
The Unicode® Standard
Version 16.0 – Core Specification

The Unicode Consortium

Starting with this version, the Unicode Consortium has changed the way the

Unicode Standard is produced. The interactive HTML version is authoritative.

There is also an archival PDF version. See Section C.1.16, Unicode 16.0, for

details.

 Unicode Consortium

South San Francisco

https://www.unicode.org/versions/Unicode16.0.0/core-spec/
https://www.unicode.org/versions/Unicode16.0.0/UnicodeStandard-16.0.pdf

© 1991-2024 Unicode, Inc. Unicode and the Unicode Logo are registered trademarks

of Unicode, Inc., in the United States and other countries.

Use of all Unicode Products, including this publication, the Unicode Character Data‐

base and all associated materials and information, is governed by the Unicode Terms

of Use. This publication is protected by copyright, and permission must be obtained

from Unicode, Inc. prior to any reproduction, modification, or other use not

permitted by the Terms of Use. For further information regarding permissions,

inquire at https://www.unicode.org/reporting.html.

The authors, contributors, and publishers have taken care in the preparation of this

publication, the Unicode Character Database, and all associated materials and infor‐

mation, but make no express or implied representation or warranty of any kind and

assume no responsibility or liability for errors or omissions or for consequential or

incidental damages that may arise therefrom. This publication, the Unicode Char‐

acter Database, and all associated materials and information are provided “AS-IS”

without charge as a convenience to users. The Terms of Use apply.

YOU ASSUME ALL RESPONSIBILITY AND RISK WITH RESPECT TO YOUR USE OF THIS

PUBLICATION AND ASSOCIATED MATERIALS AND INFORMATION, WHICH ARE

PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND EITHER EXPRESS, IMPLIED, OR

STATUTORY, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF ACCURACY,

COMPLETENESS, TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,

OR NON-INFRINGEMENT OF THIRD PARTY RIGHTS. UNICODE AND ITS LICENSORS

AND CONTRIBUTORS ASSUME NO RESPONSIBILITY FOR ERRORS OR OMISSIONS. IF

YOU ARE DISSATISFIED WITH THIS PUBLICATION OR THE UNICODE PRODUCTS, YOUR

SOLE REMEDY IS TO DISCONTINUE USE OF THIS PUBLICATION AND THE UNICODE

PRODUCTS.

IN NO EVENT SHALL UNICODE, ITS MEMBERS, OR ITS LICENSORS OR CONTRIBUTORS

BE LIABLE FOR ANY CLAIM OR DAMAGES WHATSOEVER OF ANY KIND, WHETHER

DIRECT, INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL, EXEMPLARY, OR PUNI‐

TIVE DAMAGES, WHETHER OR NOT UNICODE WAS ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE, INCLUDING BUT NOT LIMITED TO DAMAGE RESULTING FROM LOSS

OF USE, DATA, OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE,

OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE,

INABILITY TO USE, PERFORMANCE, FUNCTIONALITY, MODIFICATION, OR DISTRIBU‐

TION OF THIS PUBLICATION AND ASSOCIATED MATERIALS AND INFORMATION.

ISBN 978-1-936213-34-4

Published in South San Francisco

September 10, 2024

2

https://www.unicode.org/copyright.html
https://www.unicode.org/copyright.html
https://www.unicode.org/copyright.html
https://www.unicode.org/reporting.html
https://www.unicode.org/copyright.html

Contents

Preface .  29

Why Unicode? .  29

Organization of This Standard .  29

The Unicode Character Database .  31

Unicode Code Charts .  31

Unicode Standard Annexes .  31

Unicode Technical Standards and Unicode Technical Reports . . . . . . . . . . .  33

Updates and Errata .  34

Acknowledgements .  34

About This Publication .  34

1 Introduction .  35

1.1 Coverage .  38

1.1.1 Standards Coverage .  38

1.1.2 New Characters .  38

1.2 Design Goals .  40

1.3 Text Handling .  42

1.3.1 Characters and Glyphs .  42

1.3.2 Text Elements .  42

2 General Structure .  44

2.1 Architectural Context .  45

2.1.1 Basic Text Processes .  45

2.1.2 Text Elements, Characters, and Text Processes . . . . . . . . . . . . . . . . . . .  45

2.1.3 Text Processes and Encoding .  47

2.2 Unicode Design Principles .  49

2.2.1 Universality .  49

2.2.2 Efficiency .  50

2.2.3 Characters, Not Glyphs .  50

2.2.4 Semantics .  53

2.2.5 Plain Text .  54

2.2.6 Logical Order .  55

2.2.7 Unification .  57

3

2.2.8 Dynamic Composition .  59

2.2.9 Stability .  59

2.2.10 Convertibility .  60

2.3 Compatibility Characters .  61

2.3.1 Compatibility Variants .  62

2.3.2 Compatibility Decomposable Characters .  62

2.4 Code Points and Characters .  65

2.4.1 Types of Code Points .  66

2.5 Encoding Forms .  69

2.5.1 UTF-32 .  71

2.5.2 UTF-16 .  72

2.5.3 UTF-8 .  73

2.6 Encoding Schemes .  75

2.7 Unicode Strings .  78

2.8 Unicode Allocation .  79

2.8.1 Planes .  79

2.8.2 Allocation Areas and Blocks .  80

2.8.3 Assignment of Code Points .  82

2.9 Details of Allocation .  83

2.9.1 Plane 0 (BMP) .  84

2.9.2 Plane 1 (SMP) .  86

2.9.3 Plane 2 (SIP) .  87

2.9.4 Plane 3 (TIP) .  87

2.9.5 Other Planes .  88

2.10 Writing Direction .  89

2.11 Combining Characters .  91

2.11.1 Sequence of Base Characters and Combining Characters . . . . . . .  92

2.11.2 Multiple Combining Characters .  94

2.11.3 Ligated Multiple Base Characters .  97

2.11.4 Exhibiting Nonspacing Marks in Isolation .  97

2.11.5 “Characters” and Grapheme Clusters .  97

2.12 Equivalent Sequences .  99

2.12.1 Normalization .  99

2.12.2 Decompositions .  100

2.12.3 Non-decomposition of Certain Diacritics .  102

2.13 Special Characters .  105

Contents 4

2.13.1 Special Noncharacter Code Points .  105

2.13.2 Byte Order Mark (BOM) .  105

2.13.3 Layout and Format Control Characters .  106

2.13.4 The Replacement Character .  106

2.13.5 Control Codes .  106

2.14 Conforming to the Unicode Standard .  107

2.14.1 Characteristics of Conformant Implementations . . . . . . . . . . . . . .  107

2.14.2 Unacceptable Behavior .  108

2.14.3 Acceptable Behavior .  108

2.14.4 Supported Subsets .  109

3 Conformance .  110

3.1 Versions of the Unicode Standard .  111

3.1.1 Stability .  111

3.1.2 Version Numbering .  112

3.1.3 Errata and Corrigenda .  113

3.1.4 References to the Unicode Standard .  114

3.1.5 Precision in Version Citation .  114

3.1.6 References to Unicode Character Properties .  115

3.1.7 References to Unicode Algorithms .  115

3.2 Conformance Requirements .  117

3.2.1 Code Points Unassigned to Abstract Characters . . . . . . . . . . . . . . . .  117

3.2.2 Interpretation .  118

3.2.3 Modification .  119

3.2.4 Character Encoding Forms .  120

3.2.5 Character Encoding Schemes .  122

3.2.6 Bidirectional Text .  122

3.2.7 Normalization Forms .  122

3.2.8 Normative References .  123

3.2.9 Unicode Algorithms .  123

3.2.10 Default Casing Algorithms .  123

3.2.11 Unicode Standard Annexes .  124

3.3 Semantics .  125

3.3.1 Definitions .  125

3.3.2 Character Identity and Semantics .  125

3.4 Characters and Encoding .  128

3.5 Properties .  134

Contents 5

3.5.1 Types of Properties .  134

3.5.2 Property Values .  136

3.5.3 Default Property Values .  136

3.5.4 Classification of Properties by Their Values .  137

3.5.5 Property Status .  138

3.5.6 Context Dependence .  142

3.5.7 Stability of Properties .  142

3.5.8 Simple and Derived Properties .  144

3.5.9 Property Aliases .  145

3.5.10 Private Use .  146

3.6 Combination .  147

3.6.1 Combining Character Sequences .  147

3.6.2 Grapheme Clusters .  150

3.6.3 Application of Combining Marks .  152

3.7 Decomposition .  158

3.7.1 Compatibility Decomposition .  158

3.7.2 Canonical Decomposition .  159

3.8 Surrogates .  161

3.9 Unicode Encoding Forms .  162

3.9.1 UTF-32 .  167

3.9.2 UTF-16 .  167

3.9.3 UTF-8 .  168

3.9.4 Encoding Form Conversion .  169

3.9.5 Constraints on Conversion Processes .  170

3.9.6 U+FFFD Substitution of Maximal Subparts .  171

3.10 Unicode Encoding Schemes .  173

3.11 Normalization Forms .  178

3.11.1 Normalization Stability .  179

3.11.2 Combining Classes .  179

3.11.3 Specification of Unicode Normalization Forms . . . . . . . . . . . . . . . .  181

3.11.4 Starters .  181

3.11.5 Canonical Ordering Algorithm .  182

3.11.6 Canonical Composition Algorithm .  183

3.11.7 Definition of Normalization Forms .  185

3.12 Conjoining Jamo Behavior .  187

3.12.1 Definitions .  187

Contents 6

3.12.2 Hangul Syllable Decomposition .  189

3.12.3 Hangul Syllable Composition .  191

3.12.4 Hangul Syllable Name Generation .  193

3.12.5 Sample Code for Hangul Algorithms .  194

3.13 Default Case Algorithms .  198

3.13.1 Definitions .  199

3.13.2 Default Case Conversion .  201

3.13.3 Default Case Folding .  201

3.13.4 Default Case Detection .  202

3.13.5 Default Caseless Matching .  204

4 Character Properties .  207

4.1 Unicode Character Database .  209

4.2 Case .  212

4.2.1 Definitions of Case and Casing .  212

4.2.2 Case Mapping .  214

4.3 Combining Classes .  216

4.3.1 Reordrant, Split, and Subjoined Combining Marks . . . . . . . . . . . .  216

4.4 Directionality .  220

4.5 General Category .  221

4.6 Numeric Value .  225

4.6.1 Ideographic Numeric Values .  226

4.7 Bidi Mirrored .  228

4.8 Name .  230

4.8.1 Unicode Name Property .  234

4.8.2 Code Point Labels .  237

4.8.3 Use of Character Names in APIs and User Interfaces . . . . . . . . .  238

4.9 Unicode 1.0 Names .  239

4.10 Letters, Alphabetic, and Ideographic .  240

4.11 Properties for Text Boundaries .  241

4.12 Characters with Unusual Properties .  242

4.13 Characters and Sequences That Should Not Be Emitted . . .  246

5 Implementation Guidelines .  247

5.1 Data Structures for Character Conversion .  248

5.1.1 Issues .  248

5.1.2 Multistage Tables .  248

Contents 7

5.2 Programming Languages and Data Types .  251

5.2.1 Unicode Data Types for C .  251

5.3 Unknown and Missing Characters .  253

5.4 Handling Surrogate Pairs in UTF-16 .  255

5.5 Handling Numbers .  258

5.6 Normalization .  259

5.7 Compression .  261

5.8 Newline Guidelines .  262

5.8.1 Definitions .  262

5.8.2 Line Separator and Paragraph Separator .  263

5.8.3 Recommendations .  264

5.9 Regular Expressions .  267

5.10 Language Information in Plain Text .  268

5.10.1 Requirements for Language Tagging .  268

5.10.2 Language Tags and Han Unification .  268

5.11 Editing and Selection .  270

5.12 Strategies for Handling Nonspacing Marks . . . . . . . . . . . . . . . . . . .  273

5.12.1 Keyboard Input .  274

5.12.2 Truncation .  275

5.13 Rendering Nonspacing Marks .  277

5.13.1 Canonical Equivalence .  280

5.13.2 Positioning Methods .  281

5.14 Locating Text Element Boundaries .  284

5.15 Identifiers .  285

5.16 Sorting and Searching .  286

5.16.1 Culturally Expected Sorting and Searching .  286

5.16.2 Language-Insensitive Sorting .  287

5.16.3 Searching .  287

5.16.4 Sublinear Searching .  288

5.17 Binary Order .  289

5.17.1 UTF-8 in UTF-16 Order .  289

5.17.2 UTF-16 in UTF-8 Order .  290

5.18 Case Mappings .  292

5.18.1 Titlecasing .  292

5.18.2 Complications for Case Mapping .  293

Contents 8

5.18.3 Reversibility .  295

5.18.4 Caseless Matching .  296

5.18.5 Normalization and Casing .  298

5.19 Mapping Compatibility Variants .  300

5.20 Unicode Security .  302

5.21 Ignoring Characters in Processing .  305

5.21.1 Characters Ignored in Text Segmentation .  305

5.21.2 Characters Ignored in Line Breaking .  306

5.21.3 Characters Ignored in Cursive Joining .  306

5.21.4 Characters Ignored in Identifiers .  306

5.21.5 Characters Ignored in Searching and Sorting . . . . . . . . . . . . . . . . . . .  307

5.21.6 Characters Ignored for Display .  308

5.22 U+FFFD Substitution in Conversion .  313

6 Writing Systems and Punctuation .  314

6.1 Writing Systems .  316

6.2 General Punctuation .  322

6.2.1 Blocks Devoted to Punctuation .  324

6.2.2 Format Control Characters .  324

6.2.3 Space Characters .  325

6.2.4 Dashes and Hyphens .  327

6.2.5 Paired Punctuation .  330

6.2.6 Language-Based Usage of Quotation Marks .  330

6.2.7 Apostrophes .  335

6.2.8 Hyphenation Point and Dictionary Syllabification . . . . . . . . . . . . .  335

6.2.9 Other Punctuation .  337

6.2.10 Archaic Punctuation and Editorial Marks .  343

6.2.11 Indic Punctuation .  346

6.2.12 CJK Punctuation .  348

6.2.13 Unknown or Unavailable Ideographs .  350

6.2.14 CJK Compatibility Forms .  351

7 Europe-I
Modern and Liturgical Scripts .  353

7.1 Latin .  355

7.1.1 Letters of Basic Latin: U+0041–U+007A .  360

7.1.2 Letters of the Latin-1 Supplement: U+00C0–U+00FE . . . . . . . .  360

7.1.3 Latin Extended-A: U+0100–U+017F .  360

Contents 9

7.1.4 Latin Extended-B: U+0180–U+024F .  361

7.1.5 IPA Extensions: U+0250–U+02AF .  364

7.1.6 Phonetic Extensions: U+1D00–U+1D7F .  366

7.1.7 Latin Extended Additional: U+1E00–U+1EFF . . . . . . . . . . . . . . . . .  367

7.1.8 Latin Extended-C: U+2C60–U+2C7F .  368

7.1.9 Latin Extended-D: U+A720–U+A7FF .  368

7.1.10 Latin Extended-E: U+AB30–U+AB6F .  371

7.1.11 Latin Extended-F: U+10780–U+107BF .  371

7.1.12 Latin Extended-G: U+1DF00–U+1DFFF .  372

7.1.13 Latin Ligatures: U+FB00–U+FB06 .  372

7.2 Greek .  373

7.2.1 Greek: U+0370–U+03FF .  373

7.2.2 Greek Extended: U+1F00–U+1FFF .  377

7.2.3 Ancient Greek Numbers: U+10140–U+1018F . . . . . . . . . . . . . . . . . .  379

7.3 Coptic .  380

7.3.1 Coptic: U+2C80–U+2CFF .  380

7.4 Cyrillic .  383

7.4.1 Cyrillic: U+0400–U+04FF .  383

7.4.2 Cyrillic Supplement: U+0500–U+052F .  385

7.4.3 Cyrillic Extended-A: U+2DE0–U+2DFF .  386

7.4.4 Cyrillic Extended-B: U+A640–U+A69F .  387

7.4.5 Cyrillic Extended-C: U+1C80–U+1C8F .  387

7.4.6 Cyrillic Extended-D: U+1E030–U+1E08F .  387

7.5 Glagolitic .  389

7.5.1 Glagolitic: U+2C00–U+2C5F .  389

7.5.2 Glagolitic Supplement: U+1E000–U+1E02F . . . . . . . . . . . . . . . . . . .  390

7.6 Armenian .  391

7.6.1 Armenian: U+0530–U+058F .  391

7.7 Georgian .  393

7.7.1 Georgian: U+10A0–U+10FF .  393

Georgian Extended: U+1C90–U+1CBF .  393

Georgian Supplement: U+2D00–U+2D2F .  393

7.8 Modifier Letters .  396

7.8.1 Spacing Modifier Letters: U+02B0–U+02FF . . . . . . . . . . . . . . . . . . .  397

7.8.2 Modifier Tone Letters: U+A700–U+A71F .  399

7.9 Combining Marks .  401

Contents 10

7.9.1 Combining Diacritical Marks: U+0300–U+036F . . . . . . . . . . . . . .  407

7.9.2 Combining Diacritical Marks Extended: U+1AB0–U+1AFF . .  408

7.9.3 Combining Diacritical Marks Supplement: U+1DC0–U+1DFF 40
9

7.9.4 Combining Diacritical Marks for Symbols: U+20D0–U+20FF .  40
9

7.9.5 Combining Half Marks: U+FE20–U+FE2F .  410

7.9.6 Combining Marks in Other Blocks .  411

8 Europe-II
Ancient and Other Scripts .  413

8.1 Linear A .  415

8.1.1 Linear A: U+10600–U+1077F .  415

8.2 Linear B .  416

8.2.1 Linear B Syllabary: U+10000–U+1007F .  416

8.2.2 Linear B Ideograms: U+10080–U+100FF .  416

8.2.3 Aegean Numbers: U+10100–U+1013F .  417

8.3 Cypriot Syllabary .  418

8.3.1 Cypriot Syllabary: U+10800–U+1083F .  418

8.4 Cypro-Minoan .  419

8.4.1 Cypro-Minoan: U+12F90–U+12FFF .  419

8.5 Ancient Anatolian Alphabets .  420

8.5.1 Lycian: U+10280–U+1029F .  420

Carian: U+102A0–U+102DF .  420

Lydian: U+10920–U+1093F .  420

8.6 Old Italic .  422

8.6.1 Old Italic: U+10300–U+1032F .  422

8.7 Runic .  425

8.7.1 Runic: U+16A0–U+16FF .  425

8.8 Old Hungarian .  428

8.8.1 Old Hungarian: U+10C80–U+10CFF .  428

8.9 Gothic .  429

8.9.1 Gothic: U+10330–U+1034F .  429

8.10 Elbasan .  430

8.10.1 Elbasan: U+10500–U+1052F .  430

8.11 Caucasian Albanian .  431

8.11.1 Caucasian Albanian: U+10530–U+1056F .  431

Contents 11

8.12 Vithkuqi .  432

8.12.1 Vithkuqi: U+10570–U+105BF .  432

8.13 Todhri .  433

8.13.1 Todhri: U+105C0–U+105FF .  433

8.14 Old Permic .  434

8.14.1 Old Permic: U+10350–U+1037F .  434

8.15 Ogham .  436

8.15.1 Ogham: U+1680–U+169F .  436

8.16 Shavian .  438

8.16.1 Shavian: U+10450–U+1047F .  438

9 Middle East-I
Modern and Liturgical Scripts .  439

9.1 Hebrew .  441

9.1.1 Hebrew: U+0590–U+05FF .  441

9.1.2 Alphabetic Presentation Forms: U+FB00–U+FB4F . . . . . . . . . . .  446

9.2 Arabic .  448

9.2.1 Arabic: U+0600–U+06FF .  448

9.2.2 Arabic Cursive Joining .  458

9.2.3 Arabic Ligatures .  462

9.2.4 Arabic Joining Groups .  464

9.2.5 Combining Hamza .  471

9.2.6 Other Letters for Extended Arabic .  474

9.2.7 Arabic Supplement: U+0750–U+077F .  475

9.2.8 Arabic Extended-A: U+08A0–U+08FF .  475

9.2.9 Arabic Extended-B: U+0870–U+089F .  476

9.2.10 Arabic Extended-C: U+10EC0–U+10EFF .  476

9.2.11 Arabic Presentation Forms-A: U+FB50–U+FDFF . . . . . . . . . . . . .  476

9.2.12 Arabic Presentation Forms-B: U+FE70–U+FEFF . . . . . . . . . . . . .  478

9.3 Syriac .  479

9.3.1 Syriac: U+0700–U+074F .  479

9.3.2 Syriac Shaping .  484

9.3.3 Syriac Supplement: U+0860–U+086F .  487

9.4 Samaritan .  488

9.4.1 Samaritan: U+0800–U+083F .  488

9.5 Mandaic .  491

9.5.1 Mandaic: U+0840–U+085F .  491

Contents 12

9.6 Yezidi .  494

9.6.1 Yezidi: U+10E80–U+10EBF .  494

10 Middle East-II
Ancient Scripts .  496

10.1 Old North Arabian .  498

10.1.1 Old North Arabian: U+10A80–U+10A9F .  498

10.2 Old South Arabian .  499

10.2.1 Old South Arabian: U+10A60–U+10A7F .  499

10.3 Phoenician .  501

10.3.1 Phoenician: U+10900–U+1091F .  501

10.4 Imperial Aramaic .  503

10.4.1 Imperial Aramaic: U+10840–U+1085F .  503

10.5 Manichaean .  505

10.5.1 Manichaean: U+10AC0–U+10AFF .  505

10.6 Pahlavi and Parthian .  509

10.6.1 Inscriptional Parthian: U+10B40–U+10B5F .  509

Inscriptional Pahlavi: U+10B60–U+10B7F .  509

10.6.2 Psalter Pahlavi: U+10B80–U+10BAF .  510

10.7 Avestan .  511

10.7.1 Avestan: U+10B00–U+10B3F .  511

10.8 Chorasmian .  513

10.8.1 Chorasmian: U+10FB0–U+10FDF .  513

10.9 Elymaic .  514

10.9.1 Elymaic: U+10FE0–U+10FFF .  514

10.10 Nabataean .  515

10.10.1 Nabataean: U+10880–U+108AF .  515

10.11 Palmyrene .  516

10.11.1 Palmyrene: U+10860–U+1087F .  516

10.12 Hatran .  518

10.12.1 Hatran: U+108E0–U+108FF .  518

11 Cuneiform and Hieroglyphs .  519

11.1 Sumero-Akkadian .  520

11.1.1 Cuneiform: U+12000–U+123FF .  522

11.1.2 Cuneiform Numbers and Punctuation: U+12400–U+1247F . .  523

11.1.3 Early Dynastic Cuneiform: U+12480–U+1254F . . . . . . . . . . . . . . . .  523

Contents 13

11.2 Ugaritic .  525

11.2.1 Ugaritic: U+10380–U+1039F .  525

11.3 Old Persian .  526

11.3.1 Old Persian: U+103A0–U+103DF .  526

11.4 Egyptian Hieroglyphs .  527

11.4.1 Egyptian Hieroglyphs: U+13000–U+1342F .  528

11.4.2 Egyptian Hieroglyphs Extended-A: U+13460–U+143FF . . . . . . .  530

11.4.3 Egyptian Hieroglyph Format Controls: U+13430–U+1345F . . .  530

11.4.4 Editorial Marks .  536

11.5 Meroitic .  539

11.5.1 Meroitic Hieroglyphs: U+10980–U+1099F .  539

Meroitic Cursive: U+109A0–U+109FF .  539

11.6 Anatolian Hieroglyphs .  541

11.6.1 Anatolian Hieroglyphs: U+14400–U+1467F .  541

12 South and Central Asia-I
Official Scripts of India .  543

12.1 Devanagari .  545

12.1.1 Devanagari: U+0900–U+097F .  545

12.1.2 Principles of the Devanagari Script .  546

12.1.3 Rendering Devanagari .  555

12.1.4 Devanagari Digits, Punctuation, and Symbols . . . . . . . . . . . . . . . . . .  566

12.1.5 Extensions in the Main Devanagari Block .  566

12.1.6 Devanagari Extended: U+A8E0–U+A8FF .  569

12.1.7 Devanagari Extended-A: U+11B00–U+11B5F . . . . . . . . . . . . . . . . . .  570

12.1.8 Vedic Extensions: U+1CD0–U+1CFF .  570

12.2 Bengali (Bangla) .  573

12.2.1 Bengali: U+0980–U+09FF .  573

12.3 Gurmukhi .  580

12.3.1 Gurmukhi: U+0A00–U+0A7F .  580

12.4 Gujarati .  585

12.4.1 Gujarati: U+0A80–U+0AFF .  585

12.5 Oriya (Odia) .  587

12.5.1 Oriya: U+0B00–U+0B7F .  587

12.6 Tamil .  591

12.6.1 Tamil: U+0B80–U+0BFF .  591

12.6.2 Tamil Vowels .  592

Contents 14

12.6.3 Tamil Ligatures .  594

12.6.4 Tamil Supplement: U+11FC0–U+11FFF .  598

12.6.5 Tamil Named Character Sequences .  598

12.7 Telugu .  601

12.7.1 Telugu: U+0C00–U+0C7F .  601

12.8 Kannada .  604

12.8.1 Kannada: U+0C80–U+0CFF .  604

12.8.2 Principles of the Kannada Script .  604

12.8.3 Rendering Kannada .  606

12.9 Malayalam .  608

12.9.1 Malayalam: U+0D00–U+0D7F .  608

12.9.2 Malayalam Orthographic Reform .  609

12.9.3 Rendering Malayalam .  610

12.9.4 Malayalam Numbers and Punctuation .  615

13 South and Central Asia-II
Other Modern Scripts .  617

13.1 Thaana .  620

13.1.1 Thaana: U+0780–U+07BF .  620

13.2 Sinhala .  622

13.2.1 Sinhala: U+0D80–U+0DFF .  622

13.2.2 Sinhala Archaic Numbers: U+111E0–U+111FF . . . . . . . . . . . . . . . . .  625

13.3 Newa .  626

13.3.1 Newa: U+11400–U+1147F .  626

13.4 Tibetan .  629

13.4.1 Tibetan: U+0F00–U+0FFF .  629

13.5 Mongolian .  642

13.5.1 Mongolian: U+1800–U+18AF .  642

13.5.2 Mongolian Supplement: U+11660–U+1167F .  652

13.6 Limbu .  653

13.6.1 Limbu: U+1900–U+194F .  653

13.7 Meetei Mayek .  657

13.7.1 Meetei Mayek: U+ABC0–U+ABFF .  657

13.7.2 Meetei Mayek Extensions: U+AAE0–U+AAFF . . . . . . . . . . . . . . .  658

13.8 Mro .  659

13.8.1 Mro: U+16A40–U+16A6F .  659

13.9 Warang Citi .  660

Contents 15

13.9.1 Warang Citi: U+118A0–U+118FF .  660

13.10 Ol Chiki .  661

13.10.1 Ol Chiki: U+1C50–U+1C7F .  661

13.11 Ol Onal .  663

13.11.1 Ol Onal: U+1E5D0–U+1E5FF .  663

13.12 Nag Mundari .  664

13.12.1 Nag Mundari: U+1E4D0–U+1E4FF .  664

13.13 Chakma .  666

13.13.1 Chakma: U+11100–U+1114F .  666

13.14 Lepcha .  668

13.14.1 Lepcha: U+1C00–U+1C4F .  668

13.15 Saurashtra .  671

13.15.1 Saurashtra: U+A880–U+A8DF .  671

13.16 Masaram Gondi .  672

13.16.1 Masaram Gondi: U+11D00–U+11D5F .  672

13.17 Gunjala Gondi .  674

13.17.1 Gunjala Gondi: U+11D60–U+11DAF .  674

13.18 Wancho .  676

13.18.1 Wancho: U+1E2C0–U+1E2FF .  676

13.19 Toto .  677

13.19.1 Toto: U+1E290–U+1E2BF .  677

13.20 Tangsa .  678

13.20.1 Tangsa: U+16A70–U+16ACF .  678

13.21 Sunuwar .  679

13.21.1 Sunuwar: U+11BC0–U+11BFF .  679

13.22 Gurung Khema .  681

13.22.1 Gurung Khema: U+16100–U+1613F .  681

13.23 Kirat Rai .  683

13.23.1 Kirat Rai: U+16D40–U+16D7F .  683

14 South and Central Asia-III
Ancient Scripts .  685

14.1 Brahmi .  687

14.1.1 Brahmi: U+11000–U+1107F .  687

14.2 Kharoshthi .  691

14.2.1 Kharoshthi: U+10A00–U+10A5F .  691

Contents 16

14.2.2 Rendering Kharoshthi .  693

14.3 Bhaiksuki .  697

14.3.1 Bhaiksuki: U+11C00–U+11C6F .  697

14.4 Phags-pa .  699

14.4.1 Phags-pa: U+A840–U+A87F .  699

14.5 Marchen .  706

14.5.1 Marchen: U+11C70–U+11CBF .  706

14.6 Zanabazar Square .  707

14.6.1 Zanabazar Square: U+11A00–U+11A4F .  707

14.7 Soyombo .  710

14.7.1 Soyombo: U+11A50–U+11AAF .  710

14.8 Old Turkic .  712

14.8.1 Old Turkic: U+10C00–U+10C4F .  712

14.9 Old Sogdian .  714

14.9.1 Old Sogdian: U+10F00–U+10F2F .  714

14.10 Sogdian .  715

14.10.1 Sogdian: U+10F30–U+10F6F .  715

14.11 Old Uyghur .  717

14.11.1 Old Uyghur: U+10F70–U+10FAF .  717

15 South and Central Asia-IV
Other Historic Scripts .  719

15.1 Syloti Nagri .  722

15.1.1 Syloti Nagri: U+A800–U+A82F .  722

15.2 Kaithi .  724

15.2.1 Kaithi: U+11080–U+110CF .  724

15.3 Sharada .  727

15.3.1 Sharada: U+11180–U+111DF .  727

15.4 Takri .  729

15.4.1 Takri: U+11680–U+116CF .  729

15.5 Siddham .  731

15.5.1 Siddham: U+11580–U+115FF .  731

15.6 Mahajani .  733

15.6.1 Mahajani: U+11150–U+1117F .  733

15.7 Khojki .  735

15.7.1 Khojki: U+11200–U+1124F .  735

Contents 17

15.8 Dogra .  738

15.8.1 Dogra: U+11800–U+1184F .  738

15.9 Khudawadi .  740

15.9.1 Khudawadi: U+112B0–U+112FF .  740

15.10 Multani .  742

15.10.1 Multani: U+11280–U+112AF .  742

15.11 Tirhuta .  743

15.11.1 Tirhuta: U+11480–U+114DF .  743

15.12 Modi .  746

15.12.1 Modi: U+11600–U+1165F .  746

15.13 Nandinagari .  750

15.13.1 Nandinagari: U+119A0–U+119FF .  750

15.14 Grantha .  752

15.14.1 Grantha: U+11300–U+1137F .  752

15.14.2 Rendering Grantha .  752

15.15 Dives Akuru .  756

15.15.1 Dives Akuru: U+11900–U+1195F .  756

15.16 Ahom .  758

15.16.1 Ahom: U+11700–U+1174F .  758

15.17 Sora Sompeng .  760

15.17.1 Sora Sompeng: U+110D0–U+110FF .  760

15.18 Tulu-Tigalari .  761

15.18.1 Tulu-Tigalari: U+11380–U+113FF .  761

16 Southeast Asia-I
Thailand, Laos, Myanmar, Cambodia, Vietnam .  766

16.1 Thai .  768

16.1.1 Thai: U+0E00–U+0E7F .  768

16.2 Lao .  772

16.2.1 Lao: U+0E80–U+0EFF .  772

16.3 Myanmar .  775

16.3.1 Myanmar: U+1000–U+109F .  775

16.3.2 Myanmar Extended-A: U+AA60–U+AA7F .  779

16.3.3 Khamti Shan .  779

16.3.4 Aiton and Phake .  781

16.3.5 Myanmar Extended-B: U+A9E0–U+A9FF .  782

Contents 18

16.3.6 Myanmar Extended-C: U+116D0–U+116FF .  782

16.4 Khmer .  783

16.4.1 Khmer: U+1780–U+17FF .  783

16.4.2 Principles of the Khmer Script .  783

16.4.3 Khmer Symbols: U+19E0–U+19FF .  794

16.5 Tai Le .  796

16.5.1 Tai Le: U+1950–U+197F .  796

16.6 New Tai Lue .  798

16.6.1 New Tai Lue: U+1980–U+19DF .  798

16.7 Tai Tham .  801

16.7.1 Tai Tham: U+1A20–U+1AAF .  801

16.8 Tai Viet .  804

16.8.1 Tai Viet: U+AA80–U+AADF .  804

16.9 Kayah Li .  807

16.9.1 Kayah Li: U+A900–U+A92F .  807

16.10 Cham .  808

16.10.1 Cham: U+AA00–U+AA5F .  808

16.11 Pahawh Hmong .  810

16.11.1 Pahawh Hmong: U+16B00–U+16B8F .  810

16.12 Nyiakeng Puachue Hmong .  813

16.12.1 Nyiakeng Puachue Hmong: U+1E100–U+1E14F . . . . . . . . . . . . . . .  813

16.13 Pau Cin Hau .  815

16.13.1 Pau Cin Hau: U+11AC0–U+11AFF .  815

16.14 Hanifi Rohingya .  817

16.14.1 Hanifi Rohingya: U+10D00–U+10D3F .  817

17 Southeast Asia-II
Indonesia and the Philippines .  819

17.1 Philippine Scripts: Tagalog, Hanunóo, Buhid, and Tagbanwa
.  820

17.1.1 Tagalog: U+1700–U+171F .  820

Hanunóo: U+1720–U+173F .  820

Buhid: U+1740–U+175F .  820

Tagbanwa: U+1760–U+177F .  820

17.1.2 Principles of the Philippine Scripts .  820

17.2 Buginese .  823

17.2.1 Buginese: U+1A00–U+1A1F .  823

Contents 19

17.3 Balinese .  825

17.3.1 Balinese: U+1B00–U+1B7F .  825

17.4 Javanese .  831

17.4.1 Javanese: U+A980–U+A9DF .  831

17.5 Rejang .  835

17.5.1 Rejang: U+A930–U+A95F .  835

17.6 Batak .  836

17.6.1 Batak: U+1BC0–U+1BFF .  836

17.7 Sundanese .  838

17.7.1 Sundanese: U+1B80–U+1BBF .  838

17.7.2 Sundanese Supplement: U+1CC0–U+1CCF .  840

17.8 Makasar .  841

17.8.1 Makasar: U+11EE0–U+11EFF .  841

17.9 Kawi .  843

17.9.1 Kawi: U+11F00–U+11F5F .  843

18 East Asia .  848

18.1 Han .  851

18.1.1 CJK Unified Ideographs .  851

18.1.2 Blocks Containing Han Ideographs .  852

18.1.3 General Characteristics of Han Ideographs .  855

18.1.4 Principles of Han Unification .  859

18.1.5 Unification Rules .  860

18.1.6 Abstract Shape .  862

18.1.7 Han Ideograph Arrangement .  864

18.1.8 Radical-Stroke Indices .  865

18.1.9 Mappings for Han Ideographs .  866

18.1.10 CJK Compatibility Ideographs: U+F900–U+FAFF . . . . . . . . . . . .  866

18.1.11 CJK Compatibility Supplement: U+2F800–U+2FA1D . . . . . . . .  867

18.1.12 Kanbun: U+3190–U+319F .  868

18.1.13 Symbols Derived from Han Ideographs .  868

18.1.14 Kangxi Radicals and CJK Radicals Supplement: U+2F00–
U+2FD5, U+2E80–U+2EF3 .  869

18.1.15 CJK Additions from HKSCS and GB 18030 .  870

18.1.16 CJK Strokes: U+31C0–U+31EF .  871

18.1.17 Ideographic Symbols and Punctuation: U+16FE0–U+16FFF .  871

18.2 Ideographic Description Characters .  872

Contents 20

18.2.1 Ideographic Description Characters: U+2FF0–U+2FFF . . . . . .  872

18.3 Bopomofo .  877

18.3.1 Bopomofo: U+3100–U+312F, U+31A0–U+31BF . . . . . . . . . . . . . . .  877

18.4 Hiragana and Katakana .  880

18.4.1 Hiragana: U+3040–U+309F .  880

18.4.2 Katakana: U+30A0–U+30FF .  880

18.4.3 Katakana Phonetic Extensions: U+31F0–U+31FF . . . . . . . . . . . . .  881

18.4.4 Small Kana Extension: U+1B130-U+1B16F .  881

18.4.5 Kana Supplement: U+1B000–U+1B0FF .  882

Kana Extended-A: U+1B100–U+1B12F .  882

18.4.6 Kana Extended-B: U+1AFF0-U+1AFFF .  883

18.5 Halfwidth and Fullwidth Forms .  886

18.5.1 Halfwidth and Fullwidth Forms: U+FF00–U+FFEF . . . . . . . . . .  886

18.6 Hangul .  887

18.6.1 Hangul Jamo: U+1100–U+11FF .  887

18.6.2 Hangul Jamo Extended-A: U+A960–U+A97F . . . . . . . . . . . . . . . . .  888

18.6.3 Hangul Jamo Extended-B: U+D7B0–U+D7FF . . . . . . . . . . . . . . . . .  888

18.6.4 Hangul Compatibility Jamo: U+3130–U+318F . . . . . . . . . . . . . . . . .  888

18.6.5 Hangul Syllables: U+AC00–U+D7AF .  889

18.7 Yi .  892

18.7.1 Yi: U+A000–U+A4CF .  892

18.8 Nüshu .  895

18.8.1 Nüshu: U+1B170–U+1B2FF .  895

18.9 Lisu .  896

18.9.1 Lisu: U+A4D0–U+A4FF .  896

18.10 Miao .  899

18.10.1 Miao: U+16F00–U+16F9F .  899

18.11 Tangut .  901

18.11.1 Tangut: U+17000–U+187FF .  901

Tangut Supplement: U+18D00–U+18D7F .  901

18.11.2 Tangut Components: U+18800–U+18AFF .  902

18.12 Khitan Small Script .  904

18.12.1 Khitan Small Script: U+18B00–U+18CFF .  904

19 Africa .  907

19.1 Ethiopic .  908

19.1.1 Ethiopic: U+1200–U+137F .  908

Contents 21

19.1.2 Ethiopic Extensions .  911

19.2 Osmanya .  912

19.2.1 Osmanya: U+10480–U+104AF .  912

19.3 Tifinagh .  913

19.3.1 Tifinagh: U+2D30–U+2D7F .  913

19.4 N’Ko .  916

19.4.1 N’Ko: U+07C0–U+07FF .  916

19.5 Vai .  921

19.5.1 Vai: U+A500–U+A63F .  921

19.6 Bamum .  923

19.6.1 Bamum: U+A6A0–U+A6FF .  923

19.6.2 Bamum Supplement: U+16800–U+16A3F .  923

19.7 Bassa Vah .  925

19.7.1 Bassa Vah: U+16AD0–U+16AFF .  925

19.8 Mende Kikakui .  926

19.8.1 Mende Kikakui: U+1E800–U+1E8DF .  926

19.9 Adlam .  928

19.9.1 Adlam: U+1E900–U+1E95F .  928

19.10 Medefaidrin .  930

19.10.1 Medefaidrin: U+16E40–U+16E9F .  930

19.11 Garay .  931

19.11.1 Garay: U+10D40–U+10D8F .  931

20 Americas .  933

20.1 Cherokee .  934

20.1.1 Cherokee: U+13A0–U+13FF .  934

Cherokee Supplement: U+AB70–U+ABBF .  934

20.2 Canadian Aboriginal Syllabics .  937

20.2.1 Unified Canadian Aboriginal Syllabics: U+1400–U+167F . . . . .  937

20.2.2 Unified Canadian Aboriginal Syllabics Extended: U+18B0–
U+18FF .  938

20.2.3 Unified Canadian Aboriginal Syllabics Extended-A: U+11AB0–
U+11ABF .  939

20.3 Osage .  940

20.3.1 Osage: U+104B0–U+104FF .  940

20.4 Deseret .  941

20.4.1 Deseret: U+10400–U+1044F .  941

Contents 22

21 Notational Systems .  944

21.1 Braille .  945

21.1.1 Braille Patterns: U+2800–U+28FF .  945

21.2 Western Musical Symbols .  947

21.2.1 Musical Symbols: U+1D100–U+1D1FF .  947

21.3 Byzantine Musical Symbols .  953

21.3.1 Byzantine Musical Symbols: U+1D000–U+1D0FF . . . . . . . . . . . .  953

21.4 Znamenny Musical Notation .  954

21.4.1 Znamenny Musical Notation: U+1CF00–U+1CFCF . . . . . . . . . . .  954

21.5 Ancient Greek Musical Notation .  955

21.5.1 Ancient Greek Musical Notation: U+1D200–U+1D24F . . . . . . .  955

21.6 Duployan .  959

21.6.1 Duployan: U+1BC00–U+1BC9F .  959

21.6.2 Shorthand Format Controls: U+1BCA0–U+1BCAF . . . . . . . . . . .  960

21.7 Sutton SignWriting .  961

21.7.1 Sutton SignWriting: U+1D800–U+1DAAF .  961

22 Symbols .  963

22.1 Currency Symbols .  965

22.1.1 Currency Symbols: U+20A0–U+20CF .  965

22.2 Letterlike Symbols .  969

22.2.1 Letterlike Symbols: U+2100–U+214F .  969

22.2.2 Mathematical Alphanumeric Symbols: U+1D400–U+1D7FF .  970

22.2.3 Mathematical Alphabets .  971

22.2.4 Fonts Used for Mathematical Alphabets .  975

22.2.5 Arabic Mathematical Alphabetic Symbols: U+1EE00–U+1EEFF
.  976

22.3 Numerals .  978

22.3.1 Decimal Digits .  978

22.3.2 Other Digits .  981

22.3.3 Non-Decimal Radix Systems .  983

22.3.4 Acrophonic Systems and Other Letter-based Numbers . . . . . . . .  985

22.3.5 Coptic Epact Numbers: U+102E0–U+102FF . . . . . . . . . . . . . . . . . . .  986

22.3.6 Rumi Numeral Symbols: U+10E60–U+10E7F . . . . . . . . . . . . . . . . .  987

22.3.7 Siyaq Numerical Notation Systems .  988

22.3.8 CJK Numerals .  989

22.3.9 Fractions .  991

Contents 23

22.3.10 Common Indic Number Forms: U+A830–U+A83F . . . . . . . . . . .  992

22.4 Superscript and Subscript Symbols .  993

22.4.1 Superscripts and Subscripts: U+2070–U+209F . . . . . . . . . . . . . . . .  993

22.5 Mathematical Symbols .  995

22.5.1 Mathematical Operators: U+2200–U+22FF .  996

22.5.2 Supplements to Mathematical Symbols and Arrows . . . . . . . . . . .  999

22.5.3 Supplemental Mathematical Operators: U+2A00–U+2AFF .  1000

22.5.4 Miscellaneous Mathematical Symbols-A: U+27C0–U+27EF 1000

22.5.5 Miscellaneous Mathematical Symbols-B: U+2980–U+29FF .  1001

22.5.6 Miscellaneous Symbols and Arrows: U+2B00–U+2BFF . . . . .  1001

22.5.7 Arrows: U+2190–U+21FF .  1002

22.5.8 Supplemental Arrows .  1002

22.5.9 Standardized Variants of Mathematical Symbols . . . . . . . . . . . . .  1003

22.6 Invisible Mathematical Operators .  1004

22.7 Technical Symbols .  1005

22.7.1 Control Pictures: U+2400–U+243F .  1005

22.7.2 Miscellaneous Technical: U+2300–U+23FF . . . . . . . . . . . . . . . . . . .  1005

22.7.3 Optical Character Recognition: U+2440–U+245F . . . . . . . . . . . .  1009

22.7.4 Symbols for Legacy Computing: U+1FB00-U+1FBFF . . . . . . . .  1009

Symbols for Legacy Computing Supplement: U+1CC00–
U+1CEBF .  1009

22.8 Geometrical Symbols .  1011

22.8.1 Box Drawing and Block Elements .  1011

22.8.2 Geometric Shapes: U+25A0–U+25FF .  1012

22.8.3 Geometric Shapes Extended: U+1F780–U+1F7FF . . . . . . . . . . . .  1013

22.9 Miscellaneous Symbols .  1015

22.9.1 Miscellaneous Symbols and Pictographs .  1017

22.9.2 Emoticons: U+1F600–U+1F64F .  1020

22.9.3 Transport and Map Symbols: U+1F680–U+1F6FF . . . . . . . . . . . .  1021

22.9.4 Dingbats: U+2700–U+27BF .  1021

22.9.5 Ornamental Dingbats: U+1F650–U+1F67F .  1022

22.9.6 Alchemical Symbols: U+1F700–U+1F77F .  1023

22.9.7 Mahjong Tiles: U+1F000–U+1F02F .  1023

22.9.8 Domino Tiles: U+1F030–U+1F09F .  1024

22.9.9 Playing Cards: U+1F0A0–U+1F0FF .  1024

22.9.10 Chess Symbols: U+1FA00–U+1FA6F .  1025

Contents 24

22.9.11 Yijing Hexagram Symbols: U+4DC0–U+4DFF . . . . . . . . . . . . . . .  1026

22.9.12 Tai Xuan Jing Symbols: U+1D300–U+1D35F . . . . . . . . . . . . . . . . . .  1026

22.9.13 Ancient Symbols: U+10190–U+101CF .  1027

22.9.14 Phaistos Disc: U+101D0–U+101FF .  1027

22.10 Enclosed and Square .  1029

22.10.1 Enclosed Alphanumerics: U+2460–U+24FF . . . . . . . . . . . . . . . . . .  1031

22.10.2 Enclosed CJK Letters and Months: U+3200–U+32FF . . . . . . . .  1032

22.10.3 CJK Compatibility: U+3300–U+33FF .  1032

22.10.4 Enclosed Alphanumeric Supplement: U+1F100–U+1F1FF . .  1033

22.10.5 Enclosed Ideographic Supplement: U+1F200–U+1F2FF . . . . .  1034

23 Special Areas and Format Characters .  1035

23.1 Control Codes .  1036

23.1.1 Representing Control Sequences .  1036

23.1.2 Specification of Control Code Semantics .  1037

23.2 Layout Controls .  1039

23.2.1 Line and Word Breaking .  1039

23.2.2 Cursive Connection and Ligatures .  1042

23.2.3 Prepended Concatenation Marks .  1046

23.2.4 Combining Grapheme Joiner .  1047

23.2.5 Bidirectional Ordering Controls .  1049

23.2.6 Stateful Format Controls .  1050

23.3 Deprecated Format Characters .  1052

23.3.1 Deprecated Format Characters: U+206A–U+206F . . . . . . . . . . .  1052

23.4 Variation Selectors .  1054

23.5 Private-Use Characters .  1058

23.5.1 Private Use Area: U+E000–U+F8FF .  1059

23.5.2 Supplementary Private Use Areas .  1060

23.6 Surrogates Area .  1061

23.6.1 Surrogates Area: U+D800–U+DFFF .  1061

23.7 Noncharacters .  1062

23.7.1 Noncharacters: U+FFFE, U+FFFF, and Others . . . . . . . . . . . . . .  1062

23.8 Specials .  1064

23.8.1 Byte Order Mark (BOM): U+FEFF .  1064

23.8.2 Specials: U+FFF0–U+FFFF .  1068

23.8.3 Annotation Characters: U+FFF9–U+FFFB . . . . . . . . . . . . . . . . . . .  1068

23.8.4 Replacement Characters: U+FFFC–U+FFFD . . . . . . . . . . . . . . . .  1070

Contents 25

23.9 Tag Characters .  1071

23.9.1 Tag Characters: U+E0000–U+E007F .  1071

23.9.2 Deprecated Use for Language Tagging .  1071

24 About the Code Charts .  1072

24.1 Character Names List .  1073

24.1.1 Images in the Code Charts and Character Lists . . . . . . . . . . . . . . .  1073

24.1.2 Special Characters and Code Points .  1075

24.1.3 Character Names .  1077

24.1.4 Informative Aliases .  1077

24.1.5 Normative Aliases .  1079

24.1.6 Cross References .  1080

24.1.7 Information About Languages .  1082

24.1.8 Case Mappings .  1082

24.1.9 Decompositions .  1083

24.1.10 Standardized Variation Sequences .  1084

24.1.11 Emoji Variation Sequences .  1086

24.1.12 Positional Forms .  1087

24.1.13 Block Headers .  1087

24.1.14 Subheads .  1087

24.2 CJK and Other Ideographs .  1089

24.2.1 CJK Unified Ideographs .  1089

24.2.2 Compatibility Ideographs .  1091

24.2.3 Tangut Ideographs .  1092

24.3 Hangul Syllables .  1093

A Notational Conventions .  1094

A.1 Typographic Conventions .  1095

A.1.1 Code Points .  1095

A.1.2 Character Names .  1095

A.1.3 Character Blocks .  1096

A.1.4 Sequences .  1096

A.1.5 Properties and Property Values .  1097

A.1.6 Miscellaneous .  1097

A.1.7 Operators .  1097

A.2 Extended BNF .  1098

A.2.1 Character Classes .  1099

A.3 Rendering .  1101

Contents 26

B Unicode Publications and Resources .  1102

B.1 The Unicode Consortium .  1103

B.1.1 The Unicode Technical Committee .  1103

B.1.2 Other Activities .  1103

B.2 Unicode Publications .  1105

B.3 Other Unicode Online Resources .  1106

B.3.1 Unicode Online Resources .  1106

B.3.2 How to Contact the Unicode Consortium .  1108

C Relationship to ISO/IEC 10646 .  1110

C.1 History .  1111

C.1.1 Unicode 1.0 .  1114

C.1.2 Unicode 2.0 .  1114

C.1.3 Unicode 3.0 .  1115

C.1.4 Unicode 4.0 .  1116

C.1.5 Unicode 5.0 .  1116

C.1.6 Unicode 6.0 .  1117

C.1.7 Unicode 7.0 .  1117

C.1.8 Unicode 8.0 .  1118

C.1.9 Unicode 9.0 .  1118

C.1.10 Unicode 10.0 .  1118

C.1.11 Unicode 11.0 .  1118

C.1.12 Unicode 12.0 .  1119

C.1.13 Unicode 13.0 .  1119

C.1.14 Unicode 14.0 .  1119

C.1.15 Unicode 15.0 .  1119

C.1.16 Unicode 16.0 .  1119

C.2 Encoding Forms in ISO/IEC 10646 .  1120

C.2.1 Zero Extending .  1120

C.3 UTF-8 and UTF-16 .  1121

C.3.1 UTF-8 .  1121

C.3.2 UTF-16 .  1121

C.4 Synchronization of the Standards .  1122

C.5 Identification of Features for Unicode .  1123

C.6 Character Names .  1124

C.7 Character Functional Specifications .  1125

Contents 27

D Version History of the Standard .  1126

E Han Unification History .  1128

E.1 Development of the URO .  1129

E.2 Continuing Research on Ideographs .  1131

E.2.1 Ideographic Rapporteur Group .  1131

E.2.2 Ideographic Research Group .  1132

E.3 CJK Sources .  1133

F Documentation of CJK Strokes .  1134

Contents 28

Preface

The Unicode Standard and its associated specifications provide programmers with a

single universal character encoding, extensive descriptions, and a vast amount of

data about how characters function. The specifications and data describe how to

form words and break lines; how to sort text in different languages; how to format

numbers, dates, times, and other elements appropriate to different languages; how to

display languages whose written form flows from right to left, such as Arabic and

Hebrew, or whose written form splits, combines, and reorders, such as languages of

South Asia. These specifications include descriptions of how to deal with security

concerns regarding the many “look-alike” characters from alphabets around the

world. Without the properties and algorithms in the Unicode Standard and its associ‐

ated specifications, interoperability between different implementations would be

impossible, and much of the vast breadth of the world’s languages would lie outside

the reach of modern software.

This core specification, together with the Unicode code charts, the Unicode Char‐

acter Database, and the Unicode Standard Annexes, defines the Unicode Standard.

The core specification contains the general principles, requirements for confor‐

mance, and guidelines for implementers. The character code charts and names are

available online.

 The first five chapters

introduce the Unicode Standard and provide the fundamental information needed to

produce a conforming implementation. Basic text processing, working with

combining marks, encoding forms, and normalization are all described. A special

chapter on implementation guidelines answers many common questions that arise

when implementing Unicode.

Chapter 1 introduces the standard’s basic concepts, design basis, and coverage

and discusses basic text handling requirements.

Chapter 2 sets forth the fundamental principles underlying the Unicode Stan‐

dard and covers specific topics such as text processes, overall character proper‐

ties, and the use of combining marks.

Why Unicode?

Organization of This Standard

Concepts, Architecture, Conformance, and Guidelines.

29

Chapter 3 constitutes the formal statement of conformance. This chapter also

presents the normative algorithms for several processes, including normaliza‐

tion, Korean syllable boundary determination, and default casing.

Chapter 4 describes character properties in detail, both normative (required) and

informative. Additional character property information appears in Unicode

Standard Annex #44, “Unicode Character Database.”

Chapter 5 discusses implementation issues, including compression, strategies for

dealing with unknown and unsupported characters, and transcoding to other

standards.

Chapters 6 through 23 contain the character block

descriptions that provide basic information about each script or group of symbols

and may discuss specific characters or pertinent layout information. Some of this

information is required to produce conformant implementations of these scripts and

other collections of characters.

Chapter 24 describes the conventions used in the code charts and the

list of character names. The code charts contain the normative character encoding

assignments, and the names list contains normative information, as well as useful

cross references and informational notes.

 The appendices contain additional information.

Appendix A documents the notational conventions used by the standard.

Appendix B provides information about Unicode publications and links to other

important Unicode resources.

Appendix C details the relationship between the Unicode Standard and ISO/IEC

10646.

Appendix D lists version history.

Appendix E describes the history of Han unification in the Unicode Standard.

Appendix F provides additional documentation for characters encoded in the

CJK Strokes block (U+31C0..U+31EF).

 A glossary of Unicode terms, the Unicode Character Name

Index, and the list of references for the Unicode Standard are located at:

https://www.unicode.org/glossary/

https://www.unicode.org/charts/charindex.html

Character Block Descriptions.

Code Charts.

Appendices.

Online Information.

Preface 30

https://www.unicode.org/glossary/
https://www.unicode.org/charts/charindex.html

https://www.unicode.org/references/

The Unicode Character Database (UCD) is a collection of data files containing char‐

acter code points, character names, and character property data. It is described more

fully in Section 4.1, Unicode Character Database and in Unicode Standard Annex #44,

“Unicode Character Database.” All versions, including the most up-to-date version of

the Unicode Character Database, are found at:

https://www.unicode.org/ucd/

Information on versioning and on all versions of the Unicode Standard can be found

at:

https://www.unicode.org/versions/

The Unicode code charts contain the character encoding assignments and the names

list. The archival, reference set of versioned 16.0 code charts may be found at:

https://www.unicode.org/charts/PDF/Unicode-16.0/

For easy lookup of characters, see the current code charts:

https://www.unicode.org/charts/

An interactive radical-stroke index to CJK ideographs is located at:

https://www.unicode.org/charts/unihanrsindex.html

The Unicode Standard Annexes form an integral part of the Unicode Standard.

Conformance to a version of the Unicode Standard includes conformance to its

Unicode Standard Annexes. All versions, including the most up-to-date versions of

all Unicode Standard Annexes, are available at:

https://www.unicode.org/reports/index.html#annexes

The following is the list of Unicode Standard Annexes:

Unicode Standard Annex #9, “Unicode Bidirectional Algorithm,” describes spec‐

ifications for the positioning of characters in text containing characters flowing

from right to left, such as Arabic or Hebrew.

The Unicode Character Database

Unicode Code Charts

Unicode Standard Annexes

Preface 31

https://www.unicode.org/references/
https://www.unicode.org/ucd/
https://www.unicode.org/versions/
https://www.unicode.org/charts/PDF/Unicode-16.0/
https://www.unicode.org/charts/
https://www.unicode.org/charts/unihanrsindex.html
https://www.unicode.org/reports/index.html#annexes

Unicode Standard Annex #11, “East Asian Width,” presents the specification of

an informative property for Unicode characters that is useful when interoper‐

ating with East Asian legacy character sets.

Unicode Standard Annex #14, “Unicode Line Breaking Algorithm,” presents the

specification of line breaking properties for Unicode characters.

Unicode Standard Annex #15, “Unicode Normalization Forms,” describes

Unicode normalization and provides examples and implementation strategies

for it.

Unicode Standard Annex #24, “Unicode Script Property,” describes two related

Unicode code point properties. Both properties share the use of Script property

values. The Script property itself assigns single script values to all Unicode code

points, identifying a primary script association, where possible. The

Script_Extensions property assigns sets of Script property values, providing

more detail for cases where characters are commonly used with multiple scripts.

Unicode Standard Annex #29, “Unicode Text Segmentation,” describes algo‐

rithms for determining default boundaries between certain significant text

elements: grapheme clusters (“user-perceived characters”), words, and

sentences.

Unicode Standard Annex #31, “Unicode Identifiers and Syntax,” describes speci‐

fications for recommended defaults for the use of Unicode in the definitions of

identifiers and in pattern-based syntax.

Unicode Standard Annex #34, “Unicode Named Character Sequences,” defines

the concept of a Unicode named character sequence.

Unicode Standard Annex #38, “Unicode Han Database (Unihan),” describes the

organization and content of the Unihan Database.

Unicode Standard Annex #41, “Common References for Unicode Standard

Annexes,” contains the listing of references shared by other Unicode Standard

Annexes.

Unicode Standard Annex #42, “Unicode Character Database in XML,” describes

an XML representation of the Unicode Character Database.

Unicode Standard Annex #44, “Unicode Character Database,” provides the core

documentation for the Unicode Character Database (UCD). It describes the

layout and organization of the Unicode Character Database and how the UCD

specifies the formal definition of Unicode character properties.

Preface 32

Unicode Standard Annex #45, “U-Source Ideographs,” describes U-source ideo‐

graphs as used by the Ideographic Research Group (IRG) in its CJK ideograph

unification work.

Unicode Standard Annex #50, “Unicode Vertical Text Layout,” describes the

Unicode character property, Vertical_Orientation, which can serve as a stable

default orientation for characters for reliable document interchange.

Unicode Standard Annex #53, “Unicode Arabic Mark Rendering,” specifies an

algorithm that can be utilized during rendering for determining correct display

of Arabic combining mark sequences.

Unicode Standard Annex #57, “Unicode Egyptian Hieroglyph Database

(Unikemet),” describes the organization and content of the Unikemet Database.

Unicode Technical Reports and Unicode Technical Standards are separate publica‐

tions and do not form part of the Unicode Standard. However, several Unicode Tech‐

nical Standards are versioned synchronously with the Unicode Standard and have

newly published versions:

Unicode Technical Standard #10, “Unicode Collation Algorithm,” details how to

compare two Unicode strings while remaining conformant to the requirements

of the Unicode Standard. It includes the Default Unicode Collation Element

Table (DUCET) and conformance tests.

Unicode Technical Standard #39, “Unicode Security Mechanisms,” specifies

mechanisms that can be used to detect possible security problems involving

Unicode characters. It includes data tables for confusable characters.

Unicode Technical Standard #46, “Unicode IDNA Compatibility Processing,”

discusses compatibility between IDNA 2003, IDNA 2008, and current browser

practice for domain names. It provides a comprehensive mapping to support

current user expectations for casing and other variants of domain names.

Unicode Technical Standard #51, “Unicode Emoji,” defines the structure of

Unicode emoji characters and sequences, and provides data to support that

structure, such as which characters are considered to be emoji, and which emoji

should be displayed by default with a text style versus an emoji style. It also

provides design guidelines for improving the interoperability of emoji characters

across platforms and implementations.

All versions of all Unicode Technical Reports and Unicode Technical Standards are

available at:

Unicode Technical Standards and Unicode Technical Reports

Preface 33

https://www.unicode.org/reports/

Reports of errors in the Unicode Standard, including the Unicode Character Data‐

base and the Unicode Standard Annexes, may be reported using the reporting form:

https://corp.unicode.org/reporting/error.html

A list of known errata is maintained at:

https://www.unicode.org/errata/

Any currently listed errata will be fixed in subsequent versions of the standard.

The Unicode Standard is the result of the dedication and contributions of numerous

people over many years. We would like to acknowledge the individuals whose contri‐

butions were central to the design, authorship, and review of this standard. A

complete listing of acknowledgements can be found at:

https://www.unicode.org/acknowledgements/standard.html

There is also a page dedicated specifically to acknowledgement of contributors of the

many fonts used in production of the Unicode Standard:

https://www.unicode.org/charts/fonts.html

Current editorial contributors can be found at:

https://www.unicode.org/consortium/edcom.html

The core specification is built as a static website with the Astro framework and Svelte

components. The archival PDF version is generated with WeasyPrint. Example

glyphs are shaped with harfbuzzjs. The text is mainly set in STIX Two Text. Most of

the figures were created with Adobe Illustrator.

The Unicode code charts were produced with Unibook chart formatting software

supplied by ASMUS, Inc.

Updates and Errata

Acknowledgements

About This Publication

Preface 34

https://www.unicode.org/reports/
https://corp.unicode.org/reporting/error.html
https://www.unicode.org/errata/
https://www.unicode.org/acknowledgements/standard.html
https://www.unicode.org/charts/fonts.html
https://www.unicode.org/consortium/edcom.html
https://astro.build
https://svelte.dev
https://weasyprint.org
https://github.com/harfbuzz/harfbuzzjs
https://www.stixfonts.org

Chapter 1

Introduction

The Unicode Standard is the universal character encoding standard for written char‐

acters and text. It defines a consistent way of encoding multilingual text that enables

the exchange of text data internationally and creates the foundation for global soft‐

ware. As the default encoding of HTML and XML, the Unicode Standard provides

the underpinning for the World Wide Web and the global business environments of

today. Required in new Internet protocols and implemented in all modern operating

systems and computer languages such as Java and C#, Unicode is the basis of soft‐

ware that must function all around the world.

With Unicode, the information technology industry has replaced proliferating char‐

acter sets with data stability, global interoperability and data interchange, simplified

software, and reduced development costs.

While taking the ASCII character set as its starting point, the Unicode Standard goes

far beyond ASCII’s limited ability to encode only the upper- and lowercase letters A

through Z. It provides the capacity to encode all characters used for the written

languages of the world—more than 1 million characters can be encoded. No escape

sequence or control code is required to specify any character in any language. The

Unicode character encoding treats alphabetic characters, ideographic characters, and

symbols equivalently, which means they can be used in any mixture and with equal

facility (see Figure 1-1).

35

The Unicode Standard specifies a numeric value (code point) and a name for each of

its characters. In this respect, it is similar to other character encoding standards from

ASCII onward. In addition to character codes and names, other information is crucial

to ensure legible text: a character’s case, directionality, and alphabetic properties

must be well defined. The Unicode Standard defines these and other semantic values,

and it includes application data such as case mapping tables and character property

tables as part of the Unicode Character Database. Character properties define a char‐

acter’s identity and behavior; they ensure consistency in the processing and inter‐

change of Unicode data. See Section 4.1, Unicode Character Database.

Unicode characters are represented in one of three encoding forms: a 32-bit form

(UTF-32), a 16-bit form (UTF-16), and an 8-bit form (UTF-8). The 8-bit, byte-oriented

form, UTF-8, has been designed for ease of use with existing ASCII-based systems.

The Unicode Standard is code-for-code identical with International Standard ISO/

IEC 10646. Any implementation that is conformant to Unicode is therefore confor‐

mant to ISO/IEC 10646.

The Unicode Standard contains 1,114,112 code points, most of which are available for

encoding of characters. The majority of the common characters used in the major

Figure 1-1. Wide ASCII

Introduction 36

languages of the world are encoded in the first 65,536 code points, also known as the

Basic Multilingual Plane (BMP). The overall capacity for more than 1 million charac‐

ters is more than sufficient for all known character encoding requirements, including

full coverage of all minority and historic scripts of the world.

Introduction 37

The Unicode Standard, Version 16.0, contains over 150,000 characters from the

world’s scripts. These characters are more than sufficient not only for modern

communication for the world’s languages, but also to represent the classical forms of

many languages. The standard includes the European alphabetic scripts, Middle

Eastern right-to-left scripts, and scripts of Asia and Africa. Many archaic and historic

scripts are encoded. The Han script includes 97,680 unified ideographic characters

defined by national, international, and industry standards of China, Japan, Korea,

Taiwan, Vietnam, and Singapore. In addition, the Unicode Standard contains many

important symbol sets, including currency symbols, punctuation marks, mathemat‐

ical symbols, technical symbols, geometric shapes, dingbats, and emoji. For overall

character and code range information, see Chapter 2, General Structure.

Note, however, that the Unicode Standard does not encode idiosyncratic, personal,

novel, or private-use characters, nor does it encode logos or graphics. Graphologies

unrelated to text, such as dance notations, are likewise outside the scope of the

Unicode Standard. Font variants are explicitly not encoded. The Unicode Standard

reserves 6,400 code points in the BMP for private use, which may be used to assign

codes to characters not included in the repertoire of the Unicode Standard. Another

131,068 private-use code points are available outside the BMP, should 6,400 prove

insufficient for particular applications.

The Unicode Standard is a superset of all characters in widespread use today. It

contains the characters from major international and national standards as well as

prominent industry character sets. For example, Unicode incorporates the ISO/IEC

6937 and ISO/IEC 8859 families of standards, the SGML standard ISO/IEC 8879, and

bibliographic standards such as ISO 5426. Important national standards contained

within Unicode include ANSI Z39.64, KS X 1001, JIS X 0208, JIS X 0212, JIS X 0213,

GB 2312, GB 18030, HKSCS, and CNS 11643. Industry code pages and character sets

from Adobe, Apple, Fujitsu, Hewlett-Packard, IBM, Lotus, Microsoft, NEC, and

Xerox are fully represented as well.

The Unicode Standard is fully conformant with the International Standard ISO/IEC

10646:2020, Information Technology—Universal Coded Character Set (UCS), known as

the Universal Character Set (UCS). For more information, see Appendix C, Relation‐

ship to ISO/IEC 10646.

The Unicode Standard continues to respond to new and changing industry demands

by encoding important new characters. As the universal character encoding, the

1.1 Coverage

1.1.1 Standards Coverage

1.1.2 New Characters

Introduction 38 1.1 Coverage

Unicode Standard also responds to scholarly needs. To preserve world cultural

heritage, important archaic scripts are encoded as consensus about the encoding is

developed.

Introduction 39 1.1 Coverage

The Unicode Standard began with a simple goal: to unify the many hundreds of

conflicting ways to encode characters, replacing them with a single, universal stan‐

dard. The pre-existing legacy character encodings were both inconsistent and incom‐

plete—two encodings could use the same codes for two different characters and use

different codes for the same characters, while none of the encodings handled any

more than a small fraction of the world’s languages. Whenever textual data was

converted between different programs or platforms, there was a substantial risk of

corruption. Programs often were written only to support particular encodings,

making development of international versions expensive. As a result, developing

countries were particularly hard-hit, as it was not economically feasible to adapt

specific versions of programs for smaller markets. Technical fields such as mathe‐

matics were also disadvantaged, because they were forced to use special fonts to

represent arbitrary characters, often leading to garbled content.

The designers of the Unicode Standard envisioned a uniform method of character

identification that would be more efficient and flexible than previous encoding

systems. The new system would satisfy the needs of technical and multilingual

computing and would encode a broad range of characters for all purposes, including

worldwide publication.

The Unicode Standard was designed to be:

Universal. The repertoire must be large enough to encompass all characters that

are likely to be used in general text interchange, including those in major

international, national, and industry character sets.

Efficient. Plain text is simple to parse: software does not have to maintain state or

look for special escape sequences, and character synchronization from any point

in a character stream is quick and unambiguous. A fixed character code allows

for efficient sorting, searching, display, and editing of text.

Unambiguous. Any given Unicode code point always represents the same

character.

Figure 1-2 demonstrates some of these features, contrasting the Unicode encoding

with mixtures of single-byte character sets with escape sequences to shift the mean‐

ings of bytes in the ISO/IEC 2022 framework using multiple character encoding stan‐

dards.

1.2 Design Goals

•

•

•

Introduction 40 1.2 Design Goals

Figure 1-2. Unicode Compared to the 2022 Framework

Introduction 41 1.2 Design Goals

The assignment of characters is only a small fraction of what the Unicode Standard

and its associated specifications provide. The specifications give programmers exten‐

sive descriptions and a vast amount of data about the handling of text, including how

to:

divide words and break lines

sort text in different languages

format numbers, dates, times, and other elements appropriate to different

locales

display text for languages whose written form flows from right to left, such as

Arabic or Hebrew

display text in which the written form splits, combines, and reorders, such as for

the languages of South Asia

deal with security concerns regarding the many look-alike characters from

writing systems around the world

Without the properties, algorithms, and other specifications in the Unicode Standard

and its associated specifications, interoperability between different implementations

would be impossible. With the Unicode Standard as the foundation of text represen‐

tation, all of the text on the Web can be stored, searched, and matched with the same

program code.

The difference between identifying a character and rendering it on screen or paper is

crucial to understanding the Unicode Standard’s role in text processing. The char‐

acter identified by a Unicode code point is an abstract entity, such as “LATIN CAPITAL

LETTER A” or “BENGALI DIGIT FIVE”. The mark made on screen or paper, called a

glyph, is a visual representation of the character.

The Unicode Standard does not define glyph images. That is, the standard defines

how characters are interpreted, not how glyphs are rendered. Ultimately, the software

or hardware rendering engine of a computer is responsible for the appearance of the

characters on the screen. The Unicode Standard does not specify the precise shape,

size, or orientation of on-screen characters.

The successful encoding, processing, and interpretation of text requires appropriate

definition of useful elements of text and the basic rules for interpreting text. The defi‐

1.3 Text Handling

•

•

•

•

•

•

1.3.1 Characters and Glyphs

1.3.2 Text Elements

Introduction 42 1.3 Text Handling

nition of text elements often changes depending on the process that handles the text.

For example, when searching for a particular word or character written with the

Latin script, one often wishes to ignore differences of case. However, correct spelling

within a document requires case sensitivity.

The Unicode Standard does not define what is and is not a text element in different

processes; instead, it defines elements called encoded characters. An encoded char‐

acter is represented by a number from 0 to 10FFFF
16

, called a code point. A text

element, in turn, is represented by a sequence of one or more encoded characters.

Introduction 43 1.3 Text Handling

Chapter 2

General Structure

This chapter describes the fundamental principles governing the design of the

Unicode Standard and presents an informal overview of its main features. The

chapter starts by placing the Unicode Standard in an architectural context by

discussing the nature of text representation and text processing and its bearing on

character encoding decisions. Next, the Unicode Design Principles are introduced—

ten basic principles that convey the essence of the standard. The Unicode Design

Principles serve as a tutorial framework for understanding the Unicode Standard.

The chapter then moves on to the Unicode character encoding model, introducing

the concepts of character, code point, and encoding forms, and diagramming the

relationships between them. This provides an explanation of the encoding forms

UTF-8, UTF-16, and UTF-32 and some general guidelines regarding the circum‐

stances under which one form would be preferable to another.

The sections on Unicode allocation then describe the overall structure of the Unicode

codespace, showing a summary of the code charts and the locations of blocks of

characters associated with different scripts or sets of symbols.

Next, the chapter discusses the issue of writing direction and introduces several

special types of characters important for understanding the Unicode Standard. In

particular, the use of combining characters, the byte order mark, and other special

characters is explored in some detail.

The section on equivalent sequences and normalization describes the issue of

multiple equivalent representations of Unicode text and explains how text can be

transformed to use a unique and preferred representation for each character

sequence.

Finally, there is an informal statement of the conformance requirements for the

Unicode Standard. This informal statement, with a number of easy-to-understand

examples, gives a general sense of what conformance to the Unicode Standard

means. The rigorous, formal definition of conformance is given in the subsequent

Chapter 3, Conformance.

44

A character code standard such as the Unicode Standard enables the implementation

of useful processes operating on textual data. The interesting end products are not

the character codes but rather the text processes, because these directly serve the

needs of a system’s users. Character codes are like nuts and bolts—minor, but essen‐

tial and ubiquitous components used in many different ways in the construction of

computer software systems. No single design of a character set can be optimal for all

uses, so the architecture of the Unicode Standard strikes a balance among several

competing requirements.

Most computer systems provide low-level functionality for a small number of basic

text processes from which more sophisticated text-processing capabilities are built.

The following text processes are supported by most computer systems to some

degree:

Rendering characters visible (including ligatures, contextual forms, and so on)

Breaking lines while rendering (including hyphenation)

Modifying appearance, such as point size, kerning, underlining, slant, and

weight (light, demi, bold, and so on)

Determining units such as “word” and “sentence”

Interacting with users in processes such as selecting and highlighting text

Accepting keyboard input and editing stored text through insertion and deletion

Comparing text in operations such as in searching or determining the sort order

of two strings

Analyzing text content in operations such as spell-checking, hyphenation, and

parsing morphology (that is, determining word roots, stems, and affixes)

Treating text as bulk data for operations such as compressing and

decompressing, truncating, transmitting, and receiving

One of the more profound challenges in designing a character encoding stems from

the fact that there is no universal set of fundamental units of text. Instead, the divi‐

sion of text into text elements necessarily varies by language and text process.

For example, in the pre-1996 German orthography, the letter combination “ck” was a

text element for the process of hyphenation (where it appeared as “k-k”), but not for

2.1 Architectural Context

2.1.1 Basic Text Processes

•

•

•

•

•

•

•

•

•

2.1.2 Text Elements, Characters, and Text Processes

General Structure 45 2.1 Architectural Context

the process of sorting. In Spanish, the combination “ll” may be a text element for the

traditional process of sorting (where it is sorted between “l” and “m”), but not for the

process of rendering. In English, the letters “A” and “a” are usually distinct text

elements for the process of rendering, but generally not distinct for the process of

searching text. The text elements in a given language depend upon the specific text

process; a text element for spell-checking may have different boundaries from a text

element for sorting purposes. For example, in the phrase “the quick brown fox,” the

sequence “fox” is a text element for the purpose of spell-checking.

In contrast, a character encoding standard provides a single set of fundamental units

of encoding, to which it uniquely assigns numerical code points. These units, called

assigned characters, are the smallest interpretable units of stored text. Text elements

are then represented by a sequence of one or more characters.

Figure 2-1 illustrates the relationship between several different types of text elements

and the characters used to represent those text elements.

The design of the character encoding must provide precisely the set of characters that

allows programmers to design applications capable of implementing a variety of text

processes in the desired languages. Therefore, the text elements encountered in most

text processes are represented as sequences of character codes. See Unicode Standard

Annex #29, “Unicode Text Segmentation,” for detailed information on how to

segment character strings into common types of text elements. Certain text elements

correspond to what users perceive as single characters. These are called grapheme

clusters.

Figure 2-1. Text Elements and Characters

General Structure 46 2.1 Architectural Context

In the case of English text using an encoding scheme such as ASCII, the relation‐

ships between the encoding and the basic text processes built on it are seemingly

straightforward: characters are generally rendered visible one by one in distinct

rectangles from left to right in linear order. Thus one character code inside the

computer corresponds to one logical character in a process such as simple English

rendering.

When designing an international and multilingual text encoding such as the Unicode

Standard, the relationship between the encoding and implementation of basic text

processes must be considered explicitly, for several reasons:

Many assumptions about character rendering that hold true for the English

alphabet fail for other writing systems. Characters in these other writing systems

are not necessarily rendered visible one by one in rectangles from left to right. In

many cases, character positioning is quite complex and does not proceed in a

linear fashion. See Section 9.2, Arabic, and Section 12.1, Devanagari, for detailed

examples of this situation.

It is not always obvious that one set of text characters is an optimal encoding for

a given language. For example, two approaches exist for the encoding of

accented characters commonly used in French or Swedish: ISO/IEC 8859 defines

letters such as “ä” and “ö” as individual characters, whereas ISO 5426 represents

them by composition with diacritics instead. In the Swedish language, both are

considered distinct letters of the alphabet, following the letter “z”. In French, the

diaeresis on a vowel merely marks it as being pronounced in isolation. In

practice, both approaches can be used to implement either language.

No encoding can support all basic text processes equally well. As a result, some

trade-offs are necessary. For example, following common practice, Unicode

defines separate codes for uppercase and lowercase letters. This choice causes

some text processes, such as rendering, to be carried out more easily, but other

processes, such as comparison, to become more difficult. A different encoding

design for English, such as case-shift control codes, would have the opposite

effect. In designing a new encoding scheme for complex scripts, such trade-offs

must be evaluated and decisions made explicitly.

For these reasons, design of the Unicode Standard is not specific to the design of

particular basic text-processing algorithms. Instead, it provides an encoding that can

be used with a wide variety of algorithms. In particular, sorting and string compar‐

ison algorithms cannot assume that the assignment of Unicode character code

numbers provides an alphabetical ordering for lexicographic string comparison.

Culturally expected sorting orders require arbitrarily complex sorting algorithms. The

expected sort sequence for the same characters differs across languages; thus, in

general, no single acceptable lexicographic ordering exists. See Unicode Technical

2.1.3 Text Processes and Encoding

•

•

•

General Structure 47 2.1 Architectural Context

Standard #10, “Unicode Collation Algorithm,” for the standard default mechanism

for comparing Unicode strings.

Text processes supporting many languages are often more complex than they are for

English. The character encoding design of the Unicode Standard strives to minimize

this additional complexity, enabling modern computer systems to interchange,

render, and manipulate text in a user’s own script and language—and possibly in

other languages as well.

 Whenever Unicode makes statements about the default layout

behavior of characters, it is done to ensure that users and implementers face no

ambiguities as to which characters or character sequences to use for a given purpose.

For bidirectional writing systems, this includes the specification of the sequence in

which characters are to be encoded so as to correspond to a specific reading order

when displayed. See Section 2.10, Writing Direction.

The actual layout in an implementation may differ in detail. A mathematical layout

system, for example, will have many additional, domain-specific rules for layout, but

a well-designed system leaves no ambiguities as to which character codes are to be

used for a given aspect of the mathematical expression being encoded.

The purpose of defining Unicode default layout behavior is not to enforce a single

and specific aesthetic layout for each script, but rather to encourage uniformity in

encoding. In that way implementers of layout systems can rely on the fact that users

would have chosen a particular character sequence for a given purpose, and users

can rely on the fact that implementers will create a layout for a particular character

sequence that matches the intent of the user to within the capabilities or technical

limitations of the implementation.

In other words, two users who are familiar with the standard and who are presented

with the same text ideally will choose the same sequence of character codes to

encode the text. In actual practice there are many limitations, so this goal cannot

always be realized.

Character Identity.

General Structure 48 2.1 Architectural Context

The design of the Unicode Standard reflects the 10 fundamental principles stated in

Table 2-1. Not all of these principles can be satisfied simultaneously. The design

strikes a balance between maintaining consistency for the sake of simplicity and effi‐

ciency and maintaining compatibility for interchange with existing standards.

Principle Statement

Universality The Unicode Standard provides a single, universal repertoire.

Efficiency Unicode text is simple to parse and process.

Characters, not
glyphs

The Unicode Standard encodes characters, not glyphs.

Semantics Characters have well-defined semantics.

Plain text Unicode characters represent plain text.

Logical order The default for memory representation is logical order.

Unification
The Unicode Standard unifies duplicate characters within scripts across
languages.

Dynamic
composition

Accented forms can be dynamically composed.

Stability
Characters, once assigned, cannot be reassigned and key properties are
immutable.

Convertibility
Accurate convertibility is guaranteed between the Unicode Standard and
other widely accepted standards.

The Unicode Standard encodes a single, very large set of characters, encompassing

all the characters needed for worldwide use. This single repertoire is intended to be

universal in coverage, containing all the characters for textual representation in all

modern writing systems, in most historic writing systems, and for symbols used in

plain text.

The Unicode Standard is designed to meet the needs of diverse user communities

within each language, serving business, educational, liturgical and scientific users,

and covering the needs of both modern and historical texts.

Despite its aim of universality, the Unicode Standard considers the following to be

outside its scope: writing systems for which insufficient information is available to

enable reliable encoding of characters, writing systems that have not become stan‐

dardized through use, and writing systems that are nontextual in nature.

2.2 Unicode Design Principles

Table 2-1. The 10 Unicode Design Principles

2.2.1 Universality

General Structure 49 2.2 Unicode Design Principles

Because the universal repertoire is known and well defined in the standard, it is

possible to specify a rich set of character semantics. By relying on those character

semantics, implementations can provide detailed support for complex operations on

text in a portable way. See “Semantics” later in this section.

The Unicode Standard is designed to make efficient implementation possible. There

are no escape characters or shift states in the Unicode character encoding model.

Each character code has the same status as any other character code; all codes are

equally accessible.

The standard Unicode encoding forms (UTF-8, UTF-16, and UTF-32) are self-

synchronizing and non-overlapping. This makes randomly accessing and searching

inside streams of characters efficient.

By convention, characters of a script are grouped together as far as is practical. Not

only is this practice convenient for looking up characters in the code charts, but it

makes implementations more compact and compression methods more efficient. The

common punctuation characters are shared.

Format characters are given specific and unambiguous functions in the Unicode

Standard. This design simplifies the support of subsets. To keep implementations

simple and efficient, stateful controls and format characters are avoided wherever

possible.

The Unicode Standard draws a distinction between characters and glyphs. Characters

are the abstract representations of the smallest components of written language that

have semantic value. They represent primarily, but not exclusively, the letters, punc‐

tuation, and other signs that constitute natural language text and technical notation.

The letters used in natural language text are grouped into scripts—sets of letters that

are used together in writing languages. Letters in different scripts, even when they

correspond either semantically or graphically, are represented in Unicode by distinct

characters. This is true even in those instances where they correspond in semantics,

pronunciation, or appearance.

Characters are represented by code points that reside only in a memory representa‐

tion, as strings in memory, on disk, or in data transmission. The Unicode Standard

deals only with character codes.

Glyphs represent the shapes that characters can have when they are rendered or

displayed. In contrast to characters, glyphs appear on the screen or paper as partic‐

ular representations of one or more characters. A repertoire of glyphs makes up a

2.2.2 Efficiency

2.2.3 Characters, Not Glyphs

General Structure 50 2.2 Unicode Design Principles

font. Glyph shape and methods of identifying and selecting glyphs are the responsi‐

bility of individual font vendors and of appropriate standards and are not part of the

Unicode Standard.

Various relationships may exist between character and glyph: a single glyph may

correspond to a single character or to a number of characters, or multiple glyphs may

result from a single character. The distinction between characters and glyphs is illus‐

trated in Figure 2-2.

Even the letter “a” has a wide variety of glyphs that can represent it. A lowercase

Cyrillic “п” also has a variety of glyphs; the second glyph for U+043F CYRILLIC

SMALL LETTER PE shown in Figure 2-2 is customary for italic in Russia, while the

third is customary for italic in Serbia. Arabic letters are displayed with different

glyphs, depending on their position in a word; the glyphs in Figure 2-2 show indepen‐

dent, final, initial, and medial forms. Sequences such as “fi” may be displayed with

two independent glyphs or with a ligature glyph.

What the user thinks of as a single character—which may or may not be represented

by a single glyph—may be represented in the Unicode Standard as multiple code

points. See Table 2-2 for additional examples.

Figure 2-2. Characters Versus Glyphs

General Structure 51 2.2 Unicode Design Principles

For certain scripts, such as Arabic and the various Indic scripts, the number of glyphs

needed to display a given script may be significantly larger than the number of char‐

acters encoding the basic units of that script. The number of glyphs may also depend

on the orthographic style supported by the font. For example, an Arabic font

intended to support the Nastaliq style of Arabic script may possess many thousands

of glyphs. However, the character encoding employs the same few dozen letters

regardless of the font style used to depict the character data in context.

A font and its associated rendering process define an arbitrary mapping from

Unicode characters to glyphs. Some of the glyphs in a font may be independent forms

for individual characters; others may be rendering forms that do not directly corre‐

spond to any single character.

Text rendering requires that characters in memory be mapped to glyphs. The final

appearance of rendered text may depend on context (neighboring characters in the

memory representation), variations in typographic design of the fonts used, and

formatting information (point size, superscript, subscript, and so on). The results on

screen or paper can differ considerably from the prototypical shape of a letter or char‐

acter, as shown in Figure 2-3.

Table 2-2. User-Perceived Characters with Multiple Code Points

General Structure 52 2.2 Unicode Design Principles

For the Latin script, this relationship between character code sequence and glyph is

relatively simple and well known; for several other scripts, it is documented in this

standard. However, in all cases, fine typography requires a more elaborate set of rules

than given here. The Unicode Standard documents the default relationship between

character sequences and glyphic appearance for the purpose of ensuring that the

same text content can be stored with the same, and therefore interchangeable,

sequence of character codes.

Characters have well-defined semantics. These semantics are defined by explicitly

assigned character properties, rather than implied through the character name or the

position of a character in the code tables (see Section 3.5, Properties). The Unicode

Character Database provides machine-readable character property tables for use in

implementations of parsing, sorting, and other algorithms requiring semantic knowl‐

edge about the code points. These properties are supplemented by the description of

Figure 2-3. Unicode Character Code to Rendered Glyphs

2.2.4 Semantics

General Structure 53 2.2 Unicode Design Principles

script and character behavior in this standard. See also Unicode Technical Report

#23, “The Unicode Character Property Model.”

The Unicode Standard identifies more than 100 different character properties,

including numeric, casing, combination, and directionality properties (see Chapter 4,

Character Properties). Additional properties may be defined as needed from time to

time. Where characters are used in different ways in different languages, the relevant

properties are normally defined outside the Unicode Standard. For example, Unicode

Technical Standard #10, “Unicode Collation Algorithm,” defines a set of default colla‐

tion weights that can be used with a standard algorithm. Tailorings for each language

are provided in the Unicode Common Locale Data Repository (CLDR); see https://

cldr.unicode.org.

The Unicode Standard, by supplying a universal repertoire associated with well-

defined character semantics, does not require the code set independent model of inter‐

nationalization and text handling. That model abstracts away string handling as

manipulation of byte streams of unknown semantics to protect implementations

from the details of hundreds of different character encodings and selectively late-

binds locale-specific character properties to characters. Of course, it is always

possible for code set independent implementations to retain their model and to treat

Unicode characters as just another character set in that context. It is not at all

unusual for Unix implementations to simply add UTF-8 as another character set,

parallel to all the other character sets they support. By contrast, the Unicode

approach—because it is associated with a universal repertoire—assumes that charac‐

ters and their properties are inherently and inextricably associated. If an internation‐

alized application can be structured to work directly in terms of Unicode characters,

all levels of the implementation can reliably and efficiently access character storage

and be assured of the universal applicability of character property semantics.

Plain text is a pure sequence of character codes; plain Unicode-encoded text is there‐

fore a sequence of Unicode character codes. In contrast, styled text, also known as

rich text, is any text representation consisting of plain text plus added information

such as a language identifier, font size, color, hypertext links, and so on. For example,

the text of this specification, a multi-font text as formatted by a book editing system,

is rich text.

The simplicity of plain text gives it a natural role as a major structural element of rich

text. SGML, RTF, HTML, XML, and T
E

X are examples of rich text fully represented

as plain text streams, interspersing plain text data with sequences of characters that

represent the additional data structures. They use special conventions embedded

within the plain text file, such as “<p>”, to distinguish the markup or tags from the

2.2.5 Plain Text

General Structure 54 2.2 Unicode Design Principles

https://cldr.unicode.org
https://cldr.unicode.org

“real” content. Many popular word processing packages rely on a buffer of plain text

to represent the content and implement links to a parallel store of formatting data.

The relative functional roles of both plain text and rich text are well established:

Plain text is the underlying content stream to which formatting can be applied.

Rich text carries complex formatting information as well as text context.

Plain text is public, standardized, and universally readable.

Rich text representation may be implementation-specific or proprietary.

Although some rich text formats have been standardized or made public, the

majority of rich text designs are vehicles for particular implementations and are not

necessarily readable by other implementations. Given that rich text equals plain text

plus added information, the extra information in rich text can always be stripped

away to reveal the “pure” text underneath. This operation is often employed, for

example, in word processing systems that use both their own private rich text format

and plain text file format as a universal, if limited, means of exchange. Thus, by

default, plain text represents the basic, interchangeable content of text.

Plain text represents character content only, not its appearance. It can be displayed in

a variety of ways and requires a rendering process to make it visible with a particular

appearance. If the same plain text sequence is given to disparate rendering processes,

there is no expectation that rendered text in each instance should have the same

appearance. Instead, the disparate rendering processes are simply required to make

the text legible according to the intended reading. This legibility criterion constrains

the range of possible appearances. The relationship between appearance and content

of plain text may be summarized as follows:

Plain text must contain enough information to permit the text to be rendered legibly,

and nothing more.

The Unicode Standard encodes plain text. The distinction between plain text and

other forms of data in the same data stream is the function of a higher-level protocol

and is not specified by the Unicode Standard itself.

The order in which Unicode text is stored in the memory representation is called

logical order. This order roughly corresponds to the order in which text is typed in via

the keyboard; it also roughly corresponds to phonetic order. For decimal numbers,

the logical order consistently corresponds to the most significant digit first, which is

the order expected by number-parsing software.

•

•

•

•

2.2.6 Logical Order

General Structure 55 2.2 Unicode Design Principles

When displayed, this logical order often corresponds to a simple linear progression of

characters in one direction, such as from left to right, right to left, or top to bottom. In

other circumstances, text is displayed or printed in an order that differs from a single

linear progression. Some of the clearest examples are situations where a right-to-left

script (such as Arabic or Hebrew) is mixed with a left-to-right script (such as Latin or

Greek). For example, when the text in Figure 2-4 is ordered for display the glyph that

represents the first character of the English text appears at the left. The logical start

character of the Hebrew text, however, is represented by the Hebrew glyph closest to

the right margin. The succeeding Hebrew glyphs are laid out to the left.

In logical order, numbers are encoded with most significant digit first, but are

displayed in different writing directions. As shown in Figure 2-5 these writing direc‐

tions do not always correspond to the writing direction of the surrounding text. The

first example shows N’Ko, a right-to-left script with digits that also render right to

left. Examples 2 and 3 show Hebrew and Arabic, in which the numbers are rendered

left to right, resulting in bidirectional layout. In left-to-right scripts, such as Latin and

Hiragana and Katakana (for Japanese), numbers follow the predominant left-to-right

direction of the script, as shown in Examples 4 and 5. When Japanese is laid out

vertically, numbers are either laid out vertically or may be rotated clockwise ninety

degrees to follow the layout direction of the lines, as shown in Example 6.

The Unicode Standard precisely defines the conversion of Unicode text from logical

order to the order of readable (displayed) text so as to ensure consistent legibility.

Properties of directionality inherent in characters generally determine the correct

display order of text. The Unicode Bidirectional Algorithm specifies how these prop‐

erties are used to resolve directional interactions when characters of right-to-left and

left-to-right directionality are mixed. (See Unicode Standard Annex #9, “Unicode

Bidirectional Algorithm.”) However, when characters of different directionality are

Figure 2-4. Bidirectional Ordering

Figure 2-5. Writing Direction and Numbers

General Structure 56 2.2 Unicode Design Principles

mixed, inherent directionality alone is occasionally insufficient to render plain text

legibly. The Unicode Standard therefore includes characters to explicitly specify

changes in direction when necessary. The Bidirectional Algorithm uses these direc‐

tional layout control characters together with the inherent directional properties of

characters to exert exact control over the display ordering for legible interchange. By

requiring the use of this algorithm, the Unicode Standard ensures that plain text used

for simple items like file names or labels can always be correctly ordered for display.

Besides mixing runs of differing overall text direction, there are many other cases

where the logical order does not correspond to a linear progression of characters.

Combining characters (such as accents) are stored following the base character to

which they apply, but are positioned relative to that base character and thus do not

follow a simple linear progression in the final rendered text. For example, the Latin

letter “ ” is stored as “x” followed by combining “ ”; the accent appears below, not to

the right of the base. This position with respect to the base holds even where the

overall text progression is from top to bottom—for example, with “ ” appearing

upright within a vertical Japanese line. Characters may also combine into ligatures or

conjuncts or otherwise change positions of their components radically, as shown in

Figure 2-3 and Figure 2-19.

There is one particular exception to the usual practice of logical order paralleling

phonetic order. With the Thai, Lao, Tai Viet, and New Tai Lue scripts, users tradition‐

ally type in visual order rather than phonetic order, resulting in some vowel letters

being stored ahead of consonants, even though they are pronounced after them.

The Unicode Standard avoids duplicate encoding of characters by unifying them

within scripts across language. Common letters are given one code each, regardless of

language, as are common Chinese/Japanese/Korean (CJK) ideographs. (See

Section 18.1, Han.)

Punctuation marks, symbols, and diacritics are handled in a similar manner as

letters. If they can be clearly identified with a particular script, they are encoded once

for that script and are unified across any languages that may use that script. See, for

example, U+1362 ETHIOPIC FULL STOP, U+060F ARABIC SIGN MISRA, and U+0592

HEBREW ACCENT SEGOL. However, some punctuation or diacritical marks may be

shared in common across a number of scripts—the obvious example being Western-

style punctuation characters, which are often recently added to the writing systems of

scripts other than Latin. In such cases, characters are encoded only once and are

intended for use with multiple scripts. Common symbols are also encoded only once

and are not associated with any script in particular.

It is quite normal for many characters to have different usages, such as comma “ , ”

for either thousands-separator (English) or decimal-separator (French). The Unicode

2.2.7 Unification

General Structure 57 2.2 Unicode Design Principles

Standard avoids duplication of characters due to specific usage in different

languages; rather, it duplicates characters only to support compatibility with base

standards. Avoidance of duplicate encoding of characters is important to avoid visual

ambiguity.

There are a few notable instances in the standard where visual ambiguity between

different characters is tolerated, however. For example, in most fonts there is little or

no distinction visible between Latin “o”, Cyrillic “o”, and Greek “o” (omicron). These

are not unified because they are characters from three different scripts, and many

legacy character encodings distinguish between them. As another example, there are

three characters whose glyph is the same uppercase barred D shape, but they corre‐

spond to three distinct lowercase forms. Unifying these uppercase characters would

have resulted in unnecessary complications for case mapping.

The Unicode Standard does not attempt to encode features such as language, font,

size, positioning, glyphs, and so forth. For example, it does not preserve language as a

part of character encoding: just as French i grec, German ypsilon, and English wye are

all represented by the same character code, U+0059 “Y”, so too are Chinese zi, Japa‐

nese ji, and Korean ja all represented as the same character code, U+5B57 字.

In determining whether to unify variant CJK ideograph forms across standards, the

Unicode Standard follows the principles described in Section 18.1, Han. Where these

principles determine that two forms constitute a trivial difference, the Unicode Stan‐

dard assigns a single code. Just as for the Latin and other scripts, typeface distinc‐

tions or local preferences in glyph shapes alone are not sufficient grounds for disuni‐

fication of a character. Figure 2-6 illustrates the well-known example of the CJK ideo‐

graph for “bone,” which shows significant shape differences from typeface to type‐

face, with some forms preferred in China and some in Japan. All of these forms are

considered to be the same character, encoded at U+9AA8 in the Unicode Standard.

Many characters in the Unicode Standard could have been unified with existing

visually similar Unicode characters or could have been omitted in favor of some

other Unicode mechanism for maintaining the kinds of text distinctions for which

they were intended. However, considerations of interoperability with other standards

and systems often require that such compatibility characters be included in the

Unicode Standard. See Section 2.3, Compatibility Characters. In particular, whenever

font style, size, positioning or precise glyph shape carry a specific meaning and are

Figure 2-6. Typeface Variation for the Bone Character

General Structure 58 2.2 Unicode Design Principles

used in distinction to the ordinary character—for example, in phonetic or mathemat‐

ical notation—the characters are not unified.

The Unicode Standard allows for the dynamic composition of accented forms and

Hangul syllables. Combining characters used to create composite forms are produc‐

tive. Because the process of character composition is open-ended, new forms with

modifying marks may be created from a combination of base characters followed by

combining characters. For example, the diaeresis “¨” may be combined with all

vowels and a number of consonants in languages using the Latin script and several

other scripts, as shown in Figure 2-7.

 Some text elements can be encoded either as static precom‐

posed forms or by dynamic composition. Common precomposed forms such as

U+00DC “ ” LATIN CAPITAL LETTER U WITH DIAERESIS are included for compati‐

bility with current standards. For static precomposed forms, the standard provides a

mapping to an equivalent dynamically composed sequence of characters. (See also

Section 3.7, Decomposition.) Thus different sequences of Unicode characters are

considered equivalent. A precomposed character may be represented as an equivalent

composed character sequence (see Section 2.12, Equivalent Sequences).

Certain aspects of the Unicode Standard must be absolutely stable between versions,

so that implementers and users can be guaranteed that text data, once encoded,

retains the same meaning. Most importantly, this means that once Unicode charac‐

ters are assigned, their code point assignments cannot be changed, nor can characters

be removed.

Characters are retained in the standard, so that previously conforming data stay

conformant in future versions of the standard. Sometimes characters are deprecated

—that is, their use in new documents is strongly discouraged. While implementa‐

tions should continue to recognize such characters when they are encountered, spell-

checkers or editors could warn users of their presence and suggest replacements. For

more about deprecated characters, see D13 in Section 3.4, Characters and Encoding.

Unicode character names are also never changed, so that they can be used as identi‐

fiers that are valid across versions. See Section 4.8, Name.

2.2.8 Dynamic Composition

Figure 2-7. Dynamic Composition

Equivalent Sequences.

2.2.9 Stability

General Structure 59 2.2 Unicode Design Principles

Similar stability guarantees exist for certain important properties. For example, the

decompositions are kept stable, so that it is possible to normalize a Unicode text once

and have it remain normalized in all future versions.

The most current versions of the character encoding stability policies for the Unicode

Standard are maintained online at:

https://www.unicode.org/policies/stability_policy.html

Character identity is preserved for interchange with a number of different base stan‐

dards, including national, international, and vendor standards. Where variant forms

(or even the same form) are given separate codes within one base standard, they are

also kept separate within the Unicode Standard. This choice guarantees the existence

of a mapping between the Unicode Standard and base standards.

Accurate convertibility is guaranteed between the Unicode Standard and other stan‐

dards in wide usage as of May 1993. Characters have also been added to allow

convertibility to several important East Asian character sets created after that date—

for example, GB 18030. In general, a single code point in another standard will corre‐

spond to a single code point in the Unicode Standard. Sometimes, however, a single

code point in another standard corresponds to a sequence of code points in the

Unicode Standard, or vice versa. Conversion between Unicode text and text in other

character codes must, in general, be done by explicit table-mapping processes. (See

also Section 5.1, Data Structures for Character Conversion.)

2.2.10 Convertibility

General Structure 60 2.2 Unicode Design Principles

https://www.unicode.org/policies/stability_policy.html

Conceptually, compatibility characters are characters that would not have been

encoded in the Unicode Standard except for compatibility and round-trip convert‐

ibility with other standards. Such standards include international, national, and

vendor character encoding standards. For the most part, these are widely used stan‐

dards that pre-dated Unicode, but because continued interoperability with new stan‐

dards and data sources is one of the primary design goals of the Unicode Standard,

additional compatibility characters are added as the situation warrants.

Compatibility characters can be contrasted with ordinary (or non-compatibility)

characters in the standard—ones that are generally consistent with the Unicode text

model and which would have been accepted for encoding to represent various scripts

and sets of symbols, regardless of whether those characters also existed in other char‐

acter encoding standards.

For example, in the Unicode model of Arabic text the logical representation of text

uses basic Arabic letters. Rather than being directly represented in the encoded char‐

acters, the cursive presentation of Arabic text for display is determined in context by

a rendering system. (See Section 9.2, Arabic.) However, some earlier character encod‐

ings for Arabic were intended for use with rendering systems that required separate

characters for initial, medial, final, and isolated presentation forms of Arabic letters.

To allow one-to-one mapping to these character sets, the Unicode Standard includes

Arabic presentation forms as compatibility characters.

The purpose for the inclusion of compatibility characters like these is not to imple‐

ment or emulate alternative text models, nor to encourage the use of plain text

distinctions in characters which would otherwise be better represented by higher-

level protocols or other mechanisms. Rather, the main function of compatibility char‐

acters is to simplify interoperability of Unicode-based systems with other data

sources, and to ensure convertibility of data.

Interoperability does not require that all external characters can be mapped to single

Unicode characters; encoding a compatibility character is not necessary when a char‐

acter in another standard can be represented as a sequence of existing Unicode char‐

acters. For example the Shift-JIS encoding 0x839E for JIS X 0213 katakana letter ainu

to can simply be mapped to the Unicode character sequence <U+30C8, U+309A>.

However, in cases where no appropriate mapping is available, the requirement for

interoperability and convertibility may be met by encoding a compatibility character

for one-to-one mapping to another standard.

 The fact that a particular character is considered a compatibility character

does not mean that that character is deprecated in the standard. The use of most

compatibility characters in general text interchange is unproblematic. Some,

2.3 Compatibility Characters

Usage.

General Structure 61 2.3 Compatibility Characters

however, such as the Arabic positional forms or other compatibility characters which

assume information about particular layout conventions, such as presentation forms

for vertical text, can lead to problems when used in general interchange. Caution is

advised for their use. See also the discussion of compatibility characters in the W3C

specification, “Unicode in XML and Other Markup Languages.”

 The Compatibility and Specials Area contains a large number of compat‐

ibility characters, but the Unicode Standard also contains many compatibility charac‐

ters that do not appear in that area. These include examples such as U+2163 “ ”

ROMAN NUMERAL FOUR, U+2007 FIGURE SPACE, U+00B2 “ ” SUPERSCRIPT TWO,

U+2502 BOX DRAWINGS LIGHT VERTICAL, and U+32D0 CIRCLED KATAKANA A.

There is no formal listing of all compatibility characters in the Unicode Standard.

This follows from the nature of the definition of compatibility characters. It is a

judgement call as to whether any particular character would have been accepted for

encoding if it had not been required for interoperability with a particular standard.

Different participants in character encoding often disagree about the appropriateness

of encoding particular characters, and sometimes there are multiple justifications for

encoding a given character.

Compatibility variants are a subset of compatibility characters, and have the further

characteristic that they represent variants of existing, ordinary, Unicode characters.

For example, compatibility variants might represent various presentation or styled

forms of basic letters: superscript or subscript forms, variant glyph shapes, or vertical

presentation forms. They also include halfwidth or fullwidth characters from East

Asian character encoding standards, Arabic contextual form glyphs from preexisting

Arabic code pages, Arabic ligatures and ligatures from other scripts, and so on.

Compatibility variants also include CJK compatibility ideographs, many of which are

minor glyph variants of an encoded unified CJK ideograph.

In contrast to compatibility variants there are the numerous compatibility characters,

such as U+2502 BOX DRAWINGS LIGHT VERTICAL, U+263A WHITE SMILING FACE,

or U+2701 UPPER BLADE SCISSORS, which are not variants of ordinary Unicode char‐

acters. However, it is not always possible to determine unequivocally whether a

compatibility character is a variant or not.

The term compatibility is further applied to Unicode characters in a different, strictly

defined sense. The concept of a compatibility decomposable character is formally

defined as any Unicode character whose compatibility decomposition is not identical

Allocation.

2.3.1 Compatibility Variants

2.3.2 Compatibility Decomposable Characters

General Structure 62 2.3 Compatibility Characters

to its canonical decomposition. (See Definition D66 in Section 3.7, Decomposition, and

the discussion in Section 2.2, Unicode Design Principles.)

The list of compatibility decomposable characters is precisely defined by property

values in the Unicode Character Database, and by the rules of Unicode Normaliza‐

tion. (See Section 3.11, Normalization Forms.) Because of their use in Unicode

Normalization, compatibility decompositions are stable and cannot be changed once

a character has been encoded; the list of compatibility decomposable characters for

any version of the Unicode Standard is thus also stable.

Compatibility decomposable characters have also been referred to in earlier versions

of the Unicode Standard as compatibility composite characters or compatibility

composites for short, but the full term, compatibility decomposable character is

preferred.

 In

informal discussions of the Unicode Standard, compatibility decomposable charac‐

ters have also often been referred to simply as “compatibility characters.” This is

understandable, in part because the two sets of characters largely overlap, but the

concepts are actually distinct. There are compatibility characters which are not

compatibility decomposable characters, and there are compatibility decomposable

characters which are not compatibility characters.

For example, the deprecated alternate format characters such as U+206C INHIBIT

ARABIC FORM SHAPING are considered compatibility characters, but they have no

decomposition mapping, and thus by definition cannot be compatibility decompos‐

able characters. Likewise for such other compatibility characters as U+2502 BOX

DRAWINGS LIGHT VERTICAL or U+263A WHITE SMILING FACE.

There are also instances of compatibility variants which clearly are variants of other

Unicode characters, but which have no decomposition mapping. For example,

U+2EAF CJK RADICAL SILK is a compatibility variant of U+2F77 KANGXI RADICAL

SILK, as well as being a compatibility variant of U+7CF9 CJK UNIFIED IDEO‐

GRAPH-7CF9, but has no compatibility decomposition. The numerous compatibility

variants like this in the CJK Radicals Supplement block were encoded for compati‐

bility with encodings that distinguished and separately encoded various forms of CJK

radicals as symbols.

A different case is illustrated by the CJK compatibility ideographs, such as U+FA0C

CJK COMPATIBILITY IDEOGRAPH-FA0C. Those compatibility characters have a decom‐

position mapping, but for historical reasons it is always a canonical decomposition,

so they are canonical decomposable characters, but not compatibility decomposable

characters.

By way of contrast, some compatibility decomposable characters, such as modifier

letters used in phonetic orthographies, for example, U+02B0 MODIFIER LETTER

Compatibility Character Vs. Compatibility Decomposable Character.

General Structure 63 2.3 Compatibility Characters

SMALL H, are not considered to be compatibility characters. They would have been

accepted for encoding in the standard on their own merits, regardless of their need

for mapping to IPA. A large number of compatibility decomposable characters like

this are actually distinct symbols used in specialized notations, whether phonetic or

mathematical. In such cases, their compatibility mappings express their historical

derivation from styled forms of standard letters.

Other compatibility decomposable characters are widely used characters serving

essential functions. U+00A0 NO-BREAK SPACE is one example. In these and similar

cases, such as fixed-width space characters, the compatibility decompositions define

possible fallback representations.

The Unicode Character Database supplies identification and mapping information

only for compatibility decomposable characters, while compatibility variants are not

formally identified or documented. Because the two sets substantially overlap, many

specifications are written in terms of compatibility decomposable characters first; if

necessary, such specifications may be extended to handle other, non-decomposable

compatibility variants as required. (See also the discussion in Section 5.19, Mapping

Compatibility Variants.)

General Structure 64 2.3 Compatibility Characters

On a computer, abstract characters are encoded internally as numbers. To create a

complete character encoding, it is necessary to define the list of all characters to be

encoded and to establish systematic rules for how the numbers represent the charac‐

ters.

The range of integers used to code the abstract characters is called the codespace. A

particular integer in this set is called a code point. When an abstract character is

mapped or assigned to a particular code point in the codespace, it is then referred to

as an encoded character.

In the Unicode Standard, the codespace consists of the integers from 0 to 10FFFF
16

,

comprising 1,114,112 code points available for assigning the repertoire of abstract char‐

acters.

There are constraints on how the codespace is organized, and particular areas of the

codespace have been set aside for encoding of certain kinds of abstract characters or

for other uses in the standard. For more on the allocation of the Unicode codespace,

see Section 2.8, Unicode Allocation.

Figure 2-8 illustrates the relationship between abstract characters and code points,

which together constitute encoded characters. Note that some abstract characters

may be associated with multiple, separately encoded characters (that is, be encoded

“twice”). In other instances, an abstract character may be represented by a sequence

of two (or more) other encoded characters. The solid arrows connect encoded charac‐

ters with the abstract characters that they represent and encode.

2.4 Code Points and Characters

Figure 2-8. Abstract and Encoded Characters

General Structure 65 2.4 Code Points and Characters

When referring to code points in the Unicode Standard, the usual practice is to refer

to them by their numeric value expressed in hexadecimal, with a “U+” prefix. (See

Appendix A, Notational Conventions.) Encoded characters can also be referred to by

their code points only. To prevent ambiguity, the official Unicode name of the char‐

acter is often added; this clearly identifies the abstract character that is encoded. For

example:

U+0061 LATIN SMALL LETTER A

U+10330 GOTHIC LETTER AHSA

U+201DF CJK UNIFIED IDEOGRAPH-201DF

Such citations refer only to the encoded character per se, associating the code point

(as an integral value) with the abstract character that is encoded.

There are many ways to categorize code points. Table 2-3 illustrates some of the cate‐

gorizations and basic terminology used in the Unicode Standard. The seven basic

types of code points are formally defined in Section 3.4, Characters and Encoding.

(See Definition D10a, Code Point Type.)

Basic Type Brief Description
General
Category

Character
Status

Code Point
Status

Graphic
Letter, mark, number,
punctuation, symbol, and
spaces

L, M, N, P,
S, Zs

Assigned to
abstract
character

Designated
(assigned) code
point

Format

Invisible but affects
neighboring characters;
includes line/paragraph
separators

Cf, Zl, Zp

Control
Usage defined by protocols
or standards outside the
Unicode Standard

Cc

Private-use
Usage defined by private
agreement outside the
Unicode Standard

Co

Surrogate
Permanently reserved for
UTF-16; restricted
interchange

Cs

Cannot be
assigned to
abstract
character

Noncharacter
Permanently reserved for
internal usage; restricted
interchange

Cn Not assigned to
abstract
character

2.4.1 Types of Code Points

Table 2-3. Types of Code Points

General Structure 66 2.4 Code Points and Characters

Reserved
Reserved for future
assignment; restricted
interchange

Undesignated
(unassigned) code
point

Not all assigned code points represent abstract characters; only Graphic, Format,

Control and Private-use do. Surrogates and Noncharacters are assigned code points

but are not assigned to abstract characters. Reserved code points are assignable: any

may be assigned in a future version of the standard. The General Category provides a

finer breakdown of Graphic characters and also distinguishes between the other

basic types (except between Noncharacter and Reserved). Other properties defined in

the Unicode Character Database provide for different categorizations of Unicode

code points.

 Sixty-five code points (U+0000..U+001F and U+007F..U+009F) are

defined specifically as control codes, for compatibility with the C0 and C1 control

codes of the ISO/IEC 2022 framework. A few of these control codes are given specific

interpretations by the Unicode Standard. (See Section 23.1, Control Codes.)

 Sixty-six code points are not used to encode characters. Noncharac‐

ters consist of U+FDD0..U+FDEF and any code point ending in the value FFFE
16

 or

FFFF
16

—that is, U+FFFE, U+FFFF, U+1FFFE, U+1FFFF, ... U+10FFFE,

U+10FFFF. (See Section 23.7, Noncharacters.)

 Three ranges of code points have been set aside for private use. Charac‐

ters in these areas will never be defined by the Unicode Standard. These code points

can be freely used for characters of any purpose, but successful interchange requires

an agreement between sender and receiver on their interpretation. (See Section 23.5,

Private-Use Characters.)

 Some 2,048 code points have been allocated as surrogate code points,

which are used in the UTF-16 encoding form. (See Section 23.6, Surrogates Area.)

 Code points that are not assigned to abstract characters are

subject to restrictions in interchange.

Surrogate code points cannot be conformantly interchanged using Unicode

encoding forms. They do not correspond to Unicode scalar values and thus do

not have well-formed representations in any Unicode encoding form. (See

Section 3.8, Surrogates.)

Noncharacter code points are reserved for internal use, such as for sentinel

values. They have well-formed representations in Unicode encoding forms and

survive conversions between encoding forms. This allows sentinel values to be

preserved internally across Unicode encoding forms, even though they are not

designed to be used in open interchange.

