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Preface

This book is devoted to the study of exotic and non-standard mathematical methods
in quantum computing. The principal ingredients of quantum computation are
qubits and their transformations, which can be provided in different ways: first
mathematically, and they can then be further realized in hardware.

In this book we consider various extensions of the qubit concept per se, starting
from the obscure qubits introduced by the authors, and other fundamental general-
izations. We then introduce a new kind of gate, higher braiding gates, which are
implemented for topological quantum computations, as well as unconventional
computing, when computational complexity is affected by its environment, which
needs an additional stage of computation. Other generalizations are also considered
and explained in a widely accessible and easy to understand style.

This book will be useful for graduate students and last year students for
additional advanced chapters of lecture courses in quantum computer science and
information theory.

Steven Duplij and Raimund Vogl
Münster, Germany

August 2023
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Chapter 1

Obscure qubits and membership amplitudes

Nowadays, the development of quantum computing technique is governed by
theoretical extensions of its ground concepts (Nielsen and Chuang 2000, Kaye
et al 2007, Williams and Clearwater 1998). One of these extensions is to allow two
kinds of uncertainty, sometimes called randomness and vagueness/fuzziness (for a
review, see, Goodman and Nguyen 2002), which leads to the formulation of
combined probability and possibility theories (Dubois et al 2000) (see, also,
Bělohlávek 2002, Dubois and Prade 2000, Smith 2008, Zimmermann 2011).
Various interconnections between vagueness and quantum probability calculus
were considered in Pykacz (2015), Dvurečenskij and Chovanec (1988), Bartková
et al (2017), and Granik (1994), including the treatment of inaccuracy in measure-
ments (Gudder 1988, 2005), non-sharp amplitude densities (Gudder 1989), and the
related concept of partial Hilbert spaces (Gudder 1986).

Relations between truth values and probabilities were also given in Bolotin
(2018). The hardware realization of computations with vagueness was considered in
Hirota and Ozawa (1989), and Virant (2000). On the fundamental physics side, it
was shown that the discretization of space-time at small distances can lead to a
discrete (or fuzzy) character for the quantum states themselves.

With a view to applications of these ideas in quantum computing, we introduce a
definition of quantum state that is described by both a quantum probability and a
membership function (Duplij and Vogl 2021), and thereby incorporate vagueness/
fuzziness directly into the formalism. In addition to the probability amplitude, we
will define a membership amplitude, and such a state will be called an obscure/fuzzy
qubit (or qudit) (Duplij and Vogl 2021).

In general, the Born rule will apply to the quantum probability alone, while the
membership function can be taken to be an arbitrary function of all of the
amplitudes fixed by the chosen model of vagueness. Two different models of
obscure-quantum computations with truth are proposed below: (1) a Product
obscure qubit, in which the resulting amplitude is the product (in ) of the quantum

doi:10.1088/978-0-7503-5281-9ch1 1-1 ª IOP Publishing Ltd 2023

https://doi.org/


amplitude and the membership amplitude; and (2) a Kronecker obscure qubit, for
which computations are performed in parallel, so that quantum amplitudes and the
membership amplitudes form vectors, which we will call obscure-quantum ampli-
tudes. In the latter case, which we call a double obscure-quantum computation, the
protocol of measurement depends on both the quantum and obscure amplitudes. In
this case, the density matrix need not be idempotent. We define a new kind of gate,
namely, obscure-quantum gates, which are linear transformations in the direct
product (not in the tensor product) of spaces: a quantum Hilbert space and a so-
called membership space having special fuzzy properties (Duplij and Vogl 2021). We
then introduce a new concept of double (obscure-quantum) entanglement, in which
vector and scalar concurrences are defined and computed for concrete examples.

1.1 Preliminaries
To establish a notation standard in the literature (see, e.g. Nielsen and Chuang 2000,
Kaye et al 2007), we present the following definitions. In an underlying d-dimen-
sional Hilbert space, the standard qudit (using the computational basis and Dirac
notation) H d

q
( ) is given by

H∑ψ = ∈ ∈
=

−

a i a i, , , (1.1)
i

d

0

1
d

i i
d( )

q
( )

where ai is a probability amplitude of the state i . (For a review, see, e.g. Genovese
and Traina 2008, Wang et al 2020.) The probability pi to measure the ith state is

= …p F a a( , , )i p n1i
, ⩽ ⩽p0 1i , ⩽ ⩽ −i d0 1. The shape of the functions Fpi

is

governed by the Born rule … =F a a a( , , )p d i1
2

i
, and ∑ == 1i

d
p0 i

. A one-qudit

(L = 1) quantum gate is a unitary transformation H H→U :d d d( )
q
( )

q
( ) described by

unitary d × d complex matrices acting on the vector (1.1), and for a register containing
L qudits quantum gates are unitary ×d dL L matrices. The quantum circuit model
(Deutsch 1985, Barenco et al 1995) forms the basis for the standard concept of
quantum computing. Here the quantum algorithms are compiled as a sequence of
elementary gates acting on a register containing L qubits (or qudits), followed by a
measurement to yield the result (Lloyd 1995, Brylinski and Brylinski 1994).

