation in its receive pattern. The median

SINR with the exhaustive measurement is 8 dB better than our

method.

7.4 Environment Dynamics

To demonstrate how well SpaceBeam responds to environment dy-

namics, we conduct two experiments with significant environment

dynamics.

In the first experiment, we introduce a mobile blockage (i.e., an
absorber board) into the crowded room scenario. We set up a single

transmitter, and move a receiver and the absorber by 10 cm at a

time to collect RF traces at a total of 25 locations, such that different

paths are blocked by the absorber, which necessitate reselection
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Figure 13: SINR obtained using different beam selection

methods. The error bars denote the minimum and maxi-

mum SINR values across all trials.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.5 1 1.5 2
(a) (b)Throughput (Gbps)

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.2 0.4 0.6 0.8 1
(a) (b) Link Latency (ms)

Oracle
11ad

Assisted

Figure 14: Single-user network performance evaluation.

Part (a) shows the throughput, and part (b) shows link-

layer latency, both after accounting for control overhead

and packet loss. We compare a hypothetical oracle with per-

fect channel knowledge to our model-assisted solution and

the default 802.11ad protocol.

of beams. We measure the SNR, throughput, and latency achieved

using our method, in comparison to the standard 802.11ad protocol

with a beacon interval of 100 ms, and to an oracle that continuously

determines the best beam with no overhead.

The resulting throughput and latency are shown in Figure 14.

Although SpaceBeam does not explicitly include the moving block-

age in its 3D model, it runs fast beam search when an SNR drop is

detected, and can still avoid the outages witnessed by 802.11ad. In

addition, there is only a marginal throughput drop compared to the

oracle case. SpaceBeam achieves this with minimal overhead, since

it tracks the location of the current beam using ray tracing, rather

than taking direct measurements.

Second, we incrementally increase the amount of changes in

the crowded room (Figure 10(b)) as follows to emulate real-world

environmental dynamics: (i) keeping the environment the same as

it was during the initial LiDAR scan; (ii) adding a LoS blockage;

(iii) rearranging various smaller movable objects (wood furniture,

a package of water bottles, boxes, etc.); and (iv) moving the main

metal reflector from the original model. In each condition, we move

the user along a 1m path at 0.5 m/s. The in Figure 15 show that, until

step (iv), SpaceBeam’s network performance remain almost unaf-

fected, because the blockage detection mechanism simply re-routes

our connection to an alternate reflector. When moving the large

reflector, SpaceBeam suffers from a throughput reduction of 45%

compared to the oracle case. However, such changes are rare (e.g.,
moving large metal furniture in home environment), and Space-

Beam can afford infrequently rerunning the 3D reconstruction to

restore its performance.
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environment changes: LoS blockage,movement of wood fur-

niture/small objects, and movement of a metal reflector.
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tocol in [19].
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Figure 17: Link-layer latency as a function of the number of

users in a two-AP environment.

7.5 Computation Time

While SpaceBeam assumes a quasi-static environment, it needs

to update the environment model when the environment changes

significantly. To facilitate real-time beam assignment, we need to

precompute the available beams and the expected total path loss,

for each pair of user location and AP location. Averaging over many

ray-tracing runs on an Intel i7-8700 CPU, the entire ray-tracing

process takes 1.4 s on average for each user/AP location pair. In

total, this process takes 22.5 minutes for the crowded room and 18.6

minutes for the empty room, for two APs. This latency should be

affordable for typical environments where the set of large reflectors

rarely changes.

7.6 System-Level Evaluation in a Multi-User

Network

Next, we experiment with a multi-user network in the empty and

crowded room scenarios. We re-use the samemeasurements that we

used in § 7.3, and conduct a trace-driven simulation using measured

network data as described in § 7.1. We assume that the users are

moving at 2 m/s, such that we must re-train our beam selections at

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

2 4 6 8 10 12 14

S
u

m
 T

h
ro

u
g

h
p

u
t 

(G
b

p
s
)

Number of Users

11ad
Many2Many
SpaceBeam

Figure 18: Total link-layer throughput as a function of num-

ber of users in a two-AP environment.

least once every 200 ms (as demonstrated by our previous location

offset experiment in § 6.1). For each number of users in our plots,

we conduct 50 tests using randomly-selected sets of users drawn

from these data sets.

Figure 16 shows the detailed link statistics over the trials where

14 users are selected. Specifically, we note that SpaceBeam provides

a worst-case latency significantly lower than alternative methods,

making it especially suitable for latency-sensitive applications

Figure 17 shows the link-layer latency as a function of the num-

ber of concurrent users. The latency is affected by both the measure-

ment overhead required for beam training and latency introduced

while waiting for a TDMA slot. We operate with 500 𝜇s TDMA

time slots, which is within the allowed size of scheduled trans-

mission periods in 802.11ad [1], and is low enough to allow for

latency-sensitive communications. Many-to-many beam alignment

halts the network during the training process, leading to a long tail

of high latency for packets waiting to be transmitted during this

period. It has higher control overhead than the default 802.11ad

protocol because it must scan all 180 beams and exchange per-beam

SNR information between each user node and the APs. This process

requires a total of 5.1 ms per node On the other hand, TDMA delay

contributes significantly to the latency when we using 802.11ad,

since there are very few opportunities for concurrently transmitting

multiple data streams. 802.11ad does not attempt to discover NLoS

paths, so end users in our implementation only activate and train

the set of phased arrays with the highest SNR from the AP, further

reducing the required training overhead. By contrast, SpaceBeam’s

only management comes from AP beacons, which allow for ini-

tial user association, and the blockage-management measurements

described in § 6.2.