Control Codes.

Noncharacters.

Private Use.

Surrogates.

Restricted Interchange.

•

•

General Structure 67 2.4 Code Points and Characters

All implementations need to preserve reserved code points because they may

originate in implementations that use a future version of the Unicode Standard.

For example, suppose that one person is using a Unicode 12.0 system and a

second person is using a Unicode 11.0 system. The first person sends the second

person a document containing some code points newly assigned in Unicode

12.0; these code points were unassigned in Unicode 11.0. The second person may

edit the document, not changing the reserved codes, and send it on. In that case

the second person is interchanging what are, as far as the second person knows,

reserved code points.

 The semantics of most code points are established by this

standard; the exceptions are Controls, Private-use, and Noncharacters. Control codes

generally have semantics determined by other standards or protocols (such as ISO/

IEC 6429), but there are a small number of control codes for which the Unicode Stan‐

dard specifies particular semantics. See Table 23-1 in Section 23.1, Control Codes, for

the exact list of those control codes. The semantics of private-use characters are

outside the scope of the Unicode Standard; their use is determined by private agree‐

ment, as, for example, between vendors. Noncharacters have semantics in internal

use only.

•

Code Point Semantics.

General Structure 68 2.4 Code Points and Characters

Computers handle numbers not simply as abstract mathematical objects, but as

combinations of fixed-size units like bytes and 32-bit words. A character encoding

model must take this fact into account when determining how to associate numbers

with the characters.

Actual implementations in computer systems represent integers in specific code units

of particular size—usually 8-bit (= byte), 16-bit, or 32-bit. In the Unicode character

encoding model, precisely defined encoding forms specify how each integer (code

point) for a Unicode character is to be expressed as a sequence of one or more code

units. The Unicode Standard provides three distinct encoding forms for Unicode

characters, using 8-bit, 16-bit, and 32-bit units. These are named UTF-8, UTF-16, and

UTF-32, respectively. The “UTF” is a carryover from earlier terminology meaning

Unicode (or UCS) Transformation Format. Each of these three encoding forms is an

equally legitimate mechanism for representing Unicode characters; each has advan‐

tages in different environments.

All three encoding forms can be used to represent the full range of encoded charac‐

ters in the Unicode Standard; they are thus fully interoperable for implementations

that may choose different encoding forms for various reasons. Each of the three

Unicode encoding forms can be efficiently transformed into either of the other two

without any loss of data.

 Each of the Unicode encoding forms is designed with the principle of

non-overlap in mind. Figure 2-9 presents an example of an encoding where overlap is

permitted. In this encoding (Windows code page 932), characters are formed from

either one or two code bytes. Whether a sequence is one or two bytes in length

depends on the first byte, so that the values for lead bytes (of a two-byte sequence)

and single bytes are disjoint. However, single-byte values and trail-byte values can

overlap. That means that when someone searches for the character “D”, for example,

he or she might find it either (mistakenly) as the trail byte of a two-byte sequence or

as a single, independent byte. To find out which alternative is correct, a program

must look backward through text.

2.5 Encoding Forms

Non-overlap.

Figure 2-9. Overlap in Legacy Mixed-Width Encodings

General Structure 69 2.5 Encoding Forms

The situation is made more complex by the fact that lead and trail bytes can also

overlap, as shown in the second part of Figure 2-9. This means that the backward

scan has to repeat until it hits the start of the text or hits a sequence that could not

exist as a pair as shown in Figure 2-10. This is not only inefficient, but also extremely

error-prone: corruption of one byte can cause entire lines of text to be corrupted.

The Unicode encoding forms avoid this problem, because none of the ranges of

values for the lead, trail, or single code units in any of those encoding forms overlap.

Non-overlap makes all of the Unicode encoding forms well behaved for searching

and comparison. When searching for a particular character, there will never be a

mismatch against some code unit sequence that represents just part of another char‐

acter. The fact that all Unicode encoding forms observe this principle of non-overlap

distinguishes them from many legacy East Asian multibyte character encodings, for

which overlap of code unit sequences may be a significant problem for implementa‐

tions.

Another aspect of non-overlap in the Unicode encoding forms is that all Unicode

characters have determinate boundaries when expressed in any of the encoding

forms. That is, the edges of code unit sequences representing a character are easily

determined by local examination of code units; there is never any need to scan back

indefinitely in Unicode text to correctly determine a character boundary. This prop‐

erty of the encoding forms has sometimes been referred to as self-synchronization.

This property has another very important implication: corruption of a single code

unit corrupts only a single character; none of the surrounding characters are affected.

For example, when randomly accessing a string, a program can find the boundary of

a character with limited backup. In UTF-16, if a pointer points to a leading surrogate,

a single backup is required. In UTF-8, if a pointer points to a byte starting with

10xxxxxx (in binary), one to three backups are required to find the beginning of the

character.

 The Unicode Consortium fully endorses the use of any of the three

Unicode encoding forms as a conformant way of implementing the Unicode Stan‐

dard. It is important not to fall into the trap of trying to distinguish “UTF-8 versus

Unicode,” for example. UTF-8, UTF-16, and UTF-32 are all equally valid and confor‐

mant ways of implementing the encoded characters of the Unicode Standard.

Figure 2-10. Boundaries and Interpretation

Conformance.

General Structure 70 2.5 Encoding Forms

Figure 2-11 shows the three Unicode encoding forms, including how they

are related to Unicode code points.

In Figure 2-11, the UTF-32 line shows that each example character can be expressed

with one 32-bit code unit. Those code units have the same values as the code point for

the character. For UTF-16, most characters can be expressed with one 16-bit code

unit, whose value is the same as the code point for the character, but characters with

high code point values require a pair of 16-bit surrogate code units instead. In UTF-8,

a character may be expressed with one, two, three, or four bytes, and the relationship

between those byte values and the code point value is more complex.

UTF-8, UTF-16, and UTF-32 are further described in the subsections that follow. See

each subsection for a general overview of how each encoding form is structured and

the general benefits or drawbacks of each encoding form for particular purposes. For

the detailed formal definition of the encoding forms and conformance requirements,

see Section 3.9, Unicode Encoding Forms.

UTF-32 is the simplest Unicode encoding form. Each Unicode code point is repre‐

sented directly by a single 32-bit code unit. Because of this, UTF-32 has a one-to-one

relationship between encoded character and code unit; it is a fixed-width character

encoding form.

Implementations that generally use UTF-8 or UTF-16 sometimes temporarily convert

strings to UTF-32 for easier processing.

In some use cases, multi-code point sequences are useful or necessary as units of

processing; for example, grapheme clusters, or sequences of characters with non-zero

combining classes. This may limit the usefulness of a per-code point fixed-width

encoding.

String encoding forms like UTF-32 or UTF-8 are irrelevant for APIs that pass single

character values: These typically take or return simple code point integers.

Examples.

Figure 2-11. Unicode Encoding Forms

2.5.1 UTF-32

General Structure 71 2.5 Encoding Forms

As for all of the Unicode encoding forms, UTF-32 is restricted to representation of

code points in the ranges 0..D7FF
16

 and E000
16

..10FFFF
16

—that is, Unicode scalar

values. This guarantees interoperability with the UTF-16 and UTF-8 encoding forms.

 The value of each UTF-32 code unit corresponds exactly to the

Unicode code point value. This situation differs significantly from that for UTF-16

and especially UTF-8, where the code unit values often change unrecognizably from

the code point value. For example, U+10000 is represented as <00010000> in

UTF-32 and as <F0 90 80 80> in UTF-8. For UTF-32, it is trivial to determine a

Unicode character from its UTF-32 code unit representation. In contrast, UTF-16 and

UTF-8 representations often require doing a code unit conversion before the char‐

acter can be identified in the Unicode code charts.

 UTF-32 may be a preferred encoding form where memory or disk

storage space for characters is not a particular concern, but where fixed-width, single

code unit access to characters is desired. For example, Python 3 strings are sequences

of Unicode code points.

In the UTF-16 encoding form, non-surrogate code points in the range

U+0000..U+FFFF are represented as a single 16-bit code unit; code points in the

supplementary planes, in the range U+10000..U+10FFFF, are represented as pairs of

16-bit code units. These pairs of special code units are known as surrogate pairs. The

values of the code units used for surrogate pairs are completely disjunct from the

code units used for the single code unit representations, thus maintaining non-

overlap for all code point representations in UTF-16. For the formal definition of

surrogates, see Section 3.8, Surrogates.

 UTF-16 optimizes the representation of characters in the Basic

Multilingual Plane (BMP)—that is, characters in the range U+0000..U+FFFF,

excluding surrogate code points. For that range, which contains the vast majority of

common-use characters for all modern scripts of the world, each character requires

only one 16-bit code unit, thus requiring just half the memory or storage of the

UTF-32 encoding form. For the BMP, UTF-16 can effectively be treated as if it were a

fixed-width encoding form.

 For supplementary characters, UTF-16

requires two 16-bit code units. The distinction between characters represented with

one versus two 16-bit code units means that UTF-16 is a variable-width encoding

form. That fact can create implementation difficulties if it is not carefully taken into

account; UTF-16 is somewhat more complicated to handle than UTF-32.

 UTF-16 may be a preferred encoding form in many environments

that need to balance efficient access to characters with economical use of storage. It

Fixed Width.

Preferred Usage.

2.5.2 UTF-16

Optimized for BMP.

Supplementary Characters and Surrogates.

Preferred Usage.

General Structure 72 2.5 Encoding Forms

is reasonably compact, and all the common, heavily used characters fit into a single

16-bit code unit.

 UTF-16 is the historical descendant of the earliest form of Unicode, which

was originally designed to use a fixed-width, 16-bit encoding form exclusively. The

surrogates were added to provide an encoding form for the supplementary characters

at code points past U+FFFF. The design of the surrogates made them a simple and

efficient extension mechanism that works well with older Unicode implementations

and that avoids many of the problems of other variable-width character encodings.

See Section 5.4, Handling Surrogate Pairs in UTF-16, for more information about

surrogates and their processing.

 For the purpose of sorting text, if the text contains supplementary

code points, binary order for data represented in the UTF-16 encoding form is not the

same as code point order. This means that a slightly different comparison implemen‐

tation is needed for code point order. For more information, see Section 5.17, Binary

Order.

To meet the requirements of byte-oriented, ASCII-based systems, a third encoding

form is specified by the Unicode Standard: UTF-8. This variable-width encoding form

preserves ASCII transparency by making use of 8-bit code units.

 Much existing software and practice in information technology have

long depended on character data being represented as a sequence of bytes. Further‐

more, many of the protocols depend not only on ASCII values being invariant, but

must make use of or avoid special byte values that may have associated control func‐

tions. The easiest way to adapt Unicode implementations to such a situation is to

make use of an encoding form that is already defined in terms of 8-bit code units and

that represents all Unicode characters while not disturbing or reusing any ASCII or

C0 control code value. That is the function of UTF-8.

 UTF-8 is a variable-width encoding form, using 8-bit code units, in

which the high bits of each code unit indicate the part of the code unit sequence to

which each byte belongs. A range of 8-bit code unit values is reserved for the first, or

leading, element of a UTF-8 code unit sequences, and a completely disjunct range of

8-bit code unit values is reserved for the subsequent, or trailing, elements of such

sequences; this convention preserves non-overlap for UTF-8. Table 3-6 shows how the

bits in a Unicode code point are distributed among the bytes in the UTF-8 encoding

form. See Section 3.9, Unicode Encoding Forms, for the full, formal definition of

UTF-8.

 The UTF-8 encoding form maintains transparency for all of

the ASCII code points (0x00..0x7F). That means Unicode code points

Origin.

Binary Sorting.

2.5.3 UTF-8

Byte-Oriented.

Variable Width.

ASCII Transparency.

General Structure 73 2.5 Encoding Forms

U+0000..U+007F are converted to single bytes 0x00..0x7F in UTF-8 and are thus

indistinguishable from ASCII itself. Furthermore, the values 0x00..0x7F do not

appear in any byte for the representation of any other Unicode code point, so that

there can be no ambiguity. Beyond the ASCII range of Unicode, many of the non-

ideographic scripts are represented by two bytes per code point in UTF-8; all non-

surrogate code points between U+0800 and U+FFFF are represented by three bytes;

and supplementary code points above U+FFFF require four bytes.

 UTF-8 is reasonably compact in terms of the number of bytes used.

Compared with UTF-16, it is much smaller for ASCII syntax and Western languages,

but significantly larger for Asian writing systems such as for Hindi, Thai, Chinese,

Japanese, and Korean.

 UTF-8 is typically the preferred encoding form for HTML and

similar protocols, particularly for the Internet. The ASCII transparency helps migra‐

tion. UTF-8 also has the advantage that it is already inherently byte-serialized, as for

most existing 8-bit character sets; strings of UTF-8 work easily with the C standard

library, and many existing APIs that work for typical East Asian multibyte character

sets adapt to UTF-8 as well with little or no change required.

 In environments where 8-bit character processing is required for

one reason or another, UTF-8 has the following attractive features as compared to

other multibyte encodings:

The first byte of a UTF-8 code unit sequence indicates the number of bytes to

follow in a multibyte sequence. This allows for very efficient forward parsing.

It is efficient to find the start of a character when beginning from an arbitrary

location in a byte stream of UTF-8. Programs need to search at most four bytes

backward, and usually much less. It is a simple task to recognize an initial byte,

because initial bytes are constrained to a fixed range of values.

As with the other encoding forms, there is no overlap of byte values.

 A binary sort of UTF-8 strings gives the same ordering as a binary

sort of Unicode code points. This is obviously the same order as for a binary sort of

UTF-32 strings.

Data Size.

Preferred Usage.

Self-synchronizing.

•

•

•

Binary Sorting.

General Structure 74 2.5 Encoding Forms

The discussion of Unicode encoding forms in the previous section was concerned

with the machine representation of Unicode code units. Each code unit is repre‐

sented in a computer simply as a numeric data type; just as for other numeric types,

the exact way the bits are laid out internally is irrelevant to most processing.

However, interchange of textual data, particularly between computers of different

architectural types, requires consideration of the exact ordering of the bits and bytes

involved in numeric representation. Integral data, including character data, is serial‐

ized for open interchange into well-defined sequences of bytes. This process of byte

serialization allows all applications to correctly interpret exchanged data and to accu‐

rately reconstruct numeric values (and thereby character values) from it. In the

Unicode Standard, the specifications of the distinct types of byte serializations to be

used with Unicode data are known as Unicode encoding schemes.

 Modern computer architectures differ in ordering in terms of whether

the most significant byte or the least significant byte of a large numeric data type

comes first in internal representation. These sequences are known as “big-endian”

and “little-endian” orders, respectively. For the Unicode 16- and 32-bit encoding

forms (UTF-16 and UTF-32), the specification of a byte serialization must take into

account the big-endian or little-endian architecture of the system on which the data

is represented, so that when the data is byte serialized for interchange it will be well

defined.

A character encoding scheme consists of a specified character encoding form plus a

specification of how the code units are serialized into bytes. The Unicode Standard

also specifies the use of an initial byte order mark (BOM) to explicitly differentiate

big-endian or little-endian data in some of the Unicode encoding schemes. (See the

“Byte Order Mark” subsection in Section 23.8, Specials.)

When a higher-level protocol supplies mechanisms for handling the endianness of

integral data types, it is not necessary to use Unicode encoding schemes or the byte

order mark. In those cases Unicode text is simply a sequence of integral data types.

For UTF-8, the encoding scheme consists merely of the UTF-8 code units (= bytes) in

sequence. Hence, there is no issue of big- versus little-endian byte order for data

represented in UTF-8. However, for 16-bit and 32-bit encoding forms, byte serializa‐

tion must break up the code units into two or four bytes, respectively, and the order

of those bytes must be clearly defined. Because of this, and because of the rules for

the use of the byte order mark, the three encoding forms of the Unicode Standard

result in a total of seven Unicode encoding schemes, as shown in Table 2-4.

2.6 Encoding Schemes

Byte Order.

General Structure 75 2.6 Encoding Schemes

Encoding Scheme Endian Order BOM Allowed?

UTF-8 N/A yes

UTF-16 Big-endian or little-endian yes

UTF-16BE Big-endian no

UTF-16LE Little-endian no

UTF-32 Big-endian or little-endian yes

UTF-32BE Big-endian no

UTF-32LE Little-endian no

The endian order entry for UTF-8 in Table 2-4 is marked N/A because UTF-8 code

units are 8 bits in size, and the usual machine issues of endian order for larger code

units do not apply. The serialized order of the bytes must not depart from the order

defined by the UTF-8 encoding form. Use of a BOM is not required for UTF-8, but

may be encountered in contexts where UTF-8 data is converted from other encoding

forms that use a BOM or where the BOM is used as a UTF-8 signature. See the “Byte

Order Mark” subsection in Section 23.8, Specials, for more information. The Unicode

Standard does not recommend for or against use of a BOM in UTF-8 data.

 Note that some of the Unicode encoding

schemes have the same labels as the three Unicode encoding forms. This could cause

confusion, so it is important to keep the context clear when using these terms: char‐

acter encoding forms refer to integral data units in memory or in APIs, and byte order

is irrelevant; character encoding schemes refer to byte-serialized data, as for

streaming I/O or in file storage, and byte order must be specified or determinable.

The Internet Assigned Numbers Authority (IANA) maintains a registry of charset

names used on the Internet. Those charset names are very close in meaning to the

Unicode character encoding model’s concept of character encoding schemes, and all

of the Unicode character encoding schemes are, in fact, registered as charsets. While

the two concepts are quite close and the names used are identical, some important

differences may arise in terms of the requirements for each, particularly when it

comes to handling of the byte order mark. Exercise due caution when equating the

two.

Figure 2-12 illustrates the Unicode character encoding schemes, showing

how each is derived from one of the encoding forms by serialization of bytes.

Table 2-4. The Seven Unicode Encoding Schemes

Encoding Scheme Versus Encoding Form.

Examples.

General Structure 76 2.6 Encoding Schemes

In Figure 2-12, the code units used to express each example character have been seri‐

alized into sequences of bytes. This figure should be compared with Figure 2-11,

which shows the same characters before serialization into sequences of bytes. The

“BE” lines show serialization in big-endian order, whereas the “LE” lines show the

bytes reversed into little-endian order. For UTF-8, the code unit is just an 8-bit byte,

so that there is no distinction between big-endian and little-endian order. UTF-32 and

UTF-16 encoding schemes using the byte order mark are not shown in Figure 2-12, to

keep the basic picture regarding serialization of bytes clearer.

For the detailed formal definition of the Unicode encoding schemes and confor‐

mance requirements, see Section 3.10, Unicode Encoding Schemes. For further general

discussion about character encoding forms and character encoding schemes, both for

the Unicode Standard and as applied to other character encoding standards, see

Unicode Technical Report #17, “Unicode Character Encoding Model.” For informa‐

tion about charsets and character conversion, see Unicode Technical Standard #22,

“Character Mapping Markup Language (CharMapML).”

Figure 2-12. Unicode Encoding Schemes

General Structure 77 2.6 Encoding Schemes

A Unicode string data type is simply an ordered sequence of code units. Thus a

Unicode 8-bit string is an ordered sequence of 8-bit code units, a Unicode 16-bit string

is an ordered sequence of 16-bit code units, and a Unicode 32-bit string is an ordered

sequence of 32-bit code units.

Depending on the programming environment, a Unicode string may or may not be

required to be in the corresponding Unicode encoding form. For example, strings in

Java, C#, or ECMAScript are Unicode 16-bit strings, but are not necessarily well-

formed UTF-16 sequences. In normal processing, it can be far more efficient to allow

such strings to contain code unit sequences that are not well-formed UTF-16—that is,

isolated surrogates. Because strings are such a fundamental component of every

program, checking for isolated surrogates in every operation that modifies strings can

create significant overhead, especially because supplementary characters are

extremely rare as a percentage of overall text in programs worldwide.

It is straightforward to design basic string manipulation libraries that handle isolated

surrogates in a consistent and straightforward manner. They cannot ever be inter‐

preted as abstract characters, but they can be internally handled the same way as

noncharacters where they occur. Typically they occur only ephemerally, such as in

dealing with keyboard events. While an ideal protocol would allow keyboard events

to contain complete strings, many allow only a single UTF-16 code unit per event. As

a sequence of events is transmitted to the application, a string that is being built up

by the application in response to those events may contain isolated surrogates at any

particular point in time.

Whenever such strings are specified to be in a particular Unicode encoding form—

even one with the same code unit size—the string must not violate the requirements

of that encoding form. For example, isolated surrogates in a Unicode 16-bit string are

not allowed when that string is specified to be well-formed UTF-16. A number of

techniques are available for dealing with an isolated surrogate, such as omitting it,

converting it into U+FFFD REPLACEMENT CHARACTER to produce well-formed

UTF-16, or simply halting the processing of the string with an error. (See Section 3.9,

Unicode Encoding Forms.)

2.7 Unicode Strings

General Structure 78 2.7 Unicode Strings

For convenience, the encoded characters of the Unicode Standard are grouped by

linguistic and functional categories, such as script or writing system. For practical

reasons, there are occasional departures from this general principle, as when punctu‐

ation associated with the ASCII standard is kept together with other ASCII charac‐

ters in the range U+0020..U+007E rather than being grouped with other sets of

general punctuation characters. By and large, however, the code charts are arranged

so that related characters can be found near each other in the charts.

Grouping encoded characters by script or other functional categories offers the addi‐

tional benefit of supporting various space-saving techniques in actual implementa‐

tions, as for building tables or fonts.

For more information on writing systems, see Section 6.1, Writing Systems.

The Unicode codespace consists of the single range of numeric values from 0 to

10FFFF
16

, but in practice it has proven convenient to think of the codespace as

divided up into planes of characters—each plane consisting of 64K code points.

Because of these numeric conventions, the Basic Multilingual Plane is occasionally

referred to as Plane 0. The last four hexadecimal digits in each code point indicate a

character’s position inside a plane. The remaining digits indicate the plane. For

example, U+23456 CJK UNIFIED IDEOGRAPH-23456 is found at location 3456
16

 in

Plane 2.

 The Basic Multilingual Plane (BMP, or Plane 0) contains

the common-use characters for all the modern scripts of the world as well as many

historical and rare characters. By far the majority of all Unicode characters for almost

all textual data can be found in the BMP.

 The Supplementary Multilingual Plane (SMP,

or Plane 1) is dedicated to the encoding of characters for scripts or symbols which

either could not be fit into the BMP or see very infrequent usage. This includes many

historic scripts, a number of lesser-used contemporary scripts, special-purpose

invented scripts, notational systems or large pictographic symbol sets, and occasion‐

ally historic extensions of scripts whose core sets are encoded on the BMP.

Examples include Gothic (historic), Shavian (special-purpose invented), Musical

Symbols (notational system), Domino Tiles (pictographic), and Ancient Greek

Numbers (historic extension for Greek). A number of scripts, whether of historic and

contemporary use, do not yet have their characters encoded in the Unicode Standard.

The majority of scripts currently identified for encoding will eventually be allocated

2.8 Unicode Allocation

2.8.1 Planes

Basic Multilingual Plane.

Supplementary Multilingual Plane.

General Structure 79 2.8 Unicode Allocation

in the SMP. As a result, some areas of the SMP will experience common, frequent

usage.

 The Supplementary Ideographic Plane (SIP, or

Plane 2) and Tertiary Ideographic Plane (TIP, or Plane 3) are intended as an addi‐

tional allocation areas for those CJK characters that could not be fit in the blocks set

aside for more common CJK characters in the BMP. While there are a small number

of common-use CJK characters in the SIP (for example, for Cantonese usage), the

vast majority of Plane 2 characters are extremely rare or of historical interest only.

 The Supplementary Special-purpose Plane

(SSP, or Plane 14) is the spillover allocation area for format control characters that do

not fit into the small allocation areas for format control characters in the BMP.

 The two Private Use Planes (Planes 15 and 16) are allocated for

private use. Those two planes contain a total of 131,068 private-use characters to

supplement the 6,400 private-use characters located in the BMP.

 The Unicode Standard does not have any normatively defined

concept of areas or zones for the BMP (or other planes), but it is often handy to refer

to the allocation areas of the BMP by the general types of the characters they include.

These areas are merely a rough organizational device and do not restrict the types of

characters that may end up being allocated in them. The description and ranges of

areas may change from version to version of the standard as more new scripts,

symbols, and other characters are encoded in previously reserved ranges.

 The various allocation areas are, in turn, divided up into character blocks (see

D10b in Section 3.4, Characters and Encoding), which are normatively defined, and

which are used to structure the actual code charts. For a complete listing of the

normative blocks in the Unicode Standard, see Blocks.txt in the Unicode Character

Database.

The normative status of blocks should not, however, be taken as indicating that they

define significant sets of characters. For the most part, the blocks serve only as ranges

to divide up the code charts and do not necessarily imply anything else about the

types of characters found in the block. Block identity cannot be taken as a reliable

guide to the source, use, or properties of characters, for example, and it cannot be

reliably used alone to process characters. In particular:

Blocks are simply named ranges, and many contain reserved code points.

Characters used in a single writing system may be found in several different

blocks. For example, characters used for letters for Latin-based writing systems

are found in at least 14 different blocks: Basic Latin, Latin-1 Supplement, Latin

Additional Ideographic Planes.

Supplementary Special-purpose Plane.

Private Use Planes.

2.8.2 Allocation Areas and Blocks

Allocation Areas.

Blocks.

•

•

General Structure 80 2.8 Unicode Allocation

Extended-A, Latin Extended-B, Latin Extended-C, Latin Extended-D, Latin

Extended-E, IPA Extensions, Phonetic Extensions, Phonetic Extensions

Supplement, Latin Extended Additional, Spacing Modifier Letters, Combining

Diacritical Marks, and Combining Diacritical Marks Supplement.

Characters in a block may be used with different writing systems. For example,

the danda character is encoded in the Devanagari block but is used with

numerous other scripts; Arabic combining marks in the Arabic block are used

with the Syriac script; and so on.

Block definitions are not at all exclusive. For instance, many mathematical

operator characters are not encoded in the Mathematical Operators block—and

are not even in any block containing “Mathematical” in its name; many

currency symbols are not found in the Currency Symbols block, and so on.

For reliable specification of the properties of characters, one should instead turn to

the detailed, character-by-character property assignments available in the Unicode

Character Database. See also Chapter 4, Character Properties. For further discussion

of the relationship between the blocks in the Unicode standard and significant prop‐

erty assignments and sets of characters, see Unicode Standard Annex #24, “Unicode

Script Property,” and Unicode Technical Standard #18, “Unicode Regular Expres‐

sions.”

 The allocation order of various scripts and other groups of charac‐

ters reflects the historical evolution of the Unicode Standard. While there is a certain

geographic sense to the ordering of the allocation areas for the scripts, this is only a

very loose correlation.

 The unassigned ranges in the Unicode codespace

will be filled with future script or symbol encodings on a space-available basis. The

relevant character encoding committees follow an organized roadmap to help them

decide where to encode new scripts and other characters within the available space.

Until the characters are actually standardized, however, there are no absolute guar‐

antees where future allocations will occur. In general, implementations should not

make assumptions about where future scripts or other sets of symbols may be

encoded based solely on the identity of neighboring blocks of characters already

encoded.

See Appendix B.3, Other Unicode Online Resources for information about the roadmap

and about the pipeline of approved characters in process for future publication.

•

•

Allocation Order.

Roadmap for Future Allocation.

General Structure 81 2.8 Unicode Allocation

Code points in the Unicode Standard are assigned using the following guidelines:

Where there is a single accepted standard for a script, the Unicode Standard

generally follows it for the relative order of characters within that script.

The first 256 codes follow precisely the arrangement of ISO/IEC 8859-1 (Latin 1),

of which 7-bit ASCII (ISO/IEC 646 IRV) accounts for the first 128 code positions.

Characters with common characteristics are located together contiguously. For

example, the primary Arabic character block was modeled after ISO/IEC 8859-6.

The Arabic script characters used in Persian, Urdu, and other languages, but not

included in ISO/IEC 8859-6, are allocated after the primary Arabic character

block. Right-to-left scripts are grouped together.

In most cases, scripts with fewer than 128 characters are allocated so as not to

cross 128-code-point boundaries (that is, they fit in ranges nn00..nn7F or

nn80..nnFF). For supplementary characters, an additional constraint not to cross

1,024-code-point boundaries is applied (that is, scripts fit in ranges

nn000..nn3FF, nn400..nn7FF, nn800..nnBFF, or nnC00..nnFFF). Such

constraints enable better optimizations for tasks such as building tables for

access to character properties.

Codes that represent letters, punctuation, symbols, and diacritics that are

generally shared by multiple languages or scripts are grouped together in several

locations.

The Unicode Standard does not correlate character code allocation with

language-dependent collation or case. For more information on collation order,

see Unicode Technical Standard #10, “Unicode Collation Algorithm.”

Unified CJK ideographs are laid out in multiple blocks, each of which is

arranged according to the Han ideograph arrangement defined in Section 18.1,

Han. This ordering is roughly based on a radical-stroke count order.

2.8.3 Assignment of Code Points

•

•

•

•

•

•

•

General Structure 82 2.8 Unicode Allocation

This section provides a more detailed summary of the way characters are allocated in

the Unicode Standard. Figure 2-13 gives an overall picture of the allocation areas of

the Unicode Standard, with an emphasis on the identities of the planes. The

following subsections discuss the allocation details for specific planes.

2.9 Details of Allocation

Figure 2-13. Unicode Allocation

General Structure 83 2.9 Details of Allocation

Figure 2-14 shows the Basic Multilingual Plane (BMP) in an expanded format to illus‐

trate the allocation substructure of that plane in more detail. This section describes

each allocation area, in the order of their location on the BMP.

2.9.1 Plane 0 (BMP)

Figure 2-14. Allocation on the BMP

General Structure 84 2.9 Details of Allocation

 For compatibility with the ASCII and ISO

8859-1, Latin-1 standards, this area contains the same repertoire and ordering as

Latin-1. Accordingly, it contains the basic Latin alphabet, European digits, and then

the same collection of miscellaneous punctuation, symbols, and additional Latin

letters as are found in Latin-1.

 The General Scripts Area contains a large number of modern-

use scripts of the world, including Latin, Greek, Cyrillic, Arabic, and so on. Most of

the characters encoded in this area are graphic characters. A subrange of the General

Scripts Area is set aside for right-to-left scripts, including Hebrew, Arabic, Thaana,

and N’Ko.

 This area is devoted mostly to all kinds of symbols,

including many characters for use in mathematical notation. It also contains general

punctuation, as well as most of the important format control characters.

 This area contains scripts or extensions to

scripts that did not fit in the General Scripts Area itself. It contains the Glagolitic,

Coptic, and Tifinagh scripts, plus extensions for the Latin, Cyrillic, Georgian, and

Ethiopic scripts.

 The CJK Miscellaneous Area contains some East Asian

scripts, such as Hiragana and Katakana for Japanese, punctuation typically used with

East Asian scripts, lists of CJK radical symbols, and a large number of East Asian

compatibility characters.

 This area contains almost all the unified Han ideographs in

the BMP. It is subdivided into a block for the Unified Repertoire and Ordering (the

initial block of 20,902 unified Han ideographs plus a small number of later additions)

and another block containing Extension A (an additional 6,582 unified Han ideo‐

graphs).

 This area contains numerous blocks for

additional scripts of Asia and Africa, such as Yi, Cham, Vai, and Bamum. It also

contains more spillover blocks with additional characters for the Latin, Devanagari,

Myanmar, and Hangul scripts.

 This area consists of one large block containing 11,172 precomposed

Hangul syllables, and one small block with additional, historic Hangul jamo exten‐

sions.

 The Surrogates Area contains only surrogate code points and no

encoded characters. See Section 23.6, Surrogates Area, for more details.

 The Private Use Area in the BMP contains 6,400 private-use char‐

acters.

ASCII and Latin-1 Compatibility Area.

General Scripts Area.

Punctuation and Symbols Area.

Supplementary General Scripts Area.

CJK Miscellaneous Area.

CJKV Ideographs Area.

General Scripts Area (Asia and Africa).

Hangul Area.

Surrogates Area.

Private Use Area.

General Structure 85 2.9 Details of Allocation

 This area contains many compatibility variants of

characters from widely used corporate and national standards that have other repre‐

sentations in the Unicode Standard. For example, it contains Arabic presentation

forms, whereas the basic characters for the Arabic script are located in the General

Scripts Area. The Compatibility and Specials Area also contains twelve CJK unified

ideographs, a few important format control characters, the basic variation selectors,

and other special characters. See Section 23.8, Specials, for more details.

Figure 2-15 shows Plane 1, the Supplementary Multilingual Plane (SMP), in expanded

format to illustrate the allocation substructure of that plane in more detail.

 These areas contain a large number of historic scripts, as

well as a few regional scripts which have some current use. The first of these areas

also contains a small number of symbols and numbers associated with ancient

scripts.

Compatibility and Specials Area.

2.9.2 Plane 1 (SMP)

Figure 2-15. Allocation on Plane 1

General Scripts Areas.

General Structure 86 2.9 Details of Allocation

 There are two subranges in the SMP which are set

aside for historic right-to-left scripts, such as Phoenician, Kharoshthi, and Avestan.

The second of these also defaults to Bidi_Class = R and is reserved for the encoding

of other historic right-to-left scripts or symbols.

 This area contains three large, ancient scripts:

Sumero-Akkadian Cuneiform, Egyptian Hieroglyphs, and Anatolian Hieroglyphs.

Other large hieroglyphic and pictographic scripts will be allocated in this area in the

future.

 This area is set aside for large, historic siniform (but non-

Han) logosyllabic scripts such as Tangut, Jurchen, and Khitan, and other East Asian

logosyllabic scripts such as Naxi. As of Unicode 12.0, this area contains a large set of

Tangut ideographs and components, the Nüshu script, and a large set of hentaigana

(historic, variant form kana) characters.

 The first of these SMP Symbols Areas contains sets of symbols for

notational systems, such as musical symbols, shorthands, and mathematical

alphanumeric symbols. The second contains various game symbols, and large sets of

miscellaneous symbols and pictographs, mostly used in compatibility mapping of

East Asian character sets. Notable among these are emoji and emoticons.

Plane 2, the Supplementary Ideographic Plane (SIP), consists primarily of one big

area, starting from the first code point in the plane, that is dedicated to encoding

additional unified CJK characters. A much smaller area, toward the end of the plane,

is dedicated to additional CJK compatibility ideographic characters—which are basi‐

cally just duplicated character encodings required for round-trip conversion to

various existing legacy East Asian character sets. The CJK compatibility ideographic

characters in Plane 2 are currently all dedicated to round-trip conversion for the CNS

standard and are intended to supplement the CJK compatibility ideographic charac‐

ters in the BMP, a smaller number of characters dedicated to round-trip conversion

for various Korean, Chinese, and Japanese standards.

Plane 3, the Tertiary Ideographic Plane (TIP), has a large area, starting from the first

code point in the plane, that is dedicated to encoding additional unified CJK charac‐

ters. This plane may also allocate blocks for historic precursors to the Han script—

most notably the Seal Script.

General Scripts Areas (RTL).

Cuneiform and Hieroglyphic Area.

Ideographic Scripts Area.

Symbols Areas.

2.9.3 Plane 2 (SIP)

2.9.4 Plane 3 (TIP)

General Structure 87 2.9 Details of Allocation

The first 4,096 code positions on Plane 14 form an area set aside for special characters

that have the Default_Ignorable_Code_Point property. A small number of tag charac‐

ters, plus some supplementary variation selection characters, have been allocated

there. All remaining code positions on Plane 14 are reserved for future allocation of

other special-purpose characters.

Plane 15 and Plane 16 are allocated for private use. Those two planes contain a total of

131,068 private-use characters, to supplement the 6,400 private-use characters located

in the BMP.

All other planes are reserved; there are no characters assigned in them. The last two

code positions of all planes are permanently set aside as noncharacters. (See

Section 2.13, Special Characters).

2.9.5 Other Planes

General Structure 88 2.9 Details of Allocation

Individual writing systems have different conventions for arranging characters into

lines on a page or screen. Such conventions are referred to as a script’s directionality.

For example, in the Latin script, characters are arranged horizontally from left to

right to form lines, and lines are arranged from top to bottom, as shown in the first

example of Figure 2-16.

 In most Semitic scripts such as Hebrew and Arabic, characters are

arranged from right to left into lines, although digits run the other way, making the

scripts inherently bidirectional, as shown in the second example in Figure 2-16. In

addition, left-to-right and right-to-left scripts are frequently used together. In all such

cases, arranging characters into lines becomes more complex. The Unicode Standard

defines an algorithm to determine the layout of a line, based on the inherent direc‐

tionality of each character, and supplemented by a small set of directional controls.

See Unicode Standard Annex #9, “Unicode Bidirectional Algorithm,” for more infor‐

mation.

 East Asian scripts are frequently written in vertical lines in which charac‐

ters are arranged from top to bottom. Lines are arranged from right to left, as shown

in the third example in Figure 2-16. Such scripts may also be written horizontally,

from left to right. Most East Asian characters have the same shape and orientation

when displayed horizontally or vertically, but many punctuation characters change

their shape when displayed vertically. In a vertical context, letters and words from

other scripts are generally rotated through 90-degree angles so that they, too, read

from top to bottom. Unicode Technical Report #50, “Unicode Vertical Text Layout,”

defines a character property which is useful in determining the correct orientation of

characters when laid out vertically in text.

In contrast to the bidirectional case, the choice to lay out text either vertically or hori‐

zontally is treated as a formatting style. Therefore, the Unicode Standard does not

provide directionality controls to specify that choice.

Mongolian is usually written from top to bottom, with lines arranged from left to

right, as shown in the fourth example. When Mongolian is written horizontally, the

characters are rotated.

2.10 Writing Direction

Figure 2-16. Writing Directions

Bidirectional.

Vertical.

General Structure 89 2.10 Writing Direction

 Early Greek used a system called boustrophedon (literally, “ox-

turning”). In boustrophedon writing, characters are arranged into horizontal lines,

but the individual lines alternate between right to left and left to right, the way an ox

goes back and forth when plowing a field, as shown in the fifth example. The letter

images are mirrored in accordance with the direction of each individual line.

 Other script directionalities are found in histor‐

ical writing systems. For example, some ancient Numidian texts are written from

bottom to top, and Egyptian hieroglyphics can be written with varying directions for

individual lines.

The historical directionalities are of interest almost exclusively to scholars intent on

reproducing the exact visual content of ancient texts. The Unicode Standard does not

provide direct support for them. Fixed texts can, however, be written in boustro‐

phedon or in other directional conventions by using hard line breaks and direction‐

ality overrides or the equivalent markup.

Boustrophedon.

Other Historical Directionalities.

General Structure 90 2.10 Writing Direction

 In concept, a combining character is a mark of some kind

intended to be positioned relative to some other character, which is referred to as its

associated base character. In the code charts, combining characters are depicted with

an associated dotted circle, which stands in for the base. The visible mark for the

combining character may appear above, below, to either side, crossing through, or

even surrounding the dotted circle. When rendered, the glyphs that depict these char‐

acters are intended to be positioned relative to the glyph depicting the preceding base

character in some combination.

The Unicode Standard distinguishes three types of combining characters: spacing,

nonspacing, and enclosing. Nonspacing combining characters do not occupy a

spacing position by themselves. Nevertheless, the combination of a base character

and a nonspacing character may have a different advance width than the base char‐

acter by itself. For example, an [î] may be slightly wider than a plain [i]. The detailed

classification of which combining characters are spacing, nonspacing, or enclosing is

provided in the Unicode Character Database.

All combining characters can be applied to any base character and can, in principle,

be used with any script. As with other characters, the allocation of a combining char‐

acter to one block or another identifies only its primary usage; it is not intended to

define or limit the range of characters to which it may be applied. In the Unicode

Standard, all sequences of character codes are permitted.

This does not create an obligation on implementations to support all possible combi‐

nations equally well. Thus, while application of an Arabic annotation mark to a Han

character or a Devanagari consonant is permitted, it is unlikely to be supported well

in rendering or to make much sense.

 Diacritics are the principal class of nonspacing combining characters

used with the Latin, Greek, and Cyrillic scripts and their relatives. In the Unicode

Standard, the term “diacritic” is defined very broadly to include accents as well as

other nonspacing marks.

 Some diacritical marks are applied primarily to symbols. These

combining marks are allocated in the Combining Diacritical Marks for Symbols

block, to distinguish them from diacritical marks applied primarily to letters.

Figure 2-17 shows examples of combining enclosing

marks for symbols. The combination of an enclosing mark with a base character has

the appearance of a symbol. As discussed in “Properties” later in this section, it is

best to limit the use of combining enclosing marks to characters that represent

2.11 Combining Characters

Combining Characters.

Diacritics.

Symbol Diacritics.

Enclosing Combining Marks.

General Structure 91 2.11 Combining Characters

symbols. This limitation minimizes the potential for surprises resulting from

mismatched character properties.

A few symbol characters are intended primarily for use with enclosing combining

marks. For example, U+2621 CAUTION SIGN is a winding road symbol that can be

used in combination with U+20E4 COMBINING ENCLOSING UPWARD POINTING

TRIANGLE or U+20DF COMBINING ENCLOSING DIAMOND. However, the enclosing

combining marks can also be used in combination with arbitrary symbols, as illus‐

trated by applying U+20E0 COMBINING ENCLOSING CIRCLE BACKSLASH to U+2615

HOT BEVERAGE to create a “no drinks allowed” symbol. Furthermore, no formal

restriction prevents enclosing combining marks from being used with non-symbols,

as illustrated by applying U+20DD COMBINING ENCLOSING CIRCLE to U+062D

ARABIC LETTER HAH to represent a circled hah.

 Some scripts, such as Hebrew, Arabic, and

the scripts of India and Southeast Asia, have both spacing and nonspacing combining

characters specific to those scripts. Many of these combining characters encode

vowel letters. As such, they are not generally referred to as diacritics, but may have

script-specific terminology such as harakat (Arabic) or matra (Devanagari). See

Section 7.9, Combining Marks.

In the Unicode Standard, all combining characters are to be used in sequence

following the base characters to which they apply. The sequence of Unicode charac‐

ters <U+0061 “ ” LATIN SMALL LETTER A, U+0308 “ ” COMBINING DIAERESIS,

U+0075 “ ” LATIN SMALL LETTER U> unambiguously represents “äu” and not “aü”,

as shown in Figure 2-18.

Figure 2-17. Combining Enclosing Marks for Symbols

Script-Specific Combining Characters.

2.11.1 Sequence of Base Characters and Combining Characters

General Structure 92 2.11 Combining Characters

 The ordering convention used by the Unicode Standard—placing

combining marks after the base character to which they apply—is consistent with the

logical order of combining characters in Semitic and Indic scripts, the great majority

of which (logically or phonetically) follow the base characters with which they are

associated. This convention also conforms to the way modern font technology

handles the rendering of nonspacing graphical forms (glyphs), so that mapping from

character memory representation order to font rendering order is simplified. It is

different from the convention used in the bibliographic standard ISO 5426.

 Some Indic vowel signs are rendered to the left of a consonant

letter or consonant cluster, even though their logical order in the Unicode encoding

follows the consonant letter. In the charts, these vowels are depicted to the left of

dotted circles (see Figure 2-19). The coding of these vowels in pronunciation order

and not in visual order is consistent with the ISCII standard.

 A sequence of a base character plus one or more combining characters

generally has the same properties as the base character. For example, “A” followed by

“ˆ” has the same properties as “Â”. For this reason, most Unicode algorithms ensure

that such sequences behave the same way as the corresponding base character.

However, when the combining character is an enclosing combining mark—in other

words, when its General_Category value is Me—the resulting sequence has the

appearance of a symbol. In Figure 2-20, enclosing the exclamation mark with

U+20E4 COMBINING ENCLOSING UPWARD POINTING TRIANGLE produces a

sequence that looks like U+26A0 WARNING SIGN.

Because the properties of U+0021 EXCLAMATION MARK are that of a punctuation

character, they are different from those of U+26A0 WARNING SIGN. For example, the

two will behave differently for line breaking. To avoid unexpected results, it is best to

limit the use of combining enclosing marks to characters that encode symbols. For

Figure 2-18. Sequence of Base Characters and Combining Characters

Ordering.

Indic Vowel Signs.

Figure 2-19. Reordered Indic Vowel Signs

Properties.

Figure 2-20. Properties and Combining Character Sequences

General Structure 93 2.11 Combining Characters

that reason, the warning sign is separately encoded as a miscellaneous symbol in the

Unicode Standard and does not have a decomposition.

In some instances, more than one combining character is applied to a single base

character (see Figure 2-21). The Unicode Standard does not restrict the number of

combining characters that may follow a base character. The following discussion

summarizes the default treatment of multiple combining characters. (For further

discussion, see Section 3.6, Combination.)

If the combining characters can interact typographically—for example, U+0304

COMBINING MACRON and U+0308 COMBINING DIAERESIS—then the order of

graphic display is determined by the order of coded characters (see Table 2-5). By

default, the diacritics or other combining characters are positioned from the base

character’s glyph outward. Combining characters placed above a base character will

be stacked vertically, starting with the first encountered in the logical store and

continuing for as many marks above as are required by the character codes following

the base character. For combining characters placed below a base character, the situa‐

tion is reversed, with the combining characters starting from the base character and

stacking downward. For combining characters placed to the left of a base character,

the combining characters start from the base character and are arranged leftward.

For combining characters placed to the right of a base character, the combining char‐

acters start from the base character and are arranged rightward.

When combining characters do not interact typographically, the relative ordering of

contiguous combining marks cannot result in any visual distinction and thus is

insignificant.

2.11.2 Multiple Combining Characters

Figure 2-21. Multiple Combining Characters

General Structure 94 2.11 Combining Characters

Glyph Equivalent Sequences

ã
LATIN SMALL LETTER A WITH TILDE

LATIN SMALL LETTER A + COMBINING TILDE

ȧ
LATIN SMALL LETTER A WITH DOT ABOVE

LATIN SMALL LETTER A + COMBINING DOT ABOVE

LATIN SMALL LETTER A WITH TILDE + COMBINING DOT BELOW

LATIN SMALL LETTER A + COMBINING TILDE + COMBINING DOT BELOW

LATIN SMALL LETTER A WITH DOT BELOW + COMBINING TILDE

LATIN SMALL LETTER A + COMBINING DOT BELOW + COMBINING TILDE

LATIN SMALL LETTER A WITH DOT BELOW + COMBINING DOT ABOVE

LATIN SMALL LETTER A + COMBINING DOT BELOW + COMBINING DOT ABOVE

LATIN SMALL LETTER A WITH DOT ABOVE + COMBINING DOT BELOW

LATIN SMALL LETTER A + COMBINING DOT ABOVE + COMBINING DOT BELOW

ấ

LATIN SMALL LETTER A WITH CIRCUMFLEX AND ACUTE

LATIN SMALL LETTER A WITH CIRCUMFLEX + COMBINING ACUTE ACCENT

LATIN SMALL LETTER A + COMBINING CIRCUMFLEX ACCENT + COMBINING ACUTE
ACCENT

LATIN SMALL LETTER A WITH ACUTE + COMBINING CIRCUMFLEX ACCENT

LATIN SMALL LETTER A + COMBINING ACUTE ACCENT + COMBINING CIRCUMFLEX
ACCENT

Another example of multiple combining characters above the base character can be

found in Thai, where a consonant letter can have above it one of the vowels U+0E34

through U+0E37 and, above that, one of four tone marks U+0E48 through U+0E4B.

The order of character codes that produces this graphic display is base consonant

character + vowel character +tone mark character, as shown in Figure 2-21.

Many combining characters have specific typographical traditions that provide

detailed rules for the expected rendering. These rules override the default stacking

behavior. For example, certain combinations of combining marks are sometimes

positioned horizontally rather than stacking or by ligature with an adjacent

nonspacing mark (see Table 2-6). When positioned horizontally, the order of codes is

reflected by positioning in the predominant direction of the script with which the

codes are used. For example, in a left-to-right script, horizontal accents would be

coded from left to right. In Table 2-6, the top example is correct and the bottom

example is incorrect.

Such override behavior is associated with specific scripts or alphabets. For example,

when used with the Greek script, the “breathing marks” U+0313 COMBINING

COMMA ABOVE (psili) and U+0314 COMBINING REVERSED COMMA ABOVE (dasia)

require that, when used together with a following acute or grave accent, they be

Table 2-5. Interaction of Combining Characters

General Structure 95 2.11 Combining Characters

rendered side-by-side rather than the accent marks being stacked above the

breathing marks. The order of codes here is base character code + breathing mark

code + accent mark code. This example demonstrates the script-dependent or writing-

system-dependent nature of rendering combining diacritical marks.

Glyph Sequence Note

GREEK SMALL LETTER ALPHA
+ COMBINING COMMA ABOVE (psili)
+ COMBINING ACUTE ACCENT (oxia)

This is correct

GREEK SMALL LETTER ALPHA
+ COMBINING ACUTE ACCENT (oxia)
+ COMBINING COMMA ABOVE (psili)

This is incorrect

For additional examples of script-specific departure from default stacking of

sequences of combining marks, see the discussion about the positioning of multiple

points and marks in Section 9.1, Hebrew, the discussion of nondefault placement of

Arabic vowel marks accompanying Figure 9-5 in Section 9.2, Arabic, or the discussion

of horizontal combination of titlo letters in Old Church Slavonic accompanying

Figure 7-6 in Section 7.4, Cyrillic.

Vietnamese is written with the Latin script, and regularly uses multiple diacritics on

single letters when displaying tone marks above or below vowel letters that already

contain diacritic marks. Acute or grave tone marks are often seen offset horizontally

to the right or left of a circumflex mark above a vowel letter. These conventions are

shown, for example, in the code chart font used for the precomposed Vietnamese

vowel plus tone mark combinations in the code charts in the range

U+1EA0..U+1EF9 in the Latin Extended Additional block. However, the exact place‐

ment of tone marks in Vietnamese text is considered stylistic, and often varies

considerably from font to font.

For other types of nondefault stacking behavior, see the discussion about the posi‐

tioning of combining parentheses in the subsection “Combining Diacritical Marks

Extended: U+1AB0–U+1AFF” in Section 7.9, Combining Marks.

The Unicode Standard specifies default stacking behavior to offer guidance about

which character codes are to be used in which order to represent the text, so that

texts containing multiple combining marks can be interchanged reliably. The

Unicode Standard does not aim to regulate or restrict typographical tradition. Fonts

and rendering systems should be designed to override default stacking of multiple

combining marks where necessary to produce the correct appearance for the relevant

script and language context.

Table 2-6. Nondefault Stacking

General Structure 96 2.11 Combining Characters

When the glyphs representing two base characters merge to form a ligature, the

combining characters must be rendered correctly in relation to the ligated glyph (see

Figure 2-22). Internally, the software must distinguish between the nonspacing marks

that apply to positions relative to the first part of the ligature glyph and those that

apply to the second part. (For a discussion of general methods of positioning

nonspacing marks, see Section 5.12, Strategies for Handling Nonspacing Marks.)

For more information, see “Application of Combining Marks” in Section 3.6, Combi‐

nation.

Ligated base characters with multiple combining marks do not commonly occur in

most scripts. However, in some scripts, such as Arabic, this situation occurs quite

often when vowel marks are used. It arises because of the large number of ligatures

in Arabic, where each element of a ligature is a consonant, which in turn can have a

vowel mark attached to it. Ligatures can even occur with three or more characters

merging; vowel marks may be attached to each part.

Nonspacing combining marks used by the Unicode Standard may be exhibited in

apparent isolation by applying them to U+00A0 NO-BREAK SPACE. This convention

might be employed, for example, when talking about the combining mark itself as a

mark, rather than using it in its normal way in text (that is, applied as an accent to a

base letter or in other combinations).

Prior to Version 4.1 of the Unicode Standard, the standard recommended the use of

U+0020 SPACE for display of isolated combining marks. This practice is no longer

recommended because of potential conflicts with the handling of sequences of

U+0020 SPACE characters in such contexts as XML. For additional ways of displaying

some diacritical marks, see “Spacing Clones of Diacritical Marks” in Section 7.9,

Combining Marks.

End users have various concepts about what constitutes a letter or “character” in the

writing system for their language or languages. The precise scope of these end-user

“characters” depends on the particular written language and the orthography it uses.

2.11.3 Ligated Multiple Base Characters

Figure 2-22. Ligated Multiple Base Characters

2.11.4 Exhibiting Nonspacing Marks in Isolation

2.11.5 “Characters” and Grapheme Clusters

General Structure 97 2.11 Combining Characters

In addition to the many instances of accented letters, they may extend to digraphs

such as Slovak “ch”, trigraphs or longer combinations, and sequences using spacing

letter modifiers, such as “kw”. Such concepts are often important for processes such

as collation, for the definition of characters in regular expressions, and for counting

“character” positions within text. In instances such as these, what the user thinks of

as a character may affect how the collation or regular expression will be defined or

how the “characters” will be counted. Words and other higher-level text elements

generally do not split within elements that a user thinks of as a character, even when

the Unicode representation of them may consist of a sequence of encoded characters.

The variety of these end-user-perceived characters is quite great—particularly for

digraphs, ligatures, or syllabic units. Furthermore, it depends on the particular

language and writing system that may be involved. Despite this variety, however, the

core concept “characters that should be kept together” can be defined for the

Unicode Standard in a language-independent way. This core concept is known as a

grapheme cluster. A grapheme cluster consists of a base character followed by any

number of continuing characters, where a continuing character may include any

nonspacing combining mark, certain spacing combining marks, or a join control.

An implementation operating on such a cluster would almost never want to break

between its elements for rendering, editing, or other such text processes; the

grapheme cluster is treated as a single unit. Unicode Standard Annex #29, “Unicode

Text Segmentation,” provides a complete formal definition of a grapheme cluster and

discusses its application in the context of editing and other text processes. Implemen‐

tations also may tailor the definition of a grapheme cluster, so that under limited

circumstances, particular to one written language or another, the grapheme cluster

may more closely pertain to what end users think of as “characters” for that

language.

General Structure 98 2.11 Combining Characters

In cases involving two or more sequences considered to be equivalent, the Unicode

Standard does not prescribe one particular sequence as being the correct one; instead,

each sequence is merely equivalent to the others. Figure 2-23 illustrates the two major

forms of equivalent sequences formally defined by the Unicode Standard. In the first

example, the sequences are canonically equivalent. Both sequences should display

and be interpreted the same way. The second and third examples illustrate different

compatibility sequences. Compatible-equivalent sequences may have format differ‐

ences in display and may be interpreted differently in some contexts.

If an application or user attempts to distinguish between canonically equivalent

sequences, as shown in the first example in Figure 2-23, there is no guarantee that

other applications would recognize the same distinctions. To prevent the introduc‐

tion of interoperability problems between applications, such distinctions must be

avoided wherever possible. Making distinctions between compatibly equivalent

sequences is less problematical. However, in restricted contexts, such as the use of

identifiers, avoiding compatibly equivalent sequences reduces possible security

issues. See Unicode Technical Report #36, “Unicode Security Considerations.”

Where a unique representation is required, a normalized form of Unicode text can be

used to eliminate unwanted distinctions. The Unicode Standard defines four normal‐

ization forms: Normalization Form D (NFD), Normalization Form KD (NFKD),

Normalization Form C (NFC), and Normalization Form KC (NFKC). Roughly

speaking, NFD and NFKD decompose characters where possible, while NFC and

NFKC compose characters where possible. For more information, see Unicode Stan‐

dard Annex #15, “Unicode Normalization Forms,” and Section 3.11, Normalization

Forms.

2.12 Equivalent Sequences

Figure 2-23. Equivalent Sequences

2.12.1 Normalization

General Structure 99 2.12 Equivalent Sequences

A key part of normalization is to provide a unique canonical order for visually

nondistinct sequences of combining characters. Figure 2-24 shows the effect of

canonical ordering for multiple combining marks applied to the same base character.

In the first row of Figure 2-24, the two sequences are visually nondistinct and, there‐

fore, equivalent. The sequence on the right has been put into canonical order by

reordering in ascending order of the Canonical_Combining_Class (ccc) values. The

ccc values are shown below each character. The second row of Figure 2-24 shows an

example where combining marks interact typographically—the two sequences have

different stacking order, and the order of combining marks is significant. Because the

two combining marks have been given the same combining class, their ordering is

retained under canonical reordering. Thus the two sequences in the second row are

not equivalent.

Precomposed characters are formally known as decomposables, because they have

decompositions to one or more other characters. There are two types of decomposi‐

tions:

Canonical. The character and its decomposition should be treated as essentially

equivalent.

Compatibility. The decomposition may remove some information (typically

formatting information) that is important to preserve in particular contexts.

 Conceptually, a decomposition implies reducing a char‐

acter to an equivalent sequence of constituent parts, such as mapping an accented

character to a base character followed by a combining accent. The vast majority of

nontrivial decompositions are indeed a mapping from a character code to a character

sequence. However, in a small number of exceptional cases, there is a mapping from

one character to another character, such as the mapping from ohm to capital omega.

Figure 2-24. Canonical Ordering

2.12.2 Decompositions

•

•

Types of Decomposables.

General Structure 100 2.12 Equivalent Sequences

Finally, there are the “trivial” decompositions, which are simply a mapping of a char‐

acter to itself. They are really an indication that a character cannot be decomposed,

but are defined so that all characters formally have a decomposition. The definition

of decomposable is written to encompass only the nontrivial types of decompositions;

therefore these characters are considered nondecomposable.

In summary, three types of characters are distinguished based on their decomposi‐

tion behavior:

Canonical decomposable. A character that is not identical to its canonical

decomposition.

Compatibility decomposable. A character whose compatibility decomposition is

not identical to its canonical decomposition.

Nondecomposable. A character that is identical to both its canonical

decomposition and its compatibility decomposition. In other words, the

character has trivial decompositions (decompositions to itself). Loosely

speaking, these characters are said to have “no decomposition,” even though, for

completeness, the algorithm that defines decomposition maps such characters to

themselves.

Because of the way decompositions are defined, a character cannot have a nontrivial

canonical decomposition while having a trivial compatibility decomposition. Charac‐

ters with a trivial compatibility decomposition are therefore always nondecompos‐

ables.

Figure 2-25 illustrates these three types. Compatibility decompositions

that are redundant because they are identical to the canonical decompositions are

not shown.

•

•

•

Examples.

General Structure 101 2.12 Equivalent Sequences

The figure illustrates two important points:

Decompositions may be to single characters or to sequences of characters.

Decompositions to a single character, also known as singleton decompositions,

are seen for the ohm sign and the halfwidth katakana ka in Figure 2-25. Because

of examples like these, decomposable characters in Unicode do not always

consist of obvious, separate parts; one can know their status only by examining

the data tables for the standard.

A very small number of characters are both canonical and compatibility

decomposable. The example shown in Figure 2-25 is for the Greek hooked

upsilon symbol with an acute accent. It has a canonical decomposition to one

sequence and a compatibility decomposition to a different sequence.

For more precise definitions of these terms, see Chapter 3, Conformance.

Most characters that one thinks of as being a letter “plus accent” have formal decom‐

positions in the Unicode Standard. For example, see the canonical decomposable

U+00C1 LATIN CAPITAL LETTER A WITH ACUTE shown in Figure 2-25. There are,

however, exceptions involving certain types of diacritics and other marks.

 Based on the pattern for accented letters, imple‐

menters often also expect to encounter formal decompositions for characters which

use various overlaid diacritics such as slashes and bars to form new Latin (or Cyrillic)

letters. For example, one might expect a decomposition for U+00D8 LATIN CAPITAL

LETTER O WITH STROKE involving U+0338 COMBINING LONG SOLIDUS OVERLAY.

Figure 2-25. Types of Decomposables

•

•

2.12.3 Non-decomposition of Certain Diacritics

Overlaid and Attached Diacritics.

General Structure 102 2.12 Equivalent Sequences

However, such decompositions involving overlaid diacritics are not formally defined

in the Unicode Standard.

For historical and implementation reasons, there are no decompositions for charac‐

ters with overlaid diacritics such as slashes and bars, nor for most diacritic hooks,

swashes, tails, and other similar modifications to the graphic form of a base char‐

acter. In such cases, the generic identification of the overlaid element is not specific

enough to identify which part of the base glyph is to be overlaid. The characters

involved include prototypical overlaid diacritic letters as U+0268 LATIN SMALL

LETTER I WITH STROKE, but also characters with hooks and descenders, such as

U+0188 LATIN SMALL LETTER C WITH HOOK, U+049B CYRILLIC SMALL LETTER KA

WITH DESCENDER, and U+0499 CYRILLIC SMALL LETTER ZE WITH DESCENDER.

There are three exceptional attached diacritics which are regularly decomposed,

namely U+0327 COMBINING CEDILLA, U+0328 COMBINING OGONEK, and U+031B

COMBINING HORN (which is used in Vietnamese letters).

 There are other characters for which the name and glyph appear to

imply the presence of a decomposable diacritic, but which have no decomposition

defined in the Unicode Standard. A prominent example is the Pashto letter U+0681

ARABIC LETTER HAH WITH HAMZA ABOVE. In these cases, as for the overlaid

diacritics, the composed character and the sequence of base letter plus combining

diacritic are not equivalent, although their renderings would be very similar. See the

text on “Combining Hamza Above” in Section 9.2, Arabic for further complications

related to this and similar characters.

 One cannot determine the decomposition

status of a Latin letter from its Unicode name, despite the existence of phrases such

as “...WITH ACUTE” or “...WITH STROKE”. The normative decomposition mappings

listed in the Unicode Character Database are the only formal definition of decompo‐

sition status.

 Because the Unicode characters with

overlaid diacritics or similar modifications to their base form shapes have no formal

decompositions, some kinds of text processing that would ordinarily use Normaliza‐

tion Form D (NFD) internally to separate base letters from accents may end up simu‐

lating decompositions instead. Effectively, this processing treats overlaid diacritics as

if they were represented by a separately encoded combining mark. For example, a

common operation in searching or matching is to sort (or match) while ignoring

accents and diacritics on letters. This is easy to do with characters that formally

decompose; the text is decomposed, and then the combining marks for the accents

are ignored. However, for letters with overlaid diacritics, the effect of ignoring the

diacritic has to be simulated instead with data tables that go beyond simple use of

Unicode decomposition mappings.

Other Diacritics.

Character Names and Decomposition.

Simulated Decomposition in Processing.

General Structure 103 2.12 Equivalent Sequences

 The lack of formal decompositions for characters with overlaid

diacritics means that there are increased opportunities for spoofing involving such

characters. The display of a base letter plus a combining overlaid mark such as

U+0335 COMBINING SHORT STROKE OVERLAY may look the same as the encoded

base letter with bar diacritic, but the two sequences are not canonically equivalent

and would not be folded together by Unicode normalization.

Implementations of writing systems which make use of letters with overlaid

diacritics typically do not mix atomic representation (use of a precomposed letter

with overlaid diacritic) with sequential representation (use of a sequence of base

letter plus combining mark for the overlaid diacritic). Mixing these conventions is

avoided precisely because the atomic representation and the sequential representa‐

tion are not canonically equivalent. In most cases the atomic representation is the

preferred choice, because of its convenience and more reliable display.

Security protocols for identifiers may disallow either the sequential representation or

the atomic representation of a letter with an overlaid diacritic to try to minimize

spoofing opportunities. However, when this is done, it is incumbent on the protocol

designers first to verify whether the atomic or the sequential representation is in

actual use. Disallowing the preferred convention, while instead forcing use of the

unpreferred one for a particular writing system can have the unintended conse‐

quence of increasing confusion about use—and may thereby reduce the usability of

the protocol for its intended purpose.

For more information and data for handling these confusable sequences involving

overlaid diacritics, see Unicode Technical Report #36, “Unicode Security Considera‐

tions.”

Security Issue.

General Structure 104 2.12 Equivalent Sequences

The Unicode Standard includes a small number of important characters with special

behavior; some of them are introduced in this section. It is important that implemen‐

tations treat these characters properly. For a list of these and similar characters, see

Section 4.12, Characters with Unusual Properties; for more information about such

characters, see Section 23.1, Control Codes; Section 23.2, Layout Controls; Section 23.7,

Noncharacters; and Section 23.8, Specials.

The Unicode Standard contains a number of code points that are intentionally not

used to represent assigned characters. These code points are known as noncharacters.

They are permanently reserved for internal use and are not used for open inter‐

change of Unicode text. For more information on noncharacters, see Section 23.7,

Noncharacters.

The UTF-16 and UTF-32 encoding forms of Unicode plain text are sensitive to the

byte ordering that is used when serializing text into a sequence of bytes, such as

when writing data to a file or transferring data across a network. Some processors

place the least significant byte in the initial position; others place the most significant

byte in the initial position. Ideally, all implementations of the Unicode Standard

would follow only one set of byte order rules, but this scheme would force one class

of processors to swap the byte order on reading and writing plain text files, even

when the file never leaves the system on which it was created.

To have an efficient way to indicate which byte order is used in a text, the Unicode

Standard contains two code points, U+FEFF ZERO WIDTH NO-BREAK SPACE (byte

order mark) and U+FFFE (a noncharacter), which are the byte-ordered mirror

images of each other. When a BOM is received with the opposite byte order, it will be

recognized as a noncharacter and can therefore be used to detect the intended byte

order of the text. The BOM is not a control character that selects the byte order of the

text; rather, its function is to allow recipients to determine which byte ordering is

used in a file.

 An initial BOM may also serve as an implicit marker to identify

a file as containing Unicode text. For UTF-16, the sequence FE
16

 FF
16

 (or its byte-

reversed counterpart, FF
16

 FE
16

) is exceedingly rare at the outset of text files that use

other character encodings. The corresponding UTF-8 BOM sequence, EF
16

 BB
16

BF
16

, is also exceedingly rare. In either case, it is therefore unlikely to be confused

with real text data. The same is true for both single-byte and multibyte encodings.

2.13 Special Characters

2.13.1 Special Noncharacter Code Points

2.13.2 Byte Order Mark (BOM)

Unicode Signature.

General Structure 105 2.13 Special Characters

Data streams (or files) that begin with the U+FEFF byte order mark are likely to

contain Unicode characters.

Conformance to the Unicode Standard does not require the use of the BOM as such a

signature. See Section 23.8, Specials, for more information on the byte order mark and

its use as an encoding signature.

The Unicode Standard defines several characters that are used to control joining

behavior, bidirectional ordering control, and alternative formats for display. Their

specific use in layout and formatting is described in Section 23.2, Layout Controls.

U+FFFD REPLACEMENT CHARACTER is the general substitute character in the

Unicode Standard. It can be substituted for any “unknown” character in another

encoding that cannot be mapped in terms of known Unicode characters (see

Section 5.3, Unknown and Missing Characters, and Section 23.8, Specials).

In addition to the special characters defined in the Unicode Standard for a number of

purposes, the standard incorporates the legacy control codes for compatibility with

the ISO/IEC 2022 framework, ASCII, and the various protocols that make use of

control codes. Rather than simply being defined as byte values, however, the legacy

control codes are assigned to Unicode code points: U+0000..U+001F,

U+007F..U+009F. Those code points for control codes must be represented consis‐

tently with the various Unicode encoding forms when they are used with other

Unicode characters. For more information on control codes, see Section 23.1, Control

Codes.

2.13.3 Layout and Format Control Characters

2.13.4 The Replacement Character

2.13.5 Control Codes

General Structure 106 2.13 Special Characters

Conformance requirements are a set of unambiguous criteria to which a conformant

implementation of a standard must adhere, so that it can interoperate with other

conformant implementations. The universal scope of the Unicode Standard compli‐

cates the task of rigorously defining such conformance requirements for all aspects of

the standard. Making conformance requirements overly confining runs the risk of

unnecessarily restricting the breadth of text operations that can be implemented with

the Unicode Standard or of limiting them to a one-size-fits-all lowest common

denominator. In many cases, therefore, the conformance requirements deliberately

cover only minimal requirements, falling far short of providing a complete descrip‐

tion of the behavior of an implementation. Nevertheless, there are many core aspects

of the standard for which a precise and exhaustive definition of conformant behavior

is possible.

This section gives examples of both conformant and nonconformant implementation

behavior, illustrating key aspects of the formal statement of conformance require‐

ments found in Chapter 3, Conformance.

An implementation that conforms to the Unicode Standard has the following charac‐

teristics:

It treats characters according to the specified Unicode encoding form.

The byte sequence <20 20> is interpreted as U+2020 ‘ ’ DAGGER in the UTF-16

encoding form.

The same byte sequence <20 20> is interpreted as the sequence of two spaces,

<U+0020, U+0020>, in the UTF-8 encoding form.

It interprets characters according to the identities, properties, and rules defined

for them in this standard.

U+2423 is ‘ ’ OPEN BOX, not ‘ ’ hiragana small i (which is the meaning of the

bytes 2423
16

 in JIS).

U+00F4 ‘ ’ is equivalent to U+006F ‘ ’ followed by U+0302 ‘ ’, but not

equivalent to U+0302 followed by U+006F.

U+05D0 ‘ ’ followed by U+05D1 ‘ ’ looks like ‘ ’, not ‘ ’ when displayed.

When an implementation supports the display of Arabic, Hebrew, or other right-to-

left characters and displays those characters, they must be ordered according to the

2.14 Conforming to the Unicode Standard

2.14.1 Characteristics of Conformant Implementations

•

•

•

•

•

General Structure 107
2.14 Conforming to the Unicode

Standard

Bidirectional Algorithm described in Unicode Standard Annex #9, “Unicode Bidirec‐

tional Algorithm.”

When an implementation supports Arabic, Devanagari, or other scripts with complex

shaping for their characters and displays those characters, at a minimum the charac‐

ters are shaped according to the relevant block descriptions. (More sophisticated

shaping can be used if available.)

It is unacceptable for a conforming implementation:

To use unassigned codes.

U+2073 is unassigned and not usable for ‘3’ (superscript 3) or any other

character.

To corrupt unsupported characters.

U+03A1 “ ” GREEK CAPITAL LETTER RHO should not be changed to U+00A1

(first byte dropped), U+0050 (mapped to Latin letter P), U+A103 (bytes

reversed), or anything other than U+03A1.

To remove or alter uninterpreted code points in text that purports to be unmodi‐

fied.

U+2029 is PARAGRAPH SEPARATOR and should not be dropped by applications

that do not support it.

It is acceptable for a conforming implementation:

To support only a subset of the Unicode characters.

An application might not provide mathematical symbols or the Thai script, for

example.

To transform data knowingly.

Uppercase conversion: ‘a’ transformed to ‘A’

Romaji to kana: ‘kyo’ transformed to きょ
Decomposition: U+247D ‘(10)’ decomposed to <U+0028, U+0031, U+0030,

U+0029>

2.14.2 Unacceptable Behavior

•

•

•

2.14.3 Acceptable Behavior

•

•

•

•

General Structure 108
2.14 Conforming to the Unicode

Standard

To build higher-level protocols on the character set.

Examples are defining a file format for compression of characters or for use with

rich text.

To define private-use characters.

Examples of characters that might be defined for private use include additional

ideographic characters (gaiji) or existing corporate logo characters.

To not support the Bidirectional Algorithm or character shaping in implemen‐

tations that do not support complex scripts, such as Arabic and Devanagari.

To not support the Bidirectional Algorithm or character shaping in implemen‐

tations that do not display characters, as, for example, on servers or in

programs that simply parse or transcode text, such as an XML parser.

Code conversion between other character encodings and the Unicode Standard will

be considered conformant if the conversion is accurate in both directions.

The Unicode Standard does not require that an application be capable of interpreting

and rendering all Unicode characters so as to be conformant. Many systems will have

fonts for only some scripts, but not for others; sorting and other text-processing rules

may be implemented for only a limited set of languages. As a result, an implementa‐

tion is able to interpret a subset of characters.

The Unicode Standard provides no formalized method for identifying an imple‐

mented subset. Furthermore, such a subset is typically different for different aspects

of an implementation. For example, an application may be able to read, write, and

store any Unicode character and to sort one subset according to the rules of one or

more languages (and the rest arbitrarily), but have access to fonts for only a single

script. The same implementation may be able to render additional scripts as soon as

additional fonts are installed in its environment. Therefore, the subset of inter‐

pretable characters is typically not a static concept.

•

•

2.14.4 Supported Subsets

General Structure 109
2.14 Conforming to the Unicode

Standard

Chapter 3

Conformance

This chapter defines conformance to the Unicode Standard in terms of the principles

and encoding architecture it embodies. The first section defines the format for refer‐

encing the Unicode Standard and Unicode properties. The second section consists of

the conformance clauses, followed by sections that define more precisely the tech‐

nical terms used in those clauses. The remaining sections contain the formal algo‐

rithms that are part of conformance and referenced by the conformance clause.

Additional definitions and algorithms that are part of this standard can be found in

the Unicode Standard Annexes listed at the end of Section 3.2, Conformance Require‐

ments.

In this chapter, conformance clauses are identified with the letter C. Definitions are

identified with the letter D. Bulleted items are explanatory comments regarding defi‐

nitions or subclauses.

For information on implementing best practices, see Chapter 5, Implementation

Guidelines.

110

For most character encodings, the character repertoire is fixed (and often small).

Once the repertoire is decided upon, it is never changed. Addition of a new abstract

character to a given repertoire creates a new repertoire, which will be treated either

as an update of the existing character encoding or as a completely new character

encoding.

For the Unicode Standard, by contrast, the repertoire is inherently open. Because

Unicode is a universal encoding, any abstract character that could ever be encoded is

a potential candidate to be encoded, regardless of whether the character is currently

known.

Each new version of the Unicode Standard supersedes the previous one, but imple‐

mentations—and, more significantly, data—are not updated instantly. In general,

major and minor version changes include new characters, which do not create partic‐

ular problems with old data. The Unicode Technical Committee will neither remove

nor move characters. Characters may be deprecated, but this does not remove them

from the standard or from existing data. The code point for a deprecated character

will never be reassigned to a different character, but the use of a deprecated character

is strongly discouraged. These rules make the encoded characters of a new version

backward-compatible with previous versions.

Implementations should be prepared to be forward-compatible with respect to

Unicode versions. That is, they should accept text that may be expressed in future

versions of this standard, recognizing that new characters may be assigned in those

versions. Thus they should handle incoming unassigned code points as they do

unsupported characters. (See Section 5.3, Unknown and Missing Characters.)

A version change may also involve changes to the properties of existing characters.

When this situation occurs, modifications are made to the Unicode Character Data‐

base and a new version is issued for the standard. Changes to the data files may alter

program behavior that depends on them. However, such changes to properties and to

data files are never made lightly. They are made only after careful deliberation by the

Unicode Technical Committee has determined that there is an error, inconsistency, or

other serious problem in the property assignments.

Each version of the Unicode Standard, once published, is absolutely stable and will

never change. Implementations or specifications that refer to a specific version of the

Unicode Standard can rely upon this stability. When implementations or specifica‐

tions are upgraded to a future version of the Unicode Standard, then changes to them

3.1 Versions of the Unicode Standard

3.1.1 Stability

Conformance 111 3.1 Versions of the Unicode Standard

may be necessary. Note that even errata and corrigenda do not formally change the

text of a published version; see “Errata and Corrigenda” later in this section.

Some features of the Unicode Standard are guaranteed to be stable across versions.

These include the names and code positions of characters, their decompositions, and

several other character properties for which stability is important to implementa‐

tions. See also “Stability of Properties” in Section 3.5, Properties. The formal statement

of such stability guarantees is contained in the policies on character encoding

stability found on the Unicode website. See the subsection “Policies” in Appendix B.3,

Other Unicode Online Resources. See the discussion of backward compatibility in

Section 2.5 of Unicode Standard Annex #31, “Unicode Identifier and Pattern Syntax,”

and the subsection “Interacting with Downlevel Systems” in Section 5.3, Unknown

and Missing Characters.

Version numbers for the Unicode Standard consist of three fields, denoting the major

version, the minor version, and the update version, respectively. For example,

“Unicode 5.2.0” indicates major version 5 of the Unicode Standard, minor version 2

of Unicode 5, and update version 0 of minor version Unicode 5.2.

To simplify implementations of Unicode version numbering, the version fields are

limited to values which can be stored in a single byte. The major version is a positive

integer constrained to the range 1..255. The minor and update versions are non-nega‐

tive integers constrained to the range 0..255.

Additional information on the current and past versions of the Unicode Standard can

be found on the Unicode website. See the subsection “Versions” in Appendix B.3,

Other Unicode Online Resources. The online document contains the precise list of

contributing files from the Unicode Character Database and the Unicode Standard

Annexes, which are formally part of each version of the Unicode Standard.

 Major and minor versions have significant additions to

the standard, including, but not limited to, additions to the repertoire of encoded

characters. Both are published as an updated core specification, together with associ‐

ated updates to the code charts, the Unicode Standard Annexes and the Unicode

Character Database. Such versions consolidate all errata and corrigenda and super‐

sede any prior documentation for major, minor, or update versions.

A major version typically is of more importance to implementations; however, even

update versions may be important to particular companies or other organizations.

Major and minor versions are often synchronization points with related standards,

such as with ISO/IEC 10646.

3.1.2 Version Numbering

Major and Minor Versions.

Conformance 112 3.1 Versions of the Unicode Standard

Prior to Version 5.2, minor versions of the standard were published as online amend‐

ments expressed as textual changes to the previous version, rather than as fully

consolidated new editions of the core specification.

 An update version represents relatively small changes to the stan‐

dard, typically updates to the data files of the Unicode Character Database. An

update version never involves any additions to the character repertoire. These

versions are published as modifications to the data files, and, on occasion, include

documentation of small updates for selected errata or corrigenda.

Formally, each new version of the Unicode Standard supersedes all earlier versions.

However, update versions generally do not obsolete the documentation of the imme‐

diately prior version of the standard.

 Prior to Version 7.0.0, major, minor, and update versions of

the Unicode Standard were published whenever the work on each new set of reper‐

toire, properties, and documentation was finished. The emphasis was on ensuring

synchronization of the major releases with corresponding major publication mile‐

stones for ISO/IEC 10646, but that practice resulted in an irregular publication

schedule.

The Unicode Technical Committee changed its process as of Version 7.0.0 of the

Unicode Standard, to make the publication time predictable. Major releases of the

standard are now scheduled for annual publication. Further minor and update

releases are not anticipated, but might occur under exceptional circumstances. This

predictable, regular publication makes planning for new releases easier for most

users of the standard. The detailed statements of synchronization between versions

of the Unicode Standard and ISO/IEC 10646 have become somewhat more complex

as a result, but in practice this has not been a problem for implementers.

From time to time it may be necessary to publish errata or corrigenda to the Unicode

Standard. Such errata and corrigenda will be published on the Unicode website. See

Appendix B.3, Other Unicode Online Resources, for information on how to report

errors in the standard.

 Errata correct errors in the text or other informative material, such as the

representative glyphs in the code charts. See the subsection “Updates and Errata” in

Appendix B.3, Other Unicode Online Resources. Whenever a new major or minor

version of the standard is published, all errata up to that point are incorporated into

the core specification, code charts, or other components of the standard.

 Occasionally errors may be important enough that a corrigendum is

issued prior to the next version of the Unicode Standard. Such a corrigendum does

Update Version.

Scheduling of Versions.

3.1.3 Errata and Corrigenda

Errata.

Corrigenda.

Conformance 113 3.1 Versions of the Unicode Standard

not change the contents of the previous version. Instead, it provides a mechanism for

an implementation, protocol, or other standard to cite the previous version of the

Unicode Standard with the corrigendum applied. If a citation does not specifically

mention the corrigendum, the corrigendum does not apply. For more information on

citing corrigenda, see “Versions” in Appendix B.3, Other Unicode Online Resources.

The documents associated with the major, minor, and update versions are called the

major reference, minor reference, and update reference, respectively. For example,

consider Unicode Version 3.1.1. The major reference for that version is The Unicode

Standard, Version 3.0 (ISBN 0-201-61633-5). The minor reference is Unicode Standard

Annex #27, “The Unicode Standard, Version 3.1.” The update reference is Unicode

Version 3.1.1. The exact list of contributory files, Unicode Standard Annexes, and

Unicode Character Database files can be found at Enumerated Version 3.1.1.

The reference for this version, Version 16.0.0, of the Unicode Standard, is

The Unicode Consortium. The Unicode Standard, Version 16.0.0, defined by: The

Unicode Standard, Version 16.0 (South San Francisco: The Unicode Consortium,

2024. ISBN 978-1-936213-34-4)

References to an update (or minor version prior to Version 5.2.0) include a reference

to both the major version and the documents modifying it. For the standard citation

format for other versions of the Unicode Standard, see “Versions” in Appendix B.3,

Other Unicode Online Resources.

Because Unicode has an open repertoire with relatively frequent updates, it is impor‐

tant not to over-specify the version number. Wherever the precise behavior of all

Unicode characters needs to be cited, the full three-field version number should be

used, as in the first example below. However, trailing zeros are often omitted, as in

the second example. In such a case, writing 3.1 is in all respects equivalent to writing

3.1.0.

The Unicode Standard, Version 3.1.1

The Unicode Standard, Version 3.1

The Unicode Standard, Version 3.0 or later

The Unicode Standard

Where some basic level of content is all that is important, phrasing such as in the

third example can be used. Where the important information is simply the overall

3.1.4 References to the Unicode Standard

3.1.5 Precision in Version Citation

1.

2.

3.

4.

Conformance 114 3.1 Versions of the Unicode Standard

architecture and semantics of the Unicode Standard, the version can be omitted

entirely, as in example 4.

Properties and property values have defined names and abbreviations, such as

Property: General_Category (gc)

Property Value: Uppercase_Letter (Lu)

To reference a given property and property value, these aliases are used, as in this

example:

The property value Uppercase_Letter from the General_Category property, as

specified in Version 16.0.0 of the Unicode Standard.

Then cite that version of the standard, using the standard citation format that is

provided for each version of the Unicode Standard.

When referencing multi-word properties or property values, it is permissible to omit

the underscores in these aliases or to replace them by spaces.

When referencing a Unicode character property, it is customary to prepend the word

“Unicode” to the name of the property, unless it is clear from context that the

Unicode Standard is the source of the specification.

A reference to a Unicode algorithm must specify the name of the algorithm or its

abbreviation, followed by the version of the Unicode Standard, as in this example:

The Unicode Bidirectional Algorithm, as specified in Version 16.0.0 of the

Unicode Standard.

See Unicode Standard Annex #9, “Unicode Bidirectional Algorithm,”

https://www.unicode.org/reports/tr9/tr9-50.html

Where algorithms allow tailoring, the reference must state whether any such tailor‐

ings were applied or are applicable. For algorithms contained in a Unicode Standard

Annex, the document itself and its location on the Unicode website may be cited as

the location of the specification.

3.1.6 References to Unicode Character Properties

3.1.7 References to Unicode Algorithms

Conformance 115 3.1 Versions of the Unicode Standard

https://www.unicode.org/reports/tr9/tr9-50.html

When referencing a Unicode algorithm it is customary to prepend the word

“Unicode” to the name of the algorithm, unless it is clear from the context that the

Unicode Standard is the source of the specification.

Omitting a version number when referencing a Unicode algorithm may be appro‐

priate when such a reference is meant as a generic reference to the overall algorithm.

Such a generic reference may also be employed in the sense of latest available version

of the algorithm. However, for specific and detailed conformance claims for Unicode

algorithms, generic references are generally not sufficient, and a full version number

must accompany the reference.

Conformance 116 3.1 Versions of the Unicode Standard

This section presents the clauses specifying the formal conformance requirements for

processes implementing this version of the Unicode Standard.

In addition to this core specification, the Unicode Standard, Version 16.0.0, includes a

number of Unicode Standard Annexes (UAXes) and the Unicode Character Data‐

base. At the end of this section there is a list of those annexes that are considered an

integral part of the Unicode Standard, Version 16.0.0, and therefore covered by these

conformance requirements.

The Unicode Character Database contains an extensive specification of normative

and informative character properties completing the formal definition of the Unicode

Standard. See Chapter 4, Character Properties, for more information.

Not all conformance requirements are relevant to all implementations at all times

because implementations may not support the particular characters or operations for

which a given conformance requirement may be relevant. See Section 2.14,

Conforming to the Unicode Standard, for more information.

In this section, conformance clauses are identified with the letter C.

The high-surrogate and low-surrogate code points are designated for surrogate

code units in the UTF-16 character encoding form. They are unassigned to any

abstract character.

The noncharacter code points may be used internally, such as for sentinel values

or delimiters, but should not be exchanged publicly.

This clause does not preclude the assignment of certain generic semantics to

unassigned code points (for example, rendering with a glyph to indicate the

position within a character block) that allow for graceful behavior in the

presence of code points that are outside a supported subset.

Unassigned code points may have default property values. (See D26.)

3.2 Conformance Requirements

3.2.1 Code Points Unassigned to Abstract Characters

A process shall not interpret a high-surrogate code point or a low-surrogate code

point as an abstract character.

C1

•

A process shall not interpret a noncharacter code point as an abstract character. C2

•

A process shall not interpret an unassigned code point as an abstract character. C3

•

•

Conformance 117 3.2 Conformance Requirements

Code points whose use has not yet been designated may be assigned to abstract

characters in future versions of the standard. Because of this fact, due care in the

handling of generic semantics for such code points is likely to provide better

robustness for implementations that may encounter data based on future

versions of the standard.

Interpretation of characters is the key conformance requirement for the Unicode

Standard, as it is for any coded character set standard. In legacy character set stan‐

dards, the single conformance requirement is generally stated in terms of the inter‐

pretation of bit patterns used as characters. Conforming to a particular standard

requires interpreting bit patterns used as characters according to the list of character

names and the glyphs shown in the associated code table that form the bulk of that

standard.

Interpretation of characters is a more complex issue for the Unicode Standard. It

includes the core issue of interpreting code points used as characters according to the

names and representative glyphs shown in the code charts, of course. However, the

Unicode Standard also specifies character properties, behavior, and interactions

between characters. Such information about characters is considered an integral part

of the “character semantics established by this standard.”

Information about the properties, behavior, and interactions between Unicode char‐

acters is provided in the Unicode Character Database and in the Unicode Standard

Annexes. Additional information can be found throughout the other chapters of this

core specification for the Unicode Standard. However, because of the need to keep

extended discussions of scripts, sets of symbols, and other characters readable, mate‐

rial in other chapters is not always labeled as to its normative or informative status.

In general, supplementary semantic information about a character is considered

normative when it contributes directly to the identification of the character or its

behavior. Additional information provided about the history of scripts, the languages

which use particular characters, and so forth, is merely informative. Thus, for

example, the rules about Devanagari rendering specified in Section 12.1, Devanagari,

or the rules about Arabic character shaping specified in Section 9.2, Arabic, are

normative: they spell out important details about how those characters behave in

conjunction with each other that is necessary for proper and complete interpretation

of the respective Unicode characters covered in each section.

This restriction does not preclude internal transformations that are never visible

external to the process.

•

3.2.2 Interpretation

A process shall interpret a coded character sequence according to the character

semantics established by this standard, if that process does interpret that coded

character sequence.

C4

•

Conformance 118 3.2 Conformance Requirements

Processes that interpret only a subset of Unicode characters are allowed; there is

no blanket requirement to interpret all Unicode characters.

Any means for specifying a subset of characters that a process can interpret is

outside the scope of this standard.

The semantics of a private-use code point is outside the scope of this standard.

Although these clauses are not intended to preclude enumerations or

specifications of the characters that a process or system is able to interpret, they

do separate supported subset enumerations from the question of conformance.

In actuality, any system may occasionally receive an unfamiliar character code

that it is unable to interpret.

The implications of this conformance clause are twofold. First, a process is never

required to give different interpretations to two different, but canonical-

equivalent character sequences. Second, no process can assume that another

process will make a distinction between two different, but canonical-equivalent

character sequences.

Ideally, an implementation would always interpret two canonical-equivalent

character sequences identically. There are practical circumstances under which

implementations may reasonably distinguish them.

Even processes that normally do not distinguish between canonical-equivalent

character sequences can have reasonable exception behavior. Some examples of

this behavior include graceful fallback processing by processes unable to support

correct positioning of nonspacing marks; “Show Hidden Text” modes that reveal

memory representation structure; and the choice of ignoring collating behavior

of combining character sequences that are not part of the repertoire of a

specified language (see Section 5.12, Strategies for Handling Nonspacing Marks).

Replacement of a character sequence by a compatibility-equivalent sequence

does modify the interpretation of the text.

A process shall not assume that it is required to interpret any particular coded

character sequence.

C5

•

•

•

•

A process shall not assume that the interpretations of two canonical-equivalent

character sequences are distinct.

C6

•

•

•

3.2.3 Modification

When a process purports not to modify the interpretation of a valid coded char‐

acter sequence, it shall make no change to that coded character sequence other

than the possible replacement of character sequences by their canonical-equiva‐

lent sequences.

C7

•

Conformance 119 3.2 Conformance Requirements

Replacement or deletion of a character sequence that the process cannot or does

not interpret does modify the interpretation of the text.

Changing the bit or byte ordering of a character sequence when transforming it

between different machine architectures does not modify the interpretation of

the text.

Changing a valid coded character sequence from one Unicode character

encoding form to another does not modify the interpretation of the text.

Changing the byte serialization of a code unit sequence from one Unicode

character encoding scheme to another does not modify the interpretation of the

text.

If a noncharacter that does not have a specific internal use is unexpectedly

encountered in processing, an implementation may signal an error or replace

the noncharacter with U+FFFD REPLACEMENT CHARACTER. If the

implementation chooses to replace, delete or ignore a noncharacter, such an

action constitutes a modification in the interpretation of the text. In general, a

noncharacter should be treated as an unassigned code point. For example, an

API that returned a character property value for a noncharacter would return

the same value as the default value for an unassigned code point.

Note that security problems can result if noncharacter code points are removed

from text received from external sources. For more information, see Section 23.7,

Noncharacters, and Unicode Technical Report #36, “Unicode Security

Considerations.”

All processes and higher-level protocols are required to abide by conformance

clause C7 at a minimum. However, higher-level protocols may define additional

equivalences that do not constitute modifications under that protocol. For

example, a higher-level protocol may allow a sequence of spaces to be replaced

by a single space.

There are important security issues associated with the correct interpretation

and display of text. For more information, see Unicode Technical Report #36,

“Unicode Security Considerations.”

The specification of the code unit sequences for UTF-8 is given in D92.

The specification of the code unit sequences for UTF-16 is given in D91.

The specification of the code unit sequences for UTF-32 is given in D90.

•

•

•

•

•

•

•

•

3.2.4 Character Encoding Forms

When a process interprets a code unit sequence which purports to be in a Unicode

character encoding form, it shall interpret that code unit sequence according to

the corresponding code point sequence.

C8

•

•

•

Conformance 120 3.2 Conformance Requirements

The definition of each Unicode character encoding form specifies the ill-formed

code unit sequences in the character encoding form. For example, the definition

of UTF-8 (D92) specifies that code unit sequences such as <C0 AF> are ill-

formed.

For example, in UTF-8 every code unit of the form 110xxxx
2

must be followed by

a code unit of the form 10xxxxxx
2
. A sequence such as 110xxxxx

2
 0xxxxxxx

2
 is ill-

formed and must never be generated. When faced with this ill-formed code unit

sequence while transforming or interpreting text, a conformant process must

treat the first code unit 110xxxxx
2
 as an illegally terminated code unit sequence

—for example, by signaling an error or representing the code unit with a marker

such as U+FFFD REPLACEMENT CHARACTER.

Silently ignoring ill-formed sequences is strongly discouraged because joining

text from before and after the ill-formed sequence can cause the resulting text to

take a new meaning. This result would be especially dangerous in the context of

textual formats that carry embedded program code, such as JavaScript.

Conformant processes cannot interpret ill-formed code unit sequences.

However, the conformance clauses do not prevent processes from operating on

code unit sequences that do not purport to be in a Unicode character encoding

form. For example, for performance reasons a low-level string operation may

simply operate directly on code units, without interpreting them as characters.

See, especially, the discussion under D89.

Utility programs are not prevented from operating on “mangled” text. For

example, a UTF-8 file could have had CRLF sequences introduced at every 80

bytes by a bad mailer program. This could result in some UTF-8 byte sequences

being interrupted by CRLFs, producing illegal byte sequences. This mangled text

is no longer UTF-8. It is permissible for a conformant program to repair such

text, recognizing that the mangled text was originally well-formed UTF-8 byte

sequences. However, such repair of mangled data is a special case, and it must

not be used in circumstances where it would cause security problems. There are

important security issues associated with encoding conversion, especially with

the conversion of malformed text. For more information, see Unicode Technical

Report #36, “Unicode Security Considerations.”

When a process generates a code unit sequence which purports to be in a Unicode

character encoding form, it shall not emit ill-formed code unit sequences.

C9

•

When a process interprets a code unit sequence which purports to be in a Unicode

character encoding form, it shall treat ill-formed code unit sequences as an error

condition and shall not interpret such sequences as characters.

C10

•

•

•

•

Conformance 121 3.2 Conformance Requirements

Machine architectures differ in ordering in terms of whether the most significant

byte or the least significant byte comes first. These sequences are known as “big-

endian” and “little-endian” orders, respectively.

For example, when using UTF-16LE, pairs of bytes are interpreted as UTF-16

code units using the little-endian byte order convention, and any initial <FF

FE> sequence is interpreted as U+FEFF ZERO WIDTH NO-BREAK SPACE (part of

the text), rather than as a byte order mark (not part of the text). (See D97.)

The Bidirectional Algorithm is specified in Unicode Standard Annex #9,

“Unicode Bidirectional Algorithm.”

This means that when a process uses the input specified in the conformance

test, its output must match the expected output of the test.

3.2.5 Character Encoding Schemes

When a process interprets a byte sequence which purports to be in a Unicode

character encoding scheme, it shall interpret that byte sequence according to the

byte order and specifications for the use of the byte order mark established by this

standard for that character encoding scheme.

C11

•

•

3.2.6 Bidirectional Text

A process that displays text containing supported right-to-left characters or

embedding codes shall display all visible representations of characters (excluding

format characters) in the same order as if the Bidirectional Algorithm had been

applied to the text, unless tailored by a higher-level protocol as permitted by the

specification.

C12

•

3.2.7 Normalization Forms

A process that produces Unicode text that purports to be in a Normalization

Form shall do so in accordance with the specifications in Section 3.11, Normaliza‐

tion Forms.

C13

A process that tests Unicode text to determine whether it is in a Normalization

Form shall do so in accordance with the specifications in Section 3.11, Normaliza‐

tion Forms.

C14

A process that purports to transform text into a Normalization Form must be able

to produce the results of the conformance test specified in Unicode Standard

Annex #15, “Unicode Normalization Forms.”

C15

•

Conformance 122 3.2 Conformance Requirements

Higher-level protocols may make normative references to informative

properties.

The term Unicode algorithm is defined at D17.

An implementation claiming conformance to a Unicode algorithm need only

guarantee that it produces the same results as those specified in the logical

description of the process; it is not required to follow the actual described

procedure in detail. This allows room for alternative strategies and optimizations

in implementation.

For example, the algorithms for normalization and canonical ordering are not

tailorable. The Bidirectional Algorithm allows some tailoring by higher-level

protocols. The Unicode Default Case algorithms may be tailored without

limitation.

A conformant implementation may perform casing operations that are different

from the default algorithms, perhaps tailored to a particular orthography, so long

as the fact that a tailoring is applied is disclosed.

3.2.8 Normative References

Normative references to the Unicode Standard itself, to property aliases, to prop‐

erty value aliases, or to Unicode algorithms shall follow the formats specified in

Section 3.1, Versions of the Unicode Standard.

C16

Higher-level protocols shall not make normative references to provisional proper‐

ties.

C17

•

3.2.9 Unicode Algorithms

If a process purports to implement a Unicode algorithm, it shall conform to the

specification of that algorithm in the standard, including any tailoring by a

higher-level protocol as permitted by the specification.

C18

•

•

The specification of an algorithm may prohibit or limit tailoring by a higher-level

protocol. If a process that purports to implement a Unicode algorithm applies a

tailoring, that fact must be disclosed.

C19

•

3.2.10 Default Casing Algorithms

An implementation that purports to support Default Case Conversion, Default

Case Detection, or Default Caseless Matching shall do so in accordance with the

definitions and specifications in Section 3.13, Default Case Algorithms.

C20

•

Conformance 123 3.2 Conformance Requirements

The following standard annexes are approved and considered part of Version 16.0 of

the Unicode Standard. These annexes may contain either normative or informative

material, or both. Any reference to Version 16.0 of the standard automatically

includes Version 16.0 of these standard annexes.

UAX #9: Unicode Bidirectional Algorithm

UAX #11: East Asian Width

UAX #14: Unicode Line Breaking Algorithm

UAX #15: Unicode Normalization Forms

UAX #24: Unicode Script Property

UAX #29: Unicode Text Segmentation

UAX #31: Unicode Identifier and Pattern Syntax

UAX #34: Unicode Named Character Sequences

UAX #38: Unicode Han Database (Unihan)

UAX #41: Common References for Unicode Standard Annexes

UAX #42: Unicode Character Database in XML

UAX #44: Unicode Character Database

UAX #45: U-Source Ideographs

UAX #50: Unicode Vertical Text Layout

UAX #53: Unicode Arabic Mark Rendering

UAX #57: Unicode Egyptian Hieroglyph Database (Unikemet)

Conformance to the Unicode Standard requires conformance to the specifications

contained in these annexes, as detailed in the conformance clauses listed earlier in

this section.

3.2.11 Unicode Standard Annexes

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Conformance 124 3.2 Conformance Requirements

This and the following sections more precisely define the terms that are used in the

conformance clauses.

Character combination

Canonical decomposition

Compatibility decomposition

Canonical ordering behavior

Bidirectional behavior, as specified in the Unicode Bidirectional Algorithm (see

Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”)

Conjoining jamo behavior, as specified in Section 3.12, Conjoining Jamo Behavior

Variation selection, as specified in Section 23.4, Variation Selectors

Normalization, as specified in Section 3.11, Normalization Forms

Default casing, as specified in Section 3.13, Default Case Algorithms

A character may have a broader range of use than the most literal interpretation

of its name might indicate; the coded representation, name, and representative

glyph need to be assessed in context when establishing the identity of a

character. For example, U+002E FULL STOP can represent a sentence period, an

abbreviation period, a decimal number separator in English, a thousands

number separator in German, and so on. The character name itself is unique,

but may be misleading. See “Character Names” in Section 24.1, Character Names

List.

Consistency with the representative glyph does not require that the images be

identical or even graphically similar; rather, it means that both images are

generally recognized to be representations of the same character. Representing

the character U+0061 LATIN SMALL LETTER A by the glyph “X” would violate its

character identity.

3.3 Semantics

3.3.1 Definitions

3.3.2 Character Identity and Semantics

Normative behavior: The normative behaviors of the Unicode Standard consist

of the following list or any other behaviors specified in the conformance

clauses:

D1

•

•

•

•

•

•

•

•

•

Character identity: The identity of a character is established by its character

name and representative glyph in the code charts.

D2

•

•

Conformance 125 3.3 Semantics

Some normative behavior is default behavior; this behavior can be overridden by

higher-level protocols. However, in the absence of such protocols, the behavior

must be observed so as to follow the character semantics.

The character combination properties and the canonical ordering behavior

cannot be overridden by higher-level protocols. The purpose of this constraint is

to guarantee that the order of combining marks in text and the results of

normalization are predictable.

The character names in the Unicode Standard match those of the English

edition of ISO/IEC 10646.

Character names are immutable and cannot be overridden; they are stable

identifiers. For more information, see Section 4.8, Name.

The name of a Unicode character is also formally a character property in the

Unicode Character Database. Its long property alias is “Name” and its short

property alias is “na”. Its value is the unique string label associated with the

encoded character.

The detailed specification of the Unicode character names, including rules for

derivation of some ranges of characters, is given in Section 4.8, Name. That

section also describes the relationship between the normative value of the Name

property and the contents of the corresponding data field in UnicodeData.txt in

the Unicode Character Database.

Character name aliases are assigned when there is a serious clerical defect with

a character name, such that the character name itself may be misleading

regarding the identity of the character. A character name alias constitutes an

alternate identifier for the character.

Character name aliases are also assigned to provide string identifiers for control

codes and to recognize widely used alternative names and abbreviations for

control codes, format characters and other special-use characters.

Character name aliases are unique within the common namespace shared by

character names, character name aliases, named character sequences, and code

point labels.

Character semantics: The semantics of a character are determined by its iden‐

tity, normative properties, and behavior.

D3

•

•

Character name: A unique string used to identify each abstract character

encoded in the standard.

D4

•

•

•

•

Character name alias: An additional unique string identifier, other than the

character name, associated with an encoded character in the standard.

D5

•

•

•

Conformance 126 3.3 Semantics

More than one character name alias may be assigned to a given Unicode

character. For example, the control code U+000D is given a character name alias

for its ISO 6429 control function as CARRIAGE RETURN, but is also given a

character name alias for its widely used abbreviation “CR”.

Character name aliases are a formal, normative part of the standard and should

be distinguished from the informative, editorial aliases provided in the code

charts. See Section 24.1, Character Names List, for the notational conventions

used to distinguish the two.

Within a given namespace all names must be unique, although the same name

may be used with a different meaning in a different namespace.

Character names, character name aliases, named character sequences, and code

point labels share a single namespace in the Unicode Standard.

•

•

Namespace: A set of names together with name matching rules, so that all

names are distinct under the matching rules.

D6

•

•

Conformance 127 3.3 Semantics

When representing data, the nature of that data is generally symbolic as opposed

to some other kind of data (for example, aural or visual). Examples of such

symbolic data include letters, ideographs, digits, punctuation, technical symbols,

and dingbats.

An abstract character has no concrete form and should not be confused with a

glyph.

An abstract character does not necessarily correspond to what a user thinks of as

a “character” and should not be confused with a grapheme.

The abstract characters encoded by the Unicode Standard are known as Unicode

abstract characters.

Abstract characters not directly encoded by the Unicode Standard can often be

represented by the use of combining character sequences.

This particular range is defined for the codespace in the Unicode Standard.

Other character encoding standards may use other codespaces.

A code point is also known as a code position.

See D77 for the definition of code unit.

See Table 2-3 for a summary of the meaning and use of each class.

For Noncharacter, see also D14 Noncharacter.

For Reserved, see also D15 Reserved code point.

For Private-Use, see also D49 Private-use code point.

For Surrogate, see also D71 High-surrogate code point and D73 Low-surrogate

code point.

3.4 Characters and Encoding

Abstract character: A unit of information used for the organization, control, or

representation of textual data.

D7

•

•

•

•

•

Abstract character sequence: An ordered sequence of one or more abstract char‐

acters.

D8

Unicode codespace: A range of integers from 0 to 10FFFF
16

. D9

•

Code point: Any value in the Unicode codespace. D10

•

•

Code point type: Any of the seven fundamental classes of code points in the

standard: Graphic, Format, Control, Private-Use, Surrogate, Noncharacter,

Reserved.

D10a

•

•

•

•

•

Conformance 128 3.4 Characters and Encoding

The exact list of blocks defined for each version of the Unicode Standard is

specified by the data file Blocks.txt in the Unicode Character Database.

The range for each defined block is specified by Field 0 in Blocks.txt; for

example, “0000..007F”.

The ranges for blocks are non-overlapping. In other words, no code point can be

contained in the range for one block and also in the range for a second distinct

block.

The range for each block is defined as a contiguous sequence. In other words, a

block cannot consist of two (or more) discontiguous sequences of code points.

Each range for a defined block starts with a value for which code point MOD 16

= 0 and terminates with a larger value for which code point MOD 16 = 15. This

specification results in block ranges which always include full code point

columns for code chart display. A block never starts or terminates in mid-

column.

All assigned characters are contained within ranges for defined blocks.

Blocks may contain reserved code points, but no block contains only reserved

code points. The majority of reserved code points are outside the ranges of

defined blocks.

A few designated code points are not contained within the ranges for defined

blocks. This applies to the noncharacter code points at the last two code points

of supplementary planes 1 through 14.

The name for each defined block is specified by Field 1 in Blocks.txt; for

example, “Basic Latin”.

The names for defined blocks constitute a unique namespace.

The uniqueness rule for the block namespace is LM3, as defined in Unicode

Standard Annex #44, “Unicode Character Database.” In other words, casing,

whitespace, hyphens, and underscores are ignored when matching strings for

block names. The string “BASIC LATIN” or “Basic_Latin” would be considered

as matching the name for the block named “Basic Latin”.

There is also a normative Block property. See Table 3-2. The Block property is a

catalog property whose value is a string that identifies a block.

Property value aliases for the Block property are defined in

PropertyValueAliases.txt in the Unicode Character Database. The long alias

defined for the Block property is always a loose match for the name of the block

defined in Blocks.txt. Additional short aliases and other aliases are provided for

convenience of use in regular expression syntax.

Block: A named range of code points used to organize the allocation of charac‐

ters.

D10b

•

•

•

•

•

•

•

•

•

•

•

•

•

Conformance 129 3.4 Characters and Encoding

The default value for the Block property is “No_Block”. This default applies to

any code point which is not contained in the range of a defined block.

For a general discussion of blocks and their relation to allocation in the Unicode

Standard, see “Allocation Areas and Blocks” in Section 2.8, Unicode Allocation. For a

general discussion of the use of blocks in the presentation of the Unicode code

charts, see Chapter 24, About the Code Charts.

An encoded character is also referred to as a coded character.

While an encoded character is formally defined in terms of the mapping

between an abstract character and a code point, informally it can be thought of

as an abstract character taken together with its assigned code point.

Occasionally, for compatibility with other standards, a single abstract character

may correspond to more than one code point—for example, “Å” corresponds

both to U+00C5 LATIN CAPITAL LETTER A WITH RING ABOVE and to U+212B

ANGSTROM SIGN.

A single abstract character may also be represented by a sequence of code points

—for example, latin capital letter g with acute may be represented by the

sequence <U+0047 LATIN CAPITAL LETTER G, U+0301 COMBINING ACUTE

ACCENT>, rather than being mapped to a single code point.

A coded character sequenceis also known as a coded character representation.

Normally a coded character sequence consists of a sequence of encoded

characters, but it may also include noncharacters or reserved code points.

Internally, a process may choose to make use of noncharacter code points in its

coded character sequences. However, such noncharacter code points may not be

interpreted as abstract characters (see conformance clause C2). Their removal by

a conformant process constitutes modification of interpretation of the coded

character sequence (see conformance clause C7).

Reserved code points are included in coded character sequences, so that the

conformance requirements regarding interpretation and modification are

properly defined when a Unicode-conformant implementation encounters

coded character sequences produced under a future version of the standard.

Unless specified otherwise for clarity, in the text of the Unicode Standard the term

character alonedesignates an encoded character. Similarly, the term character

sequence alone designates a coded character sequence.

•

Encoded character: An association (or mapping) between an abstract character

and a code point.

D11

•

•

•

•

Coded character sequence: An ordered sequence of one or more code points. D12

•

•

•

•

Conformance 130 3.4 Characters and Encoding

Deprecated characters are retained in the standard indefinitely, but should not

be used. They are retained in the standard so that previously conforming data

stay conformant in future versions of the standard.

Deprecated characters typically consist of characters with significant

architectural problems, or ones which cause implementation problems. Some

examples of characters deprecated on these grounds include U+E0001

LANGUAGE TAG (see Section 23.9, Tag Characters) and the alternate format

characters (see Section 23.3, Deprecated Format Characters).

Deprecated characters are explicitly indicated in the Unicode code charts. They

are also given an explicit property value of Deprecated = True in the Unicode

Character Database.

Deprecated characters should not be confused with obsolete characters, which

are historical. Obsolete characters do not occur in modern text, but they are not

deprecated; their use is not discouraged.

Noncharacters are not intended for interchange, but may be used by an

implementation for internal purposes.

Possible use cases include application-internal sentinel values.

For more information, see Section 23.7, Noncharacters.

Surrogate code points and noncharacters are considered assigned code points,

but not assigned characters.

For a summary classification of reserved and other types of code points, see

Table 2-3.

In general, a conforming process may indicate the presence of a code point whose

use has not been designated (for example, by showing a missing glyph in rendering

or by signaling an appropriate error in a streaming protocol), even though it is

forbidden by the standard from interpreting that code point as an abstract character.

Deprecated character: A coded character whose use is strongly discouraged. D13

•

•

•

•

Noncharacter: A code point that is permanently reserved and that will never be

assigned to an abstract character. Noncharacters consist of the values

U+nFFFE and U+nFFFF (where n is from 0 to 10
16

) and the values

U+FDD0..U+FDEF.

D14

•

•

•

Reserved code point: Any code point of the Unicode Standard that is reserved

for future assignment. Also known as an unassigned code point.

D15

•

•

Conformance 131 3.4 Characters and Encoding

Such an agreement need not be formally announced in data; it may be implicit

in the context.

The specification of some Unicode algorithms may limit the scope of what a

conformant higher-level protocol may do.

This definition, as used in the Unicode Standard and other publications of the

Unicode Consortium, is intentionally broad so as to allow precise logical

description of required results, without constraining implementations to follow

the precise steps of that logical description.

Named Unicode algorithms are cited in titlecase in the Unicode Standard.

Table 3-1 lists the named Unicode algorithms and indicates the locations of their

specifications. Details regarding conformance to these algorithms and any restric‐

tions they place on the scope of allowable tailoring by higher-level protocols can be

found in the specifications. In some cases, a named Unicode algorithm is provided

for information only. When externally referenced, a named Unicode algorithm may

be prefixed with the qualifier “Unicode” to make the connection of the algorithm to

the Unicode Standard and other Unicode specifications clear. Thus, for example, the

Bidirectional Algorithm is generally referred to by its full name, “Unicode Bidirec‐

tional Algorithm.” As much as is practical, the titles of Unicode Standard Annexes

which define Unicode algorithms consist of the name of the Unicode algorithm they

specify. In a few cases, named Unicode algorithms are also widely known by their

acronyms, and those acronyms are also listed in Table 3-1.

Name Description

Canonical Ordering Section 3.11

Canonical Composition Section 3.11

Normalization Section 3.11

Hangul Syllable Composition Section 3.12

Hangul Syllable Decomposition Section 3.12

Hangul Syllable Name Generation Section 3.12

Higher-level protocol: Any agreement on the interpretation of Unicode charac‐

ters that extends beyond the scope of this standard.

D16

•

•

Unicode algorithm: The logical description of a process used to achieve a speci‐

fied result involving Unicode characters.

D17

•

Named Unicode algorithm: A Unicode algorithm that is specified in the

Unicode Standard or in other standards published by the Unicode Consortium

and that is given an explicit name for ease of reference.

D18

•

Table 3-1. Named Unicode Algorithms

Conformance 132 3.4 Characters and Encoding

Default Case Conversion Section 3.13

Default Case Detection Section 3.13

Default Caseless Matching Section 3.13

Unicode Bidirectional Algorithm (UBA) UAX #9

Line Breaking Algorithm UAX #14

Character Segmentation UAX #29

Word Segmentation UAX #29

Sentence Segmentation UAX #29

Hangul Syllable Boundary Determination UAX #29

Arabic Mark Transient Reordering Algorithm (AMTRA) UAX #53

Standard Compression Scheme for Unicode (SCSU) UTS #6

Unicode Collation Algorithm (UCA) UTS #10

Conformance 133 3.4 Characters and Encoding

The Unicode Standard specifies many different types of character properties. This

section provides the basic definitions related to character properties.

The actual values of Unicode character properties are specified in the Unicode Char‐

acter Database. See Section 4.1, Unicode Character Database, for an overview of those

data files. Chapter 4, Character Properties, contains more detailed descriptions of

some particular, important character properties. Additional properties that are

specific to particular characters (such as the definition and use of the right-to-left

override character or zero width space) are discussed in the relevant sections of this

standard.

The interpretation of some properties (such as the case of a character) is independent

of context, whereas the interpretation of other properties (such as directionality) is

applicable to a character sequence as a whole, rather than to the individual charac‐

ters that compose the sequence.