For further details on qudits and their transformations, see for example the
reviews by Genovese and Traina (2008) and Wang et al (2020) and the references
therein.

1.2 Membership amplitudes

Innovation 1.1. We define an obscure qudit with d states via the following super-
position (in place of that given in (1.1))

∑ψ α=
=

−

a i , (1.2)
i

d

0

1
d

i iob
( )
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where ai is a (complex) probability amplitude ∈ai , and we have introduced a (real)
membership amplitude αi, with α ∈ [0, 1]i , ⩽ ⩽ −i d0 1.

The probability pi to find the ith state upon measurement and the membership
function μi (of truth) for the ith state are both functions of the corresponding
amplitudes, as follows

= … ⩽ ⩽−p F a a p( , , ), 0 1, (1.3)i p d i0 1i

μ α α μ= … ⩽ ⩽μ −F ( , , ), 0 1. (1.4)i d i0 1i

The dependence of the probabilities of the ith states upon the amplitudes, i.e., the
form of the function Fpi

is fixed by the Born rule

… =F a a a( , , ) , (1.5)p n i1
2

i

while the form of μF
i
will vary according to different obscurity assumptions. In this

paper we consider only real membership amplitudes and membership functions—
complex obscure sets and numbers were considered in Buckley (1989), Ramot et al
(2002), and Garrido (2012). In this context, the real functions Fpi

and μF
i
,

⩽ ⩽ −i d0 1 will contain complete information about the obscure qudit (1.2).
We impose the normalization conditions

∑ =
=

−

p 1, (1.6)
i

d

0

1

i

∑μ =
=

−

1, (1.7)
i

d

0

1

i

where the first condition is standard in quantum mechanics, while the second
condition is taken to hold by analogy. Although (1.7) may not be satisfied, we will
not consider that case.

For d = 2, we obtain for the obscure qubit the general form, instead of that in
(1.2),

ψ α α= +a a0 1 , (1.8)ob
(2)

0 0 1 1

+ =F a a F a a( , ) ( , ) 1, (1.9)p p0 1 0 10 1

α α α α+ =μ μF F( , ) ( , ) 1. (1.10)0 1 0 10 1

The Born probabilities to observe the states 0 and 1 are

= = = =p F a a a p F a a a( , ) , ( , ) . (1.11)p p0
Born

0 1 0
2

1
Born

0 1 1
2

0 1
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Innovation 1.2. The membership functions are

μ α α μ α α= =μ μF F( , ), ( , ). (1.12)0 0 1 1 0 10 1

If we assume the Born rule (1.11) for the membership functions as well

α α α α α α= =μ μF F( , ) , ( , ) , (1.13)0 1 0
2

0 1 1
2

0 1

which is one of various possibilities depending on the chosen model, then

+ =a a 1, (1.14)0
2

1
2

α α+ = 1. (1.15)0
2

1
2

Using (1.14)–(1.15) we can parameterize (1.8) as

ψ θ θ θ θ
= +μ φ μecos

2
cos

2
0 sin

2
sin

2
1 , (1.16)i

ob
(2)

θ π φ π θ π⩽ ⩽ ⩽ ⩽ ⩽ ⩽μ0 , 0 2 , 0 . (1.17)

Therefore, obscure qubits (with Born-like rule for the membership functions) are
geometrically described by a pair of vectors, each inside a Bloch ball (and not as
vectors on the boundary spheres, because ‘ ⩽sin , cos 1 ’), where one is for the
probability amplitude (an ellipsoid inside the Bloch ball with θ =μ const1) and the
other is for the membership amplitude (which is reduced to an ellipse, being a slice
inside the Bloch ball with θ = const2, φ = const3). However, the norm of the obscure
qubits is not constant because

ψ ψ θ θ θ θ= + + + −μ μ( ) ( )1
2

1
4

cos
1
4

cos . (1.18)ob
(2)

ob
(2)

In the case where θ θ= μ, the norm (1.18) becomes θ−1 sin1
2

2 , reaching its minimum
1
2
when θ θ= = π

μ 2
.