Fig. 18 shows the total throughput available in the network as a

function of the number of users. In this case, network throughput

is limited by the number of available APs, and per-user throughput

will decrease significantly as the number of users sharing the base

station increases. Both the SpaceBeam and 802.11ad protocols have

slight declines in total throughput delivered to users as a result of

management overhead.

8 DISCUSSION

Our work is a first effort to achieve real-time beam selection us-

ing detailed LiDAR data without any kind of environment-specific

tuning or training. There are a number of possible paths to im-

prove on this work and adapt it to other use cases, especially for

highly-dynamic environments such as outdoor V2X. The clearest
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opportunity for improvement is in improving our estimation of the

precise reflection characteristics of the environment. Our evalua-

tion in Fig. 12 shows that our estimation of material characteristics

is the primary limiting factor in the performance of our system, not

the ray-tracer. We may improve this performance in a quasi-static

environment by measuring these characteristics using mmWave ra-

dios or radars, then mapping these sparse measurements to objects

in the dense mesh. More dynamic environments could require more

sophisticated deep learning-based semantic segmentation schemes

to achieve this kind of learning.

Real-time usage. There are many potential use cases, such as

V2X, where LiDAR-driven beam management would be useful, but

where advance mapping may not be possible. To achieve this, we

need to reconstruct and ray-trace the environment in real time. We

were unable to accomplish this in our testbed due to the limitations

of our single depth camera, which has a very limited field of view

and is therefore unable to sample the full environment in real time.

Given multiple depth cameras at known locations on a network

node covering all angles around the node, we could continuously

generate a model of the surrounding objects. Since the relative

locations of all of the point clouds generated in this process are

known, point cloud alignment steps could be bypassed, and only

the TSDF mesh generation step would remain. This step may be

accomplished in only a few milliseconds using GPU acceleration

[10].

The second challenge would be to complete the ray-tracing path

discovery step in real time. Our custom ray-tracer requires an av-

erage of 1.4 s using six parallel processes using Intel’s optimized

ray-intersection kernels [3]. A straightforward approach to reduc-

ing this processing time is to rely on GPU processing. New GPUs

with dedicated ray-tracing cores can process up to 10 million rays

per second. Using GPU acceleration, we should be able to complete

the ray-tracing step in under 100 ms. There are also likely ways

to improve the ray-tracing algorithm we presented here to reduce

the number of rays that must be processed, which could further

improve processing time.

9 RELATEDWORK

Efficient beam selection represents the most critical problem for

robust mmWave networking, and a variety of solution frameworks

have been explored in the past a few years. The first are vari-

ants of hierarchical beam search, which measures wider or quasi-

omnidirectional beams first, and then uses these initial results to

reduce the search space during the beam refinement phase. The

fundamental problem with these techniques is that they do not

consider the environmental invariant which impacts the channel

in structured ways. As such, they still induce substantial trial-and-

error overhead in mobile scenarios. A second class of techniques

attempts to leverage temporal correlation to speed up the beam

selection process [45], assuming the best beam changes slowly over

time. This works well for purely line-of-sight (LoS) scenarios, but

struggle in non-line of sight (NLoS) scenarios, since mmWave re-

flectors are sparse and tend to change rapidly over time. The third

class of techniques is closest to our approach, and leverages spatial

information to guide mmWave network configuration [49, 51, 52].

For example, EMi [49] explicitly senses the locations of reflectors

to guide the deployment of mmWave base stations. The main weak-

ness of such solutions is that they still use mmWave sensing. Since

the mmWave channel is sparse, these approaches require extensive

prior measurements across many locations, and generally assume

a two-dimensional environment, i.e., the beams and radios all stay

in the same horizontal plane.

Prior work considered using various out-of-band measurements

for mmWave configuration, using sub-6 GHz measurements [29],

motion sensors [48], LiDAR point clouds [9], andmmWave radar [38].

However, most of these works focus on rapidly identifying LoS

paths based on node locations. In particular, the previous LiDAR-

based approach [9] requires extensive training data, and performs

best in identifying LoS blockage and beam angles. Alternatively,

mmWave radar [4, 15] can help estimate the channel covariance

at the communications band, to find the available LoS and NLoS

paths. However, these methods require specialized radar hardware,

potentially at both the transmitter and receiver, and a separate open

spectrum band nearby for radar sensing. By contrast, our method

requires only one device with a common LiDAR sensor to scan a

quasi-static environment, and does not need extra RF spectrum

resources.

Other work showed that a manually-constructed 3D model can

be used for beam selection [8, 32]. This requires manual construc-

tion of a 3D model, and manual assignment of complex permittivity

and roughness values. The closest work to ours [20] models a laser-

scanned environment using a point cloud, rather than a mesh. It

operates by summing received power contributions from all point

in the point cloud using a single-lobe scattering model, rather than

finding discrete paths, and can find the angular power spectrum and

delay profile. This approach requires environment-specific tuning

using multiple mmWave measurements to optimize its propagation

parameters, and does not model differences in reflection materials.

In addition, because it uses a point cloud rather than a mesh, it does

not model blockage.

10 CONCLUSION

In this work, we have introduced SpaceBeam, the first system to

use real LiDAR measurements for beam assignment in multipath

environments. We demonstrated key methods to allow for ray-

tracing on imperfect LiDAR data and out-of-band estimation of

reflection coefficients. We then showed that our method more than

doubles the link-layer throughput available in an indoor scenario

with 12 users, while reducing average latency by almost 90%. We

believe SpaceBeam materializes a new principle of using cross-

domain sensing to capture the invariant wireless channel features

that are determined by the ambient environment.
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