The lists of code point and encoded character properties for the Unicode

Standard are documented in Unicode Standard Annex #44, “Unicode Character

Database,” and in Unicode Standard Annex #38, “Unicode Han Database

(Unihan).”

The file PropertyAliases.txt in the Unicode Character Database provides a

machine-readable list of the non-Unihan properties and their names.

Code point properties refer to attributes of code points per se, based on

architectural considerations of this standard, irrespective of any particular

encoded character.

Thus the Surrogate property and the Noncharacter property are code point

properties.

Abstract character properties refer to attributes of abstract characters per se,

based on their independent existence as elements of writing systems or other

notational systems, irrespective of their encoding in the Unicode Standard.

3.5 Properties

3.5.1 Types of Properties

Property: A named attribute of an entity in the Unicode Standard, associated

with a defined set of values.

D19

•

•

Code point property: A property of code points. D20

•

•

Abstract character property: A property of abstract characters. D21

•

Conformance 134 3.5 Properties

Thus the Alphabetic property, the Punctuation property, the Hex_Digit property,

the Numeric_Value property, and so on are properties of abstract characters and

are associated with those characters whether encoded in the Unicode Standard

or in any other character encoding—or even prior to their being encoded in any

character encoding standard.

For each encoded character property there is a mapping from every code point to

some value in the set of values associated with that property.

Encoded character properties are defined this way to facilitate the implementation of

character property APIs based on the Unicode Character Database. Typically, an API

will take a property and a code point as input, and will return a value for that prop‐

erty as output, interpreting it as the “character property” for the “character” encoded

at that code point. However, to be useful, such APIs must return meaningful values

for unassigned code points, as well as for encoded characters.

In some instances an encoded character property in the Unicode Standard is exactly

equivalent to a code point property. For example, the Pattern_Syntax property simply

defines a range of code points that are reserved for pattern syntax. (See Unicode Stan‐

dard Annex #31, “Unicode Identifier and Pattern Syntax.”)

In other instances, an encoded character property directly reflects an abstract char‐

acter property, but extends the domain of the property to include all code points,

including unassigned code points. For Boolean properties, such as the Hex_Digit

property, typically an encoded character property will be true for the encoded charac‐

ters with that abstract character property and will be false for all other code points,

including unassigned code points, noncharacters, private-use characters, and

encoded characters for which the abstract character property is inapplicable or irrele‐

vant.

However, in many instances, an encoded character property is semantically complex

and may telescope together values associated with a number of abstract character

properties and/or code point properties. The General_Category property is an

example—it contains values associated with several abstract character properties

(such as Letter, Punctuation, and Symbol) as well as code point properties (such as

\p{gc=Cs} for the Surrogate code point property).

In the text of this standard the terms “Unicode character property,” “character prop‐

erty,” and “property” without qualifier generally refer to an encoded character prop‐

erty, unless otherwise indicated.

•

Encoded character property: A property of encoded characters in the Unicode

Standard.

D22

•

Conformance 135 3.5 Properties

A list of the encoded character properties formally considered to be a part of the

Unicode Standard can be found in PropertyAliases.txt in the Unicode Character

Database. See also “Property Aliases” later in this section.

For example, the East_Asian_Width [EAW] property has the possible values

“Narrow”, “Neutral”, “Wide”, “Ambiguous”, and “Unassigned”.

A list of the values associated with encoded character properties in the Unicode Stan‐

dard can be found in PropertyValueAliases.txt in the Unicode Character Database.

See also “Property Aliases” later in this section.

Implicit property values are used to avoid having to explicitly list values for more

than 1 million code points (most of them unassigned) for every property.

To work properly in implementations, unassigned code points must be given default

property values as if they were characters, because various algorithms require prop‐

erty values to be assigned to every code point before they can function at all.

Default property values are not uniform across all unassigned code points, because

certain ranges of code points need different values for particular properties to maxi‐

mize compatibility with expected future assignments. This means that some encoded

character properties have multiple default values. For example, the Bidi_Class prop‐

erty defines a range of unassigned code points as having the “R” value, another range

of unassigned code points as having the “AL” value, and the otherwise case as having

the “L” value. For information on the default values for each encoded character prop‐

erty, see its description in the Unicode Character Database.

Default property values for unassigned code points are normative. They should not

be changed by implementations to other values.

3.5.2 Property Values

Property value: One of the set of values associated with an encoded character

property.

D23

•

Explicit property value: A value for an encoded character property that is

explicitly associated with a code point in one of the data files of the Unicode

Character Database.

D24

Implicit property value: A value for an encoded character property that is given

by a generic rule or by an “otherwise” clause in one of the data files of the

Unicode Character Database.

D25

•

3.5.3 Default Property Values

Conformance 136 3.5 Properties

Default property values are also provided for private-use characters. Because the

interpretation of private-use characters is subject to private agreement between the

parties which exchange them, most default property values for those characters are

overridable by higher-level protocols, to match the agreed-upon semantics for the

characters. There are important exceptions for a few properties and Unicode algo‐

rithms. See Section 23.5, Private-Use Characters.

For example, for most Boolean properties, “false” is the default property value.

In such cases, the default property value used for unassigned code points may be

the same value that is used for many assigned characters as well.

Some properties, particularly enumerated properties, specify a particular, unique

value as their default value. For example, “XX” is the default property value for

the Line_Break property.

A default property value is typically omitted when listing property values to

avoid having to repeat long lists of unassigned code points. The default value

may instead be specified by explicit directives or in the description of the

property.

In the case of some properties with arbitrary string values, the default property

value is an implied null value. For example, the fact that there is no Unicode

character name for unassigned code points is equivalent to saying that the

default property value for the Name property for an unassigned code point is a

null string. This may also be indicated by an explicit directive.

For properties that map from code points to string values, the default is typically

the identity mapping as opposed to a constant value over a range of code points.

In certain cases, the default property for a code point may be the value of

another property for that code point, including its default property values. For

example, the default property value for the Scripts_Extensions property for a

given code point is a set containing a single element, the value of the Script

property for that code point.

As characters are added to the Unicode Standard, the set of values may need to

be extended in the future, but enumerated properties have a relatively fixed set

of possible values.

Default property value: The value (or in some cases small set of values) of a

property associated with unassigned code points or with encoded characters

for which the property is irrelevant.

D26

•

•

•

•

•

•

3.5.4 Classification of Properties by Their Values

Enumerated property: A property with a small set of named values. D27

•

Conformance 137 3.5 Properties

The General_Category and Bidi_Class properties are the only closed

enumerations, except for the Boolean properties.

The presence or absence of the property is the essential information.

Boolean properties are also commonly referred to as binary properties.

In the UCD, the “true” and “false” values for a Boolean property have multiple

aliases. For convenience, they may be referred to with the abbreviations “T” and

“F” or as “yes” and “no” (abbreviated “Y” and “N”).

An example is the Numeric_Value property. There is no implied limit to the

number of possible distinct values for the property, except the limitations on

representing integers or real numbers in computers.

The Canonical_Decomposition property is a string-valued property.

Examples are the Age, Block, and Script properties. Additional new values for

the set of enumerated values for these properties may be added each time the

standard is revised. A new value for Age is added for each new Unicode version,

a new value for Block is added for each new block added to the standard, and a

new value for Script is added for each new script added to the standard.

Most properties have a single value associated with each code point. However, some

properties may instead associate a set of multiple different values with each code

point. See Section 5.7.6, Properties Whose Values Are Sets of Values, in Unicode Stan‐

dard Annex #44, “Unicode Character Database.”

Each Unicode character property has one of several different statuses: normative,

informative, contributory, or provisional. Each of these statuses is formally defined

Closed enumeration: An enumerated property for which the set of values is

closed and will not be extended for future versions of the Unicode Standard.

D28

•

Boolean property: A closed enumerated property whose set of values is limited

to “true” and “false”.

D29

•

•

•

Numeric property: A numeric property is a property whose value is a number

that can take on any integer or real value.

D30

•

String-valued property: A property whose value is a string. D31

•

Catalog property: A property that is an enumerated property, typically unre‐

lated to an algorithm, that may be extended in each successive version of the

Unicode Standard.

D32

•

3.5.5 Property Status

Conformance 138 3.5 Properties

below, with some explanation and examples. In addition, normative properties can

be subclassified, based on whether or not they can be overridden by conformant

higher-level protocols.

The full list of currently defined Unicode character properties is provided in Unicode

Standard Annex #44, “Unicode Character Database” and in Unicode Standard Annex

#38, “Unicode Han Database (Unihan).” The tables of properties in those documents

specify the status of each property explicitly. The data file PropertyAliases.txt

provides a machine-readable listing of the character properties, except for those asso‐

ciated with the Unicode Han Database. The long alias for each property in Prop‐

ertyAliases.txt also serves as the formal name of that property. In case of any discrep‐

ancy between the listing in PropertyAliases.txt and the listing in Unicode Standard

Annex #44 or any other text of the Unicode Standard, the listing in Prop‐

ertyAliases.txt should be taken as definitive. The tag for each Unihan-related char‐

acter property documented in Unicode Standard Annex #38 serves as the formal

name of that property.

Specification that a character property is normative means that implementations

which claim conformance to a particular version of the Unicode Standard and which

make use of that particular property must follow the specifications of the standard

for that property for the implementation to be conformant. For example, the

Bidi_Class property is required for conformance whenever rendering text that

requires bidirectional layout, such as Arabic or Hebrew.

Whenever a normative process depends on a property in a specified way, that prop‐

erty is designated as normative.

The fact that a given Unicode character property is normative does not mean that the

values of the property will never change for particular characters. Corrections and

extensions to the standard in the future may require minor changes to normative

values, even though the Unicode Technical Committee strives to minimize such

changes. See also “Stability of Properties” later in this section.

Some of the normative Unicode algorithms depend critically on particular property

values for their behavior. Normalization, for example, defines an aspect of textual

interoperability that many applications rely on to be absolutely stable. As a result,

some of the normative properties disallow any kind of overriding by higher-level

protocols. Thus the decomposition of Unicode characters is both normative and not

overridable; no higher-level protocol may override these values, because to do so

would result in non-interoperable results for the normalization of Unicode text.

Other normative properties, such as case mapping, are overridable by higher-level

protocols, because their intent is to provide a common basis for behavior. Neverthe‐

Normative property: A Unicode character property used in the specification of

the standard.

D33

Conformance 139 3.5 Properties

less, they may require tailoring for particular local cultural conventions or particular

implementations.

For example, the Canonical_Decomposition property is not overridable. The

Uppercase property can be overridden.

Some important normative character properties of the Unicode Standard are listed in

Table 3-2, with an indication of which sections in the standard provide a general

description of the properties and their use. Other normative properties are docu‐

mented in the Unicode Character Database. In all cases, the Unicode Character Data‐

base provides the definitive list of character properties and the exact list of property

value assignments for each version of the standard.

Property Description

Bidi_Class (directionality) UAX #9 and Section 4.4

Bidi_Mirrored UAX #9 and Section 4.7

Bidi_Paired_Bracket UAX #9

Bidi_Paired_Bracket_Type UAX #9

Block Section 24.1

Canonical_Combining_Class Section 3.11 and Section 4.3

Case-related properties Section 3.13, Section 4.2, and UAX #44

Composition_Exclusion Section 3.11

Decomposition_Mapping Section 3.7 and Section 3.11

Default_Ignorable_Code_Point Section 5.21

Deprecated Section 3.1

East_Asian_Width Section 18.4 and UAX #11

General_Category Section 4.5

Hangul_Syllable_Type Section 3.12 and UAX #29

Joining_Type and Joining_Group Section 9.2

Line_Break Section 23.1, Section 23.2, and UAX #14

Name Section 4.8

Noncharacter_Code_Point Section 23.7

Numeric_Value Section 4.6

White_Space UAX #44

Overridable property: A normative property whose values may be overridden by

conformant higher-level protocols.

D34

•

Table 3-2. Normative Character Properties

Informative property: A Unicode character property whose values are provided

for information only.

D35

Conformance 140 3.5 Properties

A conformant implementation of the Unicode Standard is free to use or change infor‐

mative property values as it may require, while remaining conformant to the stan‐

dard. An implementer always has the option of establishing a protocol to convey the

fact that informative properties are being used in distinct ways.

Informative properties capture expert implementation experience. When an informa‐

tive property is explicitly specified in the Unicode Character Database, its use is

strongly recommended for implementations to encourage comparable behavior

between implementations. Note that it is possible for an informative property in one

version of the Unicode Standard to become a normative property in a subsequent

version of the standard if its use starts to acquire conformance implications in some

part of the standard.

Table 3-3 provides a partial list of the more important informative character proper‐

ties. For a complete listing, see the Unicode Character Database.

Property Description

Dash Section 6.2 and Table 6-3

Letter-related properties Section 4.10

Mathematical Section 22.5

Script UAX #24

Space Section 6.2 and Table 6-2

Unicode_1_Name Section 4.9

Contributory properties typically consist of short lists of exceptional characters

which are used as part of the definition of a more generic normative or informative

property. In most cases, such properties are given names starting with “Other”, as

Other_Alphabetic or Other_Default_Ignorable_Code_Point.

Contributory properties are not themselves subject to stability guarantees, but they

are sometimes specified in order to make it easier to state the definition of a derived

property which itself is subject to a stability guarantee, such as the derived, norma‐

tive identifier-related properties, XID_Start and XID_Continue. The complete list of

contributory properties is documented in Unicode Standard Annex #44, “Unicode

Character Database.”

Table 3-3. Informative Character Properties

Contributory property: A simple property defined merely to make the statement

of a rule defining a derived property more compact or general.

D35a

Conformance 141 3.5 Properties

Provisional properties may be removed from future versions of the standard,

without prior notice.

Some of the information provided about characters in the Unicode Character Data‐

base constitutes provisional data. This data may capture partial or preliminary infor‐

mation. It may contain errors or omissions, or otherwise not be ready for systematic

use; however, it is included in the data files for distribution partly to encourage

review and improvement of the information. For example, a number of the tags in

the Unihan Database file (Unihan.zip) provide provisional property values of various

sorts about Han characters.

The data files of the Unicode Character Database may also contain various annota‐

tions and comments about characters, and those annotations and comments should

be considered provisional. Implementations should not attempt to parse annotations

and comments out of the data files and treat them as informative character properties

per se.

Section 4.12, Characters with Unusual Properties, provides additional lists of Unicode

characters with unusual behavior, including many format controls discussed in detail

elsewhere in the standard. Although in many instances those characters and their

behavior have normative implications, the particular subclassification provided in

Table 4-10 does not directly correspond to any formal definition of Unicode character

properties. Therefore that subclassification itself should also be considered provi‐

sional and potentially subject to change.

For example, the lowercase mapping of a Greek sigma depends on the context of

the surrounding characters.

Provisional property: A Unicode character property whose values are unap‐

proved and tentative, and which may be incomplete or otherwise not in a

usable state.

D36

•

3.5.6 Context Dependence

Context-dependent property: A property that applies to a code point in the

context of a longer code point sequence.

D37

•

Context-independent property: A property that is not context dependent; it

applies to a code point in isolation.

D38

3.5.7 Stability of Properties

Stable transformation: A transformation T on a property P is stable with

respect to an algorithm A if the result of the algorithm on the transformed

property A(T(P)) is the same as the original result A(P) for all code points.

D39

Conformance 142 3.5 Properties

As new characters are assigned to previously unassigned code points, the

replacement of any default values for these code points with actual property

values must maintain stability.

For a fixed property, any default values can be replaced without restriction by

actual property values as new characters are assigned to previously unassigned

code points. Examples of fixed properties include Age and

Hangul_Syllable_Type.

Designating a property as fixed does not imply stability or immutability (see

“Stability” in Section 3.1, Versions of the Unicode Standard). While the age of a

character, for example, is established by the version of the Unicode Standard to

which it was added, errors in the published listing of the property value could be

corrected. For some other properties, even the correction of such errors is

prohibited by explicit guarantees of property stability.

An immutable property is trivially stable with respect to all algorithms.

An example of an immutable property is the Unicode character name itself.

Because character names are values of an immutable property, misspellings and

incorrect names will never be corrected clerically. Any errata will be noted in a

comment in the character names list and, where needed, an informative

character name alias will be provided.

When an encoded character property representing a code point property is

immutable, none of its values can ever change. This follows from the fact that

the code points themselves do not change, and the status of the property is

unaffected by whether a particular abstract character is encoded at a code point

later. An example of such a property is the Pattern_Syntax property; all values of

that property are unchangeable for all code points, forever.

In the more typical case of an immutable property, the values for existing

encoded characters cannot change, but when a new character is encoded, the

formerly unassigned code point changes from having a default value for the

Stable property: A property is stable with respect to a particular algorithm or

process as long as possible changes in the assignment of property values are

restricted in such a manner that the result of the algorithm on the property

continues to be the same as the original result for all previously assigned code

points.

D40

•

Fixed property: A property whose values (other than a default value), once

associated with a specific code point, are fixed and will not be changed, except

to correct obvious or clerical errors.

D41

•

•

Immutable property: A fixed property that is also subject to a stability guar‐

antee preventing any change in the published listing of property values other

than assignment of new values to formerly unassigned code points.

D42

•

•

•

•

Conformance 143 3.5 Properties

property to having one of its nondefault values. Once that nondefault value is

published, it can no longer be changed.

A stabilized property is also a fixed property.

One of the reasons a property may be deprecated is because a different

combination of properties better expresses the intended semantics.

Where sufficiently widespread legacy support exists for the deprecated property,

not all implementations may be able to discontinue the use of the deprecated

property. In such a case, a deprecated property may be extended to new

characters so as to maintain it in a usable and consistent state.

Informative or normative properties in the standard will not be removed even when

they are supplanted by other properties or are no longer useful. However, they may

be stabilized and/or deprecated.

The complete list of stability policies which affect character properties, their values,

and their aliases, is available online. See the subsection “Policies” in Appendix B.3,

Other Unicode Online Resources.

The Unicode Character Database lists a number of derived properties explicitly. Even

though these values can be derived, they are provided as lists because the derivation

may not be trivial and because explicit lists are easier to understand, reference, and

implement. Good examples of derived properties include the ID_Start and

ID_Continue properties, which can be used to specify a formal identifier syntax for

Unicode characters. The details of how derived properties are computed can be

found in the documentation for the Unicode Character Database.

Stabilized property: A property that is neither extended to new characters nor

maintained in any other manner, but that is retained in the Unicode Character

Database.

D43

•

Deprecated property: A property whose use by implementations is discouraged. D44

•

•

3.5.8 Simple and Derived Properties

Simple property: A Unicode character property whose values are specified

directly in the Unicode Character Database (or elsewhere in the standard) and

whose values cannot be derived from other simple properties.

D45

Derived property: A Unicode character property whose values are algorithmi‐

cally derived from some combination of simple properties.

D46

Conformance 144 3.5 Properties

To enable normative references to Unicode character properties, formal aliases for

properties and for property values are defined as part of the Unicode Character Data‐

base.

The identifiers used for property aliases contain only ASCII alphanumeric

characters or the underscore character.

Short and long forms for each property alias are defined. The short forms are

typically just two or three characters long to facilitate their use as attributes for

tags in markup languages. For example, “General_Category” is the long form

and “gc” is the short form of the property alias for the General Category

property. The long form serves as the formal name for the character property.

Property aliases are defined in the file PropertyAliases.txt that lists all of the

non-Unihan properties that are part of each version of the standard. The Unihan

properties are listed in Unicode Standard Annex #38, “Unicode Han Database

(Unihan).”

Property aliases of normative properties are themselves normative.

The identifiers used for property value aliases contain only ASCII alphanumeric

characters or the underscore character, or have the special value “n/a”.

Short and long forms for property value aliases are defined. For example,

“Currency_Symbol” is the long form and “Sc” is the short form of the property

value alias for the currency symbol value of the General Category property.

Property value aliases are defined in the file PropertyValueAliases.txt in the

Unicode Character Database.

Property value aliases are unique identifiers only in the context of the particular

property with which they are associated. The same identifier string might be

associated with an entirely different value for a different property. The

combination of a property alias and a property value alias is, however,

guaranteed to be unique.

Property value aliases referring to values of normative properties are themselves

normative.

The property aliases and property value aliases can be used, for example, in XML

formats of property data, for regular-expression property tests, and in other program‐

matic textual descriptions of Unicode property data. Thus “gc = Lu” is a formal way

3.5.9 Property Aliases

Property alias: A unique identifier for a particular Unicode character property. D47

•

•

•

•

Property value alias: A unique identifier for a particular enumerated value for a

particular Unicode character property.

D48

•

•

•

•

•

Conformance 145 3.5 Properties

of specifying that the General Category of a character (using the property alias “gc”)

has the value of being an uppercase letter (using the property value alias “Lu”).

Private-use code points are considered to be assigned characters, but the abstract

characters associated with them have no interpretation specified by this

standard. They can be given any interpretation by conformant processes.

Private-use code points are given default property values, but these default

values are overridable by higher-level protocols that give those private-use code

points a specific interpretation. See Section 23.5, Private-Use Characters.

3.5.10 Private Use

Private-use code point: Code points in the ranges U+E000..U+F8FF,

U+F0000.. U+FFFFD, and U+100000..U+10FFFD.

D49

•

•

Conformance 146 3.5 Properties

Graphic characters specifically exclude the line and paragraph separators (Zl,

Zp), as well as the characters with the General Category of Other (Cn, Cs, Cc,

Cf).

The interpretation of private-use characters (Co) as graphic characters or not is

determined by the implementation.

For more information, see Chapter 2, General Structure, especially Section 2.4,

Code Points and Characters, and Table 2-3.

Most Unicode characters are base characters. In terms of General Category

values, a base character is any code point that has one of the following

categories: Letter (L), Number (N), Punctuation (P), Symbol (S), or Space

Separator (Zs).

Base characters do not include control characters or format controls.

Base characters are independent graphic characters, but this does not preclude

the presentation of base characters from adopting different contextual forms or

participating in ligatures.

The interpretation of private-use characters (Co) as base characters or not is

determined by the implementation. However, the default interpretation of

private-use characters should be as base characters, in the absence of other

information.

This term is defined to take into account the fact that sequences of Korean

conjoining jamo characters behave as if they were a single Hangul syllable

character, so that the entire sequence of jamos constitutes a base.

For the definition of standard Korean syllable block, see D134 in Section 3.12,

Conjoining Jamo Behavior.

3.6 Combination

3.6.1 Combining Character Sequences

Graphic character: A character with the General Category of Letter (L),

Combining Mark (M), Number (N), Punctuation (P), Symbol (S), or Space

Separator (Zs).

D50

•

•

•

Base character: Any graphic character except for those with the General Cate‐

gory of Combining Mark (M).

D51

•

•

•

•

Extended base: Any base character, or any standard Korean syllable block. D51a

•

•

Conformance 147 3.6 Combination

Combining characters consist of all characters with the General Category values

of Spacing Combining Mark (Mc), Nonspacing Mark (Mn), and Enclosing Mark

(Me).

All characters with non-zero canonical combining class are combining

characters, but the reverse is not the case: there are combining characters with a

zero canonical combining class.

The interpretation of private-use characters (Co) as combining characters or not

is determined by the implementation.

These characters are not normally used in isolation unless they are being

described. They include such characters as accents, diacritics, Hebrew points,

Arabic vowel signs, and Indic matras.

The graphic positioning of a combining character depends on the last preceding

base character, unless they are separated by a character that is neither a

combining character nor either ZERO WIDTH JOINER or ZERO WIDTH NON-

JOINER. The combining character is said to apply to that base character.

There may be no such base character, such as when a combining character is at

the start of text or follows a control or format character—for example, a carriage

return, tab, or RIGHT-TO-LEFT MARK. In such cases, the combining characters

are called isolated combining characters.

With isolated combining characters or when a process is unable to perform

graphical combination, a process may present a combining character without

graphical combination; that is, it may present it as if it were a base character.

The representative images of combining characters are depicted with a dotted

circle in the code charts. When presented in graphical combination with a

preceding base character, that base character is intended to appear in the

position occupied by the dotted circle.

The position of a nonspacing mark in presentation depends on its base

character. It generally does not consume space along the visual baseline in and

of itself.

Such characters may be large enough to affect the placement of their base

character relative to preceding and succeeding base characters. For example, a

circumflex applied to an “i” may affect spacing (“î”), as might the character

U+20DD COMBINING ENCLOSING CIRCLE.

Combining character: A character with the General Category of Combining

Mark (M).

D52

•

•

•

•

•

•

•

•

Nonspacing mark: A combining character with the General Category of

Nonspacing Mark (Mn) or Enclosing Mark (Me).

D53

•

•

Conformance 148 3.6 Combination

Enclosing marks are a subclass of nonspacing marks that surround a base

character, rather than merely being placed over, under, or through it.

Examples include U+093F DEVANAGARI VOWEL SIGN I. In general, the behavior

of spacing marks does not differ greatly from that of base characters.

Spacing marks such as U+0BCA TAMIL VOWEL SIGN O may be rendered on both

sides of a base character, but are not enclosing marks.

When identifying a combining character sequence in Unicode text, the

definition of the combining character sequence is applied maximally. For

example, in the sequence <c, dot-below, caron, acute, a>, the entire sequence

<c, dot-below, caron, acute> is identified as the combining character sequence,

rather than the alternative of identifying <c, dot-below> as a combining

character sequence followed by a separate (defective) combining character

sequence <caron, acute>.

Any character other than a combining mark (gc=M), ZWJ, or ZWNJ interrupts

the combining character sequence. This applies even to default ignorable code

points that are not also combining marks, such as U+2060 WORD JOINER or

U+2064 INVISIBLE PLUS (see also Section 5.21, Ignoring Characters in

Processing).

A two-character sequence consisting of an initial graphic character followed by

a variation selector, and satisfying additional constraints, is a variation sequence.

See Section 23.4, Variation Selectors. Because any variation selector is a

combining character, a variation sequence is either a combining character

sequence, or it is a subsequence of a longer combining character sequence. For

example, the sequence <0030, FE00, 20E3> represents a variant of the digit

zero, followed by an enclosing keycap. A variation sequence can be a non-initial

subsequence within a combining mark sequence. For example, the sequence

<1000, FE00, 1031, FE00> is a single combining mark sequence with two

variation sequences representing variants of the base character MYANMAR

LETTER KA and the combining mark MYANMAR VOWEL SIGN E.>

Enclosing mark: A nonspacing mark with the General Category of Enclosing

Mark (Me).

D54

•

Spacing mark: A combining character that is not a nonspacing mark. D55

•

•

Combining character sequence: A maximal character sequence consisting of

either a base character followed by a sequence of one or more characters

where each is a combining character, ZERO WIDTH JOINER, or ZERO WIDTH

NON-JOINER; or a sequence of one or more characters where each is a

combining character, ZERO WIDTH JOINER, or ZERO WIDTH NON-JOINER.

D56

•

•

•

Conformance 149 3.6 Combination

Combining character sequence is commonly abbreviated as CCS, and extended

combining character sequence is commonly abbreviated as ECCS.

Defective combining character sequences occur when a sequence of combining

characters appears at the start of a string or follows a control or format

character. Such sequences are defective from the point of view of handling of

combining marks, but are not ill-formed. (See D84.)

Characters with the property Grapheme_Base include all base characters (with

the exception of U+FF9E..U+FF9F) plus most spacing marks.

The concept of a grapheme base is introduced to simplify discussion of the

graphical application of nonspacing marks to other elements of text. A

grapheme base may consist of a spacing (combining) mark, which distinguishes

it from a base character per se. A grapheme base may also itself consist of a

sequence of characters, in the case of the standard Korean syllable block.

For the definition of standard Korean syllable block, see D134 in Section 3.12,

Conjoining Jamo Behavior.

Grapheme extender characters consist of all nonspacing marks, ZERO WIDTH

JOINER, ZERO WIDTH NON-JOINER, U+FF9E HALFWIDTH KATAKANA VOICED

SOUND MARK, U+FF9F HALFWIDTH KATAKANA SEMI-VOICED SOUND MARK,

and a small number of spacing marks.

A grapheme extender can be conceived of primarily as the kind of nonspacing

graphical mark that is applied above or below another spacing character.

ZERO WIDTH JOINER and ZERO WIDTH NON-JOINER are formally defined to be

grapheme extenders so that their presence does not break up a sequence of other

grapheme extenders.

Extended combining character sequence: A maximal character sequence

consisting of either an extended base followed by a sequence of one or more

characters where each is a combining character, ZERO WIDTH JOINER, or ZERO

WIDTH NON-JOINER; or a sequence of one or more characters where each is a

combining character, ZERO WIDTH JOINER, or ZERO WIDTH NON-JOINER.

D56a

•

Defective combining character sequence: A combining character sequence that

does not start with a base character.

D57

•

3.6.2 Grapheme Clusters

Grapheme base: A character with the property Grapheme_Base, or any stan‐

dard Korean syllable block.

D58

•

•

•

Grapheme extender: A character with the property Grapheme_Extend. D59

•

•

•

Conformance 150 3.6 Combination

The small number of spacing marks that have the property Grapheme_Extend

are all the second parts of a two-part combining mark.

The set of characters with the Grapheme_Extend property and the set of

characters with the Grapheme_Base property are disjoint, by definition.

The Grapheme_Extend property is used in the derivation of the set of characters

with the value Grapheme_Cluster_Break = Extend, but is not identical to it. See

Section 3, “Grapheme Cluster Boundaries” in UAX #29 for details.

This definition of “grapheme cluster” is generic. The specification of grapheme

cluster boundary segmentation in UAX #29 includes two alternatives, for

“extended grapheme clusters” and for “legacy grapheme clusters.” Furthermore,

the segmentation algorithm in UAX #29 is tailorable.

The grapheme cluster represents a horizontally segmentable unit of text,

consisting of some grapheme base (which may consist of a Korean syllable)

together with any number of nonspacing marks applied to it.

A grapheme cluster is similar, but not identical to a combining character

sequence. A combining character sequence starts with a base character and

extends across any subsequent sequence of combining marks, nonspacing or

spacing. A combining character sequence is most directly relevant to processing

issues related to normalization, comparison, and searching.

A grapheme cluster typically starts with a grapheme base and then extends

across any subsequent sequence of nonspacing marks. A grapheme cluster is

most directly relevant to text rendering and processes such as cursor placement

and text selection in editing, but may also be relevant to comparison and

searching.

For many processes, a grapheme cluster behaves as if it were a single character

with the same properties as its grapheme base. Effectively, nonspacing marks

apply graphically to the base, but do not change its properties. For example, <x,

macron> behaves in line breaking or bidirectional layout as if it were the

character x.

Extended grapheme clusters are defined in a parallel manner to legacy

grapheme clusters, but also include sequences of spacing marks.

•

•

•

Grapheme cluster: The text between grapheme cluster boundaries as specified

by Unicode Standard Annex #29, “Unicode Text Segmentation.”

D60

•

•

•

•

•

Extended grapheme cluster: The text between extended grapheme cluster

boundaries as specified by Unicode Standard Annex #29, “Unicode Text

Segmentation.”

D61

•

Conformance 151 3.6 Combination

Grapheme clusters and extended grapheme clusters may not have any particular

linguistic significance, but are used to break up a string of text into units for

processing.

Grapheme clusters and extended grapheme clusters may be adjusted for

particular processing requirements, by tailoring the rules for grapheme cluster

segmentation specified in Unicode Standard Annex #29, “Unicode Text

Segmentation.”

A number of principles in the Unicode Standard relate to the application of

combining marks. These principles are listed in this section, with an indication of

which are considered to be normative and which are considered to be guidelines.

In particular, guidelines for rendering of combining marks in conjunction with other

characters should be considered as appropriate for defining default rendering

behavior, in the absence of more specific information about rendering. It is often the

case that combining marks in complex scripts or even particular, general-use

nonspacing marks will have rendering requirements that depart significantly from

the general guidelines. Rendering processes should, as appropriate, make use of

available information about specific typographic practices and conventions so as to

produce best rendering of text.

To help in the clarification of the principles regarding the application of combining

marks, a distinction is made between dependence and graphical application.

The associated base character is the base character in the combining character

sequence that a combining mark is part of.

A combining mark in a defective combining character sequence has no

associated base character and thus cannot be said to depend on any particular

base character. This is one of the reasons why fallback processing is required for

defective combining character sequences.

Dependence concerns all combining marks, including spacing marks and

combining marks that have no visible display.

The associated grapheme base is the grapheme base in the grapheme cluster that

a nonspacing mark is part of.

•

•

3.6.3 Application of Combining Marks

Dependence: A combining mark is said to depend on its associated base char‐

acter.

D61a

•

•

•

Graphical application: A nonspacing mark is said to apply to its associated

grapheme base.

D61b

•

Conformance 152 3.6 Combination

A nonspacing mark in a defective combining character sequence is not part of a

grapheme cluster and is subject to the same kinds of fallback processing as for

any defective combining character sequence.

Graphic application concerns visual rendering issues and thus is an issue for

nonspacing marks that have visible glyphs. Those glyphs interact, in rendering,

with their grapheme base.

Throughout the text of the standard, whenever the situation is clear, discussion of

combining marks often simply talks about combining marks “applying” to their base.

In the prototypical case of a nonspacing accent mark applying to a single base char‐

acter letter, this simplification is not problematical, because the nonspacing mark

both depends (notionally) on its base character and simultaneously applies (graphi‐

cally) to its grapheme base, affecting its display. The finer distinctions are needed

when dealing with the edge cases, such as combining marks that have no display

glyph, graphical application of nonspacing marks to Korean syllables, and the

behavior of spacing combining marks.

The distinction made here between notional dependence and graphical application of

combining marks does not preclude spacing marks or even sequences of base charac‐

ters from having effects on neighboring characters in rendering. Such effects on

rendering are generally referred to in the Unicode Standard as conjoining behavior,

and the details are typically script-specific. Thus spacing (or non-spacing) forms of

dependent vowels (matras) in Indic scripts may trigger particular kinds of conjunct

formation or may be repositioned in ways that influence the rendering of other char‐

acters. (See Chapter 12, South and Central Asia-I, for many examples.) In numerous

scripts, sequences of base characters may form ligatures in rendering. (See

Section 23.2.2, Cursive Connection and Ligatures.) In other scripts, sequences of base

characters may be systematically organized into syllable blocks for display. (For

Hangul, see Section 3.12, Conjoining Jamo Behavior. For the Khitan Small Script, see

the description in Section 18.12, Khitan Small Script.)

The following listing specifies the principles regarding application of combining

marks. Many of these principles are illustrated in Section 2.11, Combining Characters,

and Section 7.9, Combining Marks.

This principle follows from the definition of a combining character sequence.

Thus the character sequence <U+0061 “ ” LATIN SMALL LETTER A, U+0308 “ ”

COMBINING DIAERESIS, U+0075 “ ” LATIN SMALL LETTER U> is

unambiguously interpreted (and displayed) as “äu”, not “aü”. See Figure 2-18.

•

•

[Normative] Combining character order: Combining characters follow

the base character on which they depend.

P1

•

•

[Guideline] Inside-out application. Nonspacing marks with the same

combining class and spacing marks rendered on the same side of the base

P2

Conformance 153 3.6 Combination

The most numerous and important instances of this principle involve

nonspacing marks applied either directly above or below a grapheme base. See

Figure 2-21.

In a sequence of two nonspacing marks above a grapheme base, the first

nonspacing mark is placed directly above the grapheme base, and the second is

then placed above the first nonspacing mark.

In a sequence of two nonspacing marks below a grapheme base, the first

nonspacing mark is placed directly below the grapheme base, and the second is

then placed below the first nonspacing mark.

In a sequence of two spacing marks rendered to the left of a grapheme base, the

first spacing mark is placed directly to the left of the grapheme base, and the

second is then placed to the left of the first spacing mark.

In a sequence of two spacing marks rendered to the right of a grapheme base,

the first spacing mark is placed directly to the right of the grapheme base, and

the second is then placed to the right of the first spacing mark.

This rendering behavior for nonspacing marks can be generalized to sequences

of any length, although practical considerations usually limit such sequences to

no more than two or three marks above and/or below a grapheme base.

When applied to nonspacing marks, the principle of inside-out application is

also referred to as default stacking behavior for nonspacing marks.

Such side-by-side positioning may reflect language-specific orthographic rules,

such as for Vietnamese diacritics and tone marks or for polytonic Greek

breathing and accent marks. See Table 2-6.

Side-by-side positioning may also reflect certain writing conventions, such as for

titlo letters in the Old Church Slavonic manuscript tradition.

When positioned side-by-side, the visual rendering order of a sequence of

nonspacing marks reflects the dominant order of the script with which they are

used. Thus, in Greek, the first nonspacing mark in such a sequence will be

positioned to the left side above a grapheme base, and the second to the right

side above the grapheme base. In Hebrew, the opposite positioning is used for

side-by-side placement.

are generally positioned graphically outward from the grapheme base to

which they apply.

•

•

•

•

•

•

•

[Guideline] Side-by-side application. Notwithstanding the principle of

inside-out application, some specific nonspacing marks may override the

default stacking behavior and are positioned side-by-side over (or under)

a grapheme base, rather than stacking vertically.

P3

•

•

•

Conformance 154 3.6 Combination

The combining parentheses diacritical marks U+1ABB..U+1ABD are also

positioned in a side-by-side manner, surrounding other diacritics, as described

in the subsection “Combining Diacritical Marks Extended: U+1AB0–U+1AFF”

in Section 7.9, Combining Marks.

Because of typographical conflict with the descender of a base character, a

combining comma below placed on a lowercase “g” is traditionally rendered as if

it were an inverted comma above. See Figure 7-1.

Because of typographical conflict with the ascender of a base character, a

combining há ek (caron) is traditionally rendered as an apostrophe when

placed, for example, on a lowercase “d”. See Figure 7-1.

The relative placement of vowel marks in Arabic cannot be predicted by default

stacking behavior alone, but depends on traditional rules of Arabic typography.

See Figure 9-5.

For example, if one nonspacing mark occurs above a grapheme base and

another nonspacing mark occurs below it, they will have distinct combining

classes. The order in which they occur in the combining character sequence

does not matter for the display or interpretation of the resulting grapheme

cluster.

The introduction of the combining class for characters and its use in canonical

ordering in the standard is to precisely define canonical equivalence and thereby

clarify exactly which such alternate sequences must be considered as identical

for display and interpretation. See Figure 2-24.

In cases of nondistinct order, the order of combining marks has no linguistic

significance. The order does not reflect how “closely bound” they are to the base.

After canonical reordering, the order may no longer reflect the typed-in

sequence. Rendering systems should be prepared to deal with common typed-in

sequences and with canonically reordered sequences. See Table 5-3.

Inserting a combining grapheme joiner between two combining marks with

nondistinct order prevents their canonical reordering. For more information, see

“Combining Grapheme Joiner” in Section 23.2, Layout Controls.

•

[Guideline] Traditional typographical behavior will sometimes override

the default placement or rendering of nonspacing marks.

P4

•

•

•

[Normative] Nondistinct order. Nonspacing marks with different, non-

zero combining classes may occur in different orders without affecting

either the visual display of a combining character sequence or the inter‐

pretation of that sequence.

P5

•

•

•

•

Conformance 155 3.6 Combination

This implies that enclosing marks successively surround previous enclosing

marks. See Figure 3-1.

Dynamic application of enclosing marks—particularly sequences of enclosing

marks—is beyond the capability of most fonts and simple rendering processes. It

is not unexpected to find fallback rendering in cases such as that illustrated in

Figure 3-1.

Because such double diacritic display spans combinations of elements that

would otherwise be considered grapheme clusters, the support of double

diacritics in rendering may involve special handling for cursor placement and

text selection. See Figure 7-9 for an example.

This behavior can be conceived of as a kind of looser binding of such double

diacritics to their bases. In effect, all other nonspacing marks are applied first,

and then the double diacritic will span the resulting stacks. See Figure 7-10 for

an example.

Double diacritic nonspacing marks are also given a very high combining class,

so that in canonical order they appear at or near the end of any combining

character sequence. Figure 7-11 shows an example of the use of CGJ to block this

reordering.

The interaction of enclosing marks and double diacritics is not well defined

graphically. Many fonts and rendering processes may not be able to handle

combinations of these marks. It is not recommended to use combinations of

these together in the same grapheme cluster.

[Guideline] Enclosing marks surround their grapheme base and any

intervening nonspacing marks.

P6

•

Figure 3-1. Enclosing Marks

•

[Guideline] Double diacritic nonspacing marks, such as U+0360

COMBINING DOUBLE TILDE, apply to their grapheme base, but are intended

to be rendered with glyphs that encompass a following grapheme base as

well.

P7

•

[Guideline] When double diacritic nonspacing marks interact with

normal nonspacing marks in a grapheme cluster, they “float” to the outer‐

most layer of the stack of rendered marks (either above or below).

P8

•

•

•

[Guideline] When a nonspacing mark above (a combining mark with ccc

= 230) is applied to the letters i and j or any other character with the

P9

Conformance 156 3.6 Combination

See Figure 7-2 for an example.

For languages such as Lithuanian, in which both a dot and an accent must be

displayed, use U+0307 COMBINING DOT ABOVE. For guidelines in handling this

situation in case mapping, see Section 5.18, Case Mappings.

 When a grapheme cluster comprises a

Korean syllable, a combining mark applies to that entire syllable. For example, in the

following sequence the double dot tone mark is applied to the entire Korean syllable,

not just to the last jamo:

U+1100 choseong kiyeok + U+1161 jungseong a + U+302F double dot tone

mark →

If the combining mark in question is an enclosing combining mark, then it would

enclose the entire Korean syllable, rather than the last jamo in it:

U+1100 choseong kiyeok + U+1161 jungseong a + U+20DD enclosing circle

→

This treatment of the application of combining marks with respect to Korean sylla‐

bles follows from the implications of canonical equivalence. It should be noted,

however, that older implementations may have supported the application of an

enclosing combining mark to an entire Indic consonant conjunct or to a sequence of

grapheme clusters linked together by combining grapheme joiners. Such an approach

has a number of technical problems and leads to interoperability defects, so it is

strongly recommended that implementations do not follow it.

For more information on the recommended use of the combining grapheme joiner,

see the subsection “Combining Grapheme Joiner” in Section 23.2, Layout Controls.

For more discussion regarding the application of combining marks in general, see

Section 7.9, Combining Marks.

Soft_Dotted property, the inherent dot on the base character is suppressed

in display.

•

•

Combining Marks and Korean Syllables.

Conformance 157 3.6 Combination

Each character has at most one decomposition mapping. The mappings in

Section 3.12, Conjoining Jamo Behavior, are canonical mappings. The mappings

in the character names list are identified as either canonical or compatibility

mappings (see Section 24.1, Character Names List).

A decomposable character is also referred to as a precomposed character or

composite character.

The decomposition mappings from the Unicode Character Database are also

given in Section 24.1, Character Names List.

The decomposition mappings from the Unicode Character Database are also

given in Section 24.1, Character Names List.

Some compatibility decompositions remove formatting information.

3.7 Decomposition

Decomposition mapping: A mapping from a character to a sequence of one or

more characters that is a canonical or compatibility equivalent, and that is

listed in the character names list or described in Section 3.12, Conjoining Jamo

Behavior.

D62

•

Decomposable character: A character that is equivalent to a sequence of one or

more other characters, according to the decomposition mappings found in the

Unicode Character Database, and those described in Section 3.12, Conjoining

Jamo Behavior.

D63

•

•

Decomposition: A sequence of one or more characters that is equivalent to a

decomposable character. A full decomposition of a character sequence results

from decomposing each of the characters in the sequence until no characters

can be further decomposed.

D64

3.7.1 Compatibility Decomposition

Compatibility decomposition: The decomposition of a character or character

sequence that results from recursively applying both the compatibility

mappings and the canonical mappings found in the Unicode Character Data‐

base, and those described in Section 3.12, Conjoining Jamo Behavior, until no

characters can be further decomposed, and then reordering nonspacing marks

according to Section 3.11, Normalization Forms.

D65

•

•

Compatibility decomposable character: A character whose compatibility decom‐

position is not identical to its canonical decomposition. It may also be known

D66

Conformance 158 3.7 Decomposition

For example, U+00B5 MICRO SIGN has no canonical decomposition mapping, so

its canonical decomposition is the same as the character itself. It has a

compatibility decomposition to U+03BC GREEK SMALL LETTER MU. Because

MICRO SIGN has a compatibility decomposition that is not equal to its canonical

decomposition, it is a compatibility decomposable character.

For example, U+03D3 GREEK UPSILON WITH ACUTE AND HOOK SYMBOL

canonically decomposes to the sequence <U+03D2 GREEK UPSILON WITH

HOOK SYMBOL, U+0301 COMBINING ACUTE ACCENT>. That sequence has a

compatibility decomposition of <U+03A5 GREEK CAPITAL LETTER UPSILON,

U+0301 COMBINING ACUTE ACCENT>. Because GREEK UPSILON WITH ACUTE

AND HOOK SYMBOL has a compatibility decomposition that is not equal to its

canonical decomposition, it is a compatibility decomposable character.

This term should not be confused with the term “compatibility character,” which

is discussed in Section 2.3, Compatibility Characters.

Many compatibility decomposable characters are included in the Unicode

Standard solely to represent distinctions in other base standards. They support

transmission and processing of legacy data. Their use is discouraged other than

for legacy data or other special circumstances.

Some widely used and indispensable characters, such as NBSP, are compatibility

decomposable characters for historical reasons. Their use is not discouraged.

A large number of compatibility decomposable characters are used in phonetic

and mathematical notation, where their use is not discouraged.

For historical reasons, some characters that might have been given a

compatibility decomposition were not, in fact, decomposed. The Normalization

Stability Policy prohibits adding decompositions for such cases in the future, so

that normalization forms will stay stable. See the subsection “Policies” in

Section B.3, Other Unicode Online Resources.

Replacing a compatibility decomposable character by its compatibility

decomposition may lose round-trip convertibility with a base standard.

as a compatibility precomposed character or a compatibility composite char‐

acter.

•

•

•

•

•

•

•

•

Compatibility equivalent: Two character sequences are said to be compatibility

equivalents if their full compatibility decompositions are identical.

D67

3.7.2 Canonical Decomposition

Canonical decomposition: The decomposition of a character or character

sequence that results from recursively applying the canonical mappings found

in the Unicode Character Database and those described in Section 3.12,

Conjoining Jamo Behavior, until no characters can be further decomposed, and

D68

Conformance 159 3.7 Decomposition

The decomposition mappings from the Unicode Character Database are also

printed in Section 24.1, Character Names List.

A canonical decomposition does not remove formatting information.

For example, U+00E0 LATIN SMALL LETTER A WITH GRAVE is a canonical

decomposable character because its canonical decomposition is to the sequence

<U+0061 LATIN SMALL LETTER A, U+0300 COMBINING GRAVE ACCENT>.

U+212A KELVIN SIGN is a canonical decomposable character because its

canonical decomposition is to U+004B LATIN CAPITAL LETTER K.

For example, the sequences <o, combining-diaeresis> and <ö> are canonical

equivalents. Canonical equivalence is a Unicode property. It should not be

confused with language-specific collation or matching, which may add other

equivalencies. For example, in Swedish, ö is treated as a completely different

letter from o and is collated after z. In German, ö is weakly equivalent to oe and

is collated with oe. In English, ö is just an o with a diacritic that indicates that it

is pronounced separately from the previous letter (as in coöperate) and is

collated with o.

By definition, all canonical-equivalent sequences are also compatibility-

equivalent sequences.

For information on the use of decomposition in normalization, see Section 3.11,

Normalization Forms.

then reordering nonspacing marks according to Section 3.11, Normalization

Forms.

•

•

Canonical decomposable character: A character that is not identical to its

canonical decomposition. It may also be known as a canonical precomposed

character or a canonical composite character.

D69

•

Canonical equivalent: Two character sequences are said to be canonical equiva‐

lents if their full canonical decompositions are identical.

D70

•

•

Conformance 160 3.7 Decomposition

High-surrogate and low-surrogate code points are designated only for that use.

High-surrogate and low-surrogate code units are used only in the context of the

UTF-16 character encoding form.

Surrogate pairs are used only in UTF-16. (See Section 3.9, Unicode Encoding

Forms.)

Isolated surrogate code units have no interpretation on their own. Certain other

isolated code units in other encoding forms also have no interpretation on their

own. For example, the isolated byte 80
16

 has no interpretation in UTF-8; it can

be used only as part of a multibyte sequence. (See Table 3-7.)

Sometimes high-surrogate code units are referred to as leading surrogates. Low-

surrogate code units are then referred to as trailing surrogates. This is analogous

to usage in UTF-8, which has leading bytes and trailing bytes.

For more information, see Section 23.6, Surrogates Area, and Section 5.4,

Handling Surrogate Pairs in UTF-16.

3.8 Surrogates

High-surrogate code point: A Unicode code point in the range U+D800 to

U+DBFF.

D71

High-surrogate code unit: A 16-bit code unit in the range D800
16

 to DBFF
16

,

used in UTF-16 as the leading code unit of a surrogate pair.

D72

Low-surrogate code point: A Unicode code point in the range U+DC00 to

U+DFFF.

D73

Low-surrogate code unit: A 16-bit code unit in the range DC00
16

 to DFFF
16

,

used in UTF-16 as the trailing code unit of a surrogate pair.

D74

•

•

Surrogate pair: A representation for a single abstract character that consists of

a sequence of two 16-bit code units, where the first value of the pair is a high-

surrogate code unit and the second value is a low-surrogate code unit.

D75

•

•

•

•

Conformance 161 3.8 Surrogates

The Unicode Standard supports three character encoding forms: UTF-32, UTF-16,

and UTF-8. Each encoding form maps the Unicode code points U+0000..U+D7FF

and U+E000..U+10FFFF to unique code unit sequences. The size of the code unit is

specified for each encoding form. This section presents the formal definition of each

of these encoding forms.

As a result of this definition, the set of Unicode scalar values consists of the

ranges 0 to D7FF
16

 and E000
16

 to 10FFFF
16

, inclusive.

Code units are particular units of computer storage. Other character encoding

standards typically use code units defined as 8-bit units—that is, octets. The

Unicode Standard uses 8-bit code units in the UTF-8 encoding form, 16-bit code

units in the UTF-16 encoding form, and 32-bit code units in the UTF-32

encoding form.

A code unit is also referred to as a code value in the information industry.

In the Unicode Standard, specific values of some code units cannot be used to

represent an encoded character in isolation. This restriction applies to isolated

surrogate code units in UTF-16 and to the bytes 80–FF in UTF-8. Similar

restrictions apply for the implementations of other character encoding

standards; for example, the bytes 81–9F, E0–FC in SJIS (Shift-JIS) cannot

represent an encoded character by themselves.

For information on use of wchar_t or other programming language types to

represent Unicode code units, see “ANSI/ISO C wchar_t” in Section 5.2,

Programming Languages and Data Types.

When the code unit is an 8-bit unit, a code unit sequence may also be referred to

as a byte sequence.

A code unit sequence may consist of a single code unit.

In the context of programming languages, the value of a string data type

basically consists of a code unit sequence. Informally, a code unit sequence is

itself just referred to as a string, and a byte sequence is referred to as a byte string.

Care must be taken in making this terminological equivalence, however,

3.9 Unicode Encoding Forms

Unicode scalar value: Any Unicode code point except high-surrogate and low-

surrogate code points.

D76

•

Code unit: The minimal bit combination that can represent a unit of encoded

text for processing or interchange.

D77

•

•

•

•

Code unit sequence: An ordered sequence of one or more code units. D78

•

•

•

Conformance 162 3.9 Unicode Encoding Forms

because the formally defined concept of a string may have additional

requirements or complications in programming languages. For example, a string

is defined as a pointer to char in the C language and is conventionally terminated

with a NULL character. In object-oriented languages, a string is a complex

object, with associated methods, and its value may or may not consist of merely

a code unit sequence.

Depending on the structure of a character encoding standard, it may be

necessary to use a code unit sequence (of more than one unit) to represent a

single encoded character. For example, the code unit in SJIS is a byte: encoded

characters such as “a” can be represented with a single byte in SJIS, whereas

ideographs require a sequence of two code units. The Unicode Standard also

makes use of code unit sequences whose length is greater than one code unit.

This standard defines three Unicode encoding forms. See D90, D91, and D92.

Unless otherwise stated, the term Unicode encoding form refers to one of those

three forms. For clarity, they can be referred to as standard Unicode encoding

forms.

For historical reasons, the Unicode encoding forms are also referred to as

Unicode (or UCS) transformation formats (UTF). That term is actually

ambiguous between its usage for encoding forms and encoding schemes.

The mapping of the set of Unicode scalar values to the set of code unit

sequences for a Unicode encoding form is one-to-one. This property guarantees

that a reverse mapping can always be derived. Given the mapping of any

Unicode scalar value to a particular code unit sequence for a given encoding

form, one can derive the original Unicode scalar value unambiguously from that

code unit sequence.

The mapping of the set of Unicode scalar values to the set of code unit

sequences for a Unicode encoding form is not onto. In other words, for any given

encoding form, there exist code unit sequences that have no associated Unicode

scalar value.

To ensure that the mapping for a Unicode encoding form is one-to-one, all

Unicode scalar values, including those corresponding to noncharacter code

points and unassigned code points, must be mapped to unique code unit

sequences. Note that this requirement does not extend to high-surrogate and

low-surrogate code points, which are excluded by definition from the set of

Unicode scalar values.

•

Unicode encoding form: A mapping from each Unicode scalar value to a unique

code unit sequence.

D79

•

•

•

•

•

•

Conformance 163 3.9 Unicode Encoding Forms

In the rawest form, Unicode strings may be implemented simply as arrays of the

appropriate integral data type, consisting of a sequence of code units lined up

one immediately after the other.

A single Unicode string must contain only code units from a single Unicode

encoding form. It is not permissible to mix forms within a string.

Any code unit sequence that would correspond to a code point outside the

defined range of Unicode scalar values would, for example, be ill-formed.

UTF-8 has some strong constraints on the possible byte ranges for leading and

trailing bytes. A violation of those constraints would produce a code unit

sequence that could not be mapped to a Unicode scalar value, resulting in an ill-

formed code unit sequence.

In other words, an ill-formed code unit subsequence cannot overlap with a

minimal well-formed subsequence.

For UTF-8, see the specification in D92 and Table 3-7.

For UTF-16, see the specification in D91.

For UTF-32, see the specification in D90.

Unicode string: A code unit sequence containing code units of a particular

Unicode encoding form.

D80

•

•

Unicode 8-bit string: A Unicode string containing only UTF-8 code units. D81

Unicode 16-bit string: A Unicode string containing only UTF-16 code units. D82

Unicode 32-bit string: A Unicode string containing only UTF-32 code units. D83

Ill-formed: A Unicode code unit sequence that purports to be in a Unicode

encoding form is called ill-formed if and only if it does not follow the specifica‐

tion of that Unicode encoding form.

D84

•

•

Ill-formed code unit subsequence: A non-empty subsequence of a Unicode code

unit sequence X which does not contain any code units which also belong to

any minimal well-formed subsequence of X.

D84a

•

Well-formed: A Unicode code unit sequence that purports to be in a Unicode

encoding form is called well-formed if and only if it does follow the specifica‐

tion of that Unicode encoding form.

D85

Minimal well-formed code unit subsequence: A well-formed Unicode code unit

sequence that maps to a single Unicode scalar value.

D85a

•

•

•

Conformance 164 3.9 Unicode Encoding Forms

A well-formed Unicode code unit sequence can be partitioned into one or more

minimal well-formed code unit sequences for the given Unicode encoding form. Any

Unicode code unit sequence can be partitioned into subsequences that are either

well-formed or ill-formed. The sequence as a whole is well-formed if and only if it

contains no ill-formed subsequence. The sequence as a whole is ill-formed if and

only if it contains at least one ill-formed subsequence.

The UTF-8 code unit sequence <41 C3 B1 42> is well-formed, because it can be

partitioned into subsequences, all of which match the specification for UTF-8 in

Table 3-7. It consists of the following minimal well-formed code unit

subsequences: <41>, <C3 B1>, and <42>.

The UTF-8 code unit sequence <41 C2 C3 B1 42> is ill-formed, because it

contains one ill-formed subsequence. There is no subsequence for the C2 byte

which matches the specification for UTF-8 in Table 3-7. The code unit sequence

is partitioned into one minimal well-formed code unit subsequence, <41>,

followed by one ill-formed code unit subsequence, <C2>, followed by two

minimal well-formed code unit subsequences, <C3 B1> and <42>.

In isolation, the UTF-8 code unit sequence <C2 C3> would be ill-formed, but in

the context of the UTF-8 code unit sequence <41 C2 C3 B1 42>, <C2 C3> does

not constitute an ill-formed code unit subsequence, because the C3 byte is

actually the first byte of the minimal well-formed UTF-8 code unit subsequence

<C3 B1>. Ill-formed code unit subsequences do not overlap with minimal well-

formed code unit subsequences.

A Unicode string consisting of a well-formed UTF-8 code unit sequence is said

to be in UTF-8. Such a Unicode string is referred to as a valid UTF-8 string, or a

UTF-8 string for short.

A Unicode string consisting of a well-formed UTF-16 code unit sequence is said

to be in UTF-16. Such a Unicode string is referred to as a valid UTF-16 string, or

a UTF-16 string for short.

Well-formed UTF-8 code unit sequence: A well-formed Unicode code unit

sequence of UTF-8 code units.

D86

•

•

•

Well-formed UTF-16 code unit sequence: A well-formed Unicode code unit

sequence of UTF-16 code units.

D87

Well-formed UTF-32 code unit sequence: A well-formed Unicode code unit

sequence of UTF-32 code units.

D88

In a Unicode encoding form: A Unicode string is said to be in a particular

Unicode encoding form if and only if it consists of a well-formed Unicode code

unit sequence of that Unicode encoding form.

D89

•

•

Conformance 165 3.9 Unicode Encoding Forms

A Unicode string consisting of a well-formed UTF-32 code unit sequence is said

to be in UTF-32. Such a Unicode string is referred to as a valid UTF-32 string, or

a UTF-32 string for short.

Unicode strings need not contain well-formed code unit sequences under all condi‐

tions. This is equivalent to saying that a particular Unicode string need not be in a

Unicode encoding form.

For example, it is perfectly reasonable to talk about an operation that takes the

two Unicode 16-bit strings, <004D D800> and <DF02 004D>, each of which

contains an ill-formed UTF-16 code unit sequence, and concatenates them to

form another Unicode string <004D D800 DF02 004D>, which contains a well-

formed UTF-16 code unit sequence. The first two Unicode strings are not in

UTF-16, but the resultant Unicode string is.

As another example, the code unit sequence <C0 80 61 F3> is a Unicode 8-bit

string, but does not consist of a well-formed UTF-8 code unit sequence. That

code unit sequence could not result from the specification of the UTF-8

encoding form and is thus ill-formed. (The same code unit sequence could, of

course, be well-formed in the context of some other character encoding standard

using 8-bit code units, such as ISO/IEC 8859-1, or vendor code pages.)

If a Unicode string purports to be in a Unicode encoding form, then it must not

contain any ill-formed code unit subsequence.

If a process which verifies that a Unicode string is in a Unicode encoding form

encounters an ill-formed code unit subsequence in that string, then it must not iden‐

tify that string as being in that Unicode encoding form.

A process which interprets a Unicode string must not interpret any ill-formed code

unit subsequences in the string as characters. (See conformance clause C10.) Further‐

more, such a process must not treat any adjacent well-formed code unit sequences as

being part of those ill-formed code unit sequences.

Table 3-4 gives examples that summarize the three Unicode encoding forms.

Code Point Encoding Form Code Unit Sequence

U+004D

UTF-32 0000004D

UTF-16 004D

UTF-8 4D

U+0430

UTF-32 00000430

UTF-16 0430

UTF-8 D0 B0

•

•

•

Table 3-4. Examples of Unicode Encoding Forms

Conformance 166 3.9 Unicode Encoding Forms

U+4E8C

UTF-32 00004E8C

UTF-16 4E8C

UTF-8 E4 BA 8C

U+10302

UTF-32 00010302

UTF-16 D800 DF02

UTF-8 F0 90 8C 82

In UTF-32, the code point sequence <004D, 0430, 4E8C, 10302> is represented

as <0000004D 00000430 00004E8C 00010302>.

Because surrogate code points are not included in the set of Unicode scalar

values, UTF-32 code units in the range 0000D800
16

..0000DFFF
16

 are ill-formed.

Any UTF-32 code unit greater than 0010FFFF
16

 is ill-formed.

For a discussion of the relationship between UTF-32 and UCS-4 encoding form

defined in ISO/IEC 10646, see Appendix C.2, Encoding Forms in ISO/IEC 10646.

In UTF-16, the code point sequence <004D, 0430, 4E8C, 10302> is represented

as <004D 0430 4E8C D800 DF02>, where <D800 DF02> corresponds to

U+10302.

Because surrogate code points are not Unicode scalar values, isolated UTF-16

code units in the range D800
16

..DFFF
16

 are ill-formed.

Table 3-5 specifies the bit distribution for the UTF-16 encoding form. Note that for

Unicode scalar values equal to or greater than U+10000, UTF-16 uses surrogate pairs.

Calculation of the surrogate pair values involves subtraction of 10000
16

, to account

for the starting offset to the scalar value. ISO/IEC 10646 specifies an equivalent

UTF-16 encoding form. For details, see Appendix C.3, UTF-8 and UTF-16.

3.9.1 UTF-32

UTF-32 encoding form: The Unicode encoding form that assigns each Unicode

scalar value to a single unsigned 32-bit code unit with the same numeric value

as the Unicode scalar value.

D90

•

•

•

3.9.2 UTF-16

UTF-16 encoding form: The Unicode encoding form that assigns each Unicode

scalar value in the ranges U+0000..U+D7FF and U+E000..U+FFFF to a

single unsigned 16-bit code unit with the same numeric value as the Unicode

scalar value, and that assigns each Unicode scalar value in the range

U+10000..U+10FFFF to a surrogate pair, according to Table 3-5.

D91

•

•

Conformance 167 3.9 Unicode Encoding Forms

Scalar Value UTF-16

xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx

000uuuuuxxxxxxxxxxxxxxxx 110110wwwwxxxxxx 110111xxxxxxxxxx

Note: wwww = uuuuu - 1

In UTF-8, the code point sequence <004D, 0430, 4E8C, 10302> is represented as

<4D D0 B0 E4 BA 8C F0 90 8C 82>, where <4D> corresponds to U+004D, <D0

B0> corresponds to U+0430, <E4 BA 8C> corresponds to U+4E8C, and <F0 90

8C 82> corresponds to U+10302.

Any UTF-8 byte sequence that does not match the patterns listed in Table 3-7 is

ill-formed.

Before the Unicode Standard, Version 3.1, the problematic “non-shortest form”

byte sequences in UTF-8 were those where BMP characters could be represented

in more than one way. These sequences are ill-formed, because they are not

allowed by Table 3-7.

Because surrogate code points are not Unicode scalar values, any UTF-8 byte

sequence that would otherwise map to code points U+D800..U+DFFF is ill-

formed.

Table 3-6 specifies the bit distribution for the UTF-8 encoding form, showing the

ranges of Unicode scalar values corresponding to one-, two-, three-, and four-byte

sequences. For a discussion of the difference in the formulation of UTF-8 in ISO/IEC

10646, see Appendix C.3, UTF-8 and UTF-16.

Scalar Value First Byte Second Byte Third Byte Fourth Byte

00000000 0xxxxxxx 0xxxxxxx

00000yyy yyxxxxxx 110yyyyy 10xxxxxx

zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx

000uuuuu zzzzyyyy yyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

Table 3-7 lists all of the byte sequences that are well-formed in UTF-8. A range of byte

values such as A0..BF indicates that any byte from A0 to BF (inclusive) is well-

Table 3-5. UTF-16 Bit Distribution

3.9.3 UTF-8

UTF-8 encoding form: The Unicode encoding form that assigns each Unicode

scalar value to an unsigned byte sequence of one to four bytes in length, as

specified in Table 3-6 and Table 3-7.

D92

•

•

•

•

Table 3-6. UTF-8 Bit Distribution

Conformance 168 3.9 Unicode Encoding Forms

formed in that position. Any byte value outside of the ranges listed is ill-formed. For

example:

The byte sequence <C0 AF> is ill-formed, because C0 is not well-formed in the

“First Byte” column.

The byte sequence <E0 9F 80> is ill-formed, because in the row where E0 is

well-formed as a first byte, 9F is not well-formed as a second byte.

The byte sequence <F4 80 83 92> is well-formed, because every byte in that

sequence matches a byte range in a row of the table (the last row).

Code Points First Byte Second Byte Third Byte Fourth Byte

U+0000..U+007F 00..7F

U+0080..U+07FF C2..DF 80..BF

U+0800..U+0FFF E0 A0..BF 80..BF

U+1000..U+CFFF E1..EC 80..BF 80..BF

U+D000..U+D7FF ED 80..9F 80..BF

U+E000..U+FFFF EE..EF 80..BF 80..BF

U+10000..U+3FFFF F0 90..BF 80..BF 80..BF

U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF

U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

In Table 3-7, cases where a trailing byte range is not 80..BF are shown in bold italic to

draw attention to them. These exceptions to the general pattern occur only in the

second byte of a sequence.

As a consequence of the well-formedness conditions specified in Table 3-7, the

following byte values are disallowed in UTF-8: C0–C1, F5–FF.

In implementations of the Unicode Standard, a typical API will logically convert

the input code unit sequence into Unicode scalar values (code points) and then

convert those Unicode scalar values into the output code unit sequence. Proper

analysis of the encoding forms makes it possible to convert the code units

directly, thereby obtaining the same results but with a more efficient process.

A conformant encoding form conversion will treat any ill-formed code unit

sequence as an error condition. (See conformance clause C10.) This guarantees

•

•

•

Table 3-7. Well-Formed UTF-8 Byte Sequences

3.9.4 Encoding Form Conversion

Encoding form conversion: A conversion defined directly between the code unit

sequences of one Unicode encoding form and the code unit sequences of

another Unicode encoding form.

D93

•

•

Conformance 169 3.9 Unicode Encoding Forms

that it will neither interpret nor emit an ill-formed code unit sequence. Any

implementation of encoding form conversion must take this requirement into

account, because an encoding form conversion implicitly involves a verification

that the Unicode strings being converted do, in fact, contain well-formed code

unit sequences.

The requirement not to interpret any ill-formed code unit subsequences in a string as

characters (see conformance clause C10) has important consequences for conversion

processes. Such processes may, for example, interpret UTF-8 code unit sequences as

Unicode character sequences. If the converter encounters an ill-formed UTF-8 code

unit sequence which starts with a valid first byte, but which does not continue with

valid successor bytes (see Table 3-7), it must not consume the successor bytes as part

of the ill-formed subsequence whenever those successor bytes themselves constitute

part of a well-formed UTF-8 code unit subsequence.

If an implementation of a UTF-8 conversion process stops at the first error encoun‐

tered, without reporting the end of any ill-formed UTF-8 code unit subsequence, then

the requirement makes little practical difference. However, the requirement does

introduce a significant constraint if the UTF-8 converter continues past the point of a

detected error, perhaps by substituting one or more U+FFFD replacement characters

for the uninterpretable, ill-formed UTF-8 code unit subsequence. For example, with

the input UTF-8 code unit sequence <C2 41 42>, such a UTF-8 conversion process

must not return <U+FFFD> or <U+FFFD, U+0042>, because either of those

outputs would be the result of misinterpreting a well-formed subsequence as being

part of the ill-formed subsequence. The expected return value for such a process

would instead be <U+FFFD, U+0041, U+0042>.

For a UTF-8 conversion process to consume valid successor bytes is not only non-

conformant, but also leaves the converter open to security exploits. See Unicode

Technical Report #36, “Unicode Security Considerations.”

Although a UTF-8 conversion process is required to never consume well-formed

subsequences as part of its error handling for ill-formed subsequences, such a process

is not otherwise constrained in how it deals with any ill-formed subsequence itself.

An ill-formed subsequence consisting of more than one code unit could be treated as

a single error or as multiple errors.

For example, in processing the UTF-8 code unit sequence <F0 80 80 41>, the only

formal requirement mandated by Unicode conformance for a converter is that the

<41> be processed and correctly interpreted as <U+0041>. The converter could

return <U+FFFD, U+0041>, handling <F0 80 80> as a single error, or <U+FFFD,

U+FFFD, U+FFFD, U+0041>, handling each byte of <F0 80 80> as a separate error,

3.9.5 Constraints on Conversion Processes

Conformance 170 3.9 Unicode Encoding Forms

or could take other approaches to signalling <F0 80 80> as an ill-formed code unit

subsequence.

An increasing number of implementations are adopting the handling of ill-formed

subsequences as specified in the W3C standard for encoding to achieve consistent

U+FFFD replacements. See:

http://www.w3.org/TR/encoding/

Although the Unicode Standard does not require this practice for conformance, the

following text describes this practice and gives detailed examples.

a. the initial subsequence of a well-formed code unit sequence, or

b. a subsequence of length one.

This definition of the maximal subpart is used in describing how far to advance

processing when making substitutions: always process at least one code unit, or as

many code units as match the beginning of a well-formed character, up to the point

where the next code unit would make it ill-formed, that is, an offset is reached that

does not continue this partial character.

Or stated more formally:

Whenever an unconvertible offset is reached during conversion of a code

unit sequence:

1. The maximal subpart at that offset is replaced by a single U+FFFD.

2. The conversion proceeds at the offset immediately after the maximal

subpart.

This practice of substituting maximal subparts can be trivially applied to the UTF-32

or UTF-16 encoding forms, but is primarily of interest when converting UTF-8

strings.

Unless the beginning of an ill-formed subsequence matches the beginning of some

well-formed sequence, this practice replaces almost every byte of an ill-formed UTF-8

sequence with one U+FFFD. For example, every byte of a “non-shortest form”

3.9.6 U+FFFD Substitution of Maximal Subparts

Unconvertible offset: An offset in a code unit sequence for which no code unit

subsequence starting at that offset is well-formed.

D93a

Maximal subpart of an ill-formed subsequence: The longest code unit subse‐

quence starting at an unconvertible offset that is either:

D93b

Conformance 171 3.9 Unicode Encoding Forms

sequence (see Definition D92), or of a truncated version thereof, is replaced, as

shown in Table 3-8. (The interpretation of “non-shortest form” sequences has been

forbidden since the publication of Corrigendum #1.)

Bytes C0 AF E0 80 BF F0 81 82 41

Output FFFD FFFD FFFD FFFD FFFD FFFD FFFD FFFD 0041

Also, every byte of a sequence that would correspond to a surrogate code point, or of

a truncated version thereof, is replaced with one U+FFFD, as shown in Table 3-9.

(The interpretation of such byte sequences has been forbidden since Unicode 3.2.)

Bytes ED A0 80 ED BF BF ED AF 41

Output FFFD FFFD FFFD FFFD FFFD FFFD FFFD FFFD 0041

Finally, every byte of a sequence that would correspond to a code point beyond

U+10FFFF, and any other byte that does not contribute to a valid sequence, is also

replaced with one U+FFFD, as shown in Table 3-10.

Bytes F4 91 92 93 FF 41 80 BF 42

Output FFFD FFFD FFFD FFFD FFFD 0041 FFFD FFFD 0042

Only when a sequence of two or three bytes is a truncated version of a sequence

which is otherwise well-formed to that point, is more than one byte replaced with a

single U+FFFD, as shown in Table 3-11.

Bytes E1 80 E2 F0 91 92 F1 BF 41

Output FFFD FFFD FFFD FFFD 0041

For a discussion of the generalization of this approach for conversion of other char‐

acter sets to Unicode, see Section 5.22, U+FFFD Substitution in Conversion.

Table 3-8. U+FFFD for Non-Shortest Form Sequences

Table 3-9. U+FFFD for Ill-Formed Sequences for Surrogates

Table 3-10. U+FFFD for Other Ill-Formed Sequences

Table 3-11. U+FFFD for Truncated Sequences

Conformance 172 3.9 Unicode Encoding Forms

For historical reasons, the Unicode encoding schemes are also referred to as

Unicode (or UCS) transformation formats (UTF). That term is, however,

ambiguous between its usage for encoding forms and encoding schemes.

The Unicode Standard supports seven encoding schemes. This section presents the

formal definition of each of these encoding schemes.

In the UTF-8 encoding scheme, the UTF-8 code unit sequence <4D D0 B0 E4

BA 8C F0 90 8C 82> is serialized as <4D D0 B0 E4 BA 8C F0 90 8C 82>.

Because the UTF-8 encoding form already deals in ordered byte sequences, the

UTF-8 encoding scheme is trivial. The byte ordering is already obvious and

completely defined by the UTF-8 code unit sequence itself. The UTF-8 encoding

scheme is defined merely for completeness of the Unicode character encoding

model.

While there is obviously no need for a byte order signature when using UTF-8,

there are occasions when processes convert UTF-16 or UTF-32 data containing a

byte order mark into UTF-8. When represented in UTF-8, the byte order mark

turns into the byte sequence <EF BB BF>. Its usage at the beginning of a UTF-8

data stream is not required by the Unicode Standard, but its presence does not

affect conformance to the UTF-8 encoding scheme. Identification of the <EF BB

BF> byte sequence at the beginning of a data stream can, however, be taken as a

near-certain indication that the data stream is using the UTF-8 encoding

scheme.

In UTF-16BE, the UTF-16 code unit sequence <004D 0430 4E8C D800 DF02> is

serialized as <00 4D 04 30 4E 8C D8 00 DF 02>.

In UTF-16BE, an initial byte sequence <FE FF> is interpreted as U+FEFF ZERO

WIDTH NO-BREAK SPACE.

3.10 Unicode Encoding Schemes

Unicode encoding scheme: A specified byte serialization for a Unicode encoding

form, including the specification of the handling of a byte order mark (BOM),

if allowed.

D94

•

UTF-8 encoding scheme: The Unicode encoding scheme that serializes a UTF-8

code unit sequence in exactly the same order as the code unit sequence itself.

D95

•

•

•

UTF-16BE encoding scheme: The Unicode encoding scheme that serializes a

UTF-16 code unit sequence as a byte sequence in big-endian format.

D96

•

•

Conformance 173 3.10 Unicode Encoding Schemes

In UTF-16LE, the UTF-16 code unit sequence <004D 0430 4E8C D800 DF02> is

serialized as <4D 00 30 04 8C 4E 00 D8 02 DF>.

In UTF-16LE, an initial byte sequence <FF FE> is interpreted as U+FEFF ZERO

WIDTH NO-BREAK SPACE.

In the UTF-16 encoding scheme, the UTF-16 code unit sequence <004D 0430

4E8C D800 DF02> is serialized as <FE FF 00 4D 04 30 4E 8C D8 00 DF 02> or

<FF FE 4D 00 30 04 8C 4E 00 D8 02 DF> or <00 4D 04 30 4E 8C D8 00 DF 02>.

In the UTF-16 encoding scheme, an initial byte sequence corresponding to

U+FEFF is interpreted as a byte order mark; it is used to distinguish between

the two byte orders. An initial byte sequence <FE FF> indicates big-endian

order, and an initial byte sequence <FF FE> indicates little-endian order. The

BOM is not considered part of the content of the text.

The UTF-16 encoding scheme may or may not begin with a BOM. However,

when there is no BOM, and in the absence of a higher-level protocol, the byte

order of the UTF-16 encoding scheme is big-endian.

Table 3-12 gives examples that summarize the three Unicode encoding schemes for

the UTF-16 encoding form.

Code Unit Sequence Encoding Scheme Byte Sequence(s)

004D

UTF-16BE 00 4D

UTF-16LE 4D 00

UTF-16
FE FF 00 4D
FF FE 4D 00
00 4D

0430

UTF-16BE 04 30

UTF-16LE 30 04

UTF-16
FE FF 04 30
FF FE 30 04
04 30

4E8C UTF-16BE 4E 8C

UTF-16LE 8C 4E

UTF-16LE encoding scheme: The Unicode encoding scheme that serializes a

UTF-16 code unit sequence as a byte sequence in little-endian format.

D97

•

•

UTF-16 encoding scheme: The Unicode encoding scheme that serializes a

UTF-16 code unit sequence as a byte sequence in either big-endian or little-

endian format.

D98

•

•

•

Table 3-12. Summary of UTF-16BE, UTF-16LE, and UTF-16

Conformance 174 3.10 Unicode Encoding Schemes

UTF-16
FE FF 4E 8C
FF FE 8C 4E
4E 8C

D800 DF02

UTF-16BE D8 00 DF 02

UTF-16LE 00 D8 02 DF

UTF-16
FE FF D8 00 DF 02
FF FE 00 D8 02 DF
D8 00 DF 02

In UTF-32BE, the UTF-32 code unit sequence <0000004D 00000430 00004E8C

00010302> is serialized as <00 00 00 4D 00 00 04 30 00 00 4E 8C 00 01 03 02>.

In UTF-32BE, an initial byte sequence <00 00 FE FF> is interpreted as U+FEFF

ZERO WIDTH NO-BREAK SPACE.

In UTF-32LE, the UTF-32 code unit sequence <0000004D 00000430 00004E8C

00010302> is serialized as <4D 00 00 00 30 04 00 00 8C 4E 00 00 02 03 01 00>.

In UTF-32LE, an initial byte sequence <FF FE 00 00> is interpreted as U+FEFF

ZERO WIDTH NO-BREAK SPACE.

In the UTF-32 encoding scheme, the UTF-32 code unit sequence <0000004D

00000430 00004E8C 00010302> is serialized as <00 00 FE FF 00 00 00 4D 00

00 04 30 00 00 4E 8C 00 01 03 02> or <FF FE 00 00 4D 00 00 00 30 04 00 00 8C

4E 00 00 02 03 01 00> or <00 00 00 4D 00 00 04 30 00 00 4E 8C 00 01 03 02>.

In the UTF-32 encoding scheme, an initial byte sequence corresponding to

U+FEFF is interpreted as a byte order mark; it is used to distinguish between

the two byte orders. An initial byte sequence <00 00 FE FF> indicates big-

endian order, and an initial byte sequence <FF FE 00 00> indicates little-endian

order. The BOM is not considered part of the content of the text.

The UTF-32 encoding scheme may or may not begin with a BOM. However,

when there is no BOM, and in the absence of a higher-level protocol, the byte

order of the UTF-32 encoding scheme is big-endian.

Table 3-13 gives examples that summarize the three Unicode encoding schemes for

the UTF-32 encoding form.

UTF-32BE encoding scheme: The Unicode encoding scheme that serializes a

UTF-32 code unit sequence as a byte sequence in big-endian format.

D99

•

•

UTF-32LE encoding scheme: The Unicode encoding scheme that serializes a

UTF-32 code unit sequence as a byte sequence in little-endian format.

D100

•

•

UTF-32 encoding scheme: The Unicode encoding scheme that serializes a

UTF-32 code unit sequence as a byte sequence in either big-endian or little-

endian format.

D101

•

•

•

Conformance 175 3.10 Unicode Encoding Schemes

Code Unit Sequence Encoding Scheme Byte Sequence(s)

0000004D

UTF-32BE 00 00 00 4D

UTF-32LE 4D 00 00 00

UTF-32
00 00 FE FF 00 00 00 4D
FF FE 00 00 4D 00 00 00
00 00 00 4D

00000430

UTF-32BE 00 00 04 30

UTF-32LE 30 04 00 00

UTF-32
00 00 FE FF 00 00 04 30
FF FE 00 00 30 04 00 00
00 00 04 30

00004E8C

UTF-32BE 00 00 4E 8C

UTF-32LE 8C 4E 00 00

UTF-32
00 00 FE FF 00 00 4E 8C
FF FE 00 00 8C 4E 00 00
00 00 4E 8C

00010302

UTF-32BE 00 01 03 02

UTF-32LE 02 03 01 00

UTF-32
00 00 FE FF 00 01 03 02
FF FE 00 00 02 03 01 00
00 01 03 02

The terms UTF-8, UTF-16, and UTF-32, when used unqualified, are ambiguous

between their sense as Unicode encoding forms or Unicode encoding schemes. For

UTF-8, this ambiguity is usually innocuous, because the UTF-8 encoding scheme is

trivially derived from the byte sequences defined for the UTF-8 encoding form.

However, for UTF-16 and UTF-32, the ambiguity is more problematical. As encoding

forms, UTF-16 and UTF-32 refer to code units in memory; there is no associated byte

orientation, and a BOM is never used. As encoding schemes, UTF-16 and UTF-32

refer to serialized bytes, as for streaming data or in files; they may have either byte

orientation, and a BOM may be present.

When the usage of the short terms “UTF-16” or “UTF-32” might be misinterpreted,

and where a distinction between their use as referring to Unicode encoding forms or

to Unicode encoding schemes is important, the full terms, as defined in this chapter

of the Unicode Standard, should be used. For example, use UTF-16 encoding form or

UTF-16 encoding scheme. These terms may also be abbreviated to UTF-16 CEF or

UTF-16 CES, respectively.

When converting between different encoding schemes, extreme care must be taken

in handling any initial byte order marks. For example, if one converted a UTF-16 byte

serialization with an initial byte order mark to a UTF-8 byte serialization, thereby

converting the byte order mark to <EF BB BF> in the UTF-8 form, the <EF BB BF>

Table 3-13. Summary of UTF-32BE, UTF-32LE, and UTF-32

Conformance 176 3.10 Unicode Encoding Schemes

would now be ambiguous as to its status as a byte order mark (from its source) or as

an initial zero width no-break space. If the UTF-8 byte serialization were then

converted to UTF-16BE and the initial <EF BB BF> were converted to <FE FF>, the

interpretation of the U+FEFF character would have been modified by the conver‐

sion. This would be nonconformant behavior according to conformance clause C7,

because the change between byte serializations would have resulted in modification

of the interpretation of the text. This is one reason why the use of the initial byte

sequence <EF BB BF> as a signature on UTF-8 byte sequences is not recommended

by the Unicode Standard.

Conformance 177 3.10 Unicode Encoding Schemes

The concepts of canonical equivalent (D70) or compatibility equivalent (D67) charac‐

ters in the Unicode Standard make it necessary to have a full, formal definition of

equivalence for Unicode strings. String equivalence is determined by a process called

normalization, whereby strings are converted into forms which are compared directly

for identity.

This section provides the formal definitions of the four Unicode Normalization

Forms. It defines the Canonical Ordering Algorithm and the Canonical Composition

Algorithm which are used to convert Unicode strings to one of the Unicode Normal‐

ization Forms for comparison. It also formally defines Unicode Combining Classes—

values assigned to all Unicode characters and used by the Canonical Ordering Algo‐

rithm.

Note: In versions of the Unicode Standard up to Version 5.1.0, the Unicode Normal‐

ization Forms and the Canonical Composition Algorithm were defined in Unicode

Standard Annex #15, “Unicode Normalization Forms.” Those definitions have now

been consolidated in this chapter, for clarity of exposition of the normative defini‐

tions and algorithms involved in Unicode normalization. However, because imple‐

mentation of Unicode normalization is quite complex, implementers are still advised

to fully consult Unicode Standard Annex #15, “Unicode Normalization Forms,”

which contains more detailed explanations, examples, and implementation strate‐

gies.

Unicode normalization should be carefully distinguished from Unicode collation.

Both processes involve comparison of Unicode strings. However, the point of

Unicode normalization is to make a determination of canonical (or compatibility)

equivalence or non-equivalence of strings—it does not provide any rank-ordering

information about those strings. Unicode collation, on the other hand, is designed to

provide orderable weights or “keys” for strings; those keys can then be used to sort

strings into ordered lists. Unicode normalization is not tailorable; normalization

equivalence relationships between strings are exact and unchangeable. Unicode

collation, on the other hand, is designed to be tailorable to allow many kinds of local‐

ized and other specialized orderings of strings. For more information, see Unicode

Technical Standard #10, “Unicode Collation Algorithm.”

3.11 Normalization Forms

[Moved to Section 3.6, Combination and renumbered as D61a.] D102

[Moved to Section 3.6, Combination and renumbered as D61b.] D103

Conformance 178 3.11 Normalization Forms

A very important attribute of the Unicode Normalization Forms is that they must

remain stable between versions of the Unicode Standard. A Unicode string normal‐

ized to a particular Unicode Normalization Form in one version of the standard is

guaranteed to remain in that Normalization Form for implementations of future

versions of the standard. In order to ensure this stability, there are strong constraints

on changes of any character properties that are involved in the specification of

normalization—in particular, the combining class and the decomposition of charac‐

ters. The details of those constraints are spelled out in the Normalization Stability

Policy. See the subsection “Policies” in Appendix B.3, Other Unicode Online Resources.

The requirement for stability of normalization also constrains what kinds of charac‐

ters can be encoded in future versions of the standard. For an extended discussion of

this topic, see Section 3, Versioning and Stability, in Unicode Standard Annex #15,

“Unicode Normalization Forms.”

Each character in the Unicode Standard has a combining class associated with it. The

combining class is a numerical value used by the Canonical Ordering Algorithm to

determine which sequences of combining marks are to be considered canonically

equivalent and which are not. Canonical equivalence is the criterion used to deter‐

mine whether two character sequences are considered identical for interpretation.

The combining class for each encoded character in the standard is specified in

the file UnicodeData.txt in the Unicode Character Database. Any code point not

listed in that data file defaults to Canonical_Combining_Class=0 (or ccc=0 for

short).

An extracted listing of combining classes, sorted by numeric value, is provided

in the file DerivedCombiningClass.txt in the Unicode Character Database.

Only combining marks have a combining class other than zero. Almost all

combining marks with a class other than zero are also nonspacing marks, with a

few exceptions. Also, not all nonspacing marks have a non-zero combining class.

Thus, while the correlation between ^\p{ccc=0} and \p{gc=Mn} is close, it is not

exact, and implementations should not depend on the two concepts being

identical.

3.11.1 Normalization Stability

3.11.2 Combining Classes

Combining class: A numeric value in the range 0..254 given to each Unicode

code point, formally defined as the property Canonical_Combining_Class.

D104

•

•

•

Conformance 179 3.11 Normalization Forms

Fixed position classes are assigned to a small number of Hebrew, Arabic, Syriac,

Telugu, Thai, Lao, and Tibetan combining marks whose positions were

conceived of as occurring in a fixed position with respect to their grapheme

base, regardless of any other combining mark that might also apply to the

grapheme base.

Not all Arabic vowel points or Indic matras are given fixed position classes. The

existence of fixed position classes in the standard is an historical artifact of an

earlier stage in its development, prior to the formal standardization of the

Unicode Normalization Forms.

The assignment of combining class values for Unicode characters was originally done

with the goal in mind of defining distinct numeric values for each group of

nonspacing marks that would typographically interact. Thus all generic nonspacing

marks placed above the base character are given the same value, ccc=230, while all

generic nonspacing marks placed below are given the value ccc=220. Nonspacing

marks that tend to sit on one “shoulder” or another of a grapheme base, or that may

actually be attached to the grapheme base itself when applied, have their own

combining classes.

The design of canonical ordering generally assures that:

When two combining characters C1 and C2 do typographically interact, the

sequence C1+ C2 is not canonically equivalent to C2+ C1.

When two combining characters C1 and C2 do not typographically interact, the

sequence C1+ C2 is canonically equivalent to C2+ C1.

This is roughly correct for the normal cases of detached, generic nonspacing marks

placed above and below base letters. However, the ramifications of complex

rendering for many scripts ensure that there are always some edge cases involving

typographic interaction between combining marks of distinct combining classes. This

has turned out to be particularly true for some of the fixed position classes for

Hebrew and Arabic, for which a distinct combining class is no guarantee that there

will be no typographic interaction for rendering.

Because of these considerations, particular combining class values should be taken

only as a guideline regarding issues of typographic interaction of combining marks.

Fixed position class: A subset of the range of numeric values for combining

classes—specifically, any value in the range 10..199.

D105

•

•

Typographic interaction: Graphical application of one nonspacing mark in a

position relative to a grapheme base that is already occupied by another

nonspacing mark, so that some rendering adjustment must be done (such as

default stacking or side-by-side placement) to avoid illegible overprinting or

crashing of glyphs.

D106

•

•

Conformance 180 3.11 Normalization Forms

The only normative use of combining class values is as input to the Canonical

Ordering Algorithm, where they are used to normatively distinguish between

sequences of combining marks that are canonically equivalent and those that are not.

The specification of Unicode Normalization Forms applies to all Unicode coded char‐

acter sequences (D12). For clarity of exposition in the definitions and rules specified

here, the terms “character” and “character sequence” are used, but coded character

sequences refer also to sequences containing noncharacters or reserved code points.

Unicode Normalization Forms are specified for all Unicode code points, and not just

for ordinary, assigned graphic characters.

Note that ccc = 0 is the default value for the Canonical_Combining_Class

property, so that all reserved code points are Starters by definition.

Noncharacters are also Starters by definition. All control characters, format

characters, and private-use characters are also Starters.

Private agreements cannot override the value of the

Canonical_Combining_Class property for private-use characters.

Among the graphic characters, all those with General_Category values other than gc

= M are Starters. Some combining marks have ccc = 0 and thus are also Starters.

Combining marks with ccc other than 0 are not Starters. Table 3-14 summarizes the

relationship between types of combining marks and their status as Starters.

Description gc ccc Starter

Nonspacing Mn
0 Yes

> 0 No

Spacing Mc
0 Yes

> 0 No

Enclosing Me 0 Yes

The term Starter refers, in concept, to the starting character of a combining character

sequence (D56), because all combining character sequences except defective

combining character sequences (D57) commence with a ccc = 0 character—in other

words, they start with a Starter. However, because the specification of Unicode

Normalization Forms must apply to all possible coded character sequences, and not

3.11.3 Specification of Unicode Normalization Forms

3.11.4 Starters

Starter: Any code point (assigned or not) with combining class of zero (ccc =

0).

D107

•

•

Table 3-14. Combining Marks and Starter Status

Conformance 181 3.11 Normalization Forms

just to typical combining character sequences, the behavior of a code point for

Unicode Normalization Forms is specified entirely in terms of its status as a Starter

or a non-starter, together with its Decomposition_Mapping value.

In effect, the Canonical Ordering Algorithm is a local bubble sort that

guarantees that a Canonical Decomposition or a Compatibility Decomposition

will contain no subsequences in which a combining mark is followed directly by

another combining mark that has a lower, non-zero combining class.

Canonical ordering is defined in terms of application of the Canonical Ordering

Algorithm to an entire decomposed sequence. For example, canonical

decomposition of the sequence <U+1E0B LATIN SMALL LETTER D WITH DOT

ABOVE, U+0323 COMBINING DOT BELOW> would result in the sequence

<U+0064 LATIN SMALL LETTER D, U+0307 COMBINING DOT ABOVE, U+0323

COMBINING DOT BELOW>, a sequence which is not yet in canonical order. Most

decompositions for Unicode strings are already in canonical order.

Table 3-15 gives some examples of sequences of characters, showing which of them

constitute a Reorderable Pair and the reasons for that determination. Except for the

base character “a”, the other characters in the example table are combining marks;

character names are abbreviated in the Sequence column to make the examples

clearer.

Sequence Combining Classes Reorderable? Reason

<a, acute> 0, 230 No ccc(A) = 0

<acute, a> 230, 0 No ccc(B) = 0

<diaeresis, acute> 230, 230 No ccc(A) = ccc(B)

<cedilla, acute> 202, 230 No ccc(A) < ccc(B)

<acute, cedilla> 230, 202 Yes ccc(A) > ccc(B)

3.11.5 Canonical Ordering Algorithm

Reorderable pair: Two adjacent characters A and B in a coded character

sequence <A, B> are a Reorderable Pair if and only if ccc(A) > ccc(B) > 0.

D108

Canonical Ordering Algorithm: In a decomposed character sequence D,

exchange the positions of the characters in each Reorderable Pair until the

sequence contains no more Reorderable Pairs.

D109

•

•

Table 3-15. Reorderable Pairs

Conformance 182 3.11 Normalization Forms

The default value for the Decomposition_Mapping property for a code point

(including any private-use character, any noncharacter, and any unassigned code

point) is the code point itself. This default value does not count as a singleton

decomposition, because it does not map a character to a different character.

Private agreements cannot override the decomposition mapping for private-use

characters

Example: U+2126 OHM SIGN has a singleton decomposition to U+03A9 GREEK

CAPITAL LETTER OMEGA.

A character with a singleton decomposition is often referred to simply as a

singleton for short.

Definitions D110a and D110b are introduced to simplify the following definition

of non-starter decomposition and make it more precise.

Example: U+0344 COMBINING GREEK DIALYTIKA TONOS has an expanding

canonical decomposition to the sequence <U+0308 COMBINING DIAERESIS,

U+0301 COMBINING ACUTE ACCENT>. U+0344 is a non-starter, and the first

character in its decomposition is a non-starter. Therefore, on two counts,

U+0344 has a non-starter decomposition.

Example: U+0F73 TIBETAN VOWEL SIGN II has an expanding canonical

decomposition to the sequence <U+0F71 TIBETAN VOWEL SIGN AA, U+0F72

TIBETAN VOWEL SIGN I>. The first character in that sequence is a non-starter.

Therefore U+0F73 has a non-starter decomposition, even though U+0F73 is a

Starter.

As of the current version of the standard, there are no instances of the third

possible situation: a non-starter character with an expanding canonical

decomposition to a sequence whose first character is a Starter.

3.11.6 Canonical Composition Algorithm

Singleton decomposition: A canonical decomposition mapping from a character

to a different single character.

D110

•

•

•

Expanding canonical decomposition: A canonical decomposition mapping from

a character to a sequence of more than one character.

D110a

Starter decomposition: An expanding canonical decomposition for which both

the character being mapped and the first character of the resulting sequence

are Starters.

D110b

•

Non-starter decomposition: An expanding canonical decomposition which is

not a starter decomposition.

D111

•

•

•

Conformance 183 3.11 Normalization Forms

The list of Composition Exclusions is provided in CompositionExclusions.txt in

the Unicode Character Database.

Full composition exclusions consist of the entire list of composition exclusions

plus all characters with singleton decompositions or with non-starter

decompositions.

For convenience in implementation of Unicode normalization, the derived

property Full_Composition_Exclusion is computed, and all characters with the

property value Full_Composition_Exclusion = True are listed in

DerivedNormalizationProps.txt in the Unicode Character Database.

For any given version of the Unicode Standard, the list of primary composites

can be computed by extracting all canonical decomposable characters from

UnicodeData.txt in the Unicode Character Database, adding the list of

precomposed Hangul syllables (D132), and subtracting the list of Full

Composition Exclusions.

Because the Canonical Composition Algorithm operates on a string which is

already in canonical order, testing whether a character is blocked requires

looking only at the immediately preceding character in the string.

It is important for proper implementation of the Canonical Composition

Algorithm to be aware that a Non-blocked Pair need not be contiguous.

Composition exclusion: A Canonical Decomposable Character (D69) which has

the property value Composition_Exclusion = True.

D112

•

Full composition exclusion: A Canonical Decomposable Character which has

the property value Full_Composition_Exclusion = True.

D113

•

•

Primary composite: A Canonical Decomposable Character (D69) which is not a

Full Composition Exclusion.

D114

•

Blocked: Let A and C be two characters in a coded character sequence <A, ...

C>. C is blocked from A if and only if ccc(A) = 0 and there exists some char‐

acter B between A and C in the coded character sequence, i.e., <A, ... B, ... C>,

and either ccc(B) = 0 or ccc(B) >= ccc(C).

D115

•

Non-blocked pair: A pair of characters <A, ... C> in a coded character

sequence, in which C is not blocked from A.

D116

•

Canonical Composition Algorithm: Starting from the second character in the

coded character sequence (of a Canonical Decomposition or Compatibility

Decomposition) and proceeding sequentially to the final character, perform

the following steps:

D117

Conformance 184 3.11 Normalization Forms

When the algorithm completes, all Non-blocked Pairs canonically equivalent to

a Primary Composite will have been systematically replaced by those Primary

Composites.

The replacement of the Starter L in R2 requires continuing to check the

succeeding characters until the character at that position is no longer part of any

Non-blocked Pair that can be replaced by a Primary Composite. For example,

consider the following hypothetical coded character sequence: <U+007A z,

U+0335 short stroke overlay, U+0327 cedilla, U+0324 diaeresis below, U+0301

acute>. None of the first three combining marks forms a Primary Composite

with the letter z. However, the fourth combining mark in the sequence, acute,

does form a Primary Composite with z, and it is not Blocked from the z.

Therefore, R2 mandates the replacement of the sequence <U+007A z, ...

U+0301 acute> with <U+017A z-acute, ...>, even though there are three other

combining marks intervening in the sequence.

The character C in R1 is not necessarily a non-starter. It is necessary to check all

characters in the sequence, because there are sequences <L, C> where both L

and C are Starters, yet there is a Primary Composite P which is canonically

equivalent to that sequence. For example, Indic two-part vowels often have

canonical decompositions into sequences of two spacing vowel signs, each of

which has Canonical_Combining_Class = 0 and which is thus a Starter by

definition. Nevertheless, such a decomposed sequence has an equivalent

Primary Composite.

The Unicode Standard specifies four normalization forms. Informally, two of these

forms are defined by maximal decomposition of equivalent sequences, and two of

these forms are defined by maximal composition of equivalent sequences. Each is

then differentiated based on whether it employs a Canonical Decomposition or a

Compatibility Decomposition.

Seek back (left) in the coded character sequence from the character C to

find the last Starter L preceding C in the character sequence.

R1

If there is such an L, and C is not blocked from L, and there exists a

Primary Composite P which is canonically equivalent to the sequence <L,

C>, then replace L by P in the sequence and delete C from the sequence.

R2

•

•

•

3.11.7 Definition of Normalization Forms

Normalization Form D (NFD): The Canonical Decomposition of a coded char‐

acter sequence.

D118

Normalization Form KD (NFKD): The Compatibility Decomposition of a coded

character sequence.

D119

Conformance 185 3.11 Normalization Forms

Logically, to get the NFD or NFKD (maximally decomposed) normalization form for

a Unicode string, one first computes the full decomposition of that string and then

applies the Canonical Ordering Algorithm to it.

Logically, to get the NFC or NFKC (maximally composed) normalization form for a

Unicode string, one first computes the NFD or NFKD normalization form for that

string, and then applies the Canonical Composition Algorithm to it.

Normalization Form C (NFC): The Canonical Composition of the Canonical

Decomposition of a coded character sequence.

D120

Normalization Form KC (NFKC): The Canonical Composition of the Compati‐

bility Decomposition of a coded character sequence.

D121

Conformance 186 3.11 Normalization Forms

The Unicode Standard contains both a large set of precomposed modern Hangul

syllables and a set of conjoining Hangul jamo, which can be used to encode archaic

Korean syllable blocks as well as modern Korean syllable blocks. This section

describes how to

Determine the canonical decomposition of precomposed Hangul syllables.

Compose jamo characters into precomposed Hangul syllables.

Algorithmically determine the names of precomposed Hangul syllables.

For more information, see the “Hangul Syllables” and “Hangul Jamo” subsections in

Section 18.6, Hangul. Hangul syllables are a special case of grapheme clusters. For the

algorithm to determine syllable boundaries in a sequence of conjoining jamo charac‐

ters, see Section 8, “Hangul Syllable Boundary Determination” in Unicode Standard

Annex #29, “Unicode Text Segmentation.”

The following definitions use the Hangul_Syllable_Type property, which is defined in

the UCD file HangulSyllableType.txt.

When not occurring in clusters, the term leading consonant is equivalent to

syllable-initial character.

In Modern Korean, a choseong consists of a single jamo. In Old Korean, a

sequence of more than one leading consonant may occur.

Equivalent to syllable-initial cluster.

A choseong filler stands in for a missing choseong to make a well-formed Korean

syllable.

When not occurring in clusters, the term vowel is equivalent to syllable-peak

character.

3.12 Conjoining Jamo Behavior

•

•

•

3.12.1 Definitions

Leading consonant: A character with the Hangul_Syllable_Type property value

Leading_Jamo. Abbreviated as L.

D122

•

Choseong: A sequence of one or more leading consonants. D123

•

•

Choseong filler: U+115F HANGUL CHOSEONG FILLER. Abbreviated as Lf. D124

•

Vowel: A character with the Hangul_Syllable_Type property value

Vowel_Jamo. Abbreviated as V.

D125

•

Conformance 187 3.12 Conjoining Jamo Behavior

In Modern Korean, a jungseong consists of a single jamo. In Old Korean, a

sequence of more than one vowel may occur.

Equivalent to syllable-peak cluster.

A jungseong filler stands in for a missing jungseong to make a well-formed

Korean syllable.

When not occurring in clusters, the term trailing consonant is equivalent to

syllable-final character.

In Modern Korean, a jongseong consists of a single jamo. In Old Korean, a

sequence of more than one trailing consonant may occur.

Equivalent to syllable-final cluster.

An LV_Syllable has a canonical decomposition to a sequence of the form <L, V>.

An LVT_Syllable has a canonical decomposition to a sequence of the form <LV,
T>.

This is different from a precomposed Hangul syllable and is meant to include

sequences needed for the representation of Old Korean syllables.

A syllable block may contain a precomposed Hangul syllable plus other

characters.

Jungseong: A sequence of one or more vowels. D126

•

•

Jungseong filler: U+1160 HANGUL JUNGSEONG FILLER. Abbreviated as Vf. D127

•

Trailing consonant: A character with the Hangul_Syllable_Type property value

Trailing_Jamo. Abbreviated as T.

D128

•

Jongseong: A sequence of one or more trailing consonants. D129

•

•

LV_Syllable: A character with Hangul_Syllable_Type property value

LV_Syllable. Abbreviated as LV.

D130

•

LVT_Syllable: A character with Hangul_Syllable_Type property value

LVT_Syllable. Abbreviated as LVT.

D131

•

Precomposed Hangul syllable: A character that is either an LV_Syllable or an

LVT_Syllable.

D132

Syllable block: A sequence of Korean characters that should be grouped into a

single square cell for display.

D133

•

•

Conformance 188 3.12 Conjoining Jamo Behavior

All precomposed Hangul syllables, which have the form LV or LVT, are standard

Korean syllable blocks.

Alternatively, a standard Korean syllable block may be expressed as a sequence

of a choseong and a jungseong, optionally followed by a jongseong.

A choseong filler may substitute for a missing leading consonant, and a

jungseong filler may substitute for a missing vowel.

This definition is used in Unicode Standard Annex #29, “Unicode Text

Segmentation,” as part of the algorithm for determining syllable boundaries in a

sequence of conjoining jamo characters.

The following algorithm specifies how to take a precomposed Hangul syllable s and

arithmetically derive its full canonical decomposition d. This normative mapping for

precomposed Hangul syllables is referenced by D68, Canonical decomposition, in

Section 3.7, Decomposition.

This algorithm, as well as the other Hangul-related algorithms defined in the

following text, is first specified in pseudo-code. Then each is exemplified, showing its

application to a particular Hangul character or sequence. The Hangul characters

used in those examples are shown in Table 3-16. Finally, each algorithm is then

further exemplified with an implementation as a Java method at the end of this

section.

Code Point Glyph Character Name Jamo Short Name

U+D4DB HANGUL SYLLABLE PWILH

U+1111 HANGUL CHOSEONG PHIEUPH P

U+1171 HANGUL JUNGSEONG WI WI

U+11B6 HANGUL JONGSEONG RIEUL-HIEUH LH

 Define the following constants:

	SBase = AC0016
	LBase = 110016
	VBase = 116116
	TBase = 11A716
	LCount = 19

Standard Korean syllable block: A sequence of one or more L followed by a

sequence of one or more V and a sequence of zero or more T, or any other

sequence that is canonically equivalent.

D134

•

•

•

•

3.12.2 Hangul Syllable Decomposition

Table 3-16. Hangul Characters Used in Examples

Common Constants.

Conformance 189 3.12 Conjoining Jamo Behavior

	VCount = 21
	TCount = 28
	NCount = 588 (VCount * 	TCount)
	SCount = 11172 (LCount * 	NCount)

TBase is set to one less than the beginning of the range of trailing consonants, which

starts at U+11A8. TCount is set to one more than the number of trailing consonants

relevant to the decomposition algorithm: (11C2
16

 - 11A8
16

 + 1) + 1. NCount is thus the

number of precomposed Hangul syllables starting with the same leading consonant,

counting both the LV_Syllables and the LVT_Syllables for each possible trailing

consonant. SCount is the total number of precomposed Hangul syllables.

 First compute the index of the precomposed Hangul syllable s:

	SIndex = s - 	SBase

 If the precomposed Hangul syllable s with

the index SIndex (defined above) has the Hangul_Syllable_Type value LV, then it has

a canonical decomposition mapping into a sequence of an L jamo and a V jamo,

<LPart, VPart>:

	LIndex = 	SIndex div 	NCount
	VIndex = (SIndex mod 	NCount) div 	TCount
	LPart = 	LBase + 	LIndex
	VPart = 	VBase + 	VIndex

If the precomposed Hangul syllable s with the index SIndex (defined above) has the

Hangul_Syllable_Type value LVT, then it has a canonical decomposition mapping

into a sequence of an LV_Syllable and a T jamo, <LVPart, TPart>:

	L	VIndex = (SIndex div 	TCount) * 	TCount
	TIndex = 	SIndex mod 	TCount
	L	VPart = 	SBase + 	L	VIndex
	TPart = 	TBase + 	TIndex

In this specification, the “div” operator refers to integer division (rounded down).

The “mod” operator refers to the modulo operation, equivalent to the integer

remainder for positive numbers.

The canonical decomposition mappings calculated this way are equivalent to the

values of the Unicode character property Decomposition_Mapping (dm), for each

precomposed Hangul syllable.

 The full canonical decomposition for a Unicode

character is defined as the recursive application of canonical decomposition

mappings. The canonical decomposition mapping of an LVT_Syllable contains an

LVPart which itself is a precomposed Hangul syllable and thus must be further

Syllable Index.

Arithmetic Decomposition Mapping.

Full Canonical Decomposition.

Conformance 190 3.12 Conjoining Jamo Behavior

decomposed. However, it is simplest to unwind the recursion and directly calculate

the resulting <LPart, VPart, TPart> sequence instead. For full canonical decomposi‐

tion of a precomposed Hangul syllable, compute the indices and components as

follows:

	LIndex = 	SIndex div 	NCount
	VIndex = (SIndex mod 	NCount) div 	TCount
	TIndex = 	SIndex mod 	TCount
	LPart = 	LBase + 	LIndex
	VPart = 	VBase + 	VIndex
	TPart = 	TBase + 	TIndex if 	TIndex > 0

If TIndex = 0, then there is no trailing consonant, so map the precomposed Hangul

syllable s to its full decomposition d = <LPart, VPart>. Otherwise, there is a trailing

consonant, so map s to its full decomposition d = <LPart, VPart, TPart>.

 For the precomposed Hangul syllable U+D4DB, compute the indices and

components:

	SIndex = 10459
	LIndex = 17
	VIndex = 16
	TIndex = 15
	LPart = 	LBase + 17 = 111116
	VPart = 	VBase + 16 = 117116
	TPart = 	TBase + 15 = 11B616

Then map the precomposed syllable to the calculated sequence of components,

which constitute its full canonical decomposition:

	U+D4DB → <	U+1111, 	U+1171, 	U+11B6>

Note that the canonical decomposition mapping for U+D4DB would be <U+D4CC,

U+11B6>, but in computing the full canonical decomposition, that sequence would

only be an intermediate step.

The following algorithm specifies how to take a canonically decomposed sequence of

Hangul jamo characters d and arithmetically derive its mapping to an equivalent

precomposed Hangul syllable s. This normative mapping can be used to calculate the

Primary Composite for a sequence of Hangul jamo characters, as specified in D117,

Canonical Composition Algorithm, in Section 3.11, Normalization Forms. Strictly

speaking, this algorithm is simply the inverse of the full canonical decomposition

mappings specified by the Hangul Syllable Decomposition Algorithm. However, it is

Example.

3.12.3 Hangul Syllable Composition

Conformance 191 3.12 Conjoining Jamo Behavior

useful to have a summary specification of that inverse mapping as a separate algo‐

rithm, for convenience in implementation.

Note that the presence of any non-jamo starter or any combining character between

two of the jamos in the sequence d would constitute a blocking context, and would

prevent canonical composition. See D115, Blocked, in Section 3.11, Normalization

Forms.

 Given a Hangul jamo sequence <LPart,

VPart>, where the LPart is in the range U+1100..U+1112, and where the VPart is in

the range U+1161..U+1175, compute the indices and syllable mapping:

	LIndex = 	LPart - 	LBase
	VIndex = 	VPart - 	VBase
	L	VIndex = 	LIndex * 	NCount + 	VIndex * 	TCount
s = 	SBase + 	L	VIndex

Given a Hangul jamo sequence <LPart, VPart, TPart>, where the LPart is in the

range U+1100..U+1112, where the VPart is in the range U+1161..U+1175, and where

the TPart is in the range U+11A8..U+11C2, compute the indices and syllable

mapping:

	LIndex = 	LPart - 	LBase
	VIndex = 	VPart - 	VBase
	TIndex = 	TPart - 	TBase
	L	VIndex = 	LIndex * 	NCount + 	VIndex * 	TCount
s = 	SBase + 	L	VIndex + 	TIndex

The mappings just specified deal with canonically decomposed sequences of Hangul

jamo characters. However, for completeness, the following mapping is also defined to

deal with cases in which Hangul data is not canonically decomposed. Given a

sequence <LVPart, TPart>, where the LVPart is a precomposed Hangul syllable of

Hangul_Syllable_Type LV, and where the TPart is in the range U+11A8..U+11C2,

compute the index and syllable mapping:

	TIndex = 	TPart - 	TBase
s = 	L	VPart + 	TIndex

 For the canonically decomposed Hangul jamo sequence <U+1111, U+1171,

U+11B6>, compute the indices and syllable mapping:

	LIndex = 17
	VIndex = 16
	TIndex = 15
	L	VIndex = 17 * 588 + 16 * 28 = 9996 + 448 = 10444
s = AC0016 + 10444 + 15 = D4DB16

Arithmetic Primary Composite Mapping.

Example.

Conformance 192 3.12 Conjoining Jamo Behavior

Then map the Hangul jamo sequence to this precomposed Hangul syllable as its

Primary Composite:

<	U+1111, 	U+1171, 	U+11B6> → 	U+D4DB

The Unicode character names for precomposed Hangul syllables are derived algorith‐

mically from the Jamo_Short_Name property values for each of the Hangul jamo

characters in the full canonical decomposition of that syllable. That derivation is

specified here.

 First construct the full canonical decomposition d

for the precomposed Hangul syllable s, as specified by the Hangul Syllable Decompo‐

sition Algorithm:

s → d = <	LPart, 	VPart, (TPart)>

 For each part of the full canonical decomposition d,

look up the Jamo_Short_Name property value, as specified in Jamo.txt in the

Unicode Character Database. If there is no TPart in the full canonical decomposition,

then the third value is set to be a null string:

	J	S	N	L = 	Jamo_	Short_	Name(LPart)
	J	S	N	V = 	Jamo_	Short_	Name(VPart)
	J	S	N	T = 	Jamo_	Short_	Name(TPart) if 	TPart exists, else ""

 The Unicode character name for s is then constructed by

starting with the constant string “HANGUL SYLLABLE” and then concatenating

each of the three Jamo short name values, in order:

	Name = "HA	NG	U	L 	SY	L	LAB	LE " + 	J	S	N	L + 	J	S	N	V + 	J	S	N	T

 For the precomposed Hangul syllable U+D4DB, construct the full canon‐

ical decomposition:

	U+D4DB → <	U+1111, 	U+1171, 	U+11B6>

Look up the Jamo_Short_Name values for each of the Hangul jamo in the canonical

decomposition:

	J	S	N	L = 	Jamo_	Short_	Name(U+1111) = "P"

	J	S	N	V = 	Jamo_	Short_	Name(U+1171) = "WI"

	J	S	N	T = 	Jamo_	Short_	Name(U+11B6) = "	LH"

Concatenate the pieces:

3.12.4 Hangul Syllable Name Generation

Full Canonical Decomposition.

Jamo Short Name Mapping.

Name Concatenation.