Note that for complicated functions α αμF ( , )0 10, 1
, the condition (1.15) may be not

satisfied but the condition (1.7) should nevertheless always be valid. The concrete
form of the functions α αμF ( , )0 10, 1

depends upon the chosen model. In the simplest
case, we can identify two arcs on the Bloch ellipse for α α,0 1 with the membership
functions and obtain

α α
π

α
α

=μF ( , )
2

arctan , (1.19)0 1
1

0
0

α α
π

α
α

=μF ( , )
2

arctan , (1.20)0 1
0

1
1
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such that μ μ+ = 10 1 , as in (1.7).
In Mannucci (2006) and Maron et al (2013) a two stage special construction of

quantum obscure/fuzzy sets was considered. The so-called classical-quantum
obscure/fuzzy registers were introduced in the first step (for n = 2, the minimal
case) as

= − +s f f1 0 1 , (1.21)f

= − +s g g1 0 1 , (1.22)g

where ∈f g, [0, 1] are the relevant classical-quantum membership functions. In the
second step their quantum superposition is defined by

= +s c s c s , (1.23)f f g g

where cf and cg are the probability amplitudes of the fuzzy states s f and s g,
respectively. It can be seen that the state (1.23) is a particular case of (1.8) with

α = − + −a c f c g1 1 , (1.24)f g0 0

α = +a c f c g . (1.25)f g1 1

This gives explicit connection of our double amplitude description of obscure
qubits with the approach (Mannucci 2006, Maron et al 2013) which uses probability
amplitudes and the membership functions. It is important to note that the use of the
membership amplitudes introduced here αi and (1.2) allows us to exploit the
standard quantum gates but not to define new special ones, as in Mannucci
(2006) and Maron et al (2013).

Another possible form of α αμF ( , )0 10, 1
(1.12), with the corresponding membership

functions satisfying the standard fuzziness rules, can be found using a standard
homeomorphism between the circle and the square. In Hannachi et al (2007b) and
Rybalov et al (2014), this transformation was applied to the probability amplitudes
a0, 1.

Innovation 1.3. Here we exploit it for the membership amplitudes α0, 1

α α
π

α α α α= − +
μF ( , )

2
arcsin

sign sign 1
2

, (1.26)0 1
0
2

0 1
2

1
0

α α
π

α α α α= + +
μF ( , )

2
arcsin

sign sign 1
2

. (1.27)0 1
0
2

0 1
2

1
1

So for positive α0, 1, we obtain (cf Hannachi et al 2007b)
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α α
π

α α= − +
μF ( , )

2
arcsin

1
2

, (1.28)0 1
0
2

1
2

0

α α =μF ( , ) 1. (1.29)0 11

The equivalent membership functions for the outcome are

α α α α α α α α− −μ μ μ μ( )( ) ( )F F F Fmax min ( , ), 1 ( , ) , min 1 ( , ) , ( , ) , (1.30)0 1 0 1 0 1 0 10 1 0 1

α α α α α α α α− −μ μ μ μ( )( ) ( )F F F Fmin max ( , ), 1 ( , ) , max 1 ( , ) , ( , ) . (1.31)0 1 0 1 0 1 0 10 1 0 1

There are many different models for α αμF ( , )0 10, 1
which can be introduced in such

a way that they satisfy the obscure set axioms (Dubois and Prade 2000,
Zimmermann 2011).

1.3 Transformations of obscure qubits
Let us consider the obscure qubits in the vector representation, such that

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= =0 1
0

, 1 0
1

(1.32)

are basis vectors of the two-dimensional Hilbert space H q
(2). A standard quantum

computational process in the quantum register with L obscure qubits (qudits (1.1)) is
performed by sequences of unitary matrices U of size ×2 2L L ( ×n nL L), U U I=† ,
which are called quantum gates (I is the unit matrix). Thus, for one obscure qubit, the
quantum gates are 2 × 2 unitary complex matrices.

Innovation 1.4. In the vector representation, an obscure qubit differs from the
standard qubit (1.8) by a 2 × 2 invertible diagonal (not necessarily unitary) matrix

Mψ α α ψ= ( , ) , (1.33)ob
(2)

0 1
(2)

M ⎜ ⎟⎛
⎝

⎞
⎠

α α α
α

=( , )
0

0
. (1.34)0 1

0

1

We call M α α( , )0 1 a membership matrix which can optionally have the property

M =tr 1, (1.35)2

if (1.15) holds.
Let us introduce the orthogonal commuting projection operators

P P⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= =1 0
0 0

, 0 0
0 1

, (1.36)0 1
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P P P P P P P P 0= = = =, , , (1.37)0
2

0 1
2

1 0 1 1 0

where 0 is the 2 × 2 zero matrix. Well-known properties of the projections are that

P Pψ ψ= =a a0 , 0 , (1.38)0
(2)

0 1
(2)

1

P Pψ ψ ψ ψ= =a a, . (1.39)(2)
0

(2)
0

2 (2)
1

(2)
1

2

Innovation 1.5. The membership matrix (1.34) can be defined as a linear combination
of the projection operators with the membership amplitudes as coefficients

M P Pα α α α= +( , ) . (1.40)0 1 0 0 1 1

We compute

M α α ψ α α= +a a( , ) 0 1 . (1.41)0 1 ob
(2)

0
2

0 1
2

1

We can therefore treat the application of the membership matrix (1.33) as
providing the origin of a reversible but non-unitary obscure measurement on the
standard qubit to obtain an obscure qubit—cf the mirror measurement (Battilotti
and Zizzi 2004, Zizzi 2005) and also the origin of ordinary qubit states on the fuzzy
sphere (Zizzi and Pessa 2014).