Example.

Conformance 193 3.12 Conjoining Jamo Behavior

	Name = "HA	NG	U	L 	SY	L	LAB	LE " + "P" + "WI" + "	LH"
= "HA	NG	U	L 	SY	L	LAB	LE PWI	LH"

This section provides sample Java code illustrating the three Hangul-related algo‐

rithms.

 This code snippet defines the common constants used in the

methods that follow.

static final int
 	SBase = 0xAC00,
 	LBase = 0x1100, 	VBase = 0x1161, 	TBase = 0x11A7,
 	LCount = 19, 	VCount = 21, 	TCount = 28,
 	NCount = 	VCount * 	TCount, // 588
 	SCount = 	LCount * 	NCount; // 11172

 The Hangul Decomposition Algorithm as specified above

directly decomposes precomposed Hangul syllable characters into a sequence of

either two or three Hangul jamo characters. The sample method here does precisely

that:

public static 	String decomposeHangul(char s) {
 int 	SIndex = s - 	SBase;
 if (SIndex < 0 || 	SIndex >= 	SCount) {
 return 	String.valueOf(s);
 }
 	StringBuffer result = new 	StringBuffer();
 int 	L = 	LBase + 	SIndex / 	NCount;
 int 	V = 	VBase + (SIndex % 	NCount) / 	TCount;
 int 	T = 	TBase + 	SIndex % 	TCount;
 result.append((char)	L);
 result.append((char)	V);
 if (T != 	TBase) result.append((char)	T);
 return result.to	String();
 }

The Hangul Decomposition Algorithm could also be expressed equivalently as a

recursion of binary decompositions, as is the case for other non-Hangul characters.

All LVT syllables would decompose into an LV syllable plus a T jamo. The LV sylla‐

bles themselves would in turn decompose into an L jamo plus a V jamo. This

approach can be used to produce somewhat more compact code than what is illus‐

trated in this sample method.

 An important feature of Hangul composition is that when‐

ever the source string is not in Normalization Form D or Normalization Form KD,

one must not detect only character sequences of the form <L, V> and <L, V, T>. It is

3.12.5 Sample Code for Hangul Algorithms

Common Constants.

Hangul Decomposition.

Hangul Composition.

Conformance 194 3.12 Conjoining Jamo Behavior

also necessary to catch the sequences of the form <LV, T>. To guarantee uniqueness,

such sequences must also be composed. This extra processing is illustrated in step 2

of the sample method defined here.

public static 	String composeHangul(String source) {
 int len = source.length();
 if (len == 0) return "";
 	StringBuffer result = new 	StringBuffer();
 char last = source.charAt(0); // copy first char
 result.append(last);

 for (int i = 1; i < len; ++i) {
 char ch = source.charAt(i);

 // 1. check to see if two current characters are 	L and 	V
 int 	LIndex = last - 	LBase;
 if (0 <= 	LIndex && 	LIndex < 	LCount) {
 int 	VIndex = ch - 	VBase;
 if (0 <= 	VIndex && 	VIndex < 	VCount) {

 // make syllable of form 	L	V

last = (char)(SBase + (LIndex * 	VCount + 	VIndex)
* 	TCount);

result.setCharAt(result.length()-1, last); // reset last
continue; // discard ch

 }
 }

 // 2. check to see if two current characters are 	L	V and 	T
 int 	SIndex = last - 	SBase;
 if (0 <= 	SIndex && 	SIndex < 	SCount

&& (SIndex % 	TCount) == 0) {
 int 	TIndex = ch - 	TBase;
 if (0 < 	TIndex && 	TIndex < 	TCount) {

 // make syllable of form 	L	V	T

 last += 	TIndex;
 result.setCharAt(result.length()-1, last); // reset last
 continue; // discard ch
 }
 }
 // if neither case was true, just add the character
 last = ch;
 result.append(ch);
 }

Conformance 195 3.12 Conjoining Jamo Behavior

 return result.to	String();
 }

 Hangul decomposition is also used when

generating the names for precomposed Hangul syllables. This is apparent in the

following sample method for constructing a Hangul syllable name. The content of

the three tables used in this method can be derived from the data file Jamo.txt in the

Unicode Character Database.

public static 	String getHangul	Name(char s) {
 int 	SIndex = s - 	SBase;
 if (0 > 	SIndex || 	SIndex >= 	SCount) {
 throw new IllegalArgumentException("	Not a Hangul 	Syllable: "

+ s);
 }
 int 	LIndex = 	SIndex / 	NCount;
 int 	VIndex = (SIndex % 	NCount) / 	TCount;
 int 	TIndex = 	SIndex % 	TCount;
 return "HA	NG	U	L 	SY	L	LAB	LE " + 	JAMO_	L_	TAB	LE[LIndex]
 + 	JAMO_	V_	TAB	LE[VIndex] + 	JAMO_	T_	TAB	LE[TIndex];
 }

 static private 	String[] 	JAMO_	L_	TAB	LE = {
 "G", "GG", "	N", "D", "DD", "R", "M", "B", "BB",
 "	S", "	S	S", "", "	J", "	J	J", "C", "K", "	T", "P", "H"
 };

 static private 	String[] 	JAMO_	V_	TAB	LE = {
 "A", "AE", "YA", "YAE", "EO", "E", "YEO", "YE", "O",
 "WA", "WAE", "OE", "YO", "	U", "WEO", "WE", "WI",
 "Y	U", "E	U", "YI", "I"
 };

 static private 	String[] 	JAMO_	T_	TAB	LE = {
 "", "G", "GG", "G	S", "	N", "	N	J", "	NH", "D", "	L", "	LG", "	LM",
 "	LB", "	L	S", "	L	T", "	LP", "	LH", "M", "B", "B	S",
 "	S", "	S	S", "	NG", "	J", "C", "K", "	T", "P", "H"
 };

 Additional transformations can be

performed on sequences of Hangul jamo for various purposes. For example, to regu‐

larize sequences of Hangul jamo into standard Korean syllable blocks, the choseong

or jungseong fillers can be inserted, as described in Unicode Standard Annex #29,

“Unicode Text Segmentation.”

For keyboard input, additional compositions may be performed. For example, a

sequence of trailing consonants k
f
 + s

f
 may be combined into a single, complex jamo

ks
f
. In addition, some Hangul input methods do not require a distinction on input

Hangul Character Name Generation.

Additional Transformations for Hangul Jamo.

Conformance 196 3.12 Conjoining Jamo Behavior

between initial and final consonants, and may instead change between them on the

basis of context. For example, in the keyboard sequence m
i
 + e

m
 + n

i
 + s

i
 + a

m
, the

consonant n
i
 would be reinterpreted as n

f
, because there is no possible syllable nsa.

This results in the two syllables men and sa.

Conformance 197 3.12 Conjoining Jamo Behavior

This section specifies the default algorithms for case conversion, case detection, and

caseless matching. For information about the data sources for case mapping, see

Section 4.2, Case. For a general discussion of case mapping operations, see

Section 5.18, Case Mappings.

All of these specifications are logical specifications. Particular implementations can

optimize the processes as long as they provide the same results.

 The default casing operations are intended for use in the absence of

tailoring for particular languages and environments. Where a particular environment

requires tailoring of casing operations to produce correct results, use of such tailoring

does not violate conformance to the standard.

Data that assist the implementation of certain tailorings are published in Special‐

Casing.txt in the Unicode Character Database. Most notably, these include:

Casing rules for the Turkish dotted capital I and dotless small i.

Casing rules for the retention of dots over i for Lithuanian letters with additional

accents.

Examples of case tailorings which are not covered by data in SpecialCasing.txt

include:

Titlecasing of IJ at the start of words in Dutch

Removal of accents when uppercasing letters in Greek

Titlecasing of second or subsequent letters in words in orthographies that

include caseless letters such as apostrophes

Uppercasing of U+00DF “ ” LATIN SMALL LETTER SHARP S to U+1E9E LATIN

CAPITAL LETTER SHARP S

The preferred mechanism for defining tailored casing operations is the Unicode

Common Locale Data Repository (CLDR), https://cldr.unicode.org, where tailorings

such as these can be specified on a per-language basis, as needed.

Tailorings of case operations may or may not be desired, depending on the nature of

the implementation in question. For more about complications in case mapping, see

the discussion in Section 5.18, Case Mappings.

3.13 Default Case Algorithms

Tailoring.

•

•

•

•

•

•

Conformance 198 3.13 Default Case Algorithms

https://cldr.unicode.org

The full case mappings for Unicode characters are obtained by using the mappings

from SpecialCasing.txt plus the mappings from UnicodeData.txt, excluding any of the

latter mappings that would conflict. Any character that does not have a mapping in

these files is considered to map to itself. The full case mappings of a character C are

referred to as Lowercase_Mapping(C), Titlecase_Mapping(C), and Upper‐

case_Mapping(C). The full case folding of a character C is referred to as

Case_Folding(C).

Detection of case and case mapping requires more than just the General_Category

values (Lu, Lt, Ll). The following definitions are used:

The Uppercase and Lowercase property values are specified in the data file

DerivedCoreProperties.txt in the Unicode Character Database. The derived

property Cased is also listed in DerivedCoreProperties.txt.

The Word_Break property is defined in the data file WordBreakProperty.txt in

the Unicode Character Database.

The derived property Case_Ignorable is listed in the data file

DerivedCoreProperties.txt in the Unicode Character Database.

The Case_Ignorable property is defined for use in the context specifications of

Table 3-17. It is a narrow-use property, and is not intended for use in other

contexts. The more broadly applicable string casing function, isCased(X), is

defined in D143.

Context Description Regular Expressions

3.13.1 Definitions

A character C is defined to be cased if and only if C has the Lowercase or

Uppercase property or has a General_Category value of Titlecase_Letter.

D135

•

A character C is defined to be case-ignorable if C has the value MidLetter (ML),

MidNumLet (MB), or Single_Quote (SQ) for the Word_Break property or its

General_Category is one of Nonspacing_Mark (Mn), Enclosing_Mark (Me),

Format (Cf), Modifier_Letter (Lm), or Modifier_Symbol (Sk).

D136

•

•

•

Case-ignorable sequence: A sequence of zero or more case-ignorable

characters.

D137

A character C is in a particular casing context for context-dependent matching

if and only if it matches the corresponding specification in Table 3-17.

D138

Table 3-17. Context Specification for Casing

Conformance 199 3.13 Default Case Algorithms

Final_Sigma

C is preceded by a sequence
consisting of a cased letter and then
zero or more case-ignorable
characters, and C is not followed by
a sequence consisting of zero or
more case-ignorable characters and
then a cased letter.

Before
C

\p{cased}
(\p{Case_Ignorable})*

After
C

! ((\p{Case_Ignorable})*
\p{cased})

After_Soft_Dotted

There is a Soft_Dotted character
before C, with no intervening
character of combining class 0 or 230
(Above).

Before
C

[\p{Soft_Dotted}]
([^\p{ccc=230} \p{ccc=0}])*

More_Above

C is followed by a character of
combining class 230 (Above) with no
intervening character of combining
class 0 or 230 (Above).

After
C

[^\p{ccc=230}\p{ccc=0}]*
[\p{ccc=230}]

Before_Dot

C is followed by COMBINING DOT
ABOVE (U+0307). Any sequence of
characters with a combining class
that is neither 0 nor 230 may
intervene between the current
character and the combining dot
above.

After
C

([^\p{ccc=230} \p{ccc=0}])*
[\u0307]

After_I
There is an uppercase I before C, and
there is no intervening combining
character class 230 (Above) or 0.

Before
C

[I] ([^\p{ccc=230}
\p{ccc=0}])*

In Table 3-17, a description of each context is followed by the equivalent regular

expression(s) describing the context before C, the context after C, or both. The

regular expressions use the syntax of Unicode Technical Standard #18, “Unicode

Regular Expressions,” with one addition: “!” means that the expression does not

match. All of the regular expressions are case-sensitive.

The regular-expression operator * in Table 3-17 is “possessive,” consuming as many

characters as possible, with no backup. This is significant in the case of Final_Sigma,

because the sets of case-ignorable and cased characters are not disjoint: for example,

they both contain U+0345 COMBINING GREEK YPOGEGRAMMENI. Thus, the Before

condition is not satisfied if C is preceded by only U+0345, but would be satisfied by

the sequence <capital-alpha, ypogegrammeni>. Similarly, the After condition is satis‐

fied if C is only followed by ypogegrammeni, but would not satisfied by the sequence

<ypogegrammeni, capital-alpha>.

Additional language-specific or orthography-specific contexts and casing behavior is

specified in the Unicode Common Locale Data Repository (CLDR), https://

cldr.unicode.org.

Conformance 200 3.13 Default Case Algorithms

https://cldr.unicode.org
https://cldr.unicode.org

The following rules specify the default case conversion operations for Unicode

strings. These rules use the full case conversion operations, Uppercase_Mapping(C),

Lowercase_Mapping(C), and Titlecase_Mapping(C), as well as the context-dependent

mappings based on the casing context, as specified in Table 3-17.

For a string X:

The default case conversion operations may be tailored for specific requirements. A

common variant, for example, is to make use of simple case conversion, rather than

full case conversion. Language- or locale-specific tailorings of these rules may also be

used.

Case folding is related to case conversion. However, the main purpose of case folding

is to contribute to caseless matching of strings, whereas the main purpose of case

conversion is to put strings into a particular cased form.

Default Case Folding does not preserve normalization forms. A string in a particular

Unicode normalization form may not be in that normalization form after it has been

casefolded.

Default Case Folding is based on the full case conversion operations without the

context-dependent mappings sensitive to the casing context. There are also some

adaptations specifically to support caseless matching. Lowercase_Mapping(C) is used

for most characters, but there are instances in which the folding must be based on

Uppercase_Mapping(C), instead. In particular, the addition of lowercase Cherokee

letters as of Version 8.0 of the Unicode Standard, together with the stability guaran‐

tees for case folding, require that Cherokee letters be case folded to their uppercase

counterparts. As a result, a case folded string is not necessarily lowercase.

Any two strings which are considered to be case variants of each other under any of

the full case conversions, toUppercase(X), toLowercase(X), or toTitlecase(X) will fold

to the same string by the toCasefold(X) operation:

3.13.2 Default Case Conversion

toUppercase(X): Map each character C in X to Uppercase_Mapping(C). R1

toLowercase(X): Map each character C in X to Lowercase_Mapping(C). R2

toTitlecase(X): Find the word boundaries in X according to Unicode Stan‐

dard Annex #29, “Unicode Text Segmentation.” For each word boundary,

find the first cased character F following the word boundary. If F exists,

map F to Titlecase_Mapping(F); then map all characters C between F and

the following word boundary to Lowercase_Mapping(C).

R3

3.13.3 Default Case Folding

Conformance 201 3.13 Default Case Algorithms

Case_Folding(C) uses the mappings with the status field value “C” and “F” in

the data file CaseFolding.txt in the Unicode Character Database.

Simple case folding is a modification of Default Case Folding which maps code

points to single code points. It consists in using the Simple_Case_Folding

property instead of the Case_Folding property. Simple case folding is used in

some applications requiring compatibility with legacy definitions of case-

insensitivity.

The Simple_Case_Folding property uses the mappings with the status field value

“C” and “S”.

A modified form of Default Case Folding is designed for best behavior when doing

caseless matching of strings interpreted as identifiers. This folding is based on

Case_Folding(C), but also removes any characters which have the Unicode property

value Default_Ignorable_Code_Point = True. It also maps characters to their NFKC

equivalent sequences. Once the mapping for a string is complete, the resulting string

is then normalized to NFC. That last normalization step simplifies the statement of

the use of this folding for caseless matching.

The mapping NFKC_Casefold (short alias NFKC_CF) is specified in the data file

DerivedNormalizationProps.txt in the Unicode Character Database.

The derived binary property Changes_When_NFKC_Casefolded is also listed in

the data file DerivedNormalizationProps.txt in the Unicode Character Database.

The Default_Ignorable_Code_Point property values used to derive NFKC_Casefold

are not guaranteed to be stable. However, the derivation of NFKC_Casefold will be

changed as necessary to ensure that it remains stable for default identifiers. Thus, if

the NFKC_Casefold operation is applied to a string containing only characters from

XID_Continue in a given version of the Unicode Standard, the result will be the same

in any future version.

For more information on the use of NFKC_Casefold and caseless matching for iden‐

tifiers, see Unicode Standard Annex #31, “Unicode Identifier and Pattern Syntax.” For

the stability of NFKC_Casefold, in particular, see Section 2.3, Layout and Format

Control Characters.

The casing status of a string can be determined by using the casing operations

defined earlier. The following definitions provide a specification. They assume that X

toCasefold(X): Map each character C in X to Case_Folding(C). R4

•

•

•

toNFKC_Casefold(X): Map each character C in X to NFKC_Casefold(C)

and then normalize the resulting string to NFC.

R5

•

•

3.13.4 Default Case Detection

Conformance 202 3.13 Default Case Algorithms

and Y are strings. In the following, functional names beginning with “is” are binary

functions which take the string X and return true when the string as a whole matches

the given casing status. For example, isLowercase(X) would be true if the string X as

a whole is lowercase. In contrast, the Unicode character properties such as Lower‐

case are properties of individual characters.

For each definition, there is also a related Unicode character property which has a

name beginning with “Changes_When_”. That property indicates whether each char‐

acter is affected by a particular casing operation; it can be used to optimize imple‐

mentations of Default Case Detection for strings.

When case conversion is applied to a string that is decomposed (or more precisely,

normalized to NFD), applying the case conversion character by character does not

affect the normalization status of the string. Therefore, these definitions are specified

in terms of Normalization Form NFD. To make the definitions easier to read, they

adopt the convention that the string Y equals toNFD(X).

For example, isLowercase(“combining mark”) is true, and

isLowercase(“Combining mark”) is false.

The derived binary property Changes_When_Lowercased is listed in the data

file DerivedCoreProperties.txt in the Unicode Character Database.

For example, isUppercase(“COMBINING MARK”) is true, and

isUppercase(“Combining mark”) is false.

The derived binary property Changes_When_Uppercased is listed in the data

file DerivedCoreProperties.txt in the Unicode Character Database.

For example, isTitlecase(“Combining Mark”) is true, and

isTitlecase(“Combining mark”) is false.

The derived binary property Changes_When_Titlecased is listed in the data file

DerivedCoreProperties.txt in the Unicode Character Database.

For example, isCasefolded(“heiss”) is true, and isCasefolded(“heiß”) is false.

The derived binary property Changes_When_Casefolded is listed in the data file

DerivedCoreProperties.txt in the Unicode Character Database.

isLowercase(X): isLowercase(X) is true when toLowercase(Y) = Y. D139

•

•

isUppercase(X): isUppercase(X) is true when toUppercase(Y) = Y. D140

•

•

isTitlecase(X): isTitlecase(X) is true when toTitlecase(Y) = Y. D141

•

•

isCasefolded(X): isCasefolded(X) is true when toCasefold(Y) = Y. D142

•

•

Conformance 203 3.13 Default Case Algorithms

Uncased characters do not affect the results of casing detection operations such as

the string function isLowercase(X). Thus a space or a number added to a string does

not affect the results.

The examples in Table 3-18 show that these conditions are not mutually exclusive.

“A2” is both uppercase and titlecase; “3” is uncased, so it is simultaneously lowercase,

uppercase, and titlecase.

Case Letter Name Alphanumeric Digit

Lowercase a john smith a2 3

Uppercase A JOHN SMITH A2 3

Titlecase A John Smith A2 3

Only when a string, such as “123”, contains no cased letters will all three conditions,

—isLowercase, isUppercase, and isTitlecase—evaluate as true. This combination of

conditions can be used to check for the presence of cased letters, using the following

definition:

Any string X for which isCased(X) is true contains at least one character that has

a case mapping other than to itself.

For example, isCased(“123”) is false because all the characters in “123” have case

mappings to themselves, while isCased(“abc”) and isCased(“A12”) are both true.

The derived binary property Changes_When_Casemapped is listed in the data

file DerivedCoreProperties.txt in the Unicode Character Database.

To find out whether a string contains only lowercase letters, implementations need to

test for (isLowercase(X) and isCased(X)).

Default caseless matching is the process of comparing two strings for case-insensitive

equality. The definitions of Unicode Default Caseless Matching build on the defini‐

tions of Unicode Default Case Folding.

Default Caseless Matching uses full case folding:

Table 3-18. Case Detection Examples

isCased(X): isCased(X) is true when isLowercase(X) is false, or isUppercase(X)

is false, or isTitlecase(X) is false.

D143

•

•

•

3.13.5 Default Caseless Matching

A string X is a caseless match for a string Y if and only if:

toCasefold(X) = toCasefold(Y)

D144

Conformance 204 3.13 Default Case Algorithms

When comparing strings for case-insensitive equality, the strings should also be

normalized for most correct results. For example, the case folding of U+00C5

LATIN CAPITAL LETTER A WITH RING ABOVE is U+00E5 LATIN SMALL LETTER A

WITH RING ABOVE, whereas the case folding of the sequence <U+0041 “ ” LATIN

CAPITAL LETTER A, U+030A COMBINING RING ABOVE> is the sequence <U+0061

“ ” LATIN SMALL LETTER A, U+030A COMBINING RING ABOVE>. Simply doing a

binary comparison of the results of case folding both strings will not catch the fact

that the resulting case-folded strings are canonical-equivalent sequences. In prin‐

ciple, normalization needs to be done after case folding, because case folding does

not preserve the normalized form of strings in all instances. This requirement for

normalization is covered in the following definition for canonical caseless matching:

The invocations of canonical decomposition (NFD normalization) before case folding

in D145 are to catch very infrequent edge cases. Normalization is not required before

case folding, except for the character U+0345 COMBINING GREEK YPOGEGRAM‐

MENI and any characters that have it as part of their canonical decomposition, such

as U+1FC3 GREEK SMALL LETTER ETA WITH YPOGEGRAMMENI. In practice, opti‐

mized versions of canonical caseless matching can catch these special cases, thereby

avoiding an extra normalization step for each comparison.

In some instances, implementers may wish to ignore compatibility differences

between characters when comparing strings for case-insensitive equality. The correct

way to do this makes use of the following definition for compatibility caseless

matching:

Compatibility caseless matching requires an extra cycle of case folding and normal‐

ization for each string compared, because the NFKD normalization of a compatibility

character such as U+3392 SQUARE MHZ may result in a sequence of alphabetic char‐

acters which must again be case folded (and normalized) to be compared correctly.

Caseless matching for identifiers can be simplified and optimized by using the

NFKC_Casefold mapping. That mapping incorporates internally the derived results

of iterated case folding and NFKD normalization. It also maps away characters with

the property value Default_Ignorable_Code_Point = True, which should not make a

difference when comparing identifiers.

The following defines identifier caseless matching:

A string X is a canonical caseless match for a string Y if and only if:

NFD(toCasefold(NFD(X))) = NFD(toCasefold(NFD(Y)))

D145

A string X is a compatibility caseless match for a string Y if and only if:

NFKD(toCasefold(NFKD(toCasefold(NFD(X))))) =

NFKD(toCasefold(NFKD(toCasefold(NFD(Y)))))

D146

Conformance 205 3.13 Default Case Algorithms

A string X is an identifier caseless match for a string Y if and only if:

toNFKC_Casefold(NFD(X)) = toNFKC_Casefold(NFD(Y))

D147

Conformance 206 3.13 Default Case Algorithms

Chapter 4

Character Properties

Disclaimer

The content of all character property tables has been verified as far as possible

by the Unicode Consortium. However, in case of conflict, the most authoritative

version of the information for this version of the Unicode Standard is that

supplied in the Unicode Character Database on the Unicode website. The

contents of all the tables in this chapter may be superseded or augmented by infor‐

mation in future versions of the Unicode Standard.

The Unicode Standard associates a rich set of semantics with characters and, in some

instances, with code points. The support of character semantics is required for

conformance; see Section 3.2, Conformance Requirements. Where character semantics

can be expressed formally, they are provided as machine-readable lists of character

properties in the Unicode Character Database (UCD). This chapter gives an overview

of character properties, their status and attributes, followed by an overview of the

UCD and more detailed notes on some important character properties. For a further

discussion of character properties, see Unicode Technical Report #23, “Unicode

Character Property Model.”

 Character properties may be normative, informative, contrib‐

utory, or provisional. Normative properties are those required for conformance. Many

Unicode character properties can be overridden by implementations as needed.

Section 3.2, Conformance Requirements, specifies when such overrides must be docu‐

mented. A few properties, such as Noncharacter_Code_Point, may not be overridden.

See Section 3.5, Properties, for the formal discussion of the status and attributes of

properties.

 The Unicode Standard is the product of many compro‐

mises. It has to strike a balance between uniformity of treatment for similar charac‐

ters and compatibility with existing practice for characters inherited from legacy

encodings. Because of this balancing act, one can expect a certain number of anom‐

alies in character properties. For example, some pairs of characters might have been

treated as canonical equivalents but are left unequivalent for compatibility with

legacy differences. This situation pertains to U+00B5 MICRO SIGN and U+03BC

GREEK SMALL LETTER MU, as well as to certain Korean jamo.

Status and Attributes.

Consistency of Properties.

207

In addition, some characters might have had properties differing in some ways from

those assigned in this standard, but those properties are left as is for compatibility

with existing practice. This situation can be seen with the halfwidth voicing marks

for Japanese (U+FF9E HALFWIDTH KATAKANA VOICED SOUND MARK and U+FF9F

HALFWIDTH KATAKANA SEMI-VOICED SOUND MARK), which might have been better

analyzed as spacing combining marks. Another examples consists of the conjoining

Hangul jamo, which might have been better analyzed as an initial base character

followed by formally combining medial and final characters. In the interest of effi‐

ciency and uniformity in algorithms, implementations may take advantage of such

reanalyses of character properties, as long as this does not conflict with the confor‐

mance requirements with respect to normative properties. See Section 3.5, Properties;

Section 3.2, Conformance Requirements; and Section 3.3, Semantics, for more informa‐

tion.

Character Properties 208

The Unicode Character Database (UCD) consists of a set of files that define the

Unicode character properties and internal mappings. For each property, the files

determine the assignment of property values to each code point. The UCD also

supplies recommended property aliases and property value aliases for textual parsing

and display in environments such as regular expressions.

The properties include the following:

Name

General Category (basic partition into letters, numbers, symbols, punctuation,

and so on)

Other important general characteristics (whitespace, dash, ideographic,

alphabetic, noncharacter, deprecated, and so on)

Display-related properties (bidirectional class, shaping, mirroring, width, and so

on)

Casing (upper, lower, title, folding—both simple and full)

Numeric values and types

Script and Block

Normalization properties (decompositions, decomposition type, canonical

combining class, composition exclusions, and so on)

Age (version of the standard in which the code point was first designated)

Boundaries (grapheme cluster, word, line, and sentence)

See Unicode Standard Annex #44, “Unicode Character Database,” for more details on

the character properties and their values, the status of properties, their distribution

across data files, and the file formats.

 In addition, a large number of properties specific to CJK ideo‐

graphs are defined in the Unicode Character Database. These properties include

source information, radical and stroke counts, phonetic values, meanings, and

mappings to many East Asian standards. The values for all these properties are listed

in the file Unihan.zip, also known as the Unihan Database. For a complete descrip‐

tion and documentation of the properties themselves, see Unicode Standard Annex

#38, “Unicode Han Database (Unihan).” (See also “Online Unihan Database” in

Appendix B.3, Other Unicode Online Resources.)

Many properties apply to both ideographs and other characters. These are not speci‐

fied in the Unihan Database, but rather in other data files associated with the UCD.

4.1 Unicode Character Database

•

•

•

•

•

•

•

•

•

•

Unihan Database.

Character Properties 209 4.1 Unicode Character Database

 A number of properties specific to Egyptian hieroglyphs are defined in

Unikemet.txt. These properties include source information, function, value, descrip‐

tion, mirroring and rotation status. For a complete description and documentation of

the properties, see Unicode Standard Annex #57, “Unicode Egyptian Hieroglyph

Database (Unikemet).”

 While the Unicode Consortium strives to minimize changes to character

property data, occasionally character properties must be updated. When this situa‐

tion occurs, a new version of the Unicode Character Database is created, containing

updated data files. Data file changes are associated with specific, numbered versions

of the standard; character properties are never silently corrected between official

versions.

Each version of the Unicode Character Database, once published, is absolutely stable

and will never change. Implementations or specifications that refer to a specific

version of the UCD can rely upon this stability. Detailed policies on character

encoding stability as they relate to properties are found on the Unicode website. See

the subsection “Policies” in Appendix B.3, Other Unicode Online Resources. See also

the discussion of versioning and stability in Section 3.1, Versions of the Unicode Stan‐

dard.

 Character properties and their values are given formal aliases to make it

easier to refer to them consistently in specifications and in implementations, such as

regular expressions, which may use them. These aliases are listed exhaustively in the

Unicode Character Database, in the data files PropertyAliases.txt and PropertyVal‐

ueAliases.txt.

Many of the aliases have both a long form and a short form. For example, the General

Category has a long alias “General_Category” and a short alias “gc”. The long alias is

more comprehensible and is usually used in the text of the standard when referring

to a particular character property. The short alias is more appropriate for use in

regular expressions and other algorithmic contexts.

In comparing aliases programmatically, loose matching is appropriate. That entails

ignoring case differences and any whitespace, underscore, and hyphen characters.

For example, “GeneralCategory”, “general_category”, and “GENERAL-CATEGORY”

would all be considered equivalent property aliases. See Unicode Standard Annex

#44, “Unicode Character Database,” for further discussion of property and property

value matching.

For each character property whose values are not purely numeric, the Unicode Char‐

acter Database provides a list of value aliases. For example, one of the values of the

Line_Break property is given the long alias “Open_Punctuation” and the short alias

“OP”.

Unikemet.

Stability.

Aliases.

Character Properties 210 4.1 Unicode Character Database

Property aliases and property value aliases can be combined in regular expressions

that pick out a particular value of a particular property. For example, “\p{lb=OP}”

means the Open_Punctuation value of the Line_Break property, and “\p{gc=Lu}”

means the Uppercase_Letter value of the General_Category property.

Property aliases define a namespace. No two character properties have the same alias.

For each property, the set of corresponding property value aliases constitutes its own

namespace. No constraint prevents property value aliases for different properties from

having the same property value alias. Thus “B” is the short alias for the Para‐

graph_Separator value of the Bidi_Class property; “B” is also the short alias for the

Below value of the Canonical_Combining_Class property. However, because of the

namespace restrictions, any combination of a property alias plus an appropriate

property value alias is guaranteed to constitute a unique string, as in “\p{bc=B}”

versus “\p{ccc=B}”.

For a recommended use of property and property value aliases, see Unicode Tech‐

nical Standard #18, “Unicode Regular Expressions.” Aliases are also used for norma‐

tively referencing properties, as described in Section 3.1, Versions of the Unicode Stan‐

dard.

 Starting with Unicode Version 5.1.0, the complete Unicode Character

Database is also available formatted in XML. This includes both the non-Han part of

the Unicode Character Database and all of the content of the Unihan Database. For

details regarding the XML schema, file names, grouping conventions, and other

considerations, see Unicode Standard Annex #42, “Unicode Character Database in

XML.”

 All versions of the UCD are available online on the Unicode

website. See the subsections “Online Unicode Character Database” and “Online

Unihan Database” in Appendix B.3, Other Unicode Online Resources.

UCD in XML.

Online Availability.

Character Properties 211 4.1 Unicode Character Database

Case is a normative property of characters in certain alphabets whereby characters

are considered to be variants of a single letter. These variants, which may differ

markedly in shape and size, are called the uppercase letter (also known as capital or

majuscule) and the lowercase letter (also known as small or minuscule). The upper‐

case letter is generally larger than the lowercase letter.

Because of the inclusion of certain composite characters for compatibility, such as

U+01F1 LATIN CAPITAL LETTER DZ, a third case, called titlecase, is used where the

first character of a word must be capitalized. An example of such a character is

U+01F2 LATIN CAPITAL LETTER D WITH SMALL LETTER Z. The three case forms are

UPPERCASE, Titlecase, and lowercase.

For those scripts that have case (such as Latin, Greek, Coptic, Cyrillic, Glagolitic,

Armenian, archaic Georgian, Deseret, and Warang Citi), uppercase characters typi‐

cally contain the word capital in their names. Lowercase characters typically contain

the word small. However, this is not a reliable guide. The word small in the names of

characters from scripts other than those just listed has nothing to do with case. There

are other exceptions as well, such as small capital letters that are not formally upper‐

case. Some Greek characters with capital in their names are actually titlecase. (Note

that while the archaic Georgian script contained upper- and lowercase pairs, they are

not used in modern Georgian. See Section 7.7, Georgian.)

The Unicode Standard has more than one formal definition of lowercase, uppercase,

and related casing processes. This is the result of the inherent complexity of case

relationships and of defining case-related behavior on the basis of individual char‐

acter properties. This section clarifies the distinctions involved in the formal defini‐

tion of casing in the standard. The additional complications for titlecase are omitted

from the discussion; titlecase distinctions apply only to a handful of compatibility

characters.

The first set of values involved in the definition of case are based on the

General_Category property in UnicodeData.txt. The relevant values are

General_Category = Ll (Lowercase_Letter) and General_Category = Lu (Upper‐

case_Letter). For most ordinary letters of bicameral scripts such as Latin, Greek, and

Cyrillic, these values are obvious and non-problematical. However, the

General_Category property is, by design, a partition of the Unicode codespace. This

means that each Unicode character can only have one General_Category value,

which results in some odd edge cases for modifier letters, letterlike symbols and

letterlike numbers. As a consequence, not every Unicode character that looks like a

lowercase character necessarily ends up with General_Category = Ll, and not every

4.2 Case

4.2.1 Definitions of Case and Casing

Character Properties 212 4.2 Case

Unicode character that looks like an uppercase character ends up with

General_Category = Lu.

The second set of definitions relevant to case consist of the derived binary properties,

Lowercase and Uppercase, specified in DerivedCoreProperties.txt in the Unicode

Character Database. Those derived properties augment the General_Category values

by adding the additional characters that ordinary users think of as being lowercase or

uppercase, based primarily on their letterforms. The additional characters are

included in the derivations by means of the contributory properties,

Other_Lowercase and Other_Uppercase, defined in PropList.txt. For example,

Other_Lowercase adds the various modifier letters that are letterlike in shape, the

circled lowercase letter symbols, and the compatibility lowercase Roman numerals.

Other_Uppercase adds the circled uppercase letter symbols, and the compatibility

uppercase Roman numerals.

A third set of definitions for case is fundamentally different in kind, and does not

consist of character properties at all. The functions isLowercase and isUppercase are

string functions returning a binary True/False value. These functions are defined in

Section 3.13, Default Case Algorithms, and depend on case mapping relations, rather

than being based on letterforms per se. Basically, isLowercase is True for a string if

the result of applying the toLowercase mapping operation for a string is the same as

the string itself.

Table 4-1 illustrates the various possibilities for how these definitions interact, as

applied to exemplary single characters or single character strings.

Code Character gc Lowercase Uppercase isLowercase(S) isUppercase(S)

0068 h Ll True False True False

0048 H Lu False True False True

24D7 So True False True False

24BD So False True False True

02B0 ʰ Lm True False True True

1D34 Lm True False True True

02BD ʽ Lm False False True True

Note that for “caseless” characters, such as U+02B0, U+1D34, and U+02BD, isLow‐

ercase and isUppercase are both True, because the inclusion of a caseless letter in a

string is not criterial for determining the casing of the string—a caseless letter always

case maps to itself.

On the other hand, all modifier letters derived from letter shapes are also notionally

lowercase, whether the letterform itself is a minuscule or a majuscule in shape. Thus

Table 4-1. Relationship of Casing Definitions

Character Properties 213 4.2 Case

U+1D34 MODIFIER LETTER CAPITAL H is actually Lowercase = True. Other modifier

letters not derived from letter shapes, such as U+02BD, are neither Lowercase nor

Uppercase.

The string functions isLowercase and isUppercase also apply to strings longer than

one character, of course, for which the character properties General_Category,

Lowercase, and Uppercase are not relevant. In Table 4-2, the string function isTitle‐

case is also illustrated, to show its applicability for the same strings.

Codes String isLowercase(S) isUppercase(S) isTitlecase(S)

0068 0068 hh True False False

0048 0048 HH False True False

0048 0068 Hh False False True

0068 0048 hH False False False

Programmers concerned with manipulating Unicode strings should generally be

dealing with the string functions such as isLowercase (and its functional cousin,

toLowercase), unless they are working directly with single character properties. Care

is always advised, however, when dealing with case in the Unicode Standard, as

expectations based simply on the behavior of the basic Latin alphabet (A..Z, a..z) do

not generalize easily across the entire repertoire of Unicode characters, and because

case for modifier letters, in particular, can result in unexpected behavior.

The default case mapping tables defined in the Unicode Standard are normative, but

may be overridden to match user or implementation requirements. The Unicode

Character Database contains four files with case mapping information, as shown in

Table 4-3. Full case mappings for Unicode characters are obtained by using the basic

mappings from UnicodeData.txt and extending or overriding them where necessary

with the mappings from SpecialCasing.txt. Full case mappings may depend on the

context surrounding the character in the original string.

Some characters have a “best” single-character mapping in UnicodeData.txt as well

as a full mapping in SpecialCasing.txt. Any character that does not have a mapping in

these files is considered to map to itself. For more information on case mappings, see

Section 5.18, Case Mappings.

File Name Description

Table 4-2. Case Function Values for Strings

4.2.2 Case Mapping

Table 4-3. Sources for Case Mapping Information

Character Properties 214 4.2 Case

UnicodeData.txt
Contains the case mappings that map to a single character. These do not
increase the length of strings, nor do they contain context-dependent
mappings.

SpecialCasing.txt

Contains additional case mappings that map to more than one character,
such as “ß” to “SS”. Also contains context-dependent mappings, with flags
to distinguish them from the normal mappings, as well as some locale-
dependent mappings.

CaseFolding.txt

Contains data for performing default case folding and simple (code point-
to-code point) case folding, as described in “Caseless Matching,” in
Section 5.18, Case Mappings, and in “Default Case Folding” in Section 3.13,
Default Case Algorithms. Case folding is locale-independent.

PropList.txt
Contains the definition of the property Soft_Dotted, which is used in the
context specification for casing. See D138 in Section 3.13, Default Case
Algorithms.

The single-character mappings in UnicodeData.txt are insufficient for languages

such as German. Therefore, only legacy implementations that cannot handle case

mappings that increase string lengths should use UnicodeData.txt case mappings

alone.

A set of charts that show the latest case mappings is also available on the Unicode

website. See “Charts” in Appendix B.3, Other Unicode Online Resources.

Character Properties 215 4.2 Case

Each combining character has a normative canonical combining class. This class is

used with the Canonical Ordering Algorithm to determine which combining charac‐

ters interact typographically and to determine how the canonical ordering of

sequences of combining characters takes place. Class zero combining characters act

like base letters for the purpose of determining canonical order. Combining charac‐

ters with non-zero classes participate in reordering for the purpose of determining

the canonical order of sequences of characters. (See Section 3.11, Normalization

Forms, for the specification of the algorithm.)

The list of combining characters and their canonical combining class appears in the

Unicode Character Database. Most combining characters are nonspacing.

The canonical order of character sequences does not imply any kind of linguistic

correctness or linguistic preference for ordering of combining marks in sequences.

For more information on rendering combining marks, see Section 5.13, Rendering

Nonspacing Marks.

Class zero combining marks are never reordered by the Canonical Ordering Algo‐

rithm. Except for class zero, the exact numerical values of the combining classes are

of no importance in canonical equivalence, although the relative magnitude of the

classes is significant. For example, it is crucial that the combining class of the cedilla

be lower than the combining class of the dot below, although their exact values of

202 and 220 are not important for implementations.

Certain classes tend to correspond with particular rendering positions relative to the

base character, as shown in Figure 4-1.

In some scripts, the rendering of combining marks is notably complex. This is true in

particular of the Brahmi-derived scripts of South and Southeast Asia, whose vowels

are often encoded as class zero combining marks in the Unicode Standard, known as

matras for the Indic scripts.

4.3 Combining Classes

Figure 4-1. Positions of Common Combining Marks

4.3.1 Reordrant, Split, and Subjoined Combining Marks

Character Properties 216 4.3 Combining Classes

In the case of simple combining marks, as for the accent marks of the Latin script,

the normative Unicode combining class of that combining mark typically corre‐

sponds to its positional placement with regard to a base letter, as described earlier.

However, in the case of the combining marks representing vowels (and sometimes

consonants) in the Brahmi-derived scripts and other abugidas, all of the combining

marks are given the normative combining class of zero, regardless of their positional

placement within an aksara. The placement and rendering of a class zero combining

mark cannot be derived from its combining class alone, but rather depends on having

more information about the particulars of the script involved. In some instances, the

position may migrate in different historical periods for a script or may even differ

depending on font style.

The identification of matras in Indic scripts is provided in the data file IndicSyllabic‐

Category.txt in the Unicode Character Database. Information about their positional

placement can be found in the data file IndicPositionalCategory.txt. The following

text in this section subcategorizes some of the class zero combining marks for

Brahmi-derived scripts, pointing out significant types that need to be handled consis‐

tently, and relating their positional placement to the particular values documented in

IndicPositionalCategory.txt.

 In many instances in Indic scripts, a

vowel is represented in logical order after the consonant of a syllable, but is displayed

before (to the left of) the consonant when rendered. Such combining marks are

termed reordrant to reflect their visual reordering to the left of a consonant (or, in

some instances, a consonant cluster). Special handling is required for selection and

editing of these marks. In particular, the possibility that the combining mark may be

reordered to the left side past a cluster, and not simply past the immediate preceding

character in the backing store, requires attention to the details for each script

involved.

The visual reordering of these reordrant class zero combining marks has nothing to

do with the reordering of combining character sequences in the Canonical Ordering

Algorithm. All of these marks are class zero and thus are never reordered by the

Canonical Ordering Algorithm for normalization. The reordering is purely a presen‐

tational issue for glyphs during rendering of text.

Reordrant class zero combining marks correspond to the list of characters with

Indic_Positional_Category = Left.

In addition, there are historically related vowel characters in the Thai, Lao, New Tai

Lue, and Tai Viet scripts that are not treated as combining marks. Instead, for these

scripts, such vowels are represented in the backing store in visual order and require

no reordering for rendering. The trade-off is that they have to be rearranged for

correct sorting. Because of that processing requirement, these characters are given a

formal character property assignment, the Logical_Order_Exception property. See

Reordrant Class Zero Combining Marks.

Character Properties 217 4.3 Combining Classes

PropList.txt in the Unicode Character Database. The list of characters with the

Logical_Order_Exception property is the same as those documented with the value

Indic_Positional_Category = Visual_Order_Left in IndicPositionalCategory.txt.

 In addition to the reordrant class zero

combining marks, there are a number of class zero combining marks whose repre‐

sentative glyph typically consists of two parts, which are split into different positions

with respect to the consonant (or consonant cluster) in an aksara. Sometimes these

glyphic pieces are rendered both to the left and the right of a consonant. Sometimes

one piece is rendered above or below the consonant and the other piece is rendered

to the left or the right. Particularly in the instances where some piece of the glyph is

rendered to the left of the consonant, these split class zero combining marks pose

similar implementation problems as for the reordrant marks.

The split class zero combining marks have various Indic_Positional_Category values

such as Left_And_Right, Top_And_Bottom, Top_And_Right, Top_And_Left, and so

forth. See IndicPositionalCategory.txt for the full listing.

One should pay very careful attention to all split class zero combining marks in

implementations. Not only do they pose issues for rendering and editing, but they

also often have canonical equivalences defined involving the separate pieces, when

those pieces are also encoded as characters. As a consequence, the split combining

marks may constitute exceptional cases under normalization. Some of the Tibetan

split combining marks are deprecated.

The split vowels also pose difficult problems for understanding the standard, as the

phonological status of the vowel phonemes, the encoding status of the characters

(including any canonical equivalences), and the graphical status of the glyphs are

easily confused, both for native users of the script and for engineers working on

implementations of the standard.

 Brahmi-derived scripts that are not

represented in the Unicode Standard with a virama may have class zero combining

marks to represent subjoined forms of consonants. These correspond graphologically

to what would be represented by a sequence of virama plus consonant in other

related scripts. The subjoined consonants do not pose particular rendering problems,

at least not in comparison to other combining marks, but they should be noted as

constituting an exception to the normal pattern in Brahmi-derived scripts of conso‐

nants being represented with base letters. This exception needs to be taken into

account when doing linguistic processing or searching and sorting.

Subjoined class zero combining marks are listed with the value

Indic_Syllabic_Category = Consonant_Subjoined in IndicSyllabicCategory.txt.

 The Kharoshthi script is unique in

having some class zero combining marks for vowels that are struck through a conso‐

Split Class Zero Combining Marks.

Subjoined Class Zero Combining Marks.

Strikethrough Class Zero Combining Marks.

Character Properties 218 4.3 Combining Classes

nant, rather than being placed in a position around the consonant. These

strikethrough combining marks may involve particular problems for implementa‐

tions. In addition to the Kharoshthi vowels, there are a number of combining svarita

marks for Vedic texts which are also rendered as overstruck forms. These Kharoshthi

vowels and Vedic svarita marks have the property value Indic_Positional_Category =

Overstruck in IndicPositionalCategory.txt.

Character Properties 219 4.3 Combining Classes

Directional behavior is interpreted according to the Unicode Bidirectional Algorithm

(see Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”).For this

purpose, all characters of the Unicode Standard possess a normative directional type,

defined by the Bidi_Class (bc) property in the Unicode Character Database. The

directional types left-to-right and right-to-left are called strong types, and characters

of these types are called strong directional characters. Left-to-right types include

most alphabetic and syllabic characters as well as all Han ideographic characters.

Right-to-left types include the letters of predominantly right-to-left scripts, such as

Arabic, Hebrew, and Syriac, as well as most punctuation specific to those scripts. In

addition, the Unicode Bidirectional Algorithm uses weak types and neutrals. Interpre‐

tation of directional properties according to the Unicode Bidirectional Algorithm is

needed for layout of right-to-left scripts such as Arabic and Hebrew.

4.4 Directionality

Character Properties 220 4.4 Directionality

The Unicode Character Database defines a General_Category property for all

Unicode code points. The General_Category value for a character serves as a basic

classification of that character, based on its primary usage. The property extends the

widely used subdivision of ASCII characters into letters, digits, punctuation, and

symbols—a useful classification that needs to be elaborated and further subdivided to

remain appropriate for the larger and more comprehensive scope of the Unicode

Standard.

Each Unicode code point is assigned a normative General_Category value. Each

value of the General_Category is given a two-letter property value alias, where the

first letter gives information about a major class and the second letter designates a

subclass of that major class. In each class, the subclass “other” merely collects the

remaining characters of the major class. For example, the subclass “No” (Number,

other) includes all characters of the Number class that are not a decimal digit or

letter. These characters may have little in common besides their membership in the

same major class.

Table 4-4 enumerates the General_Category values, giving a short description of each

value. The special values LC, L, M, N, P, S, Z, and C are not part of the enumeration,

per se, but instead constitute aliases for closely related sets of values; those aliases for

grouped General_Category values are often helpful in regular expressions. See

Table 2-3 for the relationship between General_Category values and basic types of

code points.

Abbr Long Description

Lu Uppercase_Letter an uppercase letter

Ll Lowercase_Letter a lowercase letter

Lt Titlecase_Letter
a digraph encoded as a single character, with first part
uppercase

LC Cased_Letter Lu | Ll | Lt

Lm Modifier_Letter a modifier letter

Lo Other_Letter other letters, including syllables and ideographs

L Letter Lu | Ll | Lt | Lm | Lo

Mn Nonspacing_Mark a nonspacing combining mark (zero advance width)

Mc Spacing_Mark a spacing combining mark (positive advance width)

Me Enclosing_Mark an enclosing combining mark

M Mark Mn | Mc | Me

Nd Decimal_Number a decimal digit

4.5 General Category

Table 4-4. General_Category Values

Character Properties 221 4.5 General Category

Nl Letter_Number a letterlike numeric character

No Other_Number a numeric character of other type

N Number Nd | Nl | No

Pc Connector_Punctuation a connecting punctuation mark, like a tie

Pd Dash_Punctuation a dash or hyphen punctuation mark

Ps Open_Punctuation an opening punctuation mark (of a pair)

Pe Close_Punctuation a closing punctuation mark (of a pair)

Pi Initial_Punctuation an initial quotation mark

Pf Final_Punctuation a final quotation mark

Po Other_Punctuation a punctuation mark of other type

P Punctuation Pc | Pd | Ps | Pe | Pi | Pf | Po

Sm Math_Symbol a symbol of mathematical use

Sc Currency_Symbol a currency sign

Sk Modifier_Symbol a non-letterlike modifier symbol

So Other_Symbol a symbol of other type

S Symbol Sm | Sc | Sk | So

Zs Space_Separator a space character (of various non-zero widths)

Zl Line_Separator U+2028 LINE SEPARATOR only

Zp Paragraph_Separator U+2029 PARAGRAPH SEPARATOR only

Z Separator Zs | Zl | Zp

Cc Control a C0 or C1 control code

Cf Format a format control character

Cs Surrogate a surrogate code point

Co Private_Use a private-use character

Cn Unassigned a reserved unassigned code point or a noncharacter

C Other Cc | Cf | Cs | Co | Cn

There are several other conventions for how General_Category values are assigned to

Unicode characters. Many characters have multiple uses, and not all such uses can be

captured by a single, simple partition property such as General_Category. Thus,

many letters often serve dual functions as numerals in traditional numeral systems.

Examples can be found in the Roman numeral system, in Greek usage of letters as

numbers, in Hebrew, and similarly for many scripts. In such cases the

General_Category is assigned based on the primary letter usage of the character, even

though it may also have numeric values, occur in numeric expressions, or be used

symbolically in mathematical expressions, and so on.

The General_Category gc=Nl is reserved primarily for letterlike number forms which

are not technically digits. For example, the compatibility Roman numeral characters,

U+2160..U+217F, all have gc=Nl. Because of the compatibility status of these charac‐

ters, the recommended way to represent Roman numerals is with regular Latin

Character Properties 222 4.5 General Category

letters (gc=Ll or gc=Lu). These letters derive their numeric status from conventional

usage to express Roman numerals, rather than from their General_Category value.

Currency symbols (gc=Sc), by contrast, are given their General_Category value based

entirely on their function as symbols for currency, even though they are often derived

from letters and may appear similar to other diacritic-marked letters that get assigned

one of the letter-related General_Category values.

Pairs of opening and closing punctuation are given their General_Category values

(gc=Ps for opening and gc=Pe for closing) based on the most typical usage and orien‐

tation of such pairs. Occasional usage of such punctuation marks unpaired or in

opposite orientation certainly occurs, however, and is in no way prevented by their

General_Category values.

Similarly, characters whose General_Category identifies them primarily as a symbol

or as a mathematical symbol may function in other contexts as punctuation or even

paired punctuation. The most obvious such case is for U+003C “ ” LESS-THAN SIGN

and U+003E “ ” GREATER-THAN SIGN. These are given the General_Category gc =

Sm because their primary identity is as mathematical relational signs. However, as is

obvious from HTML and XML, they also serve ubiquitously as paired bracket punctu‐

ation characters in many formal syntaxes.

A common use of the General_Category of a Unicode character is in the derivation of

properties for the determination of text boundaries, as in Unicode Standard Annex

#29, “Unicode Text Segmentation.” Other common uses include determining

language identifiers for programming, scripting, and markup, as in Unicode Standard

Annex #31, “Unicode Identifier and Pattern Syntax,” and in regular expression

languages such as Perl. For more information, see Unicode Technical Standard #18,

“Unicode Regular Expressions.”

This property is also used to support common APIs such as isDigit(). Common

functions such as is	Letter()and is	Uppercase()do not extend well to the larger

and more complex repertoire of Unicode. While it is possible to naively extend these

functions to Unicode using the General_Category and other properties, they will not

work for the entire range of Unicode characters and the kinds of tasks for which

people intend them. For more appropriate approaches, see Unicode Standard Annex

#31, “Unicode Identifier and Pattern Syntax”; Unicode Standard Annex #29,

“Unicode Text Segmentation”; Section 5.18, Case Mappings; and Section 4.10, Letters,

Alphabetic, and Ideographic.

Although the General_Category property is normative, and its values are used in the

derivation of many other properties referred to by Unicode algorithms, it does not

follow that the General_Category always provides the most appropriate classification

of a character for any given purpose. Implementations are not required to treat char‐

acters solely according to their General_Category values when classifying them in

Character Properties 223 4.5 General Category

various contexts. The following examples illustrate some typical cases in which an

implementation might reasonably diverge from General_Category values for a char‐

acter when grouping characters as “punctuation,” “symbols,” and so forth.

A character picker application might classify U+0023 NUMBER SIGN among

symbols, or perhaps under both symbols and punctuation.

An “Ignore Punctuation” option for a search might choose not to ignore U+0040

COMMERCIAL AT.

A layout engine might treat U+0021 EXCLAMATION MARK as a mathematical

operator in the context of a mathematical equation, and lay it out differently

than if the same character were used as terminal punctuation in text.

Japanese wakiten (脇点) is a style of text emphasis which uses a sideline

sequence of “dots” (of different types and shapes) to highlight Japanese text in

vertical layout (or above text in horizontal layout). Implementations of wakiten

follow a general rule that in the emphasized text span, the dots are applied to

“letters” and “symbols,” but are not applied to “punctuation.” In most cases the

definition of punctuation used in wakiten matches the Unicode

General_Category, but the following common characters [# % & @ § ¶] are

considered to be symbols, rather than punctuation.

A regular expression syntax could provide an operator to match all punctuation,

but include characters other than those limited to gc = P (for example, U+00A7

SECTION SIGN).

The general rule is that if an implementation purports to be using the Unicode

General_Category property, then it must use the exact values specified in the

Unicode Character Database for that claim to be conformant. Thus, if a regular

expression syntax explicitly supports the Unicode General_Category property and

matches gc = P, then that match must be based on the precise UCD values.

•

•

•

•

•

Character Properties 224 4.5 General Category

Numeric_Value and Numeric_Type are normative properties of characters that

represent numbers. Characters with a non-default Numeric_Type include numbers

and number forms such as fractions, subscripts, superscripts, Roman numerals,

encircled numbers, and many script-specific digits and numbers.

In some traditional numbering systems, ordinary letters may also be used with a

numeric value. Examples include Greek letters used numerically, Hebrew gematria,

and even Latin letters when used in outlines (II.A.1.b). Letter characters used in this

way are not given Numeric_Type or Numeric_Value property values, to prevent

simplistic parsers from treating them numerically by mistake. The Unicode Char‐

acter Database gives the Numeric_Type and Numeric_Value property values only for

Unicode characters that normally represent numbers.

 Decimal digits, as commonly understood, are digits used to form

decimal-radix numbers. They include script-specific digits, but exclude characters

such as Roman numerals and Greek acrophonic numerals, which do not form

decimal-radix expressions. (Note that <1, 5> = 15 = fifteen, but <I, V> = IV = four.)

The Numeric_Type = Decimal property value (which is correlated with the

General_Category = Nd property value) is limited to those numeric characters that

are used in decimal-radix numbers and for which a full set of digits has been encoded

in a contiguous range, with ascending order of Numeric_Value, and with the digit

zero as the first code point in the range.

Decimal digits, as defined in the Unicode Standard by these property assignments,

exclude some characters, such as the CJK ideographic digits (see the first ten entries

in Table 4-5), which are not encoded in a contiguous sequence. Decimal digits also

exclude the compatibility subscript and superscript digits, to prevent simplistic

parsers from misinterpreting their values in context. (For more information on super‐

script and subscripts, see Section 22.4, Superscript and Subscript Symbols.) Tradition‐

ally, the Unicode Character Database has given these sets of noncontiguous or

compatibility digits the value Numeric_Type = Digit, to recognize the fact that they

consist of digit values but do not necessarily meet all the criteria for Numeric_Type =

Decimal. However, the distinction between Numeric_Type = Digit and the more

generic Numeric_Type = Numeric has proven not to be useful in implementations.

As a result, future sets of digits which may be added to the standard and which do

not meet the criteria for Numeric_Type = Decimal will simply be assigned the value

Numeric_Type = Numeric.

Numbers other than decimal digits can be used in numerical expressions, and may be

interpreted by a numeric parser, but it is up to the implementation to determine such

specialized uses.

4.6 Numeric Value

Decimal Digits.

Character Properties 225 4.6 Numeric Value

 The Unicode Standard encodes separate characters for the

digits specific to a given script. Examples are the digits used with the Arabic script or

those of the various Indic scripts. See Table 22-3 for a list of script-specific digits. For

naming conventions relevant to the Arabic digits, see the introduction to Section 9.2,

Arabic.

CJK ideographs also may have numeric values. The primary numeric ideographs are

shown in Table 4-5. The Numeric_Value property for each of them is shown in the

second column of the table. In a few instances, there is regional variation in values,

with one value currently used in China and another used in Japan. In such cases, as

for 兆, which is used for million (zhào) in China, but for trillion (chō) in Japan, both

values are listed for kPrimaryNumeric in the Unihan database, but the first of those

values is used to calculate Numeric_Value in the Unicode Character Database.

When used to represent numbers in decimal notation, zero is represented by

U+3007. Otherwise, zero is represented by U+96F6.

Code Point Numeric_Value Secondary Value

U+96F6 0

U+4E00 1

U+4E8C 2

U+4E09 3

U+56DB 4

U+4E94 5

U+516D 6

U+4E03 7

U+516B 8

U+4E5D 9

U+5341 10

U+767E 100

U+5343 1,000

U+4E07 10,000

U+842C 10,000

U+5146 1,000,000 1,000,000,000,000 (10,000 × 10,000 × 10,000)

U+79ED 1,000,000 1,000,000,000,000 (10,000 × 10,000 × 10,000)

U+5104 100,000,000 (10,000 × 10,000)

U+4EBF 100,000,000 (10,000 × 10,000)

U+4EAC 10,000,000,000,000

Script-Specific Digits.

4.6.1 Ideographic Numeric Values

Table 4-5. Primary Numeric Ideographs

Character Properties 226 4.6 Numeric Value

Ideographic accounting numbers are commonly used on checks and other financial

instruments to minimize the possibilities of misinterpretation or fraud in the repre‐

sentation of numerical values. The set of accounting numbers varies somewhat

between Japanese, Chinese, and Korean usage. Table 4-6 gives a fairly complete

listing of the known accounting characters. Some of these characters are ideographs

with other meanings pressed into service as accounting numbers; others are used

only as accounting numbers.

Number Multiple Uses Accounting Use Only

1 U+58F9, U+58F1 U+5F0C

2 U+8CAE, U+8CB3, U+8D30, U+5F10, U+5F0D

3 U+53C3, U+53C2 U+53C1, U+5F0E

4 U+8086

5 U+4F0D

6 U+9678, U+9646

7 U+67D2

8 U+634C

9 U+7396

10 U+62FE

100 U+964C U+4F70

1,000 U+4EDF

10,000 U+842C

In Japan, U+67D2 is also pronounced urusi, meaning “lacquer,” and is treated as a

variant of the standard character for “lacquer,” U+6F06.

The Unihan Database gives the most up-to-date and complete listing of primary

numeric ideographs and ideographs used as accounting numbers, including those for

CJK repertoire extensions beyond the Unified Repertoire and Ordering. See Unicode

Standard Annex #38, “Unicode Han Database (Unihan),” for more details.

Table 4-6. Ideographs Used as Accounting Numbers

Character Properties 227 4.6 Numeric Value

Bidi Mirrored is a normative property of characters such as parentheses, whose

images are mirrored horizontally in text that is laid out from right to left. For

example, U+0028 LEFT PARENTHESIS is interpreted as opening parenthesis; in a left-

to-right context it will appear as “(”, while in a right-to-left context it will appear as

the mirrored glyph “)”. This requirement is necessary to render the character prop‐

erly in a bidirectional context. Mirroring is the default behavior for such paired char‐

acters in Unicode text. (For more information, see the “Paired Punctuation” subsec‐

tion in Section 6.2, General Punctuation.)

Paired delimiters are mirrored even when they are used in unusual ways, as, for

example, in the mathematical expressions [a,b) or]a,b[. If any of these expressions is

displayed from right to left, then the mirrored glyphs are used. Because of the diffi‐

culty in interpreting such expressions, authors of bidirectional text need to make sure

that readers can determine the desired directionality of the text from context.

Note that mirroring is not limited to paired punctuation and other paired delimiters,

but also applies to a limited set of mathematical symbols whose orientation is

reversed when the direction of line layout is reversed—for example, U+222B INTE‐

GRAL. Such characters subject to bidi mirroring require the availability of a left-right

symmetric pair of glyphs for correct display.

For some mathematical symbols, the “mirrored” form is not an exact mirror image.

For example, the direction of the circular arrow in U+2232 CLOCKWISE CONTOUR

INTEGRAL reflects the direction of the integration in coordinate space, not the text

direction. In a right-to-left context, the integral sign would be mirrored, but the

circular arrow would retain its direction. In a similar manner, the bidi-mirrored form

of U+221B CUBE ROOT would be composed of a mirrored radix symbol with a non-

mirrored digit “3”. For more information, see Unicode Technical Report #25,

“Unicode Support for Mathematics.”

The list of mirrored characters appears in the Unicode Character Database. Formally,

they consist of all characters with the property value Bidi_Mirrored = Y. This applies

to almost all paired brackets (with the legacy exception of U+FD3E ORNATE LEFT

PARENTHESIS and U+FD3F ORNATE RIGHT PARENTHESIS), but not to quotation

marks, whose directionality and pairing status is less predictable than paired

brackets. (See the subsection on “Language-Based Usage of Quotation Marks” in

Section 6.2, General Punctuation.) Many mathematical operators with a directional

orientation are bidi mirrored, but mirroring does not apply to any arrow symbols.

The mirroring behavior noted in paleographic materials for a number of ancient

scripts, such as Old Italic, Runic, (ancient) Greek, Egyptian Hieroglyphs, and so

forth, is not within the scope of the Bidi Mirrored property, and is not handled by

4.7 Bidi Mirrored

Character Properties 228 4.7 Bidi Mirrored

default in the Unicode Bidirectional Algorithm (UBA). Mirroring of the letters or

signs in the text of such paleographic material should be dealt with by higher level

protocol. HL6 "Additional mirroring" is specified by the UBA as a permissible type of

higher-level protocol to allow additional mirroring of glyphs for certain characters in

a bidirectional context. A straightforward approach to a higher-level protocol would

use existing bidirectional format controls to override text layout direction, add

mirrored glyphs to a font used for paleographic display, and make the display choice

depend on resolved direction for a directional run. HL3 “Emulate explicit directional

formatting characters” in the UBA also allows a higher-level protocol to use other

techniques such as style sheets or markup to override text directionality in structured

text. In combination, such techniques can provide for the layout requirements of

paleographic scripts which may mirror letters or signs depending on text layout

direction. See the discussions of directionality and text layout in the respective

sections regarding each script.

 The Bidi Mirrored property is not to be confused with the

related, informative Bidi Mirroring Glyph property, which lists pairs of characters

whose representative glyphs are mirror images of each other. The Unicode Bidirec‐

tional Algorithm also requires two related, normative properties, Bidi Paired Bracket

and Bidi Paired Bracket Type, which are used for matching specific bracket pairs and

to assign the same text direction to both members of each pair in bidirectional

processing for text layout. These properties do not affect mirroring. For more infor‐

mation, see BidiMirroring.txt and BidiBrackets.txt in the Unicode Character Data‐

base.

Related Properties.

Character Properties 229 4.7 Bidi Mirrored

Unicode characters have names that serve as unique identifiers for each character.

The character names in the Unicode Standard are identical to those of the English-

language edition of ISO/IEC 10646.

Where possible, character names are derived from existing conventional names of a

character or symbol in English, but in many cases the character names nevertheless

differ from traditional names widely used by relevant user communities. The char‐

acter names of symbols and punctuation characters often describe their shape, rather

than their function, because these characters are used in many different contexts. See

also “Color Words in Unicode Character Names” in Section 22.9, Miscellaneous

Symbols.

Character names are listed in the code charts. Currently, one of the characters with

the longest name is U+1FBA8 BOX DRAWINGS LIGHT DIAGONAL UPPER CENTRE TO

MIDDLE LEFT AND MIDDLE RIGHT TO LOWER CENTRE (Version 13.0) with 88 letters

and spaces in its name, and the one with the shortest name is U+1F402 OX (Version

6.0) with only two letters in its name.

 Once assigned, a character name is immutable. It will never be changed in

subsequent versions of the Unicode Standard. Implementers and users can rely on

the fact that a character name uniquely represents a given character.

 Unicode character names, as listed in the code charts,

contain only uppercase Latin letters A through Z, digits, space, and hyphen-minus.

In more detail, character names reflect the following rules:

4.8 Name

Stability.

Character Name Syntax.

Only Latin capital letters A to Z (U+0041..U+005A), ASCII digits

(U+0030.. U+0039), U+0020 SPACE, and U+002D HYPHEN-MINUS occur in

character names.

R1

Digits do not occur as the first character of a character name, nor imme‐

diately following a space character.

R2

U+002D HYPHEN-MINUS does not occur as the first or last character of a

character name, nor immediately between two spaces, nor immediately

preceding or following another hyphen-minus character. (In other words,

multiple occurrences of U+002D in sequence are not allowed.)

R3

A space does not occur as the first or last character of a character name,

nor immediately preceding or following another space character. (In

other words, multiple spaces in sequence are not allowed.)

R4

Character Properties 230 4.8 Name

See Appendix A, Notational Conventions, for the typographical conventions used

when printing character names in the text of the standard.

 Character names are constructed so that they can easily be

transposed into formal identifiers in another context, such as a computer language.

Because Unicode character names do not contain any underscore (“_”) characters, a

common strategy is to replace any hyphen-minus or space in a character name by a

single “_” when constructing a formal identifier from a character name. This strategy

automatically results in a syntactically correct identifier in most formal languages.

Furthermore, such identifiers are guaranteed to be unique, because of the special

rules for character name matching.

 When matching identifiers transposed from character

names, it is possible to ignore case, whitespace, and all medial hyphen-minus charac‐

ters (or any “_” replacing a hyphen-minus), except for the hyphen-minus in U+1180

HANGUL JUNGSEONG O-E, and still result in a unique match. For example, “ZERO

WIDTH SPACE” is equivalent to “zero-width-space” or “ZERO_WIDTH_SPACE” or

“ZeroWidthSpace”. However, “TIBETAN LETTER A” should not match “TIBETAN

LETTER -A”, because in that instance the hyphen-minus is not medial between two

letters, but is instead preceded by a space. For more information on character name

matching, see Section 5.9, “Matching Rules” in Unicode Standard Annex #44,

“Unicode Character Database.”

 Occasionally, character sequences are also given a

normative name in the Unicode Standard. The names for such sequences are taken

from the same namespace as character names, and are also unique. For details, see

Unicode Standard Annex #34, “Unicode Named Character Sequences.” Named char‐

acter sequences are not listed in the code charts; instead, they are listed in the file

NamedSequences.txt in the Unicode Character Database.

The names for named character sequences are also immutable. Once assigned, they

will never be changed in subsequent versions of the Unicode Standard.

 The Unicode Standard has a mechanism for the publica‐

tion of additional, normative formal aliases for characters. These formal aliases are

known as character name aliases. (See Definition D5 in Section 3.3, Semantics.) They

function essentially as auxiliary names for a character. The original reason for

defining character name aliases was to provide corrections for known mistakes in

character names, but they have also proven useful for other purposes, as documented

here.

Character name aliases are listed in the file NameAliases.txt in the Unicode Char‐

acter Database. That file also documents the type field which distinguishes among

different kinds of character name aliases, as shown in Table 4-7.

Names as Identifiers.

Character Name Matching.

Named Character Sequences.

Character Name Aliases.

Character Properties 231 4.8 Name

Type Description

correction Corrections for serious problems in the character names

control
ISO 6429 names for C0 and C1 control functions, and other commonly
occurring names for control codes

alternate Widely used alternate names for format characters

figment
Several documented labels for C1 control code points which were never actually
approved in any standard

abbreviation
Commonly occurring abbreviations (or acronyms) for control codes, format
characters, spaces, and variation selectors

Character name aliases are immutable, once published. (See Definition D42 in

Section 3.5, Properties.) They follow the same syntax rules as character names and are

also guaranteed to be unique in the Unicode namespace for character names. This

attribute makes character name aliases useful as identifiers. A character may, in prin‐

ciple, have more than one normative character name alias, but each distinct char‐

acter name alias uniquely identifies only a single code point.

The first type of character name alias consists of corrections for known mistakes in

character names. Sometimes errors in a character name are only discovered after

publication of a version of the Unicode Standard. Because character names are

immutable, such errors are not corrected by changing the names after publication.

However, in some limited instances (as for obvious typos in the name), a character

name alias is defined instead.

For example, the following Unicode character name has a well-known spelling error

in it:

U+FE18 PRESENTATION FORM FOR VERTICAL RIGHT WHITE LENTICULAR

BRAKCET

Because the spelling error could not be corrected after publication of the data files

which first contained it, a character name alias with the corrected spelling was

defined:

U+FE18 PRESENTATION FORM FOR VERTICAL RIGHT WHITE LENTICULAR

BRACKET

Character name aliases are provided for additional reasons besides corrections of

errors in the character names. For example, there are character name aliases which

give definitive labels to control codes, which have no actual Unicode character

names:

U+0009 HORIZONTAL TABULATION

Table 4-7. Types of Character Name Aliases

Character Properties 232 4.8 Name

Character name aliases of type alternate are for widely used alternate names of

Unicode format characters. Currently only one such alternate is normatively defined,

but it is for an important character:

U+FEFF BYTE ORDER MARK

Among the control codes there are a few which have had names propagate through

the computer implementation “lore,” despite the fact that they refer to ISO/IEC 10646

control functions that were never formally adopted. These names are defined as char‐

acter name aliases of type figment, and are included in NameAliases.txt, because they

occur in some widely distributed implementations, such as the regex engine for Perl.

Examples include:

U+0081 HIGH OCTET PRESET

Additional character name aliases match existing and widely used abbreviations (or

acronyms) for control codes and for Unicode format characters:

U+0009 TAB

U+200B ZWSP

Specifying these additional, normative character name aliases serves two major func‐

tions. First, it provides a set of well-defined aliases for use in regular expression

matching and searching, where users might expect to be able to use established

names or abbreviations for control codes and the like, but where those names or

abbreviations are not part of the actual Unicode Name property. Second, because

character name aliases are guaranteed to be unique in the Unicode character name

namespace, having them defined for control codes and abbreviations prevents the

potential for accidental collisions between de facto current use and names which

might be chosen in the future for newly encoded Unicode characters.

It is acceptable and expected for external specifications to make normative references

to Unicode characters using one (or more) of their normative character name aliases,

where such references make sense. For example, when discussing Unicode encoding

schemes and the role of U+FEFF as a signature for byte order, it would not make

much sense to insist on referring to U+FEFF by its name ZERO WIDTH NO-BREAK

SPACE, when use of the character name alias BYTE ORDER MARK or the widely used

abbreviation BOM would communicate with less confusion.

A subset of character name aliases is listed in the code charts, using special typo‐

graphical conventions explained in Section 24.1, Character Names List.

A normative character name alias is distinct from the informative aliases listed in the

code charts. Informative aliases merely point out other common names in use for a

given character. Informative aliases are not immutable and are not guaranteed to be

Character Properties 233 4.8 Name

unique; they therefore cannot serve as an identifier for a character. Their main

purposes are to help readers of the standard to locate and to identify particular char‐

acters.

Formally, the character name for a Unicode character is the value of the normative

character property, “Name”. Most Unicode character properties are defined by

enumeration in one of the data files of the Unicode Character Database, but the

Name property is instead defined in part by enumeration and in part by rule. A

significant proportion of Unicode characters belong to large sets, such as Han ideo‐

graphs, Tangut ideographs, and Hangul syllables, for which the character names are

best defined by generative rule, rather than one-by-one naming.

 The Name property (short alias: “na”) is

a string property, defined as follows:

For example, the name of U+D4DB is HANGUL SYLLABLE PWILH, constructed by

concatenation of “HA	NG	U	L 	SY	L	LAB	LE ” and three Jamo_Short_Name property

values, “P” + “WI” + “	LH”.

The exact specification of the 4-6 digit hexadecimal convention for expressing

Unicode code points can be found in Appendix A, Notational Conventions.

For example, the name of U+4E00 is CJK UNIFIED IDEOGRAPH-4E00, constructed by

concatenation of “C	JK 	U	NIFIED IDEOGRAPH-” and the code point. Similarly, the

character name of U+17000 is TANGUT IDEOGRAPH-17000.

For example, U+0A15 GURMUKHI LETTER KA or U+200D ZERO WIDTH JOINER.

4.8.1 Unicode Name Property

Formal Definition of the Name Property.

For Hangul syllables, the Name property value is derived by rule, as speci‐

fied in Section 3.12, Conjoining Jamo Behavior, under “Hangul Syllable

Name Generation,” by concatenating a fixed prefix string “HANGUL
SYLLABLE ” and appropriate values of the Jamo_Short_Name property.

NR1

For most ideographs (characters with the binary property value Ideo‐

graphic = True), the Name property value is derived by concatenating a

script-specific prefix string, as specified in Table 4-8, to the code point,

expressed in uppercase hexadecimal, with the usual 4- to 6-digit conven‐

tion.

NR2

For all other Graphic characters and for all Format characters, the Name

property value is as explicitly listed in Field 1 of UnicodeData.txt.

NR3

Character Properties 234 4.8 Name

The ranges of Hangul syllables and most Han and Tangut ideographic characters

subject to the name derivation rules NR1 and NR2 are identified by a special conven‐

tion in Field 1 of UnicodeData.txt. The start and end of each range are indicated by a

pair of entries in the data file in the general format:

	N	N	N	N;<RA	NGE	NAME, First>;	Lo;0;	L;;;;;	N;;;;;
	N	N	N	N;<RA	NGE	NAME, 	Last>;	Lo;0;	L;;;;;	N;;;;;

This convention originated as a compression technique for UnicodeData.txt, as all of

the UnicodeData.txt properties of these ranges were uniform, and the names for the

characters in the ranges could be specified by rule. Note that the same convention is

used in UnicodeData.txt to specify properties for code point types which have a null

string as their Name property value, such as private use characters.

CJK compatibility ideographs are an exception. They have names derived by rule

NR2, but are explicitly listed in UnicodeData.txt with their names, because they typi‐

cally have non-uniform character properties, including most notably a nontrivial

canonical decomposition value. Ideographic characters for scripts other than Han

and Tangut, as well as Egyptian hieroglyphs, also have their names listed explicitly in

UnicodeData.txt, even when their names are derived by rule NR2.

The exact ranges subject to name derivation rules NR1 and NR2, and the specified

prefix strings are summarized in Table 4-8.

Range Rule Prefix String

AC00..D7A3 NR1 “HA	NG	U	L 	SY	L	LAB	LE ”

3400..4DBF NR2 “C	JK 	U	NIFIED IDEOGRAPH-”

4E00..9FFF NR2 “C	JK 	U	NIFIED IDEOGRAPH-”

20000..2A6DF NR2 “C	JK 	U	NIFIED IDEOGRAPH-”

2A700..2B739 NR2 “C	JK 	U	NIFIED IDEOGRAPH-”

2B740..2B81D NR2 “C	JK 	U	NIFIED IDEOGRAPH-”

2B820..2CEA1 NR2 “C	JK 	U	NIFIED IDEOGRAPH-”

2CEB0..2EBE0 NR2 “C	JK 	U	NIFIED IDEOGRAPH-”

2EBF0..2EE5D NR2 “C	JK 	U	NIFIED IDEOGRAPH-”

30000..3134A NR2 “C	JK 	U	NIFIED IDEOGRAPH-”

31350..323AF NR2 “C	JK 	U	NIFIED IDEOGRAPH-”

13460..143FA NR2 “EGYP	TIA	N HIEROG	LYPH-”

17000..187F7 NR2 “	TA	NG	U	T IDEOGRAPH-”

For all other Unicode code points of all other types (Control, Private-Use,

Surrogate, Noncharacter, and Reserved), the value of the Name property

is the null string. In other words, na = “”.

NR4

Table 4-8. Name Derivation Rule Prefix Strings

Character Properties 235 4.8 Name

18D00..18D08 NR2 “	TA	NG	U	T IDEOGRAPH-”

18B00..18CD5 NR2 “KHI	TA	N 	SMA	L	L 	SCRIP	T CHARAC	TER-”

1B170..1B2FB NR2 “	N	U	SH	U CHARAC	TER-”

F900..FA6D* NR2 “C	JK COMPA	TIBI	LI	TY IDEOGRAPH-”

FA70..FAD9 NR2 “C	JK COMPA	TIBI	LI	TY IDEOGRAPH-”

2F800..2FA1D NR2 “C	JK COMPA	TIBI	LI	TY IDEOGRAPH-”

Twelve of the CJK ideographs in the starred range in Table 4-8, in the CJK Compati‐

bility Ideographs block, are actually CJK unified ideographs. Nonetheless, their

names are constructed with the “C	JK COMPA	TIBI	LI	TY IDEOGRAPH-” prefix shared

by all other code points in that block. The status of a CJK ideograph as a unified ideo‐

graph cannot be deduced from the Name property value for that ideograph; instead,

the dedicated binary property Unified_Ideograph should be used to determine that

status. See “CJK Compatibility Ideographs” in Section 18.1, Han, and Section 4.4,

“Listing of Characters Covered by the Unihan Database” in Unicode Standard Annex

#38, “Unihan Database,” for more details about these exceptional twelve CJK ideo‐

graphs.

The generic term “character name” refers to the Name property value for an encoded

Unicode character. An expression such as, “The reserved code point U+1029F has no

name,” is shorthand for the more precise statement that the reserved code point

U+1029F (as for all code points of type Reserved) has a property value of na = “” for

the Name property.

 The Unicode Name property values are unique for all non-null

values, but not every Unicode code point has a unique Unicode Name property value.

Furthermore, because Unicode character names, character name aliases, named

character sequences, and code point labels constitute a single, unique namespace, the

Name property value uniqueness requirement applies to all three kinds of names and

to code point labels.

 Where Field 1 of UnicodeData.txt

contains a string enclosed in angle brackets, “<” and “>”, such a string is not a char‐

acter name, but a meta-label indicating some other information—for example, the

start or end of a character range. In these cases, the Name property value for that

code point is either empty (na = “”) or is given by one of the rules described above. In

all other cases, the value of Field 1 (that is, the string of characters between the first

and second semicolon separators on each line) corresponds to the normative value of

the Name property for that code point.

 The Unicode Standard does not define character names for control

codes (characters with General_Category = Cc). In other words, all control codes

have a property value of na = “” for the Name property. Control codes are instead

listed in UnicodeData.txt with a special label “<control>” in Field 1. This value is not

Name Uniqueness.

Interpretation of Field 1 of UnicodeData.txt.

Control Codes.

Character Properties 236 4.8 Name

a character name, but instead indicates the code point type (see Definition D10a in

Section 3.4, Characters and Encoding). For control characters, the values of the infor‐

mative Unicode 1.0 name property (Unicode_1_Name) in Field 10 match the names

of the associated control functions from ISO/IEC 6429. (See Section 4.9, Unicode 1.0

Names.)

To provide unique, meaningful labels for code points that do not have character

names, the Unicode Standard uses a convention for code point labeling.

For each code point type without character names, code point labels are constructed

by using a lowercase prefix derived from the code point type, followed by a hyphen-

minus and then a 4- to 6-digit hexadecimal representation of the code point. Leading

zeros are omitted in the hexadecimal representation, unless their omission would

result in fewer than four hexadecimal digits. Thus, for example, the code point label

for U+0008 would be uniquely constructed as “control-0008”, and not as “control-8”

or “control-00008” or “control-000008”. The label construction for the five affected

code point types is illustrated in Table 4-9.

Type Label

Control control-	N	N	N	N

Reserved reserved-	N	N	N	N

Noncharacter noncharacter-	N	N	N	N

Private-Use private-use-	N	N	N	N

Surrogate surrogate-	N	N	N	N

Unicode code point labels are included in the unique namespace for Unicode char‐

acter names. This ensures that there will never be a naming conflict between a code

point label and an actual, assigned Unicode character name.

To avoid any possible confusion with actual, non-null Name property values,

constructed Unicode code point labels are often displayed between angle brackets:

<control-0009>, <noncharacter-FFFF>, and so on. This convention is used

consistently in the data files for the Unicode Character Database.

A constructed code point label is distinguished from the designation of the code

point itself (for example, “U+0009” or “U+FFFF”), which is also a unique identifier,

as described in Appendix A, Notational Conventions.

4.8.2 Code Point Labels

Table 4-9. Construction of Code Point Labels

Character Properties 237 4.8 Name

 APIs which return the value of a Unicode “character name” for a given

code point might vary somewhat in their behavior. An API which is defined as strictly

returning the value of the Unicode Name property (the “na” attribute), should return

a null string for any Unicode code point other than graphic or format characters, as

that is the actual value of the property for such code points. On the other hand, an

API which returns a name for Unicode code points, but which is expected to provide

useful, unique labels for unassigned, reserved code points and other special code

point types, should return the value of the Unicode Name property for any code point

for which it is non-null, but should otherwise construct a code point label to stand in

for a character name.

 A list of Unicode character names may not always be the most

appropriate set of choices to present to a user in a user interface. Many common

characters do not have a single name for all English-speaking user communities and,

of course, their native name in another language is likely to be different altogether.

The names of many characters in the Unicode Standard are based on specific Latin

transcription of the sounds they represent. There are often competing transcription

schemes. For all these reasons, it can be more effective for a user interface to use

names that were translated or otherwise adjusted to meet the expectations of the

targeted user community. By also listing the formal character name, a user interface

could ensure that users can unambiguously refer to the character by the name docu‐

mented in the Unicode Standard.

4.8.3 Use of Character Names in APIs and User Interfaces

Use in APIs.

User Interfaces.

Character Properties 238 4.8 Name

The Unicode_1_Name property is an informative property referring to the name of

characters in Version 1.0 of the Unicode Standard. Values of the Unicode_1_Name

property are provided in UnicodeData.txt in the Unicode Character Database in cases

where the Version 1.0 name of a character differed from the current name of that

character. A significant number of names for Unicode characters in Version 1.0 were

changed during the process of merging the repertoire of the Unicode Standard with

ISO/IEC 10646 in 1991. Character name changes are now strictly prohibited by the

Unicode Character Encoding Stability Policy, and no character name has been

changed since Version 2.0.

The Version 1.0 names are primarily of historic interest regarding the early develop‐

ment of the Unicode Standard. However, where a Version 1.0 character name

provides additional useful information about the identity of a character, it is explicitly

listed in the code charts. For example, U+00B6 PILCROW SIGN has its Version 1.0

name, PARAGRAPH SIGN, listed for clarity.

The status of the Unicode_1_Name property values in the case of control codes

differs from that for other characters. The Unicode Standard, Version 1.0, gave names

to the C0 control codes, U+0000..U+001F, U+007F, based on then-current practice

for reference to ASCII control codes. Unicode 1.0 gave no names to the C1 control

codes, U+0080..U+009F. The values of the Unicode_1_Name property have been

updated for the control codes to reflect the ISO/IEC 6429 standard names for control

functions. Those names can be seen as annotations in the code charts. In a few

instances, because of updates to ISO/IEC 6429, those names may differ from the

names that actually occurred in Unicode 1.0. For example, the Unicode 1.0 name of

U+0009 was HORIZONTAL TABULATION, but the ISO/IEC 6429 name for this func‐

tion is CHARACTER TABULATION, and the commonly used alias is, of course, merely

tab.

4.9 Unicode 1.0 Names

Character Properties 239 4.9 Unicode 1.0 Names

 The concept of a letter is used in many contexts. Computer

language standards often characterize identifiers as consisting of letters, syllables,

ideographs, and digits, but do not specify exactly what a “letter,” “syllable,” “ideo‐

graph,” or “digit” is, leaving the definitions implicitly either to a character encoding

standard or to a locale specification. The large scope of the Unicode Standard means

that it includes many writing systems for which these distinctions are not as self-

evident as they may once have been for systems designed to work primarily for

Western European languages and Japanese. In particular, while the Unicode Stan‐

dard includes various “alphabets” and “syllabaries,” it also includes writing systems

that fall somewhere in between. As a result, no attempt is made to draw a sharp prop‐

erty distinction between letters and syllables.

 The Alphabetic property is a derived informative property of the

primary units of alphabets and/or syllabaries, whether combining or noncombining.

Included in this group would be composite characters that are canonical equivalents

to a combining character sequence of an alphabetic base character plus one or more

combining characters; letter digraphs; contextual variants of alphabetic characters;

ligatures of alphabetic characters; contextual variants of ligatures; modifier letters;

letterlike symbols that are compatibility equivalents of single alphabetic letters; and

miscellaneous letter elements. Notably, U+00AA FEMININE ORDINAL INDICATOR

and U+00BA MASCULINE ORDINAL INDICATOR are simply abbreviatory forms

involving a Latin letter and should be considered alphabetic rather than nonalpha‐

betic symbols.

 The Ideographic property is an informative property defined in the

Unicode Character Database. The Ideographic property is used, for example, in deter‐

mining line breaking behavior. Characters with the Ideographic property include

unified CJK ideographs, CJK compatibility ideographs, Tangut ideographs, Nüshu

ideographs, and characters from other blocks—for example, U+3007 IDEOGRAPHIC

NUMBER ZERO and U+3006 IDEOGRAPHIC CLOSING MARK. For more information

about Han, Tangut, and Nüshu ideographs, see Section 18.1, Han, Section 18.11, Tangut

and Section 18.8, Nüshu. For more about ideographs and logosyllabaries in general,

see Section 6.1, Writing Systems.

4.10 Letters, Alphabetic, and Ideographic

Letters and Syllables.

Alphabetic.

Ideographic.

Character Properties 240
4.10 Letters, Alphabetic, and

Ideographic

The determination of text boundaries, such as word breaks or line breaks, involves

contextual analysis of potential break points and the characters that surround them.

Such an analysis is based on the classification of all Unicode characters by their

default interaction with each particular type of text boundary. For example, the

Line_Break property defines the default behavior of Unicode characters with respect

to line breaking.

A number of characters have special behavior in the context of determining text

boundaries. These characters are described in more detail in the subsection on “Line

and Word Breaking” in Section 23.2, Layout Controls. For more information about

text boundaries and these characters, see Unicode Standard Annex #14, “Unicode

Line Breaking Algorithm,” and Unicode Standard Annex #29, “Unicode Text

Segmentation.”

4.11 Properties for Text Boundaries

Character Properties 241 4.11 Properties for Text Boundaries

The behavior of most characters does not require special attention in this standard.

However, the characters in Table 4-10 exhibit special behavior. Many other characters

behave in special ways but are not noted here, either because they do not affect

surrounding text in the same way or because their use is intended for well-defined

contexts. Examples include the compatibility characters for block drawing, the

symbol pieces for large mathematical operators, and many punctuation symbols that

need special handling in certain circumstances. Such characters are more fully

described in the following chapters. The section numbers or other references listed in

the “Details” column in Table 4-10 indicate where to find more information about the

functions or particular groups of characters listed.

Function Details Code Point and Name

Segmentation

Line break controls Section 23.2
00AD SOFT HYPHEN
200B ZERO WIDTH SPACE
2060 WORD JOINER

Combining Marks

Bases for display of
isolated nonspacing
marks

Section 2.11,
Section 6.2,
Section 23.2

0020 SPACE
00A0 NO-BREAK SPACE

Double nonspacing
marks

Section 7.9

035C COMBINING DOUBLE BREVE BELOW
035D COMBINING DOUBLE BREVE
035E COMBINING DOUBLE MACRON
035F COMBINING DOUBLE MACRON BELOW
0360 COMBINING DOUBLE TILDE
0361 COMBINING DOUBLE INVERTED BREVE
0362 COMBINING DOUBLE RIGHTWARDS ARROW
BELOW
1DCD COMBINING DOUBLE CIRCUMFLEX ABOVE
1DFC COMBINING DOUBLE INVERTED BREVE BELOW

Combining half marks Section 7.9

FE20 COMBINING LIGATURE LEFT HALF
FE21 COMBINING LIGATURE RIGHT HALF

and all other pairs in the Combining Half Marks block

Combining continuous
lining marks

Section 7.3,
Section 7.9

0305 COMBINING OVERLINE
0332 COMBINING LOW LINE
0333 COMBINING DOUBLE LOW LINE
033F COMBINING DOUBLE OVERLINE
FE26 COMBINING CONJOINING MACRON
FE2D COMBINING CONJOINING MACRON BELOW

Combining marks with
nondefault stacking

Section 7.9
1ABB COMBINING PARENTHESES ABOVE
1ABC COMBINING DOUBLE PARENTHESES ABOVE
1ABD COMBINING PARENTHESES BELOW

4.12 Characters with Unusual Properties

Table 4-10. Unusual Properties

Character Properties 242
4.12 Characters with Unusual

Properties

Ligation

Cursive joining and
ligation control

Section 23.2
200C ZERO WIDTH NON-JOINER
200D ZERO WIDTH JOINER

Fraction formatting Section 6.2 2044 FRACTION SLASH

Ligating modifier tone
letters

Section 7.8

02E5..02E9 MODIFIER LETTER EXTRA-HIGH TONE
BAR..MODIFIER LETTER EXTRA-LOW TONE BAR
A712..A716 MODIFIER LETTER EXTRA-HIGH LEFT-
STEM TONE BAR..MODIFIER LETTER EXTRA-LOW
LEFT-STEM TONE BAR

Ligating brackets that
surround text

Section 11.4,
Section 13.4

0F3C TIBETAN MARK ANG KHANG GYON
0F3D TIBETAN MARK ANG KHANG GYAS
13258..1325D EGYPTIAN HIEROGLYPH
O006A..EGYPTIAN HIEROGLYPH O006F
13282 EGYPTIAN HIEROGLYPH O033A
13286..13289 EGYPTIAN HIEROGLYPH O036A..EGYPTIAN
HIEROGLYPH O036D
13379..1337B EGYPTIAN HIEROGLYPH V011A..EGYPTIAN
HIEROGLYPH V011C

Ligating regional
indicator symbols

Section
22.10,
UTS #51

1F1E6..1F1FF REGIONAL INDICATOR SYMBOL LETTER
A..REGIONAL INDICATOR SYMBOL LETTER Z

Indic-related: conjuncts, killers, and other viramas

Brahmi-derived script
dead-character
formation

Chapter 12,
Chapter 13,
Chapter 14,
Chapter 15,
Chapter 16

See IndicSyllabicCategory.txt in the UCD for a full
listing.

Brahmi number
formation

Section 14.1 1107F BRAHMI NUMBER JOINER

Non-Indic consonant
ligation

Section 19.3 2D7F TIFINAGH CONSONANT JOINER

Historical viramas with
other functions

Section 13.4,
Section 13.6,
Section 13.7,
Section
13.13,
Section 16.3

0F84 TIBETAN MARK HALANTA
103A MYANMAR SIGN ASAT
193B LIMBU SIGN SA-I
ABED MEETEI MAYEK APUN IYEK
11134 CHAKMA MAAYYAA

Ideographic-related

Ideographic variation
indication

Section 6.2 303E IDEOGRAPHIC VARIATION INDICATOR

Ideographic description Section 18.2
2FF0..2FFB IDEOGRAPHIC DESCRIPTION CHARACTER
LEFT TO RIGHT..IDEOGRAPHIC DESCRIPTION
CHARACTER OVERLAID

Complex expression format control (scoped)

Bidirectional ordering Section 23.2 See Table 23-3 for a full listing.

Character Properties 243
4.12 Characters with Unusual

Properties

Mathematical
expression processing
and formatting

Section 22.6

2061 FUNCTION APPLICATION
2062 INVISIBLE TIMES
2063 INVISIBLE SEPARATOR
2064 INVISIBLE PLUS

Musical format control Section 21.2

1D173 MUSICAL SYMBOL BEGIN BEAM
1D174 MUSICAL SYMBOL END BEAM
1D175 MUSICAL SYMBOL BEGIN TIE
1D176 MUSICAL SYMBOL END TIE
1D177 MUSICAL SYMBOL BEGIN SLUR
1D178 MUSICAL SYMBOL END SLUR
1D179 MUSICAL SYMBOL BEGIN PHRASE
1D17A MUSICAL SYMBOL END PHRASE

Prepended
concatenation mark

Section 9.2,
Section 9.3,
Section 15.2

0600 ARABIC NUMBER SIGN
0601 ARABIC SIGN SANAH
0602 ARABIC FOOTNOTE MARKER
0603 ARABIC SIGN SAFHA
0604 ARABIC SIGN SAMVAT
0605 ARABIC NUMBER MARK ABOVE
06DD ARABIC END OF AYAH
070F SYRIAC ABBREVIATION MARK
0890 ARABIC POUND MARK ABOVE
0891 ARABIC PIASTRE MARK ABOVE
08E2 ARABIC DISPUTED END OF AYAH
110BD KAITHI NUMBER SIGN
110CD KAITHI NUMBER SIGN ABOVE

Interlinear annotation Section 23.8
FFF9 INTERLINEAR ANNOTATION ANCHOR
FFFA INTERLINEAR ANNOTATION SEPARATOR
FFFB INTERLINEAR ANNOTATION TERMINATOR

Deprecated alternate
formatting

Section 23.3

206A INHIBIT SYMMETRIC SWAPPING
206B ACTIVATE SYMMETRIC SWAPPING
206C INHIBIT ARABIC FORM SHAPING
206D ACTIVATE ARABIC FORM SHAPING
206E NATIONAL DIGIT SHAPES
206F NOMINAL DIGIT SHAPES

Other unusual format control

Miao tonal vowel
position control

Section
18.10

16F8F MIAO TONE RIGHT
16F90 MIAO TONE TOP RIGHT
16F91 MIAO TONE ABOVE
16F92 MIAO TONE BELOW

Shorthand format
control

Section 21.6

1BC9D DUPLOYAN THICK LETTER SELECTOR
1BCA0 SHORTHAND FORMAT LETTER OVERLAP
1BCA1 SHORTHAND FORMAT CONTINUING OVERLAP
1BCA2 SHORTHAND FORMAT DOWN STEP
1BCA3 SHORTHAND FORMAT UP STEP

SignWriting fill and
rotation

Section 21.7

1DA9B..1DA9F SIGNWRITING FILL
MODIFIER-2..SIGNWRITING FILL MODIFIER-6
1DAA1..1DAAF SIGNWRITING ROTATION
MODIFIER-2..SIGNWRITING ROTATION MODIFIER-16

Mongolian vowel
separation

Section 13.5 180E MONGOLIAN VOWEL SEPARATOR

Variation selection

Character Properties 244
4.12 Characters with Unusual

Properties

Generic variation
selectors

Section 23.4

FE00..FE0F VARIATION SELECTOR-1..VARIATION
SELECTOR-16
E0100..E01EF VARIATION SELECTOR-17..VARIATION
SELECTOR-256

Mongolian variation
selectors

Section 13.5

180B MONGOLIAN FREE VARIATION SELECTOR ONE
180C MONGOLIAN FREE VARIATION SELECTOR TWO
180D MONGOLIAN FREE VARIATION SELECTOR THREE
180F MONGOLIAN FREE VARIATION SELECTOR FOUR

Emoji modifiers for skin
tone

Section
22.9,
UTS #51

1F3FB..1F3FF EMOJI MODIFIER FITZPATRICK
TYPE-1-2..EMOJI MODIFIER FITZPATRICK TYPE-6

Emoji components to
indicate hair style

UTS #51
1F9B0..1F9B3 EMOJI COMPONENT RED HAIR..EMOJI
COMPONENT WHITE HAIR

Tag characters

Deprecated language
tag

Section 23.9 E0001 LANGUAGE TAG

Tag characters Section 23.9 E0020..E007F TAG SPACE..CANCEL TAG

Miscellaneous

Collation weighting and
sequence interpretation

Section 23.2 034F COMBINING GRAPHEME JOINER

Byte order signature Section 23.8 FEFF ZERO WIDTH NO-BREAK SPACE

Object replacement Section 23.8 FFFC OBJECT REPLACEMENT CHARACTER

Code conversion
fallback

Section 23.8 FFFD REPLACEMENT CHARACTER

Character Properties 245
4.12 Characters with Unusual

Properties

There are certain text elements (see Section 2.1.2, Text Elements, Characters, and Text

Processes) where more than one choice of representation by a character or character

sequence would result in the same appearance. Many such cases are handled by the

Unicode Normalization Algorithm, which rigorously defines canonical and compati‐

bility equivalences, and which does not specify a preference for one normalization

form over another. (See Section 2.12, Equivalent Sequences.) However, there are a

smaller number of cases, some of which are salient to users, where an ambiguous

representation may exist in the encoding, and where the Unicode Normalization

Algorithm does not specify an equivalence. In such cases, the Unicode Standard

instead often specifies recommended representations or spellings, to help in the

interchange of text.

The data file DoNotEmit.txt in the Unicode Character Database lists such ambiguous

characters or sequences together with their recommended alternative representation

in machine-readable form. In newly authored text, these recommended sequences

should be used and the non-recommended sequences should not be generated or

emitted by implementations. The non-recommended alternatives are not invalid nor

should they be flagged as errors if encountered in existing data. Implementations

should continue to interpret and display any such non-recommended alternatives.

Applications such as input methods or auto corrections could be used to steer the

user to the recommended alternative. Other implementations may use the informa‐

tion in the DoNotEmit.txt file to treat the listed characters or sequences as similar or

identical to their recommended alternative for display, collation or searching

purposes, or to suppress the non-recommended alternatives for identifiers.

The DoNotEmit.txt data file does not define any formal character properties. The

information is intended to help with ambiguities in coded representation that cannot

be resolved by applying the Unicode Normalization Algorithm; DoNotEmit.txt there‐

fore omits listing of canonical equivalences. The listings in the file are neither

comprehensive nor subject to a stability policy. Entries may be added or removed in

subsequent versions of the Unicode Standard to reflect new information on usage.

4.13 Characters and Sequences That Should Not

Be Emitted

Character Properties 246
4.13 Characters and Sequences That

Should Not Be Emitted

Chapter 5

Implementation Guidelines

It is possible to implement a substantial subset of the Unicode Standard as “wide

ASCII” with little change to existing programming practice. However, the Unicode

Standard also provides for languages and writing systems that have more complex

behavior than English does. Whether one is implementing a new operating system

from the ground up or enhancing existing programming environments or applica‐

tions, it is necessary to examine many aspects of current programming practice and

conventions to deal with this more complex behavior.

This chapter covers a series of short, self-contained topics that are useful for imple‐

menters. The information and examples presented here are meant to help imple‐

menters understand and apply the design and features of the Unicode Standard. That

is, they are meant to promote good practice in implementations conforming to the

Unicode Standard.

These recommended guidelines are not normative and are not binding on the imple‐

menter, but are intended to represent best practice. When implementing the Unicode

Standard, it is important to look not only at the letter of the conformance rules, but

also at their spirit. Many of the following guidelines have been created specifically to

assist people who run into issues with conformant implementations, while reflecting

the requirements of actual usage.

247

The Unicode Standard exists in a world of other text and character encoding stan‐

dards—some private, some national, some international. A major strength of the

Unicode Standard is the number of other important standards that it incorporates. In

many cases, the Unicode Standard included duplicate characters to guarantee round-

trip transcoding to established and widely used standards.

Conversion of characters between standards is not always a straightforward proposi‐

tion. Many characters have mixed semantics in one standard and may correspond to

more than one character in another. Sometimes standards give duplicate encodings

for the same character; at other times the interpretation of a whole set of characters

may depend on the application. Finally, there are subtle differences in what a stan‐

dard may consider a character.

For these reasons, mapping tables are usually required to map between the Unicode

Standard and another standard. Mapping tables need to be used consistently for text

data exchange to avoid modification and loss of text data. For details, see Unicode

Technical Standard #22, “Character Mapping Markup Language (CharMapML).” By

contrast, conversions between different Unicode encoding forms are fast, lossless

permutations.

There are important security issues associated with encoding conversion. For more

information, see Unicode Technical Report #36, “Unicode Security Considerations.”

The Unicode Standard can be used as a pivot to transcode among n different stan‐

dards. This process, which is sometimes called triangulation, reduces the number of

mapping tables that an implementation needs from O(n2) to O(n).

Tables require space. Even small character sets often map to characters from several

different blocks in the Unicode Standard and thus may contain up to 64K entries (for

the BMP) or 1,088K entries (for the entire codespace) in at least one direction. Several

techniques exist to reduce the memory space requirements for mapping tables. These

techniques apply not only to transcoding tables, but also to many other tables needed

to implement the Unicode Standard, including character property data, case

mapping, collation tables, and glyph selection tables.

 If diskspace is not at issue, virtual memory architectures yield accept‐

able working set sizes even for flat tables because the frequency of usage among

characters differs widely. Even small character sets contain many infrequently used

5.1 Data Structures for Character Conversion

5.1.1 Issues

5.1.2 Multistage Tables

Flat Tables.

Implementation Guidelines 248
5.1 Data Structures for Character

Conversion

characters. In addition, data intended to be mapped into a given character set gener‐

ally does not contain characters from all blocks of the Unicode Standard (usually,

only a few blocks at a time need to be transcoded to a given character set). This situa‐

tion leaves certain sections of the mapping tables unused—and therefore paged to

disk. The effect is most pronounced for large tables mapping from the Unicode Stan‐

dard to other character sets, which have large sections simply containing mappings

to the default character, or the “unmappable character” entry.

 It may be tempting to “optimize” these tables for space by providing elabo‐

rate provisions for nested ranges or similar devices. This practice leads to unneces‐

sary performance costs on modern, highly pipelined processor architectures because

of branch penalties. A faster solution is to use an optimized two-stage table, which can

be coded without any test or branch instructions. Hash tables can also be used for

space optimization, although they are not as fast as multistage tables.

 Two-stage tables are a commonly employed mechanism to

reduce table size (see Figure 5-1). They use an array of pointers and a default value. If

a pointer is 	N	U	L	L, the value returned by a lookup operation in the table is the default

value. Otherwise, the pointer references a block of values used for the second stage of

the lookup. For BMP characters, it is quite efficient to organize such two-stage tables

in terms of high byte and low byte values. The first stage is an array of 256 pointers,

and each of the secondary blocks contains 256 values indexed by the low byte in the

code point. For supplementary characters, it is often advisable to structure the

pointers and second-stage arrays somewhat differently, so as to take best advantage of

the very sparse distribution of supplementary characters in the remaining codespace.

Ranges.

Two-Stage Tables.

Figure 5-1. Two-Stage Tables

Implementation Guidelines 249
5.1 Data Structures for Character

Conversion

 Wherever any blocks are identical, the pointers just

point to the same block. For transcoding tables, this case occurs generally for a block

containing only mappings to the default or “unmappable” character. Instead of using

	N	U	L	L pointers and a default value, one “shared” block of default entries is created.

This block is pointed to by all first-stage table entries, for which no character value

can be mapped. By avoiding tests and branches, this strategy provides access time

that approaches the simple array access, but at a great savings in storage.

 Given a table of arbitrary size and content, it is a rela‐

tively simple matter to write a small utility that can calculate the optimal number of

stages and their width for a multistage table. Tuning the number of stages and the

width of their arrays of index pointers can result in various trade-offs of table size

versus average access time.

Optimized Two-Stage Table.

Multistage Table Tuning.

Implementation Guidelines 250
5.1 Data Structures for Character

Conversion

Programming languages provide for the representation and handling of characters

and strings via data types, data constants (literals), and methods. Explicit support for

Unicode helps with the development of multilingual applications. In some program‐

ming languages, strings are expressed as sequences (arrays) of primitive types,

exactly corresponding to sequences of code units of one of the Unicode encoding

forms. In other languages, strings are objects, but indexing into strings follows the

semantics of addressing code units of a particular encoding form.

Data types for “characters” generally hold just a single Unicode code point value for

low-level processing and lookup of character property values. When a primitive data

type is used for single-code point values, a signed integer type can be useful; negative

values can hold “sentinel” values like end-of-string or end-of-file, which can be easily

distinguished from Unicode code point values. However, in most APIs, string types

should be used to accommodate user-perceived characters, which may require

sequences of code points.

ISO/IEC Technical Report 19769, Extensions for the programming language C to

support new character types, defines data types for the three Unicode encoding forms

(UTF-8, UTF-16, and UTF-32), syntax for Unicode string and character literals, and

methods for the conversion between the Unicode encoding forms. No other methods

are specified.

Unicode strings are encoded as arrays of primitive types as usual. For UTF-8, UTF-16,

and UTF-32, the basic types are char, char16_t, and char32_t, respectively. The

ISO Technical Report assumes that char is at least 8 bits wide for use with UTF-8.

While char and wchar_t may be signed or unsigned types, the new char16_t and

char32_t types are defined to be unsigned integer types.

Unlike the specification in the wchar_t programming model, the Unicode data types

do not require that a single string base unit alone (especially char or char16_t)

must be able to store any one character (code point).

UTF-16 string and character literals are written with a lowercase u as a prefix, similar

to the 	L prefix for wchar_t literals. UTF-32 literals are written with an uppercase 	U as

a prefix. Characters outside the basic character set are available for use in string

literals through the \uhhhh and \	Uhhhhhhhh escape sequences.

These types and semantics are available in a compiler if the <uchar.h> header is

present and defines the __	S	TDC_	U	TF_16__ (for char16_t) and __	S	TDC_	U	TF_32__
(for char32_t) macros.

5.2 Programming Languages and Data Types

5.2.1 Unicode Data Types for C

Implementation Guidelines 251
5.2 Programming Languages and Data

Types

Because Technical Report 19769 was not available when UTF-16 was first introduced,

many implementations have been supporting a 16-bit wchar_t to contain UTF-16

code units. Such usage is not conformant to the C standard, because supplementary

characters require use of pairs of wchar_t units in this case.

 With the wchar_t wide character type, ANSI/ISO C provides

for inclusion of fixed-width, wide characters. ANSI/ISO C leaves the semantics of the

wide character set to the specific implementation but requires that the characters

from the portable C execution set correspond to their wide character equivalents by

zero extension. The Unicode characters in the ASCII range U+0020 to U+007E

satisfy these conditions. Thus, if an implementation uses ASCII to code the portable

C execution set, the use of the Unicode character set for the wchar_t type, in either

UTF-16 or UTF-32 form, fulfills the requirement.

The width of wchar_t is compiler-specific and can be as small as 8 bits. Conse‐

quently, programs that need to be portable across any C or C++ compiler should not

use wchar_t for storing Unicode text. The wchar_t type is intended for storing

compiler-defined wide characters, which may be Unicode characters in some

compilers. However, programmers who want a UTF-16 implementation can use a

macro or typedef (for example, 	U	NICHAR) that can be compiled as unsigned short
or wchar_t depending on the target compiler and platform. Other programmers who

want a UTF-32 implementation can use a macro or typedef that might be compiled as

unsigned int or wchar_t, depending on the target compiler and platform. This

choice enables correct compilation on different platforms and compilers. Where a 16-

bit implementation of wchar_t is guaranteed, such macros or typedefs may be prede‐

fined (for example, 	TCHAR on the Win32 API).

On systems where the native character type or wchar_t is implemented as a 32-bit

quantity, an implementation may use the UTF-32 form to represent Unicode charac‐

ters.

A limitation of the ISO/ANSI C model is its assumption that characters can always be

processed in isolation. Implementations that choose to go beyond the ISO/ANSI C

model may find it useful to mix widths within their APIs. For example, an implemen‐

tation may have a 32-bit wchar_t and process strings in any of the UTF-8, UTF-16, or

UTF-32 forms. Another implementation may have a 16-bit wchar_t and process

strings as UTF-8 or UTF-16, but have additional APIs that process individual charac‐

ters as UTF-32 or deal with pairs of UTF-16 code units.

ANSI/ISO C wchar_t.

Implementation Guidelines 252
5.2 Programming Languages and Data

Types

This section briefly discusses how users or implementers might deal with characters

that are not supported or that, although supported, are unavailable for legible

rendering.

 There are two classes of code points

that even a “complete” implementation of the Unicode Standard cannot necessarily

interpret correctly:

Code points that are reserved

Code points in the Private Use Area for which no private agreement exists

An implementation should not attempt to interpret such code points. However, in

practice, applications must deal with unassigned code points or private-use charac‐

ters. This may occur, for example, when the application is handling text that origi‐

nated on a system implementing a later release of the Unicode Standard, with addi‐

tional assigned characters.

Options for rendering such unknown code points include printing the code point as

four to six hexadecimal digits, printing a black or white box, or another substitute

glyph, such as that commonly shown for U+FFFD. For certain code points, it is

common to display nothing; see “Default Ignorable Code Points” later in this section

for details. An implementation should not blindly delete such characters, nor should

it unintentionally transform them into something else.

 An implementation may receive a

code point to which a character is assigned in the Unicode Standard, but be unable to

render it, because it lacks a font for the code point or is otherwise incapable of

rendering it appropriately. In this case, the visual feedback an implementation is able

to provide is limited. While it may have the resources to sort or line-break arbitrary

text, any unrenderable character can only be indicated by some placeholder, such as

displaying the hexadecimal value of the code point, or other meaningful information,

such as the script of the character. For example, an unrenderable (but assigned) char‐

acter can be displayed with distinctive glyphs that provide some meaningful indica‐

tion of their type, such as , , , , , , , , , , , and so on.

The Unicode Consortium maintains an open source Last Resort Font (https://

github.com/unicode-org/last-resort-font/) that implementations can use for such fall‐

back rendering of both assigned and unassigned code points.

 Normally, characters outside the repertoire of

supported characters for an implementation would be graphical characters displayed

with a fallback glyph, such as a black box. However, certain special-use characters,

5.3 Unknown and Missing Characters

Reserved and Private-Use Character Codes.

•

•

Interpretable but Unrenderable Characters.

Default Ignorable Code Points.

Implementation Guidelines 253 5.3 Unknown and Missing Characters

https://github.com/unicode-org/last-resort-font/
https://github.com/unicode-org/last-resort-font/

such as format controls or variation selectors, do not have visible glyphs of their own,

although they may have an effect on the display of other characters. When such a

special-use character is not supported by an implementation, it should not be

displayed with a visible fallback glyph, but instead simply not be rendered at all. The

list of such characters which should not be rendered with a fallback glyph is defined

by the Default_Ignorable_Code_Point property in the Unicode Character Database.

For more information, see Section 5.21, Ignoring Characters in Processing.

 Versions of the Unicode Standard after

Unicode 2.0 are strict supersets of Unicode 2.0 and all intervening versions. The

Derived Age property tracks the version of the standard at which a particular char‐

acter was added to the standard. This information can be particularly helpful in some

interactions with downlevel systems. If the protocol used for communication

between the systems provides for an announcement of the Unicode version on each

one, an uplevel system can predict which recently added characters will appear as

unassigned characters to the downlevel system.

Interacting with Downlevel Systems.

Implementation Guidelines 254 5.3 Unknown and Missing Characters

The method used by UTF-16 to address the 1,048,576 supplementary code points that

cannot be represented by a single 16-bit value is called surrogate pairs. A surrogate

pair consists of a high-surrogate code unit (leading surrogate) followed by a low-

surrogate code unit (trailing surrogate), as described in the specifications in

Section 3.8, Surrogates, and the UTF-16 portion of Section 3.9, Unicode Encoding

Forms.

In well-formed UTF-16, a trailing surrogate can be preceded only by a leading surro‐

gate and not by another trailing surrogate, a non-surrogate, or the start of text. A

leading surrogate can be followed only by a trailing surrogate and not by another

leading surrogate, a non-surrogate, or the end of text. Maintaining the well-formed‐

ness of a UTF-16 code sequence or accessing characters within a UTF-16 code

sequence therefore puts additional requirements on some text processes. Surrogate

pairs are designed to minimize this impact.