An obscure analog of the density operator (for a pure state) is the following form
for the density matrix in the vector representation

⎛

⎝
⎜

⎞

⎠
⎟ρ ψ ψ

α α α
α α α

= =
*

*

a a a

a a a
(1.42)ob

(2)
ob
(2)

ob
(2) 0

2
0

2
0 0 1 1

0 0 1 1 1
2

1
2

with the obvious standard singularity property ρ =det 0ob
(2) . But ρ =tr ob

(2)

α α+ ≠a a 10
2

0
2

1
2

1
2 , and here there is no idempotence ρ ρ≠( )ob

(2) 2
ob
(2), which

can distinct ρob
(2) from the standard density operator.

1.4 Kronecker obscure qubits
We next introduce an analog of quantum superposition for membership amplitudes,
called ‘obscure superposition’ (cf Cunha et al 2019, and also Toffano and Dubois
2017).

Innovation 1.6. Quantum amplitudes and membership amplitudes will here be
considered separately in order to define an obscure qubit taking the form of a double
superposition (cf (1.8), and a generalized analog for qudits (1.1) is straightforward)

A 0 A 1Ψ = +
2

, (1.43)ob
0 1
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where the two-dimensional vectors

A ⎡
⎣

⎤
⎦α=

a
(1.44)0, 1

0, 1

0, 1

are the (double) obscure-quantum amplitudes of the generalized states 0 , 1 .

For the conjugate of an obscure qubit we put (informally)

A 0 A 1Ψ = +⋆ ⋆

2
, (1.45)ob

0 1

where we denote A ⎡⎣ ⎤⎦α=⋆ *a0, 1 0, 1 0, 1 , such that A A α= +⋆ a0, 1 0, 1 0, 1
2

0, 1
2 . The

(double) obscure qubit is normalized in such a way that, if the conditions (1.14)–
(1.15) hold, then

α αΨ Ψ = + + + =a a
2 2

1. (1.46)ob ob
0

2
1

2
0
2

1
2

Innovation 1.7. A measurement should be made separately and independently in the
probability space and the membership space, which can be represented using an analog
of the Kronecker product.

Indeed, in the vector representation (1.32) for the quantum states and for the
direct product amplitudes (1.44) we should have

A A⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Ψ = ⊗ + ⊗1

2
1
0

0
1

, (1.47)ob (0) 0 K 1 K

where the (left) Kronecker product is defined by (see (1.32))

H

e e
e e

e e e

⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

α
α α

⊗ = =
+
+

= = ∈

( ) ( )
( )

a c
d

a
c
d
c
d

a c d
c d

( )
( )

,

1
0

, 0
1

, .

(1.48)
K

0 1

0 1

0 1 0, 1 q
(2)

Informally, the wave function of the obscure qubit, in the vector representation,
now lives in the four-dimensional space of (1.48), which has two two-dimensional
spaces as blocks. The upper block, the quantum subspace, is the ordinary Hilbert
spaceH q

(2), but the lower block should have special (fuzzy) properties, if it is treated

as an obscure (membership) subspace Vmemb
(2) . Thus, the four-dimensional space,

where lives Ψob
(2) , is not an ordinary tensor product of vector spaces because of

(1.48) and the vector A on the lhs has entries of different natures, i.e., the quantum

Innovative Quantum Computing

1-8



amplitudes a0, 1 and the membership amplitudes α0, 1. Despite the unit vectors in
H q

(2) andVmemb
(2) having the same form (1.32), they belong to different spaces (because

they are vector spaces over different fields). Therefore, instead of (1.48), we
introduce a Kronecker-like product ⊗˜

K by

e e
⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥

α α ε ε
⊗̃ =

+
+( )a c

d
a c d

c d
( )
( )

, (1.49)K
0 1

0 1

He e e⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= = ∈1
0

, 0
1

, , (1.50)0 1 0, 1 q
(2)

V⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ε ε ε= = ∈
μ μ1

0
, 0

1
, . (1.51)0

( )

1

( )

0, 1 memb
(2)

In this way, the obscure qubit (1.43) can be presented in the from

e e

⎡

⎣

⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥
⎥

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

α α

α ε α ε

Ψ = +

= +

μ μ

a a

a a

1

2

1
0

1
0

1

2

0
1

0
1

1

2

1

2
.