Leading surrogates and trailing surrogates are assigned to disjoint ranges of code

units. In UTF-16, non-surrogate code points can never be represented with code unit

values in those ranges. Because the ranges are disjoint, each code unit in well-formed

UTF-16 must be one of the following:

A single non-surrogate code unit, representing a code point between 0 and

D7FF
16

 or between E000
16

 and FFFF
16

A leading surrogate, representing the first part of a surrogate pair

A trailing surrogate, representing the second part of a surrogate pair

By accessing at most two code units, a process using the UTF-16 encoding form can

therefore interpret any Unicode character. Determining character boundaries

requires at most scanning one preceding or one following code unit without regard to

any other context.

As long as an implementation does not remove either of a pair of surrogate code

units or incorrectly insert another character between them, the integrity of the data is

maintained. Moreover, even if the data becomes corrupted, the corruption remains

localized, unlike with some other multibyte encodings such as Shift-JIS or EUC.

Corrupting a single UTF-16 code unit affects only a single character. Because of non-

overlap (see Section 2.5, Encoding Forms), this kind of error does not propagate

throughout the rest of the text.

UTF-16 enjoys a beneficial frequency distribution in that, for the majority of all text

data, surrogate pairs will be very rare; non-surrogate code points, by contrast, will be

very common. Not only does this help to limit the performance penalty incurred

5.4 Handling Surrogate Pairs in UTF-16

•

•

•

Implementation Guidelines 255
5.4 Handling Surrogate Pairs in

UTF-16

when handling a variable-width encoding, but it also allows many processes either to

take no specific action for surrogates or to handle surrogate pairs with existing mech‐

anisms that are already needed to handle character sequences.

Implementations should fully support surrogate pairs in processing UTF-16 text.

Without surrogate support, an implementation would not interpret any supplemen‐

tary characters or guarantee the integrity of surrogate pairs. This might apply, for

example, to an older implementation, conformant to Unicode Version 1.1 or earlier,

before UTF-16 was defined. Support for supplementary characters is important

because a significant number of them are relevant for modern use, despite their low

frequency.

The individual components of implementations may have different levels of support

for surrogates, as long as those components are assembled and communicate

correctly. Low-level string processing, where a Unicode string is not interpreted but is

handled simply as an array of code units, may ignore surrogate pairs. With such

strings, for example, a truncation operation with an arbitrary offset might break a

surrogate pair. (For further discussion, see Section 2.7, Unicode Strings.) For perfor‐

mance in string operations, such behavior is reasonable at a low level, but it requires

higher-level processes to ensure that offsets are on character boundaries so as to guar‐

antee the integrity of surrogate pairs.

 Many implementations that handle

advanced features of the Unicode Standard can easily be modified to support surro‐

gate pairs in UTF-16. For example:

Text collation can be handled by treating those surrogate pairs as “grouped

characters,” such as is done for “ij” in Dutch or “ch” in Slovak.

Text entry can be handled by having a keyboard generate two Unicode code

points with a single keypress, much as an ENTER key can generate CRLF or an

Arabic keyboard can have a “lam-alef” key that generates a sequence of two

characters, lam and alef.

Truncation can be handled with the same mechanism as used to keep

combining marks with base characters. For more information, see Unicode

Standard Annex #29, “Unicode Text Segmentation.”

Users are prevented from damaging the text if a text editor keeps insertion points

(also known as carets) on character boundaries.

Implementations using UTF-8 and Unicode 8-bit strings necessitate similar consider‐

ations. The main difference from handling UTF-16 is that in the UTF-8 case the only

characters that are represented with single code units (single bytes) in UTF-8 are the

ASCII characters, U+0000..U+007F. Characters represented with multibyte

sequences are very common in UTF-8, unlike surrogate pairs in UTF-16, which are

Strategies for Surrogate Pair Support.

•

•

•

Implementation Guidelines 256
5.4 Handling Surrogate Pairs in

UTF-16

rather uncommon. This difference in frequency may result in different strategies for

handling the multibyte sequences in UTF-8.

Implementation Guidelines 257
5.4 Handling Surrogate Pairs in

UTF-16

There are many sets of characters that represent decimal digits in different scripts.

Systems that interpret those characters numerically should provide the correct

numerical values. For example, the sequence <U+0968 DEVANAGARI DIGIT TWO,

U+0966 DEVANAGARI DIGIT ZERO> when numerically interpreted has the value

twenty.

When converting binary numerical values to a visual form, digits can be chosen from

different scripts. For example, the value twenty can be represented either by

<U+0032 DIGIT TWO, U+0030 DIGIT ZERO> or by <U+0968 DEVANAGARI DIGIT

TWO, U+0966 DEVANAGARI DIGIT ZERO> or by <U+0662 ARABIC-INDIC DIGIT TWO,

U+0660 ARABIC-INDIC DIGIT ZERO>. It is recommended that systems allow users to

choose the format of the resulting digits by replacing the appropriate occurrence of

U+0030 DIGIT ZERO with U+0660 ARABIC-INDIC DIGIT ZERO, and so on. (See

Chapter 4, Character Properties, for the information needed to implement formatting

and scanning numerical values.)

Fullwidth variants of the ASCII digits are simply compatibility variants of regular

digits and should be treated as regular Western digits.

The Roman numerals, Greek acrophonic numerals, and East Asian ideographic

numerals are decimal numeral writing systems, but they are not formally decimal

radix digit systems. That is, it is not possible to do a one-to-one transcoding to forms

such as 123456.789. Such systems are appropriate only for positive integer writing.

It is also possible to write numbers in two ways with CJK ideographic digits. For

example, Figure 22-6 shows how the number 1,234 can be written. Supporting these

ideographic digits for numerical parsing means that implementations must be smart

about distinguishing between the two cases.

Digits often occur in situations where they need to be parsed, but are not part of

numbers. One such example is alphanumeric identifiers (see Unicode Standard

Annex #31, “Unicode Identifier and Pattern Syntax”).

Only in higher-level protocols, such as when implementing a full mathematical

formula parser, do considerations such as superscripting and subscripting of digits

become crucial for numerical interpretation.

See Section 22.3, Numerals, for a more extended discussion of the various types of

numerals encoded in the Unicode Standard and their implications for implementa‐

tions.

5.5 Handling Numbers

Implementation Guidelines 258 5.5 Handling Numbers

 The Unicode Standard contains explicit codes for the most

frequently used accented characters. These characters can also be composed; in the

case of accented letters, characters can be composed from a base character and

nonspacing mark(s).

The Unicode Standard provides decompositions for characters that can be composed

using a base character plus one or more nonspacing marks. The decomposition

mappings are specific to a particular version of the Unicode Standard. Further

decomposition mappings may be added to the standard for new characters encoded

in the future; however, no existing decomposition mapping for a currently encoded

character will ever be removed or changed, nor will a decomposition mapping be

added for a currently encoded character. These constraints on changes for decompo‐

sition are enforced by the Normalization Stability Policy. See the subsection “Poli‐

cies” in Section B.3, Other Unicode Online Resources.

 Systems may normalize Unicode-encoded text to one particular

sequence, such as normalizing composite character sequences into precomposed

characters, or vice versa (see Figure 5-2).

Compared to the number of possible combinations, only a relatively small number of

precomposed base character plus nonspacing marks have independent Unicode char‐

acter values.

Systems that cannot handle nonspacing marks can normalize to precomposed char‐

acters; this option can accommodate most modern Latin-based languages. Such

systems can use fallback rendering techniques to at least visually indicate combina‐

tions that they cannot handle (see the “Fallback Rendering” subsection of

Section 5.13, Rendering Nonspacing Marks).

In systems that can handle nonspacing marks, it may be useful to normalize so as to

eliminate precomposed characters. This approach allows such systems to have a

5.6 Normalization

Alternative Spellings.

Normalization.

Figure 5-2. Normalization

Implementation Guidelines 259 5.6 Normalization

homogeneous representation of composed characters and maintain a consistent

treatment of such characters. However, in most cases, it does not require too much

extra work to support mixed forms, which is the simpler route.

The Unicode Normalization Forms are defined in Section 3.11, Normalization Forms.

For further information about implementation of normalization, see also Unicode

Standard Annex #15, “Unicode Normalization Forms.” For a general discussion of

issues related to normalization, see “Equivalent Sequences” in Section 2.2, Unicode

Design Principles; and Section 2.11, Combining Characters.

Implementation Guidelines 260 5.6 Normalization

Using the Unicode character encoding may increase the amount of storage or

memory space dedicated to the text portion of files. Compressing Unicode-encoded

files or strings can therefore be an attractive option if the text portion is a large part of

the volume of data compared to binary and numeric data, and if the processing over‐

head of the compression and decompression is acceptable.

Compression always constitutes a higher-level protocol and makes interchange

dependent on knowledge of the compression method employed. For a detailed

discussion of compression and a standard compression scheme for Unicode, see

Unicode Technical Standard #6, “A Standard Compression Scheme for Unicode.”

Encoding forms defined in Section 2.5, Encoding Forms, have different storage charac‐

teristics. For example, as long as text contains only characters from the Basic Latin

(ASCII) block, it occupies the same amount of space whether it is encoded with the

UTF-8 or ASCII codes. Conversely, text consisting of CJK ideographs encoded with

UTF-8 will require more space than equivalent text encoded with UTF-16.

For processing rather than storage, the Unicode encoding form is usually selected for

easy interoperability with existing APIs. Where there is a choice, the trade-off

between decoding complexity (high for UTF-8, low for UTF-16, trivial for UTF-32)

and memory and cache bandwidth (high for UTF-32, low for UTF-8 or UTF-16)

should be considered.

5.7 Compression

Implementation Guidelines 261 5.7 Compression

Newlines are represented on different platforms by carriage return (CR), line feed

(LF), CRLF, or next line (NEL). Not only are newlines represented by different char‐

acters on different platforms, but they also have ambiguous behavior even on the

same platform. These characters are often transcoded directly into the corresponding

Unicode code points when a character set is transcoded; this means that even

programs handling pure Unicode have to deal with the problems. Especially with the

advent of the Web, where text on a single machine can arise from many sources, this

causes a significant problem.

Newline characters are used to explicitly indicate line boundaries. For more informa‐

tion, see Unicode Standard Annex #14, “Unicode Line Breaking Algorithm.”

Newlines are also handled specially in the context of regular expressions. For infor‐

mation, see Unicode Technical Standard #18, “Unicode Regular Expressions.” For the

use of these characters in markup languages, see the W3C specification, “Unicode in

XML and Other Markup Languages.”

Table 5-1 provides hexadecimal values for the acronyms used in these guidelines. The

acronyms shown in Table 5-1 correspond to characters or sequences of characters.

The name column shows the usual names used to refer to the characters in question,

whereas the other columns show the Unicode, ASCII, and EBCDIC encoded values

for the characters.

Acronym Name Unicode ASCII EBCDIC

Default z/OS

CR carriage return 000D 0D 0D 0D

LF line feed 000A 0A 25 15

CRLF carriage return and line feed <000D 000A> <0D 0A> <0D 25> <0D 15>

NEL next line 0085 85 15 25

VT vertical tab 000B 0B 0B 0B

FF form feed 000C 0C 0C 0C

LS line separator 2028 n/a n/a n/a

PS paragraph separator 2029 n/a n/a n/a

 Except for LS and PS, the newline characters discussed here are encoded

as control codes. Many control codes were originally designed for device control but,

together with TAB, the newline characters are commonly used as part of plain text.

5.8 Newline Guidelines

5.8.1 Definitions

Table 5-1. Hex Values for Acronyms

Encoding.

Implementation Guidelines 262 5.8 Newline Guidelines

For more information on how Unicode encodes control codes, see Section 23.1,

Control Codes.

 This discussion of newline guidelines uses lowercase when referring to

functions having to do with line determination, but uses the acronyms when refer‐

ring to the actual characters involved. Keys on keyboards are indicated in all caps.

For example:

The line separator may be expressed by LS in Unicode text or CR on some plat‐

forms. It may be entered into text with the SHIFT-RETURN key.

Table 5-1 shows the two mappings of LF and NEL used by EBCDIC

systems. The first EBCDIC column shows the default control code mapping of these

characters, which is used in most EBCDIC environments. The second column shows

the z/OS Unix System Services mapping of LF and NEL. That mapping arises from

the use of the LF character for the newline function in C programs and in Unix envi‐

ronments, while text files on z/OS traditionally use NEL for the newline function.

NEL (next line) is not actually defined in 7-bit ASCII. It is defined in the ISO control

function standard, ISO 6429, as a C1 control function. However, the 0x85 mapping

shown in the ASCII column in Table 5-1 is the usual way that this C1 control function

is mapped in ASCII-based character encodings.

 The acronym NLF (newline function) stands for the generic

control function for indication of a new line break. It may be represented by different

characters, depending on the platform, as shown in Table 5-2.

Platform NLF Value

MacOS 9.x and earlier CR

MacOS X LF

Unix LF

Windows CRLF

EBCDIC-based OS NEL

A paragraph separator—independent of how it is encoded—is used to indicate a

separation between paragraphs. A line separator indicates where a line break alone

should occur, typically within a paragraph. For example:

This is a paragraph with a line separator at this point,

causing the word “causing” to appear on a different line, but not causing the

Notation.

EBCDIC.

Newline Function.

Table 5-2. NLF Platform Correlations

5.8.2 Line Separator and Paragraph Separator

Implementation Guidelines 263 5.8 Newline Guidelines

typical paragraph indentation, sentence breaking, line spacing, or change in

flush (right, center, or left paragraphs).

For comparison, line separators basically correspond to HTML
, and paragraph

separators to older usage of HTML <p> (modern HTML delimits paragraphs by

enclosing them in <p>...</p>). In word processors, paragraph separators are usually

entered using a keyboard RETURN or ENTER; line separators are usually entered

using a modified RETURN or ENTER, such as SHIFT-ENTER.

A record separator is used to separate records. For example, when exchanging tabular

data, a common format is to tab-separate the cells and use a CRLF at the end of a line

of cells. This function is not precisely the same as line separation, but the same char‐

acters are often used.

Traditionally, NLF started out as a line separator (and sometimes record separator). It

is still used as a line separator in simple text editors such as program editors. As plat‐

forms and programs started to handle word processing with automatic line-wrap,

these characters were reinterpreted to stand for paragraph separators. For example,

even such simple programs as the Windows Notepad program and the Mac Simple‐

Text program interpret their platform’s NLF as a paragraph separator, not a line sepa‐

rator.

Once NLF was reinterpreted to stand for a paragraph separator, in some cases

another control character was pressed into service as a line separator. For example,

vertical tabulation VT is used in Microsoft Word. However, the choice of character for

line separator is even less standardized than the choice of character for NLF.

Many Internet protocols and a lot of existing text treat NLF as a line separator, so an

implementer cannot simply treat NLF as a paragraph separator in all circumstances.

The Unicode Standard defines two unambiguous separator characters: U+2029

PARAGRAPH SEPARATOR (PS) and U+2028 LINE SEPARATOR (LS). In Unicode text,

the PS and LS characters should be used wherever the desired function is unam‐

biguous. Otherwise, the following recommendations specify how to cope with an

NLF when converting from other character sets to Unicode, when interpreting char‐

acters in text, and when converting from Unicode to other character sets.

Note that even if an implementer knows which characters represent NLF on a partic‐

ular platform, CR, LF, CRLF, and NEL should be treated the same on input and in

interpretation. Only on output is it necessary to distinguish between them.

5.8.3 Recommendations

Converting from Other Character Code Sets.

If the exact usage of any NLF is known, convert it to LS or PS. R1

Implementation Guidelines 264 5.8 Newline Guidelines

Recommendation R1a does not really help in interpreting Unicode text unless the

implementer is the only source of that text, because another implementer may have

left in LF, CR, CRLF, or NEL.

In line breaking, both PS and LS terminate a line; therefore, the Unicode Line

Breaking Algorithm in Unicode Standard Annex #14, “Unicode Line Breaking Algo‐

rithm,” is defined such that any NLF causes a line break.

For example, in recommendation R2c an implementer dealing with sentence break

heuristics would reason in the following way that it is safer to interpret any NLF as

LS:

Suppose an NLF were interpreted as LS, when it was meant to be PS. Because

most paragraphs are terminated with punctuation anyway, this would cause

misidentification of sentence boundaries in only a few cases.

Suppose an NLF were interpreted as PS, when it was meant to be LS. In this

case, line breaks would cause sentence breaks, which would result in significant

problems with the sentence break heuristics.

For example, when mapping to Microsoft Word’s internal conventions for docu‐

ments, LS would be mapped to VT, and PS and any NLF would be mapped to CRLF.

In Java, for example, this is done by mapping to a string nlf, defined as follows:

	String nlf = 	System.getProperty("line.separator");

If the exact usage of any NLF is unknown, remap it to the platform NLF. R1a

Interpreting Characters in Text.

Always interpret PS as paragraph separator and LS as line separator. R2

In word processing, interpret any NLF the same as PS. R2a

In simple text editors, interpret any NLF the same as LS. R2b

In parsing, choose the safest interpretation. R2c

•

•

Converting to Other Character Code Sets.

If the intended target is known, map NLF, LS, and PS depending on the

target conventions.

R3

If the intended target is unknown, map NLF, LS, and PS to the platform

newline convention (CR, LF, CRLF, or NEL).

R3a

Input and Output.

Implementation Guidelines 265 5.8 Newline Guidelines

Because the separator is lost, the use of such a readline function is limited to text

processing, where there is no difference among the types of separators.

In C, gets is defined to terminate at a newline and replaces the newline with '\0',

while fgets is defined to terminate at a newline and includes the newline in the

array into which it copies the data. C implementations interpret '\n' either as LF or

as the underlying platform newline NLF, depending on where it occurs. EBCDIC C

compilers substitute the relevant codes, based on the EBCDIC execution set.

 FF is commonly used as a page separator, and it should be inter‐

preted that way in text. When displaying on the screen, it causes the text after the

separator to be forced to the next page. It is interpreted in the same way as the LS for

line breaking, in parsing, or in input segmentation such as readline. FF does not

interrupt a paragraph, as paragraphs can and do span page boundaries.

A readline function should stop at NLF, LS, FF, or PS. In the typical

implementation, it does not include the NLF, LS, PS, or FF that caused it

to stop.

R4

A writeline (or newline) function should convert NLF, LS, and PS

according to the recommendations R3 and R3a.

R4a

Page Separator.

Implementation Guidelines 266 5.8 Newline Guidelines

Byte-oriented regular expression engines require extensions to handle Unicode

successfully. The following issues are involved in such extensions:

Unicode is a large character set—regular expression engines that are adapted to

handle only small character sets may not scale well.

Unicode encompasses a wide variety of languages that can have very different

characteristics than English or other Western European text.

For detailed information on the requirements of Unicode regular expressions, see

Unicode Technical Standard #18, “Unicode Regular Expressions.”

5.9 Regular Expressions

•

•

Implementation Guidelines 267 5.9 Regular Expressions

The requirement for language information embedded in plain text data is often over‐

stated. Many commonplace operations such as collation seldom require this extra

information. In collation, for example, foreign language text is generally collated as if

it were not in a foreign language. (See Unicode Technical Standard #10, “Unicode

Collation Algorithm,” for more information.) For example, an index in an English

book would not sort the Slovak word “chlieb” after “czar,” where it would be collated

in Slovak, nor would an English atlas put the Swedish city of Örebro after Zanzibar,

where it would appear in Swedish.

Text to speech is also an area where the case for embedded language information is

overstated. Although language information may be useful in performing text-to-

speech operations, modern software for doing acceptable text-to-speech must be so

sophisticated in performing grammatical analysis of text that the extra work in deter‐

mining the language is not significant in practice.

Language information can be useful in certain operations, such as spell-checking or

hyphenating a mixed-language document. It is also useful in choosing the default

font for a run of unstyled text; for example, the ellipsis character may have a very

different appearance in Japanese fonts than in European fonts. Modern font and

layout technologies produce different results based on language information. For

example, the angle of the acute accent may be different for French and Polish.

A common misunderstanding about Unicode Han unification is the mistaken belief

that Han characters cannot be rendered properly without language information. This

idea might lead an implementer to conclude that language information must always

be added to plain text using the tags. However, this implication is incorrect. The goal

and methods of Han unification were to ensure that the text remained legible.

Although font, size, width, and other format specifications need to be added to

produce precisely the same appearance on the source and target machines, plain text

remains legible in the absence of these specifications.

There should never be any confusion in Unicode, because the distinctions between

the unified characters are all within the range of stylistic variations that exist in each

country. No unification in Unicode should make it impossible for a reader to identify

a character if it appears in a different font. Where precise font information is impor‐

tant, it is best conveyed in a rich text format.

5.10 Language Information in Plain Text

5.10.1 Requirements for Language Tagging

5.10.2 Language Tags and Han Unification

Implementation Guidelines 268
5.10 Language Information in Plain

Text

 The following e-mail scenarios illustrate that the need for

language information with Han characters is often overstated:

Scenario 1. A Japanese user sends out untagged Japanese text. Readers are

Japanese (with Japanese fonts). Readers see no differences from what they

expect.

Scenario 2. A Japanese user sends out an untagged mixture of Japanese and

Chinese text. Readers are Japanese (with Japanese fonts) and Chinese (with

Chinese fonts). Readers see the mixed text with only one font, but the text is still

legible. Readers recognize the difference between the languages by the content.

Scenario 3. A Japanese user sends out a mixture of Japanese and Chinese text.

Text is marked with font, size, width, and so on, because the exact format is

important. Readers have the fonts and other display support. Readers see the

mixed text with different fonts for different languages. They recognize the

difference between the languages by the content, and see the text with glyphs

that are more typical for the particular language.

It is common even in printed matter to render passages of foreign language text in

native- language fonts, just for familiarity. For example, Chinese text in a Japanese

document is commonly rendered in a Japanese font.

Typical Scenarios.

•

•

•

Implementation Guidelines 269
5.10 Language Information in Plain

Text

As far as a user is concerned, the underlying representation of text is not a material

concern, but it is important that an editing interface present a uniform implementa‐

tion of what the user thinks of as characters. (See “‘Characters’ and Grapheme Clus‐

ters” in Section 2.11, Combining Characters.) The user expects them to behave as units

in terms of mouse selection, arrow key movement, backspacing, and so on. For

example, when such behavior is implemented, and an accented letter is represented

by a sequence of base character plus a nonspacing combining mark, using the right

arrow key would logically skip from the start of the base character to the end of the

last nonspacing character.

In some cases, editing a user-perceived “character” or visual cluster element by

element may be the preferred way. For example, a system might have the backspace

key delete by using the underlying code point, while the delete key could delete an

entire cluster. Moreover, because of the way keyboards and input method editors are

implemented, there often may not be a one-to-one relationship between what the

user thinks of as a character and the key or key sequence used to input it.

Three types of boundaries are generally useful in editing and selecting within words:

cluster boundaries, stacked boundaries and atomic character boundaries.

 Arbitrarily defined cluster boundaries may occur in scripts

such as Devanagari, for which selection may be defined as applying to syllables or

parts of syllables. In such cases, combining character sequences such as ka + vowel

sign a or conjunct clusters such as ka + halant + ta are selected as a single unit. (See

Figure 5-3.)

 Stacked boundaries are generally somewhat finer than cluster

boundaries. Free-standing elements (such as vowel sign a in Devanagari) can be inde‐

pendently selected, but any elements that “stack” (including vertical ligatures such as

Arabic lam + meem in Figure 5-3) can be selected only as a single unit. Stacked

5.11 Editing and Selection

Cluster Boundaries.

Figure 5-3. Consistent Character Boundaries

Stacked Boundaries.

Implementation Guidelines 270 5.11 Editing and Selection

boundaries treat default grapheme clusters as single entities, much like composite

characters. (See Unicode Standard Annex #29, “Unicode Text Segmentation,” for the

definition of default grapheme clusters and for a discussion of how grapheme clus‐

ters can be tailored to meet the needs of defining arbitrary cluster boundaries.)

 The use of atomic character boundaries is closest to

selection of individual Unicode characters. However, most modern systems indicate

selection with some sort of rectangular highlighting. This approach places restric‐

tions on the consistency of editing because some sequences of characters do not

linearly progress from the start of the line. When characters stack, two mechanisms

are used to visually indicate partial selection: linear and nonlinear boundaries.

 Use of linear boundaries treats the entire width of the resultant

glyph as belonging to the first character of the sequence, and the remaining charac‐

ters in the backing-store representation as having no width and being visually after‐

ward.

This option is the simplest mechanism. The advantage of this system is that it

requires very little additional implementation work. The disadvantage is that it is

never easy to select narrow characters, let alone a zero-width character. Mechani‐

cally, it requires the user to select just to the right of the nonspacing mark and drag

just to the left. It also does not allow the selection of individual nonspacing marks if

more than one is present.

 Use of nonlinear boundaries divides any stacked element

into parts. For example, picking a point halfway across a lam + meem ligature can

represent the division between the characters. One can either allow highlighting with

multiple rectangles or use another method such as coloring the individual characters.

With more work, a precomposed character can behave in deletion as if it were a

composed character sequence with atomic character boundaries. This procedure

involves deriving the character’s decomposition on the fly to get the components to

be used in simulation. For example, deletion occurs by decomposing, removing the

last character, then recomposing (if more than one character remains). However, this

technique does not work in general editing and selection.

In most editing systems, the code point is the smallest addressable item, so the selec‐

tion and assignment of properties (such as font, color, letterspacing, and so on)

cannot be done on any finer basis than the code point. Thus the accent on an “e”

could not be colored differently than the base in a precomposed character, although it

could be colored differently if the text were stored internally in a decomposed form.

Just as there is no single notion of text element, so there is no single notion of editing

character boundaries. At different times, users may want different degrees of granu‐

larity in the editing process. Two methods suggest themselves. First, the user may set

a global preference for the character boundaries. Second, the user may have alterna‐

Atomic Character Boundaries.

Linear Boundaries.

Nonlinear Boundaries.

Implementation Guidelines 271 5.11 Editing and Selection

tive command mechanisms, such as Shift-Delete, which give more (or less) fine

control than the default mode.

Implementation Guidelines 272 5.11 Editing and Selection

By following these guidelines, a programmer should be able to implement systems

and routines that provide for the effective and efficient use of nonspacing marks in a

wide variety of applications and systems. The programmer also has the choice

between minimal techniques that apply to the vast majority of existing systems and

more sophisticated techniques that apply to more demanding situations, such as

higher-end desktop publishing.

In this section and the following section, the terms nonspacing mark and combining

character are used interchangeably. The terms diacritic, accent, stress mark, Hebrew

point, Arabic vowel, and others are sometimes used instead of nonspacing mark.

(They refer to particular types of nonspacing marks.) Properly speaking, a

nonspacing mark is any combining character that does not add space along the

writing direction. For a formal definition of nonspacing mark, see Section 3.6, Combi‐

nation.

A relatively small number of implementation features are needed to support

nonspacing marks. Different levels of implementation are also possible. A minimal

system yields good results and is relatively simple to implement. Most of the features

required by such a system are simply modifications of existing software.

As nonspacing marks are required for a number of writing systems, such as Arabic,

Hebrew, and those of South Asia, many vendors already have systems capable of

dealing with these characters and can use their experience to produce general-

purpose software for handling these characters in the Unicode Standard.

 Composite character sequences can be rendered effectively by means of a

fairly simple mechanism. In simple character rendering, a nonspacing combining

mark has a zero advance width, and a composite character sequence will have the

same width as the base character.

Wherever a sequence of base character plus one or more nonspacing marks occurs,

the glyphs for the nonspacing marks can be positioned relative to the base. The liga‐

ture mechanisms in the fonts can also substitute a glyph representing the combined

form. In some cases the width of the base should change because of an applied

accent, such as with “î”. The ligature or contextual form mechanisms in the font can

be used to change the width of the base in cases where this is required.

 Correct multilingual comparison routines must already be able to

compare a sequence of characters as one character, or one character as if it were a

sequence. Such routines can also handle combining character sequences when

supplied with the appropriate data. When searching strings, remember to check for

5.12 Strategies for Handling Nonspacing Marks

Rendering.

Other Processes.

Implementation Guidelines 273
5.12 Strategies for Handling

Nonspacing Marks

additional nonspacing marks in the target string that may affect the interpretation of

the last matching character.

Line breaking algorithms generally use state machines for determining word breaks.

Such algorithms can be easily adapted to prevent separation of nonspacing marks

from base characters. (See also the discussion in Section 5.6, Normalization. For

details in particular contexts, see Unicode Technical Standard #10, “Unicode Colla‐

tion Algorithm”; Unicode Standard Annex #14, “Unicode Line Breaking Algorithm”;

and Unicode Standard Annex #29, “Unicode Text Segmentation.”)

A common implementation for the input of combining character sequences is the

use of dead keys. These keys match the mechanics used by typewriters to generate

such sequences through overtyping the base character after the nonspacing mark. In

computer implementations, keyboards enter a special state when a dead key is

pressed for the accent and emit a precomposed character only when one of a limited

number of “legal” base characters is entered. It is straightforward to adapt such a

system to emit combining character sequences or precomposed characters as needed.

Typists, especially in the Latin script, are trained on systems that work using dead

keys. However, many scripts in the Unicode Standard (including the Latin script)

may be implemented according to the handwriting sequence, in which users type the

base character first, followed by the accents or other nonspacing marks (see

Figure 5-4).

In the case of handwriting sequence, each keystroke produces a distinct, natural

change on the screen; there are no hidden states. To add an accent to any existing

character, the user positions the insertion point (caret) after the character and types

the accent.

5.12.1 Keyboard Input

Figure 5-4. Dead Keys Versus Handwriting Sequence

Implementation Guidelines 274
5.12 Strategies for Handling

Nonspacing Marks

There are two types of truncation: truncation by character count and truncation by

displayed width. Truncation by character count can entail loss (be lossy) or be loss‐

less.

Truncation by character count is used where, due to storage restrictions, a limited

number of characters can be entered into a field; it is also used where text is broken

into buffers for transmission and other purposes. The latter case can be lossless if

buffers are recombined seamlessly before processing or if lookahead is performed for

possible combining character sequences straddling buffers.

When fitting data into a field of limited storage length, some information will be lost.

The preferred position for truncating text in that situation is on a grapheme cluster

boundary. As Figure 5-5 shows, such truncation can mean truncating at an earlier

point than the last character that would have fit within the physical storage limita‐

tion. (See Unicode Standard Annex #29, “Unicode Text Segmentation.”)

Truncation by displayed width is used for visual display in a narrow field. In this

case, truncation occurs on the basis of the width of the resulting string rather than on

the basis of a character count. In simple systems, it is easiest to truncate by width,

starting from the end and working backward by subtracting character widths as one

goes. Because a trailing nonspacing mark does not contribute to the measurement of

the string, the result will not separate nonspacing marks from their base characters.

If the textual environment is more sophisticated, the widths of characters may

depend on their context, due to effects such as kerning, ligatures, or contextual

formation. For such systems, the width of a precomposed character, such as an “ï”,

may be different than the width of a narrow base character alone. To handle these

cases, a final check should be made on any truncation result derived from successive

subtractions.

5.12.2 Truncation

Figure 5-5. Truncating Grapheme Clusters

Implementation Guidelines 275
5.12 Strategies for Handling

Nonspacing Marks

A different option is simply to clip the characters graphically. Unfortunately, this may

result in clipping off part of a character, which can be visually confusing. Also, if the

clipping occurs between characters, it may not give any visual feedback that charac‐

ters are being omitted. A graphic or ellipsis can be used to give this visual feedback.

Implementation Guidelines 276
5.12 Strategies for Handling

Nonspacing Marks

This discussion assumes the use of proportional fonts, where the widths of individual

characters can vary. Various techniques can be used with monospaced fonts. In

general, however, it is possible to get only a semblance of a correct rendering for most

scripts in such fonts.

When rendering a sequence consisting of more than one nonspacing mark, the

nonspacing marks should, by default, be stacked outward from the base character.

That is, if two nonspacing marks appear over a base character, then the first

nonspacing mark should appear on top of the base character, and the second

nonspacing mark should appear on top of the first. If two nonspacing marks appear

under a base character, then the first nonspacing mark should appear beneath the

base character, and the second nonspacing mark should appear below the first (see

Section 2.11, Combining Characters). This default treatment of multiple, potentially

interacting nonspacing marks is known as the inside-out rule (see Figure 5-6).

This default behavior may be altered based on typographic preferences or on knowl‐

edge of the specific orthographic treatment to be given to multiple nonspacing marks

in the context of a particular writing system. For example, in the modern Vietnamese

writing system, an acute or grave accent (serving as a tone mark) may be positioned

slightly to one side of a circumflex accent rather than directly above it. If the text to

be displayed is known to employ a different typographic convention (either implicitly

through knowledge of the language of the text or explicitly through rich text-style

bindings), then an alternative positioning may be given to multiple nonspacing

marks instead of that specified by the default inside-out rule.

 Several methods are available to deal with an unknown

composed character sequence that is outside of a fixed, renderable set (see

Figure 5-7). One method (Show Hidden) indicates the inability to draw the sequence

5.13 Rendering Nonspacing Marks

Figure 5-6. Inside-Out Rule

Fallback Rendering.

Implementation Guidelines 277 5.13 Rendering Nonspacing Marks

by drawing the base character first and then rendering the nonspacing mark as an

individual unit, with the nonspacing mark positioned on a dotted circle. (This

convention is used in the Unicode code charts.)

Another method (Simple Overlap) uses a default fixed position for an overlapping

zero-width nonspacing mark. This position is generally high enough to make sure

that the mark does not collide with capital letters. This will mean that this mark is

placed too high above many lowercase letters. For example, the default positioning of

a circumflex can be above the ascent, which will place it above capital letters. Even

though the result will not be particularly attractive for letters such as g-circumflex, the

result should generally be recognizable in the case of single nonspacing marks.

In a degenerate case, a nonspacing mark occurs as the first character in the text or is

separated from its base character by a line separator, paragraph separator, or other

format character that causes a positional separation. This result is called a defective

combining character sequence (see Section 3.6, Combination). Defective combining

character sequences should be rendered as if they had a no-break space as a base

character. (See Section 7.9, Combining Marks.)

 In bidirectional text, the nonspacing marks are reordered

with their base characters; that is, they visually apply to the same base character after

the algorithm is used (see Figure 5-8). There are a few ways to accomplish this posi‐

tioning.

Figure 5-7. Fallback Rendering

Bidirectional Positioning.

Implementation Guidelines 278 5.13 Rendering Nonspacing Marks

The simplest method is similar to the Simple Overlap fallback method. In the Bidirec‐

tional Algorithm, combining marks take the level of their base character. In that case,

Arabic and Hebrew nonspacing marks would come to the left of their base charac‐

ters. The font is designed so that instead of overlapping to the left, the Arabic and

Hebrew nonspacing marks overlap to the right. In Figure 5-8, the “glyph metrics” line

shows the pen start and end for each glyph with such a design. After aligning the

start and end points, the final result shows each nonspacing mark attached to the

corresponding base letter. More sophisticated rendering could then apply the posi‐

tioning methods outlined in the next section.

Some rendering software may require keeping the nonspacing mark glyphs consis‐

tently ordered to the right of the base character glyphs. In that case, a second pass

can be done after producing the “screen order” to put the odd-level nonspacing

marks on the right of their base characters. As the levels of nonspacing marks will be

the same as their base characters, this pass can swap the order of nonspacing mark

glyphs and base character glyphs in right-to-left (odd) levels. (See Unicode Standard

Annex #9, “Unicode Bidirectional Algorithm.”)

 Typically, full justification of text adds extra space at space characters

so as to widen a line; however, if there are too few (or no) space characters, some

systems add extra letterspacing between characters (see Figure 5-9). This process

needs to be modified if zero-width nonspacing marks are present in the text. Other‐

Figure 5-8. Bidirectional Placement

Justification.

Implementation Guidelines 279 5.13 Rendering Nonspacing Marks

wise, if extra justifying space is added after the base character, it can have the effect of

visually separating the nonspacing mark from its base.

Because nonspacing marks always follow their base character, proper justification

adds letterspacing between characters only if the second character is a base character.

Canonical equivalence must be taken into account in rendering multiple accents, so

that any two canonically equivalent sequences display as the same. This is particu‐

larly important when the canonical order is not the customary keyboarding order,

which happens in Arabic with vowel signs or in Hebrew with points. In those cases, a

rendering system may be presented with either the typical typing order or the canon‐

ical order resulting from normalization, as shown in Table 5-3.

Typical Typing Order Canonical Order

U+0631 ARABIC LETTER REH + U+0651
ARABIC SHADDA + U+064B ARABIC
FATHATAN

U+0631 ARABIC LETTER REH + U+064B
ARABIC FATHATAN + U+0651 ARABIC
SHADDA

With a restricted repertoire of nonspacing mark sequences, such as those required for

Arabic, a ligature mechanism can be used to get the right appearance, as described

earlier. When a fallback mechanism for placing accents based on their combining

class is employed, the system should logically reorder the marks before applying the

mechanism.

Rendering systems should handle any of the canonically equivalent orders of

combining marks. This is not a performance issue: the amount of time necessary to

reorder combining marks is insignificant compared to the time necessary to carry out

other work required for rendering.

A rendering system can reorder the marks internally if necessary, as long as the

resulting sequence is canonically equivalent. In particular, any permutation of the

non-zero combining class values can be used for a canonical-equivalent internal

Figure 5-9. Justification

5.13.1 Canonical Equivalence

Table 5-3. Typing Order Differing from Canonical Order

Implementation Guidelines 280 5.13 Rendering Nonspacing Marks

ordering. For example, a rendering system could internally permute weights to have

U+0651 ARABIC SHADDA precede all vowel signs. This would use the remapping

shown in Table 5-4.

Combining Class Internal Weight

27 → 33

28 → 27

29 → 28

30 → 29

31 → 30

32 → 31

33 → 32

Only non-zero combining class values can be changed, and they can be permuted

only, not combined or split. This can be restated as follows:

Two characters that have the same combining class values cannot be given

distinct internal weights.

Two characters that have distinct combining class values cannot be given the

same internal weight.

Characters with a combining class of zero must be given an internal weight of

zero.

A number of methods are available to position nonspacing marks so that they are in

the correct location relative to the base character and previous nonspacing marks.

 A fixed set of combining character sequences can be

rendered effectively by means of fairly simple substitution, as shown in Figure 5-10.

Wherever the glyphs representing a sequence of <base character, nonspacing mark>

occur, a glyph representing the combined form is substituted. Because the

Table 5-4. Permuting Combining Class Weights

•

•

•

5.13.2 Positioning Methods

Positioning with Ligatures.

Figure 5-10. Positioning with Ligatures

Implementation Guidelines 281 5.13 Rendering Nonspacing Marks

nonspacing mark has a zero advance width, the composed character sequence will

automatically have the same width as the base character. More sophisticated text

rendering systems may take additional measures to account for those cases where the

composed character sequence kerns differently or has a slightly different advance

width than the base character.

Positioning with ligatures is perhaps the simplest method of supporting nonspacing

marks. Whenever there is a small, fixed set, such as those corresponding to the

precomposed characters of ISO/IEC 8859-1 (Latin-1), this method is straightforward

to apply. Because the composed character sequence almost always has the same

width as the base character, rendering, measurement, and editing of these characters

are much easier than for the general case of ligatures.

If a combining character sequence does not form a ligature, then either positioning

with contextual forms or positioning with enhanced kerning can be applied. If they

are not available, then a fallback method can be used.

 A more general method of dealing with posi‐

tioning of nonspacing marks is to use contextual formation (see Figure 5-11). In this

case for Devanagari, a consonant RA is rendered with a nonspacing glyph (reph)

positioned above a base consonant. (See “Rendering Devanagari” in Section 12.1,

Devanagari.) Depending on the position of the stem for the corresponding base

consonant glyph, a contextual choice is made between reph glyphs with different side

bearings, so that the tip of the reph will be placed correctly with respect to the base

consonant’s stem. Base glyphs generally fall into a fairly small number of classes,

depending on their general shape and width, so a corresponding number of contextu‐

ally distinct glyphs for the nonspacing mark suffice to produce correct rendering.

In general cases, a number of different heights of glyphs can be chosen to allow

stacking of glyphs, at least for a few deep. (When these bounds are exceeded, then

the fallback methods can be used.) This method can be combined with the ligature

method so that in specific cases ligatures can be used to produce fine variations in

position and shape.

Positioning with Contextual Forms.

Figure 5-11. Positioning with Contextual Forms

Implementation Guidelines 282 5.13 Rendering Nonspacing Marks

 A third technique for positioning diacritics is

an extension of the normal process of kerning to be both horizontal and vertical (see

Figure 5-12). Typically, kerning maps from pairs of glyphs to a positioning offset. For

example, in the word “To” the “o” should nest slightly under the “T”. An extension of

this system maps to both a vertical and a horizontal offset, allowing glyphs to be posi‐

tioned arbitrarily.

For effective use in the general case, the kerning process must be extended to handle

more than simple kerning pairs, as multiple diacritics may occur after a base letter.

Positioning with enhanced kerning can be combined with the ligature method so that

in specific cases ligatures can be used to produce fine variations in position and

shape.

Positioning with Enhanced Kerning.

Figure 5-12. Positioning with Enhanced Kerning

Implementation Guidelines 283 5.13 Rendering Nonspacing Marks

A string of Unicode-encoded text often needs to be broken up into text elements

programmatically. Common examples of text elements include what users think of as

characters, words, lines, and sentences. The precise determination of text elements

may vary according to locale, even as to what constitutes a “character.” The goal of

matching user perceptions cannot always be met, because the text alone does not

always contain enough information to decide boundaries unambiguously. For

example, the period (U+002E FULL STOP) is used ambiguously—sometimes for end-

of-sentence purposes, sometimes for abbreviations, and sometimes for numbers. In

most cases, however, programmatic text boundaries can match user perceptions quite

closely, or at least not surprise the user.

Rather than concentrate on algorithmically searching for text elements themselves, a

simpler computation looks instead at detecting the boundaries between those text

elements. Precise definitions of the default Unicode mechanisms for determining

such text element boundaries are found in Unicode Standard Annex #14, “Unicode

Line Breaking Algorithm,” and in Unicode Standard Annex #29, “Unicode Text

Segmentation.”

5.14 Locating Text Element Boundaries

Implementation Guidelines 284 5.14 Locating Text Element Boundaries

A common task facing an implementer of the Unicode Standard is the provision of a

parsing and/or lexing engine for identifiers. To assist in the standard treatment of

identifiers in Unicode character-based parsers, a set of guidelines is provided in

Unicode Standard Annex #31, “Unicode Identifier and Pattern Syntax,” as a recom‐

mended default for the definition of identifier syntax. That document provides details

regarding the syntax and conformance considerations. Associated data files defining

the character properties referred to by the identifier syntax can be found in the

Unicode Character Database.

5.15 Identifiers

Implementation Guidelines 285 5.15 Identifiers

Sorting and searching overlap in that both implement degrees of equivalence of terms

to be compared. In the case of searching, equivalence defines when terms match (for

example, it determines when case distinctions are meaningful). In the case of sorting,

equivalence affects the proximity of terms in a sorted list. These determinations of

equivalence often depend on the application and language, but for an implementa‐

tion supporting the Unicode Standard, sorting and searching must always take into

account the Unicode character equivalence and canonical ordering defined in

Chapter 3, Conformance.

Sort orders vary from culture to culture, and many specific applications require varia‐

tions. Sort order can be by word or sentence, case-sensitive or case-insensitive,

ignoring accents or not. It can also be either phonetic or based on the appearance of

the character, such as ordering by stroke and radical for East Asian ideographs.

Phonetic sorting of Han characters requires use of either a lookup dictionary of

words or special programs to maintain an associated phonetic spelling for the words

in the text.

Languages vary not only regarding which types of sorts to use (and in which order

they are to be applied), but also in what constitutes a fundamental element for

sorting. For example, Swedish treats U+00C4 LATIN CAPITAL LETTER A WITH

DIAERESIS as an individual letter, sorting it after z in the alphabet; German, however,

sorts it either like ae or like other accented forms of ä following a. Spanish tradition‐

ally sorted the digraph ll as if it were a letter between l and m. Examples from other

languages (and scripts) abound.

As a result, it is not possible either to arrange characters in an encoding such that

simple binary string comparison produces the desired collation order or to provide

single-level sort-weight tables. The latter implies that character encoding details have

only an indirect influence on culturally expected sorting.

Unicode Technical Standard #10, “Unicode Collation Algorithm” (UCA), describes

the issues involved in culturally appropriate sorting and searching, and provides a

specification for how to compare two Unicode strings while remaining conformant to

the requirements of the Unicode Standard. The UCA also supplies the Default

Unicode Collation Element Table as the data specifying the default collation order.

Searching algorithms, whether brute-force or sublinear, can be adapted to provide

language-sensitive searching as described in the UCA.

5.16 Sorting and Searching

5.16.1 Culturally Expected Sorting and Searching

Implementation Guidelines 286 5.16 Sorting and Searching

In some circumstances, an application may need to do language-insensitive sorting—

that is, sorting of textual data without consideration of language-specific cultural

expectations about how strings should be ordered. For example, a temporary index

may need only to be in some well-defined order, but the exact details of the order may

not matter or be visible to users. However, even in these circumstances, imple‐

menters should be aware of some issues.

First, some subtle differences arise in binary ordering between the three Unicode

encoding forms. Implementations that need to do only binary comparisons between

Unicode strings still need to take this issue into account so as not to create interoper‐

ability problems between applications using different encoding forms. See

Section 5.17, Binary Order, for further discussion.

Many applications of sorting or searching need to be case-insensitive, even while not

caring about language-specific differences in ordering. This is the result of the design

of protocols that may be very old but that are still of great current relevance. Tradi‐

tionally, implementations did case-insensitive comparison by effectively mapping

both strings to uppercase before doing a binary comparison. This approach is,

however, not more generally extensible to the full repertoire of the Unicode Standard.

The correct approach to case-insensitive comparison is to make use of case folding,

as described in Section 5.18, Case Mappings.

Searching is subject to many of the same issues as comparison. Other features are

often added, such as only matching words (that is, where a word boundary appears

on each side of the match). One technique is to code a fast search for a weak match.

When a candidate is found, additional tests can be made for other criteria (such as

matching diacriticals, word match, case match, and so on).

When searching strings, it is necessary to check for trailing nonspacing marks in the

target string that may affect the interpretation of the last matching character. That is,

a search for “San Jose” may find a match in the string “Visiting San José, Costa Rica,

is a...”. If an exact (diacritic) match is desired, then this match should be rejected. If a

weak match is sought, then the match should be accepted, but any trailing

nonspacing marks should be included when returning the location and length of the

target substring. The mechanisms discussed in Unicode Standard Annex #29,

“Unicode Text Segmentation,” can be used for this purpose.

One important application of weak equivalence is case-insensitive searching. Many

traditional implementations map both the search string and the target text to upper‐

case. However, case mappings are language-dependent and not unambiguous. The

5.16.2 Language-Insensitive Sorting

5.16.3 Searching

Implementation Guidelines 287 5.16 Sorting and Searching

preferred method of implementing case insensitivity is described in Section 5.18, Case

Mappings.

A related issue can arise because of inaccurate mappings from external character

sets. To deal with this problem, characters that are easily confused by users can be

kept in a weak equivalency class (đ d-bar, ð eth, Đ capital d-bar, Ð capital eth). This

approach tends to do a better job of meeting users’ expectations when searching for

named files or other objects.

International searching is clearly possible using the information in the collation, just

by using brute force. However, this tactic requires an O(m*n) algorithm in the worst

case and an O(m) algorithm in common cases, where n is the number of characters

in the pattern that is being searched for and m is the number of characters in the

target to be searched.

A number of algorithms allow for fast searching of simple text, using sublinear algo‐

rithms. These algorithms have only O(m/n) complexity in common cases by skipping

over characters in the target. Several implementers have adapted one of these algo‐

rithms to search text pre-transformed according to a collation algorithm, which

allows for fast searching with native-language matching (see Figure 5-13).

The main problems with adapting a language-aware collation algorithm for sublinear

searching relate to multiple mappings and ignorables. Additionally, sublinear algo‐

rithms precompute tables of information. Mechanisms like the two-stage tables

shown in Figure 5-1 are efficient tools in reducing memory requirements.

5.16.4 Sublinear Searching

Figure 5-13. Sublinear Searching

Implementation Guidelines 288 5.16 Sorting and Searching

When comparing text that is visible to end users, a correct linguistic sort should be

used, as described in Section 5.16, Sorting and Searching. However, in many circum‐

stances the only requirement is for a fast, well-defined ordering. In such cases, a

binary ordering can be used.

Not all encoding forms of Unicode have the same binary order. UTF-8 and UTF-32

data, and UTF-16 data containing only BMP characters, sort in code point order,

whereas UTF-16 data containing a mix of BMP and supplementary characters does

not. This is because supplementary characters are encoded in UTF-16 with pairs of

surrogate code units that have lower values (D800
16

..DFFF
16

) than some BMP code

points.

Furthermore, when UTF-16 or UTF-32 data is serialized using one of the Unicode

encoding schemes and compared byte-by-byte, the resulting byte sequences may or

may not have the same binary ordering, because swapping the order of bytes will

affect the overall ordering of the data. Due to these factors, text in the UTF-16BE,

UTF-16LE, and UTF-32LE encoding schemes does not sort in code point order.

In general, the default binary sorting order for Unicode text should be code point

order. However, it may be necessary to match the code unit ordering of a particular

encoding form (or the byte ordering of a particular encoding scheme) so as to dupli‐

cate the ordering used in a different application.

Some sample routines are provided here for sorting one encoding form in the binary

order of another encoding form.

The following comparison function for UTF-8 yields the same results as UTF-16

binary comparison. In the code, notice that it is necessary to do extra work only once

per string, not once per byte. That work can consist of simply remapping through a

small array; there are no extra conditional branches that could slow down the

processing.

int strcmp8like16(unsigned char* a, unsigned char* b) {
 while (true) {
 int ac = *a++;
 int bc = *b++;
 if (ac != bc) return rotate[ac] - rotate[bc];
 if (ac == 0) return 0;
 }
}

5.17 Binary Order

5.17.1 UTF-8 in UTF-16 Order

Implementation Guidelines 289 5.17 Binary Order

static char rotate[256] =
{0x00, ..., 0x0F,
 0x10, ..., 0x1F,
 . .
 . .
 . .
 0xD0, ..., 0xDF,
 0xE0, ..., 0xED, 0xF3, 0xF4,
0xEE, 0xEF, 0xF0, 0xF1, 0xF2, 0xF5, ..., 0xFF};

The rotate array is formed by taking an array of 256 bytes from 0x00 to 0xFF, and

rotating 0xEE to 0xF4, the initial byte values of UTF-8 for the code points in the

range U+E000..U+10FFFF. These rotated values are shown in boldface. When this

rotation is performed on the initial bytes of UTF-8, it has the effect of making code

points U+10000..U+10FFFF sort below U+E000..U+FFFF, thus mimicking the

ordering of UTF-16.

The following code can be used to sort UTF-16 in code point order. As in the routine

for sorting UTF-8 in UTF-16 order, the extra cost is incurred once per function call,

not once per character.

int strcmp16like8(Unichar* a, 	Unichar* b) {
 while (true) {
 int ac = *a++;
 int bc = *b++;
 if (ac != bc) {
 return (Unichar)(ac + utf16Fixup[ac>>11]) -
 (Unichar)(bc + utf16Fixup[bc>>11]);
 }
 if (ac == 0) return 0;
 }
}

static const 	Unichar utf16Fixup[32]={
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0x2000, 0xf800, 0xf800, 0xf800, 0xf800
};

This code uses 	Unichar as an unsigned 16-bit integral type. The construction of the

utf16Fixup array is based on the following concept. The range of UTF-16 values is

divided up into thirty-two 2K chunks. The 28th chunk corresponds to the values

0xD800..0xDFFF—that is, the surrogate code units. The 29th through 32nd chunks

correspond to the values 0xE000..0xFFFF. The addition of 0x2000 to the surrogate

5.17.2 UTF-16 in UTF-8 Order

Implementation Guidelines 290 5.17 Binary Order

code units rotates them up to the range 0xF800..0xFFFF. Adding 0xF800 to the

values 0xE000..0xFFFF and ignoring the unsigned integer overflow rotates them

down to the range 0xD800..0xF7FF. Calculating the final difference for the return

from the rotated values produces the same result as basing the comparison on code

points, rather than the UTF-16 code units. The use of the hack of unsigned integer

overflow on addition avoids the need for a conditional test to accomplish the rotation

of values.

Note that this mechanism works correctly only on well-formed UTF-16 text. A modi‐

fied algorithm must be used to operate on 16-bit Unicode strings that could contain

isolated surrogates.

Implementation Guidelines 291 5.17 Binary Order

Case is a normative property of characters in specific alphabets such as Latin, Greek,

Cyrillic, Armenian, and archaic Georgian, whereby characters are considered to be

variants of a single letter. These variants, which may differ markedly in shape and

size, are called the uppercase letter (also known as capital or majuscule) and the

lowercase letter (also known as small or minuscule). The uppercase letter is generally

larger than the lowercase letter. Alphabets with case differences are called bicameral;

those without are called unicameral.

The case mappings in the Unicode Character Database (UCD) are normative. This

follows from their use in defining the case foldings in CaseFolding.txt and from the

use of case foldings to define case-insensitive identifiers in Unicode Standard Annex

#31, “Unicode Identifier and Pattern Syntax.” However, the normative status of case

mappings does not preclude the adaptation of case mapping processes to local

conventions, as discussed below. See also the Unicode Common Locale Data Reposi‐

tory (CLDR), https://cldr.unicode.org, for extensive data regarding local and

language-specific casing conventions.

Titlecasing refers to a casing practice wherein the first letter of a word is an upper‐

case letter and the rest of the letters are lowercase. This typically applies, for example,

to initial words of sentences and to proper nouns. Depending on the language and

orthographic practice, this convention may apply to other words as well, as for

common nouns in German.

Titlecasing also applies to entire strings, as in instances of headings or titles of docu‐

ments, for which multiple words are titlecased. The choice of which words to title‐

case in headings and titles is dependent on language and local conventions. For

example, “The Merry Wives of Windsor” is the appropriate titlecasing of that play’s

name in English, with the word “of” not titlecased. In German, however, the title is

“Die lustigen Weiber von Windsor,” and both “lustigen” and “von” are not titlecased.

In French even fewer words are titlecased: “Les joyeuses commères de Windsor.”

Moreover, the determination of what actually constitutes a word is language depen‐

dent, and this can influence which letter or letters of a “word” are uppercased when

titlecasing strings. For example l’arbre is considered two words in French, whereas

can’t is considered one word in English.

The need for a normative Titlecase_Mapping property in the Unicode Standard

derives from the fact that the standard contains certain digraph characters for

compatibility. These digraph compatibility characters, such as U+01F3 “ ” LATIN

SMALL LETTER DZ, require one form when being uppercased, U+01F1 “ ” LATIN

5.18 Case Mappings

5.18.1 Titlecasing

Implementation Guidelines 292 5.18 Case Mappings

https://cldr.unicode.org

CAPITAL LETTER DZ, and another form when being titlecased, U+01F2 “ ” LATIN

CAPITAL LETTER D WITH SMALL LETTER Z. The latter form is informally referred to

as a titlecase character, because it is mixed case, with the first letter uppercase. Most

characters in the standard have identical values for their Titlecase_Mapping and

Uppercase_Mapping; however, the two values are distinguished for these few digraph

compatibility characters.

A number of complications to case mappings occur once the repertoire of characters

is expanded beyond ASCII.

 Case mappings may produce strings of different lengths than the

original. For example, the German character U+00DF LATIN SMALL LETTER

SHARP S expands when uppercased to the sequence of two characters “SS”. Such

expansion also occurs where there is no precomposed character corresponding to a

case mapping, such as with U+0149 LATIN SMALL LETTER N PRECEDED BY APOS‐

TROPHE. The maximum string expansion as a result of case mapping in the Unicode

Standard is three. For example, uppercasing U+0390 GREEK SMALL LETTER IOTA

WITH DIALYTIKA AND TONOS results in three characters.

The lengths of case-mapped strings may also differ from their originals depending on

the Unicode encoding form. For example, the Turkish strings “topkapı” (with a

dotless i) and “TOPKAPI” have the same number of characters and are the same

length in UTF-16 and UTF-32; however, in UTF-8, the representation of the upper‐

case form takes only seven bytes, whereas the lowercase form takes eight bytes. By

comparison, the German strings “heiß” and “HEISS” have a different number of

characters and differ in length in UTF-16 and UTF-32, but in UTF-8 both strings are

encoded using the same number of bytes.

 The character U+0345 COMBINING GREEK YPOGEGRAM‐

MENI (iota subscript) requires special handling. As discussed in Section 7.2, Greek, the

iota-subscript characters used to represent ancient text have special case mappings.

Normally, the uppercase and lowercase forms of alpha-iota-subscript will map back

and forth. In some instances, uppercase words should be transformed into their older

spellings by removing accents and changing the iota subscript into a capital iota (and

perhaps even removing spaces).

 Characters may have different case mappings,

depending on the context surrounding the character in the original string. For

example, U+03A3 “ ” GREEK CAPITAL LETTER SIGMA lowercases to U+03C3 “ ”

GREEK SMALL LETTER SIGMA if it is followed by another letter, but lowercases to

U+03C2 “ ” GREEK SMALL LETTER FINAL SIGMA if it is not.

5.18.2 Complications for Case Mapping

Change in Length.

Greek iota subscript.

Context-dependent Case Mappings.

Implementation Guidelines 293 5.18 Case Mappings

Because only a few context-sensitive case mappings exist, and because they involve

only a very few characters, implementations may choose to hard-code the treatment

of these characters for casing operations rather than using data-driven code based on

the Unicode Character Database. However, if this approach is taken, each time the

implementation is upgraded to a new version of the Unicode Standard, hard-coded

casing operations should be checked for consistency with the updated data. See

SpecialCasing.txt in the Unicode Character Database for details of context-sensitive

case mappings.

 The principal example of a case mapping that

depends on the locale is Turkish, where U+0131 “ ” LATIN SMALL LETTER DOTLESS I

maps to U+0049 “ ” LATIN CAPITAL LETTER I and U+0069 “ ” LATIN SMALL LETTER

I maps to U+0130 “ ” LATIN CAPITAL LETTER I WITH DOT ABOVE. Figure 5-14 shows

the uppercase mapping for Turkish i and canonically equivalent sequences.

Figure 5-15 shows the lowercase mapping for Turkish i.

In both of the Turkish case mapping figures, a mapping with a double-sided arrow

round-trips—that is, the opposite case mapping results in the original sequence. A

mapping with a single-sided arrow does not round-trip.

Locale-dependent Case Mappings.

Figure 5-14. Uppercase Mapping for Turkish I

Figure 5-15. Lowercase Mapping for Turkish I

Implementation Guidelines 294 5.18 Case Mappings

 Because many characters are really caseless (most of the IPA

block, for example) and have no matching uppercase, the process of uppercasing a

string does not mean that it will no longer contain any lowercase letters.

 The German sharp s character has several complications in case

mapping. Not only does its uppercase mapping expand in length, but its default case-

pairings are asymmetrical. The default case mapping operations follow standard

German orthography, which uses the string “SS” as the regular uppercase mapping

for U+00DF LATIN SMALL LETTER SHARP S. In contrast, the alternate, single char‐

acter uppercase form, U+1E9E LATIN CAPITAL LETTER SHARP S, is intended for typo‐

graphical representations of signage and uppercase titles, and in other environments

where users require the sharp s to be preserved in uppercase. Overall, such usage is

uncommon. Thus, when using the default Unicode casing operations, capital sharp s

will lowercase to small sharp s, but not vice versa: small sharp s uppercases to “SS”, as

shown in Figure 5-16. A tailored casing operation is needed in circumstances

requiring small sharp s to uppercase to capital sharp s.

Additional language-specific or orthography-specific contexts and casing behavior is

specified in the Unicode Common Locale Data Repository (CLDR), https://

cldr.unicode.org.

No casing operations are reversible. For example:

to	Uppercase(to	Lowercase(“John Brown”)) → “JOHN BROWN”

to	Lowercase(to	Uppercase(“John Brown”)) → “john brown”

There are even single words like vederLa in Italian or the name McGowan in English,

which are neither upper-, lower-, nor titlecase. This format is sometimes called inner-

caps—or more informally camelcase—and it is often used in programming and in

Web names. Once the string “McGowan” has been uppercased, lowercased, or title‐

cased, the original cannot be recovered by applying another uppercase, lowercase, or

titlecase operation. There are also single characters that do not have reversible

mappings, such as the Greek sigmas.

Caseless Characters.

German sharp s.

Figure 5-16. Casing of German Sharp S

5.18.3 Reversibility

Implementation Guidelines 295 5.18 Case Mappings

https://cldr.unicode.org
https://cldr.unicode.org

For word processors that use a single command-key sequence to toggle the selection

through different casings, it is recommended to save the original string and return to

it via the sequence of keys. The user interface would produce the following results in

response to a series of command keys. In the following example, notice that the orig‐

inal string is restored every fourth time.

The quick brown

THE QUICK BROWN

the quick brown

The Quick Brown

The quick brown (repeating from here on)

Uppercase, titlecase, and lowercase can be represented in a word processor by using a

character style. Removing the character style restores the text to its original state.

However, if this approach is taken, any spell-checking software needs to be aware of

the case style so that it can check the spelling against the actual appearance.

Caseless matching is implemented using case folding, which is the process of

mapping characters of different case to a single form, so that case differences in

strings are erased. Case folding allows for fast caseless matches in lookups because

only binary comparison is required. It is more than just conversion to lowercase. For

example, it correctly handles cases such as the Greek sigma, so that “όσος” and

“ΌΣΟΣ” will match.

Normally, the original source string is not replaced by the folded string because that

substitution may erase important information. For example, the name “Marco di

Silva” would be folded to “marco di silva,” losing the information regarding which

letters are capitalized. Typically, the original string is stored along with a case-folded

version for fast comparisons.

The CaseFolding.txt file in the Unicode Character Database is used to perform case

folding (which is locale-independent). This file is generated from the case mappings

in the Unicode Character Database, using both the single-character mappings and

the multicharacter mappings. It folds all characters having different case forms

together into a common form. To compare two strings for caseless matching, one can

fold each string using this data and then use a binary comparison.

Case folding logically involves a set of equivalence classes constructed from the

Unicode Character Database case mappings as follows.

For each character X in Unicode, apply the following rules in order:

1.

2.

3.

4.

5.

5.18.4 Caseless Matching

Implementation Guidelines 296 5.18 Case Mappings

For rule R5, it is preferable to choose a single lowercase letter for the common form,

but this is not possible in all instances. For case folding of Cherokee letters, for

example, a single uppercase letter must be chosen instead, because the uppercase

letters for Cherokee were encoded in an earlier version of the Unicode Standard, and

the lowercase letters were encoded in a later version. This choice is required to keep

case folding stable across Unicode versions.

Each equivalence class is completely disjoint from all the others, and every Unicode

character is in one equivalence class. CaseFolding.txt thus contains the mappings

from other characters in the equivalence classes to their common forms. As an excep‐

tion, the case foldings for dotless i and dotted I do not follow the derivation algorithm

for all other case foldings. Instead, their case foldings are hard-coded in the deriva‐

tion for best default matching behavior. There are alternate case foldings for these

characters, which can be used for case folding for Turkic languages. However, the use

of those alternate case foldings does not maintain canonical equivalence. Further‐

more, it is often undesirable to have differing behavior for caseless matching. Because

language information is often not available when caseless matching is applied to

strings, it also may not be clear which alternate to choose.

The Unicode case folding algorithm is defined to be simpler and more efficient than

case mappings. It is context-insensitive and language-independent (except for the

optional, alternate Turkic case foldings). As a result, there are a few rare cases where

a caseless match does not match pairs of strings as expected; the most notable

instance of this is for Lithuanian. In Lithuanian typography for dictionary use, an “i”

retains its dot when a grave, acute, or tilde accent is placed above it. This convention

is represented in Unicode by using an explicit combining dot above, occurring in

sequence between the “i” and the respective accent. (See Figure 7-2.) When case

folded using the default case folding algorithm, strings containing these sequences

will still contain the combining dot above. In the unusual situation where case

folding needs to be tailored to provide for these special Lithuanian dictionary

requirements, strings can be preprocessed to remove any combining dot above char‐

If X is already in an equivalence class, continue to the next character.

Otherwise, form a new equivalence class and add X.

R1

Add any other character that uppercases, lowercases, or titlecases to

anything in the equivalence class.

R2

Add any other characters to which anything in the equivalence class

uppercases, lowercases, or titlecases.

R3

Repeat R2 and R3 until nothing further is added. R4

From each class, one representative element (a single lowercase letter

where possible) is chosen to be the common form.

R5

Implementation Guidelines 297 5.18 Case Mappings

acters occurring between an “i” and a subsequent accent, so that the folded strings

will match correctly.

Where case distinctions are not important, other distinctions between Unicode char‐

acters (in particular, compatibility distinctions) are generally ignored as well. In such

circumstances, text can be normalized to Normalization Form NFKC or NFKD after

case folding, thereby producing a normalized form that erases both compatibility

distinctions and case distinctions. However, such normalization should generally be

done only on a restricted repertoire, such as identifiers (alphanumerics). See Unicode

Standard Annex #15, “Unicode Normalization Forms,” and Unicode Standard Annex

#31, “Unicode Identifier and Pattern Syntax,” for more information. For a summary,

see “Equivalent Sequences” in Section 2.2, Unicode Design Principles.

Caseless matching is only an approximation of the language-specific rules governing

the strength of comparisons. Language-specific case matching can be derived from

the collation data for the language, where only the first- and second-level differences

are used. For more information, see Unicode Technical Standard #10, “Unicode

Collation Algorithm.”

In most environments, such as in file systems, text is not and cannot be tagged with

language information. In such cases, the language-specific mappings must not be

used. Otherwise, data structures such as B-trees might be built based on one set of

case foldings and used based on a different set of case foldings. This discrepancy

would cause those data structures to become corrupt. For such environments, a

constant, language-independent, default case folding is required.

 The definition of case folding is guaranteed to be stable, in that any string

of characters case folded according to these rules will remain case folded in Version

5.0 or later of the Unicode Standard. To achieve this stability, there are constraints on

additions of case pairs for existing encoded characters. Typically, no new lowercase

character will be added to the Unicode Standard as a casing pair of an existing upper-

or titlecase character that does not already have a lowercase pair. In exceptional

circumstances, where lowercase characters must be added to the standard in a later

version than the version in which the corresponding uppercase characters were

encoded, such lowercase characters can only be defined as new case pairs with a

corresponding change to case folding to ensure that they case fold to the old upper‐

case letters. See the subsection “Policies” in Appendix B.3, Other Unicode Online

Resources.

Casing operations as defined in Section 3.13, Default Case Algorithms are not guaran‐

teed to preserve Normalization Forms. That is, some strings in a particular Normal‐

ization Form (for example, NFC) will no longer be in that form after the casing oper‐

ation is performed. Consider the strings shown in the example in Table 5-5.

Stability.

5.18.5 Normalization and Casing

Implementation Guidelines 298 5.18 Case Mappings

Original (NFC)
U+01F0 LATIN SMALL LETTER J WITH CARON
U+0323 COMBINING DOT BELOW

Uppercased
U+004A LATIN CAPITAL LETTER J
U+030C COMBINING CARON
U+0323 COMBINING DOT BELOW

Uppercased NFC
U+004A LATIN CAPITAL LETTER J
U+0323 COMBINING DOT BELOW
U+030C COMBINING CARON

The original string is in Normalization Form NFC format. When uppercased, the

small j with caron turns into an uppercase J with a separate caron. If followed by a

combining mark below, that sequence is not in a normalized form. The combining

marks have to be put in canonical order for the sequence to be normalized.

If text in a particular system is to be consistently normalized to a particular form

such as NFC, then the casing operators should be modified to normalize after

performing their core function. The actual process can be optimized; there are only a

few instances where a casing operation causes a string to become denormalized. If a

system specifically checks for those instances, then normalization can be avoided

where not needed.

Normalization also interacts with case folding. For any string X, let Q(X) =
	NFC(toCasefold(NFD(X))). In other words, Q(X) is the result of normalizing X,

then case folding the result, then putting the result into Normalization Form NFC

format. Because of the way normalization and case folding are defined, Q(Q(X)) =
Q(X). Repeatedly applying Q does not change the result; case folding is closed under

canonical normalization for either Normalization Form NFC or NFD.

Case folding is not, however, closed under compatibility normalization for either

Normalization Form NFKD or NFKC. That is, given R(X) =
	NFKC(toCasefold(NFD(X))), there are some strings such that R(R(X)) ≠ R(X).

NFKC_Casefold, a derived property, is closed under both case folding and NFKC

normalization. The property values for NFKC_Casefold are found in DerivedNormal‐

izationProps.txt in the Unicode Character Database.

Table 5-5. Casing and Normalization in Strings

Implementation Guidelines 299 5.18 Case Mappings

Identifying one character as a compatibility variant of another character (or sequence

of characters) suggests that in many circumstances the first can be remapped to the

second without the loss of any textual information other than formatting and layout.

(See Section 2.3, Compatibility Characters.)

Such remappings or foldings can be done in different ways. In the case of compati‐

bility decomposable characters, remapping occurs as a result of normalizing to the

NFKD or NFKC forms defined by Unicode Normalization. Other compatibility char‐

acters which are not compatibility decomposable characters may be remapped by

various kinds of folding; for example, Kangxi radical symbols in the range

U+2F00..U+2FDF might be substituted by the corresponding CJK unified ideo‐

graphs of the same appearance.

However, such remapping should not be performed indiscriminately, because many

of the compatibility characters are included in the standard precisely to allow

systems to maintain one-to-one mappings to other existing character encoding stan‐

dards. In such cases, a remapping would lose information that is important to main‐

taining some distinction in the original encoding.

Thus an implementation must proceed with due caution—replacing a character with

its compatibility decomposition or otherwise folding compatibility characters

together with ordinary Unicode characters may change not only formatting informa‐

tion, but also other textual distinctions on which some other process may depend.

In many cases there exists a visual relationship between a compatibility character

and an ordinary character that is akin to a font style or directionality difference.

Replacing such characters with unstyled characters could affect the meaning of the

text. Replacing them with rich text would preserve the meaning for a human reader,

but could cause some programs that depend on the distinction to behave unpre‐

dictably. This issue particularly affects compatibility characters used in mathematical

notation. For more discussion of these issues, see the W3C specification, “Unicode in

XML and other Markup Languages,” and Unicode Technical Report #25, “Unicode

Support for Mathematics.”

In other circumstances, remapping compatibility characters can be very useful. For

example, transient remapping of compatibility decomposable characters using NFKC

or NFKD normalization forms is very useful for performing “loose matches” on char‐

acter strings. See also Unicode Technical Standard #10, “Unicode Collation Algo‐

rithm,” for the role of compatibility character remapping when establishing collation

weights for Unicode strings.

5.19 Mapping Compatibility Variants

Implementation Guidelines 300 5.19 Mapping Compatibility Variants

 The visual similarities between compatibility variants and ordinary

characters can make them confusable with other characters, something that can be

exploited in possible security attacks. Compatibility variants should thus be avoided

in certain usage domains, such as personal or network identifiers. The usual practice

for avoiding compatibility variants is to restrict such strings to those already in

Normalization Form NFKC; this practice eliminates any compatibility decomposable

characters. Compatibility decomposable characters can also be remapped on input by

processes handling personal or network identifiers, using Normalization Form

NFKC.

This general implementation approach to the problems associated with visual simi‐

larities among compatibility variants, by focusing first on the remapping of compati‐

bility decomposable characters, is useful for two reasons. First, the large majority of

compatibility variants are in fact also compatibility decomposable characters, so this

approach deals with the biggest portion of the problem. Second, it is simply and

reproducibly implementable in terms of a well-defined Unicode Normalization

Form.

Extending restrictions on usage to other compatibility variants is more problematical,

because there is no exact specification of which characters are compatibility variants.

Furthermore, there may be valid reasons to restrict usage of certain characters which

may be visually confusable or otherwise problematical for some process, even though

they are not generally considered to be compatibility variants. Best practice in such

cases is to depend on carefully constructed and justified lists of confusable charac‐

ters.

For more information on security implications and a discussion of confusables, see

Unicode Technical Report #36, “Unicode Security Considerations” and Unicode

Technical Standard #39, “Unicode Security Mechanisms.”

Confusables.

Implementation Guidelines 301 5.19 Mapping Compatibility Variants

It is sometimes claimed that the Unicode Standard poses new security issues. Some

of these claims revolve around unique features of the Unicode Standard, such as its

encoding forms. Others have to do with generic issues, such as character spoofing,

which also apply to any other character encoding, but which are seen as more severe

threats when considered from the point of view of the Unicode Standard.

This section examines some of these issues and makes some implementation recom‐

mendations that should help in designing secure applications using the Unicode

Standard.

 A basic security issue arises whenever there are alternate

encodings for the “same” character. In such circumstances, it is always possible for

security-conscious modules to make different assumptions about the representation

of text. This conceivably can result in situations where a security watchdog module of

some sort is screening for prohibited text or characters, but misses the same charac‐

ters represented in an alternative form. If a subsequent processing module then treats

the alternative form as if it were what the security watchdog was attempting to

prohibit, one potentially has a situation where a hostile outside process can circum‐

vent the security software. Whether such circumvention can be exploited in any way

depends entirely on the system in question.

Some earlier versions of the Unicode Standard included enough leniency in the defi‐

nition of the UTF-8 encoding form, particularly regarding the so-called non-shortest

form, to raise questions about the security of applications using UTF-8 strings.

However, the conformance requirements on UTF-8 and other encoding forms in the

Unicode Standard have been tightened so that no encoding form now allows any sort

of alternate representation, including non-shortest form UTF-8. Each Unicode code

point has a single, unique encoding in any particular Unicode encoding form. Prop‐

erly coded applications should not be subject to attacks on the basis of code points

having multiple encodings in UTF-8 (or UTF-16).

However, another level of alternate representation has raised other security ques‐

tions: the canonical equivalences between precomposed characters and combining

character sequences that represent the same abstract characters. This is a different

kind of alternate representation problem—not one of the encoding forms per se, but

one of visually identical characters having two distinct representations (one as a

single encoded character and one as a sequence of base form plus combining mark,

for example). The issue here is different from that for alternate encodings in UTF-8.

Canonically equivalent representations for the “same” string are perfectly valid and

expected in Unicode. The conformance requirement, however, is that conforming

implementations cannot be required to make an interpretation distinction between

canonically equivalent representations. The way for a security-conscious application

5.20 Unicode Security

Alternate Encodings.

Implementation Guidelines 302 5.20 Unicode Security

to guarantee this is to carefully observe the normalization specifications (see Unicode

Standard Annex #15, “Unicode Normalization Forms”) so that data is handled consis‐

tently in a normalized form.

 Another security issue is spoofing, meaning the deliberate misspelling of a

domain name, or user name, or other string in a form designed to trick unwary users

into interacting with a hostile website as if it was a trusted site (or user). In this case,

the confusion is not at the level of the software process handling the code points, but

rather in the human end users, who see one character but mistake it for another, and

who then can be fooled into doing something that will breach security or otherwise

result in unintended results.

To be effective, spoofing does not require an exact visual match—for example, using

the digit “1” instead of the letter “l”. The Unicode Standard contains many confus‐

ables—that is, characters whose glyphs, due to historical derivation or sheer coinci‐

dence, resemble each other more or less closely. Certain security-sensitive applica‐

tions or systems may be vulnerable due to possible misinterpretation of these confus‐

ables by their users.

Many legacy character sets, including ISO/IEC 8859-1 or even ASCII, also contain

confusables, albeit usually far fewer of them than in the Unicode Standard simply

because of the sheer scale of Unicode. The legacy character sets all carry the same

type of risks when it comes to spoofing, so there is nothing unique or inadequate

about Unicode in this regard. Similar steps will be needed in system design to assure

integrity and to lessen the potential for security risks, no matter which character

encoding is used.

The Unicode Standard encodes characters, not glyphs, and it is impractical for many

reasons to try to avoid spoofing by simply assigning a single character code for every

possible confusable glyph among all the world’s writing systems. By unifying an

encoding based strictly on appearance, many common text-processing tasks would

become convoluted or impossible. For example, Latin B and Greek Beta Β look the

same in most fonts, but lower-case to two different letters, Latin b and Greek beta β,

which have very distinct appearances. A simplistic fix to the confusability of Latin B

and Greek Beta would result in great difficulties in processing Latin and Greek data,

and in many cases in data corruptions as well.

Because all character encodings inherently have instances of characters that might be

confused with one another under some conditions, and because the use of different

fonts to display characters might even introduce confusions between characters that

the designers of character encodings could not prevent, character spoofing must be

addressed by other means. Systems or applications that are security-conscious can

test explicitly for known spoofings, such as “MICROS0FT,” “A0L,” or the like (substi‐

tuting the digit “0” for the letter “O”). Unicode-based systems can provide visual

clues so that users can ensure that labels, such as domain names, are within a single

Spoofing.

Implementation Guidelines 303 5.20 Unicode Security

script to prevent cross-script spoofing. However, provision of such clues is clearly the

responsibility of the system or application, rather than being a security condition that

could be met by somehow choosing a “secure” character encoding that was not

subject to spoofing. No such character encoding exists.

Unicode Standard Annex #24, “Unicode Script Property,” presents a classification of

Unicode characters by script. By using such a classification, a program can check that

labels consist only of characters from a given script or characters that are expected to

be used with more than one script (such as the “Common” or “Inherited” script

names defined in Unicode Standard Annex #24, “Unicode Script Property”). Because

cross-script names may be legitimate, the best method of alerting a user might be to

highlight any unexpected boundaries between scripts and let the user determine the

legitimacy of such a string explicitly.

For further discussion of security issues, see Unicode Technical Report #36, “Unicode

Security Considerations,” and Unicode Technical Standard #39, “Unicode Security

Mechanisms.”

Implementation Guidelines 304 5.20 Unicode Security

The majority of encoded characters in the Unicode Standard are ordinary graphic

characters. However, the standard also includes a significant number of special-use

characters. For example, format characters (General_Category = Cf) are often

defined to have very particular effects in text processing. These effects may impact

one kind of text process, but be completely irrelevant for other text processes. Format

characters also typically have no visible display of their own, but may impact the

display of neighboring graphic characters. Technically, variation selectors are not

format characters, but combining marks. However, variation selectors and other

“invisible” combining marks also have special behavior in text processing.

Other sections of the Unicode Standard specify the intended effects of such charac‐

ters in detail. See, for example, Section 23.2, Layout Controls and Section 23.4, Varia‐

tion Selectors. This section, on the other hand, approaches the issue by discussing

which kinds of format characters (and other characters) are ignored for different

kinds of text processes, and providing pointers to related implementation guidelines.

How these kinds of special-use characters are displayed or not displayed in various

contexts is of particular importance. Many have no inherent display of their own, so

pose questions both for normal rendering for display and for fallback rendering.

Because of this, a particularly detailed discussion of ignoring characters for display

can be found toward the end of this section.

Processing for text segmentation boundaries generally ignores certain characters

which are irrelevant to the determination of those boundaries. The exact classes of

characters depend on which type of text segmentation is involved.

When parsing grapheme cluster boundaries, characters used to extend grapheme

clusters are ignored for boundary determination. These include nonspacing

combining marks and enclosing marks, as well as U+200C ZERO WIDTH NON-

JOINER. The exact list of characters involved is specified by the property value:

Grapheme_Cluster_Break = Extend. U+200D ZERO WIDTH JOINER requires special

handling, particularly for emoji sequences.

When parsing word or sentence boundaries, the set of characters which are ignored

for boundary determination is enlarged somewhat, to include spacing combining

marks and most format characters. For word breaking, the exact list of characters is

specified by two property values: Word_Break = Extend or Word_Break = Format.

For sentence breaking, the corresponding property values are: Sentence_Break =

Extend or Sentence_Break = Format.

5.21 Ignoring Characters in Processing

5.21.1 Characters Ignored in Text Segmentation

Implementation Guidelines 305 5.21 Ignoring Characters in Processing

For a detailed discussion of text segmentation, see Unicode Standard Annex #29,

“Unicode Text Segmentation.” In particular, see Section 6.2, Replacing Ignore Rules, in

that annex, for implementation notes about the rules which ignore classes of charac‐

ters for segmentation.

Most control characters and format characters are ignored for line break determina‐

tion, and do not contribute to line width. The Unicode Line Breaking Algorithm

handles this class of characters by giving them the same Line_Break property value

as combining marks: Line_Break = CM. For a detailed discussion, see Unicode Stan‐

dard Annex #14, “Unicode Line Breaking Algorithm.”

When expanding or compressing intercharacter space, as part of text justification and

determination of line breaks, the presence of U+200B ZERO WIDTH SPACE or

U+2060 WORD JOINER is generally ignored. There are, however, occasional excep‐

tions. See, for example, the discussion of “Thai-style” letter spacing in Section 23.2,

Layout Controls.

U+200C ZERO WIDTH NON-JOINER and U+200D ZERO WIDTH JOINER are format

controls specifically intended to influence cursive joining. However, there are other

format controls which are explicitly ignored when processing text for cursive joining.

In particular, U+2060 WORD JOINER, U+FEFF ZERO WIDTH NO-BREAK SPACE, and

U+200B ZERO WIDTH SPACE influence text segmentation and line breaking, but

should be ignored for cursive joining. U+034F COMBINING GRAPHEME JOINER is

also ignored for cursive joining.

More generally, there is a broad class of characters whose occurrence in a string

should be ignored when calculating cursive connections between adjacent letters

subject to cursive joining. This class is defined by the property value, Joining_Type =

Transparent, and includes all nonspacing marks and most format characters other

than ZWNJ and ZWJ. See the detailed discussion of cursive joining in Section 23.2,

Layout Controls.

Characters with the property Default_Ignorable_Code_Point (DI) are generally not

recommended for inclusion in identifiers. Such characters include many (but not all)

format characters, as well as variation selectors. Exceptions are the cursive joining

format characters, U+200C ZERO WIDTH NON-JOINER and U+200D ZERO WIDTH

JOINER, which in limited circumstances may be used to make visual distinctions

deemed necessary for identifiers.

5.21.2 Characters Ignored in Line Breaking

5.21.3 Characters Ignored in Cursive Joining

5.21.4 Characters Ignored in Identifiers

Implementation Guidelines 306 5.21 Ignoring Characters in Processing

There are several possible approaches for ensuring that characters with DI = True are

not significant for comparison of identifiers. A strict formal syntax definition may

simply prohibit their inclusion in identifier strings altogether. However, comparison

of identifiers often involves a folding operation, such as case folding. In applications

which implement identifier folding based on the toNFKC_CaseFold transformation,

DI = True characters are removed from a string by that transformation. With such an

approach, DI= True characters can be said to be “ignored” in identifier comparison,

and their presence or absence in a given identifier string is irrelevant to the compar‐

ison. See Unicode Standard Annex #31, “Unicode Identifier and Pattern Syntax,” for a

detailed discussion of normalization and case folding of identifiers and of the

handling of format characters in identifiers.

Searching and string matching is another context in which particular characters may

be ignored. Typically, users expect that certain characters, such as punctuation, will

be ignored when looking for string matches against a target string, or they expect that

certain character distinctions, such as case differences, will be ignored. Exact binary

string comparisons in such circumstances produce the wrong results.

At its core, sorting string data involves using a string matching algorithm to deter‐

mine which strings count as equal. In any comparison of strings which do not count

as equal, sorting additionally requires the ability to determine which string comes

before and which after in the collation order. It is important to have a well-defined

concept of which characters “do not make a difference,” and are thus ignored for the

results of the sorting.

Some Unicode characters almost never make a significant difference for searching,

string matching, and sorting. For example, U+200C ZERO WIDTH NON-JOINER and

U+200D ZERO WIDTH JOINER may impact cursive joining or ligature formation, but

are not intended to represent semantic differences between strings. At a first level of

approximation, most Unicode format controls should be ignored for searching and

sorting. However, there is no unique way to use Unicode character properties to

devise an exact list of which characters should always be ignored for searching and

sorting, in part because the criteria for any particular search or sort can vary so

widely.

The Unicode algorithm which addresses this issue generically is defined in Unicode

Technical Standard #10, “Unicode Collation Algorithm.” The Default Unicode Colla‐

tion Element Table (DUCET), documented in that standard, provides collation

weights for all Unicode characters; many of those weights are set up so that the char‐

acters will be ignored by default for sorting. A string matching algorithm can also be

based on the weights in that table. Additionally, the UCA provides options for

ignoring distinctions between related characters, such as uppercase versus lowercase

letters, or letters with or without accents. The UCA provides a mechanism to tailor

5.21.5 Characters Ignored in Searching and Sorting

Implementation Guidelines 307 5.21 Ignoring Characters in Processing

the DUCET. This mechanism not only enables the general algorithm to support

different tailored tables which allow for language-specific orderings of characters, it

also makes it possible to specify very precisely which characters should or should not

be ignored for any particular search or sort.

There are two distinct cases to consider when determining whether a particular char‐

acter should be “ignored” for display. The first case involves normal rendering, when

a process supports the character in question. The second case involves fallback

rendering, when the character in question is outside the repertoire which can be

supported for normal rendering, so that a fallback to exceptional rendering for

unknown characters is required.

In this discussion, “display” is used as shorthand for the entire text rendering

process, which typically involves a combination of rendering software and font defi‐

nition. Having a display glyph for a character defined in a font is not sufficient to

render it for screen display or for printing; rendering software is involved as well. On

the other hand, fonts may contain complex rendering logic which contributes to the

text rendering process. This discussion is not meant to preclude any particular

approach to the design of a full text rendering process. A phrase such as, “a font

displays a glyph for the character,” or “a font displays no glyph for the character,” is

simply a general way of describing the intended display outcome for rendering that

character.

 Many characters, including format characters and variation

selectors, have no visible glyph or advance width directly associated with them. Such

characters without glyphs are typically shown in the code charts with special display

glyphs using a dotted box and a mnemonic label. (See Section 24.1, Character Names

List, for code chart display conventions.) Outside of the particular context of code

chart display, a font will typically display no glyph for such characters. However, it is

not unusual for format characters and variation selectors to have a visible effect on

other characters in their vicinity. For example, ZWJ and ZWNJ may affect cursive

joining or the appearance of ligatures. A variation selector may change the choice of

glyph for display of the base character it follows. In such cases, even though the

format character or variation selector has no visible glyph of its own, it would be

inappropriate to say that it is ignored for display, because the intent of its use is to

change the display in some visible way. Additional cases where a format character

has no glyph, but may otherwise affect display include:

Bidirectional format characters do not affect the glyph forms of displayed

characters, but may cause significant rearrangements of spans of text in a line.

U+00AD SOFT HYPHEN has a null default appearance in the middle of a line:

the appearance of “ther apist” is simply “therapist”—no visible glyph. In line

5.21.6 Characters Ignored for Display

Normal Rendering.

•

•

Implementation Guidelines 308 5.21 Ignoring Characters in Processing

break processing, it indicates a possible intraword break. At any intraword break

that is used for a line break—whether resulting from this character or by some

automatic process—a hyphen glyph (perhaps with spelling changes) or some

other indication can be shown, depending on language and context.

In other contexts, a format character may have no visible effect on display at all. For

example, a ZWJ might occur in text between two characters which are not subject to

cursive joining and for which no ligature is available or appropriate: <x, ZWJ, x>. In

such a case, the ZWJ simply has no visible effect, and one can meaningfully say that

it is ignored for display. Another example is a variation selector following a base char‐

acter for which no standardized or registered variation sequence exists. In that case,

the variation selector has no effect on the display of the text.

Finally, there are some format characters whose function is not intended to affect

display. U+200B ZERO WIDTH SPACE affects word segmentation, but has no visible

display. U+034F COMBINING GRAPHEME JOINER is likewise always ignored for

display. Additional examples include:

U+2060 WORD JOINER does not produce a visible change in the appearance

of surrounding characters; instead, its only effect is to indicate that there should

be no line break at that point.

U+2061 FUNCTION APPLICATION has no effect on the text display and is used

only in internal mathematical expression processing.

 In some instances, the mere presence of

an otherwise invisible character may affect the display of tightly defined sequences.

A fairly obvious example would be the insertion of a U+200B ZERO WIDTH SPACE or

a U+2060 WORD JOINER into the middle of a combining character sequence. Such an

insertion formally breaks the combining character sequence, which has a tightly

defined normative syntax. (See D56 in Section 3.6, Combination.) The insertion may

then result in unexpected display results, including the appearance of dotted circles

or other visual disruption.

The correct use of U+2044 FRACTION SLASH or various prepended concatenation

marks (see Figure 9-7) also depends on a tightly constrained syntax for neighboring

characters. For example, an implementation that supports the fraction slash char‐

acter can take a preceding string of digits and a succeeding string of digits, and

reformat them as the numerator and denominator of a vulgar fraction for display.

However, the insertion of any invisible format character into those strings of digits

would break the sequences of the digits and thus result in an unexpected display. A

similar outcome can be anticipated for the insertion of invisible format characters

into any sequence of digits following a prepended concatenation mark.

The principle is that while many format characters have no visible glyphs and are

usually ignored for display, that does not obligate implementations to accommodate

•

•

Disruption of Tightly Defined Sequences.

Implementation Guidelines 309 5.21 Ignoring Characters in Processing

their occurrence in any position in text without disruption of display, particularly

when they interrupt the syntax of otherwise tightly defined sequences with specific

interpretations in the standard.

 The fact that variation selectors and most format characters

have no visible glyphs does not mean that such characters must always be invisible.

An implementation can, for example, show a visible glyph on request, such as in a

“Show Hidden” mode. A particular use of a “Show Hidden” mode is to display a

visible indication of misplaced or ineffectual format characters. For example, a

sequence of two adjacent joiners, <…, ZWJ, ZWJ, …>, is a case where the extra ZWJ

should have no effect.

 Format characters with no visible glyphs are different from

space characters. Space characters, such as U+0020 SPACE, are classified as graphic

characters. Although they do not have visible glyphs for display, they have advance

widths. Technically, that counts as a “glyph” in a font—it is simply a blank glyph

“with no pixels turned on.” Like other graphic characters, a space character can be

visibly selected in text. Line separation characters, such as the carriage return, do not

clearly exhibit their advance width, because they always occur at the end of a line,

but most implementations give them a visible advance width when they are selected.

Hence, they are classed together with space characters; both are given the

White_Space property. Whitespace characters are not considered to be ignored for

display.

 Fallback rendering occurs when a text process needs to display

a character or sequence of characters, but lacks the rendering resources to display

that character correctly. The typical situation results from having text to display

without an appropriate font covering the repertoire of characters used in that text.

The recommended behavior for display in such cases is to fall back to some visible,

but generic, glyph display for graphic characters, so that at least it is clear that there

are characters present—and usually, how many are present. (See Section 5.3,

Unknown and Missing Characters.) However, variation selectors and some format

characters are special—it is not appropriate for fallback rendering to display them

with visible glyphs. This is illustrated by the following examples.

First consider an ordinary graphic character. For example, if an implementation does

not support U+0915 DEVANAGARI LETTER KA, it should not ignore that character

for display. Displaying nothing would give the user the impression that the character

does not occur in the text at all. The recommendation in that case is to display a “last-

resort” glyph or a visible “missing glyph” box, instead.

Contrast that with the typical situation for a format character, such as ZWJ. If an

implementation does not support that character at all, the best practice is to ignore it

completely for display, without showing a last-resort glyph or a visible box in its

place. This is because even for normal rendering a ZWJ is invisible—its visible effects

Show Hidden Mode.

Whitespace Characters.

Fallback Rendering.

Implementation Guidelines 310 5.21 Ignoring Characters in Processing

are on other characters. When an implementation does not support the behavior of a

ZWJ, it has no way of showing the effects on neighboring characters.

 The list of characters which should be ignored for

display in fallback rendering is given by a character property:

Default_Ignorable_Code_Point (DI). Those characters include almost all format char‐

acters, all variation selectors, and a few other exceptional characters, such as Hangul

fillers. The exact list is defined in DerivedCoreProperties.txt in the Unicode Character

Database.

The Default_Ignorable_Code_Point property is also given to certain ranges of code

points: U+2060..U+206F, U+FFF0..U+FFF8, and U+E0000..U+E0FFF, including

any unassigned code points in those ranges. These ranges are designed and reserved

for future encoding of format characters and similar special-use characters, to allow a

certain degree of forward compatibility. Implementations which encounter unas‐

signed code points in these ranges should ignore them for display in fallback

rendering.

Surrogate code points, private-use characters, and control characters are not given

the Default_Ignorable_Code_Point property. To avoid security problems, such char‐

acters or code points, when not interpreted and not displayable by normal rendering,

should be displayed in fallback rendering with a fallback glyph, so that there is a

visible indication of their presence in the text. For more information, see Unicode

Technical Report #36, “Unicode Security Considerations.”

A small number of format characters (General_Category = Cf) are also not given the

Default_Ignorable_Code_Point property. This may surprise implementers, who often

assume that all format characters are generally ignored in fallback display. The exact

list of these exceptional format characters can be found in the Unicode Character

Database. There are, however, three important sets of such format characters to note:

prepended concatenation marks

interlinear annotation characters

Egyptian hieroglyph format controls

The prepended concatenation marks always have a visible display. See “Prepended

Concatenation Marks” in Section 23.2, Layout Controls for more discussion of the use

and display of these signs.

The other two notable sets of format characters that exceptionally are not ignored in

fallback display consist of the interlinear annotation characters, U+FFF9 INTER‐

LINEAR ANNOTATION ANCHOR through U+FFFB INTERLINEAR ANNOTATION

TERMINATOR, and the Egyptian hieroglyph format controls, U+13430 EGYPTIAN

HIEROGLYPH VERTICAL JOINER through U+1343F EGYPTIAN HIEROGLYPH END

WALLED ENCLOSURE. These characters should have a visible glyph display for fall‐

Default Ignorable Code Point.

•

•

•

Implementation Guidelines 311 5.21 Ignoring Characters in Processing

back rendering, because if they are not displayed, it is too easy to misread the

resulting displayed text. See “Annotation Characters” in Section 23.8, Specials, as well

as Section 11.4, Egyptian Hieroglyphs for more discussion of the use and display of

these characters.

Implementation Guidelines 312 5.21 Ignoring Characters in Processing

When converting text from one character encoding to another, a conversion algo‐

rithm may encounter unconvertible code units. This is most commonly caused by

some sort of corruption of the source data, so that it does not correctly follow the

specification for that character encoding. Examples include dropping a byte in a

multibyte encoding such as Shift-JIS, improper concatenation of strings, a mismatch

between an encoding declaration and actual encoding of text, use of non-shortest

form for UTF-8, and so on.

When a conversion algorithm encounters such unconvertible data, the usual practice

is either to throw an exception or to use a defined substitution character to represent

the unconvertible data. In the case of conversion to one of the encoding forms of the

Unicode Standard, the substitution character is defined as U+FFFD REPLACEMENT

CHARACTER.

For conversion between different encoding forms of the Unicode Standard, “U+FFFD

Substitution of Maximal Subparts” in Section 3.9, Unicode Encoding Forms defines a

practice for the use of U+FFFD which is consistent with the W3C standard for

encoding. It is useful to apply the same practice to the conversion from non-Unicode

encodings to an encoding form of the Unicode Standard.

This practice is more secure because it does not result in the conversion consuming

parts of valid sequences as though they were invalid. It also guarantees at least one

replacement character will occur for each instance of an invalid sequence in the orig‐

inal text. Furthermore, this practice can be defined consistently for better interoper‐

ability between different implementations of conversion.

For full consistency, it is important for conversion implementations to agree on 1) the

exact set of well-formed sequences for the source encoding, 2) all of the mappings for

valid sequences, and 3) the details of the practice for handling ill-formed sequences.

5.22 U+FFFD Substitution in Conversion

Implementation Guidelines 313
5.22 U+FFFD Substitution in

Conversion

Chapter 6

Writing Systems and

Punctuation

This chapter begins the portion of the Unicode Standard devoted to the detailed

description of each script or other related group of Unicode characters. Each of the

subsequent chapters presents a historically or geographically related group of scripts.

This chapter presents a general introduction to writing systems, explains how they

can be used to classify scripts, and then presents a detailed discussion of punctuation

characters that are shared across scripts.

 The codespace of the Unicode Standard is divided into subparts

called blocks (see D10b in Section 3.4, Characters and Encoding). Character blocks

generally contain characters from a single script, and in many cases, a script is fully

represented in its block; however, some scripts are encoded using several blocks,

which are not always adjacent. Discussion of scripts and other groups of characters

are structured by blocks. Corresponding subsection headers identify each block and

its associated range of Unicode code points. The Unicode code charts are also orga‐

nized by blocks.

 There are many different kinds of writing systems in

the world. Their variety poses some significant issues for character encoding in the

Unicode Standard as well as for implementers of the standard. Those who first

approach the Unicode Standard without a background in writing systems may find

the huge list of scripts bewilderingly complex. Therefore, before considering the

script descriptions in detail, this chapter first presents a brief introduction to the

types of writing systems. That introduction explains basic terminology about scripts

and character types that will be used again and again when discussing particular

scripts.

 The rest of this chapter deals with a special case: punctuation marks,

which tend to be scattered about in different blocks and which may be used in

common by many scripts. Punctuation characters occur in several widely separated

places in the blocks, including Basic Latin, Latin-1 Supplement, General Punctuation,

Supplemental Punctuation, and CJK Symbols and Punctuation. There are also occa‐

sional punctuation characters in blocks for specific scripts.

Scripts and Blocks.

Scripts and Writing Systems.

Punctuation.

314

Most punctuation characters are intended for common usage with any script,

although some of them are script-specific. Some scripts use both common and script-

specific punctuation characters, usually as the result of recent adoption of standard

Western punctuation marks. While punctuation characters vary in details of appear‐

ance and function between different languages and scripts, their overall purpose is

shared: they serve to separate or otherwise organize units of text, such as sentences

and phrases, thereby helping to clarify the meaning of the text. Certain punctuation

characters also occur in mathematical and scientific formulae.

Writing Systems and Punctuation 315

This section presents a brief introduction to writing systems. It describes the different

kinds of writing systems and relates them to the encoded scripts found in the

Unicode Standard. This framework may help to make the variety of scripts, modern

and historic, a little less daunting. The terminology used here follows that developed

by Peter T. Daniels, a leading expert on writing systems of the world.

The term writing system has two mutually exclusive meanings in this standard. As

used in this section, “writing system” refers to a way that families of scripts may be

classified by how they represent the sounds or words of human language. For

example, the writing system of the Latin script is alphabetic. In other places in the

standard, “writing system” refers to the way a particular language is written. For

example, the modern Japanese writing system uses four scripts: Han ideographs,

Hiragana, Katakana and Latin (Romaji).

 A writing system that consists of letters for the writing of both conso‐

nants and vowels is called an alphabet. The term “alphabet” is derived from the first

two letters of the Greek script: alpha, beta. Consonants and vowels have equal status

as letters in such a system. The Latin alphabet is the most widespread and well-

known example of an alphabet, having been adapted for use in writing thousands of

languages.

The correspondence between letters and sounds may be either more or less exact.

Many alphabets do not exhibit a one-to-one correspondence between distinct sounds

and letters or groups of letters used to represent them; often this is an indication of

original spellings that were not changed as the language changed. Not only are many

sounds represented by letter combinations, such as “th” in English, but the language

may have evolved since the writing conventions were settled. Examples range from

cases such as Italian or Finnish, where the match between letter and sound is rather

close, to English, which has notoriously complex and arbitrary spelling.

Phonetic alphabets, in contrast, are used specifically for the precise transcription of

the sounds of languages. The best known of these alphabets is the International

Phonetic Alphabet, an adaptation and extension of the Latin alphabet by the addition

of new letters and marks for specific sounds and modifications of sounds. Unlike

normal alphabets, the intent of phonetic alphabets is that their letters exactly repre‐

sent sounds. Phonetic alphabets are not used as general-purpose writing systems per

se, but it is not uncommon for a formerly unwritten language to have an alphabet

developed for it based on a phonetic alphabet.

 A writing system in which only consonants are indicated is an abjad. The

main letters are all consonants (or long vowels), with other vowels either left out

entirely or optionally indicated with the use of secondary marks on the consonants.

6.1 Writing Systems

Alphabets.

Abjads.

Writing Systems and Punctuation 316 6.1 Writing Systems

The Phoenician script is a prototypical abjad; a better-known example is the Arabic

writing system. The term “abjad” is derived from the first four letters of the tradi‐

tional order of the Arabic script: alef, beh, jeem, dal. Abjads are often, although not

exclusively, associated with Semitic languages, which have word structures particu‐

larly well suited to the use of consonantal writing. Some abjads allow consonant

letters to mark long vowels, as the use of waw and yeh in Arabic for /u:/ or /i:/.

Hebrew and Arabic are typically written without any vowel marking at all. The

vowels, when they do occur in writing, are referred to as points or harakat, and are

indicated by the use of diacritic dots and other marks placed above and below the

consonantal letters.

 In a syllabary, each symbol of the system typically represents both a

consonant and a vowel, or in some instances more than one consonant and a vowel.

One of the best-known examples of a syllabary is Hiragana, used for Japanese, in

which the units of the system represent the syllables ka, ki, ku, ke, ko, sa, si, su, se, so,

and so on. In general parlance, the elements of a syllabary are not called letters, but

rather syllables.This can lead to some confusion, however, because letters of alpha‐

bets and units of other writing systems are also used, singly or in combinations, to

write syllables of languages. So in a broad sense, the term “letter” can be used to refer

to the syllables of a syllabary.

In syllabaries such as Cherokee, Hiragana, Katakana, and Yi, each symbol has a

unique shape, with no particular shape relation to any of the consonant(s) or vowels

of the syllables. In other cases, however, the syllabic symbols of a syllabary are not

atomic; they can be built up out of parts that have a consistent relationship to the

phonological parts of the syllable. The best example of this is the Hangul writing

system for Korean. Each Hangul syllable is made up of a part for the initial conso‐

nant (or consonant cluster), a part for the vowel (or diphthong), and an optional part

for the final consonant (or consonant cluster). The relationship between the sounds

and the graphic parts to represent them is systematic enough for Korean that the

graphic parts collectively are known as jamos and constitute a kind of alphabet on

their own.

The jamos of the Hangul writing system have another characteristic: their shapes are

not completely arbitrary, but were devised with intentionally iconic shapes relating

them to articulatory features of the sounds they represent in Korean. The Hangul

writing system has thus also been classified as a featural syllabary.

Abugidas represent a kind of blend of syllabic and alphabetic characteris‐

tics in a writing system. The Ethiopic script is an abugida. The term “abugida” is

derived from the first four letters of the Ethiopic script in the Semitic order: alf, bet,

gaml, dant. The order of vowels (-ä -u -i -a) is that of the traditional vowel order in

the first four columns of the Ethiopic syllable chart. Historically, abugidas spread

Syllabaries.

Abugidas.

Writing Systems and Punctuation 317 6.1 Writing Systems

across South Asia and were adapted by many languages, often of phonologically very

different types.

This process has also resulted in many extensions, innovations, and/or simplifica‐

tions of the original patterns. The best-known example of an abugida is the Devana‐

gari script, used in modern times to write Hindi and many other Indian languages,

and used classically to write Sanskrit. See Section 12.1, Devanagari, for a detailed

description of how Devanagari works and is rendered.

In an abugida, each consonant letter carries an inherent vowel, usually /a/. There are

also vowel letters, often distinguished between a set of independent vowel letters,

which occur on their own, and dependent vowel letters, or matras, which are subor‐

dinate to consonant letters. When a dependent vowel letter follows a consonant

letter, the vowel overrides the inherent vowel of the consonant. This is shown

schematically in Figure 6-1.

ka + i → ki ka + u → ku

ka + e → ke ka + o → ko

Abugidas also typically contain a special element usually referred to as a halant,

virama, or killer, which, when applied to a consonant letter with its inherent vowel,

has the effect of removing the inherent vowel, resulting in a bare consonant sound.

In Brahmi-derived scripts, text often needs to be interpreted as a sequence of ortho‐

graphic syllables, each of which is a two-dimensional visual arrangement of compo‐

nents that form a unit. At the core of an orthographic syllable is a base character,

which can be a consonant, an independent vowel, a numeric character, or a ligature

formed from base characters and other characters. Attached to this core may be

dependent forms (such as half-forms, subjoined forms, repha forms, medial forms) of

consonants or independent vowels, as well as nukta marks, virama marks, dependent

vowel marks, register shifter marks, tone marks, final consonant marks, and other

marks. It is common for different components of orthographic syllables to form liga‐

tures. Orthographic syllables often do not correspond to phonological syllables; it is

common for the final consonants of phonological syllables to become the base char‐

acters, or sometimes dependent forms, of subsequent orthographic syllables.

Because of legacy practice, three distinct approaches have been taken in the Unicode

Standard for the encoding of abugidas: the Devanagari model, the Tibetan model,

and the Thai model. The Devanagari model, used for most abugidas, represents text

in primarily phonetic order and encodes a virama character that can combine with

adjacent consonants to create conjunct forms. The Tibetan model also uses the

primarily phonetic order, but its subjoined consonants are encoded directly rather

than as virama-consonant sequences. The Thai model represents text in primarily

Figure 6-1. Overriding Inherent Vowels

Writing Systems and Punctuation 318 6.1 Writing Systems

visual display order, based on the typewriter legacy; neither Thai nor the other scripts

using this model have conjunct forms.

The Ethiopic script is traditionally analyzed as an abugida, because the base char‐

acter for each consonantal series is understood as having an inherent vowel.

However, Ethiopic lacks some of the typical features of Brahmi-derived scripts, such

as halants and matras. Historically, it was derived from early Semitic scripts and in its

earliest form was an abjad. In its traditional presentation and its encoding in the

Unicode Standard, it is now treated more like a syllabary.

 The final major category of writing system is known as the logosyl‐

labary. In a logosyllabary, the units of the writing system are used primarily to write

words and/or morphemes of words, with some subsidiary usage to represent syllabic

sounds per se.

The best example of a logosyllabary is the Han script, used for writing Chinese and

borrowed by a number of other East Asian languages for use as part of their writing

systems. The term for a unit of the Han script is hànzì 漢字 in Chinese, kanji 漢字 in

Japanese, and hanja 漢字 in Korean. In many instances this unit also constitutes a

word, but more typically, two or more units together are used to write a word.

The basic unit of a logosyllabary has variously been referred to as an ideograph (also

ideogram), a logograph (also logogram), or a sinogram. Other terms exist as well, and

especially for poorly understood or undeciphered writing systems, the units of

writing may simply be called signs. Notionally, a logograph (or logogram) is a unit of

writing which represents a word or morpheme, whereas an ideograph (or ideogram)

is a unit of writing which represents an idea or concept. However, the lines between

these terms are often unclear, and usage varies widely. The Unicode Standard makes

no principled distinction between these terms, but rather follows the customary

usage associated with a given script or writing system. For the Han script, the term

CJK ideograph (or Han ideograph) is used.

There are a number of other historical examples of logosyllabaries, such as Tangut.

They vary in the degree to which they combine logographic writing principles, where

the symbols stand for morphemes or entire words, and syllabic writing principles,

where the symbols come to represent syllables per se, divorced from their meaning as

morphemes or words. In some notable instances, as for Sumero-Akkadian cunei‐

form, a logosyllabary may evolve through time into a syllabary or alphabet by shed‐

ding its use of logographs. In other instances, as for the Han script, the use of logo‐

graphic characters is very well entrenched and persistent. However, even for the Han

script a small number of characters are used purely to represent syllabic sounds, so as

to be able to represent such things as foreign personal names and place names.

Egyptian hieroglyphs constitute another mixed example. The majority of the hiero‐

glyphs are logographs, but Egyptian hieroglyphs also contain a well-defined subset

Logosyllabaries.

Writing Systems and Punctuation 319 6.1 Writing Systems

that functions as an alphabet, in addition to other signs that represent sequences of

consonants. And some hieroglyphs serve as semantic determinatives, rather than

logographs in their own right—a function which bears some comparison to the way

radicals work in CJK ideographs. To simplify the overall typology of Unicode scripts,

Egyptian hieroglyphs and other hieroglyphic systems are lumped together with true

logosyllabaries such as Han, but there are many differences in detail. For more about

Egyptian hieroglyphs, in particular, see Section 11.4, Egyptian Hieroglyphs.

The classification of a writing system is often rendered somewhat ambiguous by

complications in the exact ways in which it matches up written elements to the

phonemes or syllables of a language. For example, although Hiragana is classified as

a syllabary, it does not always have an exact match between syllables and written

elements. Syllables with long vowels are not written with a single element, but rather

with a sequence of elements. Thus the syllable with a long vowel k is written with

two separate Hiragana symbols, {ku}+{u}.

There may also be complications when a writing system deviates from the historical

model from which it derives. For example, Mahajani and Multani are both based on

the Brahmi model, but are structurally simpler than an abugida. These writing

systems do not contain a virama. They also do not have matras and consonant

conjunct formation characteristic to abugidas. Instead, Mahajani and Multani behave

respectively as an alphabet and an abjad, and are encoded and classified accordingly

in the Unicode Standard.

Because of these kinds of complications, one must always be careful not to assume

too much about the structure of a writing system from its nominal classification.

Table 6-1 lists all of the scripts

currently encoded in the Unicode Standard, showing the writing system type for

each. The list is an approximate guide, rather than a definitive classification, because

of the mix of features seen in many scripts. The writing systems for some languages

may be quite complex, mixing more than one type of script together in a composite

system. Japanese is the best example; it mixes a logosyllabary (Han), two syllabaries

(Hiragana and Katakana), and one alphabet (Latin, for romaji). In some instances,

there is not a one-to-one correspondence between a script and its type, because the

type may depend on how the script is used. For example, the Sunuwar script is used

as an alphabet by the community in Nepal, but is used as an abugida in Sikkim.

Typology of Scripts in the Unicode Standard.

Writing Systems and Punctuation 320 6.1 Writing Systems

Alphabets

Adlam, Armenian, Avestan, Bassa Vah, Carian, Caucasian Albanian,
Coptic, Cyrillic, Deseret, Elbasan, Garay, Georgian, Glagolitic, Gothic,
Greek, Hanifi Rohingya, Kayah Li, Latin, Lisu, Lycian, Lydian, Mahajani,
Mandaic, Medefaidrin, Meroitic Cursive, Meroitic Hieroglyphs,
Mongolian, Mro, Nag Mundari, N’Ko, Nyiakeng Puachue Hmong, Ogham,
Ol Chiki, Ol Onal, Old Hungarian, Old Italic, Old Permic, Old Persian, Old
Turkic, Osage, Osmanya, Pahawh Hmong, Pau Cin Hau, Runic, Shavian,
Sunuwar, Tangsa, Thaana, Tifinagh, Todhri, Toto, Ugaritic, Vithkuqi,
Wancho, Warang Citi, Yezidi

Abjads

Arabic, Chorasmian, Elymaic, Hatran, Hebrew, Imperial Aramaic,
Inscriptional Pahlavi, Inscriptional Parthian, Manichaean, Multani,
Nabataean, Old North Arabian, Old Sogdian, Old South Arabian, Old
Uyghur, Palmyrene, Phoenician, Psalter Pahlavi, Samaritan, Sogdian,
Syriac

Abugidas

Ahom, Balinese, Batak, Bengali, Bhaiksuki, Brahmi, Buginese, Buhid,
Chakma, Cham, Devanagari, Dives Akuru, Dogra, Grantha, Gujarati,
Gunjala Gondi, Gurmukhi, Gurung Khema, Hanunóo, Javanese, Kaithi,
Kannada, Kawi, Kharoshthi, Khmer, Khojki, Khudawadi, Kirat Rai, Lao,
Lepcha, Limbu, Makasar, Malayalam, Marchen, Masaram Gondi, Meetei
Mayek, Modi, Myanmar, Nandinagari, New Tai Lue, Newa, Oriya, Phags-
pa, Rejang, Saurashtra, Sharada, Siddham, Sinhala, Sora Sompeng,
Soyombo, Sundanese, Syloti Nagri, Tagalog, Tagbanwa, Tai Le, Tai Tham,
Tai Viet, Takri, Tamil, Telugu, Thai, Tibetan, Tirhuta, Tulu-Tigalari,
Zanabazar Square

Logosyllabaries
Anatolian Hieroglyphs, Egyptian Hieroglyphs, Han, Khitan Small Script,
Linear A, Nüshu, Sumero-Akkadian, Tangut

Simple
Syllabaries

Bamum, Bopomofo, Canadian Aboriginal Syllabics, Cherokee, Cypriot,
Cypro-Minoan, Ethiopic, Hiragana, Katakana, Linear B, Mende Kikakui,
Miao, Vai, Yi

Featural
Syllabaries

Hangul

 In addition to scripts for written natural languages, there are

notational systems for other kinds of information. Some of these more closely

resemble text than others. The Unicode Standard encodes symbols for use with math‐

ematical notation, Western and Byzantine musical notation, Duployan shorthand,

Sutton SignWriting notation for sign languages, and Braille, as well as symbols for

use in divination, such as the Yijing hexagrams. Notational systems can be classified

by how closely they resemble text. Even notational systems that do not fully resemble

text may have symbols used in text. In the case of musical notation, for example,

while the full notation is two-dimensional, many of the encoded symbols are

frequently referenced in texts about music and musical notation.

Table 6-1. Typology of Scripts in the Unicode Standard

Notational Systems.

Writing Systems and Punctuation 321 6.1 Writing Systems

Punctuation characters—for example, U+002C COMMA and U+2022 BULLET—are

encoded only once, rather than being encoded again and again for particular scripts;

such general-purpose punctuation may be used for any script or mixture of scripts. In

contrast, punctuation principally used with a specific script is found in the block

corresponding to that script, such as U+058A ARMENIAN HYPHEN, U+061B “ ”

ARABIC SEMICOLON, or the punctuation used with CJK ideographs in the CJK

Symbols and Punctuation block. Script-specific punctuation characters may be

unique in function, have different directionality, or be distinct in appearance or usage

from their generic counterparts.

Punctuation intended for use with several related scripts is often encoded with the

principal script for the group. For example, U+1735 PHILIPPINE SINGLE PUNCTUA‐

TION is encoded in a single location in the Hanunóo block, but it is intended for use

with all four of the Philippine scripts.

 The use and interpretation of punctuation characters can

be heavily context dependent. For example, U+002E FULL STOP can be used as

sentence-ending punctuation, an abbreviation indicator, a decimal point, and so on.

Many Unicode algorithms, such as the Bidirectional Algorithm and Line Breaking

Algorithm, both of which treat numeric punctuation differently from text punctua‐

tion, resolve the status of any ambiguous punctuation mark depending on whether it

is part of a number context.

Legacy character encoding standards commonly include generic characters for punc‐

tuation instead of the more precisely specified characters used in printing. Examples

include the single and double quotes, period, dash, and space. The Unicode Standard

includes these generic characters, but also encodes the unambiguous characters inde‐

pendently: various forms of quotation marks, em dash, en dash, minus, hyphen, em

space, en space, hair space, zero width space, and so on.

 Punctuation characters vary in appearance with the font style, just like

the surrounding text characters. In some cases, where used in the context of a partic‐

ular script, a specific glyph style is preferred. For example, U+002E FULL STOP

should appear square when used with Armenian, but is typically circular when used

with Latin. For mixed Latin/Armenian text, two fonts (or one font allowing for

context-dependent glyph variation) may need to be used to render the character faith‐

fully.

 Punctuation characters shared across scripts have no inherent

directionality. In a bidirectional context, their display direction is resolved according

to the rules in Unicode Standard Annex #9, “Unicode Bidirectional Algorithm.”

6.2 General Punctuation

Use and Interpretation.

Rendering.

Writing Direction.

Writing Systems and Punctuation 322 6.2 General Punctuation

Certain script-specific punctuation marks have an inherent directionality that

matches the writing direction of the script. For an example, see “Dandas” later in this

section. The image of certain paired punctuation marks, specifically those that are

brackets, is mirrored when the character is part of a right-to-left directional run (see

Section 4.7, Bidi Mirrored). Mirroring ensures that the opening and closing semantics

of the character remains independent of the writing direction. The same is generally

not true for other punctuation marks even when their image is not bilaterally

symmetric, such as slash or the curly quotes. See also “Paired Punctuation” later in

this section.

In vertical writing, many punctuation characters have special vertical glyphs.

Normally, fonts contain both the horizontal and vertical glyphs, and the selection of

the appropriate glyph is based on the text orientation in effect at rendering time.

However, see “CJK Compatibility Forms: Vertical Forms” later in this section.

Figure 6-2 shows a set of three common shapes used for ideographic comma and ideo‐

graphic full stop. The first shape in each row is that used for horizontal text, the last

shape is that for vertical text. The centered form may be used with both horizontal

and vertical text. See also Figure 6-4 for an example of vertical and horizontal forms

for quotation marks.

Horizontal Centered Vertical

 A number of characters in the blocks described in this section are

not graphic punctuation characters, but rather affect the operation of layout algo‐

rithms. For a description of those characters, see Section 23.2, Layout Controls.

 Some of the punctuation

characters in the ASCII graphic character range (U+0020..U+007F) have multiple

uses, either through ambiguity in the original standards or through accumulated

reinterpretations of a limited code set. For example, 27
16

 is defined in ANSI X3.4 as

apostrophe (closing single quotation mark; acute accent), and 2D
16

 is defined as

hyphen-minus. In general, the Unicode Standard provides the same interpretation for

the equivalent code points, without adding to or subtracting from their semantics.

The Unicode Standard supplies unambiguous codes elsewhere for the most useful

particular interpretations of these ASCII values; the corresponding unambiguous

characters are cross-referenced in the character names list for this block. For more

information, see “Apostrophes,” “Space Characters,” and “Dashes and Hyphens” later

in this section.

Figure 6-2. Forms of CJK Punctuation

Layout Controls.

Encoding Characters with Multiple Semantic Values.

Writing Systems and Punctuation 323 6.2 General Punctuation

For compatibility with widely used legacy character sets, the Basic Latin (ASCII)

block (U+0000..U+007F) and the Latin-1 Supplement block (U+0080..U+00FF)

contain several of the most common punctuation signs. They are isolated from the

larger body of Unicode punctuation, signs, and symbols only because their relative

code locations within ASCII and Latin-1 are so widely used in standards and soft‐

ware. The Unicode Standard has a number of blocks devoted specifically to encoding

collections of punctuation characters.

The General Punctuation block (U+2000..U+206F) contains the most common

punctuation characters widely used in Latin typography, as well as a few specialized

punctuation marks and a large number of format control characters. All of these

punctuation characters are intended for generic use, and in principle they could be

used with any script.

The Supplemental Punctuation block (U+2E00..U+2E7F) is devoted to less

commonly encountered punctuation marks, including those used in specialized nota‐

tional systems or occurring primarily in ancient manuscript traditions.

The CJK Symbols and Punctuation block (U+3000..U+303F) has the most

commonly occurring punctuation specific to East Asian typography—that is, typog‐

raphy involving the rendering of text with CJK ideographs.

The Vertical Forms block (U+FE10..U+FE1F), the CJK Compatibility Forms block

(U+FE30..U+FE4F), the Small Form Variants block (U+FE50..U+FE6F), and the

Halfwidth and Fullwidth Forms block (U+FF00..U+FFEF) contain many compati‐

bility characters for punctuation marks, encoded for compatibility with a number of

East Asian character encoding standards. Their primary use is for round-trip

mapping with those legacy standards. For vertical text, the regular punctuation char‐

acters are used instead, with alternate glyphs for vertical layout supplied by the font.

The punctuation characters in these various blocks are discussed below in terms of

their general types.

Format control characters are special characters that have no visible glyph of their

own, but that affect the display of characters to which they are adjacent, or that have

other specialized functions such as serving as invisible anchor points in text. All

format control characters have General_Category = Cf. A significant number of

format control characters are encoded in the General Punctuation block, but their

descriptions are found in other sections.

6.2.1 Blocks Devoted to Punctuation

6.2.2 Format Control Characters

Writing Systems and Punctuation 324 6.2 General Punctuation

Cursive joining controls, as well as U+200B ZERO WIDTH SPACE, U+2028 LINE SEPA‐

RATOR, U+2029 PARAGRAPH SEPARATOR, and U+2060 WORD JOINER, are described

in Section 23.2, Layout Controls. Bidirectional ordering controls are also discussed in

Section 23.2, Layout Controls, but their detailed use is specified in Unicode Standard

Annex #9, “Unicode Bidirectional Algorithm.”

Invisible operators are explained in Section 22.6, Invisible Mathematical Operators.

Deprecated format characters related to obsolete models of Arabic text processing are

described in Section 23.3, Deprecated Format Characters.

The reserved code points U+2065 and U+FFF0..U+FFF8, as well as any reserved

code points in the range U+E0000..U+E0FFF, are reserved for the possible future

encoding of other format control characters. Because of this, they are treated as

default ignorable code points. For more information, see Section 5.21, Ignoring Char‐

acters in Processing.

Space characters are found in several blocks in the Unicode Standard. The list of

space characters appears in Table 6-2.

Code Name

U+0020 SPACE

U+00A0 NO-BREAK SPACE

U+1680 OGHAM SPACE MARK

U+2000 EN QUAD

U+2001 EM QUAD

U+2002 EN SPACE

U+2003 EM SPACE

U+2004 THREE-PER-EM SPACE

U+2005 FOUR-PER-EM SPACE

U+2006 SIX-PER-EM SPACE

U+2007 FIGURE SPACE

U+2008 PUNCTUATION SPACE

U+2009 THIN SPACE

U+200A HAIR SPACE

U+202F NARROW NO-BREAK SPACE

U+205F MEDIUM MATHEMATICAL SPACE

U+3000 IDEOGRAPHIC SPACE

6.2.3 Space Characters

Table 6-2. Unicode Space Characters

Writing Systems and Punctuation 325 6.2 General Punctuation

The space characters in the Unicode Standard can be identified by their General

Category, (gc = Zs), in the Unicode Character Database. One exceptional “space”

character is U+200B ZERO WIDTH SPACE. This character, although called a “space” in

its name, does not actually have any width or visible glyph in display. It functions

primarily to indicate word boundaries in writing systems that do not actually use

orthographic spaces to separate words in text. It is given the General Category (gc =

Cf) and is treated as a format control character, rather than as a space character, in

implementations. Further discussion of U+200B ZERO WIDTH SPACE, as well as

other zero-width characters with special properties, can be found in Section 23.2,

Layout Controls.

The most commonly used space character is U+0020 SPACE. In ideographic text,

U+3000 IDEOGRAPHIC SPACE is commonly used because its width matches that of

the ideographs.

The main difference among other space characters is their width. U+2000..U+2006

are standard quad widths used in typography. U+2007 FIGURE SPACE has a fixed

width, known as tabular width, which is the same width as digits used in tables.

U+2008 PUNCTUATION SPACE is a space defined to be the same width as a period.

U+2009 THIN SPACE and U+200A HAIR SPACE are successively smaller-width spaces

used for narrow word gaps and for justification of type. The fixed-width space charac‐

ters (U+2000..U+200A) are derived from conventional (hot lead) typography. Algo‐

rithmic kerning and justification in computerized typography do not use these char‐

acters. However, where they are used (for example, in typesetting mathematical

formulae), their width is generally font-specified, and they typically do not expand

during justification. The exception is U+2009 THIN SPACE, which sometimes gets

adjusted.

In addition to the various fixed-width space characters, there are a few script-specific

space characters in the Unicode Standard. U+1680 OGHAM SPACE MARK is unusual

in that it is generally rendered with a visible horizontal line, rather than being blank.

U+00A0 NO-BREAK SPACE (NBSP) is the nonbreaking counterpart

of U+0020 SPACE. It has the same width, but behaves differently for line breaking.

For more information, see Unicode Standard Annex #14, “Unicode Line Breaking

Algorithm.”

Unlike U+0020, U+00A0 NO-BREAK SPACE behaves as a numeric separator for the

purposes of bidirectional layout. See Unicode Standard Annex #9, “Unicode Bidirec‐

tional Algorithm,” for a detailed discussion of the Unicode Bidirectional Algorithm.

U+00A0 NO-BREAK SPACE has an additional, important function in the Unicode

Standard. It may serve as the base character for displaying a nonspacing combining

mark in apparent isolation. Versions of the standard prior to Version 4.1 indicated

that U+0020 SPACE could also be used for this function, but SPACE is no longer

No-Break Space.

Writing Systems and Punctuation 326 6.2 General Punctuation

recommended, because of potential interactions with the handling of SPACE in XML

and other markup languages. See Section 2.11, Combining Characters, for further

discussion.

U+202F NARROW NO-BREAK SPACE (NNBSP) is a narrow

version of U+00A0 NO-BREAK SPACE. The NNBSP can be used to represent the

narrow space occurring around punctuation characters in French typography, which

is called an “espace fine insécable.”

Prior to Unicode Version 16.0, NNBSP was recommended as a special format char‐

acter in Mongolian text. That role has been taken over by U+180E MONGOLIAN

VOWEL SEPARATOR. See Section 13.5, Mongolian, for more information.

Because of its prevalence in legacy encodings, U+002D HYPHEN-MINUS is the most

common of the dash characters used to represent a hyphen. It has ambiguous

semantic value and is rendered with an average width. U+2010 HYPHEN represents

the hyphen as found in words such as “left-to-right.” It is rendered with a narrow

width. When typesetting text, U+2010 HYPHEN is preferred over U+002D HYPHEN-

MINUS. U+2011 NON-BREAKING HYPHEN has the same semantic value as U+2010

HYPHEN, but should not be broken across lines.

U+2012 FIGURE DASH has the same (ambiguous) semantic as the U+002D HYPHEN-

MINUS, but has the same width as digits (if they are monospaced). U+2013 EN DASH

is used to indicate a range of values, such as 1973–1984, although in some languages

hyphen is used for that purpose. The en dash should be distinguished from the

U+2212 MINUS SIGN, which is an arithmetic operator. Although it is not preferred in

mathematical typesetting, typographers sometimes use U+2013 EN DASH to represent

the minus sign, particularly a unary minus. When interpreting formulas, U+002D

HYPHEN-MINUS, U+2012 FIGURE DASH, and U+2212 MINUS SIGN should each be

taken as indicating a minus sign, as in “x = a - b”, unless a higher-level protocol

precisely defines which of these characters serves that function.

U+2014 EM DASH is used to make a break—like this—in the flow of a sentence.

(Some typographers prefer to use U+2013 EN DASH set off with spaces – like this – to

make the same kind of break.) Like many other conventions for punctuation charac‐

ters, such usage may depend on language. This kind of dash is commonly repre‐

sented with a typewriter as a double hyphen. In older mathematical typography,

U+2014 EM DASH may also used to indicate a binary minus sign. U+2015 HORI‐

ZONTAL BAR is used to introduce quoted text in some typographic styles.

U+2E3A TWO-EM DASH and U+2E3B THREE-EM DASH can be used to represent

dashes even wider than an em dash. An extra-wide dash in contemporary Chinese

typography, referred to as 破折號 (pòzhéhào), is used to indicate an abrupt change of

Narrow No-Break Space.

6.2.4 Dashes and Hyphens

Writing Systems and Punctuation 327 6.2 General Punctuation

thought, the insertion of new content, or the continuation of tone or sound. That

wide dash is often represented with a sequence of two U+2014 EM DASH characters,

but modern practice is transitioning to the use of U+2E3A TWO-EM DASH, instead,

which behaves better typographically than the sequence of em dashes. Because

U+2E3A and U+2E3B are so wide, the code charts use the dashed box convention for

their representative glyphs; these are, however, just ordinary punctuation characters,

and not format control characters.

Dashes and hyphen characters may also be found in other blocks in the Unicode

Standard. The full list is provided in Table 6-3. That list is correlated with the Dash

property in the Unicode Character Database. Characters with the Dash property

consist of all characters with General_Category=Pd plus U+2053 SWUNG DASH,

U+2212 MINUS SIGN, and characters with compatibility decompositions to U+2212

MINUS SIGN.

Code Name

U+002D HYPHEN-MINUS

U+058A ARMENIAN HYPHEN

U+05BE HEBREW PUNCTUATION MAQAF

U+1400 CANADIAN SYLLABICS HYPHEN

U+1806 MONGOLIAN TODO SOFT HYPHEN

U+2010 HYPHEN

U+2011 NON-BREAKING HYPHEN

U+2012 FIGURE DASH

U+2013 EN DASH

U+2014 EM DASH

U+2015 HORIZONTAL BAR (= quotation dash)

U+2053 SWUNG DASH

U+207B SUPERSCRIPT MINUS

U+208B SUBSCRIPT MINUS

U+2212 MINUS SIGN

U+2E17 DOUBLE OBLIQUE HYPHEN

U+2E1A HYPHEN WITH DIAERESIS

U+2E3A TWO-EM DASH

U+2E3B THREE-EM DASH

U+2E40 DOUBLE HYPHEN

U+2E5D OBLIQUE HYPHEN

U+301C WAVE DASH

U+3030 WAVY DASH

Table 6-3. Unicode Dash Characters

Writing Systems and Punctuation 328 6.2 General Punctuation

U+30A0 KATAKANA-HIRAGANA DOUBLE HYPHEN

U+FE31 PRESENTATION FORM FOR VERTICAL EM DASH

U+FE32 PRESENTATION FORM FOR VERTICAL EN DASH

U+FE58 SMALL EM DASH

U+FE63 SMALL HYPHEN-MINUS

U+FF0D FULLWIDTH HYPHEN-MINUS

U+10EAD YEZIDI HYPHENATION MARK

For a description of the line breaking behavior of dashes and hyphens, see Unicode

Standard Annex #14, “Unicode Line Breaking Algorithm.”

 Despite its name, U+00AD SOFT HYPHEN is not a hyphen, but rather

an invisible format character used to indicate optional intraword breaks. As described

in Section 23.2, Layout Controls, its effect on the appearance of the text depends on

the language and script used.

 Although several shapes are commonly used to render U+007E “ ” TILDE,

modern fonts generally render it with a center line glyph, as shown here and in the

code charts. However, it may also appear as a raised, spacing tilde, serving as a

spacing clone of U+0303 “ ” COMBINING TILDE (see “Spacing Clones of Diacritical

Marks” in Section 7.9, Combining Marks). This is a form common in older implemen‐

tations, particularly for terminal emulation and typewriter-style fonts.

Some of the common uses of a tilde include indication of alternation, an approxi‐

mate value, or, in some notational systems, indication of a logical negation. In the

latter context, it is really being used as a shape-based substitute character for the

more precise U+00AC “ ” NOT SIGN. A tilde is also used in dictionaries to repeat the

defined term in examples. In that usage, as well as when used as punctuation to indi‐

cate alternation, it is more appropriately represented by a wider form, encoded as

U+2053 “ ” SWUNG DASH. U+02DC “ ” SMALL TILDE is a modifier letter encoded

explicitly as the spacing form of the combining tilde as a diacritic. For mathematical

usage, U+223C “ ” TILDE OPERATOR should be used to unambiguously encode the

operator.

 In addition to the widespread use of tilde in

dictionaries, more specialized dictionaries may make use of symbols consisting of

hyphens or tildes with dots or circles above or below them to abbreviate the represen‐

tation of inflected or derived forms (plurals, case forms, and so on) in lexical entries.

U+2E1A HYPHEN WITH DIAERESIS, for example, is typically used in German dictio‐

naries as a short way of indicating that the addition of a plural suffix also causes

placement of an umlaut on the main stem vowel. U+2E1B TILDE WITH RING ABOVE

indicates a change in capitalization for a derived form, and so on. Such conventions

are particularly widespread in German dictionaries, but may also appear in other

dictionaries influenced by German lexicography.

Soft Hyphen.

Tilde.

Dictionary Abbreviation Symbols.

Writing Systems and Punctuation 329 6.2 General Punctuation

 Paired punctuation marks such as parentheses

(U+0028, U+0029), square brackets (U+005B, U+005D), and braces (U+007B,

U+007D) are interpreted semantically rather than graphically in the context of bidi‐

rectional or vertical texts; that is, the orientation of these characters toward the

enclosed text is maintained by the software, independent of the writing direction. In

a bidirectional context, the glyphs are adjusted as described in Unicode Standard

Annex #9, “Unicode Bidirectional Algorithm.” (See also Section 4.7, Bidi Mirrored.)

During display, the software must ensure that the rendered glyph is the correct one in

the context of bidirectional or vertical texts.

Paired punctuation marks containing the qualifier “LEFT” in their name are taken to

denote opening; characters whose name contains the qualifier “RIGHT” are taken to

denote closing. For example, U+0028 LEFT PARENTHESIS and U+0029 RIGHT PAREN‐

THESIS are interpreted as opening and closing parentheses, respectively. In a right-to-

left directional run, U+0028 is rendered as “)”. In a left-to-right run, the same char‐

acter is rendered as “(”. In some mathematical usage, brackets may not be paired, or

may be deliberately used in the reversed sense, such as]a,b[. Mirroring assures that

in a right-to-left environment, such specialized mathematical text continues to read

]b,a[and not [b, a]. See also “Language-Based Usage of Quotation Marks” later in

this section.

 Like brackets, quotation marks occur in pairs, with

some overlap in usage and semantics between these two types of punctuation marks.

For example, some of the CJK quotation marks resemble brackets in appearance, and

they are often used when brackets would be used in non-CJK text. Similarly, both

single and double guillemets may be treated more like brackets than quotation marks.

Unlike brackets, quotation marks are not mirrored in a bidirectional context.

Some of the editing marks used in annotated editions of scholarly texts exhibit

features of both quotation marks and brackets. The particular convention employed

by the editors determines whether editing marks are used in pairs, which editing

marks form a pair, and which is the opening character.

Horizontal brackets—for example, those used in annotating mathematical expres‐

sions—are not paired punctuation, even though the set includes both top and bottom

brackets. See “Horizontal Brackets” in Section 22.7, Technical Symbols, for more infor‐

mation.

The use of quotation marks differs systematically by language and by medium. As for

many other punctuation marks, and in contrast to parentheses or bracket characters,

quotation marks in the Unicode Standard are encoded by shape and not by how they

6.2.5 Paired Punctuation

Mirroring of Paired Punctuation.

Quotation Marks and Brackets.

6.2.6 Language-Based Usage of Quotation Marks

Writing Systems and Punctuation 330 6.2 General Punctuation

are used in relation to the quoted text. The same character may be used to open a

quote in one language, to close a quote in another, or to serve both functions in a

third.

The most commonly used character for quotation mark is U+0022 QUOTATION

MARK, usually represented with a straight double quote glyph. This quotation mark

is supported on most keyboard layouts, but typographically it is mainly appropriate

for typewritten manuscripts, programming text, or similar usage. Editing implemen‐

tations commonly offer a facility for converting the U+0022 QUOTATION MARK to a

typographically appropriate glyph for the language and context, such as distin‐

guishing between opening or closing a quote. Within each of the different standard

typographical shapes for quotation marks, there exist common glyph variations

depending on font design, as discussed in the following text.

The same issues apply to the character supported on keyboards for the single quote,

U+0027 APOSTROPHE; however, as its name indicates, that character is further

conflated with its function as an apostrophe. (See the discussion in “Apostrophes” in

this section.)

 In European typography, it is common to use guillemets (single or

double angle quotation marks) for books and, except for some languages, curly

quotation marks in office automation. Single guillemets may be used for quotes

inside quotes. The following description does not attempt to be complete, but intends

to document a range of known usages of quotation mark characters. Some of these

usages are also illustrated in Figure 6-3. In this section, the words single and double

are omitted from character names where there is no conflict or both are meant.

Dutch, English, Italian, Portuguese, Spanish, and Turkish use a left quotation mark

and a right quotation mark for opening and closing quotations, respectively. It is

typical to alternate single and double quotes for quotes within quotes. Whether single

or double quotes are used for the outer quotes depends on local and stylistic conven‐

tions.

Czech, German, and Slovak use the low-9 style of quotation mark for opening instead

of the standard open quotes. They employ the left quotation mark style of quotation

mark for closing instead of the more common right quotation mark forms. When

guillemets are used in German books, they point to the quoted text. This style is the

inverse of French usage.

Danish, Finnish, Norwegian, and Swedish use the same right quotation mark char‐

acter for both the opening and closing quotation character. This usage is employed

both for office automation purposes and for books. Swedish books sometimes use the

guillemet, U+00BB RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK, for both

opening and closing.

European Usage.

Writing Systems and Punctuation 331 6.2 General Punctuation

Hungarian and Polish usage of quotation marks is similar to the Scandinavian usage,

except that they use low double quotes for opening quotations. Presumably, these

languages avoid the low single quote so as to prevent confusion with the comma.

French, Greek, Russian, and Slovenian, among others, use the guillemets, but Slove‐

nian usage is the same as German usage in their direction. Of these languages, at

least French inserts space between text and quotation marks. In the French case,

U+00A0 NO-BREAK SPACE can be used for the space that is enclosed between quota‐

tion mark and text; this choice helps line breaking algorithms.

 The glyphs for the quotation marks in the range

U+2018..U+201F may vary significantly across fonts. The two most typical styles use

curly or wedge-shaped glyphs. See Table 6-4.

The Unicode code charts use a curly style in a serifed, Times-like font. Because

quotation marks are used in pairs, glyphs within a single style are expected to be in a

certain visual relationship, and that relationship stands regardless of glyph style. The

visual relationship follows either a rotated or a mirrored model. The rotated model is

predominant in both curly and wedge glyph style fonts. These two models are illus‐

Figure 6-3. European Quotation Marks

Glyph Variation in Curly Quotes.

Table 6-4. Models of Visual Relationship between Quote Glyphs

Writing Systems and Punctuation 332 6.2 General Punctuation

trated in Table 6-4 using sample fonts with different glyph styles. The glyphs are

enlarged for clarity.

In the rotated model, turning the ink of the glyph for U+201D RIGHT DOUBLE

QUOTATION MARK 180 degrees results in the glyph for U+201C LEFT DOUBLE

QUOTATION MARK; flipping it horizontally results in the glyph for U+201F DOUBLE

HIGH-REVERSED-9 QUOTATION MARK. The same symmetries apply to the raised

single quotation marks. Similarly, the glyphs for the low double quotation marks,

U+201E DOUBLE LOW-9 QUOTATION MARK and U+2E42 DOUBLE LOW-REVERSED-9

QUOTATION MARK, are horizontally flipped images of each other.

Some fonts in widespread use instead follow the mirrored model, in which the glyph

for U+201C looks like a mirrored image of the glyph for U+201D instead of a rotated

image of it. Most fonts that follow the mirrored model use wedge style glyphs for

quotation marks. In particular, in fonts such as Tahoma and Verdana, the glyph for

U+201F is a rotated image of the glyph for U+201D, which makes the glyphs for

U+201C and U+201F appear swapped compared to the typical design of wedge style

quote glyphs using the rotated model. The sets of glyphs which show these swapped

appearances are highlighted by a light background in Table 6-4.

 The glyph for each quotation mark character for an Asian char‐

acter set occupies predominantly a single quadrant of the character cell. The quad‐

rant used depends on whether the character is opening or closing and whether the

glyph is for use with horizontal or vertical text.

The pairs of quotation characters are listed in Table 6-5.

Style Opening Closing

Corner bracket 300C 300D

White corner bracket 300E 300F

Double prime 301D 301F

 In East Asian usage, the glyphs for “double-

prime” quotation marks U+301D REVERSED DOUBLE PRIME QUOTATION MARK and

U+301F LOW DOUBLE PRIME QUOTATION MARK consist of a pair of wedges, slanted

either forward or backward, with the tips of the wedges pointing either up or down.

In a pair of double-prime quotes, the closing and the opening character of the pair

slant in opposite directions. Two common variations exist, as shown in Figure 6-4. To

confuse matters more, another form of double-prime quotation marks is used with

Western-style horizontal text, in addition to the curly single or double quotes.

East Asian Usage.

Table 6-5. East Asian Quotation Marks

Glyph Variation in East Asian Usage.

Writing Systems and Punctuation 333 6.2 General Punctuation

Three pairs of quotation marks are used with Western-style horizontal text, as shown

in Table 6-6.

Style Opening Closing Comment

Single 2018 2019 Rendered as “wide” character

Double 201C 201D Rendered as “wide” character

Double prime 301D 301E

 The character codes for standard quotes can refer to

regular narrow quotes from a Latin font used with Latin text as well as to wide quotes

from an Asian font used with other wide characters. This situation can be handled

with some success where the text is marked up with language tags. For more infor‐

mation on narrow and wide characters, see Unicode Standard Annex #11, “East Asian

Width.”

 The semantics of U+00AB LEFT-POINTING DOUBLE

ANGLE QUOTATION MARK, U+00BB RIGHT-POINTING DOUBLE ANGLE QUOTATION

MARK, and U+201D RIGHT DOUBLE QUOTATION MARK are context dependent. By

contrast, the semantics of U+201A SINGLE LOW-9 QUOTATION MARK and U+201B

SINGLE HIGH-REVERSED-9 QUOTATION MARK are always opening. That usage is

distinct from that of U+301F LOW DOUBLE PRIME QUOTATION MARK, which is

unambiguously closing. All other quotation marks may represent opening or closing

quotation marks depending on the usage.

Figure 6-4. Asian Quotation Marks

Table 6-6. Opening and Closing Forms

Overloaded Character Codes.

Consequences for Semantics.

Writing Systems and Punctuation 334 6.2 General Punctuation

U+0027 APOSTROPHE is the most commonly used character for apostrophe. For

historical reasons, U+0027 is a particularly overloaded character. In ASCII, it is used

to represent a punctuation mark (such as right single quotation mark, left single

quotation mark, apostrophe punctuation, vertical line, or prime) or a modifier letter

(such as apostrophe modifier or acute accent). Punctuation marks generally break

words; modifier letters generally are considered part of a word.

When text is set, U+2019 RIGHT SINGLE QUOTATION MARK is preferred as apos‐

trophe, but only U+0027 is present on most keyboards. Software commonly offers a

facility for automatically converting the U+0027 APOSTROPHE to a contextually

selected curly quotation glyph. In these systems, a U+0027 in the data stream is

always represented as a straight vertical line and can never represent a curly apos‐

trophe or a right quotation mark.

U+02BC MODIFIER LETTER APOSTROPHE is preferred where the

apostrophe is to represent a modifier letter (for example, in transliterations to indi‐

cate a glottal stop). In the latter case, it is also referred to as a letter apostrophe.

U+2019 RIGHT SINGLE QUOTATION MARK is preferred

where the character is to represent a punctuation mark, as for contractions: “We’ve

been here before.” In this latter case, U+2019 is also referred to as a punctuation apos‐

trophe.

An implementation cannot assume that users’ text always adheres to the distinction

between these characters. The text may come from different sources, including

mapping from other character sets that do not make this distinction between the

letter apostrophe and the punctuation apostrophe/right single quotation mark. In

that case, all of them will generally be represented by U+2019.

The semantics of U+2019 are therefore context dependent. For example, if

surrounded by letters or digits on both sides, it behaves as an in-text punctuation

character and does not separate words or lines.

This subsection discusses several punctuation characters typically used in dictio‐

naries to indicate syllabification and hyphenation, with a number of illustrative

examples primarily from English-language dictionaries.

U+2027 HYPHENATION POINT is a raised dot used to indicate correct word breaking,

as in “dic‧tio‧nary.” It is a punctuation mark, to be distinguished from U+00B7

MIDDLE DOT, which has multiple semantics.

6.2.7 Apostrophes

Letter Apostrophe.

Punctuation Apostrophe.

6.2.8 Hyphenation Point and Dictionary Syllabification

Writing Systems and Punctuation 335 6.2 General Punctuation

Table 6-7 gives examples of syllabification conventions in a number of English dictio‐

naries from the 19th century to modern usage. These illustrate the usage of U+2027

HYPHENATION POINT in modern conventions, but also show the use of dashes and

the interaction of syllabification punctuation marks with various modifier letters

indicating syllabic stress.

Example Source Notes

SYʹLLABLE

Dictionary of the
English
Language
(Samuel
Johnson, 1843)

This early dictionary uses U+02B9 MODIFIER LETTER
PRIME to indicate syllabic stress, placing it after the vowel
letter of a syllable, rather than at the end of a syllable.

si·lă'bl
Oxford English
Dictionary (1st
Edition)

The middle dot indicates the vowel of the stressed syllable,
similar to Johnson's use of a prime. The break between
unstressed syllables is indicated with an apostrophe.

ˈsɪləb(ə)l
Oxford English
Dictionary (2nd
Edition)

The 2nd Edition has shifted to IPA, and indicates syllabic
stress with a pre-posed U+02C8 MODIFIER LETTER
VERTICAL LINE. The parentheses indicate optional omission
of the schwa in pronunciation.

silʹə‐bl

Chambers
English
Dictionary (7th
Edition)

This dictionary shows syllabic breaks, where the stressed
syllable is followed by U+02B9 MODIFIER LETTER PRIME
and the dash is U+2010 HYPHEN, to indicate a preferred
hyphenation location. When splitting a word like abateʹ‐
ment, the stress mark goes after the stressed syllable,
followed directly by the hyphen.

sɪl̲əbl
BBC English
Dictionary

This dictionary uses IPA without indication of syllabic
breaks in the pronunciation. The vowel of a stressed syllable
is underscored, hence ɪ ̲can be represented as <U+026A,
U+0332>.

sɪl̲əbə⁰l

Collins Cobuild
English
Language
Dictionary

This convention is similar to the BBC English Dictionary.
The raised zero is represented by U+2070 SUPERSCRIPT
ZERO and indicates the optional omission of the schwa.

syl‧la‧ble
(sílləb'l)

Readers Digest
Great Illustrated
Dictionary

This exemplifies a modern convention of separating
representation of syllabification and of pronunciation. The
syllabification for word break is indicated by the use of
U+2027 in the spelling. The primary stress is indicated with
an accent on the vowel, instead of a modifier letter, and the
apostrophe indicates the omitted schwa.

syl‧la‧ble
/ˈsiləbəl/

Webster’s 3rd
New
International
Dictionary

This edition of Webster's uses broad IPA for the
pronunciation, shown between phonemic slashes. It splits
words at the end of a line with a normal hyphen. When a
word is split at the end of a line at the position of a dash in
the spelling, that is indicated in the dictionary by the use of
U+2E17 DOUBLE OBLIQUE HYPHEN.

Table 6-7. Dictionary Syllabification Conventions

Writing Systems and Punctuation 336 6.2 General Punctuation

sy‧lla‧ble
/ˈsɪl.ə.bəl/
[ˈsɪl.ə.bɫ]̩

Wiktionary

Online dictionaries construct their entries quite differently
than traditional printed dictionaries, and typically separate
hyphenation from pronunciation. Wiktionary often omits
hyphenation, but when listed it uses the hyphenation point
to show hyphenation opportunities. It may separately list a
broad IPA pronunciation and a close IPA pronunciation of
the word. In the IPA pronunciation, a U+002E FULL STOP
indicates phonological syllable boundaries.

Some dictionaries use a character that looks like a vertical series of four dots to indi‐

cate places where there is a syllable, but no allowable break, as for example, a⁞plomb

or hoar⁞y. This convention can be represented by U+205E VERTICAL FOUR DOTS. To

hint that this punctuation mark should not itself be an opportunity for a line break, it

can be followed by U+2060 WORD JOINER.

See also the discussion of dictionary abbreviation symbols involving hyphens and

tildes in Section 6.2.4, Dashes and Hyphens.

 Where possible, the line breaking properties for

punctuation marks commonly used in dictionaries have been assigned so as to

accommodate these and similar conventions by default. However, implementing the

full conventions in dictionaries requires tailoring of line break classes and rules or

other types of special support. See Unicode Standard Annex #14, Unicode Line

Breaking Algorithm, for the specification of line break classes and how to tailor them.

U+204A TIRONIAN SIGN ET acts as a punctuation mark meaning “and”.

It can also function as a letter in some contexts. In some Medieval language mate‐

rials, Tironian et can appear in uppercase and is represented by U+2E52 TIRONIAN

SIGN CAPITAL ET. However, TIRONIAN SIGN ET and TIRONIAN SIGN CAPITAL ET are

not case-mapped.

 Historic texts in many scripts, especially those that are

handwritten (manuscripts), sometimes use a raised dot to separate words. Such

word-separating punctuation is comparable in function to the use of space to sepa‐

rate words in modern typography.

U+2E31 WORD SEPARATOR MIDDLE DOT is a middle dot punctuation mark which is

analogous in function to the script-specific character U+16EB RUNIC SINGLE PUNC‐

TUATION, but is for use with any script that needs a raised dot for separating words.

For example, it can be used for the word-separating dot seen in Avestan or Samaritan

texts.

U+2044 FRACTION SLASH is used between digits to form numeric

fractions, such as 2/3 and 3/9. The standard form of a fraction built using the fraction

Interaction with Line Breaking.

6.2.9 Other Punctuation

Tironian Et.

Word Separator Middle Dot.

Fraction Slash.

Writing Systems and Punctuation 337 6.2 General Punctuation

slash is defined as follows: any sequence of one or more decimal digits (General Cate‐

gory = Nd), followed by the fraction slash, followed by any sequence of one or more

decimal digits. Such a fraction should be displayed as a unit, such as ¾ or . The

precise choice of display can depend on additional formatting information.

If the displaying software is incapable of mapping the fraction to a unit, then it can

also be displayed as a simple linear sequence as a fallback (for example, 3/4). If the

fraction is to be separated from a previous number, then a space can be used,

choosing the appropriate width (normal, thin, zero width, and so on). For example, 1

+ THIN SPACE + 3 + FRACTION SLASH + 4 is displayed as 1¾.

U+203E OVERLINE is the above-the-line

counterpart to U+005F LOW LINE. It is a spacing character, not to be confused with

U+0305 COMBINING OVERLINE. As with all overscores and underscores, a sequence

of these characters should connect in an unbroken line. The overscoring characters

also must be distinguished from U+0304 COMBINING MACRON, which does not

connect horizontally in this way.

 Several doubled punctuation characters that have compati‐

bility decompositions into a sequence of two punctuation marks are also encoded as

single characters: U+203C DOUBLE EXCLAMATION MARK, U+2048 QUESTION

EXCLAMATION MARK, and U+2049 EXCLAMATION QUESTION MARK. These doubled

punctuation marks are included as an implementation convenience for East Asian

and Mongolian text, when rendered vertically.

 The period, or U+002E FULL STOP, can be circular or square in

appearance, depending on the font or script. The hollow circle period used in East

Asian texts is separately encoded as U+3002 IDEOGRAPHIC FULL STOP. Likewise,

Armenian, Arabic, Ethiopic, and several other script-specific periods are coded sepa‐

rately because of their significantly different appearance.

In contrast, the various functions of the period, such as its use as sentence-ending

punctuation, an abbreviation mark, or a decimal point, are not separately encoded.

The specific semantic therefore depends on context.

In old-style numerals, where numbers vary in placement above and below the base‐

line, a decimal or thousands separator may be displayed with a dot that is raised

above the baseline. Because it would be inadvisable to have a stylistic variation

between old-style and new-style numerals that actually changes the underlying

representation of text, the Unicode Standard considers this raised dot to be merely a

glyphic variant of U+002E “” FULL STOP.

 The omission of text is often indicated by a sequence of three dots “...”, a

punctuation convention called ellipsis. Typographic traditions vary in how they lay

out these dots. In some cases the dots are closely spaced; in other cases the dots are

spaced farther apart. U+2026 “ ” HORIZONTAL ELLIPSIS is the ordinary Unicode

Spacing Overscores and Underscores.

Doubled Punctuation.

Period or Full Stop.

Ellipsis.

Writing Systems and Punctuation 338 6.2 General Punctuation

character intended for the representation of an ellipsis in text and typically shows the

dots separated with a moderate degree of spacing. A sequence of three U+002E FULL

STOP characters can also be used to indicate an ellipsis, in which case the space

between the dots will depend on the font used for rendering.

In a monowidth font, a sequence of three full stops will be wider than horizontal

ellipsis, and may be appropriate when following style guides that require more widely

spaced dots. In this case, the spacing between the last dot and following punctuation

would be as expected.

In contrast, for a typical proportional font, a full stop is very narrow and a sequence of

three of them will be more tightly spaced than the dots in horizontal ellipsis. When

adhering to style guides, such as the Chicago Manual of Style (CMOS), which call for

more widely spaced dots in presentation, established practice calls for separating the

dots (and any surrounding punctuation) by either a NBSP or NNBSP. These contrasts

are illustrated in Table 6-8, using “dots” to refer to full stop characters, with or

without intervening no break spaces.

Ellipsis dots dots + NBSP dots + NNBSP

Fixed
abc…def abc...def abc . . . def abc . . . def

abc.…Def abc....Def abc. . . . Def abc. . . . Def

Proportional
abc…def abc...def abc . . . def abc . . . def

abc.…Def abc....Def abc. . . . Def abc. . . . Def

There are conventions that use four dots for an ellipsis in certain grammatical

contexts, such as elided content following the end of a sentence. These conventions

can represent the four dots either as a sequence of <full stop, horizontal ellipsis> or

<horizontal ellipsis, full stop> or simply as a sequence of four full stop characters,

depending on the requirements of those conventions. The usual CMOS convention of

placing a full stop initially in these sequences is also illustrated in Table 6-8.

In East Asian typographic traditions, particularly in Japan, an ellipsis is raised to the

center line of text. When an ellipsis is represented by U+2026 HORIZONTAL ELLIPSIS

or by sequences of full stops, this effect requires specialized rendering support. In

practice, it is relatively common for authors of East Asian text to substitute U+22EF

MIDLINE HORIZONTAL ELLIPSIS for this. Because the midline ellipsis is a mathemat‐

ical symbol, intended to represent column elision in matrix notation, it is typically

used with layout on a mathematical center line. With appropriate font design to

harmonize with East Asian typography, this midline ellipsis can produce the desired

appearance without having to support contextual shifting of the baseline for U+2026

HORIZONTAL ELLIPSIS.

Table 6-8. Horizontal Ellipsis

Writing Systems and Punctuation 339 6.2 General Punctuation

 When text is laid out vertically, the ellipsis is normally oriented so

that the dots run from top to bottom. Most commonly, an East Asian font will contain

a vertically oriented glyph variant of U+2026 for use in vertical text layout. U+FE19

PRESENTATION FORM FOR VERTICAL HORIZONTAL ELLIPSIS is a compatibility char‐

acter for use in mapping to the GB 18030 standard; it would not usually be used for

an ellipsis except in systems that cannot handle the contextual choice of glyph vari‐

ants for vertical rendering.

U+22EE VERTICAL ELLIPSIS and U+22EF MIDLINE HORIZONTAL ELLIPSIS are part of

a set of special ellipsis characters used for row or column elision in matrix notation.

Although their primary use is for a mathematical context, U+22EF MIDLINE HORI‐

ZONTAL ELLIPSIS has also become popular for the midline ellipsis in East Asian

typography. When U+22EF is used this way, an East Asian font will typically contain

a rotated glyph variant for use in vertical text layout. If an appropriate mechanism for

glyph variant substitution (such as the “vert” GSUB feature in the Open Font

Format) in vertically rendered text is not available, U+FE19 PRESENTATION FORM

FOR VERTICAL HORIZONTAL ELLIPSIS is the preferred character substitution to repre‐

sent a vertical ellipsis, instead of the mathematical U+22EE VERTICAL ELLIPSIS.

U+205D TRICOLON has a superficial resemblance to a vertical ellipsis, but is part of a

set of dot delimiter punctuation marks for various manuscript traditions. As for the

colon, the dots in the tricolon are always oriented vertically.

 Leader dots are typically seen in contexts such as a table of contents or

in indices, where they represent a kind of style line, guiding the eye from an entry in

the table to its associated page number. Usually leader dots are generated automati‐

cally by page formatting software and do not require the use of encoded characters.

However, there are occasional plain text contexts in which a string of leader dots is

represented as a sequence of characters. U+2024 ONE DOT LEADER and U+2025 TWO

DOT LEADER are intended for such usage. U+2026 HORIZONTAL ELLIPSIS can also

serve as a three-dot version of leader dots. These leader dot characters can be used to

control, to a certain extent, the spacing of leader dots based on font design, in

contexts where a simple sequence of full stops will not suffice.

U+2024 ONE DOT LEADER also serves as a “semicolon” punctuation in Armenian,

where it is distinguished from U+002E FULL STOP. See Section 7.6, Armenian.

 The interword punctuation marks encoded

in the Basic Latin block are used for a variety of other purposes. This can complicate

the tasks of parsers trying to determine sentence boundaries. As noted later in this

section, some can be used as numeric separators. Both period and U+003A “” COLON

can be used to mark abbreviations as in “etc.” or as in the Swedish abbreviation “S:ta”

for “Sankta”. U+0021 “” EXCLAMATION MARK is used as a mathematical operator

(factorial). U+003F “ ” QUESTION MARK is often used as a substitution character

when mapping Unicode characters to other character sets where they do not have a

Vertical Ellipsis.

Leader Dots.

Other Basic Latin Punctuation Marks.

Writing Systems and Punctuation 340 6.2 General Punctuation

representation. This practice can lead to unexpected results when the converted data

are file names from a file system that supports “?” as a wildcard character.

Several punctuation marks, such as colon, middle dot and solidus closely resemble

mathematical operators, such as U+2236 RATIO, U+22C5 DOT OPERATOR and

U+2215 DIVISION SLASH. The latter are the preferred characters, but the former are

often substituted because they are more easily typed.

 Some commonly used

Greek punctuation marks are encoded in the Greek and Coptic block, but are canon‐

ical equivalents to generic punctuation marks encoded in the C0 Controls and Basic

Latin block, because they are indistinguishable in shape. Thus, U+037E “ ” GREEK

QUESTION MARK is canonically equivalent to U+003B “ ” SEMICOLON, and U+0387

“” GREEK ANO TELEIA is canonically equivalent to U+00B7 “” MIDDLE DOT. In these

cases, as for other canonical singletons, the preferred form is the character that the

canonical singletons are mapped to, namely U+003B and U+00B7 respectively.

Those are the characters that will appear in any normalized form of Unicode text,

even when used in Greek text as Greek punctuation. Text segmentation algorithms

need to be aware of this issue, as the kinds of text units delimited by a semicolon or a

middle dot in Greek text will typically differ from those in Latin text.

The character properties for U+00B7 MIDDLE DOT are particularly problematical, in

part because of identifier issues for that character. There is no guarantee that all of its

properties align exactly with U+0387 GREEK ANO TELEIA, because the latter’s proper‐

ties are based on the limited function of the middle dot in Greek as a delimiting punc‐

tuation mark.

U+2022 BULLET is the typical character for a bullet. Within the general

punctuation, several alternative forms for bullets are separately encoded: U+2023

TRIANGULAR BULLET, U+204C BLACK LEFTWARDS BULLET, and so on. U+00B7

MIDDLE DOT also often functions as a small bullet. Bullets mark the head of specially

formatted paragraphs, often occurring in lists, and may use arbitrary graphics or

dingbat forms as well as more conventional bullet forms. U+261E WHITE RIGHT

POINTING INDEX, for example, is often used to highlight a note in text, as a kind of

gaudy bullet.

U+00A7 SECTION SIGN and U+00B6 PILCROW SIGN are often

used as visible indications of sections or paragraphs of text, in editorial markup, to

show format modes, and so on. Which character indicates sections and which char‐

acter indicates paragraphs may vary by convention. U+204B REVERSED PILCROW

SIGN is a fairly common alternate representation of the paragraph mark.

 Any of the characters U+002C COMMA, U+002E FULL STOP,

and the Arabic characters U+060C, U+066B, or U+066C (and possibly others) can

Canonical Equivalence Issues for Greek Punctuation.

Bullets.

Paragraph Marks.

Numeric Separators.

Writing Systems and Punctuation 341 6.2 General Punctuation

be used as numeric separator characters, depending on the locale and user

customizations.

 Originally a punctuation mark to denote questionable passages in

manuscripts, U+00F7 DIVISION SIGN is now most commonly used as a symbol

indicating division. However, modern use is not limited to that meaning. The char‐

acter is sometimes used to indicate a range (similar to the en-dash) or as a form of

minus sign. The former use is attested for Russian, Polish and Italian, and latter use is

still widespread in Scandinavian countries in some contexts, but may occur else‐

where as well. (See also the following text on “Commercial Minus.”)

 U+2052 COMMERCIAL MINUS SIGN is used in commercial or

tax-related forms or publications in several European countries, including Germany

and Scandinavia. The string “./.” is used as a fallback representation for this char‐

acter.

The symbol may also appear as a marginal note in letters, denoting enclosures. One

variation replaces the top dot with a digit indicating the number of enclosures.

An additional usage of the sign appears in the Uralic Phonetic Alphabet (UPA),

where it marks a structurally related borrowed element of different pronunciation. In

Finland and a number of other European countries, the dingbats and are always

used for “correct” and “incorrect,” respectively, in marking a student’s paper. This

contrasts with American practice, for example, where and might be used for

“correct” and “incorrect,” respectively, in the same context.

U+0040 COMMERCIAL AT has acquired a prominent modern use as part of

the syntax for e-mail addresses. As a result, users in practically every language

community suddenly needed to use and refer to this character. Consequently, many

colorful names have been invented for this character. Some of these contain refer‐

ences to animals or even pastries. Table 6-9 gives a sample.

Language Name and Comments

Chinese
= xiǎo lǎoshǔ (means “little mouse” in Mandarin Chinese)
= lǎoshǔ hào (means “mouse mark” in Mandarin Chinese)

Danish = snabel-a

Dutch = apenstaartje (common, humorous slang)

Finnish
= ät, ät-merkki (Finnish standard)
= kissanhäntä, miukumauku (common, humorous slang)

French = arobase, arrobe, escargot, a crolle (common, humorous slang)

German = Klammeraffe

Hebrew
= shtrudl (“Strudel”, modern Hebrew)
= krukhit (more formal Hebrew)

Obelus.

Commercial Minus.

At Sign.

Table 6-9. Names for the @

Writing Systems and Punctuation 342 6.2 General Punctuation

Hungarian = kukac (common, humorous slang)

Italian = chiocciola

Polish = atka, małpa, małpka (common, humorous slang)

Portuguese = arroba

Russian = sobachka (common, humorous slang)

Slovenian = afna (common, humorous slang)

Spanish = arroba

Swedish = snabel-a, kanelbulle (common, humorous slang)

 Many archaic scripts use punctuation marks consisting of a

set of multiple dots, such as U+2056 THREE DOT PUNCTUATION. The semantics of

these marks can vary by script, and some of them are also used for special conven‐

tions, such as the use of U+205E VERTICAL FOUR DOTS in modern dictionaries.

U+205B FOUR DOT MARK and U+205C DOTTED CROSS were used by scribes in the

margin to highlight a piece of text. More of these multiple-dot archaic punctuation

marks are encoded in the range U+2E2A..U+2E2D.

These kinds of punctuation marks occur in ancient scripts and are also common in

medieval manuscripts. Their specific functions may be different in each script or

manuscript tradition. However, encoding only a single set in the Unicode Standard

simplifies the task of deciding which character to use for a given mark.

There are some exceptions to this general rule. Archaic scripts with script-specific

punctuation include Runic, Aegean Numbers, and Cuneiform. In particular, the

appearance of punctuation written in the Cuneiform style is sufficiently different

that no unification was attempted.

 U+2E17 “ ” DOUBLE OBLIQUE HYPHEN is used in ancient

Near Eastern linguistics to indicate certain morphological boundaries while contin‐

uing to use the ordinary hyphen to indicate other boundaries. This symbol is also

semantically distinct from U+003D “ ” EQUALS SIGN. Fraktur fonts use an oblique

glyph of similar appearance for the hyphen, but that is merely a font variation of

U+002D HYPHEN-MINUS or U+2010 HYPHEN, not the distinctly encoded DOUBLE

OBLIQUE HYPHEN.

 In addition to common-use editorial marks such as U+2041 CARET

INSERTION POINT encoded in the General Punctuation block, there are a number of

editorial marks encoded in the Supplemental Punctuation block (U+2E00..U+2E7F).

Editorial marks differ from ordinary punctuation marks, in that their primary

purpose is to allow editors to mark up a scholarly publication of a text to show the

location and contents of insertions, omissions, variant readings, and other such infor‐

mation about the text.

6.2.10 Archaic Punctuation and Editorial Marks

Archaic Punctuation.

Double Oblique Hyphen.

Editorial Marks.

Writing Systems and Punctuation 343 6.2 General Punctuation

The half brackets encoded in the range U+2E22..U+2E25 are widely used as editorial

marks in critical editions of ancient and medieval texts. They appear, for example, in

editions of transliterated Cuneiform and ancient Egyptian texts. U+2E26 LEFT SIDE‐

WAYS U BRACKET and U+2E27 RIGHT SIDEWAYS U BRACKET are a specialized bracket

pair used in some traditions, and should be distinguished from mathematical set

symbols of similar appearance. The double parentheses are employed by Latinists.

 The Greek text of the New Testament exists in a

large number of manuscripts with many textual variants. The most widely used crit‐

ical edition of the New Testament, the Nestle-Aland edition published by the United

Bible Societies (UBS), introduced a set of editorial characters that are regularly used

in a number of journals and other publications. As a result, these editorial marks

have become the recognized method of annotating the New Testament.

U+2E00 RIGHT ANGLE SUBSTITUTION MARKER is placed at the start of a single word

when that word is replaced by one or more different words in some manuscripts.

These alternative readings are given in the apparatus criticus. If there is a second

alternative reading in one verse, U+2E01 RIGHT ANGLE DOTTED SUBSTITUTION

MARKER is used instead.

U+2E02 LEFT SUBSTITUTION BRACKET is placed at the start of a sequence of words

where an alternative reading is given in the apparatus criticus. This bracket is used

together with the U+2E03 RIGHT SUBSTITUTION BRACKET. If there is a second alter‐

native reading in one verse, the dotted forms at U+2E04 and U+2E05 are used

instead.

U+2E06 RAISED INTERPOLATION MARKER is placed at a point in the text where

another version has additional text. This additional text is given in the apparatus

criticus. If there is a second piece of interpolated text in one verse, the dotted form

U+2E07 RAISED DOTTED INTERPOLATION MARKER is used instead.

U+2E08 DOTTED TRANSPOSITION MARKER is placed at the start of a word or verse

that has been transposed. The transposition is explained in the apparatus criticus.

When the words are preserved in different order in some manuscripts, U+2E09 LEFT

TRANSPOSITION BRACKET is used. The end of such a sequence of words is marked by

U+2E0A RIGHT TRANSPOSITION BRACKET.

The characters U+2E0B RAISED SQUARE and U+2E0C LEFT RAISED OMISSION

BRACKET are conventionally used in pairs to bracket text, with RAISED SQUARE

marking the start of a passage of omitted text and LEFT RAISED OMISSION BRACKET

marking its end. In other editorial traditions, U+2E0C LEFT RAISED OMISSION

BRACKET may be paired with U+2E0D RIGHT RAISED OMISSION BRACKET.

Depending on the conventions used, either may act as the starting or ending bracket.

New Testament Editorial Marks.

Writing Systems and Punctuation 344 6.2 General Punctuation

Two other bracket characters, U+2E1C LEFT LOW PARAPHRASE BRACKET and

U+2E1D RIGHT LOW PARAPHRASE BRACKET, have particular usage in the N’Ko

script, but also may be used for general editorial punctuation.

 Ancient Greek scribes generally wrote in contin‐

uous uppercase letters without separating letters into words. On occasion, the scribe

added punctuation to indicate the end of a sentence or a change of speaker or to

separate words. Editorial and punctuation characters appear abundantly in surviving

papyri and have been rendered in modern typography when possible, often

exhibiting considerable glyphic variation. A number of these editorial marks are

encoded in the range U+2E0E..U+2E16.

The punctuation used in Greek manuscripts can be divided into two categories:

marginal or semi-marginal characters that mark the end of a section of text (for

example, coronis, paragraphos), and characters that are mixed in with the text to

mark pauses, end of sense, or separation between words (for example, stigme, hypodi‐

astole). The hypodiastole is used in contrast with comma and is not a glyph variant of

it.

A number of editorial characters are attributed to and named after Aristarchos of

Samothrace (circa 216–144 BCE), fifth head of the Library at Alexandria. Aristarchos

provided a major edition of the works of Homer, which forms the basis for modern

editions.

A variety of Ancient Greek editorial marks are shown in the text of Figure 6-5,

including the editorial coronis and upwards ancora on the left. On the right are illus‐

trated the dotted obelos, capital dotted lunate sigma symbol, capital reversed lunate

sigma symbol, and a glyph variant of the downards ancora. The numbers on the left

indicate text lines. A paragraphos appears below the start of line 12. The opening

brackets “[” indicate fragments, where text is illegible or missing in the original.

These examples are slightly adapted and embellished from editions of the

Oxyrhynchus Papyri and Homer’s Iliad.

Ancient Greek Editorial Marks.

Figure 6-5. Examples of Ancient Greek Editorial Marks

Writing Systems and Punctuation 345 6.2 General Punctuation

U+2E0F PARAGRAPHOS is placed at the beginning of the line but may refer to a

break in the text at any point in the line. The paragraphos should be a horizontal line,

generally stretching under the first few letters of the line it refers to, and possibly

extending into the margin. It should be given a no-space line of its own and does not

itself constitute a line or paragraph break point for the rest of the text. Examples of

the paragraphos, forked paragraphos,and reversed forked paragraphos are illustrated

in Figure 6-6.

 Dandas are phrase-ending punctuation common to the scripts of South and

South East Asia. The Devanagari danda and double danda characters are intended

for generic use across the scripts of India. They are also occasionally used in Latin

transliteration of traditional texts from Indic scripts.

There are minor visual differences in the appearance of the dandas, which may

require script-specific fonts or a font that can provide glyph alternates based on script

environment. For the four Philippine scripts, the analogues to the dandas are

encoded once in Hanunóo and shared across all four scripts. The other Brahmi-

derived scripts have separately encoded equivalents for the danda and double danda.

In some scripts, as for Tibetan, multiple, differently ornamented versions of dandas

may occur. The dandas encoded in the Unicode Standard are listed in Table 6-10.

Code Name

U+0964 DEVANAGARI DANDA

U+0965 DEVANAGARI DOUBLE DANDA

U+0E5A THAI CHARACTER ANGKHANKHU

U+0F08 TIBETAN MARK SBRUL SHAD

U+0F0D TIBETAN MARK SHAD

U+0F0E TIBETAN MARK NYIS SHAD

U+0F0F TIBETAN MARK TSHEG SHAD

U+0F10 TIBETAN MARK NYIS TSHEG SHAD

U+0F11 TIBETAN MARK RIN CHEN SPUNGS SHAD

U+0F12 TIBETAN MARK RGYA GRAM SHAD

U+104A MYANMAR SIGN LITTLE SECTION

Figure 6-6. Use of Greek Paragraphos

6.2.11 Indic Punctuation

Dandas.

Table 6-10. Unicode Danda Characters

Writing Systems and Punctuation 346 6.2 General Punctuation

U+104B MYANMAR SIGN SECTION

U+1735 PHILIPPINE SINGLE PUNCTUATION

U+1736 PHILIPPINE DOUBLE PUNCTUATION

U+17D4 KHMER SIGN KHAN

U+17D5 KHMER SIGN BARIYOOSAN

U+1AA8 TAI THAM SIGN KAAN

U+1AA9 TAI THAM SIGN KAANKUU

U+1B5E BALINESE CARIK SIKI

U+1B5F BALINESE CARIK PAREREN

U+1C3B LEPCHA PUNCTUATION TA-ROL

U+1C3C LEPCHA PUNCTUATION NYET THYOOM TA-ROL

U+1C7E OL CHIKI PUNCTUATION MUCAAD

U+1C7F OL CHIKI PUNCTUATION DOUBLE MUCAAD

U+A876 PHAGS-PA MARK SHAD

U+A877 PHAGS-PA MARK DOUBLE SHAD

U+A8CE SAURASHTRA DANDA

U+A8CF SAURASHTRA DOUBLE DANDA

U+A92F KAYAH LI SIGN SHYA

U+A9C8 JAVANESE PADA LINGSA

U+A9C9 JAVANESE PADA LUNGSI

U+AA5D CHAM PUNCTUATION DANDA

U+AA5E CHAM PUNCTUATION DOUBLE DANDA

U+AA5F CHAM PUNCTUATION TRIPLE DANDA

U+AAF0 MEETEI MAYEK CHEIKHAN

U+ABEB MEETEI MAYEK CHEIKHEI

U+10A56 KHAROSHTHI PUNCTUATION DANDA

U+10A57 KHAROSHTHI PUNCTUATION DOUBLE DANDA

U+11047 BRAHMI DANDA

U+11048 BRAHMI DOUBLE DANDA

U+110C0 KAITHI DANDA

U+110C1 KAITHI DOUBLE DANDA

U+11141 CHAKMA DANDA

U+11142 CHAKMA DOUBLE DANDA

U+111C5 SHARADA DANDA

U+111C6 SHARADA DOUBLE DANDA

U+11238 KHOJKI DANDA

U+11239 KHOJKI DOUBLE DANDA

U+113D4 TULU-TIGALARI DANDA

U+113D5 TULU-TIGALARI DOUBLE DANDA

Writing Systems and Punctuation 347 6.2 General Punctuation

U+1144B NEWA DANDA

U+1144C NEWA DOUBLE DANDA

U+115C2 SIDDHAM DANDA

U+115C3 SIDDHAM DOUBLE DANDA

U+11641 MODI DANDA

U+11642 MODI DOUBLE DANDA

U+1173C AHOM SIGN SMALL SECTION

U+1173D AHOM SIGN SECTION

U+11944 DIVES AKURU DOUBLE DANDA

U+11A42 ZANABAZAR SQUARE MARK SHAD

U+11A43 ZANABAZAR SQUARE MARK DOUBLE SHAD

U+11A9B SOYOMBO MARK SHAD

U+11A9C SOYOMBO MARK DOUBLE SHAD

U+11C41 BHAIKSUKI DANDA

U+11C42 BHAIKSUKI DOUBLE DANDA

U+11C71 MARCHEN MARK SHAD

U+11F43 KAWI DANDA

U+11F44 KAWI DOUBLE DANDA

U+16A6E MRO DANDA

U+16A6F MRO DOUBLE DANDA

U+16D6E KIRAT RAI DANDA

U+16D6F KIRAT RAI DOUBLE DANDA

The Bidirectional Class of the dandas matches that for the scripts they are intended

for. Kharoshthi, which is written from right to left, has Bidirectional Class R for

U+10A56 KHAROSHTHI PUNCTUATION DANDA. For more on bidirectional classes,

see Unicode Standard Annex #9, “Unicode Bidirectional Algorithm.”

Note that the name of the danda in Hindi is viram, while the different Unicode char‐

acter named virama is called halant in Hindi. If this distinction is not kept in mind, it

can lead to confusion as to which character is meant.

CJK Punctuation comprises punctuation marks and symbols used by writing systems

that employ Han ideographs. Most of these characters are found in East Asian stan‐

dards. Typical for many of these wide punctuation characters is that the actual image

occupies only the left or the right half of the normal square character cell. The extra

whitespace is frequently removed in a kerning step during layout, as shown in

Figure 6-7. Unlike ordinary kerning, which uses tables supplied by the font, the char‐

6.2.12 CJK Punctuation

Writing Systems and Punctuation 348 6.2 General Punctuation

acter space adjustment of wide punctuation characters is based on their character

code.

U+3000 IDEOGRAPHIC SPACE is provided for compatibility with legacy character

sets. It is a fixed-width wide space appropriate for use with an ideographic font. For

more information about wide characters, see Unicode Standard Annex #11, “East

Asian Width.”

U+3030 WAVY DASH is a special form of a dash found in East Asian character stan‐

dards. (For a list of other space and dash characters in the Unicode Standard, see

Table 6-2 and Table 6-3.)

U+3037 IDEOGRAPHIC TELEGRAPH LINE FEED SEPARATOR SYMBOL is a visible indi‐

cator of the line feed separator symbol used in the Chinese telegraphic code. It is

comparable to the pictures of control codes found in the Control Pictures block.

U+3005 IDEOGRAPHIC ITERATION MARK is used to stand for the second of a pair of

identical ideographs occurring in adjacent positions within a document.

U+3006 IDEOGRAPHIC CLOSING MARK is used frequently on signs to indicate that a

store or booth is closed for business. The Japanese pronunciation is shime, most often

encountered in the compound shime-kiri.

The U+3008 and U+3009 angle brackets are unambiguously wide, as are other

bracket characters in this block, such as double angle brackets, tortoise shell brackets,

and white square brackets. Where mathematical and other non-CJK contexts use

brackets of similar shape, the Unicode Standard encodes them separately.

U+3012 POSTAL MARK is used in Japanese addresses immediately preceding the

numerical postal code. It is also used on forms and applications to indicate the blank

space in which a postal code is to be entered. U+3020 POSTAL MARK FACE and

U+3036 CIRCLED POSTAL MARK are properly glyphic variants of U+3012 and are

included for compatibility.

U+3031 VERTICAL KANA REPEAT MARK and U+3032 VERTICAL KANA REPEAT WITH

VOICED SOUND MARK are used only in vertically written Japanese to repeat pairs of

kana characters occurring immediately prior in a document. The voiced variety

U+3032 is used in cases where the repeated kana are to be voiced. For instance, a

repetitive phrase like toki-doki could be expressed as <U+3068, U+304D, U+3032>

in vertical writing. Both of these characters are intended to be represented by

“double-height” glyphs requiring two ideographic “cells” to print; this intention also

Figure 6-7. CJK Parentheses

Writing Systems and Punctuation 349 6.2 General Punctuation

explains the existence in source standards of the characters representing the top and

bottom halves of these characters (that is, the characters U+3033, U+3034, and

U+3035). In horizontal writing, similar characters are used, and they are separately

encoded. In Hiragana, the equivalent repeat marks are encoded at U+309D and

U+309E; in Katakana, they are U+30FD and U+30FE.

U+301C WAVE DASH is a compatibility character that was originally

encoded to represent the character in the JIS C 6226-1978 standard and all subsequent

revisions and extensions with the kuten code: 1-33 (0x8160 in Shift-JIS encoding). The

mapping of this character has been problematical. Some major implementations

originally mapped, and continue to map for compatibility purposes, that JIS char‐

acter to U+FF5E FULLWIDTH TILDE, instead. The mapping issue has been docu‐

mented in the Unicode Standard since Version 3.0.

From Version 2.0 through Version 7.0 of the Unicode Standard, U+301C was shown

in the code charts with a representative glyph that had a wide reversed tilde shape.

Starting with Version 8.0, however, the representative glyph has been corrected to a

wide tilde shape, to reflect predominant practice in commercial fonts. For most

purposes, U+301C WAVE DASH should be treated simply as a duplicate representation

of U+FF5E FULLWIDTH TILDE.

U+FE45 SESAME DOT and U+FE46 WHITE SESAME DOT are used in

vertical text, where a series of sesame dots may appear beside the main text, as a

sidelining to provide visual emphasis. In this respect, their usage is similar to such

characters as U+FE34 PRESENTATION FORM FOR VERTICAL WAVY LOW LINE, which

are also used for sidelining vertical text for emphasis. Despite being encoded in the

block for CJK compatibility forms, the sesame dots are not compatibility characters.

They are in general typographic use and are found in the Japanese standard, JIS X

0213.

U+FE45 SESAME DOT is historically related to U+3001 IDEOGRAPHIC COMMA, but is

not simply a vertical form variant of it. The function of an ideographic comma in

connected text is distinct from that of a sesame dot.

U+3013 GETA MARK is used to indicate the presence of, or to hold a place for, an

ideograph that is not available when a document is printed. It has no other use. Its

name comes from its resemblance to the mark left by traditional Japanese sandals

(geta). A variety of light and heavy glyphic variants occur.

U+303E IDEOGRAPHIC VARIATION INDICATOR is a graphic character that is to be

rendered visibly. It alerts the user that the intended character is similar to, but not

equal to, the character that follows. Its use is similar to the existing character U+3013

GETA MARK. A GETA MARK substitutes for the unknown or unavailable character,

Wave Dash.

Sesame Dots.

6.2.13 Unknown or Unavailable Ideographs

Writing Systems and Punctuation 350 6.2 General Punctuation

but does not identify it. The IDEOGRAPHIC VARIATION INDICATOR is the head of a

two-character sequence that gives some indication about the intended glyph or

intended character. Ultimately, the IDEOGRAPHIC VARIATION INDICATOR and the

character following it are intended to be replaced by the correct character, once it has

been identified or a font resource or input resource has been provided for it.

U+303F IDEOGRAPHIC HALF FILL SPACE is a visible indicator of a display cell filler

used when ideographic characters have been split during display on systems using a

double-byte character encoding. It is included in the Unicode Standard for compati‐

bility.

See also “Ideographic Description Sequences” in Section 18.2, Ideographic Description

Characters.

 CJK vertical forms are compatibility characters encoded for compat‐

ibility with legacy implementations that encode these characters explicitly when

Chinese text is being set in vertical rather than horizontal lines. The preferred

Unicode approach to representation of such text is to simply use the nominal charac‐

ters that correspond to these vertical variants. Then, at display time, the appropriate

glyph is selected according to the line orientation.

The Unicode Standard contains two blocks devoted primarily to these CJK vertical

forms. The CJK Vertical Forms block, U+FE10..U+FE1F, contains compatibility char‐

acters needed for round-trip mapping to the Chinese standard, GB 18030. The CJK

Compatibility Forms block, U+FE30..U+FE4F, contains forms found in the Chinese

standard, CNS 11643.

 The CJK Compatibility Forms block also

contains a number of compatibility characters from CNS 11643, which consist of

different styles of overscores or underscores. They were intended, in the Chinese

standard, for the representation of various types of overlining or underlining, for

emphasis of text when laid out horizontally. Except for round-trip mapping with

legacy character encodings, the use of these characters is discouraged; use of styles is

the preferred way to handle such effects in modern text rendering.

 CNS 11643 also contains a number of small variants of ASCII

punctuation characters. The Unicode Standard encodes those variants as compati‐

bility characters in the Small Form Variants block, U+FE50..U+FE6F. Those charac‐

ters, while construed as fullwidth characters, are nevertheless depicted using small

forms that are set in a fullwidth display cell. (See the discussion in Section 18.4, Hira‐

gana and Katakana.) These characters are provided for compatibility with legacy

implementations.

6.2.14 CJK Compatibility Forms

Vertical Forms.

Styled Overscores and Underscores.

Small Form Variants.

Writing Systems and Punctuation 351 6.2 General Punctuation

Two small form variants from CNS 11643/plane 1 were unified with other characters

outside the ASCII block: 2131
16

was unified with U+00B7 MIDDLE DOT, and 2261
16

was unified with U+2215 DIVISION SLASH.

 For compatibility with East Asian legacy char‐

acter sets, the Unicode Standard encodes fullwidth variants of ASCII punctuation

and halfwidth variants of CJK punctuation. See Section 18.5, Halfwidth and Fullwidth

Forms, for more information.

Fullwidth and Halfwidth Variants.

Writing Systems and Punctuation 352 6.2 General Punctuation

Chapter 7

Europe-I
Modern and Liturgical Scripts

Modern European alphabetic scripts are derived from or influenced by the Greek

script, which itself was an adaptation of the Phoenician alphabet. A Greek innova‐

tion was writing the letters from left to right, which is the writing direction for all the

scripts derived from or inspired by Greek.

Some scripts whose geographic area of primary usage is outside Europe are included

in this chapter because of their relationship with Greek script. Coptic is used

primarily by the Coptic church in Egypt and elsewhere; Armenian and Georgian are

primarily associated with countries in the Caucasus (which is often not included as

part of Europe), although Armenian in particular is used by a large diaspora.

These scripts are all written from left to right. Many have separate lowercase and

uppercase forms of the alphabet. Spaces are used to separate words. Accents and

diacritical marks are used to indicate phonetic features and to extend the use of base

scripts to additional languages. Some of these modification marks have evolved into

small free-standing signs that can be treated as characters in their own right.

The Latin script is used to write or transliterate texts in a wide variety of languages.

The International Phonetic Alphabet (IPA) is an extension of the Latin alphabet,

enabling it to represent the phonetics of all languages. Other Latin phonetic exten‐

sions are used for the Uralic Phonetic Alphabet and the Teuthonista transcription

system.

The Latin alphabet is derived from the alphabet used by the Etruscans, who had

adopted a Western variant of the classical Greek alphabet (Section 8.6, Old Italic).

Originally it contained only 24 capital letters. The modern Latin alphabet as it is

found in the Basic Latin block owes its appearance to innovations of scribes during

the Middle Ages and practices of the early Renaissance printers.

The Cyrillic script was developed in the ninth century and is also based on Greek.

Like Latin, Cyrillic is used to write or transliterate texts in many languages. The

Georgian and Armenian scripts were devised in the fifth century and are influenced

by Greek.

353

The Coptic script was the last stage in the development of Egyptian writing. It repre‐

sented the adaptation of the Greek alphabet to writing Egyptian, with the retention

of forms from Demotic for sounds not adequately represented by Greek letters.

Although primarily used in Egypt from the fourth to the tenth century, it is described

in this chapter because of its close relationship to the Greek script.

Glagolitic is an early Slavic script related in some ways to both the Greek and the

Cyrillic scripts. It was widely used in the Balkans but gradually died out, surviving

the longest in Croatia. Like Coptic, however, it still has some modern use in liturgical

contexts.

This chapter also describes modifier letters and combining marks used with the Latin

script and other scripts.

The block descriptions for other archaic European alphabetic scripts, such as Gothic,

Ogham, Old Italic, and Runic, can be found in Chapter 8, Europe-II.

Europe-I 354

The Latin script was derived from the Greek script. Today it is used to write a wide

variety of languages all over the world. In the process of adapting it to other

languages, numerous extensions have been devised. The most common is the addi‐

tion of diacritical marks. Furthermore, the creation of digraphs, inverse or reverse

forms, and outright new characters have all been used to extend the Latin script.

The Latin script is written in linear sequence from left to right. Spaces are used to

separate words and provide the primary line breaking opportunities. Hyphens are

used where lines are broken in the middle of a word. (For more information, see

Unicode Standard Annex #14, “Unicode Line Breaking Algorithm.”) Latin letters

come in uppercase and lowercase pairs.

 Some indication of language or other usage is given for many characters

within the names lists accompanying the character charts.

 Speakers of different languages treat the addition of a diacritical

mark to a base letter differently. In some languages, the combination is treated as a

letter in the alphabet for the language. In others, such as English, the same words can

often be spelled with and without the diacritical mark without implying any differ‐

ence. Most languages that use the Latin script treat letters with diacritical marks as

variations of the base letter, but do not accord the combination the full status of an

independent letter in the alphabet. Widely used accented character combinations are

provided as single characters to accommodate interoperation with pervasive practice

in legacy encodings. Combining diacritical marks can express these and all other

accented letters as combining character sequences.

In the Unicode Standard, all diacritical marks are encoded in sequence after the base

characters to which they apply. For more details, see the subsection “Combining

Diacritical Marks” in Section 7.9, Combining Marks, and also Section 2.11, Combining

Characters.

 Some characters have alternative representations, although they

have a common semantic. In such cases, a preferred glyph is chosen to represent the

character in the code charts, even though it may not be the form used under all

circumstances. Some Latin examples to illustrate this point are provided in Figure 7-1

and discussed in the text that follows.

7.1 Latin

Languages.

Diacritical Marks.

Alternative Glyphs.

Europe-I 355 7.1 Latin

Common typographical variations of basic Latin letters include the open- and closed-

loop forms of the lowercase letters “a” and “g”, as shown in the first example in

Figure 7-1. In ordinary Latin text, such distinctions are merely glyphic alternates for

the same characters; however, phonetic transcription systems, such as IPA, often

make systematic distinctions between these forms.

 The shape and placement of diacritical marks can

be subject to considerable variation that might surprise a reader unfamiliar with such

distinctions. For example, when Czech is typeset, U+010F LATIN SMALL LETTER D

WITH CARON and U+0165 LATIN SMALL LETTER T WITH CARON are often rendered

by glyphs with an apostrophe instead of with a caron, commonly known as a háček.

See the second example in Figure 7-1. In Slovak, this use also applies to U+013E

LATIN SMALL LETTER L WITH CARON and U+013D LATIN CAPITAL LETTER L WITH

CARON. The use of an apostrophe can avoid some line crashes over the ascenders of

those letters and so result in better typography. In typewritten or handwritten docu‐

ments, or in didactic and pedagogical material, glyphs with háčeks are preferred.

Characters with cedillas, commas or ogoneks below often are subject to variable

typographical usage, depending on the availability and quality of fonts used, the tech‐

nology, the era and the geographic area. Various hooks, cedillas, commas, and squig‐

gles may be substituted for the nominal forms of these diacritics below, and even the

directions of the hooks may be reversed.

The character U+0327 COMBINING CEDILLA can be displayed by a wide variety of

forms, including cedillas and commas below. This variability also occurs for the

precomposed characters whose decomposition includes U+0327. For text in some

languages, a specific form is typically preferred. In particular, Latvian and Romanian

prefer a comma below, while a cedilla is preferred in Turkish and Marshallese. These

language-specific preferences are discussed in more detail in the text that follows.

Also, as a result of legacy encodings and practices, and the mapping of those legacy

encodings to Unicode, some particular shapes for U+0327 COMBINING CEDILLA are

preferred in the absence of language or locale context. A rendering as cedilla is

Figure 7-1. Alternative Glyphs in Latin

Variations in Diacritical Marks.

Europe-I 356 7.1 Latin

preferred for the letters listed in the first column, while rendering as comma below is

preferred for those listed in the second column of Table 7-1.

Cedilla Comma Below

c, e, h, s d, g, k, l, n, r, t

 There is specific variation involved in the placement and shapes of

cedillas on Latvian characters. This is illustrated by the Latvian letter U+0123 LATIN

SMALL LETTER G WITH CEDILLA, as shown in example 3 in Figure 7-1. In good

Latvian typography, this character is always shown with a rotated comma over the g,

rather than a cedilla below the g, because of the typographical design and layout

issues resulting from trying to place a cedilla below the descender loop of the g. Poor

Latvian fonts may substitute an acute accent for the rotated comma, and handwritten

or other printed forms may actually show the cedilla below the g. The uppercase form

of the letter is always shown with a cedilla, as the rounded bottom of the G poses no

problems for attachment of the cedilla.

Other Latvian letters with a cedilla below (U+0137 LATIN SMALL LETTER K WITH

CEDILLA, U+0146 LATIN SMALL LETTER N WITH CEDILLA, and U+0157 LATIN SMALL

LETTER R WITH CEDILLA) always prefer a glyph with a floating comma below, as

there is no proper attachment point for a cedilla at the bottom of the base form.

 The Latin letters s and t

with comma below or with cedilla diacritics pose particular interpretation issues for

Turkish and Romanian data, both in legacy character sets and in the Unicode Stan‐

dard. Legacy character sets generally include a single form for these characters.

While the formal interpretation of legacy character sets is that they contain only one

of the forms, in practice this single character has been used to represent any of the

forms. For example, 0xBA in ISO 8859-2 is formally defined as a lowercase s with

cedilla, but has been used to represent a lowercase s with comma below for Romanian.

The Unicode Standard provides unambiguous representations for all of the forms, for

example, U+0219 LATIN SMALL LETTER S WITH COMMA BELOW versus U+015F

LATIN SMALL LETTER S WITH CEDILLA. In modern usage, the preferred representa‐

tion of Romanian text is with U+0219 LATIN SMALL LETTER S WITH COMMA

BELOW, while Turkish data is represented with U+015F LATIN SMALL LETTER S

WITH CEDILLA.

However, due to the prevalence of legacy implementations, a large amount of Roma‐

nian data will contain U+015F LATIN SMALL LETTER S WITH CEDILLA or the corre‐

sponding code point 0xBA in ISO 8859-2. When converting data represented using

ISO 8859-2, 0xBA should be mapped to the appropriate form. When processing

Romanian Unicode data, implementations should treat U+0219 LATIN SMALL

Table 7-1. Preferred Rendering of Cedilla versus Comma Below

Latvian Cedilla.

Cedilla and Comma Below in Turkish and Romanian.

Europe-I 357 7.1 Latin

LETTER S WITH COMMA BELOW and U+015F LATIN SMALL LETTER S WITH

CEDILLA as equivalent.

 The characters U+0130 LATIN CAPITAL LETTER I WITH

DOT ABOVE and U+0131 LATIN SMALL LETTER DOTLESS I (used primarily in Turkish)

are assumed to take ASCII “i” and “I”, respectively, as their case alternates. This

mapping makes the corresponding reverse mapping language-specific; mapping in

both directions requires special attention from the implementer (see Section 5.18,

Case Mappings).

 A dotted (normal) i or j followed by some common nonspacing

marks above loses the dot in rendering. Thus, in the word naïve, the ï could be

spelled with i + diaeresis. A dotted-i is not equivalent to a Turkish dotless-i + overdot,

nor are other cases of accented dotted-i equivalent to accented dotless-i (for example,

i + ¨ ≠ ı + ¨). The same pattern is used for j. Dotless-j is used in the

Landsmålsalfabet, where it does not have a case pair.

To express the forms sometimes used in the Baltic (where the dot is retained under a

top accent in dictionaries), use i + overdot + accent (see Figure 7-2).

All characters that use their dot in this manner have the Soft_Dotted property in

Unicode.

 In the modern Vietnamese alphabet, there are 12 vowel letters and 5

tone marks (see Figure 7-3). Normalization Form C represents the combination of

vowel letter and tone mark as a single unit—for example, U+1EA8 LATIN CAPITAL

LETTER A WITH CIRCUMFLEX AND HOOK ABOVE. Normalization Form D decom‐

poses this combination into the combining character sequence, such as <U+0041,

U+0302, U+0309>. Some widely used implementations prefer storing the vowel

letter and the tone mark separately.

Exceptional Case Pairs.

Diacritics on i and j.

Figure 7-2. Diacritics on i and j

Vietnamese.

Figure 7-3. Vietnamese Letters and Tone Marks

Europe-I 358 7.1 Latin

The Vietnamese vowels and other letters are found in the Basic Latin, Latin-1 Supple‐

ment, and Latin Extended-A blocks. Additional precomposed vowels and tone marks

are found in the Latin Extended Additional block.

The characters U+0300 COMBINING GRAVE ACCENT, U+0309 COMBINING HOOK

ABOVE, U+0303 COMBINING TILDE, U+0301 COMBINING ACUTE ACCENT, and

U+0323 COMBINING DOT BELOW should be used in representing the Vietnamese

tone marks. The characters U+0340 COMBINING GRAVE TONE MARK and U+0341

COMBINING ACUTE TONE MARK have canonical equivalences to U+0300 COMBINING

GRAVE ACCENT and U+0301 COMBINING ACUTE ACCENT, respectively; they are not

recommended for use in representing Vietnamese tones, despite the presence of tone

mark in their character names.

 Unicode follows ISO/IEC 8859-1 in the layout of Latin letters up to

U+00FF. ISO/IEC 8859-1, in turn, is based on older standards—among others, ASCII

(ANSI X3.4), which is identical to ISO/IEC 646:1991-IRV. Like ASCII, ISO/IEC 8859-1

contains Latin letters, punctuation signs, and mathematical symbols. These addi‐

tional characters are widely used with scripts other than Latin. The descriptions of

these characters are found in Chapter 6, Writing Systems and Punctuation, and

Chapter 22, Symbols.

The Latin Extended-A block includes characters contained in ISO/IEC 8859—Part 2.

Latin alphabet No. 2, Part 3. Latin alphabet No. 3, Part 4. Latin alphabet No. 4, and

Part 9. Latin alphabet No. 5. Many of the other graphic characters contained in these

standards, such as punctuation, signs, symbols, and diacritical marks, are already

encoded in the Latin-1 Supplement block. Other characters from these parts of ISO/

IEC 8859 are encoded in other blocks, primarily in the Spacing Modifier Letters block

(U+02B0..U+02FF) and in the character blocks starting at and following the General

Punctuation block. The Latin Extended-A block also covers additional characters

from ISO/IEC 6937.

The Latin Extended-B block covers, among others, characters in ISO 6438 Documen‐

tation—African coded character set for bibliographic information interchange,

Pinyin Latin transcription characters from the People’s Republic of China national

standard GB 2312 and from the Japanese national standard JIS X 0212, and Sami char‐

acters from ISO/IEC 8859 Part 10. Latin alphabet No. 6.

The characters in the IPA block are taken from the 1989 revision of the International

Phonetic Alphabet, published by the International Phonetic Association. Extensions

from later IPA sources have also been added.

 For other Latin-derived characters, see Letterlike Symbols

(U+2100..U+214F), Currency Symbols (U+20A0..U+20CF), Number Forms

(U+2150..U+218F), Enclosed Alphanumerics (U+2460..U+24FF), CJK Compatibility

Standards.

Related Characters.

Europe-I 359 7.1 Latin

(U+3300..U+33FF), Fullwidth Forms (U+FF21..U+FF5A), and Mathematical

Alphanumeric Symbols (U+1D400..U+1D7FF).

Only a small fraction of the languages written with the Latin script can be written

entirely with the basic set of 26 uppercase and 26 lowercase Latin letters contained in

this block. The 26 basic letter pairs form the core of the alphabets used by all the

other languages that use the Latin script. A stream of text using one of these alpha‐

bets would therefore intermix characters from the Basic Latin block and other Latin

blocks.

Occasionally a few of the basic letter pairs are not used to write a language. For

example, Italian does not use “j” or “w”.

The Latin-1 supplement extends the basic 26 letter pairs of ASCII by providing addi‐

tional letters for the major languages of Europe listed in the next paragraph.

 The languages supported by the Latin-1 supplement include Catalan,

Danish, Dutch, Faroese, Finnish, Flemish, German, Icelandic, Irish, Italian, Norwe‐

gian, Portuguese, Spanish, and Swedish.

U+00AA FEMININE ORDINAL INDICATOR and U+00BA MASCULINE

ORDINAL INDICATOR can be depicted with an underscore, but many modern fonts

show them as superscripted Latin letters with no underscore. In sorting and

searching, these characters should be treated as weakly equivalent to their Latin

character equivalents.

The Latin Extended-A block contains a collection of letters that, when added to the

letters contained in the Basic Latin and Latin-1 Supplement blocks, allow for the

representation of most European languages that employ the Latin script. Many other

languages can also be written with the characters in this block. Most of these charac‐

ters are equivalent to precomposed combinations of base character forms and

combining diacritical marks. These combinations may also be represented by means

of composed character sequences. See Section 2.11, Combining Characters, and

Section 7.9, Combining Marks.

 The Latin Extended-A block contains five compatibility

digraphs, encoded for compatibility with ISO/IEC 6937:1984. Two of these characters,

U+0140 LATIN SMALL LETTER L WITH MIDDLE DOT and its uppercase version, were

originally encoded in ISO/IEC 6937 for support of Catalan. In current conventions,

7.1.1 Letters of Basic Latin: U+0041–U+007A

7.1.2 Letters of the Latin-1 Supplement: U+00C0–U+00FE

Languages.

Ordinals.

7.1.3 Latin Extended-A: U+0100–U+017F

Compatibility Digraphs.

Europe-I 360 7.1 Latin

the representation of this digraphic sequence in Catalan simply uses a sequence of an

ordinary “l” and U+00B7 MIDDLE DOT.

Another pair of characters, U+0133 LATIN SMALL LIGATURE IJ and its uppercase

version, was provided to support the digraph “ij” in Dutch, often termed a “ligature”

in discussions of Dutch orthography. When adding intercharacter spacing for line

justification, the “ij” is kept as a unit, and the space between the i and j does not

increase. In titlecasing, both the i and the j are uppercased, as in the word

“IJsselmeer.” Using a single code point might simplify software support for such

features; however, because a vast amount of Dutch data is encoded without this

digraph character, under most circumstances one will encounter an <i, j> sequence.

Finally, U+0149 LATIN SMALL LETTER N PRECEDED BY APOSTROPHE was encoded

for use in Afrikaans. The character is deprecated, and its use is strongly discouraged.

In nearly all cases it is better represented by a sequence of an apostrophe followed by

“n”.

 Most languages supported by this block also require the concurrent use

of characters contained in the Basic Latin and Latin-1 Supplement blocks. When

combined with these two blocks, the Latin Extended-A block supports Afrikaans,

Basque, Breton, Croatian, Czech, Esperanto, Estonian, French, Frisian, Greenlandic,

Hungarian, Latin, Latvian, Lithuanian, Maltese, Polish, Provençal, Rhaeto-Romanic,

Romanian, Romany, Sámi, Slovak, Slovenian, Sorbian, Turkish, Welsh, and many

others.

The Latin Extended-B block contains letterforms used to extend Latin scripts to

represent additional languages. It also contains phonetic symbols not included in the

International Phonetic Alphabet (see the IPA Extensions block, U+0250..U+02AF).

 The characters are arranged in a nominal alphabetical order, followed

by a small collection of Latinate forms. Uppercase and lowercase pairs are placed

together where possible, but in many instances the other case form is encoded at

some distant location and so is cross-referenced. Variations on the same base letter

are arranged in the following order: turned, inverted, hook attachment, stroke exten‐

sion or modification, different style, small cap, modified basic form, ligature, and

Greek derived.

 Serbo-Croatian is a single

language with paired alphabets: a Latin script (Croatian) and a Cyrillic script

(Serbian). A set of compatibility digraph codes is provided for one-to-one translitera‐

tion. There are two potential uppercase forms for each digraph, depending on

whether only the initial letter is to be capitalized (titlecase) or both (all uppercase).

The Unicode Standard offers both forms so that software can convert one form to the

Languages.

7.1.4 Latin Extended-B: U+0180–U+024F

Arrangement.

Croatian Digraphs Matching Serbian Cyrillic Letters.

Europe-I 361 7.1 Latin

other without changing font sets. The appropriate cross references are given for the

lowercase letters.

 The Chinese standard GB 2312, the Japa‐

nese standard JIS X 0212, and some other standards include codes for Pinyin, which

is used for Latin transcription of Mandarin Chinese. Most of the letters used in

Pinyin romanization are already covered in the preceding Latin blocks. The group of

16 characters provided here completes the Pinyin character set specified in GB 2312

and JIS X 0212.

 A number of characters in this block are uppercase forms of characters

whose lowercase forms are part of some other grouping. Many of these characters

came from the International Phonetic Alphabet; they acquired uppercase forms

when they were adopted into Latin script-based writing systems. Occasionally,

however, alternative uppercase forms arose in this process. In some instances,

research has shown that alternative uppercase forms are merely variants of the same

character. If so, such variants are assigned a single Unicode code point, as is the case

of U+01B7 LATIN CAPITAL LETTER EZH. But when research has shown that two

uppercase forms are actually used in different ways, then they are given different

codes; such is the case for U+018E LATIN CAPITAL LETTER REVERSED E and U+018F

LATIN CAPITAL LETTER SCHWA. In this instance, the shared lowercase form is copied

to enable unique case-pair mappings: U+01DD LATIN SMALL LETTER TURNED E is a

copy of U+0259 LATIN SMALL LETTER SCHWA.

For historical reasons, the names of some case pairs differ. For example, U+018E

LATIN CAPITAL LETTER REVERSED E is the uppercase of U+01DD LATIN SMALL

LETTER TURNED E—not of U+0258 LATIN SMALL LETTER REVERSED E. For default

case mappings of Unicode characters, see Section 4.2, Case.

 A number of letters used with the Latin script are caseless—for

example, the caseless glottal stop at U+0294 and U+01BB LATIN LETTER TWO WITH

STROKE, and the various letters denoting click sounds. Caseless letters retain their

shape when uppercased. When titlecasing words, they may also act transparently;

that is, if they occur in the leading position, the next following cased letter may be

uppercased instead.

Over the last several centuries, the trend in typographical development for the Latin

script has tended to favor the eventual introduction of case pairs. See the following

discussion of the glottal stop. The Unicode Standard may encode additional upper‐

case characters in such instances. However, for reasons of stability, the standard will

never add a new lowercase form for an existing uppercase character. See also “Case‐

less Matching” in Section 5.18, Case Mappings.

 There are two patterns of usage for the glottal stop in the Unicode Stan‐

dard. U+0294 LATIN LETTER GLOTTAL STOP is a caseless letter used in IPA. It is also

Pinyin Diacritic–Vowel Combinations.

Case Pairs.

Caseless Letters.

Glottal Stop.

Europe-I 362 7.1 Latin

widely seen in language orthographies based on IPA or Americanist phonetic usage,

in those instances where no casing is apparent for glottal stop. Such orthographies

may avoid casing for glottal stop to the extent that when titlecasing strings, a word

with an initial glottal stop may have its second letter uppercased instead of the first

letter.

In a small number of orthographies for languages of northwestern Canada, and in

particular, for Chipewyan, Dogrib, and Slavey, case pairs have been introduced for

glottal stop. For these orthographies, the cased glottal stop characters should be used:

U+0241 LATIN CAPITAL LETTER GLOTTAL STOP and U+0242 LATIN SMALL

LETTER GLOTTAL STOP.

The glyphs for the glottal stop are somewhat variable and overlap to a certain extent.

The glyph shown in the code charts for U+0294 LATIN LETTER GLOTTAL STOP is a

cap-height form as specified in IPA, but the same character is often shown with a

glyph that resembles the top half of a question mark and that may or may not be cap

height. U+0241 LATIN CAPITAL LETTER GLOTTAL STOP, while shown with a larger

glyph in the code charts, often appears identical to U+0294. U+0242 LATIN SMALL

LETTER GLOTTAL STOP is a small form of U+0241.

Various small, raised hook- or comma-shaped characters are often substituted for a

glottal stop—for instance, U+02BC MODIFIER LETTER APOSTROPHE, U+02BB

MODIFIER LETTER TURNED COMMA, U+02C0 MODIFIER LETTER GLOTTAL STOP, or

U+02BE MODIFIER LETTER RIGHT HALF RING. U+02BB, in particular, is used in

Hawaiian orthography as the ʻokina.

 Historically there have been a number of conventions for writing click

consonants, using either the Latin alphabet or special symbols. Three systems are

notable:

1. The three Latin letters c q x used for Xhosa orthography. These were adopted

to write related Bantu languages, as well as to non-Bantu languages such as

Juǀʼhoansi, Naro, Sandawe, and Hadza, sometimes with ç added for palatal

clicks.

2. The old-style IPA letters ʇ ʖ ʗ ʞ. These were extended by various authors with

the additional letters ʘ ψ, of which ʘ was adopted by the IPA, but they

remained in minority usage and apart from ʘ were abandoned by the IPA in

1989.

3. The Lepsius letters. These originated in a simple bar [ǀ] that developed into the

letters [ǀ] [ǁ] [ǃ] [ǂ] of current IPA practice, as defined by the 1999 Handbook and

subsequent IPA chart updates. These letters are used in the orthographies of the

majority of Khoisan languages.

These three conventions are summarized in Table 7-2. The column headers for place

of articulation use the terms currently favored by linguists.

Click Letters.

•

•

•

Europe-I 363 7.1 Latin

Articulation bilabial dental alveolar lateral palatal retroflex

Latin (Xhosa)
c
0063

q
0071

x
0078

ç
00E7

Extended old IPA
ʘ
0298

ʇ
0287

ʗ
0297

ʖ
0296 1DF0B

ψ
03C8

Current IPA
ʘ
0298

ǀ
01C0

ǃ
01C3

ǁ
01C1

ǂ
01C2 1DF0A

The history of terminology for the place of articulation of clicks listed in the “alve‐

olar” and “palatal” columns has been complicated and confusing. The names of the

Unicode characters for these clicks inherited an earlier understanding of articulation.

Thus U+01C2 LATIN LETTER ALVEOLAR CLICK is currently analyzed in IPA as

having a palatoalveolar articulation and is referred to as the palatal click, whereas

U+01C3 LATIN LETTER RETROFLEX CLICK is analyzed as having a (post)alveolar

articulation and is referred to as the alveolar click. The Unicode character names are

immutable identifiers and cannot be updated to track the changing terminology of

articulatory phonetics.

Former Latin letters for palatal clicks are U+0076 v and U+0254 ɔ. The ad hoc

symbol U+203C DOUBLE EXCLAMATION MARK has been used for retroflex clicks in

what is otherwise IPA transcription. The dedicated letter U+1DF0A LATIN LETTER

RETROFLEX CLICK WITH RETROFLEX HOOK is “implicit” in the IPA but is not

included on the summary IPA chart. Occasionally U+2980 TRIPLE VERTICAL BAR

DELIMITER is used for a second lateral click. The retired “velar” click letter

U+029E LATIN SMALL LETTER TURNED K has seen use in the 21st century for a

paralexical back-released click.

These letters take IPA diacritics or form multigraphs to indicate whether the click

consonant is nasal, voiced, aspirated, glottalized, and so forth. In language orthogra‐

phies, only a couple of the accompanying letters require any clarification—specifi‐

cally U+0294 ʔ in the early 20th century and its modern equivalent U+02BC MODI‐

FIER LETTER APOSTROPHE or, rarely, U+02EE MODIFIER LETTER DOUBLE APOS‐

TROPHE.

A character occasionally used for a generic click consonant is U+A7B0 LATIN

CAPITAL LETTER TURNED K. Sometimes U+1DF10 LATIN LETTER SMALL CAPITAL

TURNED K is substituted to provide more room for combining IPA diacritics.

The IPA Extensions block contains primarily the unique symbols of the International

Phonetic Alphabet, which is a standard system for indicating specific speech sounds.

The IPA was first introduced in 1886 and has undergone occasional revisions of

Table 7-2. Alternative Systems of Click Letters

7.1.5 IPA Extensions: U+0250–U+02AF

Europe-I 364 7.1 Latin

https://www.internationalphoneticassociation.org/content/ipa-chart

content and usage since that time. The Unicode Standard covers all single symbols

and all diacritics in the IPA revision of 1999, as well as a few symbols in former IPA

usage that are no longer currently sanctioned. A few symbols have been added to this

block that are part of the transcriptional practices of Sinologists, Americanists, and

other linguists. Some of these practices have usages independent of the IPA and may

use characters from other Latin blocks rather than IPA forms. Other late additions to

IPA, as well as a number of nonstandard or obsolete phonetic symbols are located in

the Latin Extended-B or Latin Extended-C blocks.

An essential feature of IPA is the use of combining diacritical marks. IPA diacritical

mark characters are coded in the Combining Diacritical Marks block,

U+0300..U+036F. In IPA, diacritical marks can be freely applied to base form letters

to indicate the fine degrees of phonetic differentiation required for precise recording

of different languages.

 The International Phonetic Association standard considers IPA to be a

separate alphabet, so it includes the entire Latin lowercase alphabet a–z, a number of

extended Latin letters such as U+0153 LATIN SMALL LIGATURE OE, and a few

Greek letters and other symbols as separate and distinct characters. In contrast, the

Unicode Standard does not duplicate either the Latin lowercase letters a–z or other

Latin or Greek letters in encoding IPA. Unlike other character standards referenced

by the Unicode Standard, IPA constitutes an extended alphabet and phonetic tran‐

scriptional standard, rather than a character encoding standard.

 The IPA characters are unified as much as possible with other letters,

albeit not with nonletter symbols such as U+222B INTEGRAL. The IPA characters

have also been adopted into the Latin-based alphabets of many written languages,

such as some used in Africa. It is futile to attempt to distinguish a transcription from

an actual alphabet in such cases. Therefore, many IPA characters are found outside

the IPA Extensions block. IPA characters that are not found in the IPA Extensions

block are listed as cross references at the beginning of the character names list for

this block.

 In a few cases IPA practice has, over time, produced alternate forms,

such as U+0269 “ ” LATIN SMALL LETTER IOTA versus U+026A “ ” LATIN LETTER

SMALL CAPITAL I. The Unicode Standard provides separate encodings for the two

forms because they are used in a meaningfully distinct fashion.

 IPA does not sanction case distinctions; in effect, its phonetic symbols

are all lowercase. When IPA symbols are adopted into a particular alphabet and used

by a given written language (as has occurred, for example, in Africa), they acquire

uppercase forms. Because these uppercase forms are not themselves IPA symbols,

they are generally encoded in the Latin Extended-B block (or other Latin extension

blocks) and are cross-referenced with the IPA names list.

Standards.

Unifications.

IPA Alternates.

Case Pairs.

Europe-I 365 7.1 Latin

 IPA includes typographic variants of certain Latin and

Greek letters that would ordinarily be considered variations of font style rather than

of character identity, such as SMALL CAPITAL letterforms. Examples include a typo‐

graphic variant of the Greek letter phi φ and the borrowed letter Greek iota ι, which

has a unique Latin uppercase form. These forms are encoded as separate characters

in the Unicode Standard because they have distinct semantics in plain text.

 IPA officially sanctions six digraph ligatures used in

transcription of coronal affricates. These are encoded at U+02A3..U+02A8. The IPA

digraph ligatures are explicitly defined in IPA and have possible semantic values that

make them not simply rendering forms. For example, while U+02A6 LATIN SMALL

LETTER TS DIGRAPH is a transcription for the sounds that could also be transcribed in

IPA as “ts” <U+0074, U+0073>, the choice of the digraph ligature may be the result

of a deliberate distinction made by the transcriber regarding the systematic phonetic

status of the affricate. The choice of whether to ligate cannot be left to rendering soft‐

ware based on the font available. This ligature also differs in typographical design

from the “ts” ligature found in some old-style fonts.

 The IPA Extensions block is arranged in approximate alphabetical

order according to the Latin letter that is graphically most similar to each symbol.

This order has nothing to do with a phonetic arrangement of the IPA letters.

Most of the characters in the first of the two adjacent blocks comprising the phonetic

extensions are used in the Uralic Phonetic Alphabet (UPA; also called Finno-Ugric

Transcription, FUT), a highly specialized system that has been used by Uralicists

globally for more than 100 years. Originally, it was chiefly used in Finland, Hungary,

Estonia, Germany, Norway, Sweden, and Russia, but it is now known and used

worldwide, including in North America and Japan. Uralic linguistic description,

which treats the phonetics, phonology, and etymology of Uralic languages, is also

used by other branches of linguistics, such as Indo-European, Turkic, and Altaic

studies, as well as by other sciences, such as archaeology.

A very large body of descriptive texts, grammars, dictionaries, and chrestomathies

exists, and continues to be produced, using this system.

The UPA makes use of approximately 258 characters, some of which are encoded in

the Phonetic Extensions block; others are encoded in the other Latin blocks and in

the Greek and Cyrillic blocks. The UPA takes full advantage of combining characters.

It is not uncommon to find a base letter with three diacritics above and two below.

 Small capitalization in the UPA means voiceless‐

ness of a normally voiced sound. Small capitalization is also used to indicate certain

either voiceless or half-voiced consonants. Superscripting indicates very short schwa

Typographic Variants.

Affricate Digraph Ligatures.

Arrangement.

7.1.6 Phonetic Extensions: U+1D00–U+1D7F

Typographic Features of the UPA.

Europe-I 366 7.1 Latin

vowels or transition vowels, or in general very short sounds. Subscripting indicates

co-articulation caused by the preceding or following sound. Rotation (turned letters)

indicates reduction; sideways (that is, 90 degrees counterclockwise) rotation is used

where turning (180 degrees) might result in an ambiguous representation.

UPA phonetic material is generally represented with italic glyphs, so as to separate it

from the surrounding text.

 The remaining characters in the phonetics extension

range U+1D6C..U+1DBF are derived from a wide variety of sources, including many

technical orthographies developed by SIL linguists, as well as older historic sources.

All attested phonetic characters showing struckthrough tildes, struckthrough bars,

and retroflex or palatal hooks attached to the basic letter have been separately

encoded here. Although separate combining marks exist in the Unicode Standard for

overstruck diacritics and attached retroflex or palatal hooks, earlier encoded IPA

letters such as U+0268 LATIN SMALL LETTER I WITH STROKE and U+026D LATIN

SMALL LETTER L WITH RETROFLEX HOOK have never been given decomposition

mappings in the standard. For consistency, all newly encoded characters are handled

analogously to the existing, more common characters of this type and are not given

decomposition mappings. Because these characters do not have decompositions, they

require special handling in some circumstances. See the discussion of single-script

confusables in Unicode Technical Standard #39, “Unicode Security Mechanisms.”

The Phonetic Extensions Supplement block also contains 37 superscript modifier

letters. These complement the much more commonly used superscript modifier

letters found in the Spacing Modifier Letters block.

U+1D77 LATIN SMALL LETTER TURNED G and U+1D78 MODIFIER LETTER CYRILLIC

EN are used in Caucasian linguistics. U+1D79 LATIN SMALL LETTER INSULAR G is

used in older Irish phonetic notation. It is to be distinguished from a Gaelic style

glyph for U+0067 LATIN SMALL LETTER G.

U+1D7A LATIN SMALL LETTER TH WITH STRIKETHROUGH is a

digraphic notation commonly found in some English-language dictionaries, repre‐

senting the voiceless (inter)dental fricative, as in thin. While this character is clearly a

digraph, the obligatory strikethrough across two letters distinguishes it from a “th”

digraph per se, and there is no mechanism involving combining marks that can easily

be used to represent it. A common alternative glyphic form for U+1D7A uses a hori‐

zontal bar to strike through the two letters, instead of a diagonal stroke.

The characters in this block are mostly precomposed combinations of Latin letters

with one or more general diacritical marks. With the exception of U+1E9A LATIN

Other Phonetic Extensions.

Digraph for th.

7.1.7 Latin Extended Additional: U+1E00–U+1EFF

Europe-I 367 7.1 Latin

SMALL LETTER A WITH RIGHT HALF RING, each of the precomposed characters

contained in this block is a canonical decomposable character and may alternatively

be represented with a base letter followed by one or more general diacritical mark

characters found in the Combining Diacritical Marks block.

The non-decomposable characters in this block, particularly in the range

U+1EFA..U+1EFF, are mostly specialized letters used in Latin medieval manuscript

traditions. These characters complement the larger set of medieval manuscript char‐

acters encoded in the Latin Extended-D block.

U+1E9E LATIN CAPITAL LETTER SHARP S is for use in German. It

is limited to specialized circumstances, such as uppercased strings in shop signage

and book titles. The casing behavior of this character is unusual, as the recom‐

mended uppercase form for most casing operations on U+00DF LATIN SMALL

LETTER SHARP S continues to be “SS”. See the discussion of tailored casing in

Section 3.13, Default Case Algorithms, for more about the casing of this character.

 A portion of this block

(U+1EA0.. U+1EF9) comprises vowel letters of the modern Vietnamese alphabet

(quốc ngữy) combined with a diacritical mark that denotes the phonemic tone that

applies to the syllable.

This small block of additional Latin characters contains orthographic Latin additions

for minority languages, a few historic Latin letters, and further extensions for

phonetic notations, particularly UPA.

 The Latin orthography for the Uyghur language was influenced by wide‐

spread conventions for extension of the Cyrillic script for representing Central Asian

languages. In particular, a number of Latin characters were extended with a Cyrillic-

style descender diacritic to create new letters for use with Uyghur.

 The Roman emperor Claudius invented three additional letters

for use with the Latin script. Those letters saw limited usage during his reign, but

were abandoned soon afterward. The half h letter is encoded in this block. The other

two letters are encoded in other blocks: U+2132 TURNED CAPITAL F and U+2183

ROMAN NUMERAL REVERSED ONE HUNDRED (unified with the Claudian letter

reversed c). Claudian letters in inscriptions are uppercase only, but may be tran‐

scribed by scholars in lowercase.

This block contains a variety of historic letters for the Latin script and other

uncommon phonetic and orthographic extensions to the script.

Capital Sharp S.

Vietnamese Vowel Plus Tone Mark Combinations.

7.1.8 Latin Extended-C: U+2C60–U+2C7F

Uyghur.

Claudian Letters.

7.1.9 Latin Extended-D: U+A720–U+A7FF

Europe-I 368 7.1 Latin

 The letters in the range U+A722..U+A725 are

specialized letters used for the Latin transliteration of alef and ain in ancient Egyp‐

tian texts. Their forms are related to the modifier letter half rings (U+02BE..U+02BF)

which are sometimes used in Latin transliteration of Arabic.

U+A7BD LATIN SMALL LETTER GLOTTAL I is another specialized letter, used for the

Latin transliteration of yod in ancient Egyptian texts. It is also widely referred to as

Egyptological yod. When used in an Egyptian transliteration context, this character is

always displayed in italic form. An uppercase form may also occur in transliterations

that follow Latin casing conventions. The glottal i also occurs in Latin transliteration

of Ugaritic texts, along with the related glottal a and glottal u in this range,

U+A7BA..U+A7BF. Prior to Version 12.0, users employed combinations of the base

letters i, a, and u with combining diacritics, such as U+0313 COMBINING COMMA

ABOVE, U+0357 COMBINING RIGHT HALF RING ABOVE, or U+0486 COMBINING

CYRILLIC PSILI PNEUMATA. Use of the glottal letters in the range U+A7BA..U+A7BF

is encouraged to provide consistent representation and better typographic results.

 The letters in the range U+A726..U+A72F are obsolete

historic letters seen only in a few early Spanish manuscripts of Mayan languages.

They are not used in modern Mayan orthographies.

 The letters in the ranges U+A730..U+A778 and

U+A7C2..U+A7C3 occur in a variety of European medievalist manuscript traditions.

None of these have any modern orthographic usage. A number of these letterforms

constitute abbreviations, often for common Latin particles or suffixes.

 The Insular manuscript tradition was current in

Anglo-Saxon England and Gaelic Ireland throughout the early Middle Ages. The

letters d, f, g, r, s, and t had unique shapes in that tradition, different from the

Carolingian letters used in the modern Latin script. Although these letters can be

considered variant forms of ordinary Latin letters, they are separately encoded

because of their use by antiquarian Edward Lhuyd in his 1707 work Archæologia

Britannica, which described the Late Cornish language in a phonetic alphabet using

these Insular characters. Other specialists may make use of these letters contrastively

in Old English or Irish manuscript contexts or in secondary material discussing such

manuscripts.

 The letters and modifier letters in the range

U+A788..U+A78C occur in modern orthographies of a few small languages of Africa,

Mexico, and New Guinea. Several of these characters were based on punctuation

characters originally, so their shapes are confusingly similar to ordinary ASCII punc‐

tuation. Because of this potential confusion, their use is not generally recommended

outside the specific context of the few orthographies already incorporating them.

Egyptological Transliteration.

Historic Mayan Letters.

European Medievalist Letters.

Insular and Celticist Letters.

Orthographic Letter Additions.

Europe-I 369 7.1 Latin

The modern orthographies of the Luiseño and Cupeño language communities in

California use U+A7CC LATIN CAPITAL LETTER S WITH DIAGONAL STROKE and

U+A7CD LATIN SMALL LETTER S WITH DIAGONAL STROKE. The shapes of these

characters are distinct from those used for U+A7A8 LATIN CAPITAL LETTER S WITH

OBLIQUE STROKE and U+A7A9 LATIN SMALL LETTER S WITH OBLIQUE STROKE,

which are used instead for an old Lower Sorbian orthography.

Several Wakashan and Salishan languages of North America have bicameral

orthographies. To accommodate casing practices in those orthographies, two Latin

lambda characters are encoded in this block: U+A7DA LATIN CAPITAL LETTER

LAMBDA and U+A7DB LATIN SMALL LETTER LAMBDA. Additionally, U+A7DC

LATIN CAPITAL LETTER LAMBDA WITH STROKE is the uppercase form of U+019B

LATIN SMALL LETTER LAMBDA WITH STROKE. The glyphs for the uppercase Latin

lambda and lambda with stroke characters are very distinct from that of the Greek

uppercase lambda, as shown below. Glyphs for the lowercase Latin lambda charac‐

ters U+A7DB and U+019B may also vary from the Greek shapes.