(1.52)
ob

0

0

( )

1

1

( )

0 0

0 0

1 1

1 1

Therefore, we call the double obscure qubit (1.52) a Kronecker obscure qubit to
distinguish it from the obscure qubit (1.8). It can be also presented using the
Hadamard product (the element-wise or Schur product)

⎡⎣ ⎤⎦
⎡
⎣

⎤
⎦α α⊗ =( )a c

d
ac
d (1.53)H

in the following form

A E A EΨ = ⊗ + ⊗1

2

1

2
, (1.54)ob 0 H 0 1 H 1

where the unit vectors of the total four-dimensional space are

H VE
e⎡

⎣
⎤
⎦ε= ∈ × . (1.55)0, 1

0, 1

0, 1
q
(2)

memb
(2)

The probabilities p0, 1 and membership functions μ0, 1 of the states 0 and 1 are
computed through the corresponding amplitudes by (1.11) and (1.12)

μ α α= = =μp a F i, ( , ), 0, 1, (1.56)i i i
2

0 1i

and in the particular case by (1.13) satisfying (1.15).
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By way of example, consider a Kronecker obscure qubit (with a real quantum
part) with probability p and membership function μ (measure of trust) of the state
0 , and of the state 1 given by − p1 and μ−1 , respectively. In the model (1.19)–
(1.20) for μi (which is not Born-like) we obtain

e e

⎜ ⎟⎜ ⎟
⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

π μ π μ

ε π μ ε π μ

Ψ = +
−

= +
−

μ μ

p
p

p p

1

2

0

cos
2

0

1

2

0
1

0

sin
2

1

2 cos
2

1

2

1

sin
2

,

(1.57)

ob ( ) ( )

0

0

1

1

where ei and εi are unit vectors defined in (1.50) and (1.51).
This can be compared, e.g., with the classical-quantum approach (1.23), and

Mannucci (2006) and Maron et al (2013), in which the elements of the columns are
multiplied, while we consider them independently and separately.

1.5 Obscure-quantum measurement
Let us consider the case of one Kronecker obscure qubit register L = 1 (see (1.47)), or
using (1.48) in the vector representation (1.52). The standard (double) orthogonal
commuting projection operators, Kronecker projections, are (cf (1.36))

P 0

0 P

P 0

0 P
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥= =μ μP P, , (1.58)0

0

0
( ) 1

1

1
( )

where 0 is the 2 × 2 zero matrix, and P μ
0, 1
( ) are the projections in the membership

subspaceVmemb
(2) (of the same form as the ordinary quantum projections P0, 1 (1.36))

VP P P P⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= = ∈μ
μ

μ
μ

μ μ1 0
0 0

, 0 0
0 1

, , End , (1.59)0
( )

( )

1
( )

( )

0
( )

1
( )

memb
(2)

P P P P P P P P 0= = = =μ μ μ μ μ μ μ μ, , . (1.60)0
( )2

0
( )

1
( )2

1
( )

0
( )

1
( )

1
( )

0
( )

For the double projections we have (cf (1.37))

= = = =P P P P P P PP 0, , , (1.61)0
2

0 1
2

1 0 1 1 0

where 0 is the 4 × 4 zero matrix, and P0, 1 act on the Kronecker qubit (1.58) in the
standard way (cf (1.38))
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e
A E

⎡

⎣

⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥
⎥

⎡
⎣

⎤
⎦α

α εΨ = = = ⊗μ

a
aP

1

2

1
0

1
0

1

2

1

2
, (1.62)0 ob

0

0

( )
0 0

0 0
0 H 0

e
A E

⎡

⎣

⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥
⎥

⎡
⎣

⎤
⎦α

α εΨ = = = ⊗μ

a
aP

1

2

0
1

0
1

1

2

1

2
. (1.63)1 ob

1

1

( )
1 1

1 1
1 H 1

Observe that for Kronecker qubits there exist in addition to (1.58) the following
orthogonal commuting projection operators

P 0

0 P

P 0

0 P
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥= =μ μP P, , (1.64)01

0

1
( ) 10

1

0
( )

and we call these the crossed double projections. They satisfy the same relations as
(1.61)

= = = =P P P P P P P P 0, , , (1.65)01
2

01 10
2

10 01 10 10 01

but act on the obscure qubit in a different (mixing) way than (1.62), i.e.,

e
⎡

⎣

⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥

⎡
⎣

⎤
⎦α

α εΨ = =
a

aP
1

2

1
0

0
1

1

2
, (1.66)01 ob

0

1

0 0

1 1

e
⎡

⎣

⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥

⎡
⎣

⎤
⎦α

α εΨ = =
a

aP
1

2

0
1

1
0

1

2
. (1.67)10 ob

1

0

1 1

0 0

The multiplication of the crossed double projections (1.64) and the double
projections (1.58) is given by

P 0
0 0

0 0
0 P

⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

= = ≡ = = ≡μ
μP P P P Q P P PP Q, , (1.68)01 0 0 01

0
0 01 1 1 01

1
( ) 1

( )

0 0
0 P

P 0
0 0

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣

⎤
⎦

= = ≡ = = ≡μ
μP P P P Q P P PP Q, , (1.69)10 0 0 10

0
( ) 0

( )
10 1 1 10

1
1

where the operators Q Q,0 1 and
μ μQ Q,0

( )
1
( ) satisfy
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= = = =Q Q Q Q Q Q Q Q 0, , , (1.70)0
2

0 1
2

1 1 0 0 1

= = = =μ μ μ μ μ μ μ μQ Q Q Q Q Q Q Q 0, , , (1.71)0
( )2

0
( )

1
( )2

1
( )

1
( )

0
( )

0
( )

1
( )

= = = =μ μ μ μQ Q Q Q Q Q Q Q 0, (1.72)1
( )

0 0
( )

1 1 0
( )

0 1
( )

and we call these ‘half Kronecker (double) projections’.
These relations imply that the process of measurement when using Kronecker

obscure qubits (i.e. for quantum computation with truth or membership) is more
complicated than in the standard case.

To show this, let us calculate the obscure analogs of expected values for the
projections above. Using the notation

Ψ Ψ¯ ≡A A . (1.73)ob ob

Then, using (1.43)–(1.45) for the projection operators Pi, Pij, Qi,
μQi

( ), =i j, 0, 1,
≠i j , we obtain (cf (1.39))

α α¯ = + ¯ =
+a a

P P
2

,
2

, (1.74)i
i i

ij
i j

2 2 2 2

α¯ = ¯ =μa
Q Q

2
,

2
. (1.75)i

i
i

i
2

( )
2

So follows the relation between the obscure analogs of expected values of the
projections

¯ = ¯ + ¯ ¯ = ¯ + ¯μ μP Q Q P Q Q, . (1.76)i i i ij i j
( ) ( )

Taking the ket corresponding to the bra Kronecker qubit (1.52) in the form

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦α αΨ = +* *a a
1

2
(1 0), (1 0)

1

2
(0 1), (0 1) , (1.77)ob 0 0 1 1

a Kronecker (4 × 4) obscure analog of the density matrix for a pure state is given by
(cf (1.42))

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

ρ

α α
α α

α α α α α
α α α α α

Ψ Ψ= =

*

*

* *

* *

a a a a a

a a a a a

a a

a a

1
2

. (1.78)ob
(2)

ob ob

0
2

0 1 0 0 0 1

1 0 1
2

1 0 1 1

0 0 0 1 0
2

0 1

1 0 1 1 0 1 1
2

If the Born rule for the membership functions (1.13) and the conditions (1.14)–
(1.15) are satisfied, then the density matrix (1.78) is non-invertible because

ρ =det 0ob
(2) and has unit trace ρ =tr 1ob

(2) but is not idempotent ρ ρ≠( )ob
(2) 2

ob
(2) because

it holds for the ordinary quantum density matrix (Nielsen and Chuang 2000).
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1.6 Kronecker obscure-quantum gates
In general, (double) obscure-quantum computation with L Kronecker obscure
qubits (or qudits) can be performed by a product of unitary (block) matrices U of
the (double size to the standard one) size × ×2 (2 2 )L L (or × ×n n2 ( )L L ), =†U U I
(here I is the unit matrix of the same size as U). We can also call such computation a
quantum computation with truth (or with membership).

Let us consider obscure-quantum computation with one Kronecker obscure
qubit. Informally, we can present the Kronecker obscure qubit (1.52) in the form

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

α
α

Ψ =
μ

( )
( )

a
a

1

2
1

2

. (1.79)ob

0

1

0

1

( )

Innovation 1.8. The state Ψob can be interpreted as a vector in the direct product
(not tensor product) spaceH V×q

(2)
memb
(2) , whereH q

(2) is the standard two-dimensional

Hilbert space of the qubit, andVmemb
(2) can be treated as the membership space, which

has a different nature from the qubit space and can have a more complex structure.

For discussion of similar spaces, see for example Dubois et al (2000), Bělohlávek
(2002), Smith (2008), and Zimmermann (2011). In general, one can consider
obscure-quantum computation as a set of abstract computational rules, independ-
ently of the introduction of the corresponding spaces.

An obscure-quantum gate will be defined as an elementary transformation on an
obscure qubit (1.79) and is performed by unitary (block) matrices of size 4 × 4 (over
) acting in the total space H V×q

(2)
memb
(2)

U 0
0 U

⎛
⎝

⎞
⎠

= = =μ
† †U UU U U I, , (1.80)

( )

H VUU U U I U U U U I U U= = = = ∈ ∈μ μ μ μ μ† † † †, , End , End , (1.81)( ) ( ) ( ) ( )
q
(2) ( )

memb
(2)

where I is the unit 4 × 4 matrix, I is the unit 2 × 2 matrix, and U andU μ( ) are unitary
2 × 2 matrices acting on the probability and membership subspaces, respectively.
The matrixU (over ) will be called a quantum gate, and we call the matrixU μ( ) (over
) an obscure gate. We assume that the obscure gates U μ( ) are of the same shape as
the standard quantum gates, but they act in the other (membership) space and have
only real elements (see, e.g. Nielsen and Chuang 2000). In this case, an obscure-
quantum gate is characterized by the pair U U μ{ , }( ) , where the components are
known gates (in various combinations), e.g., for one qubit gates: Hadamard, Pauli-
X (NOT),Y,Z (or two qubit gates e.g. CNOT, SWAP, etc). The transformed qubit then
becomes (informally)
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U