Greek lambda U+039B U+03BB

Latin lambda U+A7DA U+A7DB

Latin lambda with stroke U+A7DC U+019B

In these North American orthographies, as well as some other orthographies which

are not bicameral, the Latin lambda with stroke characters, which represent a lateral

affricate [tƚ], can also be glottalized. Glottalization is typically indicated with a raised

comma. The recommended mark to represent this raised comma can vary, based on

local orthographical practice and stylistic conventions, and may also be affected by

the presence of other marks above the base letters, such as a hacek. Some examples

are shown below.

U+0313 U+0315 U+02BC U+2019

alveolar stop t ̓ t̕ tʼ t’

palatoalveolar affricate č̓ č̕ čʼ č’

lateral affricate ƛ̓ ƛ̕ ƛʼ ƛ’

U+A78F LATIN LETTER SINOLOGICAL DOT is a middle dot used in

the sinological tradition to represent a glottal stop. This convention of representing a

glottal stop with a middle dot was introduced by Bernhard Karlgren in the early 20th

century for Middle Chinese reconstructions, and was adopted by other influential

sinologists and Tangutologists. This dot is also used in Latin transliterations of Phags-

pa text.

The representative glyph for U+A78F is larger than a typical middle dot used as

punctuation, to avoid visual confusion with U+00B7 MIDDLE DOT. Use of the sino‐

Sinological Dot.

Europe-I 370 7.1 Latin

logical dot should be limited to the appropriate scholarly contexts; it is not intended

as a letter substitution for other functions of U+00B7 MIDDLE DOT.

 Early, experimental drafts of Pinyin included a number of

Latin letters with retroflex or palatal hooks, for example, U+0282 LATIN SMALL

LETTER S WITH HOOK. These letters were not adopted in standard Pinyin, but are

attested in the early documents and in discussions about the history of Pinyin.

Because Pinyin allows for Latin capitalization conventions, those letters with hooks

also occurred in uppercase forms. The uppercase letters in the range

U+A7C4..U+A7C6 are encoded to represent those uppercase forms of early Pinyin

letters with hooks.

 The letters with strokes in the range U+A7A0..U+A7A9 are for use

in the pre-1921 orthography of Latvian. During the 19th century and early 20th

century, Latvian was usually typeset in a Fraktur typeface. Because Fraktur typefaces

do not work well with detached diacritical marks, the extra letters required for

Latvian were formed instead with overstruck bars. The new orthography introduced

in 1921 replaced these letters with the current Latvian letters with cedilla diacritics.

The barred s letters were also used in Fraktur representation of Lower Sorbian until

about 1950.

 There are a small number of additional Latin

epigraphic letters known from Ancient Roman inscriptions. These letters only

occurred as monumental capitals in the inscriptions, and were not part of the regular

Latin alphabet which later developed case distinctions.

This block contains a number of Latin letters and modifier letters for phonetic tran‐

scription systems. The majority of these are letters specifically associated with the

Böhmer-Ascoli transcription system, more generally known as “Teuthonista.” The

Teuthonista system was extensively used in the 20th century to transcribe Germanic

dialects. Teuthonista or closely related systems were also used in Switzerland and

Italy to transcribe Romance dialects. For related characters, see the Combining

Diacritical Marks Extended block, which contains a number of specialized

combining diacritics for use in Teuthonista.

The Latin Extended-E block also contains a few rarely used letters from other tran‐

scription systems, including conventions used in Sino-Tibetan studies.

The Latin Extended-F block contains modifier letters used in phonetic transcription.

Most of the characters in this block derive from current or retired letters of the Inter‐

national Phonetic Alphabet (IPA) that have been superscripted to indicate secondary

Early Pinyin Letters.

Latvian Letters.

Ancient Roman Epigraphic Letters.

7.1.10 Latin Extended-E: U+AB30–U+AB6F

7.1.11 Latin Extended-F: U+10780–U+107BF

Europe-I 371 7.1 Latin

articulation, as well as lightly or incompletely articulated sounds. This block also

includes a Voice Quality Symbol (VoQS) used in transcribing disordered speech.

This block contains a number of phonetic symbols from extended IPA (extIPA) used

to transcribe disordered speech. The block also includes characters with hooks that

appear in linguistic descriptions. In addition, a set of five click letters created by the

phonetician Douglas Beach are included at U+1DF0B..U+1DF0F.

This range in the Alphabetic Presentation Forms block (U+FB00..U+FB4F) contains

several common Latin ligatures, which occur in legacy encodings. Whether to use a

Latin ligature is a matter of typographical style as well as a result of the orthograph‐

ical rules of the language. Some languages prohibit ligatures across word boundaries.

In these cases, it is preferable for the implementations to use unligated characters in

the backing store and provide out-of-band information to the display layer where

ligatures may be placed.

Some format controls in the Unicode Standard can affect the formation of ligatures.

See “Cursive Connection and Ligatures” in Section 23.2, Layout Controls.

7.1.12 Latin Extended-G: U+1DF00–U+1DFFF

7.1.13 Latin Ligatures: U+FB00–U+FB06

Europe-I 372 7.1 Latin

The Greek script is used for writing the Greek language. The Greek script had a

strong influence on the development of the Latin, Cyrillic, and Coptic scripts.

The Greek script is written in linear sequence from left to right with the frequent use

of nonspacing marks. There are two styles of such use: monotonic, which uses a

single mark called tonos, and polytonic, which uses multiple marks. Greek letters

come in uppercase and lowercase pairs. Spaces are used to separate words and

provide the primary line breaking opportunities. Archaic Greek texts do not use

spaces.

 The Unicode encoding of Greek is based on ISO/IEC 8859-7, which is

equivalent to the Greek national standard ELOT 928, designed for monotonic Greek.

A number of variant and archaic characters are taken from the bibliographic stan‐

dard ISO 5428.

 Polytonic Greek, used for ancient Greek (classical and Byzantine)

and occasionally for modern Greek, may be encoded using either combining char‐

acter sequences or precomposed base plus diacritic combinations. For the latter, see

the following subsection, “Greek Extended: U+1F00–U+1FFF.”

 Several nonspacing marks commonly used with the Greek

script are found in the Combining Diacritical Marks range (see Table 7-3).

Code Name Alternative Names

U+0300 COMBINING GRAVE ACCENT varia

U+0301 COMBINING ACUTE ACCENT tonos, oxia

U+0304 COMBINING MACRON

U+0306 COMBINING BREVE

U+0308 COMBINING DIAERESIS dialytika

U+0313 COMBINING COMMA ABOVE psili, smooth breathing mark

U+0314 COMBINING REVERSED COMMA ABOVE dasia, rough breathing mark

U+0342 COMBINING GREEK PERISPOMENI circumflex, tilde, inverted breve

U+0343 COMBINING GREEK KORONIS comma above

U+0345 COMBINING GREEK YPOGEGRAMMENI iota subscript

Because the characters in the Combining Diacritical Marks block are encoded by

shape, not by meaning, they are appropriate for use in Greek where applicable. The

7.2 Greek

7.2.1 Greek: U+0370–U+03FF

Standards.

Polytonic Greek.

Nonspacing Marks.

Table 7-3. Nonspacing Marks Used with Greek

Europe-I 373 7.2 Greek

character U+0344 COMBINING GREEK DIALYTIKA TONOS should not be used. The

combination of dialytika plus tonos is instead represented by the sequence <U+0308

COMBINING DIAERESIS, U+0301 COMBINING ACUTE ACCENT>.

Multiple nonspacing marks applied to the same baseform character are encoded in

inside-out sequence. See the general rules for applying nonspacing marks in

Section 2.11, Combining Characters.

The basic Greek accent written in modern Greek is called tonos. It is represented by

an acute accent (U+0301). The shape that the acute accent takes over Greek letters is

generally steeper than that shown over Latin letters in Western European typo‐

graphic traditions, and in earlier editions of this standard was mistakenly shown as a

vertical line over the vowel. Polytonic Greek has several contrastive accents, and the

accent, or tonos, written with an acute accent is referred to as oxia, in contrast to the

varia, which is written with a grave accent.

U+0342 COMBINING GREEK PERISPOMENI may appear as a circumflex , an inverted

breve , a tilde , or occasionally a macron . Because of this variation in form, the

perispomeni was encoded distinctly from U+0303 COMBINING TILDE.

U+0313 COMBINING COMMA ABOVE and U+0343 COMBINING GREEK KORONIS both

take the form of a raised comma over a baseform letter. U+0343 COMBINING GREEK

KORONIS was included for compatibility reasons; U+0313 COMBINING COMMA

ABOVE is the preferred form for general use. Greek uses guillemets for quotation

marks; for Ancient Greek, the quotations tend to follow local publishing practice.

Because of the possibility of confusion between smooth breathing marks and curly

single quotation marks, the latter are best avoided where possible. When either

breathing mark is followed by an acute or grave accent, the pair is rendered side-by-

side rather than vertically stacked.

Accents are typically written above their base letter in an all-lowercase or all-upper‐

case word; they may also be omitted from an all-uppercase word. However, in a title‐

case word, accents applied to the first letter are commonly written to the left of that

letter. This is a matter of presentation only—the internal representation is still the

base letter followed by the combining marks. It is not the stand-alone version of the

accents, which occur before the base letter in the text stream.

 The nonspacing mark ypogegrammeni (also known as iota subscript in English)

can be applied to the vowels alpha, eta, and omega to represent historic diphthongs.

This mark appears as a small iota below the vowel. When applied to a single upper‐

case vowel, the iota does not appear as a subscript, but is instead normally rendered

as a regular lowercase iota to the right of the uppercase vowel. This form of the iota is

called prosgegrammeni (also known as iota adscript in English). In completely upper‐

cased words, the iota subscript should be replaced by a capital iota following the

vowel. Precomposed characters that contain iota subscript or iota adscript also have

Iota.

Europe-I 374 7.2 Greek

special mappings. (See Section 5.18, Case Mappings.) Archaic representations of

Greek words, which did not have lowercase or accents, use the Greek capital letter

iota following the vowel for these diphthongs. Such archaic representations require

special case mapping, which may not be automatically derivable.

U+03A5 GREEK CAPITAL LETTER UPSILON has two common

forms: one looks essentially like the Latin capital Y, and the other has two symmetric

upper branches that curl like rams’ horns, “ ”. The Y-form glyph has been chosen

consistently for use in the code charts, both for monotonic and polytonic Greek. For

mathematical usage, the rams’ horn form of the glyph is required to distinguish it

from the Latin Y. A third form is also encoded as U+03D2 GREEK UPSILON WITH

HOOK SYMBOL (see Figure 7-4). The precomposed characters U+03D3 GREEK

UPSILON WITH ACUTE AND HOOK SYMBOL and U+03D4 GREEK UPSILON WITH

DIAERESIS AND HOOK SYMBOL should not normally be needed, except where neces‐

sary for backward compatibility for legacy character sets.

Variant forms of several other Greek letters are encoded as separate characters in this

block. Often (but not always), they represent different forms taken on by the char‐

acter when it appears in the final position of a word. Examples include U+03C2

GREEK SMALL LETTER FINAL SIGMA used in a final position and U+03D0 GREEK

BETA SYMBOL, which is the form that U+03B2 GREEK SMALL LETTER BETA would

take on in a medial or final position.

Of these variant letterforms, only final sigma should be used in encoding standard

Greek text to indicate a final sigma. It is also encoded in ISO/IEC 8859-7 and ISO 5428

for this purpose. Because use of the final sigma is a matter of spelling convention,

software should not automatically substitute a final form for a nominal form at the

end of a word. However, when performing lowercasing, the final form needs to be

generated based on the context. See Section 3.13, Default Case Algorithms.

In contrast, U+03D0 GREEK BETA SYMBOL, U+03D1 GREEK THETA SYMBOL,

U+03D2 GREEK UPSILON WITH HOOK SYMBOL, U+03D5 GREEK PHI SYMBOL,

U+03F0 GREEK KAPPA SYMBOL, U+03F1 GREEK RHO SYMBOL, U+03F4 GREEK

CAPITAL THETA SYMBOL, U+03F5 GREEK LUNATE EPSILON SYMBOL, and U+03F6

GREEK REVERSED LUNATE EPSILON SYMBOL should be used only in mathematical

formulas—never in Greek text. If positional or other shape differences are desired for

these characters, they should be implemented by a font or rendering engine.

 Starting with The Unicode Standard, Version

3.0, and the concurrent second edition of ISO/IEC 10646-1, the representative glyphs

Variant Letterforms.

Figure 7-4. Variations in Greek Capital Letter Upsilon

Representative Glyphs for Greek Phi.

Europe-I 375 7.2 Greek

for U+03C6 GREEK SMALL LETTER PHI and U+03D5 GREEK PHI SYMBOL were

swapped compared to earlier versions. In ordinary Greek text, the character U+03C6

is used exclusively, although this character has considerable glyphic variation, some‐

times represented with a glyph more like the representative glyph shown for U+03C6

φ (the “loopy” form) and less often with a glyph more like the representative glyph

shown for U+03D5 ϕ (the “straight” form).

For mathematical and technical use, the straight form of the small phi is an impor‐

tant symbol and needs to be consistently distinguishable from the loopy form. The

straight-form phi glyph is used as the representative glyph for the symbol phi at

U+03D5 to satisfy this distinction.

The representative glyphs were reversed in versions of the Unicode Standard prior to

Unicode 3.0. This resulted in the problem that the character explicitly identified as

the mathematical symbol did not have the straight form of the character that is the

preferred glyph for that use. Furthermore, it made it unnecessarily difficult for

general-purpose fonts supporting ordinary Greek text to add support for Greek letters

used as mathematical symbols. This resulted from the fact that many of those fonts

already used the loopy-form glyph for U+03C6, as preferred for Greek body text; to

support the phi symbol as well, they would have had to disrupt glyph choices already

optimized for Greek text.

When mapping symbol sets or SGML entities to the Unicode Standard, it is impor‐

tant to make sure that codes or entities that require the straight form of the phi

symbol be mapped to U+03D5 and not to U+03C6. Mapping to the latter should be

reserved for codes or entities that represent the small phi as used in ordinary Greek

text.

Fonts used primarily for Greek text may use either glyph form for U+03C6, but fonts

that also intend to support technical use of the Greek letters should use the loopy

form to ensure appropriate contrast with the straight form used for U+03D5.

 The use of Greek letters for mathematical variables and

operators is well established. Characters from the Greek block may be used for these

symbols.

For compatibility purposes, a few Greek letters are separately encoded as symbols in

other character blocks. Examples include U+00B5 MICRO SIGN in the Latin-1

Supplement character block and U+2126 OHM SIGN in the Letterlike Symbols char‐

acter block. The ohm sign is canonically equivalent to the capital omega, and normal‐

ization would remove any distinction. Its use is therefore discouraged in favor of

capital omega. The same equivalence does not exist between micro sign and mu, and

use of either character as a micro sign is common. For Greek text, only the mu

should be used.

Greek Letters as Symbols.

Europe-I 376 7.2 Greek

 The characters stigma, koppa, and sampi are used only as

numerals, whereas archaic koppa and digamma are used only as letters.

 Two specific modern Greek punctuation marks are

encoded in the Greek and Coptic block: U+037E “ ” GREEK QUESTION MARK and

U+0387 “” GREEK ANO TELEIA. The Greek question mark (or erotimatiko) has the

shape of a semicolon, but functions as a question mark in the Greek script. The ano

teleia has the shape of a middle dot, but functions as a semicolon in the Greek script.

These two compatibility punctuation characters have canonical equivalences to

U+003B SEMICOLON and U+00B7 MIDDLE DOT, respectively; as a result, normalized

Greek text will lose any distinctions between the Greek compatibility punctuation

characters and the common punctuation marks. Furthermore, ISO/IEC 8859-7 and

most vendor code pages for Greek simply make use of semicolon and middle dot for

the punctuation in question. Therefore, use of U+037E and U+0387 is not necessary

for interoperating with legacy Greek data, and their use is not generally encouraged

for representation of Greek punctuation.

 Historic Greek letters have been retained from ISO 5428.

 In the Unicode Standard prior to Version 4.1, the Coptic

script was regarded primarily as a stylistic variant of the Greek alphabet. The letters

unique to Coptic were encoded in a separate range at the end of the Greek character

block. Those characters were to be used together with the basic Greek characters to

represent the complete Coptic alphabet. Coptic text was supposed to be rendered

with a font using the Coptic style of depicting the characters it shared with the Greek

alphabet. Texts that mixed Greek and Coptic languages using that encoding model

could be rendered only by associating an appropriate font by language.

The Unicode Technical Committee and ISO/IEC JTC1/SC2 determined that Coptic is

better handled as a separate script. Starting with Unicode 4.1, a new Coptic block

added all the letters formerly unified with Greek characters as separate Coptic char‐

acters. (See Section 7.3, Coptic.) Implementations that supported Coptic under the

previous encoding model may, therefore, need to be modified. Coptic fonts may need

to continue to support the display of both the Coptic and corresponding Greek char‐

acter with the same shape to facilitate their use with older documents.

 For math symbols, see Section 22.5, Mathematical Symbols. For

additional punctuation to be used with this script, see C0 Controls and ASCII Punc‐

tuation (U+0000..U+007F).

The characters in this block constitute a number of precomposed combinations of

Greek letters with one or more general diacritical marks; in addition, a number of

Symbols Versus Numbers.

Compatibility Punctuation.

Historic Letters.

Coptic-Unique Letters.

Related Characters.

7.2.2 Greek Extended: U+1F00–U+1FFF

Europe-I 377 7.2 Greek

spacing forms of Greek diacritical marks are provided here. In particular, these char‐

acters can be used for the representation of polytonic Greek texts without the use of

combining marks. Because they do not cover all possible combinations in use, some

combining character sequences may be required for a given text.

Each of the letters contained in this block may be alternatively represented with a

base letter from the Greek block followed by one or more general diacritical mark

characters found in the Combining Diacritical Marks block.

 Sixteen additional spacing diacritical marks are provided in this

character block for use in the representation of polytonic Greek texts. Each has an

alternative representation for use with systems that support nonspacing marks. The

nonspacing alternatives appear in Table 7-4. The spacing forms are meant for

keyboards and pedagogical use and are not to be used in the representation of title‐

case words. The compatibility decompositions of these spacing forms consist of the

sequence U+0020 SPACE followed by the nonspacing form equivalents shown in

Table 7-4.

Spacing Form Nonspacing Form

1FBD GREEK KORONIS 0313 COMBINING COMMA ABOVE

037A GREEK YPOGEGRAMMENI 0345 COMBINING GREEK YPOGEGRAMMENI

1FBF GREEK PSILI 0313 COMBINING COMMA ABOVE

1FC0 GREEK PERISPOMENI 0342 COMBINING GREEK PERISPOMENI

1FC1 GREEK DIALYTIKA AND PERISPOMENI
0308 COMBINING DIAERESIS
+ 0342 COMBINING GREEK PERISPOMENI

1FCD GREEK PSILI AND VARIA
0313 COMBINING COMMA ABOVE
+ 0300 COMBINING GRAVE ACCENT

1FCE GREEK PSILI AND OXIA
0313 COMBINING COMMA ABOVE
+ 0301 COMBINING ACUTE ACCENT

1FCF GREEK PSILI AND PERISPOMENI
0313 COMBINING COMMA ABOVE
+ 0342 COMBINING GREEK PERISPOMENI

1FDD GREEK DASIA AND VARIA
0314 COMBINING REVERSED COMMA ABOVE
+ 0300 COMBINING GRAVE ACCENT

1FDE GREEK DASIA AND OXIA
0314 COMBINING REVERSED COMMA ABOVE
+ 0301 COMBINING ACUTE ACCENT

1FDF GREEK DASIA AND PERISPOMENI
0314 COMBINING REVERSED COMMA ABOVE
+ 0342 COMBINING GREEK PERISPOMENI

1FED GREEK DIALYTIKA AND VARIA
0308 COMBINING DIAERESIS
+ 0300 COMBINING GRAVE ACCENT

1FEE GREEK DIALYTIKA AND OXIA
0308 COMBINING DIAERESIS
+ 0301 COMBINING ACUTE ACCENT

1FEF GREEK VARIA 0300 COMBINING GRAVE ACCENT

1FFD GREEK OXIA 0301 COMBINING ACUTE ACCENT

Spacing Diacritics.

Table 7-4. Greek Spacing and Nonspacing Pairs

Europe-I 378 7.2 Greek

1FFE GREEK DASIA 0314 COMBINING REVERSED COMMA ABOVE

Ancient Greeks primarily used letters of the Greek alphabet to represent numbers.

However, some extensions to this usage required quite a few nonalphabetic symbols

or symbols derived from letters. Those symbols are encoded in the Ancient Greek

Numbers block.

 Greek acrophonic numerals are found primarily in ancient

inscriptions from Attica and other Greek regions. Acrophonic means that the char‐

acter used to represent each number is the initial letter of the word by which the

number is called—for instance, H for “HECATON” = 100.

The Attic acrophonic system, named for the greater geographic area that includes the

city of Athens, is the most common and well documented. The characters in the

Ancient Greek Numbers block cover the Attic acrophonic numeral system as well as

non-Attic characters that cannot be considered glyph variants of the Attic acrophonic

repertoire. They are the standard symbols used to represent weight or cost, and they

appear consistently in modern editions and scholarly studies of Greek inscriptions.

Uppercase Greek letters from the Greek block are also used for acrophonic numerals.

The Greek acrophonic number system is similar to the Roman one in that it does not

use decimal position, does not require a placeholder for zero, and has special symbols

for 5, 50, 500, and so on. The system is language specific because of the acrophonic

principle. In some cases the same symbol represents different values in different

geographic regions. The symbols are also differentiated by the unit of measurement

—for example, talents versus staters.

 Other numerical symbols encoded in the range

U+10175..U+1018A appear in a large number of ancient papyri. The standard

symbols used for the representation of numbers, fractions, weights, and measures,

they have consistently been used in modern editions of Greek papyri as well as

various publications related to the study and interpretation of ancient documents.

Several of these characters have considerable glyphic variation. Some of these glyph

variants are similar in appearance to other characters.

U+1018A GREEK ZERO SIGN occurs whenever a sexagesimal nota‐

tion is used in historical astronomical texts to record degrees, minutes and seconds,

or hours, minutes and seconds. The most common form of zero in the papyri is a

small circle with a horizontal stroke above it, but many variations exist. These are

taken to be scribal variations and are considered glyph variants.

7.2.3 Ancient Greek Numbers: U+10140–U+1018F

Acrophonic Numerals.

Other Numerical Symbols.

Symbol for Zero.

Europe-I 379 7.2 Greek

The Coptic script is the final stage in the development of the Egyptian writing

system. Coptic was subject to strong Greek influences because Greek was more iden‐

tified with the Christian tradition, and the written demotic Egyptian no longer

matched the spoken language. The Coptic script was based on the Greek uncial

alphabets with several Coptic additional letters unique to Coptic. The Coptic

language died out in the fourteenth century, but it is maintained as a liturgical

language by Coptic Christians. Coptic is written from left to right in linear sequence;

in modern use, spaces are used to separate words and provide the primary line

breaking opportunities.

Prior to Version 4.1, the Unicode Standard treated Coptic as a stylistic variant of

Greek. Seven letters unique to Coptic (14 characters with the case pairs) were

encoded in the Greek and Coptic block. In addition to these 14 characters, Version 4.1

added a Coptic block containing the remaining characters needed for basic Coptic

text processing. This block also includes standard logotypes used in Coptic text as

well as characters for Old Coptic and Nubian.

 The best-known Coptic dialects are Sahidic and

Bohairic. Coptic scholarship recognizes a number of other dialects that use addi‐

tional characters. The repertoires of Sahidic and Bohairic reflect efforts to stan‐

dardize the writing of Coptic, but attempts to write the Egyptian language with the

Greek script preceded that standardization by several centuries. During the initial

period of writing, a number of different solutions to the problem of representing

non-Greek sounds were made, mostly by borrowing letters from Demotic writing.

These early efforts are grouped by Copticists under the general heading of Old

Coptic.

 Coptic is considered a bicameral script. Historically, it was caseless, but it

has acquired case through the typographic developments of the last centuries.

Already in Old Coptic manuscripts, letters could be written larger, particularly at the

beginning of paragraphs, although the capital letters tend to have the most distinctive

shapes in the Bohairic tradition. To facilitate scholarly and other modern casing oper‐

ations, Coptic has been encoded as a bicameral script, including uniquely Old Coptic

characters.

 Bohairic Coptic uses only a subset of the letters in the Coptic repertoire.

It also uses a font style distinct from that for Sahidic. Prior to Version 5.0, the Coptic

letters derived from Demotic, encoded in the range U+03E2..U+03EF in the Greek

and Coptic block, were shown in the code charts in a Bohairic font style. Starting

7.3 Coptic

7.3.1 Coptic: U+2C80–U+2CFF

Development of the Coptic Script.

Casing.

Font Styles.

Europe-I 380 7.3 Coptic

from Version 5.0, all Coptic letters in the standard, including those in the range

U+03E2..U+03EF, are shown in the code charts in a Sahidic font style, instead.

U+2CB7 COPTIC SMALL LETTER CRYP‐

TOGRAMMIC EIE and U+2CBD COPTIC SMALL LETTER CRYPTOGRAMMIC NI are

characters for cryptogrammic use. A common Coptic substitution alphabet that was

used to encrypt texts had the disadvantageous feature whereby three of the letters

(eie, ni, and fi) were substituted by themselves. However, because eie and ni are two

of the highest-frequency characters in Coptic, Copts felt that the encryption was not

strong enough, so they replaced those letters with these cryptogrammic ones. Two

additional cryptogrammic letters in less frequent use are also encoded: U+2CEC

COPTIC SMALL LETTER CRYPTOGRAMMIC SHEI and U+2CEE COPTIC SMALL LETTER

CRYPTOGRAMMIC GANGIA. Copticists preserve these letter substitutions in modern

editions of these encrypted texts and do not consider them to be glyph variants of the

original letters.

U+2CC0 COPTIC CAPITAL LETTER SAMPI has a numeric value of 900 and corre‐

sponds to U+03E0 GREEK LETTER SAMPI. It is not found in abecedaria, but is used in

cryptogrammic contexts as a letter.

 U+2CC3 COPTIC SMALL LETTER CROSSED SHEI is found in Dialect I

of Old Coptic, where it represents a sound /ç/. It is found alongside U+03E3

COPTIC SMALL LETTER SHEI, which represents / /. The diacritic is not productive.

 In Coptic texts, a line is often drawn across the top of two or more

characters in a row. There are two distinct conventions for this supralineation, each

of which is represented by different sequences of combining marks.

The first of these is a convention for abbreviation, in which words are shortened by

removal of certain letters. A line is then drawn across the tops of all of the remaining

letters, extending from the beginning of the first to the end of the last letter of the

abbreviated form. This convention is represented by following each character of the

abbreviated form with U+0305 COMBINING OVERLINE. When rendered together,

these combining overlines should connect into a continuous line.

The other convention is to distinguish the spelling of certain common words or to

highlight proper names of divinities and heroes—a convention related to the use of

cartouches in hieroglyphic Egyptian. In this case the supralineation extends from the

middle of the first character in the sequence to the middle of the last character in the

sequence. Instead of using U+0305 COMBINING OVERLINE for the entire sequence,

one uses U+FE24 COMBINING MACRON LEFT HALF after the first character, U+FE25

COMBINING MACRON RIGHT HALF after the last character, and U+FE26 COMBINING

CONJOINING MACRON after any intervening characters. This gives the effect of a line

starting and ending in the middle of letters, rather than at their edges.

Characters for Cryptogrammic Use.

Crossed Shei.

Supralineation.

Europe-I 381 7.3 Coptic

 Bohairic text uses a mark called jinkim to represent

syllabic consonants, which is indicated by either U+0307 COMBINING DOT ABOVE or

U+0300 COMBINING GRAVE ACCENT. Other dialects, including Sahidic, use U+0304

COMBINING MACRON for the same purpose. A number of other generic diacritical

marks are used with Coptic.

U+2CEF COPTIC COMBINING NI ABOVE is a script-specific combining mark, typically

used at the end of a line to indicate a final ni after a vowel. In rendering, this mark

typically hangs over the space to the right of its base character.

The characters U+2CF0 COPTIC COMBINING SPIRITUS ASPER and U+2CF1 COPTIC

COMBINING SPIRITUS LENIS are analogues of the Greek breathing marks. They are

used rarely in Coptic. When used, they typically occur over the letter U+2C8F

COPTIC SMALL LETTER HATE, sometimes to indicate that it is the borrowed Greek

conjunction “or”, written with the cognate Greek letter eta.

 Coptic texts use common punctuation, including colon, full stop, semi‐

colon (functioning, as in Greek, as a question mark), and middle dot. Quotation

marks are found in edited texts. In addition, Coptic-specific punctuation occurs:

U+2CFE COPTIC FULL STOP and U+2CFF COPTIC MORPHOLOGICAL DIVIDER.

Several other historic forms of punctuation are known only from Old Nubian texts.

 Numerals are indicated with letters of the alphabet, as in

Greek. Sometimes the numerical use is indicated specifically by marking a line

above, represented with U+0305 COMBINING OVERLINE. U+0375 GREEK LOWER

NUMERAL SIGN or U+033F COMBINING DOUBLE OVERLINE can be used to indicate

multiples of 1,000, as shown in Figure 7-5.

Coptic Value

1

 or 1,000

1,888

U+0374 GREEK NUMERAL SIGN is used to indicate fractions. For example, indicates

the fractional value 1/3. There is, however, a special symbol for 1/2: U+2CFD COPTIC

FRACTION ONE HALF.

Combining Diacritical Marks.

Punctuation.

Numerical Use of Letters.

Figure 7-5. Coptic Numerals

Europe-I 382 7.3 Coptic

The Cyrillic script is one of several scripts that were ultimately derived from the

Greek script. The details of the history of that development and of the relationship

between early forms of writing systems for Slavic languages has been lost. Cyrillic

has traditionally been used for writing various Slavic languages, among which

Russian is predominant. The earliest attestations of Cyrillic are for Old Church

Slavonic manuscripts, dating to the 10th century CE. Old Church Slavonic is also

commonly referred to as Old Church Slavic, and is abbreviated as OCS.

In the nineteenth and early twentieth centuries, Cyrillic was extended to write the

non-Slavic minority languages of Russia and neighboring countries.

 The Cyrillic script is written in linear sequence from left to right with the

occasional use of nonspacing marks. Cyrillic letters have uppercase and lowercase

pairs. Spaces are used to separate words and provide the primary line breaking

opportunities.

 The historic form of the Cyrillic alphabet—most notably that

seen in Old Church Slavonic manuscripts—is treated as a font style variation of

modern Cyrillic. The historic forms of the letters are relatively close to their modern

appearance, and some of the historic letters are still in modern use in languages

other than Russian. For example, U+0406 “ ” CYRILLIC CAPITAL LETTER BYELORUS‐

SIAN-UKRAINIAN I is used in modern Ukrainian and Byelorussian, and is encoded

amidst other modern Cyrillic extensions. Some of the historic letterforms were used

in modern typefaces in Russian and Bulgarian. Prior to 1917, Russian made use of yat,

fita, and izhitsa; prior to 1945, Bulgaria made use of these three as well as big yus.

 The particular early Slavic writing known as Glagolitic is treated as a

distinct script from Cyrillic, rather than as a font style variation. The letterforms for

Glagolitic, even though historically related, appear unrecognizably different from

most modern Cyrillic letters. Glagolitic was also limited to a certain historic period; it

did not grow to match the repertoire expansion of the Cyrillic script. See Section 7.5,

Glagolitic.

 The Cyrillic block of the Unicode Standard is based on ISO/IEC 8859-5.

 These letters are used in alphabets for Turkic languages such as

Azerbaijani, Bashkir, Kazakh, and Tatar; for Caucasian languages such as Abkhasian,

Avar, and Chechen; and for Uralic languages such as Mari, Khanty, and Kildin Sami.

The orthographies of some of these languages have often been revised in the past;

7.4 Cyrillic

Structure.

Historic Letterforms.

Glagolitic.

7.4.1 Cyrillic: U+0400–U+04FF

Standards.

Extended Cyrillic.

Europe-I 383 7.4 Cyrillic

some of them have switched from Arabic to Latin to Cyrillic, and back again. Azer‐

baijani, for instance, is now officially using a Turkish-based Latin script.

 The Cyrillic orthography for Abkhasian has been updated fairly

frequently over the course of the 20th and early 21st centuries. Some of these revi‐

sions involved changes in letterforms, often for the diacritic descenders used under

extended Cyrillic letters for Abkhasian. The most recent such reform has been

reflected in glyph changes for Abkhaz-specific Cyrillic letters in the code charts. In

particular, U+04BF CYRILLIC SMALL LETTER ABKHASIAN CHE WITH DESCENDER, is

now shown with a straight descender diacritic. In code charts for Version 5.1 and

earlier, that character was displayed with a representative glyph using an ogonek-

type hook descender, more typical of historic orthographies for Abkhasian. The glyph

for U+04A9 CYRILLIC SMALL LETTER ABKHASIAN HA was also updated.

Other changes for Abkhasian orthography represent actual respellings of text. Of

particular note, the character added in Version 5.2, U+0525 CYRILLIC SMALL LETTER

PE WITH DESCENDER, is intended as a replacement for U+04A7 CYRILLIC SMALL

LETTER PE WITH MIDDLE HOOK, which was used in older orthographies.

U+04C0 “ ” CYRILLIC LETTER PALOCHKA is used in Cyrillic orthogra‐

phies for a number of Caucasian languages, such as Adyghe, Avar, Chechen, and

Kabardian. The name palochka itself is based on the Russian word for “stick,” refer‐

ring to the shape of the letter. The glyph for palochka is usually indistinguishable

from an uppercase Latin “I” or U+0406 “ ” CYRILLIC CAPITAL LETTER BYELORUS‐

SIAN-UKRAINIAN I; however, in some serifed fonts it may be displayed without serifs

to make it more visually distinct.

In use, palochka typically modifies the reading of a preceding letter, indicating that it

is an ejective. The palochka is generally caseless and should retain its form even in

lowercased Cyrillic text. However, there is some evidence of distinctive lowercase

forms; for those instances, U+04CF CYRILLIC SMALL LETTER PALOCHKA may be

used.

 The name of U+047D CYRILLIC SMALL LETTER OMEGA WITH TITLO

is anomalous. It does not actually have a titlo, but instead represents a broad omega

with a great apostrof diacritic. (See U+A64D CYRILLIC SMALL LETTER BROAD

OMEGA.) The great apostrof is a stylized diacritical mark consisting of the soft

breathing mark (see U+0486 COMBINING CYRILLIC PSILI PNEUMATA) and the

Cyrillic kamora (see U+0311 COMBINING INVERTED BREVE). Functionally, U+047D

is analogous to the Greek character U+1F66 GREEK SMALL LETTER OMEGA WITH

PSILI AND PERISPOMENI. Both the Greek and the Church Slavonic characters have

identical functions—to record the exclamation “Oh!” U+047D is also known as the

Cyrillic beautiful omega.

Abkhasian.

Palochka.

Broad Omega.

Europe-I 384 7.4 Cyrillic

U+0479 CYRILLIC SMALL LETTER UK was

intended for representation of the Church Slavonic uk vowel, which sometimes is

rendered as a digraph onik form and sometimes as a monograph uk form. However,

that ambiguity of rendering is not optimal for the representation of Church Slavonic

text. The current recommendation is to avoid the use of U+0479, as well as its corre‐

sponding uppercase U+0478. The digraph onik has the preferred spelling consisting

of the letter sequence <U+043E CYRILLIC SMALL LETTER O, U+0443 CYRILLIC

SMALL LETTER U>. The monograph uk should be represented instead by an unam‐

biguous letter intended specifically for that form: U+A64B CYRILLIC SMALL LETTER

MONOGRAPH UK.

U+0484 COMBINING CYRILLIC PALATALIZATION is a diacritical

mark used in ancient manuscripts and in academic work to indicate that a consonant

is softened, a phenomenon called palatalization in Cyrillic studies. Although the

shape of the diacritic is similar, this should not be confused with the use of U+0311

COMBINING INVERTED BREVE to represent the Cyrillic kamora (circumflex accent).

Palatalization is also represented in some manuscripts and in academic publications

with U+02BC MODIFIER LETTER APOSTROPHE or occasionally U+02B9 MODIFIER

LETTER PRIME.

U+0483 COMBINING CYRILLIC TITLO is used in modern Church

Slavonic to indicate that a letter or letters have been omitted from the spelling of a

word (either in nomina sacra or in abbreviations). It also is used in numeral notation.

In modern Church Slavonic it is not used to “cover” superscripted (titlo) letters;

instead, U+0487 COMBINING CYRILLIC POKRYTIE is used as a cap over titlo letters. In

Old Church Slavonic manuscripts, on the other hand, pokrytie, titlo, and its archaic

typographical alternate U+A66F COMBINING CYRILLIC VZMET are all used more or

less interchangeably.

 The characters in the range U+0500..U+050F are found in ISO 10754; they

were used in Komi Cyrillic orthography from 1919 to about 1940. These letters use

glyphs that differ structurally from other characters in the Unicode Standard that

represent similar sounds—namely, Serbian and , which are ligatures of the base

letters and with a palatalizing soft sign . The Molodtsov orthography made use of

a different kind of palatalization hook for Komi , , , , and so on.

 Although the Kurdish language is almost always written in either

the Arabic script or the Latin script, there also exists a Cyrillic orthography which

saw some usage for Kurdish in the former Soviet Union. The Cyrillic letters qa and

we in this block are encoded to enable the representation of Cyrillic Kurdish entirely

in the Cyrillic script, without use of the similar Latin letters q and w, from which

these Kurdish letters were ultimately derived.

Digraph Onik and Monograph Uk.

Palatalization.

Combining Titlo.

7.4.2 Cyrillic Supplement: U+0500–U+052F

Komi.

Kurdish Letters.

Europe-I 385 7.4 Cyrillic

 This block contains a set of superscripted (written above), or titlo,

letters, used in manuscript Old Church Slavonic texts and in modern Church

Slavonic, usually to indicate abbreviations of words in the text. They can be found

alone or in pairs that typically form digraphs or ligatures above one base character.

These characters may be followed by U+0487 COMBINING CYRILLIC POKRYTIE in

both old and modern texts. In Old Church Slavonic texts they may also be followed

by U+0483 COMBINING CYRILLIC TITLO or its typographical alternate form, U+A66F

COMBINING CYRILLIC VZMET. Modern Church Slavonic never uses the titlo mark to

“cover” superscripted letters, and does not use the vzmet mark at all.

When used in combination, two titlo letters normally form a composite combining

letter, in which the components appear side-by-side or ligated, a behavior which devi‐

ates from the default vertical stacking of multiple combining characters. Occasion‐

ally, titlo letters can also be found vertically stacked in Old Church Slavonic texts, in

this case exhibiting default stacking behavior. As there is no semantic distinction

associated with the two presentations, both are handled at the font level, without

requiring the use of format characters. The usual ligated form and the less common

vertical stacking of titlo letters are contrasted in Figure 7-6 for the sequence

<U+2DE3 COMBINING CYRILLIC LETTER DE, U+A675 COMBINING CYRILLIC LETTER

I>.

A wide variety of composite titlo letters can be encountered in Old Church Slavonic

manuscripts, including such combinations as ghe-o, de-ie, de-i, de-o, de-uk, el-i, em-i,

es-te, and many others. One of these combinations has been encoded atomically in

Unicode as U+2DF5 COMBINING CYRILLIC LETTER ES-TE. However, the preferred

representation of a composite titlo es-te is the sequence <U+2DED COMBINING

CYRILLIC LETTER ES, U+2DEE COMBINING CYRILLIC LETTER TE>.

The glyphs in the code chart for the Cyrillic Extended-A block are based on the

modern Cyrillic letters to which these titlo letters correspond, but in Old Church

Slavonic manuscripts, the actual glyphs used are related to the older forms of Cyrillic

letters.

7.4.3 Cyrillic Extended-A: U+2DE0–U+2DFF

Titlo Letters.

Figure 7-6. Combination of Titlo Letters

Europe-I 386 7.4 Cyrillic

This block contains an extended set of historic Cyrillic characters used in Old Cyrillic

manuscript materials, particularly Old Church Slavonic.

 The combining numeric signs in the range

U+A670..U+A672 extend the series of such combining signs from the main Cyrillic

block. These enclosing signs were used around letters to indicate high decimal multi‐

ples of the basic numeric values of the letters.

 Several additional titlo letters based on manuscript sources are

encoded in the ranges U+A674..U+A67B and U+A69E..U+A69F. For a description of

titlo letters, see the subsection “Cyrillic Extended-A: U+2DE0–U+2DFF” earlier in

this section.

 The letters in the range U+A680..U+A697 are obsolete

letters for an old orthography of the Abkhaz language. These characters are no longer

in use, and the Abkhaz language is currently represented using various Cyrillic

extensions in the main Cyrillic block.

This block contains a small collection of historic variants of common Cyrillic lower‐

case letters, as well as a some modern Cyrillic characters. The historic variants,

located in the range U+1C80..U+1C88, are attested in early Church Slavonic printed

books published between 1550 and 1700. Some of them also occur in books printed

today by the Russian Old Ritualist communities and in books printed by the Russian

Orthodox Church. No separate uppercase letters are encoded for these historic vari‐

ants; they pair with the existing uppercase Cyrillic letters.

The Cyrillic Extended-D block contains superscript and subscript characters that

convey phonetic and phonological information. The superscript characters in this

block are used for phonetic detail, in a manner analogous to IPA. They appear in

academic and general-use dictionaries and linguistic descriptions, and can take

diacritics, parallel to IPA usage. Three Cyrillic superscript modifiers are found in

other blocks: U+A69C MODIFIER LETTER CYRILLIC HARD SIGN, U+A69D MODIFIER

LETTER CYRILLIC SOFT SIGN, and U+1D78 MODIFIER LETTER CYRILLIC EN.

Some authors distinguish between superscript and subscript letters. In contrast to the

superscript letters, Cyrillic subscript modifiers are used to denote phonological

phenomena, specifically archigraphemes.

7.4.4 Cyrillic Extended-B: U+A640–U+A69F

Numeric Enclosing Signs.

Titlo Letters.

Old Abkhasian Letters.

7.4.5 Cyrillic Extended-C: U+1C80–U+1C8F

7.4.6 Cyrillic Extended-D: U+1E030–U+1E08F

Europe-I 387 7.4 Cyrillic

The block also includes a combining character, U+1E08F COMBINING CYRILLIC

SMALL LETTER BYELORUSSIAN-UKRAINIAN I, which appears in modern language

materials and in medieval texts.

Europe-I 388 7.4 Cyrillic

Glagolitic, from the Slavic root glagol, meaning “word,” is an alphabet considered to

have been devised by Saint Cyril in or around 862 CE for his translation of the Scrip‐

tures and liturgical books into Slavonic. The relatively few Glagolitic inscriptions and

manuscripts that survive from this early period are of great philological importance.

Glagolitic was eventually supplanted by the alphabet now known as Cyrillic.

Like Cyrillic, the Glagolitic script is written in linear sequence from left to right with

no contextual modification of the letterforms. Spaces are used to separate words and

provide the primary line breaking opportunities.

In parts of Croatia where a vernacular liturgy was used, Glagolitic continued in use

until modern times: the last Glagolitic missal was printed in Rome in 1893 with a

second edition in 1905. In these areas Glagolitic is still occasionally used as a decora‐

tive alphabet.

 Glagolitic exists in two styles, known as round and square. Round

Glagolitic is the original style and more geographically widespread, although

surviving examples are less numerous. Square Glagolitic (and the cursive style

derived from it) was used in Croatia from the thirteenth century. There are a few

documents written in a style intermediate between the two. The letterforms used in

the charts are round Glagolitic. Several of the letters have variant glyph forms, which

are not encoded separately.

 The ordering of the Glagolitic alphabet is largely derived from that of the

Greek alphabet, although nearly half the Glagolitic characters have no equivalent in

Greek and not every Greek letter has its equivalent in Glagolitic.

 Glagolitic texts use common punctuation, including

comma, full stop, semicolon (functioning, as in Greek, as a question mark), and

middle dot. In addition, several forms of multiple-dot, archaic punctuation occur,

including U+2056 THREE DOT PUNCTUATION, U+2058 FOUR DOT PUNCTUATION,

and U+2059 FIVE DOT PUNCTUATION. Quotation marks are found in edited texts.

Glagolitic also used numerous diacritical marks, many of them shared in common

with Cyrillic.

 Glagolitic letters have inherent numerical values. A letter

may be rendered with a line above or a tilde above to indicate the numeric usage

explicitly. Alternatively, U+00B7 MIDDLE DOT may be used, flanking a letter on both

sides, to indicate numeric usage of the letter.

7.5 Glagolitic

7.5.1 Glagolitic: U+2C00–U+2C5F

Glyph Forms.

Ordering.

Punctuation and Diacritics.

Numerical Use of Letters.

Europe-I 389 7.5 Glagolitic

The Glagolitic Supplement block contains a set of Glagolitic titlo letters, used in the

representation of letters written above other letters in Glagolitic manuscripts. The

function and behavior of these letters is similar to that of titlo letters in the Cyrillic

script. For further discussion, see “Titlo Letters” in Section 7.4, Cyrillic.

7.5.2 Glagolitic Supplement: U+1E000–U+1E02F

Europe-I 390 7.5 Glagolitic

The Armenian script is used primarily for writing the Armenian language. It is

written from left to right. Armenian letters have uppercase and lowercase pairs.

Spaces are used to separate words and provide the primary line breaking opportuni‐

ties.

The Armenian script was devised about 406 CE by Mesrop Maštoc‘ to give Armenians

access to Christian scriptural and liturgical texts, which were otherwise available

only in Greek and Syriac. The script has been used to write Classical or Grabar

Armenian, Middle Armenian, and both of the literary dialects of Modern Armenian:

East and West Armenian.

 Mesrop’s original alphabet contained 30 consonants and 6 vowels in

the following ranges:

U+0531..U+0554 .. Ayb to K‘ē

U+0561..U+0584 .. ayb to k‘ē

Armenian spelling was consistent during the Grabar period, from the fifth to the

tenth centuries CE; pronunciation began to change in the eleventh century. In the

twelfth century, the letters ō and fē were added to the alphabet to represent the diph‐

thong [aw] (previously written aw) and the foreign sound [f], respectively. The

Soviet Armenian government implemented orthographic reform in 1922 and again in

1940, creating a difference between the traditional Mesropian orthography and what

is known as Reformed orthography. The 1922 reform limited the use of w to the

digraph ow (or u) and treated this digraph as a single letter of the alphabet.

 The Mesropian orthography is presently used by West Armenian

speakers who live in the diaspora and, rarely, by East Armenian speakers whose

origins are in Armenia but who live in the diaspora. The Reformed orthography is

used by East Armenian speakers living in the Republic of Armenia and, occasionally,

by West Armenian speakers who live in countries formerly under the influence of the

former Soviet Union. Spell-checkers and other linguistic tools need to take the differ‐

ences between these orthographies into account, just as they do for British and Amer‐

ican English.

 Armenian makes use of a number of punctuation marks also used in

other European scripts. Armenian words are delimited with spaces and may termi‐

nate on either a space or a punctuation mark. U+0589 ARMENIAN FULL STOP,

called verǰakēt in Armenian, is used to end sentences. A shorter stop functioning like

the semicolon (like the ano teleia in Greek, but normally placed on the baseline like

7.6 Armenian

7.6.1 Armenian: U+0530–U+058F

Orthography.

User Community.

Punctuation.

Europe-I 391 7.6 Armenian

U+002E FULL STOP) is called miǰakēt; it is represented by U+2024 ONE DOT

LEADER. U+055D ARMENIAN COMMA is actually used more as a kind of colon than

as a comma; it combines the functionality of both elision and pause. Its Armenian

name is bowt’. In Armenian dialect materials, U+0308 COMBINING DIAERESIS

appears over the letters ayb, oh, and vo.

In Armenian it is possible to differentiate between word-joining and word-splitting

hyphens. To join words, the miowt‘jan gic - is used; it can be represented by either

U+002D HYPHEN-MINUS or U+2010 HYPHEN. At the end of the line, to split words

across lines, the ent‘amna U+058A ARMENIAN HYPHEN may also be used. This

character has a curved shape in some fonts, but a hyphen-like shape in others. Both

the word-joiner and the word-splitter can also break at word boundaries, but the two

characters have different semantics.

Several other punctuation marks are unique to Armenian, and these function differ‐

ently from other kinds of marks. The tonal punctuation marks (U+055B ARMENIAN

EMPHASIS MARK, U+055C ARMENIAN EXCLAMATION MARK, and U+055E ARME‐

NIAN QUESTION MARK) are placed directly above and slightly to the right of the

vowel whose sound is modified, instead of at the end of the sentence, as European

punctuation marks are. Because of the mechanical limitations of some printing tech‐

nologies, these punctuation marks have often been typographically rendered as

spacing glyphs above and to the right of the modified vowel, but this practice is not

recommended. Depending on the font, the kerning sometimes presents them as half-

spacing glyphs, which is somewhat more acceptable. The placement of the Armenian

tonal mark can be used to distinguish between different questions.

U+055F ARMENIAN ABBREVIATION MARK, or patiw, is one of four abbreviation

marks found in manuscripts to abbreviate common words such as God, Jesus,

Christos, Lord, Saint, and so on. It is placed above the abbreviated word and spans all

of its letters.

 The apostrophe at U+055A has the same shape and function

as the Latin apostrophe at U+2019, which is preferred. There is no left half ring in

Armenian. Unicode character U+0559 is not used. It appears that this character is a

duplicate character, which was encoded to represent U+02BB MODIFIER LETTER

TURNED COMMA, used in Armenian transliteration. U+02BB is preferred for this

purpose.

 Five Armenian ligatures are encoded in the Alphabetic Presentation

Forms block in the range U+FB13..U+FB17. These shapes (along with others) are

typically found in handwriting and in traditional fonts that mimic the manuscript

ligatures. Of these, the men-now ligature is the one most useful for both traditional

and modern fonts.

Preferred Characters.

Ligatures.

Europe-I 392 7.6 Armenian

The Georgian script is used primarily for writing the Georgian language and its

dialects. It is also used for the Svan and Mingrelian languages and in the past was

used for Abkhaz and other languages of the Caucasus. It is written from left to right.

Spaces are used to separate words and provide the primary line breaking opportuni‐

ties.

 The script name “Georgian” in the Unicode Standard is used for what

are really two closely related scripts. The original Georgian writing system was an

inscriptional form called Asomtavruli, from which a manuscript form called

Nuskhuri was derived. Together these forms are categorized as Khutsuri (ecclesias‐

tical), in which Asomtavruli is used as the uppercase and Nuskhuri as the lowercase.

This development of a bicameral script parallels the evolution of the Latin alphabet,

in which the original linear monumental style became the uppercase and manuscript

styles of the same alphabet became the lowercase. The Khutsuri script is still used for

liturgical purposes, but was replaced, through a history now uncertain, by an

alphabet called Mkhedruli (military), which is the form used for nearly all modern

Georgian writing. The Georgian Mkhedruli alphabet has been fundamentally case‐

less since its development.

The scholar Akaki Shanidze attempted to introduce a casing practice for Georgian in

the 1950s, but this system failed to gain popularity. In his typographic departure, he

used the Asomtavruli forms to represent uppercase letters, alongside “lowercase”

Mkhedruli.

Following this failed casing practice with Asomtavruli forms, Mtavruli forms devel‐

oped as a particular style of Mkhedruli in which the distinction between letters with

ascenders and descenders was not maintained. All letters written in the Mtavruli

style appear with an equal height standing on the baseline, similar to small caps in

the Latin script.

Version 11.0 of the Unicode standard added a set of Mtavruli letters at

U+1C90..U+1CBF. These Mtavruli letters have a casing relationship defined with

Mkhedruli letters: the Mtavruli letters are the uppercase forms of the Mkhedruli

letters, which now are considered lowercase forms.

7.7 Georgian

7.7.1 Georgian: U+10A0–U+10FF

Georgian Extended: U+1C90–U+1CBF

Georgian Supplement: U+2D00–U+2D2F

Script Forms.

Europe-I 393 7.7 Georgian

Figure 7-7 uses Akaki Shanidze’s name to illustrate the various forms of Georgian

text.

Asomtavruli majuscule

Nuskhuri minuscule

Casing Khutsuri

Mkhedruli

Mtavruli

Both the modern Mkhedruli lowercase form and the Asomtavruli inscriptional form

are encoded in the Georgian block. The Nuskhuri script form is encoded in the Geor‐

gian Supplement block, and the modern Mtavruli uppercase form is encoded in the

Georgian Extended block.

 For most of modern Mkhedruli writing, Mtavruli has been used as an

emphatic or headline style. In Version 11.0 of the Unicode Standard, that usage was

broadened to define formal case pair mappings between these forms, with Mkhedruli

serving as lowercase and Mtavruli serving as uppercase. Georgian casing established

in Version 11.0 does not extend to title casing, as the Georgian script does not have

title casing for individual words or sentences. Mtavruli continues to be used as an

emphatic and headline style.

The Unicode Standard also provides case mappings between the two Khutsuri forms:

Asomtavruli and Nuskhuri.

 Modern Georgian text uses generic European conventions for punctu‐

ation. See the common punctuation marks in the Basic Latin and General Punctua‐

tion blocks.

 Historic Georgian manuscripts, particularly text in the older,

ecclesiastical styles, use manuscript punctuation marks common to the Byzantine

tradition. These include single, double, and multiple dot punctuation. For a single

dot punctuation mark, U+00B7 MIDDLE DOT or U+2E31 WORD SEPARATOR MIDDLE

DOT may be used. Historic double and multiple dot punctuation marks can be found

in the U+2056..U+205E range in the General Punctuation block and in the

U+2E2A..U+2E2D range in the Supplemental Punctuation block.

U+10FB GEORGIAN PARAGRAPH SEPARATOR is a historic punctuation mark

commonly used in Georgian manuscripts to delimit text elements comparable to a

paragraph level. Although this punctuation mark may demarcate a paragraph in

exposition, it does not force an actual paragraph termination in the text flow. To

Figure 7-7. Georgian Scripts and Casing

Case Forms.

Punctuation.

Historic Punctuation.

Europe-I 394 7.7 Georgian

cause a paragraph termination, U+10FB must be followed by a newline character, as

described in Section 5.8, Newline Guidelines.

Prior to Version 6.0 the Unicode Standard recommended the use of U+0589 ARME‐

NIAN FULL STOP as the two dot version of the full stop for historic Georgian docu‐

ments. This is no longer recommended because designs for Armenian fonts may be

inconsistent with the display of Georgian text, and because other, generic two dot

punctuation characters are available in the standard, such as U+205A TWO DOT

PUNCTUATION or U+003A COLON.

For additional punctuation to be used with this script, see C0 Controls and ASCII

Punctuation (U+0000..U+007F) and General Punctuation (U+2000..U+206F).

Europe-I 395 7.7 Georgian

Modifier letters, in the sense used in the Unicode Standard, are letters or symbols

that are typically written adjacent to other letters and which modify their usage in

some way. They are not formally combining marks (gc = Mn or gc = Mc) and do not

graphically combine with the base letter that they modify. They are base characters in

their own right. The sense in which they modify other letters is more a matter of

their semantics in usage; they often tend to function as if they were diacritics, indi‐

cating a change in pronunciation of a letter, or otherwise distinguishing a letter’s use.

Typically this diacritic modification applies to the character preceding the modifier

letter, but modifier letters may sometimes modify a following character. Occasionally

a modifier letter may simply stand alone representing its own sound.

Modifier letters are commonly used in technical phonetic transcriptional systems,

where they augment the use of combining marks to make phonetic distinctions.

Some of them have been adapted into regular language orthographies as well. For

example, U+02BB MODIFIER LETTER TURNED COMMA is used to represent the

ʻokina (glottal stop) in the orthography for Hawaiian.

Many modifier letters take the form of superscript or subscript letters. Thus the IPA

modifier letter that indicates labialization (U+02B7) is a superscript form of the letter

w. As for all such superscript or subscript form characters in the Unicode Standard,

these modifier letters have compatibility decompositions.

 Most modifier letters are derived from letters in the

Latin script, although some modifier letters occur in other scripts. Latin-derived

modifier letters may be based on either minuscule (lowercase) or majuscule (upper‐

case) forms of the letters, but never have case mappings. Modifier letters which have

the shape of capital or small capital Latin letters, in particular, are used exclusively in

technical phonetic transcriptional systems. Strings of phonetic transcription are

notionally lowercase—all letters in them are considered to be lowercase, whatever

their shapes. In terms of formal properties in the Unicode Standard, modifier letters

based on letter shapes are Lowercase = True; modifier letters not based on letter

shapes are simply caseless. All modifier letters, regardless of their shapes, are opera‐

tionally caseless; they need to be unaffected by casing operations, because changing

them by a casing operation would destroy their meaning for the phonetic transcrip‐

tion. Only those superscript or subscript forms that have specific usage in IPA, the

Uralic Phonetic Alphabet (UPA), or other major phonetic transcription systems are

encoded.

 Modifier letters in the Unicode Standard are indicated by either

one of two General_Category values: gc = Lm or gc = Sk. The General_Category Lm

is given to modifier letters derived from regular letters. It is also given to some other

characters with more punctuation-like shapes, such as raised commas, which never‐

7.8 Modifier Letters

Case and Modifier Letters.

General Category.

Europe-I 396 7.8 Modifier Letters

theless have letterlike behavior and which occur on occasion as part of the orthog‐

raphy for regular words in one language or another. The General_Category Sk is

given to modifier letters that typically have more symbol-like origins and which

seldom, if ever, are adapted to regular orthographies outside the context of technical

phonetic transcriptional systems. This subset of modifier letters is also known as

“modifier symbols.”

This distinction between gc = Lm and gc = Sk is reflected in other Unicode specifica‐

tions relevant to identifiers and word boundary determination. Modifier letters with

gc = Lm are included in the set definitions that result in the derived properties

ID_Start and ID_Continue (and XID_Start and XID_Continue). As such, they are

considered part of the default definition of Unicode identifiers. Modifier symbols (gc

= Sk), on the other hand, are not included in those set definitions, and so are

excluded by default from Unicode identifiers.

Modifier letters (gc = Lm) have the derived property Alphabetic, while modifier

symbols (gc = Sk) do not. Modifier letters (gc = Lm) also have the word break prop‐

erty value (wb = ALetter), while modifier symbols (gc = Sk) do not. This means that

for default determination of word break boundaries, modifier symbols will cause a

word break, while modifier letters proper will not.

 Most general use modifier letters (and modifier symbols) were collected

together in the Spacing Modifier Letters block (U+02B0..U+02FF), the UPA-related

Phonetic Extensions block (U+1D00..U+1D7F), the Phonetic Extensions Supplement

block (U+1D80..U+1DBF), and the Modifier Tone Letters block (U+A700..U+A71F).

However, some script-specific modifier letters are encoded in the blocks appropriate

to those scripts. They can be identified by checking for their General_Category

values.

 There is no requirement that the Unicode character names for

modifier letters contain the label “MODIFIER LETTER”, although most of them do.

 The majority of the modifier letters in this block are phonetic modi‐

fiers, including the characters required for coverage of the International Phonetic

Alphabet. In many cases, modifier letters are used to indicate that the pronunciation

of an adjacent letter is different in some way—hence the name “modifier.” They are

also used to mark stress or tone, or may simply represent their own sound. Many of

these modifiers letters correspond to separate, nonspacing diacritical marks; the

specific cross references can be found in the code charts.

 This block includes characters that may have different

semantic values attributed to them in different contexts. It also includes multiple

characters that may represent the same semantic values—there is no necessary one-

Blocks.

Character Names.

7.8.1 Spacing Modifier Letters: U+02B0–U+02FF

Phonetic Usage.

Encoding Principles.

Europe-I 397 7.8 Modifier Letters

to-one relationship. The intention of the Unicode encoding is not to resolve the varia‐

tions in usage, but merely to supply implementers with a set of useful forms from

which to choose. The list of usages given for each modifier letter should not be

considered exhaustive. For example, the glottal stop (Arabic hamza) in Latin translit‐

eration has been variously represented by the characters U+02BC MODIFIER LETTER

APOSTROPHE, U+02BE MODIFIER LETTER RIGHT HALF RING, and U+02C0 MODI‐

FIER LETTER GLOTTAL STOP. Conversely, an apostrophe can have several uses; for a

list, see the entry for U+02BC MODIFIER LETTER APOSTROPHE in the character

names list. There are also instances where an IPA modifier letter is explicitly equated

in semantic value to an IPA nonspacing diacritic form.

 Some of the modifier letters are superscript forms of other

letters. The most commonly occurring of these superscript letters are encoded in this

block, but many others, particularly for use in UPA, can be found in the Phonetic

Extensions block (U+1D00..U+1D7F) and in the Phonetic Extensions Supplement

block (U+1D80..U+1DBF). The superscript forms of the i and n letters can be found

in the Superscripts and Subscripts block (U+2070..U+209F). The fact that the latter

two letters contain the word “superscript” in their names instead of “modifier letter”

is an historical artifact of original sources for the characters, and is not intended to

convey a functional distinction in the use of these characters in the Unicode Stan‐

dard.

Superscript modifier letters are intended for cases where the letters carry a specific

meaning, as in phonetic transcription systems, and are not a substitute for generic

styling mechanisms for superscripting of text, as for footnotes, mathematical and

chemical expressions, and the like.

The superscript modifier letters are spacing letters, and should be distinguished from

superscripted combining Latin letters. The superscripted combining Latin letters, as

for example those encoded in the Combining Diacritical Marks block in the range

U+0363..U+036F, are associated with the Latin historic manuscript tradition, often

representing various abbreviatory conventions in text.

 Some corporate standards explicitly specify spacing

and nonspacing forms of combining diacritical marks, and the Unicode Standard

provides matching codes for these interpretations when practical. A number of the

spacing forms are included in the Basic Latin and Latin-1 Supplement blocks. The six

common European diacritics that do not have spacing forms encoded in those blocks

are encoded as spacing characters in the Spacing Modifier Letters block instead.

These forms can have multiple semantics, such as U+02D9 DOT ABOVE, which is

used as an indicator of the Mandarin Chinese fifth (neutral) tone.

U+02DE MODIFIER LETTER RHOTIC HOOK is defined in IPA as a free-

standing modifier letter. In common usage, it is treated as a ligated hook on a base‐

form letter. Hence U+0259 LATIN SMALL LETTER SCHWA + U+02DE MODIFIER

Superscript Letters.

Spacing Clones of Diacritics.

Rhotic Hook.

Europe-I 398 7.8 Modifier Letters

LETTER RHOTIC HOOK may be treated as equivalent to U+025A LATIN SMALL

LETTER SCHWA WITH HOOK.

 U+02E5..U+02E9 comprises a set of basic tone letters defined in IPA

and commonly used in detailed tone transcriptions of African and other languages.

Each tone letter refers to one of five distinguishable tone levels. To represent contour

tones, the tone letters are used in combinations. The rendering of contour tones

follows a regular set of ligation rules that results in a graphic image of the contour

(see Figure 7-8).

For example, the sequence “1 + 5” in the first row of Figure 7-8 indicates the

sequence of the lowest tone letter, U+02E9 MODIFIER LETTER EXTRA-LOW TONE

BAR, followed by the highest tone letter, U+02E5 MODIFIER LETTER EXTRA-HIGH

TONE BAR. In that sequence, the tone letter is drawn with a ligation from the iconic

position of the low tone to that of the high tone to indicate the sharp rising contour.

A sequence of three tone letters may also be ligated, as shown in the last row of

Figure 7-8, to indicate a low rising-falling contour tone.

The Modifier Tone Letters block contains modifier letters used in various schemes for

marking tones. These supplement the more commonly used tone marks and tone

letters found in the Spacing Modifier Letters block (U+02B0..U+02FF).

The characters in the range U+A700..U+A707 are corner tone marks used in the

transcription of Chinese. They were invented by Bridgman and Wells Williams in the

1830s. They have little current use, but are seen in a number of old Chinese sources.

The tone letters in the range U+A708..U+A716 complement the basic set of IPA tone

letters (U+02E5..U+02E9) and are used in the representation of Chinese tones for

the most part. The dotted tone letters are used to represent short (“stopped”) tones.

The left-stem tone letters are mirror images of the IPA tone letters; like those tone

letters, they can be ligated in sequences of two or three tone letters to represent

contour tones. Left-stem versus right-stem tone letters are sometimes used

contrastively to distinguish between tonemic and tonetic transcription or to show the

effects of tonal sandhi.

Tone Letters.

Figure 7-8. Tone Letters

7.8.2 Modifier Tone Letters: U+A700–U+A71F

Europe-I 399 7.8 Modifier Letters

The modifier letters in the range U+A717..U+A71A indicate tones in a particular

orthography for Chinantec, an Oto-Manguean language of Mexico. These tone marks

are also spacing modifier letters and are not meant to be placed over other letters.

Europe-I 400 7.8 Modifier Letters

Combining marks are a special class of characters in the Unicode Standard that are

intended to combine with a preceding character, called their base. They have a formal

syntactic relationship—or dependence—on their base, as defined by the standard.

This relationship is relevant to the definition of combining character sequences,

canonical reordering, and the Unicode Normalization Algorithm. For formal defini‐

tions, see Section 3.6, Combination.

Combining marks usually have a visible glyphic form, but some of them are invisible.

When visible, a combining mark may interact graphically with neighboring charac‐

ters in various ways. Visible combining marks are divided roughly into two types:

nonspacing marks and spacing marks. In rendering, the nonspacing marks generally

have no baseline advance of their own, but instead are said to apply to their grapheme

base. Spacing marks behave more like separate letters, but in some scripts they may

have complex graphical interactions with other characters. For an extended discus‐

sion of the principles for the application of combining marks, see Section 3.6, Combi‐

nation.

Nonspacing marks come in two types: diacritic and other. The diacritics are exempli‐

fied by such familiar marks as the acute accent or the macron, which are applied to

letters of the Latin script (or similar scripts). They tend to indicate a change in

pronunciation or a particular tone or stress. They may also be used to derive new

letters. However, in some scripts, such as Arabic and Hebrew, other kinds of

nonspacing marks, such as vowel points, represent separate sounds in their own right

and are not considered diacritics.

 In the Unicode character

encoding, all combining marks are encoded after their base character. For example,

the Unicode character sequence U+0061 “ ” LATIN SMALL LETTER A, U+0308 “ ”

COMBINING DIAERESIS, U+0075 “ ” LATIN SMALL LETTER U unambiguously

encodes “äu”, not “aü”, as shown in Figure 2-18.

The Unicode Standard convention is consistent with the logical order of other

nonspacing marks in Semitic and Indic scripts, the great majority of which follow the

base characters with respect to which they are positioned. This convention is also in

line with the way modern font technology handles the rendering of nonspacing

glyphic forms, so that mapping from character memory representation to rendered

glyphs is simplified. (For more information on the formal behavior of combining

marks, see Section 2.11, Combining Characters, and Section 3.6, Combination.)

 Because nonspacing combining marks have such a wide

variety of applications, they may have multiple semantic values. For example,

7.9 Combining Marks

Sequence of Base Letters and Combining Marks.

Multiple Semantics.

Europe-I 401 7.9 Combining Marks

U+0308 = diaeresis = trema = umlaut = double derivative. Such multiple functions

for a single combining mark are not separately encoded in the standard.

 When rendered in the context of a language or script, like ordi‐

nary letters, combining marks may be subjected to systematic stylistic variation, as

discussed in Section 7.1, Latin. For example, when used in Polish, U+0301

COMBINING ACUTE ACCENT appears at a steeper angle than when it is used in

French. When it is used for Greek (as oxia), it can appear nearly upright. U+030C

COMBINING CARON is commonly rendered as an apostrophe when used with certain

letterforms. U+0326 COMBINING COMMA BELOW is sometimes rendered as a turned

comma above on a lowercase “g” to avoid conflict with the descender. In many fonts,

there is no clear distinction made between U+0326 COMBINING COMMA BELOW and

U+0327 COMBINING CEDILLA.

Combining accents above the base glyph are usually adjusted in height for use with

uppercase versus lowercase forms. In the absence of specific font protocols,

combining marks are often designed as if they were applied to typical base characters

in the same font. However, this will result in suboptimal appearance in rendering

and may cause security problems. See Unicode Technical Report #36, “Unicode Secu‐

rity Considerations.”

For more information, see Section 5.13, Rendering Nonspacing Marks.

 A few combining marks are encoded to represent overlaid

diacritics such as U+0335 COMBINING SHORT STROKE OVERLAY (= “bar”) or hooks

modifying the shape of base characters, such as U+0322 COMBINING RETROFLEX

HOOK BELOW. Such overlaid diacritics are not used in decompositions of characters

in the Unicode Standard. Overlaid combining marks for the indication of negation of

mathematical symbols are an exception to this rule and are discussed later in this

section.

One should use the combining marks for overlaid diacritics sparingly and with care,

as rendering them on letters may create opportunities for spoofing and other confu‐

sion. Sequences of a letter followed by an overlaid diacritic or hook character are not

canonically equivalent to any preformed encoded character with diacritic even

though they may appear the same. See “Non-decomposition of Certain Diacritics” in

Section 2.12, Equivalent Sequences for more discussion of the implications of overlaid

diacritics for normalization and for text matching operations.

 By convention, combining marks may be exhibited

in (apparent) isolation by applying them to U+00A0 NO-BREAK SPACE. This

approach might be taken, for example, when referring to the diacritical mark itself as

a mark, rather than using it in its normal way in text. Prior to Version 4.1 of the

Unicode Standard, the standard also recommended the use of U+0020 SPACE for

display of isolated combining marks. This is no longer recommended, however,

Glyphic Variation.

Overlaid Diacritics.

Marks as Spacing Characters.

Europe-I 402 7.9 Combining Marks

because of potential conflicts with the handling of sequences of U+0020 SPACE char‐

acters in such contexts as XML.

In charts and illustrations in this standard, the combining nature of these marks is

illustrated by applying them to a dotted circle, as shown in the examples throughout

this standard.

In a bidirectional context, using any character with neutral directionality (that is,

with a Bidirectional Class of ON, CS, and so on) as a base character, including

U+00A0 NO-BREAK SPACE, a dotted circle, or any other symbol, can lead to unin‐

tended separation of the base character from certain types of combining marks

during bidirectional ordering. The result is that the combining mark will be graphi‐

cally applied to something other than the correct base. This affects spacing

combining marks (that is, with a General Category of Mc) but not nonspacing

combining marks. The unintended separation can be prevented by bracketing the

combining character sequence with RLM or LRM characters as appropriate. For

more details on bidirectional reordering, see Unicode Standard Annex #9, “Unicode

Bidirectional Algorithm.”

 The Unicode Standard separately encodes

clones of many common European diacritical marks, primarily for compatibility with

existing character set standards. These cloned accents and diacritics are spacing char‐

acters and can be used to display the mark in isolation, without application to a NO-

BREAK SPACE. They are cross-referenced to the corresponding combining mark in the

names list in the Unicode code charts. For example, U+02D8 BREVE is cross-refer‐

enced to U+0306 COMBINING BREVE. Most of these spacing clones also have compat‐

ibility decomposition mappings involving U+0020 SPACE, but implementers should

be cautious in making use of those decomposition mappings because of the compli‐

cations that can arise from replacing a spacing character with a SPACE + combining

mark sequence.

 ISO/IEC 8859-1 contains eight characters that are

ambiguous regarding whether they denote combining characters or separate spacing

characters. In the Unicode Standard, the corresponding code points (U+005E

CIRCUMFLEX ACCENT, U+005F LOW LINE, U+0060 GRAVE ACCENT, U+007E

TILDE, U+00A8 DIAERESIS, U+00AF MACRON, U+00B4 ACUTE ACCENT, and

U+00B8 CEDILLA) are used only as spacing characters. The Unicode Standard

provides unambiguous combining characters in the Combining Diacritical Marks

block, which can be used to represent accented Latin letters by means of composed

character sequences.

U+00B0 DEGREE SIGN is also occasionally used ambiguously by implementations

of ISO/IEC 8859-1 to denote a spacing form of a diacritic ring above a letter; in the

Unicode Standard, that spacing diacritical mark is denoted unambiguously by

U+02DA RING ABOVE. U+007E “ ” TILDE is ambiguous between usage as a spacing

Spacing Clones of Diacritical Marks.

Relationship to ISO/IEC 8859-1.

Europe-I 403 7.9 Combining Marks

form of a diacritic and as an operator or other punctuation; it is generally rendered

with a center line glyph, rather than as a diacritic raised tilde. The spacing form of

the diacritic tilde is denoted unambiguously by U+02DC “ ” SMALL TILDE.

 IPA, pronunciation systems,

some transliteration systems, and a few languages such as Tagalog use diacritics that

are applied to a sequence of two letters. This display of diacritics over two letters, also

known as the use of double diacritics, is most often noted for the Latin script, which

is widely used for transcription and transliteration. However, the use of double

diacritics is not limited to the Latin script.

In rendering, these marks of unusual size appear as wide diacritics spanning across

the top (or bottom) of the two base characters. The Unicode Standard contains a set

of double-diacritic combining marks to represent such forms. Like all other

combining nonspacing marks, these marks apply to the previous base character, but

they are intended to hang over the following letter as well. For example, the character

U+0360 COMBINING DOUBLE TILDE is intended to be displayed as depicted in

Figure 7-9.

The Unicode Standard also contains a set of combining half diacritical marks, which

can be used as an alternative, but not generally recommended, way of representing

diacritics over a sequence of two (or more) letters. See “Combining Half Marks” later

in this section and Figure 7-15.

The double-diacritical marks have a very high combining class—higher than all

other nonspacing marks except U+0345 iota subscript—and so always are at or near

the end of a combining character sequence when canonically reordered. In

rendering, the double diacritic will float above other diacritics above (or below other

diacritics below)—excluding surrounding diacritics—as shown in Figure 7-10.

Diacritics Positioned Over Two Base Characters.

Figure 7-9. Double Diacritics

Figure 7-10. Positioning of Double Diacritics

Europe-I 404 7.9 Combining Marks

In Figure 7-10, the first line shows a combining character sequence in canonical

order, with the double-diacritic tilde following a circumflex accent. The second line

shows an alternative order of the two combining marks that is canonically equivalent

to the first line. Because of this canonical equivalence, the two sequences should

display identically, with the double diacritic floating above the other diacritics

applied to single base characters.

Occasionally one runs across orthographic conventions that use a dot, an acute

accent, or other simple diacritic above a ligature tie—that is, U+0361 COMBINING

DOUBLE INVERTED BREVE. Because of the considerations of canonical order just

discussed, one cannot represent such text simply by putting a combining dot above or

combining acute directly after U+0361 in the text. Instead, the recommended way of

representing such text is to place U+034F COMBINING GRAPHEME JOINER (CGJ)

between the ligature tie and the combining mark that follows it, as shown in

Figure 7-11.

Because CGJ has a combining class of zero, it blocks reordering of the double

diacritic to follow the second combining mark in canonical order. The sequence of

<CGJ, acute> is then rendered with default stacking, placing it centered above the

ligature tie. This convention can be used to create similar effects with combining

marks above other double diacritics (or below double diacritics that render below

base characters).

For more information on the combining grapheme joiner, see “Combining Grapheme

Joiner” in Section 23.2, Layout Controls.

 Some transcriptional

systems extend the convention of double-diacritic display and show diacritics above

(or below) three or more base letters. There are no characters encoded in the Unicode

Standard which are specifically designated for plain text representation of triple

diacritics. Instead, the recommendation of the Unicode Standard is to use text

markup for such representation. The application of modifying text marks to arbitrary

spans of text exceeds the normal scope of plain text and is usually better dealt with by

conventions designed for rich text. In some limited circumstances, the combining

half mark diacritics can be used in combinations to represent triple diacritics, but the

Figure 7-11. Use of CGJ with Double Diacritics

Diacritics Positioned Over Three or More Base Characters.

Europe-I 405 7.9 Combining Marks

display of half mark diacritics used in this way often is unsatisfactory in plain text

rendering.

 An additional class of marks called subtending marks is posi‐

tioned under (or occasionally over or surrounding) a sequence of several other char‐

acters. Formally, these marks are not treated as combining marks (gc = M), but

instead as format characters (gc = Cf). In the text representation, they precede the

sequence of characters they subtend, rather than follow a single base character, as

combining marks do.

Although the terms subtending marks and prefixed format control characters have

been used for these special marks for a number of versions of the Unicode Standard,

as of Version 9.0 another more precise but equivalent term has been introduced for

them: prepended concatenation marks. That term focuses on the order of occurrence

of the marks (prepended to the sequence following them in the backing store), rather

than the graphical positioning of the visible mark in the final displayed rendering of

the sequences. A binary character property has also been introduced to refer to this

class of marks as a whole: Prepended_Concatenation_Mark. Proper display of these

marks requires specialized rendering support, as the shapes of the marks may adjust

depending on the length of the following sequence of characters.

The use of subtending marks is most notably associated with the Arabic script. They

typically occur before a sequence of digits and are then displayed with different styles

of extended swashes underneath the digits. In Arabic, these marks often indicate

whether the sequence of digits is to be interpreted as a number or a date, for

example. Similar subtending marks are encoded for other scripts, including Syriac

and Kaithi. (See Section 9.2, Arabic, Section 9.3, Syriac, and Section 15.2, Kaithi for a

number of examples and further discussion.)

 According to Section 3.6, Combination, for a

simple combining character sequence such as <i , > , the nonspacing mark both

applies to and depends on the base character i. If the i is preceded by a character that

can ligate with it, additional considerations apply.

Figure 7-12 shows typical examples of the interaction of combining marks with liga‐

tures. The sequence <f , i, > is canonically equivalent to <f, î>. This implies that

both sequences should be rendered identically, if possible. The precise way in which

the sequence is rendered depends on whether the f and i of the first sequence ligate.

If so, the result of applying should be the same as ligating an f with an î. The

appearance depends on whatever typographical rules are established for this case, as

illustrated in the first example of Figure 7-12. Note that the two characters f and î may

not ligate, even if the sequence <f , i> does.

Subtending Marks.

Combining Marks with Ligatures.

Europe-I 406 7.9 Combining Marks

The second and third examples show that by default the sequence <f , , i , > is

visually distinguished from the sequence <f, , i, > by the relative placement of the

accents. This is true whether or not the <f, > and the <i, > ligate. Example 4

shows that the two sequences are not canonically equivalent.

In some writing systems, established typographical rules further define the place‐

ment of combining marks with respect to ligatures. As long as the rendering correctly

reflects the identity of the character sequence containing the marks, the Unicode

Standard does not prescribe such fine typographical details.

Compatibility characters such as the fi-ligature are not canonically equivalent to the

sequence of characters in their compatibility decompositions. Therefore, sequences

like <fi-ligature, > may legitimately differ in visual representation from <f, i, >,

just as the visual appearance of other compatibility characters may be different from

that of the sequence of characters in their compatibility decompositions. By default, a

compatibility character such as fi-ligature is treated as a single base glyph.

The combining diacritical marks in this block are intended for general use with any

script. Diacritical marks specific to a particular script are encoded with that script.

Diacritical marks that are primarily used with symbols are defined in the Combining

Diacritical Marks for Symbols character block (U+20D0..U+20FF). For a detailed

discussion of how multiple combining marks from this block interact when applied

to a single base character, see “Multiple Combining Characters” in Section 2.11,

Combining Characters.

 The combining diacritical marks are derived from a variety of sources,

including IPA, ISO 5426, and ISO 6937.

 The characters U+0332 COMBINING LOW LINE,

U+0333 COMBINING DOUBLE LOW LINE, U+0305 COMBINING OVERLINE, and

U+033F COMBINING DOUBLE OVERLINE are intended to connect on the left and

right. Thus, when used in combination, they could have the effect of continuous lines

Figure 7-12. Interaction of Combining Marks with Ligatures

7.9.1 Combining Diacritical Marks: U+0300–U+036F

Standards.

Underlining and Overlining.

Europe-I 407 7.9 Combining Marks

above or below a sequence of characters. However, because of their interaction with

other combining marks and other layout considerations such as intercharacter

spacing, their use for underlining or overlining of text is discouraged in favor of using

styled text.

This block contains a set of combining diacritical marks used primarily in phonetic

transcription for German dialectology. Certain characters are also used in other

contexts.

 The combining diacritical marks U+1ABB COMBINING

PARENTHESES ABOVE, U+1ABC COMBINING DOUBLE PARENTHESES ABOVE, and

U+1ABD COMBINING PARENTHESES BELOW are used in German dialectology to indi‐

cate that the effect of a modifier on pronunciation is weakened. U+1AC5 COMBINING

SQUARE BRACKETS ABOVE is used in Japanese transliteration to indicate that the

accent mark contained within the square brackets is suppressed.

The positioning of these four combining parentheses diacritics deviates from the

default stacking behavior of nonspacing marks. Instead of stacking vertically, they

are placed side-by-side, surrounding the preceding diacritic above or below the base

character. U+1ABB COMBINING PARENTHESES ABOVE and U+1ABC COMBINING

DOUBLE PARENTHESES ABOVE are intended to be used with diacritics placed above,

and U+1ABD COMBINING PARENTHESES BELOW is intended to be used with

diacritics placed below. Correct positioning is illustrated in Figure 7-13. To indicate

paired parentheses, U+1ABB..U+1ABD should be employed, rather than the single

left and right combining parentheses marks located at U+1AC1..U+1AC4. The single

combining parentheses are used in extended IPA to indicate initial or final voicing or

devoicing, when appearing with a diacritic that marks voicing or devoicing.

In contrast with the four combining paired parentheses diacritical marks above or

below, which combine with other diacritics, U+1ABE COMBINING PARENTHESES

OVERLAY is a regular enclosing mark, intended to surround a base character. The

exact placement of the overlay U+1ABE with respect to a base character is not speci‐

fied by the Unicode Standard, but may be adjusted for a particular base character as

needed in fonts. For example, in the context of phonetic transcription for German

dialectology, the combining character sequence <U+014B LATIN SMALL LETTER

7.9.2 Combining Diacritical Marks Extended: U+1AB0–U+1AFF

Combining Parentheses.

Figure 7-13. Positioning of Combining Parentheses

Europe-I 408 7.9 Combining Marks

ENG, U+1ABE COMBINING PARENTHESES OVERLAY> could be rendered with the

parentheses placed lower to surround the descender of the letter eng.

This block is the supplement to the Combining Diacritical Marks block in the range

U+0300..U+036F. It contains lesser-used combining diacritical marks.

U+1DC0 COMBINING DOTTED GRAVE ACCENT and U+1DC1 COMBINING DOTTED

ACUTE ACCENT are marks occasionally seen in some Greek texts. They are variant

representations of the accent combinations dialytika varia and dialytika oxia, respec‐

tively. They are, however, encoded separately because they cannot be reliably formed

by regular stacking rules involving U+0308 COMBINING DIAERESIS and U+0300

COMBINING GRAVE ACCENT or U+0301 COMBINING ACUTE ACCENT.

U+1DC3 COMBINING SUSPENSION MARK is a combining mark specifically used in

Glagolitic. It is not to be confused with a combining breve.

 The Typicon is a liturgical book used in the Russian

Orthodox Church and other Eastern Orthodox and Byzantine Catholic Churches. It

contains liturgical instructions and other information for use in services. The Kavyka

symbols were part of system used by the Russian liturgist Nikita Syrnikov that were

derived from the archaic systems of Typicon symbols attributed to St. Gennadius,

Archbishop of Novgorod, who served from 1484 to 1504 CE. Use of the Kavyka

symbols is popular among members of the Yedinoverie community. Table 7-5

describes their usage.

Character Use

1DF6 COMBINING KAVYKA ABOVE RIGHT These indicate various rubrics for chanting
the Beatitudes Troparia at the Divine
Liturgy services.1DF7 COMBINING KAVYKA ABOVE LEFT

1DF8 COMBINING DOT ABOVE LEFT This may occur with the combining kavyki.

1DF9 COMBINING WIDE INVERTED BRIDGE BELOW
This indicates that a double service has a
common Exapostilarion.

The combining marks in this block are generally applied to mathematical or tech‐

nical symbols. They can be used to extend the range of the symbol set. For example,

U+20D2 COMBINING LONG VERTICAL LINE OVERLAY can be used to express nega‐

tion, as shown in Figure 7-14. Its presentation may change in those circumstances—

changing its length or slant, for example. That is, U+2261 IDENTICAL TO followed

7.9.3 Combining Diacritical Marks Supplement: U+1DC0–

U+1DFF

Typicon Kavyka Symbols.

Table 7-5. Typicon Kavyka Symbols

7.9.4 Combining Diacritical Marks for Symbols: U+20D0–U+20FF

Europe-I 409 7.9 Combining Marks

by U+20D2 is equivalent to U+2262 NOT IDENTICAL TO. In this case, there is a

precomposed form for the negated symbol. However, this statement does not always

hold true, and U+20D2 can be used with other symbols to form the negation. For

example, U+2258 CORRESPONDS TO followed by U+20D2 can be used to express does

not correspond to, without requiring that a precomposed form be part of the Unicode

Standard.

Other nonspacing characters are used in mathematical expressions. For example, a

U+0304 COMBINING MACRON is commonly used in propositional logic to indicate

logical negation.

 These nonspacing characters are supplied for compatibility with

existing standards, allowing individual base characters to be enclosed in several ways.

For example, U+2460 CIRCLED DIGIT ONE can be expressed as U+0031 DIGIT ONE

“1” + U+20DD COMBINING ENCLOSING CIRCLE. For additional examples, see

Figure 2-17.

The combining enclosing marks surround their grapheme base and any intervening

nonspacing marks. These marks are intended for application to free-standing

symbols. See “Application of Combining Marks” in Section 3.6, Combination.

Users should be cautious when applying combining enclosing marks to other than

free-standing symbols—for example, when using a combining enclosing circle to

apply to a letter or a digit. Most implementations assume that application of any

nonspacing mark will not change the character properties of a base character. This

means that even though the intent might be to create a circled symbol

(General_Category = So), most software will continue to treat the base character as

an alphabetic letter or a numeric digit. Note that there is no canonical equivalence

between a symbolic character such as U+24B6 CIRCLED LATIN CAPITAL LETTER A

and the sequence <U+0041 LATIN CAPITAL LETTER A, U+20DD COMBINING

ENCLOSING CIRCLE>, partly because of this difference in treatment of properties.

This block consists of a number of presentation form (glyph) encodings that may be

used to visually encode certain combining marks that apply to multiple base letter‐

forms. These characters are intended to facilitate the support of such marks in legacy

implementations.

Figure 7-14. Use of Vertical Line Overlay for Negation

Enclosing Marks.

7.9.5 Combining Half Marks: U+FE20–U+FE2F

Europe-I 410 7.9 Combining Marks

Unlike other compatibility characters, these half marks do not correspond directly to

a single character or a sequence of characters; rather, a discontiguous sequence of the

combining half marks corresponds to a single combining mark, as depicted in

Figure 7-15. The preferred forms are the double diacritics, such as U+0360

COMBINING DOUBLE TILDE. See the earlier discussion of “Diacritics Positioned

Above Two Base Characters.”

This block also contains half marks for macrons and conjoining macrons, both above

and below. These marks can be used in combinations on successive letters to support

particular styles of supralineation or sublineation in some historic scripts. See, for

example, Section 7.3, Coptic. However, lines which extend across more than two

letters may be better rendered if expressed in terms of explicit text styles, rather than

by a series of combining half marks, applied one letter at a time in the plain text

sequence.

In addition to the blocks of characters in the standard specifically set aside for

combining marks, many combining marks are associated with particular scripts or

occasionally with groups of scripts. Thus the Arabic block contains a large collection

of combining marks used to indicate vowelling of Arabic text as well as another

collection of combining marks used in annotation of Quranic text. Such marks are

mostly intended for use with the Arabic script, but in some instances other scripts,

such as Syriac, may use them as well.

Nearly every Indic script has its own collection of combining marks, notably

including sets of combining marks to represent dependent vowels, or matras.

In some instances a combining mark encoded specifically for a given script, and

located in the code chart for that script, may look very similar to a diacritical mark

from one of the blocks dedicated to generic combining marks. In such cases, a variety

of reasons, including rendering behavior in context or patterning considerations, may

have led to separate encoding. The general principle is that if a correctly identified

Figure 7-15. Double Diacritics and Half Marks

7.9.6 Combining Marks in Other Blocks

Europe-I 411 7.9 Combining Marks

script-specific combining mark of the appropriate shape is available, that character is

intended for use with that script, in lieu of a generic combining mark that might look

similar. If a combining mark of the appropriate shape is not available in the relevant

script block or blocks, then one should make use of whichever generic combining

mark best suits the intended purpose.

For example, in representing Syriac text, to indicate a dot above a letter that was iden‐

tified as a qushshaya, one would use U+0741 SYRIAC QUSHSHAYA rather than the

generic U+0307 COMBINING DOT ABOVE. When attempting to represent a hamza

above a Syriac letter, one would use U+0654 ARABIC HAMZA ABOVE, which is

intended for both Arabic and Syriac, because there is no specifically Syriac hamza

combining mark. However, if marking up Syriac text with diacritics such as a macron

to indicate length or some other feature, one would then make use of U+0304

COMBINING MACRON from the generic block of combining diacritical marks.

Europe-I 412 7.9 Combining Marks

Chapter 8

Europe-II
Ancient and Other Scripts

This chapter describes ancient scripts of Europe, as well as other historic and limited-

use scripts of Europe not covered in Chapter 7, Europe-I. This includes the various

ancient Mediterranean scripts, other early alphabets and sets of runes, some poorly

attested historic scripts of paleographic interest, and more recently devised

constructed scripts with significant usage.

Unicode encodes a number of ancient scripts, which have not been in normal use for

a millennium or more, as well as historic scripts, whose usage ended in recent

centuries. Although they are no longer used to write living languages, documents

and inscriptions using these scripts exist, both for extinct languages and for precur‐

sors of modern languages. The primary user communities for these scripts are

scholars interested in studying the scripts and the languages written in them. Some

of the historic scripts are related to each other as well as to modern alphabets.

The Linear A script is an ancient writing system used from approximately 1700–1450

BCE on and around the island of Crete. The script contains more than ninety signs in

regular use and a host of logograms. Surviving examples are inscribed on clay tablets,

stone tables, and metals. The language of the inscriptions has not yet been deci‐

phered.

Both Linear B and Cypriot are syllabaries that were used to write Greek. Linear B is

the older of the two scripts, and there are some similarities between a few of the

characters that may not be accidental. Cypriot may descend from Cypro-Minoan,

which in turn may descend from Linear B.

Cypro-Minoan is an undeciphered script from the late Bronze Age (circa 1550-1050

BCE) found on objects from the island of Cyprus, the ancient cities of Ugarit

(modern-day Ras Shamra, Syria) and Tiryns, Greece. It is a syllabic script.

The ancient Anatolian alphabets Lycian, Carian, and Lydian all date from the first

millennium BCE, and were used to write various ancient Indo-European languages of

western and southwestern Anatolia. All are closely related to the Greek script.

Old Italic was derived from Greek and was used to write Etruscan and other

languages in Italy. It was borrowed by the Romans and is the immediate ancestor of

413

the Latin script now used worldwide. One of the Old Italic alphabets of northern

Italy may have influenced the development of the Runic script, which has a distinct

angular appearance owing to its use in carving inscriptions in stone and wood.

Old Hungarian is another historical runiform script, used to write the Hungarian

language in Central Europe. In recent decades it has undergone a significant revival

in Hungary. It has developed casing, and is now used with modern typography to

print significant amounts of material in the modern Hungarian language. It is laid

out from right to left.

The Ogham script is indigenous to Ireland. While its originators may have been

aware of the Latin or Greek scripts, it seems clear that the sound values of Ogham

letters were suited to the phonology of a form of Primitive Irish.

The Gothic script, like Cyrillic, was developed on the basis of Greek at a much later

date than Old Italic.

Elbasan, Vithkuqi, and Todhri are all simple, left-to-right alphabetic scripts, used

historically to write Albanian. Elbasan was invented in the middle of the eighteenth-

century. It is named after the city where it originated. Vithkuqi was invented by

Naum P. Veqilharxhi, and is named for the town where it was created in the nine‐

teenth century. It is experiencing some modern revivalist efforts in artistic and

cultural uses. The Todhri alphabet is another historical script used to write the Alba‐

nian language in the central Albanian region that is now designated Elbasan County.

It was used in the eighteenth and nineteenth centuries and perhaps sporadically into

the twentieth century.

Caucasian Albanian is a poorly attested simple alphabetic script that dates from the

early fifth century. The text of its attestation is related to the modern Udi language.

Old Permic is a simple alphabetic script devised in the fourteenth century to write the

Uralic languages Komi and Komi-Permyak. Its use for Komi extended into the seven‐

teenth century.

Shavian is a phonemic alphabet invented in the 1950s to write English. It was used to

publish one book in 1962, but remains of some current interest.

Europe-II 414

The Linear A script was used from approximately 1700–1450 BCE. It was mainly used

on the island of Crete and surrounding areas to write a language which has not yet

been identified. Unlike the later Linear B, which was used to write an early form of

Greek, Linear A appears on a variety of media, such as clay tablets, stone offering

tables, gold and silver hair pins, and pots.

 The repertoire of characters in the Unicode encoding of the Linear A

script is broadly based on the GORILA catalog by Godart and Olivier (1976–1985),

which is the basic set of signs used in decipherment efforts. All simple signs in that

catalog are encoded as single characters. Composite signs consisting of vertically

stacked parts or touching pieces are also encoded as single characters. Composite

signs in the catalog which consist of side-by-side pieces that are not touching are

treated as digraphs; the parts are individually encoded as characters, but the

composite sign is not separately encoded.

 Linear A contains more than ninety syllabic signs in regular use and a

host of logograms. Some Linear A signs are also found in Linear B, although about

80% of the logograms in Linear A do not appear in Linear B.

 The Linear A character names are based on the GORILA catalog

numbers.

 Linear A was written from left to right, though occasionally it

appears right to left and, rarely, boustrophedon.

 Numbers in Linear A inscriptions are represented by characters in the

Aegean Numbers block. Numbers are usually arranged in sets of five or fewer that

are stacked vertically. The largest number recorded is 3,000. Linear A seems to use a

series of unit fractions. Seven fractions are regularly used and are included in the

Linear A block.

8.1 Linear A

8.1.1 Linear A: U+10600–U+1077F

Encoding.

Structure.

Character Names.

Directionality.

Numbers.

Europe-II 415 8.1 Linear A

The Linear B script is a syllabic writing system that was used on the island of Crete

and parts of the nearby mainland to write the oldest recorded variety of the Greek

language. Linear B clay tablets predate Homeric Greek by some 700 years; the latest

tablets date from the mid- to late thirteenth century BCE. Major archaeological sites

include Knossos, first uncovered about 1900 by Sir Arthur Evans, and a major site

near Pylos. The majority of currently known inscriptions are inventories of

commodities and accounting records.

Early attempts to decipher the script failed until Michael Ventris, an architect and

amateur decipherer, came to the realization that the language might be Greek and

not, as previously thought, a completely unknown language. Ventris worked together

with John Chadwick, and decipherment proceeded quickly. The two published a

joint paper in 1953.

Linear B was written from left to right with no nonspacing marks. The script mainly

consists of phonetic signs representing the combination of a consonant and a vowel.

There are about 60 known phonetic signs, in addition to a few signs that seem to be

mainly free variants (also known as Chadwick’s optional signs), a few unidentified

signs, numerals, and a number of ideographic signs, which were used mainly as

counters for commodities. Some ligatures formed from combinations of syllables

were apparently used as well. Chadwick gives several examples of these ligatures, the

most common of which are included in the Unicode Standard. Other ligatures are

the responsibility of the rendering system.

 The catalog numbers used in the Unicode character names for Linear B

syllables are based on the Wingspread Convention, as documented in Bennett (1964).

The letter “B” is prepended arbitrarily, so that name parts will not start with a digit,

thus conforming to ISO/IEC 10646 naming rules. The same naming conventions,

using catalog numbers based on the Wingspread Convention, are used for Linear B

ideograms.

The Linear B Ideograms block contains the list of Linear B signs known to constitute

ideograms (logographs), rather than syllables. When generally agreed upon, the

names include the meaning associated with them—for example, U+10080 LINEAR

B IDEOGRAM B100 MAN. In other instances, the names of the ideograms simply carry

their catalog number.

8.2 Linear B

8.2.1 Linear B Syllabary: U+10000–U+1007F

Standards.

8.2.2 Linear B Ideograms: U+10080–U+100FF

Europe-II 416 8.2 Linear B

The signs used to denote Aegean whole numbers (U+10107..U+10133) derive from

the non-Greek Linear A script. The signs are used in Linear B. The Cypriot syllabary

appears to use the same system, as evidenced by the fact that the lower digitsappear

in extant texts. For measurements of agricultural and industrial products, Linear B

uses three series of signs: liquid measures, dry measures, and weights. No set of signs

for linear measurement has been found yet. Liquid and dry measures share the same

symbols for the two smaller subunits; the system of weights retains its own unique

subunits. Though several of the signs originate in Linear A, the measuring system of

Linear B differs from that of Linear A. Linear B relies on units and subunits, much

like the imperial “quart,” “pint,” and “cup,” whereas Linear A uses whole numbers

and fractions. The absolute values of the measurements have not yet been completely

agreed upon.

8.2.3 Aegean Numbers: U+10100–U+1013F

Europe-II 417 8.2 Linear B

The Cypriot syllabary was used to write the Cypriot dialect of Greek from about 800

to 200 BCE. It is related to both Linear B and Cypro-Minoan, a script used for a

language that has not yet been identified. Interpretation has been aided by the fact

that, as use of the Cypriot syllabary died out, inscriptions were carved using both the

Greek alphabet and the Cypriot syllabary. Unlike Linear B and Cypro-Minoan, the

Cypriot syllabary was usually written from right to left, and accordingly the charac‐

ters in this script have strong right-to-left directionality.

Word breaks can be indicated by spaces or by separating punctuation, although sepa‐

rating punctuation is also used between larger word groups.

Although both Linear B and the Cypriot syllabary were used to write Greek dialects,

Linear B has a more highly abbreviated spelling. Structurally, the Cypriot syllabary

consists of combinations of up to 12 initial consonants and 5 different vowels. Long

and short vowels are not distinguished. The Cypriot syllabary distinguishes among a

different set of initial consonants than Linear B; for example, unlike Linear B,

Cypriot maintained a distinction between [l] and [r], though not between [d] and [t],

as shown in Table 8-1. Not all of the 60 possible consonant-vowel combinations are

represented. As is the case for Linear B, the Cypriot syllabary is well understood and

documented.

Linear B Cypriot

da ta

na na

pa pa

ro lo

se se

ti ti

to to

For Aegean numbers, see the subsection “Aegean Numbers: U+10100–U+1013F” in

Section 8.2, Linear B.

8.3 Cypriot Syllabary

8.3.1 Cypriot Syllabary: U+10800–U+1083F

Table 8-1. Similar Characters in Linear B and Cypriot

Europe-II 418 8.3 Cypriot Syllabary

Cypro-Minoan is an undeciphered script found on approximately 250 objects from

the island of Cyprus, the ancient cities of Ugarit (modern-day Ras Shamra, Syria) and

Tiryns, Greece. The script dates to the late Bronze Age (circa 1550-1050 BCE). The

name “Cypro-Minoan” was coined by Arthur Evans in 1909 because he believed

Cypro-Minoan derived from the scripts of Minoan Crete.

Researchers have tentatively classified Cypro-Minoan into four categories, termed

CM0, CM1, CM2, and CM3, based on temporal and geographical criteria. The reper‐

toire in the Unicode Standard covers characters from the CM1, CM2, and CM3

groups, but does not cover CM0; it is largely based on Olivier 2007.

 Cypro-Minoan is a syllabic script and has been encoded with left-to-right

directionality.

 The character names are based on Olivier 2007.

 The glyphs in the code charts generally follow the CM1 forms, but if no CM1

form exists, a CM2 or CM3 form is used. The glyphs follow Olivier 2007 generally,

except for U+12F9C CYPRO-MINOAN SIGN CM013, which has been modified based on

recent research. The code chart normalizes the glyphs into a more linear style.

 A few Cypro-Minoan punctuation marks have been identified. Two

script-specific signs are encoded: U+12FF1 CYPRO-MINOAN SIGN CM301 and

U+12FF2 CYPRO-MINOAN SIGN CM302. Two other marks have been unified with two

punctuation characters in the Aegean Numbers block: U+10100 AEGEAN WORD

SEPARATOR LINE and U+10101 AEGEAN WORD SEPARATOR DOT.

 Numbers in Cypro-Minoan are known, but poorly attested. Users may

choose to employ characters from the Aegean numbers block for Cypro-Minoan, but

the exact relationship between the Cypro-Minoan and Aegean numbers remains

uncertain.

8.4 Cypro-Minoan

8.4.1 Cypro-Minoan: U+12F90–U+12FFF

Structure.

Names.

Glyphs.

Punctuation.

Numbers.

Europe-II 419 8.4 Cypro-Minoan

The Anatolian scripts described in this section all date from the first millennium BCE,

and were used to write various ancient Indo-European languages of western and

southwestern Anatolia (now Turkey). All are closely related to the Greek script and

are probably adaptations of it. Additional letters for some sounds not found in Greek

were probably either invented or drawn from other sources. However, development

parallel to, but independent of, the Greek script cannot be ruled out, particularly in

the case of Carian.

 Lycian was used from around 500 BCE to about 200 BCE. The term “Lycian”

is now used in place of “Lycian A” (a dialect of Lycian, attested in two texts in

Anatolia, is called “Lycian B”, or “Milyan”, and dates to the first millennium BCE).

The Lycian script appears on some 150 stone inscriptions, more than 200 coins, and a

few other objects.

Lycian is a simple alphabetic script of 29 letters, written from left to right, with

frequent use of word dividers. The recommended word divider is U+205A TWO DOT

PUNCTUATION. Scriptio continua (a writing style without spaces or punctuation) also

occurs. In modern editions U+0020 SPACE is sometimes used to separate words.

 The Carian script is used to write the Carian language, and dates from the

first millennium BCE. While a few texts have been found in Caria, most of the written

evidence comes from Carian communities in Egypt, where they served as merce‐

naries. The repertoire of the Carian texts is well established. Unlike Lycian and

Lydian, Carian does not use a single standardized script, but rather shows regional

variation in the repertoire of signs used and their form. Although some of the values

of the Carian letters remain unknown or in dispute, their distinction from other

letters is not. The Unicode encoding is based on the standard “Masson set” catalog of

45 characters, plus 4 recently-identified additions. Some of the characters are consid‐

ered to be variants of others—and this is reflected in their names—but are separately

encoded for scholarly use in discussions of decipherment.

The primary direction of writing is left-to-right in texts from Caria, but right-to-left in

Egyptian Carian texts. However, both directions occur in the latter, and left-to-right is

favored for modern scholarly usage. Carian is encoded in Unicode with left-to-right

directionality. Word dividers are not regularly employed; scriptio continua is

common. Word dividers which are attested are U+00B7 MIDDLE DOT (or U+2E31

8.5 Ancient Anatolian Alphabets

8.5.1 Lycian: U+10280–U+1029F

Carian: U+102A0–U+102DF

Lydian: U+10920–U+1093F

Lycian.

Carian.

Europe-II 420 8.5 Ancient Anatolian Alphabets

WORD SEPARATOR MIDDLE DOT), U+205A TWO DOT PUNCTUATION, and U+205D

TRICOLON. In modern editions U+0020 SPACE may be found.

 While Lydian is attested from inscriptions and coins dating from the end of

the eighth century (or beginning of the seventh) until the third century BCE, the

longer well-preserved inscriptions date to the fifth and fourth centuries BCE.

Lydian is a simple alphabetic script of 26 letters. The vast majority of Lydian texts

have right-to-left directionality (the default direction); a very few texts are left-to-right

and one is boustrophedon. Most Lydian texts use U+0020 SPACE as a word divider.

Rare examples have been found which use scriptio continua or which use dots to

separate the words. In the latter case, U+003A COLON and U+00B7 MIDDLE DOT (or

U+2E31 WORD SEPARATOR MIDDLE DOT) can be used to represent the dots. U+1093F

LYDIAN TRIANGULAR MARK is thought to indicate quotations, and is mirrored

according to text directionality.

Lydian.

Europe-II 421 8.5 Ancient Anatolian Alphabets

The Old Italic script is used to represent a number of related historical alphabets

located on the Italian peninsula. Some of these were used for non-Indo-European

languages (Etruscan, Raetic, and probably North Picene), and some for various Indo-

European languages belonging to the Italic branch (Faliscan and members of the

Sabellian group, including Oscan, Umbrian, and South Picene) the Celtic branch

(Cisalpine Celtic), and the Venetic branch. The ultimate source for the alphabets in

ancient Italy is Euboean Greek used at Ischia and Cumae in the bay of Naples in the

eighth century BCE. Unfortunately, no Greek abecedaries from southern Italy have

survived. The native alphabets of Faliscan, Oscan, Umbrian, North Picene, South

Picene, Venetic, and Cisalpine Celtic all derive from an Etruscan form of the

alphabet. Raetic, or another Old Italic alphabet of northern Italy, may have influ‐

enced the historical development of Runic. (See Section 8.7, Runic.)

There are some 10,000 inscriptions in Etruscan. By the time of the earliest Etruscan

inscriptions, circa 700 BCE, local distinctions are already found in the use of the

alphabet. Three major stylistic divisions are identified: the Northern, Southern, and

Caere/Veii. Use of Etruscan can be divided into two stages, owing largely to the

phonological changes that occurred: the “archaic Etruscan alphabet,” used from the

seventh to the fifth centuries BCE, and the “neo-Etruscan alphabet,” used from the

fourth to the first centuries BCE. Glyphs for eight of the letters differ between the two

periods; additionally, neo-Etruscan abandoned the letters KA, KU, and EKS.

The unification of these alphabets into a single Old Italic script requires language-

specific fonts because the glyphs most commonly used may differ somewhat

depending on the language being represented.

Most of the languages have added characters to the common repertoire: Etruscan and

Faliscan add LETTER EF; Oscan adds LETTER EF, LETTER II, and LETTER UU;

Umbrian adds LETTER EF, LETTER ERS, and LETTER CHE; North Picene adds LETTER

UU; South Picene adds LETTER II, LETTER UU, and LETTER ESS; Venetic adds LETTER

YE; and Raetic adds NORTHERN TSE and SOUTHERN TSE.

The Latin script itself derives from a south Etruscan model, probably from Caere or

Veii, around the mid-seventh century BCE or a bit earlier. However, because there are

significant differences between Latin and Faliscan of the seventh and sixth centuries

BCE in terms of formal differences (glyph shapes, directionality) and differences in

the repertoire of letters used, this warrants a distinctive character block. Fonts for

early Latin should use the uppercase code positions U+0041..U+005A.

8.6 Old Italic

8.6.1 Old Italic: U+10300–U+1032F

Europe-II 422 8.6 Old Italic

Character names assigned to the Old Italic block are unattested but have been recon‐

structed according to the analysis made by Sampson (1985). While the Greek char‐

acter names (ALPHA, BETA, GAMMA, and so on) were borrowed directly from the

Phoenician names (modified to Greek phonology), the Etruscans are thought to have

abandoned the Greek names in favor of a phonetically based nomenclature, where

stops were pronounced with a following -e sound, and liquids and sibilants (which

can be pronounced more or less on their own) were pronounced with a leading e-

sound (so [k], [d] became [ke:], [de:], while [l], [m] became [el], [em]). It is these

names, according to Sampson, which were borrowed by the Romans when they took

their script from the Etruscans.

 Most Etruscan texts from the seventh to six centuries BCE were

written from right to left, but writing left to right was not uncommon, and is found in

approximately ten percent of the texts from this period. From the fifth to the first

centuries BCE, writing right to left was the standard, and left-to-right directionality

was extremely rare. The other local varieties of Old Italic also generally have right-to-

left directionality. Boustrophedon appears rarely, and not especially early (for

instance, the Forum inscription dates to 550–500 BCE). Despite this, for reasons of

implementation simplicity, many scholars prefer left-to-right presentation of texts, as

this is also their practice when transcribing the texts into Latin script. Accordingly,

the Old Italic script has a default directionality of strong left-to-right in this standard.

If the default directionality of the script is overridden to produce a right-to-left

presentation, the glyphs in Old Italic fonts should also be mirrored from the repre‐

sentative glyphs shown in the code charts. This kind of behavior is not uncommon in

archaic scripts; for example, archaic Greek letters may be mirrored when written

from right to left in boustrophedon.

 The earliest inscriptions are written with no space between words in

what is called scriptio continua. There are numerous Etruscan inscriptions with dots

separating word forms, attested as early as the second quarter of the seventh century

BCE. This punctuation is sometimes, but only rarely, used to mark certain types of

syllables and not to separate words. From the sixth century BCE, words were often

separated by one, two, or three dots spaced vertically above each other.

 Etruscan numerals are not well attested in the available materials, but are

employed in the same fashion as Roman numerals. Several additional numerals are

attested, but as their use is at present uncertain, they are not yet encoded in the

Unicode Standard.

 The default glyphs in the code charts are based on the most common shapes

found for each letter. Most of these are similar to the Marsiliana abecedary (mid-

seventh century BCE). Note that the phonetic values for U+10317 OLD ITALIC LETTER

EKS [ks] and U+10319 OLD ITALIC LETTER KHE [kh] show the influence of western,

Euboean Greek; eastern Greek has U+03A7 GREEK CAPITAL LETTER CHI [kh] and

U+03A8 GREEK CAPITAL LETTER PSI [ps] instead.

Directionality.

Punctuation.

Numerals.

Glyphs.

Europe-II 423 8.6 Old Italic

The geographic distribution of the Old Italic script is shown in Figure 8-1. In the

figure, the approximate distribution of the ancient languages that used Old Italic

alphabets is shown in white. Areas for the ancient languages that used other scripts

are shown in gray, and the labels for those languages are shown in italics. In partic‐

ular, note that the ancient Greek colonies of the southern Italian and Sicilian coasts

used the Greek script proper. Rome, of course, is shown in gray, because Latin was

written with the Latin alphabet, now encoded in the Latin script.

Figure 8-1. Distribution of Old Italic

Europe-II 424 8.6 Old Italic

The Runic script was historically used to write the languages of the early and

medieval societies in the German, Scandinavian, and Anglo-Saxon areas. Use of the

Runic script in various forms covers a period from the first century to the nineteenth

century. Some 6,000 Runic inscriptions are known. They form an indispensable

source of information about the development of the Germanic languages.

The Runic script is an historical script, whose most important use today is in schol‐

arly and popular works about the old Runic inscriptions and their interpretation. The

Runic script illustrates many technical problems that are typical for this kind of

script. Unlike many other scripts in the Unicode Standard, which predominantly

serve the needs of the modern user community—with occasional extensions for

historic forms—the encoding of the Runic script attempts to suit the needs of texts

from different periods of time and from distinct societies that had little contact with

one another.

 Present-day knowledge about runes is incomplete. The set of

graphemically distinct units shows greater variation in its graphical shapes than most

modern scripts. The Runic alphabet changed several times during its history, both in

the number and the shapes of the letters contained in it. The shapes of most runes

can be related to some Latin capital letter, but not necessarily to a letter representing

the same sound. The most conspicuous difference between the Latin and the Runic

alphabets is the order of the letters.

The Runic alphabet is known as the futhark from the name of its first six letters. The

original old futhark contained 24 runes:

They are usually transliterated in this way:

f u þ a r k g w h n i j ï p z s t b e m l ŋ d o

In England and Friesland, seven more runes were added from the fifth to the ninth

century.

In the Scandinavian countries, the futhark changed in a different way; in the eighth

century, the simplified younger futhark appeared. It consists of only 16 runes, some of

which are used in two different forms. The long-branch form is shown here:

f u þ o r k h n i a s t b m l ʀ

8.7 Runic

8.7.1 Runic: U+16A0–U+16FF

The Runic Alphabet.