U

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

α
α

Ψ =
μ

μ

( )
( )

a
a

U

1

2
1

2

. (1.82)ob

0

1

( ) 0

1

( )

Thus, the quantum and the membership parts are transformed independently for the
block diagonal form (1.80). Some examples of this can be found, e.g., in Domenech
and Freytes (2006), Mannucci (2006), and Maron et al (2013). Differences between
the parts were mentioned in Kreinovich et al (2011). In this case, an obscure-
quantum network is physically realized by a device performing elementary oper-
ations in sequence on obscure qubits (by a product of matrices), such that the
quantum and membership parts are synchronized in time; for a discussion of the
obscure part of such physical devices, see Hirota and Ozawa (1989), Kóczy and
Hirota (1990), Virant (2000), and Kosko (1997). Then, the result of the obscure-
quantum computation consists of the quantum probabilities of the states together
with the calculated level of truth for each of them (see, e.g. Bolotin 2018).

For example, the obscure-quantum gate NOTNOTH =U {Hadamard, }, acts on the
state E0 (1.55) as follows

NOT NOTE
e e

H H

⎡

⎣

⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ε

= = = +
μ μU U

1
0

1
0

1

2
1
1

0
1

1

2
( )

. (1.83), 0 , ( ) ( )
0 1

1

It would be interesting to consider the case when U (1.80) is not block diagonal
and try to find possible physical interpretations of the non-diagonal blocks.

1.7 Double entanglement
Let us introduce a register consisting of two obscure qubits (L = 2) in the
computational basis ij i j′ = ⊗ ′ , as follows

B 00 B 10 B 01 B 11Ψ Ψ= = = ′ + ′ + ′ + ′= ′ ′ ′ ′L( 2) (2)
2

, (1.84)n
ob
( 2)

ob
00 10 01 11

determined by two-dimensional vectors (encoding obscure-quantum amplitudes)

B ⎡

⎣
⎢

⎤

⎦
⎥β= = ′ = ′ ′′

′

′

b
i j j, , 0, 1, 0 , 1 , (1.85)ij

ij

ij

where ∈′bij are probability amplitudes for a set of pure states and β ∈′ij are the
corresponding membership amplitudes. By analogy with (1.43) and (1.46), the
normalization factor in (1.84) is chosen so that

Ψ Ψ =(2) (2) 1, (1.86)ob ob

if (cf (1.14)–(1.15))
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+ + + =′ ′ ′ ′b b b b 1, (1.87)00
2

10
2

01
2

11
2

β β β β+ + + =′ ′ ′ ′ 1. (1.88)00
2

10
2

01
2

11
2

A state of two qubits is entangled if it cannot be decomposed as a product of two
one-qubit states, and otherwise it is separable (see, e.g. Nielsen and Chuang 2000).

Innovation 1.9. We define a product of two obscure qubits (1.43) as

A A 00 A A 10 A A 01 A A 11
′ ′ ′ ′ ′Ψ Ψ⊗ =

⊗ ′ + ⊗ ′ + ⊗ ′ + ⊗ ′
2

, (1.89)ob ob
0 H 0 1 H 0 0 H 1 1 H 1

where ⊗H is the Hadamard product (1.53).

Comparing (1.84) and (1.89), we obtain two sets of relations, for probability
amplitudes and for membership amplitudes

=′ ′b a a
1

2
, (1.90)ij i j

β α α= = ′ = ′ ′′ ′ i j j
1

2
, , 0, 1, 0 , 1 . (1.91)ij i j

In this case, the relations (1.14)–(1.15) give (1.87)–(1.88).
Two obscure-quantum qubits are entangled if their joint state (1.84) cannot be

presented as a product of one qubit states (1.89), and in the opposite case the states
are called totally separable. It follows from (1.90)–(1.91) that there are two general
conditions for obscure qubits to be entangled

⎜ ⎟
⎛
⎝

⎞
⎠

≠ ≠ =′ ′ ′ ′
′ ′

′ ′
b b b b

b b
b b

b b, or det 0, , (1.92)00 11 10 01
00 01

10 11

⎜ ⎟
⎛
⎝

⎞
⎠

β ββ β β β
β β
β β

≠ ≠ = ·′ ′ ′ ′
′ ′

′ ′
, or det 0, (1.93)00 11 10 01

00 01

10 11

The first equation (1.92) is the entanglement relation for the standard qubit, while
the second condition (1.93) is for the membership amplitudes of the two obscure
qubit joint state (1.84). The presence of two different conditions (1.92)–(1.93) leads
to new additional possibilities (which do not exist for ordinary qubits) for partial
entanglement (or partial separability), when only one of them is fulfilled. In this case,
the states can be entangled in one subspace (quantum or membership) but not in the
other.

The measure of entanglement is numerically characterized by the concurrence.
Taking into account the two conditions (1.92)–(1.93), we propose to generalize the
notion of concurrence for two obscure qubits in two ways. First, we introduce the
vector obscure concurrence
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C ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥β

= =
μ

C

C

b
2

det
det

, (1.94)vect
q

( )

where b and β are defined in (1.92)–(1.93), and ⩽ ⩽C0 1q , ⩽ ⩽μC0 1( ) .

Innovation 1.10. The corresponding scalar obscure concurrence can be defined as

β= +
C

bdet det
2

, (1.95)scal

2 2

such that ⩽ ⩽C0 1scal . Thus, two obscure qubits are totally separable, if =C 0scal .

For instance, for an obscure analog of the (maximally entangled) Bell state

00 11

⎛

⎝

⎜
⎜
⎜

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎞

⎠

⎟
⎟
⎟

Ψ = ′ + ′(2)
1

2

1

2
1

2

1

2
1

2

(1.96)ob

we obtain

C ⎡
⎣

⎤
⎦

= =C1
1

, 1. (1.97)vect scal

A more interesting example is the intermediately entangled two obscure qubit
state, e.g.,

00 10 01 11

⎛

⎝

⎜
⎜
⎜

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎞

⎠

⎟
⎟
⎟

Ψ = ′ + ′ + ′ + ′(2)
1

2

1
2
1

2

1
4
5

4

3
4
1

2 2

1

2
1
4

, (1.98)ob

where the amplitudes satisfy (1.87)–(1.88). If the Born-like rule (as in (1.13)) holds
for the membership amplitudes, then the probabilities and membership functions of
the states in (1.98) are

= = = =′ ′ ′ ′p p p p
1
4

,
1

16
,

3
16

,
1
2

, (1.99)00 10 01 11

μ μ μ μ= = = =′ ′ ′ ′
1
2

,
5

16
,

1
8

,
1

16
. (1.100)00 10 01 11

This means that, e.g., that the state 10′ will be measured with the quantum
probability 1/16 and the membership function (truth value) 5/16. For the entangled
obscure qubit (1.98) we obtain the concurrences
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C

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡
⎣

⎤
⎦

=
−

−
=

= − − =C

1
2

2
1
8

3

1
8

2 5
1
4

2

0.491
0.042

,

53
128

1
16

5
1

16
2 3 0.348.

(1.101)
vect

scal

In the vector representation (1.49)–(1.52), we have

ij i j
e e⎡

⎣⎢
⎤
⎦⎥ε ε′ = ⊗ ′ =

⊗
⊗ = ′ = ′ ′′

′
i j j, , 0, 1, 0 , 1 , (1.102)

i j

i j

K

K

where ⊗K is the Kronecker product (1.48), and e ε,i i are defined in (1.50)–(1.51).
Using (1.85) and the Kronecker-like product (1.49), we put (informally, with no
summation)
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To clarify our model, we show here a manifest form of the two obscure qubit state
(1.98) in the vector representation
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Innovation 1.11. The states above may be called ‘symmetric two obscure qubit states’.
However, there are more general possibilities, as may be seen from the rhs of (1.103)
and (1.104), when the indices of the first and second rows do not coincide. This would
allow more possible states, which we call ‘non-symmetric two obscure qubit states’. It
would be worthwhile to establish their possible physical interpretation.

These constructions show that quantum computing using Kronecker obscure
qubits can involve a rich structure of states, giving a more detailed description with
additional variables reflecting vagueness.

1.8 Conclusions
We have proposed a new scheme for describing quantum computation bringing
vagueness into consideration, in which each state is characterized by a measure of
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truth. A membership amplitude is introduced in addition to the probability
amplitude in order to achieve this, and we are led thereby to the concept of an
obscure qubit. Two kinds of these are considered: the product obscure qubit, in
which the total amplitude is the product of the quantum and membership
amplitudes; and the Kronecker obscure qubit, where the amplitudes are manipu-
lated separately. In the latter case, the quantum part of the computation is based, as
usual, in Hilbert space, while the truth part requires a vague/fuzzy set formalism,
which can be performed in the framework of a corresponding fuzzy space. Obscure-
quantum computation may be considered as a set of rules (defining obscure-
quantum gates) for managing quantum and membership amplitudes independently
in different spaces. In this framework, we obtain not only the probabilities of final
states but also their membership functions, i.e., how much trust we should assign to
these probabilities. Our approach considerably extends the theory of quantum
computing by adding the logic part directly to the computation process. Future
challenges could lie in the direction of development of the corresponding logic
hardware in parallel with the quantum devices.
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