Europe-II 425 8.7 Runic

The use of runes continued in Scandinavia during the Middle Ages. During that

time, the futhark was influenced by the Latin alphabet and new runes were invented

so that there was full correspondence with the Latin letters.

 Like other early writing systems, runes could be written either from left to

right or from right to left, or moving first in one direction and then the other (bous‐

trophedon), or following the outlines of the inscribed object. At times, characters

appear in mirror image, or upside down, or both. In modern scholarly literature,

Runic is written from left to right. Therefore, the letters of the Runic script have a

default directionality of strong left-to-right in this standard.

 The known inscriptions can include considerable variations

of shape for a given rune, sometimes to the point where the nonspecialist will

mistake the shape for a different rune. There is no dominant main form for some

runes, particularly for many runes added in the Anglo-Friesian and medieval Nordic

systems. When transcribing a Runic inscription into its Unicode-encoded form, one

cannot rely on the idealized representative glyph shape in the character charts alone.

One must take into account to which of the four Runic systems an inscription

belongs and be knowledgeable about the permitted form variations within each

system. The representative glyphs were chosen to provide an image that distinguishes

each rune visually from all other runes in the same system. For actual use, it might

be advisable to use a separate font for each Runic system. Of particular note is the

fact that the glyph for U+16C4 RUNIC LETTER GER is actually a rare form, as the

more common form is already used for U+16E1 RUNIC LETTER IOR.

 When a rune in an earlier writing system evolved into several different

runes in a later system, the unification of the earlier rune with one of the later runes

was based on similarity in graphic form rather than similarity in sound value. In

cases where a substantial change in the typical graphical form has occurred, though

the historical continuity is undisputed, unification has not been attempted. When

runes from different writing systems have the same graphic form but different origins

and denote different sounds, they have been coded as separate characters.

 Two sharply different graphic forms, the long-branch

and the short-twig form, were used for 9 of the 16 Viking Age Nordic runes. Although

only one form is used in a given inscription, there are runologically important excep‐

tions. In some cases, the two forms were used to convey different meanings in later

use in the medieval system. Therefore the two forms have been separated in the

Unicode Standard.

 Staveless runes are a third form of the Viking Age Nordic runes, a

kind of Runic shorthand. The number of known inscriptions is small and the graphic

forms of many of the runes show great variability between inscriptions. For this

reason, staveless runes have been unified with the corresponding Viking Age Nordic

runes. The corresponding Viking Age Nordic runes must be used to encode these

Direction.

Representative Glyphs.

Unifications.

Long-Branch and Short-Twig.

Staveless Runes.

Europe-II 426 8.7 Runic

characters—specifically the short-twig characters, where both short-twig and long-

branch characters exist.

 The wide variety of Runic punctuation marks has been

reduced to three distinct characters based on simple aspects of their graphical form,

as very little is known about any difference in intended meaning between marks that

look different. Any other punctuation marks have been unified with shared punctua‐

tion marks elsewhere in the Unicode Standard.

 Runes were used as symbols for Sunday letters and golden

numbers on calendar staves used in Scandinavia during the Middle Ages. To

complete the number series 1–19, three more calendar runes were added. They are

included after the punctuation marks.

 The order of the Runic characters follows the traditional futhark order,

with variants and derived runes being inserted directly after the corresponding

ancestor.

Runic character names are based as much as possible on the sometimes several tradi‐

tional names for each rune, often with the Latin transliteration at the end of the

name.

Punctuation Marks.

Golden Numbers.

Encoding.

Europe-II 427 8.7 Runic

The Old Hungarian script is a runiform script that is used to write the Hungarian

language. Old Hungarian is mentioned in a written account of the late 13th century

and has been found on short stone-carved inscriptions. The script was probably

developed and in use earlier. Modern use has increased dramatically in the last two

decades, with some uses being simply decorative. There are also currently publica‐

tions of books, magazines, and teaching materials.

 Old Hungarian is an alphabetic script. The consonants traditionally bore

an inherent vowel. Vowel signs were only explicitly written in final position, where

vowels were long, and for disambiguation. In later phases of script usage, all vowels

were written explicitly. The script is rendered linearly, but traditionally used a large

set of ligatures.

Casing is not part of the traditional Old Hungarian script. However, modern practice

has introduced casing into many publications. Uppercase letters appear as larger size

variants of lowercase letters.

 The primary direction of writing is right-to-left both in historical

sources and in modern use. Conformant implementations of Old Hungarian script

must use the Unicode Bidirectional Algorithm (see Unicode Standard Annex #9,

“Unicode Bidirectional Algorithm”).

 Traditional texts separate words with spaces or with

one, two, or four dots. Modern users punctuate Old Hungarian with U+0020 SPACE,

U+2E41 REVERSED COMMA, and U+2E42 DOUBLE LOW-REVERSED-9 QUOTATION

MARK, with some use of U+2E31 WORD SEPARATOR MIDDLE DOT, U+205A TWO DOT

PUNCTUATION, U+205D TRICOLON, and U+205E VERTICAL FOUR DOTS as well.

Old Hungarian numbers have their origin in a tally system which was widely used

throughout Hungary until the nineteenth century. Since the twentieth century, these

numbers have been used regularly with Old Hungarian. The numbers are built up

from elements in a multiplicative-additive system. Old Hungarian numbers are

encoded at U+10CFA..U+10CFF.

8.8 Old Hungarian

8.8.1 Old Hungarian: U+10C80–U+10CFF

Structure.

Directionality.

Punctuation and Numbers.

Europe-II 428 8.8 Old Hungarian

The Gothic script was devised in the fourth century by the Gothic bishop, Wulfila

(311–383 CE), to provide his people with a written language and a means of reading

his translation of the Bible. Written Gothic materials are largely restricted to frag‐

ments of Wulfila’s translation of the Bible; these fragments are of considerable

importance in New Testament textual studies. The chief manuscript, kept at Uppsala,

is the Codex Argenteus or “the Silver Book,” which is partly written in gold on purple

parchment. Gothic is an East Germanic language; this branch of Germanic has died

out and thus the Gothic texts are of great importance in historical and comparative

linguistics. Wulfila appears to have used the Greek script as a source for the Gothic,

as can be seen from the basic alphabetical order. Some of the character shapes

suggest Runic or Latin influence, but this is apparently coincidental.

 The tenth letter U+10339 GOTHIC LETTER EIS is used with U+0308

COMBINING DIAERESIS when word-initial, when syllable-initial after a vowel, and in

compounds with a verb as second member as shown below:

swe gameliþ ïst ïn esaïïn praufetau

“as is written in Isaiah the prophet”

 Gothic letters, like those of other early Western alphabets, can be used as

numbers; two of the characters have only a numeric value and are not used alphabet‐

ically. To indicate numeric use of a letter, it is either flanked on both sides by U+00B7

MIDDLE DOT or followed by both U+0304 COMBINING MACRON and U+0331

COMBINING MACRON BELOW, as shown in the following example:

or means “5”

 Gothic manuscripts are written with no space between words in what

is called scriptio continua. Sentences and major phrases are often separated by

U+0020 SPACE, U+00B7 MIDDLE DOT, or U+003A COLON.

8.9 Gothic

8.9.1 Gothic: U+10330–U+1034F

Diacritics.

Numerals.

Punctuation.

Europe-II 429 8.9 Gothic

The earliest alphabet devised for the Albanian language was created around 1750 for

the Elbasan Gospel manuscript, which is the only known example of the script. This

manuscript, preserved at the State Archives in Tirana, records the earliest-known

Albanian-language text in an original alphabet. Most of the letters in the Elbasan

alphabet seem to be new creations, although some of their shapes may have been

influenced by Greek and Cyrillic.

 Elbasan is a simple alphabetic script written from left to right horizon‐

tally. The alphabet consists of forty letters.

Three characters have an inherent diacritical dot: U+10505 ELBASAN LETTER NDE

is used to indicate a pre-nasalized U+10504 /d/; U+10511 ELBASAN LETTER LLE is

used to indicate a geminate U+10510 /l/; U+1051A ELBASAN LETTER RRE is used

to indicate a geminate U+10519 /r/. In many cases the dot on nde is written like a

small ne. In one instance in the manuscript gje is written with a dot above to indicate

prenasalized / /.

Two different letters are used for /n/: U+10513 ELBASAN LETTER NE is used gener‐

ally, and U+10514 ELBASAN LETTER NA is typically used in prenasalized position as

in /nɡ/ and /n /. Two letters, which are rare and appear in Greek loanwords,

are used for /γ/, U+10525 ELBASAN LETTER GHE and U+10526 ELBASAN LETTER

GHAMMA.

 The Elbasan manuscript contains breathing accents,

similar to those used in Greek. Those accents do not appear regularly in the orthog‐

raphy and have not been fully analyzed yet. Raised vertical marks also appear in the

manuscript, but are not specific to the script. Generic combining characters from the

Combining Diacritical Marks block can be used to render these accents and other

marks.

 The names used for the characters in the Elbasan block are based on those of

the modern Albanian alphabet.

 There are no script-specific numerals or punctuation

marks. A separating dot and spaces appear in the Elbasan manuscript, and may be

rendered with U+00B7 MIDDLE DOT and U+0020 SPACE, respectively. For numerals,

a Greek-like system of letter and combining overline is in use. Overlines also appear

above certain letters in abbreviations, such as to indicate Zot (Lord). The overlines

in numerals and abbreviations can be represented with U+0305 COMBINING OVER‐

LINE.

8.10 Elbasan

8.10.1 Elbasan: U+10500–U+1052F

Structure.

Accents and Other Marks.

Names.

Numerals and Punctuation.

Europe-II 430 8.10 Elbasan

The Caucasian Albanian script was identified as a unique script in 1937 on the basis

of an alphabet list in an Armenian manuscript in the Matenadaran collection in

Yerevan and confirmed by a few inscriptions on artifacts excavated in northwest

Azerbaijan around 1950. In the 1990s two palimpsest manuscripts containing the

Caucasian Albanian script were discovered in St. Catherine’s Monastery on Mount

Sinai. These undated manuscripts appear to have been written during the seventh

century CE. The palimpsests were deciphered and the Caucasian Albanian language

and script was determined to be closely related to, if not an ancestor of, the present-

day Udi language.

 Caucasian Albanian is a simple alphabetic script written from left to right

horizontally. Spaces are not used to separate words in the manuscript, though

modern editions use spaces for the better legibility.

 An abbreviatory convention occurs, using a line above spanning two

letters. This line above has a titlo-appearance, with small fillets at the ends of the

strokes. This convention is similar to that seen in Coptic. For Caucasian Albanian,

use of U+035E COMBINING DOUBLE MACRON is recommended to represent such

abbreviations, with the font design dealing with the swash ends of the line, for styles

that require it.

 Script-specific numerals are not known. Letters used as numbers are

marked with a line above and/or below the letter, so or or = 2. When more

than two or three letters are associated with a numeric mark, a continuous line is

drawn above or below all of them. These lines above and/or below can be repre‐

sented with U+0304 COMBINING MACRON, U+0331 COMBINING MACRON BELOW, or

with various combinations of combining half macrons and conjoining macrons from

the Combining Half Marks block (U+FE20..U+FE2F), as needed. (See the discussion

of supralineation in Section 7.3, Coptic.)

 One special mark, U+1056F CAUCASIAN ALBANIAN CITATION MARK,

is used to indicate text that is a citation from the psalms.

8.11 Caucasian Albanian

8.11.1 Caucasian Albanian: U+10530–U+1056F

Structure.

Abbreviations.

Numerals.

Punctuation.

Europe-II 431 8.11 Caucasian Albanian

Vithkuqi, a historical script for Albanian, was invented by Naum P. Veqilharxhi, and

named for the town where it was created. The script also has been known by

different spellings of the town’s name: Büthakukye or Beitha Kukju. Use of this

alphabetic script arose between 1824 and 1845. The earliest use of Vithkuqi was in a

nineteenth-century spelling book that was the basis for spelling books used in the

regions of Bulgaria and Albania. A copy of the early Vithkuqi spelling book can be

found in the Gennadius Library in Athens.

There are revivalist efforts in artistic and cultural uses of Vithkuqui, notably in the

script’s use in modern tattoos. Vithkuqi glyphs visually resemble cursive Armenian.

 Vithkuqi is a left-to-right alphabetic script. There is no ligation, and non-

productive diacritics are encoded atomically.

 Casing is used in the Vithkuqi script.

 Vithkuqi uses European numbers and standard Latin

punctuation.

8.12 Vithkuqi

8.12.1 Vithkuqi: U+10570–U+105BF

Structure.

Casing.

Numerals and Punctuation.

Europe-II 432 8.12 Vithkuqi

The Todhri alphabet is a historical script used to write the Albanian language in the

central Albanian region that is now designated Elbasan County. It was used in the

eighteenth and nineteenth centuries and perhaps sporadically into the twentieth

century. Theodor Haxhifilipi, a teacher at a Greek school whose nickname was

Dhaskal Todhri, “teacher Todhri,” is purported to be the creator. Extant material in

the script is largely confined to copybooks of Biblical texts, although the script is said

to have also been employed by merchants in their correspondence.

 The Todhri script is an alphabet, written left to right, with no casing. The

six consonants located from U+105EE..U+105F3 are used to represent the Greek

characters γ gamma, ϛ stigma, ξ ksi, χ chi, ψ psi, and ω omega.

 The script has seven vowels, which are all atomically encoded. The two

vowels U+105C9 TODHRI LETTER EI and U+105E4 TODHRI LETTER U have canon‐

ical decompositions so that confusable sequences represented by a letter followed by

a combining dot will be interpreted consistently. These relations are shown in

Figure 8-2.

U+105C9 TODHRI LETTER EI ≡ 105D2 + 0307

U+105E4 TODHRI LETTER U ≡ 105DA + 0307

Combining diacritics only appear above vowels, in a practice which is reminiscent of

Greek accents. U+0301 COMBINING ACUTE ACCENT is used to represent the nearly

vertical mark over a vowel. U+0304 COMBINING MACRON is employed for the hori‐

zontal diacritic over a single vowel, and U+035E COMBINING DOUBLE MACRON is

used when the diacritic extends over two vowels. Smooth breathing is represented by

U+0311 COMBINING INVERTED BREVE.

 Manuscripts include comma and full stop, which should be repre‐

sented by U+002C “ ” COMMA and U+002E “” FULL STOP.

8.13 Todhri

8.13.1 Todhri: U+105C0–U+105FF

Structure.

Vowels.

Figure 8-2. Todhri Vowel Decomposition

Punctuation.

Europe-II 433 8.13 Todhri

The Old Permic script was devised in the 14th century by the Russian missionary

Stefan of Perm, and was used to write the Uralic languages Komi and Komi-Permyak.

It was modeled on the Greek and Cyrillic alphabets, but many glyphs were taken

from the “Tamga signs” used in indigenous Komi religious practices. Stefan trans‐

lated Russian and Greek liturgical and biblical texts into Komi. There are a few

surviving medieval documents in the script, chiefly in the form of icons, glosses, and

inscriptions on monuments.

Old Permic continued to be used for Komi until the 17th century. In addition, the

script was used cryptographically from the 15th century to write Russian, because it

was unknown to most readers of Russian.

 Old Permic is a simple, caseless, alphabetic script, read from left to right

in horizontal lines running from top to bottom.

 A small number of letters, encoded from U+10376 to U+1037A,

appear as superscript letters in abbreviations, in the same way that letters are used in

Latin and Cyrillic.

 Old Permic employs a number of combining marks, as shown in

Table 8-2. U+0483 COMBINING CYRILLIC TITLO indicates an abbreviation, typically

with a specific set of holy words. The combining grave accent was sometimes used to

mark consonant palatalization, and the combining diaeresis at times distinguishes [i]

and [j]. However, the use of these combining marks is not always clear, and may have

no phonetic value at all.

U+0300 COMBINING GRAVE ACCENT

U+0306 COMBINING BREVE

U+0307 COMBINING DOT ABOVE

U+0308 COMBINING DIAERESIS

U+0313 COMBINING COMMA ABOVE

U+0483 COMBINING CYRILLIC TITLO

U+20DB COMBINING THREE DOTS ABOVE

 Script-specific numerals are not known. Letters of the alphabet can be

marked with U+0483 COMBINING CYRILLIC TITLO to indicate numeric use.

8.14 Old Permic

8.14.1 Old Permic: U+10350–U+1037F

Structure.

Combining Letters.

Combining Marks.

Table 8-2. Combining Marks Used in Old Permic

Numerals.

Europe-II 434 8.14 Old Permic

 Old Permic does not have any script-specific punctuation, but uses

middle dot, colon, and apostrophe. Spaces are used to separate words in manuscripts.

Punctuation.

Europe-II 435 8.14 Old Permic

Ogham is an alphabetic script devised to write a very early form of Irish. Monu‐

mental Ogham inscriptions are found in Ireland, Wales, Scotland, England, and on

the Isle of Man. Many of the Scottish inscriptions are undeciphered and may be in

Pictish. It is probable that Ogham (Old Irish “Ogam”) was widely written in wood in

early times. The main flowering of “classical” Ogham, rendered in monumental

stone, was in the fifth and sixth centuries CE. Such inscriptions were mainly

employed as territorial markers and memorials; the more ancient examples are

standing stones.

The script was originally written along the edges of stone where two faces meet;

when written on paper, the central “stemlines” of the script can be said to represent

the edge of the stone. Inscriptions written on stemlines cut into the face of the stone,

instead of along its edge, are known as “scholastic” and are of a later date (post-

seventh century). Notes were also commonly written in Ogham in manuscripts as

recently as the sixteenth century.

 The Ogham alphabet consists of 26 distinct characters (feda), the first 20

of which are considered to be primary and the last 6 (forfeda) supplementary. The

four primary series are called aicmí (plural of aicme, meaning “family”). Each aicme

was named after its first character, (Aicme Beithe, Aicme Uatha, meaning “the B

Family,” “the H Family,” and so forth). The character names used in this standard

reflect the spelling of the names in modern Irish Gaelic, except that the acute accent

is stripped from Úr, Éabhadh, Ór, and Ifín, and the mutation of nGéadal is not

reflected.

 Ogham text is read beginning from the bottom left side of a stone,

continuing upward, across the top, and down the right side (in the case of long

inscriptions). Monumental Ogham was incised chiefly in a bottom-to-top direction,

though there are examples of left-to-right bilingual inscriptions in Irish and Latin.

Manuscript Ogham accommodated the horizontal left-to-right direction of the Latin

script, and the vowels were written as vertical strokes as opposed to the incised

notches of the inscriptions. Ogham should therefore be rendered on computers from

left to right or from bottom to top (never starting from top to bottom).

 In printed and in manuscript Ogham, the

fonts are conventionally designed with a central stemline, but this convention is not

necessary. In implementations without the stemline, the character U+1680 OGHAM

SPACE MARK should be given its conventional width and simply left blank like

U+0020 SPACE. U+169B OGHAM FEATHER MARK and U+169C OGHAM REVERSED

FEATHER MARK are used at the beginning and the end of Ogham text, particularly in

8.15 Ogham

8.15.1 Ogham: U+1680–U+169F

Structure.

Rendering.

Forfeda (Supplementary Characters).

Europe-II 436 8.15 Ogham

manuscript Ogham. In some cases, only the Ogham feather mark is used, which can

indicate the direction of the text.

The word latheirt shows the use of the feather marks. This word was

written in the margin of a ninth-century Latin grammar and means “massive hang‐

over,” which may be the scribe’s apology for any errors in his text.

Europe-II 437 8.15 Ogham

The playwright George Bernard Shaw (1856–1950) was an outspoken critic of the idio‐

syncrasies of English orthography. In his will, he directed that Britain’s Public

Trustee seek out and publish an alphabet of no fewer than 40 letters to provide for

the phonetic spelling of English. The alphabet finally selected was designed by

Kingsley Read and is variously known as Shavian, Shaw’s alphabet, and the Proposed

British Alphabet. Also in accordance with Shaw’s will, an edition of his play, Andro‐

cles and the Lion, was published and distributed to libraries, containing the text both

in the standard Latin alphabet and in Shavian.

As with other attempts at spelling reform in English, the alphabet has met with little

success. Nonetheless, it has its advocates and users. The normative version of

Shavian is taken to be the version in Androcles and the Lion.

 The alphabet consists of 48 letters and 1 punctuation mark. The letters

have no case. The digits and other punctuation marks are the same as for the Latin

script. The one additional punctuation mark is a “name mark,” used to indicate

proper nouns. U+00B7 MIDDLE DOT should be used to represent the “name mark.”

The letter names are intended to be indicative of their sounds; thus the sound /p/ is

represented by U+10450 SHAVIAN LETTER PEEP.

The first 40 letters are divided into four groups of 10. The first 10 and second 10 are

180-degree rotations of one another; the letters of the third and fourth groups often

show a similar relationship of shape.

The first 10 letters are tall letters, which ascend above the x-height and generally

represent unvoiced consonants. The next 10 letters are “deep” letters, which descend

below the baseline and generally represent voiced consonants. The next 20 are the

vowels and liquids. Again, each of these letters usually has a close phonetic relation‐

ship to the letter in its matching set of 10.

The remaining 8 letters are technically ligatures, the first 6 involving vowels plus /r/.

Because ligation is not optional, these 8 letters are included in the encoding.

 The problem of collation is not addressed by the alphabet’s designers.

8.16 Shavian

8.16.1 Shavian: U+10450–U+1047F

Structure.

Collation.

Europe-II 438 8.16 Shavian

Chapter 9

Middle East-I
Modern and Liturgical Scripts

Most scripts in this chapter have a common origin in the ancient Phoenician

alphabet.

The Hebrew script is used in Israel and for languages of the Diaspora. The Arabic

script is used to write many languages throughout the Middle East, North Africa, and

certain parts of Asia. The Syriac script is used to write a number of Middle Eastern

languages. These three also function as major liturgical scripts, used worldwide by

various religious groups.

The Samaritan script is used in small communities in Israel and the Palestinian Terri‐

tories to write the Samaritan Hebrew and Samaritan Aramaic languages. The

Mandaic script was used in southern Mesopotamia in classical times for liturgical

texts by adherents of the Mandaean gnostic religion. The Classical Mandaic and Neo-

Mandaic languages are still in limited current use in modern Iran and Iraq and in the

Mandaean diaspora.

Unlike most of the other scripts discussed in this chapter, the Yezidi script is an

alphabet. The script was used to write two religious texts which may date to the 12th

or 13th centuries. The script was recently revived and is used by clergy in the Yezidi

temple in Tbilisi.

The Middle Eastern scripts are mostly abjads, with small character sets. Words are

demarcated by spaces. These scripts include a number of distinctive punctuation

marks. In addition, the Arabic script includes traditional forms for digits, called

“Arabic-Indic digits” in the Unicode Standard.

Text in these scripts is written from right to left. Implementations of these scripts

must conform to the Unicode Bidirectional Algorithm (see Unicode Standard Annex

#9, “Unicode Bidirectional Algorithm”). For more information about writing direc‐

tion, see Section 2.10, Writing Direction. There are also special security considerations

that apply to bidirectional scripts, especially with regard to their use in identifiers.

For more information about these issues, see Unicode Technical Report #36,

“Unicode Security Considerations.”

439

Arabic, Syriac and Mandaic are cursive scripts even when typeset, unlike Hebrew

and Samaritan, where letters are unconnected. Most letters in Arabic, Syriac and

Mandaic assume different forms depending on their position in a word. Shaping

rules for the rendering of text are specified in Section 9.2, Arabic, Section 9.3, Syriac

and Section 9.5, Mandaic. Shaping rules are not required for Hebrew because only

five letters have position-dependent final forms, and these forms are separately

encoded.

Historically, Middle Eastern scripts did not write short vowels. Nowadays, short

vowels are represented by marks positioned above or below a consonantal letter.

Vowels and other pronunciation (“vocalization”) marks are encoded as combining

characters, so support for vocalized text necessitates use of composed character

sequences. Yiddish and Syriac are normally written with vocalization; Hebrew,

Samaritan, and Arabic are usually written unvocalized.

Middle East-I 440

The Hebrew script is used for writing the Hebrew language as well as Yiddish,

Judezmo (Ladino), and a number of other languages. Vowels and various other

marks are written as points, which are applied to consonantal base letters; these

marks are usually omitted in Hebrew, except for liturgical texts and other special

applications. Five Hebrew letters assume a different graphic form when they occur

last in a word.

 The Hebrew script is written from right to left. Conformant imple‐

mentations of Hebrew script must use the Unicode Bidirectional Algorithm (see

Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”).

 The Unicode Standard uses the term cursive to refer to writing where the

letters of a word are connected. A handwritten form of Hebrew is known as cursive,

but its rounded letters are generally unconnected, so the Unicode definition does not

apply. Fonts based on cursive Hebrew exist. They are used not only to show examples

of Hebrew handwriting, but also for display purposes.

 ISO/IEC 8859-8—Part 8. Latin/Hebrew Alphabet. The Unicode Standard

encodes the Hebrew alphabetic characters in the same relative positions as in ISO/

IEC 8859-8; however, there are no points or Hebrew punctuation characters in that

ISO standard.

 These combining marks, generically

called points in the context of Hebrew, indicate vowels or other modifications of

consonantal letters. General rules for applying combining marks are given in

Section 2.11, Combining Characters, and Section 3.6, Combination. Additional Hebrew-

specific behavior is described below.

Hebrew points can be separated into four classes: dagesh, shin dot and sin dot, vowels,

and other pronunciation marks.

Dagesh, U+05BC HEBREW POINT DAGESH OR MAPIQ, has the form of a dot that

appears inside the letter that it affects. It is not a vowel but rather a diacritic that

affects the pronunciation of a consonant. The same base consonant can also have a

vowel and/or other diacritics. Dagesh is the only element that goes inside a letter.

The dotted Hebrew consonant shin is explicitly encoded as the sequence U+05E9

HEBREW LETTER SHIN followed by U+05C1 HEBREW POINT SHIN DOT. The shin dot

is positioned on the upper-right side of the undotted base letter. Similarly, the dotted

consonant sin is explicitly encoded as the sequence U+05E9 HEBREW LETTER SHIN

followed by U+05C2 HEBREW POINT SIN DOT. The sin dot is positioned on the upper-

9.1 Hebrew

9.1.1 Hebrew: U+0590–U+05FF

Directionality.

Cursive.

Standards.

Vowels and Other Pronunciation Marks.

Middle East-I 441 9.1 Hebrew

left side of the base letter. The two dots are mutually exclusive. The base letter shin

can also have a dagesh, a vowel, and other diacritics. The two dots are not used with

any other base character.

Vowels all appear below the base character that they affect, except for holam, U+05B9

HEBREW POINT HOLAM, which appears above left. The following points represent

vowels: U+05B0..U+05BB, and U+05C7.

The remaining three points are pronunciation marks: U+05BD HEBREW POINT

METEG, U+05BF HEBREW POINT RAFE, and U+FB1E HEBREW POINT JUDEO-

SPANISH VARIKA. Meteg, also known as siluq, goes below the base character; rafe and

varika go above it. The varika, used in Judezmo, is a glyphic variant of rafe.

 Separate characters for the dotted letters shin and sin are not included

in this block. When it is necessary to distinguish between the two forms, they should

be encoded as U+05E9 HEBREW LETTER SHIN followed by the appropriate dot, either

U+05C1 HEBREW POINT SHIN DOT or U+05C2 HEBREW POINT SIN DOT. (See

preceding discussion.) This practice is consistent with Israeli standard encoding.

 Variant forms of five Hebrew letters are

encoded as separate characters in this block, as in Hebrew standards including ISO/

IEC 8859-8. These variant forms are generally used in place of the nominal letter‐

forms at the end of words. Certain words, however, are spelled with nominal rather

than final forms, particularly names and foreign borrowings in Hebrew and some

words in Yiddish. Because final form usage is a matter of spelling convention, soft‐

ware should not automatically substitute final forms for nominal forms at the end of

words. The positional variants should be coded directly and rendered one-to-one via

their own glyphs—that is, without contextual analysis.

 The digraphs are considered to be independent characters in

Yiddish. The Unicode Standard has included them as separate characters so as to

distinguish certain letter combinations in Yiddish text—for example, to distinguish

the digraph double vav from an occurrence of a consonantal vav followed by a vocalic

vav. The use of digraphs is consistent with standard Yiddish orthography. Other

letters of the Yiddish alphabet, such as pasekh alef, can be composed from other char‐

acters, although alphabetic presentation forms are also encoded.

 Most punctuation marks used with the Hebrew script are not given

independent codes (that is, they are unified with Latin punctuation) except for the

few cases where the mark has a unique form in Hebrew—namely, U+05BE HEBREW

PUNCTUATION MAQAF, U+05C0 HEBREW PUNCTUATION PASEQ (also known as

legarmeh), U+05C3 HEBREW PUNCTUATION SOF PASUQ, U+05F3 HEBREW PUNCTU‐

ATION GERESH, and U+05F4 HEBREW PUNCTUATION GERSHAYIM. For paired punc‐

tuation such as parentheses, the glyphs chosen to represent U+0028 LEFT PAREN‐

THESIS and U+0029 RIGHT PARENTHESIS will depend on the direction of the

Shin and Sin.

Final (Contextual Variant) Letterforms.

Yiddish Digraphs.

Punctuation.

Middle East-I 442 9.1 Hebrew

rendered text. See Section 4.7, Bidi Mirrored, for more information. For additional

punctuation to be used with the Hebrew script, see Section 6.2, General Punctuation.

 Cantillation marks are used in publishing liturgical texts,

including the Bible. There are various historical schools of cantillation marking; the

set of marks included in the Unicode Standard follows the Israeli standard SI 1311.2.

 Marks may combine with vowels and other points, and complex typo‐

graphic rules dictate how to position these combinations.

The vertical placement (meaning above, below, or inside) of points and marks is very

well defined. The horizontal placement (meaning left, right, or center) of points is

also very well defined. The horizontal placement of marks, by contrast, is not well

defined, and convention allows for the different placement of marks relative to their

base character.

When points and marks are located below the same base letter, the point always

comes first (on the right) and the mark after it (on the left), except for the marks

yetiv, U+059A HEBREW ACCENT YETIV, and dehi, U+05AD HEBREW ACCENT DEHI.

These two marks come first (on the right) and are followed (on the left) by the point.

These rules are followed when points and marks are located above the same base

letter:

If the point is holam, all cantillation marks precede it (on the right) except

pashta, U+0599 HEBREW ACCENT PASHTA.

Pashta always follows (goes to the left of) points.

Holam on a sin consonant (shin base + sin dot) follows (goes to the left of) the

sin dot. However, the two combining marks are sometimes rendered as a single

assimilated dot.

Shin dot and sin dot are generally represented closer vertically to the base letter

than other points and marks that go above it.

Meteg, U+05BD HEBREW POINT METEG, frequently co-occurs with vowel

points below the consonant. Typically, meteg is placed to the left of the vowel,

although in some manuscripts and printed texts it is positioned to the right of the

vowel. The difference in positioning is not known to have any semantic significance;

nevertheless, some authors wish to retain the positioning found in source docu‐

ments.

The alternate vowel-meteg ordering can be represented in terms of alternate ordering

of characters in encoded representation. However, because of the fixed-position

canonical combining classes to which meteg and vowel points are assigned, differ‐

ences in ordering of such characters are not preserved under normalization. The

combining grapheme joiner can be used within a vowel-meteg sequence to preserve an

Cantillation Marks.

Positioning.

•

•

•

•

Meteg.

Middle East-I 443 9.1 Hebrew

ordering distinction under normalization. For more information, see the description

of U+034F COMBINING GRAPHEME JOINER in Section 23.2, Layout Controls.

For example, to display meteg to the left of (after, for a right-to-left script) the vowel

point sheva, U+05B0 HEBREW POINT SHEVA, the sequence of meteg following sheva

can be used:

<sheva, meteg>

Because these marks are canonically ordered, this sequence is preserved under

normalization. Then, to display meteg to the right of the sheva, the sequence with

meteg preceding sheva with an intervening CGJ can be used:

<meteg, CGJ, sheva>

A further complication arises for combinations of meteg with hataf vowels: U+05B1

HEBREW POINT HATAF SEGOL, U+05B2 HEBREW POINT HATAF PATAH, and U+05B3

HEBREW POINT HATAF QAMATS. These vowel points have two side-by-side compo‐

nents. Meteg can be placed to the left or the right of a hataf vowel, but it also is often

placed between the two components of the hataf vowel. A three-way positioning

distinction is needed for such cases.

The combining grapheme joiner can be used to preserve an ordering that places meteg

to the right of a hataf vowel, as described for combinations of meteg with non-hataf

vowels, such as sheva.

Placement of meteg between the components of a hataf vowel can be conceptualized

as a ligature of the hataf vowel and a nominally positioned meteg. With this in mind,

the ligation-control functionality of U+200D ZERO WIDTH JOINER and U+200C

ZERO WIDTH NON-JOINER can be used as a mechanism to control the visual distinc‐

tion between a nominally positioned meteg to the left of a hataf vowel versus the

medially positioned meteg within the hataf vowel. That is, zero width joiner can be

used to request explicitly a medially positioned meteg, and zero width non-joiner can

be used to request explicitly a left-positioned meteg. Just as different font implemen‐

tations may or may not display an “fi” ligature by default, different font implementa‐

tions may or may not display meteg in a medial position when combined with hataf

vowels by default. As a result, authors who want to ensure left-position versus

medial-position display of meteg with hataf vowels across all font implementations

may use joiner characters to distinguish these cases.

Thus the following encoded representations can be used for different positioning of

meteg with a hataf vowel, such as hataf patah:

left-positioned meteg: <hataf patah, ZWNJ, meteg>

medially positioned meteg: <hataf patah, ZWJ, meteg>

Middle East-I 444 9.1 Hebrew

right-positioned meteg: <meteg, CGJ, hataf patah>

In no case is use of ZWNJ, ZWJ, or CGJ required for representation of meteg. These

recommendations are simply provided for interoperability in those instances where

authors wish to preserve specific positional information regarding the layout of a

meteg in text.

 In some older versions of Biblical text, a

distinction is made between the accents U+05A2 HEBREW ACCENT ATNAH HAFUKH

and U+05AA HEBREW ACCENT YERAH BEN YOMO. Many editions from the last few

centuries do not retain this distinction, using only yerah ben yomo, but some users in

recent decades have begun to reintroduce this distinction. Similarly, a number of

publishers of Biblical or other religious texts have introduced a typographic distinc‐

tion for the vowel point qamats corresponding to two different readings. The original

letterform used for one reading is referred to as qamats or qamats gadol; the new

letterform for the other reading is qamats qatan. Not all users of Biblical Hebrew use

atnah hafukh and qamats qatan. If the distinction between accents atnah hafukh and

yerah ben yomo is not made, then only U+05AA HEBREW ACCENT YERAH BEN YOMO

is used. If the distinction between vowels qamats gadol and qamats qatan is not

made, then only U+05B8 HEBREW POINT QAMATS is used. Implementations that

support Hebrew accents and vowel points may not necessarily support the special-

usage characters U+05A2 HEBREW ACCENT ATNAH HAFUKH and U+05C7 HEBREW

POINT QAMATS QATAN.

 The vowel point holam represents the vowel

phoneme /o/. The consonant letter vav represents the consonant phoneme /w/, but

in some words is used to represent a vowel, /o/. When the point holam is used on vav,

the combination usually represents the vowel /o/, but in a very small number of

cases represents the consonant-vowel combination /wo/. A typographic distinction is

made between these two in many versions of Biblical text. In most cases, in which

vav + holam together represents the vowel /o/, the point holam is centered above the

vav and referred to as holam male. In the less frequent cases, in which the vav repre‐

sents the consonant /w/, some versions show the point holam positioned above left.

This is referred to as holam haser. The character U+05BA HEBREW POINT HOLAM

HASER FOR VAV is intended for use as holam haser only in those cases where a

distinction is needed. When the distinction is made, the character U+05B9 HEBREW

POINT HOLAM is used to represent the point holam male on vav. U+05BA HEBREW

POINT HOLAM HASER FOR VAV is intended for use only on vav; results of combining

this character with other base characters are not defined. Not all users distinguish

between the two forms of holam, and not all implementations can be assumed to

support U+05BA HEBREW POINT HOLAM HASER FOR VAV.

 In the Hebrew Bible, dots are written in various places

above or below the base letters that are distinct from the vowel points and accents.

These dots are referred to by scholars as puncta extraordinaria, and there are two

Atnah Hafukh and Qamats Qatan.

Holam Male and Holam Haser.

Puncta Extraordinaria.

Middle East-I 445 9.1 Hebrew

kinds. The upper punctum, the more common of the two, has been encoded since

Unicode 2.0 as U+05C4 HEBREW MARK UPPER DOT. The lower punctum is used in

only one verse of the Bible, Psalm 27:13, and is encoded as U+05C5 HEBREW MARK

LOWER DOT. The puncta generally differ in appearance from dots that occur above

letters used to represent numbers; the number dots should be represented using

U+0307 COMBINING DOT ABOVE and U+0308 COMBINING DIAERESIS.

 The nun hafukha is a special symbol that appears to have been used

for scribal annotations, although its exact functions are uncertain. It is used a total of

nine times in the Hebrew Bible, although not all versions include it, and there are

variations in the exact locations in which it is used. There is also variation in the

glyph used: it often has the appearance of a rotated or reversed nun and is very often

called inverted nun; it may also appear similar to a half tet or have some other form.

In pointed texts, the nun hafukha carries a dot above it. This dot should be repre‐

sented using U+0307 COMBINING DOT ABOVE.

 The NEW SHEQEL SIGN (U+20AA) is encoded in the currency

block.

The Hebrew characters in this block are chiefly of two types: variants of letters and

marks encoded in the main Hebrew block, and precomposed combinations of a

Hebrew letter or digraph with one or more vowels or pronunciation marks. This

block contains all of the vocalized letters of the Yiddish alphabet. The alef lamed liga‐

ture and a Hebrew variant of the plus sign are included as well. The Hebrew plus

sign variant, U+FB29 HEBREW LETTER ALTERNATIVE PLUS SIGN, is used more often

in handwriting than in print, but it does occur in school textbooks. It is used by those

who wish to avoid cross symbols, which can have religious and historical connota‐

tions.

U+FB20 HEBREW LETTER ALTERNATIVE AYIN is an alternative form of ayin that may

replace the basic form U+05E2 HEBREW LETTER AYIN when there is a diacritical

mark below it. The basic form of ayin is often designed with a descender, which can

interfere with a mark below the letter. U+FB20 is encoded for compatibility with

implementations that substitute the alternative form in the character data, as

opposed to using a substitute glyph at rendering time.

 Wide letterforms are used in handwriting and in print to

achieve even margins. The wide-form letters in the Unicode Standard are those that

are most commonly “stretched” in justification. If Hebrew text is to be rendered with

even margins, justification should be left to the text-formatting software.

These alphabetic presentation forms are included for compatibility purposes. For the

preferred encoding, see the Hebrew presentation forms, U+FB1D..U+FB4F.

Nun Hafukha.

Currency Symbol.

9.1.2 Alphabetic Presentation Forms: U+FB00–U+FB4F

Use of Wide Letters.

Middle East-I 446 9.1 Hebrew

For letterlike symbols, see U+2135..U+2138.

Middle East-I 447 9.1 Hebrew

The Arabic script is used for writing the Arabic language and has been extended to

represent a number of other languages, such as Persian, Urdu, Pashto, Sindhi, and

Uyghur, as well as many African languages. Urdu is often written with the ornate

Nastaliq script variety. Some languages, such as Indonesian/Malay, Turkish, and

Ingush, formerly used the Arabic script but now employ the Latin or Cyrillic scripts.

Other languages, such as Kurdish, Azerbaijani, Kazakh, and Uzbek have competing

Arabic and Latin or Cyrillic orthographies in different countries.

The Arabic script is cursive, even in its printed form (see Figure 9-1). As a result, the

same letter may be written in different forms depending on how it joins with its

neighbors. Vowels and various other marks may be written as combining marks

called tashkil, which are applied to consonantal base letters. In normal writing,

however, these marks are omitted.

 The Arabic script is written from right to left. Conformant imple‐

mentations of Arabic script must use the Unicode Bidirectional Algorithm to reorder

the memory representation for display (see Unicode Standard Annex #9, “Unicode

Bidirectional Algorithm”).

 ISO/IEC 8859-6—Part 6. Latin/Arabic Alphabet. The Unicode Standard

encodes the basic Arabic characters in the same relative positions as in ISO/IEC

8859-6. ISO/IEC 8859-6, in turn, is based on ECMA-114, which was based on ASMO

449.

 The basic set of Arabic letters is well defined. Each letter

receives only one Unicode character value in the basic Arabic block, no matter how

many different contextual appearances it may exhibit in text. Each Arabic letter in

the Unicode Standard may be said to represent the inherent semantic identity of the

letter. A word is spelled as a sequence of these letters. The representative glyph

shown in the Unicode character chart for an Arabic letter is usually the form of the

letter when standing by itself. It is simply used to distinguish and identify the char‐

acter in the code charts and does not restrict the glyphs used to represent it. See

“Arabic Cursive Joining,” “Arabic Ligatures,” and “Arabic Joining Groups” in the

9.2 Arabic

9.2.1 Arabic: U+0600–U+06FF

Figure 9-1. Directionality and Cursive Connection

Directionality.

Standards.

Encoding Principles.

Middle East-I 448 9.2 Arabic

following text for an extensive discussion of how cursive joining and positional vari‐

ants of Arabic letters are handled by the Unicode Standard.

The following principles guide the encoding of the various types of marks which are

applied to the basic Arabic letter skeletons:

Ijam: Diacritical marks applied to basic letter forms to derive new (usually

consonant) letters for extended Arabic alphabets are not separately encoded as

combining marks. Instead, each letter plus ijam combination is encoded as a

separate, atomic character. These letter plus ijam characters are never given

decompositions in the standard. Ijam generally take the form of one-, two-,

three- or four-dot markings above or below the basic letter skeleton, although

other diacritic forms occur in extensions of the Arabic script in Central and

South Asia and in Africa. In discussions of Arabic in Unicode, ijam are often

also referred to as nukta, because of their functional similarity to the nukta

diacritical marks which occur in many Indic scripts.

Tashkil: Marks functioning to indicate vocalization of text, as well as other

types of phonetic guides to correct pronunciation, are separately encoded as

combining marks. These include several subtypes: harakat (short vowel

marks), tanwin (postnasalized or long vowel marks), shaddah (consonant

gemination mark), and sukun (to mark lack of a following vowel). A basic

Arabic letter plus any of these types of marks is never encoded as a separate,

precomposed character, but must always be represented as a sequence of letter

plus combining mark. Additional marks invented to indicate non-Arabic

vowels, used in extensions of the Arabic script, are also encoded as separate

combining marks.

Maddah: The maddah is a particular case of a harakat mark which has

exceptional treatment in the standard. In most modern languages using the

Arabic script, it occurs only above alef, and in that combination represents the

sound /ʔaa/. In Quranic Arabic, maddah occurs above waw or yeh to note

vowel elongation. For this reason, and the shared use of maddah between

Arabic and Syriac scripts, the precomposed combination U+0622 ARABIC

LETTER ALEF WITH MADDA ABOVE is encoded, however the combining mark

U+0653 ARABIC MADDAH ABOVE is also encoded. U+0622 is given a canon‐

ical decomposition to the sequence of alef followed by the combining maddah.

Some historical non-Arabic orthographies have also used maddah as an ijam.

U+0653 should be used to represent those texts.

Hamza: The hamza may occur above or below other letters. Its treatment in

the Unicode Standard is also exceptional and rather complex. The general

principle is that when such a hamza is used to indicate an actual glottal stop,

the /je/ sound used in Persian and Urdu for ezafe, or the short vowels /ə/ and

/ɨ/ in Kashmiri, it should be represented with a separate combining mark,

1.

2.

3.

4.

Middle East-I 449 9.2 Arabic

either U+0654 ARABIC HAMZA ABOVE or U+0655 ARABIC HAMZA BELOW.

However, when the hamza mark is used as a diacritic to derive a separate

letter as an extension of the Arabic script, then the basic letter skeleton plus

the hamza mark is represented by a single, precomposed character. See

“Combining Hamza Above” later in this section for discussion of the compli‐

cations for particular characters.

Annotation Marks: Quranic annotation marks are always encoded as sepa‐

rate combining marks.

 Most punctuation marks used with the Arabic script are not given

independent codes (that is, they are unified with Latin punctuation), except for the

few cases where the mark has a significantly different appearance in Arabic—

namely, U+060C ARABIC COMMA, U+061B ARABIC SEMICOLON, U+061E ARABIC

TRIPLE DOT PUNCTUATION MARK, U+061F ARABIC QUESTION MARK, and U+066A

ARABIC PERCENT SIGN.

Persian and some other languages use rounded forms of U+00AB LEFT-POINTING

DOUBLE ANGLE QUOTATION MARK and U+00BB RIGHT-POINTING DOUBLE ANGLE

QUOTATION MARK.

Sindhi uses U+2E41 REVERSED COMMA and U+204F REVERSED SEMICOLON. Some

fonts have used glyph variants of U+060C ARABIC COMMA and U+061B ARABIC

SEMICOLON, although this is not recommended.

For paired punctuation such as parentheses, the glyphs chosen to display for

example, U+0028 LEFT PARENTHESIS and U+0029 RIGHT PARENTHESIS, will depend

on the direction of the rendered text. See “Paired Punctuation” in Section 6.2, General

Punctuation, for more discussion.

 The Unicode Standard provides two user-selectable

formatting codes: U+200C ZERO WIDTH NON-JOINER and U+200D ZERO WIDTH

JOINER. The use of a joiner adjacent to a suitable letter permits that letter to form a

cursive connection without a visible neighbor. This provides a simple way to encode

some special cases, such as exhibiting a connecting form in isolation, as shown in

Figure 9-2.

These connecting forms commonly occur in some abbreviations such as the marker

for hijri dates, which consists of an initial form of heh: .

5.

Punctuation.

The Non-joiner and the Joiner.

Figure 9-2. Using a Joiner

Middle East-I 450 9.2 Arabic

The use of a non-joiner between two letters prevents those letters from forming a

cursive connection with each other when rendered, as shown in Figure 9-3.

Examples requiring the use of a non-joiner include the Persian plural suffix, some

Persian proper names, and Ottoman Turkish vowels. This use of non-joiners is

important for representation of text in such languages, and ignoring or removing

them will result in text with a different meaning, or in meaningless text.

Joiners and non-joiners may also occur in combinations. The effects of such combi‐

nations are shown in Figure 9-4. For further discussion of joiners and non-joiners,

see Section 23.2, Layout Controls.

Tashkil are marks that indicate vowels or other modifi‐

cations of consonant letters. In English, these marks are often referred to as “points.”

They may also be called harakat, although technically, harakat refers to the subset of

tashkil which denote short vowels. The code charts depict these tashkil in relation to

a dotted circle, indicating that this character is intended to be applied via some

process to the character that precedes it in the text stream (that is, the base character).

General rules for applying nonspacing marks are given in Section 7.9, Combining

Marks. The few marks that are placed after (to the left of) the base character are

treated as ordinary spacing characters in the Unicode Standard. For more informa‐

tion about the canonical ordering of nonspacing marks, see Section 2.11, Combining

Characters, and Section 3.11, Normalization Forms.

Use of the Arabic Mark Transient Reordering Algorithm (AMTRA) during text

display is recommended to correctly and consistently render Arabic combining mark

sequences. This algorithm provides results that match user expectations and assures

that canonically equivalent sequences are rendered identically, independent of the

order of the combining marks in the text stream. For more information, see Unicode

Technical Report #53, “Unicode Arabic Mark Rendering.”

Figure 9-3. Using a Non-joiner

Figure 9-4. Combinations of Joiners and Non-joiners

Tashkil Nonspacing Marks.

Middle East-I 451 9.2 Arabic

The placement and rendering of vowel and other marks in Arabic strongly depends

on the typographical environment or even the typographical style. For example, in

the Unicode code charts, the default position of U+0651 ARABIC SHADDA is with

the glyph placed above the base character, whereas for U+0650 ARABIC KASRA the

glyph is placed below the base character, as shown in the first example in Figure 9-5.

However, computer fonts often follow an approach that originated in metal typeset‐

ting and combine the kasra with shadda above the text, as shown in the second

example in Figure 9-5. U+064D ARABIC KASRATAN also follows this behavior.

The shapes of the various tashkil marks may also depend on the style of writing. For

example, dammatan can be written in at least four different styles, as shown in

Figure 9-6.

U+064C ARABIC DAMMATAN can be rendered in any of those four shapes. U+08F1

ARABIC OPEN DAMMATAN is an alternative dammatan character for use in Quran

orthographies which have two distinct forms of dammatan that convey a semantic

difference.

 The names for the forms of decimal digits vary widely across

different languages. The decimal numbering system originated in India (Devanagari

…) and was subsequently adopted in the Arabic world with a different appear‐

ance (Arabic …). The Europeans adopted decimal numbers from the Arabic

world, although once again the forms of the digits changed greatly (European

0123…). The European forms were later adopted widely around the world and are

used even in many Arabic-speaking countries in North Africa. In each case, the inter‐

pretation of decimal numbers remained the same. However, the forms of the digits

changed to such a degree that they are no longer recognizably the same characters.

Because of the origin of these characters, the European decimal numbers are widely

Figure 9-5. Placement of Harakat

Figure 9-6. Dammatan Styles

Arabic-Indic Digits.

Middle East-I 452 9.2 Arabic

known as “Arabic numerals” or “Hindi-Arabic numerals,” whereas the decimal

numbers in use in the Arabic world are widely known there as “Hindi numbers.”

The Unicode Standard includes Indic digits (including forms used with different

Indic scripts), Arabic digits (with forms used in most of the Arabic world), and Euro‐

pean digits (now used internationally). Because of this decision, the traditional

names could not be retained without confusion. In addition, there are two main vari‐

ants of the Arabic digits: those used in Afghanistan, India, Iran, and Pakistan (here

called Eastern Arabic-Indic) and those used in other parts of the Arabic world. In

summary, the Unicode Standard uses the names shown in Table 9-1. A different set of

number forms, called Rumi, was used in historical materials from Egypt to Spain,

and is discussed in the subsection on “Rumi Numeral Symbols” in Section 22.3,

Numerals.

Name Code Points Forms

European U+0030..U+0039 0123456789

Arabic-Indic U+0660..U+0669

Eastern Arabic-Indic U+06F0..U+06F9

Indic (Devanagari) U+0966..U+096F

There are distinct glyph forms for Eastern Arabic-Indic digits for the digits four, five,

six, and seven. Furthermore, for four, six, and seven, there is substantial variation

between locales using the Eastern Arabic-Indic digits. Table 9-2 illustrates this varia‐

tion with some example glyphs for digits in languages of Afghanistan, India, Iran,

and Pakistan. While some usage of the Persian glyph for U+06F7 EXTENDED

ARABIC-INDIC DIGIT SEVEN can be documented for Sindhi, the form shown in

Table 9-2 is predominant.

Code Point Digit Persian Sindhi Urdu and Kashmiri

U+06F4 4

U+06F5 5

U+06F6 6

U+06F7 7

The Unicode Standard provides a single, complete sequence of digits for Persian,

Sindhi, and Urdu to account for the differences in appearance and directional treat‐

ment when rendering them. The Kashmiri digits have the same appearance as those

for Urdu. (For a complete discussion of directional formatting of numbers in the

Unicode Standard, see Unicode Standard Annex #9, “Unicode Bidirectional Algo‐

rithm.”)

Table 9-1. Arabic Digit Names

Table 9-2. Glyph Variation in Eastern Arabic-Indic Digits

Middle East-I 453 9.2 Arabic

 Arabic script is used to write major languages, such as

Persian and Urdu, but it has also been used to transcribe some lesser-used languages,

such as Baluchi and Lahnda, which have little tradition of printed typography. As a

result, the Unicode Standard encodes multiple forms of some Extended Arabic letters

because the character forms and usages are not well documented for a number of

languages. For additional extended Arabic letters, see the Arabic Supplement block,

U+0750..U+077F, the Arabic Extended-A block, U+08A0..U+08FF, and the Arabic

Extended-B block, U+0870..U+089F.

 These characters are used in the Quran to mark

pronunciation and other annotation of the text. Several additional Quranic annota‐

tion signs are encoded in the Arabic Extended-A block, U+08A0..U+08FF, and the

Arabic Extended-B block, U+0870..U+089F. The alternate forms of some of the

marks are not merely decorative; they are used to show variations in pronunciation

(U+08F0 ARABIC OPEN FATHATAN), or can indicate various pause points (U+0615

ARABIC SMALL HIGH TAH), extended pauses, mandatory pauses, or places where a

breath should not occur. They are required to guide the reader in reciting the text

correctly. Some marks, such as U+08D4 ARABIC SMALL HIGH WORD AR-RUB, may be

positioned above end of ayah.

 When the Arabic script is adopted as the writing system

for a language other than Arabic, it is often necessary to represent vowel sounds or

distinctions not made in Arabic. In some cases, conventions such as the addition of

small dots above and/or below the standard Arabic fatha, damma, and kasra signs

have been used.

Classical Arabic has only three canonical vowels (/a/, /i/, /u/), whereas languages

such as Urdu and Persian include other contrasting vowels such as /o/ and /e/. For

this reason, it is imperative that speakers of these languages be able to show the

difference between /e/ and /i/ (U+0656 ARABIC SUBSCRIPT ALEF), and between /o/

and /u/ (U+0657 ARABIC INVERTED DAMMA). At the same time, the use of these two

diacritics in Arabic is redundant, merely emphasizing that the underlying vowel is

long.

U+065F ARABIC WAVY HAMZA BELOW is an additional vowel mark used in Kash‐

miri. It can appear in combination with many characters. The particular combination

of an alef with this vowel mark should be written with the sequence <U+0627

ARABIC LETTER ALEF, U+065F ARABIC WAVY HAMZA BELOW>, rather than with the

character U+0673 ARABIC LETTER ALEF WITH WAVY HAMZA BELOW, which has been

deprecated and which is not canonically equivalent. However, implementations

should be aware that there may be existing legacy Kashmiri data in which U+0673

occurs.

 Marks known as honorifics represent phrases expressing the status of a

person and are in widespread use in the Arabic-script world. Most have a specifically

Extended Arabic Letters.

Quranic Annotation Signs.

Additional Vowel Marks.

Honorifics.

Middle East-I 454 9.2 Arabic

religious meaning. In effect, these marks are combining characters at the word level,

rather than being associated with a single base character. The normal practice is that

such marks be used at the end of words. In manuscripts, depending on the letter

shapes present in the name and the calligraphic style in use, the honorific mark may

appear over a letter in the middle of the word. If an exact representation of a manu‐

script is desired, the honorific mark may be represented as following that letter. The

normalization algorithm does not move such word-level combining characters to the

end of the word.

Spacing honorifics are also in wide use both in the Arabic script and among Muslim

communities writing in other scripts. See “Word Ligatures” under Arabic Presenta‐

tion Forms-A later in this section for more information.

 A few Arabic mathematical symbols are encoded in

this block. The Arabic mathematical radix signs, U+0606 ARABIC-INDIC CUBE ROOT

and U+0607 ARABIC-INDIC FOURTH ROOT, differ from simple mirrored versions of

U+221B CUBE ROOT and U+221C FOURTH ROOT, in that the digit portions of the

symbols are written with Arabic-Indic digits and are not mirrored. U+0608 ARABIC

RAY is a letterlike symbol used in Arabic mathematics.

U+060D ARABIC DATE SEPARATOR is used in Pakistan and India

between the numeric date and the month name when writing out a date. This sign is

distinct from U+002F SOLIDUS, which is used, for example, as a separator in

currency amounts.

U+061E ARABIC TRIPLE DOT PUNCTUATION MARK is encoded for tradi‐

tional orthographic practice using the Arabic script to write African languages such

as Hausa, Wolof, Fulani, and Mandinka. These languages use ARABIC TRIPLE DOT

PUNCTUATION MARK as a full stop.

U+060B AFGHANI SIGN is a currency symbol used in

Afghanistan. The symbol is derived from an abbreviation of the name of the

currency, which has become a symbol in its own right. U+FDFC RIAL SIGN is a

currency symbol used in Iran. Unlike the AFGHANI SIGN, U+FDFC RIAL SIGN is

considered a compatibility character, encoded for compatibility with Iranian stan‐

dards. Ordinarily in Persian “rial” is simply spelled out as the sequence of letters,

<0631, 06CC, 0627, 0644>.

 Several other special signs are written in association with

numbers in the Arabic script. All of these signs can span multiple-digit numbers,

rather than just a single digit. They are not formally considered combining marks in

the sense used by the Unicode Standard, although they clearly interact graphically

with their associated sequence of digits. In the text representation they precede the

sequence of digits that they span, rather than follow a base character, as would be the

case for a combining mark. Their General_Category value is Cf (format character).

Arabic Mathematical Symbols.

Date Separator.

Full Stop.

Currency Symbols.

Signs Spanning Numbers.

Middle East-I 455 9.2 Arabic

Unlike most other format characters, however, they should be rendered with a visible

glyph, even in circumstances where no suitable digit or sequence of digits follows

them in logical order. The characters have the Bidi_Class value of Arabic_Number to

make them appear in the same run as the numbers following them.

A few similar signs spanning numbers or letters are associated with scripts other

than Arabic. See the discussion of U+070F SYRIAC ABBREVIATION MARK in

Section 9.3, Syriac, and the discussion of U+110BD KAITHI NUMBER SIGN and

U+110CD KAITHI NUMBER SIGN ABOVE in Section 15.2, Kaithi. All of these prefixed

format controls, including the non-Arabic ones, are given the property value

Prepended_Concatenation_Mark = True, to identify them as a class. They also have

special behavior in text segmentation. (See Unicode Standard Annex #29, “Unicode

Text Segmentation.”)

U+0600 ARABIC NUMBER SIGN signals the beginning of a number. It is followed by a

sequence of one or more Arabic digits and is rendered below the digits of the

number. The length of its rendered display may vary with the number of digits. The

sequence terminates with the occurrence of any non-digit character.

U+0601 ARABIC SIGN SANAH indicates a year (that is, as part of a date). This sign is

also rendered below the digits of the number it precedes. Its appearance is a vestigial

form of the Arabic word for year, /sanatu/ (seen noon teh-marbuta), but it is now a

sign in its own right and is widely used to mark a numeric year even in non-Arabic

languages where the Arabic word would not be known.

U+0602 ARABIC FOOTNOTE MARKER is a specialized variant of number sign. Its use

indicates that the number so marked represents a footnote number in the text.

U+0603 ARABIC SIGN SAFHA is another specialized variant of number sign. It marks

a page number.

U+0604 ARABIC SIGN SAMVAT is a specialized variant of date sign used specifically to

write dates of the Śaka era. The shape of the glyph is a stylized abbreviation of the

word samvat, the name of this calendar. It is seen in the Urdu orthography, where it

contrasts with conventions used to display dates from the Gregorian or Islamic calen‐

dars.

U+0605 ARABIC NUMBER MARK ABOVE is a specialized variant of number sign. It is

used in Arabic text with Coptic numbers, such as in early astronomical tables. Unlike

the other Arabic number signs, it extends across the top of the sequence of digits, and

is used with Coptic digits, rather than with Arabic digits. (See also the discussion of

supralineation and the numerical use of letters in Section 7.3, Coptic.)

U+0890 ARABIC POUND MARK ABOVE and U+0891 ARABIC PIASTRE MARK ABOVE

are Egyptian currency signs which extend across the top of a sequence of digits. The

shape of the pound mark is usually based on a dotless head of jeem above the

Middle East-I 456 9.2 Arabic

amount. It is occasionally based on a dotted jeem instead. The shape of the piastre

mark is written using a mirrored version of the pound mark. They are used in adver‐

tising and price tags, as well as in handwritten texts.

U+06DD ARABIC END OF AYAH is another sign used to span numbers, but its

rendering is somewhat different. Rather than extending below the following digits,

this sign encloses the digit sequence. This sign is used conventionally to indicate

numbered verses in the Quran.

U+06DE ARABIC START OF RUB EL HIZB is an in-text marker. In printed Qurans, it

appears in running text by itself, usually adjacent to an end of ayah marker. Although

the original symbol for rub el hizb consists of octagonal overlayed squares, the actual

glyph seen in various editions can be more ornate, as shown in the Unicode code

charts. The rub el hizb indicates the boundaries of the parts of sections of the hizb. It

can appear at the start or end of a section and is displayed without interaction with

adjacent text.

U+08E2 ARABIC DISPUTED END OF AYAH is a specialized variant of the end of ayah.

It is seen occasionally in Quranic text to mark a verse for which there is scholarly

disagreement about the location of the end of the verse.

Because digit choice is dependent on regional use, these marks may be used with

European digits (U+0030..U+0039), Arabic-Indic digits (U+0660..U+0669) or with

extended Arabic-Indic digits (U+06F0..U+06F9). Implementations should support

up to three or four digits. Figure 9-7 shows examples of how these are formatted with

varying numbers of digits. In these examples, each instance is separated by an arbi‐

trary letter hamza, to help visualize how the formatted sequences interact with the

Arabic baseline.

Middle East-I 457 9.2 Arabic

U+060E ARABIC POETIC VERSE SIGN is a special symbol often

used to mark the beginning of a poetic verse. Although it is similar to U+0602

ARABIC FOOTNOTE MARKER in appearance, the poetic sign is simply a symbol. In

contrast, the footnote marker is a format control character that has complex

rendering in conjunction with following digits. U+060F ARABIC SIGN MISRA is

another symbol used in poetry.

 A rendering or display process must convert

between the logical order in which characters are placed in the backing store and the

visual (or physical) order required by the display device. See Unicode Standard

Annex #9, “Unicode Bidirectional Algorithm,” for a description of the conversion

between logical and visual orders.

The cursive nature of the Arabic script imposes special requirements on display or

rendering processes that are not typically found in Latin script-based systems. At a

minimum, a display process must select an appropriate glyph to depict each Arabic

letter according to its immediate joining context; furthermore, in almost every font

Figure 9-7. Arabic Signs Spanning Numbers

Poetic Verse Sign.

9.2.2 Arabic Cursive Joining

Minimum Rendering Requirements.

Middle East-I 458 9.2 Arabic

style, it must substitute certain ligature glyphs for sequences of Arabic characters.

The remainder of this section specifies a minimum set of rules that provide legible

Arabic joining and ligature substitution behavior.

 Each Arabic letter must be depicted by one of a number of possible

contextual glyph forms. The appropriate form is determined on the basis of the

cursive joining behavior of that character as it interacts with the cursive joining

behavior of adjacent characters. In the Unicode Standard, such cursive joining

behavior is formally described in terms of values of a character property called

Joining_Type. Each Arabic character falls into one of the types shown in Table 9-3.

(See ArabicShaping.txt in the Unicode Character Database for a complete list.)

Joining_Type Examples and Comments

Right_Joining
(R)

ALEF, DAL, THAL, REH, ZAIN...

Left_Joining
(L)

None (in Arabic)

Dual_Joining
(D)

BEH, TEH, THEH, JEEM...

Join_Causing
(C)

U+200D ZERO WIDTH JOINER and U+0640 ARABIC TATWEEL. These
characters are distinguished from the dual-joining characters in that they do
not change shape themselves.

Non_Joining
(U)

U+200C ZERO WIDTH NON-JOINER and all spacing characters, except those
explicitly mentioned as being one of the other joining types, are non-joining.
These include U+0621 ARABIC LETTER HAMZA, U+0674 ARABIC LETTER
HIGH HAMZA, spaces, digits, punctuation, non-Arabic letters, and so on.
Also, U+0600 ARABIC NUMBER SIGN..U+0605 ARABIC NUMBER MARK
ABOVE and U+06DD ARABIC END OF AYAH.

Transparent
(T)

All nonspacing marks (General Category Mn or Me) and most format control
characters (General Category Cf) are transparent to cursive joining. These
include U+064B ARABIC FATHATAN and other Arabic tashkil, U+0655
ARABIC HAMZA BELOW, U+0670 ARABIC LETTER SUPERSCRIPT ALEF,
combining Quranic annotation signs, and nonspacing marks from other
scripts. Also U+070F SYRIAC ABBREVIATION MARK.

In Table 9-3, right and left refer to visual order, so a Joining_Type value of

Right_Joining indicates that a character cursively joins to a character displayed to its

right in visual order. (For a discussion of the meaning of Joining_Type values in the

context of a vertically rendered script, see “Cursive Joining” in Section 14.4, Phags-

pa.) The Arabic characters with Joining_Type = Right_Joining are exemplified in

more detail in Table 9-8, and those with Joining_Type = Dual_Joining are shown in

Table 9-7. When characters do not join or cause joining (such as DAMMA), they are

classified as transparent.

Joining Types.

Table 9-3. Primary Arabic Joining Types

Middle East-I 459 9.2 Arabic

The Phags-pa and Manichaean scripts have a few Left_Joining characters, which are

otherwise unattested in the Arabic and Syriac scripts. See Section 10.5, Manichaean.

For a discussion of the meaning of Joining_Type values in the context of a vertically

rendered script, see “Cursive Joining” in Section 14.4, Phags-pa.

Table 9-4 defines derived superclasses of the primary Arabic joining types; those

derived types are used in the cursive joining rules. In this table, right and left refer to

visual order.

Description Derivation

Right join-causing Superset of dual-joining, left-joining, and join-causing

Left join-causing Superset of dual-joining, right-joining, and join-causing

 The following rules describe the joining behavior of Arabic letters in

terms of their display (visual) order. In other words, the positions of letterforms in

the included examples are presented as they would appear on the screen after the

Bidirectional Algorithm has reordered the characters of a line of text.

An implementation may choose to restate the following rules according to logical

order so as to apply them before the Bidirectional Algorithm’s reordering phase. In

this case, the words right and left as used in this section would become preceding and

following.

In the following rules, if X refers to a character, then various glyph types representing

that character are referred to as shown in Table 9-5.

Glyph
Type

Description

X
n Non-joining glyph form that does not join on either side.

X
r

Right-joining glyph form (both right-joining and dual-joining characters may
employ this form)

X
l

Left-joining glyph form (both left-joining and dual-joining characters may employ
this form)

X
m

Dual-joining (medial) glyph form that joins on both left and right (only dual-
joining characters employ this form)

MEEM
n

 + SHADDA
n

 + LAM
n
 → MEEM

r
 + SHADDA

n
 + LAM

l

Table 9-4. Derived Arabic Joining Types

Joining Rules.

Table 9-5. Arabic Glyph Types

Transparent characters do not affect the joining behavior of base

(spacing) characters. For example:

R1

Middle East-I 460 9.2 Arabic

ALEF
n

 + TATWEEL
n
 → ALEF

r
 + TATWEEL

n

TATWEEL
n

 + MEEM
n

 + TATWEEL
n
 → TATWEEL

n
 + MEEM

m
 + TATWEEL

n

MEEM
n

 + TATWEEL
n
 → MEEM

r
 + TATWEEL

n

TATWEEL
n

 + MEEM
n
 → TATWEEL

n
 + MEEM

l

A right-joining character X that has a right join-causing character on the

right will adopt the form X
r

. For example:

R2

A left-joining character X that has a left join-causing character on the left

will adopt the form X
l
.

R3

A dual-joining character X that has a right join-causing character on the

right and a left join-causing character on the left will adopt the form X
m

.

For example:

R4

A dual-joining character X that has a right join-causing character on the

right and no left join-causing character on the left will adopt the form

X
r

.For example:

R5

A dual-joining character X that has a left join-causing character on the

left and no right join-causing character on the right will adopt the form

X
l
.For example:

R6

If none of the preceding rules applies to a character X, then it will adopt

the non-joining form X
n

.

R7

Middle East-I 461 9.2 Arabic

The cursive joining behavior described here for the Arabic script is also generally

applicable to other cursive scripts such as Syriac. Specific circumstances may modify

the application of the rules just described.

As noted earlier in this section, the ZERO WIDTH NON-JOINER may be used to prevent

joining, as in the Persian plural suffix or Ottoman Turkish vowels.

 The lam-alef type of ligatures are extremely common in the Arabic

script. These ligatures occur in almost all font designs, except for a few modern styles.

When supported by the style of the font, lam-alef ligatures are considered obligatory.

This means that all character sequences rendered in that font, which match the rules

specified in the following discussion, must form these ligatures.

In the majority of styles used for writing the Arabic script, including the predomi‐

nant Hafs style, the lam is the right part of the ligature, and the alef is the left part of

the ligature. However, in the al-Dani style of writing Arabic script, common in

northern Africa, the practice is reversed: the alef is the right part and lam is the left

part. This difference in the styles of writing Arabic is important for font developers to

understand. Logical order would still be used in both styles: this means that in the al-

Dani style of lam-alef, marks are positioned differently on the lam-alef ligature. See

Figure 9-8 for a comparison of rendering the sequence <lam, sukun, alef-with-hamza-

above, damma> in the two styles mentioned.

The important thing to note in this figure is the placement of the marks over the

parts of the ligature. The exact shapes of the ligature and the marks depend on the

style in use.

In general, the lam-alef ligature will be formed by any character in the LAM joining

group followed by any character from the ALEF joining group. Many lam-alef combi‐

9.2.3 Arabic Ligatures

Ligature Classes.

Figure 9-8. Lam-alef with Marks

Middle East-I 462 9.2 Arabic

nations with the specialized alef additions in the range U+0870..U+0882 are not

attested in actual practice. In such cases, the lam-alef ligature should not be consid‐

ered obligatory.

Many other Arabic ligatures are discretionary. Their use depends on the font design.

For the purpose of describing the obligatory Arabic ligatures, certain characters are

subject to the same requirements as lam and alef. As described in the text that

follows, these fall into the joining groups LAM and ALEF, respectively. Examples of

these include U+0644 ARABIC LETTER LAM, U+06B5 ARABIC LETTER LAM WITH

SMALL V, U+0623 ARABIC LETTER ALEF WITH HAMZA ABOVE, and U+0622 ARABIC

LETTER ALEF WITH MADDA ABOVE. The complete list is available in Arabic‐

Shaping.txt in the Unicode Character Database.

 The following rules describe the formation of obligatory ligatures.

They are applied after the preceding joining rules. As for the joining rules just

discussed, the following rules describe ligature behavior of Arabic letters in terms of

their display (visual) order.

In the ligature rules, if X and Y refer to characters, then various glyph types repre‐

senting combinations of these characters are referred to as shown in Table 9-6.

Symbol Description

(X-Y)
n

Nominal ligature glyph form representing a combination of an X
r
 form and a Y

l

form

(X-Y)
r

Right-joining ligature glyph form representing a combination of an X
r
 form and a

Y
m

 form

ALEF
r
 + FATHA

n
 + LAM

l
 → (LAM-ALEF)

n
 + FATHA

n

Ligature Rules.

Table 9-6. Arabic Ligature Notation

Transparent characters do not affect the ligating behavior of base

(nontransparent) characters. For example:

L1

Any sequence with ALEF
r
 on the left and LAM

m
 on the right will form the

ligature (LAM-ALEF)
r

. For example:

L2

Any sequence with ALEF
r
 on the left and LAM

l
 on the right will form the

ligature (LAM-ALEF)
n

. For example:

L3

Middle East-I 463 9.2 Arabic

 Many other ligatures and contextual forms are optional,

depending on the font and application. Some of these presentation forms are

encoded in the ranges U+FB50..U+FDFF and U+FE70..U+FEFE. However, these

forms should not be used in general interchange. Moreover, it is not expected that

every Arabic font will contain all of these forms, nor that these forms will include all

presentation forms used by every font.

More sophisticated rendering systems will use additional shaping and placement. For

example, contextual placement of the nonspacing vowels such as fatha will provide

better appearance. The justification of Arabic tends to stretch words instead of

adding width to spaces. Basic stretching can be done by inserting tatweel between

characters shaped by rules R2, R4, R5, R6, L2, and L3; the best places for inserting

tatweel will depend on the font and rendering software. More powerful systems will

choose different shapes for characters such as kaf to fill the space in justification.

The Arabic characters with the property values Joining_Type = Dual_Joining and

Joining_Type = Right_Joining can each be subdivided into shaping groups, based on

the behavior of their letter skeletons when shaped in context. The Unicode character

property that specifies these groups is called Joining_Group.

The Joining_Type and Joining_Group values for all Arabic characters are explicitly

specified in ArabicShaping.txt in the Unicode Character Database. For convenience

in reference, the Joining_Type values are extracted and listed in DerivedJoining‐

Type.txt and the Joining_Group values are extracted and listed in DerivedJoining‐

Group.txt.

Table 9-7 exemplifies dual-joining Arabic characters and illustrates

the forms taken by the letter skeletons and their ijam marks in context. Dual-joining

characters have four distinct forms, for isolated, final, medial, and initial contexts,

respectively. The name for each joining group is based on the name of a representa‐

tive letter that is used to illustrate the shaping behavior. All other Arabic characters

are merely variations on these basic shapes, with diacritics added, removed, moved,

or replaced. For instance, the BEH joining group applies not only to U+0628 ARABIC

LETTER BEH, which has a single dot below the skeleton, but also to U+062A ARABIC

LETTER TEH, which has two dots above the skeleton, and to U+062B ARABIC LETTER

THEH, which has three dots above the skeleton, as well as to the Persian and Urdu

letter U+067E ARABIC LETTER PEH, which has three dots below the skeleton. The

joining groups in the table are organized by shape and not by standard Arabic alpha‐

betical order. Note that characters in some joining groups have dots in some contex‐

tual forms, but not others, or their dots may move to a different position. These

joining groups include NYA, FARSI YEH, and BURUSHASKI YEH BARREE.

Optional Features.

9.2.4 Arabic Joining Groups

Dual-Joining.

Middle East-I 464 9.2 Arabic

Joining Group X
n

X
r

X
m

X
l Notes

BEH Includes TEH and THEH.

NOON Includes NOON GHUNNA.

AFRICAN NOON

NYA Jawi NYA.

YEH Includes ALEF MAKSURA.

FARSI YEH

KASHMIRI YEH

THIN YEH
Final and isolated forms are not
attested.

BURUSHASKI YEH BARREE
Dual joining, as opposed to YEH
BARREE.

HAH Includes KHAH and JEEM.

SEEN Includes SHEEN.

SAD Includes DAD.

TAH Includes ZAH.

AIN Includes GHAIN.

FEH

AFRICAN FEH

QAF

AFRICAN QAF

MEEM

HEH

KNOTTED HEH
See Table 9-9 for more information on
regional variation.

HEH GOAL Includes HAMZA ON HEH GOAL.

Table 9-7. Dual-Joining Arabic Characters

Middle East-I 465 9.2 Arabic

KAF

SWASH KAF

GAF Includes KEHEH.

LAM

Table 9-8 exemplifies right-joining Arabic characters, illustrating the

forms they take in context. Right-joining characters have only two distinct forms, for

isolated and final contexts, respectively.

Joining Group X
n

X
r Notes

ALEF

WAW

STRAIGHT WAW Tatar STRAIGHT WAW.

DAL Includes THAL.

REH Includes ZAIN.

TEH MARBUTA Includes HAMZA ON HEH.

TEH MARBUTA GOAL

YEH WITH TAIL

YEH BARREE

ROHINGYA YEH

Some characters occur only at the end of words or morphemes when correctly

spelled; these are called trailing characters. Examples include TEH MARBUTA and

DAMMATAN. When trailing characters are joining (such as TEH MARBUTA), they are

classified as right-joining, even when similarly shaped characters are dual-joining.

Other characters, such as ALEF MAKSURA, are considered trailing in modern Arabic,

but are dual-joining in Quranic Arabic and languages like Uyghur. These are classi‐

fied as dual-joining.

 In the case of U+0647 ARABIC LETTER HEH, the glyph is shown in the

code charts. This form is often used to reduce the chance of misidentifying heh as

U+0665 ARABIC-INDIC DIGIT FIVE, which has a very similar shape. The isolated

Right-Joining.

Table 9-8. Right-Joining Arabic Characters

Letter heh.

Middle East-I 466 9.2 Arabic

forms of U+0647 ARABIC LETTER HEH and U+06C1 ARABIC LETTER HEH GOAL both

look like U+06D5 ARABIC LETTER AE.

U+06BE ARABIC LETTER HEH DOACHASHMEE is used to represent any heh-like letter

that appears with left stems in all contextual forms. All four forms should have two

horizontal or vertical “eyes.” The exact contextual shapes of the letter depend on the

language and the style of writing. Four variations for KNOTTED HEH are shown in

Table 9-9.

Code Points Name
Joining
Group

X
n

X
r

X
m

X
l Notes

0647
FEE9..FEEC

HEH HEH Standard forms

06BE
FBAA..FBAD

HEH
DOACHASHMEE

KNOTTED
HEH

Standard forms, Uighur,
Kazakh

Behdini Kurdish

Possibly used in Sindhi

Nastaliq

 There are many complications in the shaping of the Arabic letter yeh.

These complications have led to the encoding of several different characters for yeh

in the Unicode Standard, as well as the definition of several different joining groups

involving yeh. The relationships between those characters and joining groups for yeh

are explained here.

U+06CC ARABIC LETTER FARSI YEH is used in Persian, Urdu, Pashto, Azerbaijani,

Kurdish, and various minority languages written in the Arabic script, and also

Quranic Arabic. It behaves differently from most Arabic letters, in a way surprising to

some native Arabic language speakers. The letter has two horizontal dots below the

skeleton in initial and medial forms, but no dots in final and isolated forms.

Compared to the two Arabic language yeh forms, FARSI YEH is exactly like U+0649

ARABIC LETTER ALEF MAKSURA in final and isolated forms, but exactly like U+064A

ARABIC LETTER YEH in initial and medial forms, as shown in Table 9-10. However,

U+06CC ARABIC LETTER FARSI YEH followed by U+0654 ARABIC HAMZA ABOVE

should retain its dots in initial and medial forms.

Character Joining Group X
n

X
r

X
m

X
l

U+0649 ALEF MAKSURA YEH

Table 9-9. Letter heh Shapes

Letter yeh.

Table 9-10. Forms of the Arabic Letter yeh

Middle East-I 467 9.2 Arabic

U+064A YEH YEH

U+06CC FARSI YEH FARSI YEH

U+0886 THIN YEH THIN YEH

U+0777 YEH WITH DIGIT FOUR BELOW YEH

U+0620 KASHMIRI YEH KASHMIRI YEH

U+06D2 YEH BARREE YEH BARREE

U+077A YEH BARREE WITH DIGIT TWO
ABOVE

BURUSHASKI YEH
BARREE

U+08AC ROHINGYA YEH ROHINGYA YEH

Other characters of the joining group FARSI YEH follow the same pattern. These YEH

forms appear with two dots aligned horizontally below them in initial and medial

forms, but with no dots below them in final and isolated forms. Characters with the

joining group YEH behave in a different manner. Just as U+064A ARABIC LETTER

YEH retains two dots below in all contextual forms, other characters in the joining

group YEH retain whatever mark appears below their isolated form in all other

contexts. For example, U+0777 ARABIC LETTER FARSI YEH WITH EXTENDED ARABIC-

INDIC DIGIT FOUR BELOW carries an Urdu-style digit four as a diacritic below the yeh

skeleton, and retains that diacritic in all positions, as shown in the fourth row of

Table 9-10. Note that the joining group cannot always be derived from the character

name alone. The complete list of characters with the joining group YEH or FARSI YEH

is available in ArabicShaping.txt in the Unicode Character Database.

In the orthographies of Arabic and Persian, the yeh barree has always been treated as

a stylistic variant of yeh in final and isolated positions. When the Perso-Arabic

writing system was adapted and extended for use with the Urdu language, yeh barree

was adopted as a distinct letter to accommodate the richer vowel repertoire of Urdu.

South Asian languages such as Urdu and Kashmiri use yeh barree to represent the /e/

vowel. This contrasts with the /i/ vowel, which is usually represented in those

languages by U+06CC ARABIC LETTER FARSI YEH. The encoded character U+06D2

ARABIC LETTER YEH BARREE is classified as a right-joining character, as shown in

Table 9-10. On that basis, when the /e/ vowel needs to be represented in initial or

medial positions with a yeh shape in such languages, one should use U+06CC

ARABIC LETTER FARSI YEH. In the unusual circumstances where one wishes to

distinctly represent the /e/ vowel in word-initial or word-medial positions, a higher

level protocol should be used.

For the Burushaski language, two characters that take the form of yeh barree with a

diacritic, U+077A ARABIC LETTER YEH BARREE WITH EXTENDED ARABIC-INDIC

Middle East-I 468 9.2 Arabic

DIGIT TWO ABOVE and U+077B ARABIC LETTER YEH BARREE WITH EXTENDED

ARABIC-INDIC DIGIT THREE ABOVE, are classified as dual-joining. These characters

have a separate joining group called BURUSHASKI YEH BARREE, as shown for

U+077A in the last row of Table 9-10.

U+0620 ARABIC LETTER KASHMIRI YEH is used in Kashmiri text to indicate that the

preceding consonantal sound is palatalized. The letter has the form of a yeh with a

diacritic small circle below in initial and medial forms, but its final and isolated

forms appear as truncated yeh shapes () without the diacritic ring. It has a joining

group of its own, KASHMIRI YEH, with the shapes as shown in Table 9-10, as well as

Table 9-7. (Prior to Version 16.0, the Unicode Standard had specified that when

written in the Naskh style, the letter had different shapes than when written in

Nastaliq style; that specification was erroneous.)

U+08AC ARABIC LETTER ROHINGYA YEH is used in the Arabic orthography for the

Rohingya language of Myanmar. It represents a medial ya, corresponding to the use

of U+103B MYANMAR CONSONANT SIGN MEDIAL YA in the Myanmar script. It is a

right-joining letter. It only occurs after certain consonants, forming a conjunct letter

with those consonants.

U+0626 ARABIC LETTER YEH WITH HAMZA ABOVE normally has the hamza posi‐

tioned over the bowl of the glyph in isolate and final forms. For the Kyrgyz language

the hamza is positioned at the top right of the glyph in isolate and final forms, as

shown in Table 9-11.

X
n

X
r

X
m

X
l

Standard

Kyrgyz-style

 The letter noon ghunna is used to mark nasalized vowels at the ends

of words and some morphemes in Urdu, Balochi, and other languages of Southern

Asia. It is represented by U+06BA ARABIC LETTER NOON GHUNNA. The noon

ghunna has the shape of a dotless noon and typically appears only in final and

isolated contexts in these languages. In the middle of words and morphemes, the

normal noon, U+0646 ARABIC LETTER NOON, is used instead. To avoid ambiguity,

sometimes a special mark, U+0658 ARABIC MARK NOON GHUNNA, is added to the

dotted noon to indicate nasalization.

U+06BA ARABIC LETTER NOON GHUNNA is also used as a dotless noon for the noon

skeleton in all four of its contextual forms. As such, it is used in representation of

early Arabic and Quranic Arabic texts. Rendering systems should display U+06BA as

Table 9-11. Glyph Variation for U+0626 Yeh with Hamza Above

Noon Ghunna.

Middle East-I 469 9.2 Arabic

a dual-joining letter, with all four contextual forms shown dotless, regardless of the

language of the text.

Advanced text entry applications for Urdu, Balochi, and other languages using noon

ghunna may include specialized logic for its handling. For example, they might detect

mid-word usage of the noon ghunna key and emit the regular dotted noon character

(U+0646) instead, as appropriate for spelling in that context.

 There is a set of widespread orthographic conventions for Arabic

writing in West and Northwest Africa known as Warsh. Among other differences

from the better-known Hafs orthography of the Middle East, there are significant

differences in Warsh regarding the placement of ijam dots on several important

Arabic letters. Several “African” letters are encoded in the Arabic Extended-A block

specifically to account for these differences in dot placement.

The specialized letters for Warsh share the skeleton with the corresponding, regular

Arabic letters. However, they differ in the placement of dots. The Warsh letters have

no dots in final or isolated positional contexts. This is illustrated by U+08BD ARABIC

LETTER AFRICAN NOON. Unlike U+0646 ARABIC LETTER NOON, which displays a dot

above in all positional contexts, african noon displays a dot above in initial and

medial position, and no dot in final or isolated position. This contrast can be clearly

seen in Table 9-7.

U+08BB ARABIC LETTER AFRICAN FEH and U+08BC ARABIC LETTER AFRICAN QAF

also lose all dots in final or isolated position, but exhibit a somewhat different pattern

for initial and medial position. The basic skeletons for feh and for qaf are identical for

those letters in initial and medial position. In the Hafs orthography, the feh takes a

single dot above in all positions, while the qaf takes two dots above in all positions.

The Warsh orthography distinguishes the two letters differently: the feh takes a single

dot below in initial or medial position, while the qaf takes a single dot above in initial

or medial position. These contextual differences in the placement of the dots for

these letters can also be seen in Table 9-7.

 The Hausa and Wolof languages of West Africa use an Arabic-

based orthography known as ajami. The ajami orthography contains additional,

specialized letters with three dots above or below. This three dot ijam is known as a

wagaf in Hausa. In the Kano/Maghribi Arabic style used in this region, the wagaf is

noticeably smaller than any other ijam that may also occur on these specialized char‐

acters or other Arabic letters. For example, when rendered in the Kano/Maghribi

style in a Hausa font, U+0751 ARABIC LETTER BEH WITH DOT BELOW AND THREE

DOTS ABOVE will show the dot below in a dark, large size, while the three dots above

for the wagaf are distinctly smaller. This distinction in size tends to be much less

noticeable when the same letters are rendered using a standard, naskh style Arabic

font, as shown in the code charts.

Letters for Warsh.

Letters for Ajami.

Middle East-I 470 9.2 Arabic

 Other scripts besides Arabic also have cursive

joining behavior and associated per-character values for Joining_Type and

Joining_Group. Those values are also listed in ArabicShaping.txt in the Unicode

Character Database, in sections devoted to each particular script. See the script

descriptions for such scripts in the core specification—for example, Syriac and

Manichaean—for detailed discussions of cursive joining behavior and tables of

joining groups for those scripts.

For the Arabic script, Joining_Group values are assigned for each distinct letter

skeleton in all instances—even for the small number of cases, such as heh goal,

where only a single character is associated with that Joining_Group. This is appro‐

priate for Arabic, because the script has cosmopolitan use, and many letters have

been modified with various nukta diacritics to form new letters for non-Arabic

languages using the script. This pattern of comprehensive assignment of

Joining_Group values to all letter skeletons also applies for the Syriac and

Manichaean scripts.

For other cursive joining scripts with less well-defined joining groups, all letters are

simply assigned the value No_Joining_Group. This does not necessarily mean that no

identifiable letter skeletons occur, but rather that no complete analysis has been done

that would indicate more than one letterform uses a shared skeleton for cursive

joining. Examples include: Mongolian, Phags-Pa, Psalter Pahlavi, Sogdian, and

Adlam.

Starting with Unicode 11.0, even in cases where a newly encoded script with cursive

joining behavior includes some characters which share letter skeletons, most charac‐

ters are given the No_Joining_Group value. This applies, for example, to the Hanifi

Rohingya script, which has a few explicit Joining_Group values, but for which all

other characters have the No_Joining_Group value.

In the future, characters with the No_Joining_Group value in scripts with cursive

joining behavior may end up being given explicit new Joining_Group values, where

further analysis clearly demonstrates use of shared skeletons in cursive joining, or

where new, diacritically modified letters are added to the encoding for that script.

U+0654 ARABIC HAMZA ABOVE is intended both for the

representation of hamza semantics in combination with certain Arabic letters, and as

a diacritical mark occasionally used in combinations to derive extended Arabic

letters. There are a number of complications regarding its use, which interact with

the rules for the rendering of Arabic letter yeh and which result from the need to

keep Unicode normalization stable.

Joining Groups in Other Scripts.

9.2.5 Combining Hamza

Combining Hamza Above.

Middle East-I 471 9.2 Arabic

U+0654 ARABIC HAMZA ABOVE should not be used with U+0649 ARABIC LETTER

ALEF MAKSURA. Instead, the precomposed U+0626 ARABIC LETTER YEH WITH

HAMZA ABOVE should be used to represent a yeh-shaped base with no dots in any

positional form, and with a hamza above. Because U+0626 is canonically equivalent

to the sequence <U+064A ARABIC LETTER YEH, U+0654 ARABIC HAMZA ABOVE>,

when U+0654 is applied to U+064A ARABIC LETTER YEH, the yeh should lose its dots

in all positional forms, even though yeh retains its dots when combined with other

marks.

A separate, non-decomposable character, U+08A8 ARABIC LETTER YEH WITH TWO

DOTS BELOW AND HAMZA ABOVE, is used to represent a yeh-shaped base with a

hamza above, but with retention of dots in all positions. This letter is used in the

Fulfulde language in Cameroon, to represent a palatal implosive.

In most other cases when a hamza is needed as a mark above for an Arabic letter,

U+0654 ARABIC HAMZA ABOVE can be freely used in combination with basic Arabic

letters. Three exceptions are the extended Arabic letters U+0681 ARABIC LETTER

HAH WITH HAMZA ABOVE, U+076C ARABIC LETTER REH WITH HAMZA ABOVE, and

U+08A1 ARABIC LETTER BEH WITH HAMZA ABOVE, where the hamza mark is func‐

tioning as an ijam (diacritic), rather than as a normal hamza. In those three cases,

the extended Arabic letters have no canonical decompositions; consequently, the

preference is to use those precomposed forms, rather than applying U+0654 ARABIC

HAMZA ABOVE to hah, reh, or beh respectively.

In Persian and Urdu, a hamza above is frequently used for the ezafe sound /je/. This

should be represented using U+0654 ARABIC HAMZA ABOVE after the heh letter

appropriate for the orthography, as opposed to the precomposed U+06C0 which

decomposes to a heh form not used in Persian and Urdu.

In Kashmiri, a hamza above is used as a vowel to represent the sound /ə/ over various

different letters. In cases where it appears over a beh, hah, or reh, the precomposed

letters U+0681, U+076C, and U+08A1 mentioned above should not be used. Instead,

such Kashmiri text must be represented using beh, hah, or reh followed by U+0654

ARABIC HAMZA ABOVE.

These interactions between various letters and the hamza are summarized in

Table 9-12.

Code Point Name Decomposition

0623 alef with hamza above 0627 0654

0624 waw with hamza above 0648 0654

0626 yeh with hamza above 064A 0654

06C2 heh goal with hamza above 06C1 0654

Table 9-12. Arabic Letters With Hamza Above

Middle East-I 472 9.2 Arabic

06D3 yeh barree with hamza above 06D2 0654

0681 hah with hamza above None

076C reh with hamza above None

08A1 beh with hamza above None

08A8 yeh with 2 dots below and hamza above None

The first five entries in Table 9-12 show the cases where the hamza above can be

freely used, and where there is a canonical equivalence to the precomposed charac‐

ters. The last four entries show the exceptions, where use of the hamza above is inap‐

propriate, and where only the precomposed characters should be used.

 The characters U+0675 ARABIC LETTER HIGH HAMZA ALEF, U+0676

ARABIC LETTER HIGH HAMZA WAW, U+0677 ARABIC LETTER U WITH HAMZA

ABOVE, and U+0678 ARABIC LETTER HIGH HAMZA YEH are not recommended for

use. Their compatibility decompositions are anomalous: the decomposed sequences

are pairs of letters with right-to-left bidirectional character properties, with U+0674

ARABIC LETTER HIGH HAMZA as the second letter. When the decomposed sequences

are processed using the Unicode Bidirectional Algorithm, the hamza will appear to

the left of the other letter, whereas in the composite characters the hamza appears on

the right. Thus, the ordering of characters in the decomposition sequences are the

reverse of what is expected. Accordingly, appropriately-ordered pairs of letters begin‐

ning with U+0674 ARABIC LETTER HIGH HAMZA should be used instead. For

example, the sequence <U+0674, U+0627> should be used rather than U+0675

ARABIC LETTER HIGH HAMZA ALEF. To facilitate correct text entry, input methods

should be configured to generate the corresponding pairs of letters beginning with

U+0674 ARABIC LETTER HIGH HAMZA.

Use of these characters in identifier systems can be problematic and can present a

potential security risk. For example, IDNA 2003 permits U+0675 ARABIC LETTER

HIGH HAMZA ALEF to be used in a domain name, but requires that to be mapped to

the compatibility decomposed sequence <U+0627, U+0674> before conversion to

punycode. However, the sequence <U+0674, U+0627> could also be used in a

domain name. Two domain names that differ only in using U+0675 versus <U+0627,

U+0674> would map to distinct punycode sequences but would be visually identical.

Under IDNA 2008, the four composed characters (U+0675..U+0678) would no longer

be permitted in a registered domain name, but applications can still accept them and

map them into punycode, so risks from ambiguity still exist.

Malay Jawi uses U+0674 ARABIC LETTER HIGH HAMZA. In Jawi, the letter is the

same size as U+0621 ARABIC LETTER HAMZA; however, unlike U+0621, it is posi‐

tioned above the baseline at three-quarters height of the U+0627 ARABIC LETTER

ALEF. Font designers can use language tagging in order to support the preferred

shapes for both Kazakh and Jawi in multilingual fonts.

High Hamza.

Middle East-I 473 9.2 Arabic

 Most traditions of writing the Quran keep the skeleton of words

intact from earlier Quranic manuscripts, but add dots and diacritics, including

hamzas. Thus, words spelled with the medial form of U+0626 ARABIC LETTER YEH

WITH HAMZA ABOVE in modern Arabic orthographies may appear in Quranic texts

without the tooth typical of the letter. There is usually an elongation under the

hamza, and the hamza may carry other diacritical marks, such as a fatha. This

convention can be thought of as a modified version of yeh-hamza, and is represented

with the sequence <U+0640 ARABIC TATWEEL, U+0654 ARABIC HAMZA ABOVE>.

For example, in some Quranic traditions the word yasʾaluka is represented by the

sequence <yeh, fatha, seen, sukun, tatweel, hamza above, fatha, lam, damma, kaf,

fatha>.

U+06BD ARABIC LETTER NOON WITH THREE DOTS ABOVE is used for Jawi,

which is Malay written using the Arabic script. Malay users know the character as

Jawi Nya. Contrary to what is suggested by its Unicode character name, U+06BD

displays with the three dots below the letter pointing downward when it is in the

initial or medial position, making it look exactly like the initial and medial forms of

U+067E ARABIC LETTER PEH. This is done to avoid confusion with U+062B ARABIC

LETTER THEH, which appears in words of Arabic origin, and which has the same

base letter shapes in initial or medial position, but with three dots above in all posi‐

tions.

 The Kurdish language is written in several different orthographies, which

use either the Latin, Cyrillic, or Arabic scripts. When written using the Arabic script,

Kurdish uses a number of extended Arabic letters, for an alphabet known as Soraní.

Some of those extensions are shared with Persian, Urdu, or other languages: for

example, U+06C6 ARABIC LETTER OE, which represents the Kurdish vowel [o].

Soraní also makes other unusual adaptations of the Arabic script, including the use

of a digraph waw+waw to represent the long Kurdish vowel [uː]. That digraph is

represented by a sequence of two characters, <U+0648 ARABIC LETTER WAW,

U+0648 ARABIC LETTER WAW>.

Among the extended Arabic characters used exclusively for Soraní are U+0695

ARABIC LETTER REH WITH SMALL V BELOW (for the Kurdish trilled r) and U+06B5

ARABIC LETTER LAM WITH SMALL V (for the Kurdish velarized l).

The Arabic block also includes several extended Arabic characters whose origin was

to represent dialectal or other poorly attested alternative forms of the Soraní alphabet

extensions. U+0692 ARABIC LETTER REH WITH SMALL V is a dialectal variant of

U+0695 which places the small v diacritic above the letter rather than below it.

U+0694 is another variant of U+0695. U+06B6 and U+06B7 are poorly attested vari‐

ants of U+06B5, and U+06CA is a poorly attested variant of U+06C6. None of these

Quranic Texts.

9.2.6 Other Letters for Extended Arabic

Jawi.

Kurdish.

Middle East-I 474 9.2 Arabic

alternative forms is required (or desired) for a regular implementation of the Kurdish

Soraní orthography.

 In general, the distinction between a long tail and a short tail is

stylistic. However, Sindhi specifically prefers the meem to have a short tail in isolate

and final positions, as shown in Table 9-13.

X
n

X
r

X
m

X
l

Standard

Sindhi-style

The Arabic Supplement block contains additional extended Arabic letters for the

languages used in Northern and Western Africa, such as Fulfulde, Hausa, Songhoy,

and Wolof. In the second half of the 20th century, the use of the Arabic script was

actively promoted for these languages. This block also contains a number of letters

used for the Khowar, Torwali, and Burushaski languages, spoken primarily in

Pakistan. Characters used for other languages are annotated in the character names

list. Additional vowel marks used with these languages are found in the main Arabic

block.

U+076A ARABIC LETTER LAM WITH BAR is used to represent a flapped

retroflexed lateral in the Marwari language in southern Pakistan. It has also been

suggested for use in the Gawri language of northern Pakistan but it is unclear how

widely it has been adopted there. Contextual shaping for this character is similar to

that of U+0644 ARABIC LETTER LAM, including the requirement to form ligatures

with characters of Joining_Group = ALEF.

The Arabic Extended-A block contains additional Arabic letters and vowel signs for

use by a number of African languages from Chad, Senegal, Guinea, and Cameroon,

and for languages of the Philippines. It also contains extended letters, vowel signs,

and tone marks used by the Rohingya Fonna writing system for the Rohingya

language in Myanmar, as well as several additional Quranic annotation signs. Char‐

acters used for other languages are annotated in the character names list.

One Quranic annotation sign, U+08D9 ARABIC SMALL LOW NOON WITH KASRA

was given a mistaken Canonical_Combining_Class value when it was encoded in this

block, and that value cannot be changed, due to normalization stability policies.

Sindhi Meem.

Table 9-13. Glyph Variation for U+0645 Meem

9.2.7 Arabic Supplement: U+0750–U+077F

Marwari.

9.2.8 Arabic Extended-A: U+08A0–U+08FF

Middle East-I 475 9.2 Arabic

Section 5.8, “Workaround for Mistaken Canonical_Combining_Class Assignment” in

Unicode Standard Annex #53, “Unicode Arabic Mark Rendering,” provides more

details about this character and explains how the Arabic Mark Transient Reordering

Algorithm can be applied to get correct rendering behavior.

The Arabic Extended-B block comprises Quranic characters, especially those used in

Northwest Africa, and characters from other orthographies, such as Bosnian and

Pegon in Indonesia. The block also includes currency symbols and an abbreviation

mark.

The Arabic Extended-C block comprises Quranic characters and characters from

other orthographies, such as Pegon in Indonesia.

This block contains a list of Arabic presentation forms encoded as characters

primarily for compatibility reasons. These characters have a preferred representation

that makes use of a normal (noncompatibility) Arabic character, or in many cases a

sequence of Arabic characters. Presentation form is a mostly obsolete term for a

contextually shaped glyph (for a single character) or for a ligature glyph (for a

sequence of characters).

The presentation forms in this block consist of contextual (positional) variants of

Extended Arabic letters, contextual variants of Arabic letter ligatures, spacing forms

of Arabic diacritic combinations, contextual variants of certain Arabic letter/diacritic

combinations, and Arabic phrase ligatures, including honorific word ligatures. The

ligatures include a large set of presentation forms. However, the set of ligatures

appropriate for any given Arabic font will generally not match this set precisely.

Fonts will often include only a subset of these glyphs, and they may also include

glyphs outside of this set. The included glyphs are generally not accessible as charac‐

ters and are used only by rendering engines.

 The alternative, ornate forms of parentheses (U+FD3E

ORNATE LEFT PARENTHESIS and U+FD3F ORNATE RIGHT PARENTHESIS) for use

with the Arabic script are considered traditional Arabic punctuation, rather than

compatibility characters. These ornate parentheses are exceptional in rendering in

bidirectional text; for legacy reasons, they do not have the Bidi_Mirrored property.

Thus, unlike other parentheses, they do not automatically mirror when rendered in a

bidirectional context.

9.2.9 Arabic Extended-B: U+0870–U+089F

9.2.10 Arabic Extended-C: U+10EC0–U+10EFF

9.2.11 Arabic Presentation Forms-A: U+FB50–U+FDFF

Ornate Parentheses.

Middle East-I 476 9.2 Arabic

 Various patterns of single or multiple dots or other small marks are used

diacritically to extend the core Arabic set of letters to represent additional sounds in

other languages written with the Arabic script. Such dot patterns are known as ijam

or nuktas. In the Unicode Standard, extended Arabic characters with nuktas are

simply encoded as fully-formed base characters. However, there is an occasional need

in pedagogical materials about the Arabic script to exhibit the various nuktas in isola‐

tion. The range of characters U+FBB2..U+FBC1 provides a set of symbols for this

purpose. These are ordinary, spacing symbols with right-to-left directionality. They

are not combining marks, and are not intended for the construction of new Arabic

letters by use in combining character sequences. The Arabic pedagogical symbols do

not partake of any Arabic shaping behavior. Their Joining_Type is Non_Joining, so if

used in juxtaposition with an Arabic letter skeleton, they will break the cursive

connection and render after the letter, instead of above or below it.

For clarity in display, those with the names including the word “above” should have

glyphs that render high above the baseline, and those with names including “below”

should be at or below the baseline.

 The signs and symbols encoded at U+FD40..U+FD4F, U+FDCF,

and U+FDF0..U+FDFF are word ligatures sometimes treated as a unit. Most of them

are encoded for compatibility with older character sets and are rarely used, except the

following:

U+FDF2 ARABIC LIGATURE ALLAH ISOLATED FORM is a very common ligature, used

to display the name of God. When the formation of the allah ligature is desired, the

recommended way to represent the word would be <alef, lam, lam, shadda, super‐

script alef, heh> <0627, 0644, 0644, 0651, 0670, 0647>. In non-Arabic languages, other

forms of heh, such as heh goal (U+06C1), may also form the ligature. Extra care

should be taken not to form the ligature in the absence of the shadda and the super‐

script alef, as the sequences <alef, lam, lam, heh> and <alef, lam, lam, shadda, heh>

exist in Persian and other languages with different meanings or pronunciations,

where the formation of the ligature would be incorrect and inappropriate.

U+FDFA ARABIC LIGATURE SALLALLAHOU ALAYHE WASALLAM and U+FDFB

ARABIC LIGATURE JALLAJALALOUHOU are honorifics, commonly used after the

name of the prophet Muhammad or God. Other honorific ligatures include

U+FD40..U+FD4F, U+FDCF, and U+FDFD..U+FDFF. Their usage is comparable to

the honorifics found at U+0610..U+0613, except that these are spacing characters.

The same characters are sometimes used by Muslims writing in other scripts such as

Latin and Cyrillic.

U+FDFD ARABIC LIGATURE BISMILLAH AR-RAHMAN AR-RAHEEM is a special

ligated form of the basmala, a common opening phrase used by Muslims. The liga‐

ture is written in a multitude of ways. Its usage is common in writings by Muslims in

non-Arabic scripts, even more than the honorifics mentioned above. It can be

Nuktas.

Word Ligatures.

Middle East-I 477 9.2 Arabic

displayed as a unit above text in several different scripts, such as Bengali and Thaana.

Unlike the other Arabic word ligatures, this character does not have a compatibility

decomposition.

U+FDFC RIAL SIGN is a condensed version of the word rial, the Iranian currency.

The character was invented by a typewriter standardization committee in 1973 and is

encoded in the Unicode Standard as a compatibility character, as it continues to be

specified in Iranian national standards for character sets and keyboard layouts,

including ISIRI 9147:2007. Except for a short life during the typewriter era, it has not

received widespread usage outside standards, as Iranians prefer to spell out the word

as <reh, farsi yeh, alef,lam>.

This block contains additional Arabic presentation forms consisting of spacing or

tatweel forms of Arabic diacritics, contextual variants of primary Arabic letters, and

some of the obligatory LAM-ALEF ligatures. They are included here for compatibility

with preexisting standards and legacy implementations that use these forms as char‐

acters. Instead of these, letters from the Arabic block (U+0600..U+06FF) should be

used for interchange. Implementations should handle contextual glyph shaping by

rendering rules when accessing glyphs from fonts, rather than by encoding contex‐

tual shapes as characters.

 For compatibility with certain

implementations, a set of spacing forms of the Arabic diacritics is provided here. The

tatweel forms are combinations of the joining connector tatweel and a diacritic.

 This character (U+FEFF), which is not an Arabic

presentation form, is described in Section 23.8, Specials.

9.2.12 Arabic Presentation Forms-B: U+FE70–U+FEFF

Spacing and Tatweel Forms of Arabic Diacritics.

Zero Width No-Break Space.

Middle East-I 478 9.2 Arabic

 The Syriac language belongs to the Aramaic branch of the Semitic

family of languages. The earliest datable Syriac writing dates from the year 6 CE.

Syriac is the active liturgical language of many communities in the Middle East

(Syrian Orthodox, Assyrian, Maronite, Syrian Catholic, and Chaldaean) and South‐

east India (Syro-Malabar and Syro-Malankara). It is also the native language of a

considerable population in these communities.

Syriac is divided into two dialects. West Syriac is used by the Syrian Orthodox,

Maronites, and Syrian Catholics. East Syriac is used by the Assyrians (that is, Ancient

Church of the East) and Chaldaeans. The two dialects are very similar and have

almost no differences in grammar and vocabulary. They differ in pronunciation and

use different dialectal forms of the Syriac script.

 A number of modern languages and dialects

employ the Syriac script in one form or another. They include the following:

Literary Syriac. The primary usage of Syriac script.

Neo-Aramaic dialects. The Syriac script is widely used for modern Aramaic

languages, next to Hebrew, Cyrillic, and Latin. A number of Eastern Modern

Aramaic dialects known as Swadaya (also called vernacular Syriac, modern

Syriac, modern Assyrian, and so on, and spoken mostly by the Assyrians and

Chaldaeans of Iraq, Turkey, and Iran) and the Central Aramaic dialect, Turoyo

(spoken mostly by the Syrian Orthodox of the Tur Abdin region in southeast

Turkey), belong to this category of languages.

Garshuni (Arabic written in the Syriac script). It is currently used for writing

Arabic liturgical texts by Syriac-speaking Christians. Garshuni employs the

Arabic set of vowels and overstrike marks.

Christian Palestinian Aramaic (also known as Palestinian Syriac). This dialect

is no longer spoken.

Other languages. The Syriac script was used in various historical periods for

writing Armenian and some Persian dialects. Syriac speakers employed it for

writing Arabic, Ottoman Turkish, and Malayalam. Six special characters used

for Persian and Sogdian were added in Version 4.0 of the Unicode Standard.

 The Syriac script is cursive and has shaping rules that are similar to those

for Arabic. The Unicode Standard does not include any presentation form characters

for Syriac.

9.3 Syriac

9.3.1 Syriac: U+0700–U+074F

Syriac Language.

Languages Using the Syriac Script.

1.

2.

3.

4.

5.

Shaping.

Middle East-I 479 9.3 Syriac

 The Syriac script is written from right to left. Conformant implemen‐

tations of Syriac script must use the Unicode Bidirectional Algorithm (see Unicode

Standard Annex #9, “Unicode Bidirectional Algorithm”).

 Syriac texts employ several type styles. Because all type styles use

the same Syriac characters, even though their shapes vary to some extent, the

Unicode Standard encodes only a single Syriac script.

Estrangela type style. Estrangela (a word derived from Greek strongulos,

meaning “rounded”) is the oldest type style. Ancient manuscripts use this

writing style exclusively. Estrangela is used today in West and East Syriac texts

for writing headers, titles, and subtitles. It is the current standard in writing

Syriac texts in Western scholarship.

Serto or West Syriac type style. This type style is the most cursive of all Syriac

type styles. It emerged around the eighth century and is used today in West

Syriac texts, Turoyo (Central Neo-Aramaic), and Garshuni.

East Syriac type style. Its early features appear as early as the sixth century; it

developed into its own type style by the twelfth or thirteenth century. This

type style is used today for writing East Syriac texts as well as Swadaya

(Eastern Neo-Aramaic). It is also used today in West Syriac texts for headers,

titles, and subtitles alongside the Estrangela type style.

Christian Palestinian Aramaic. Manuscripts of this dialect employ a script that

is akin to Estrangela. It can be considered a subcategory of Estrangela.

The Unicode Standard provides for usage of the type styles mentioned above. It also

accommodates letters and diacritics used in Neo-Aramaic, Christian Palestinian

Aramaic, Garshuni, Persian, and Sogdian languages. Examples are supplied in the

Serto type style, except where otherwise noted.

 Character names follow the East Syriac convention for naming

the letters of the alphabet. Diacritical points use a descriptive naming—for example,

U+0743 SYRIAC TWO VERTICAL DOTS ABOVE.

U+070F SYRIAC ABBREVIATION MARK (SAM) is a zero-

width formatting code that has no effect on the shaping process of Syriac characters.

The SAM specifies the beginning point of a Syriac abbreviation, which is a line drawn

horizontally above one or more characters, at the end of a word or of a group of char‐

acters followed by a character other than a Syriac letter or diacritical mark. A Syriac

abbreviation may contain Syriac diacritics.

Ideally, the Syriac abbreviation is rendered by a line that has a dot at each end and

the center, as shown in the examples. While not preferable, it has become acceptable

for computers to render the Syriac abbreviation as a line without the dots. The line is

Directionality.

Syriac Type Styles.

1.

2.

3.

4.

Character Names.

Syriac Abbreviation Mark.

Middle East-I 480 9.3 Syriac

acceptable for the presentation of Syriac in plain text, but the presence of dots is

recommended in liturgical texts.

The Syriac abbreviation is used for letter numbers and contractions. A Syriac abbrevi‐

ation generally extends from the last tall character in the word until the end of the

word. A common exception to this rule is found with letter numbers that are

preceded by a preposition character, as seen in Figure 9-9.

A SAM is placed before the character where the abbreviation begins. The Syriac

abbreviation begins over the character following the SAM and continues until the

end of the word. Use of the SAM is demonstrated in Figure 9-10.

Note: Modern East Syriac texts employ a punctuation mark for contractions of this

sort.

 Only one ligature is included in the Syriac

block: U+071E SYRIAC LETTER YUDH HE. This combination is used as a unique char‐

acter in the same manner as an “æ” ligature. A number of combining diacritics

unique to Syriac are encoded, but combining characters from other blocks are also

used, especially from the Arabic block.

 The function of the diacritical marks varies. They

indicate vowels (as in Arabic and Hebrew), mark grammatical attributes (for

example, verb versus noun, interjection), or guide the reader in the pronunciation

and/or reading of the given text.

Figure 9-9. Syriac Abbreviation

Figure 9-10. Use of SAM

Ligatures and Combining Characters.

Diacritical Marks and Vowels.

Middle East-I 481 9.3 Syriac

“The reader of the average Syriac manuscript or book is confronted with a bewil‐

dering profusion of points. They are large, of medium size and small, arranged singly

or in twos and threes, placed above the word, below it, or upon the line.”

There are two vocalization systems. The first, attributed to Jacob of Edessa (633–708

CE), utilizes letters derived from Greek that are placed above (or below) the charac‐

ters they modify. The second is the more ancient dotted system, which employs dots

in various shapes and locations to indicate vowels. East Syriac texts exclusively

employ the dotted system, whereas West Syriac texts (especially later ones and in

modern times) employ a mixture of the two systems.

Diacritical marks are nonspacing and are normally centered above or below the char‐

acter. Exceptions to this rule follow:

U+0741 SYRIAC QUSHSHAYA and U+0742 SYRIAC RUKKAKHA are used only

with the letters beth, gamal (in its Syriac and Garshuni forms), dalath, kaph,

pe, and taw.

The qushshaya indicates that the letter is pronounced hard and unaspi‐

rated.

The rukkakha indicates that the letter is pronounced soft and aspirated.

When the rukkakha is used in conjunction with the dalath, it is printed

slightly to the right of the dalath’s dot below.

In Modern Syriac usage, when a word contains a rish and a seyame, the dot of

the rish and the seyame are replaced by a rish with two dots above it.

The feminine dot is usually placed to the left of a final taw.

 Most punctuation marks used with Syriac are found in the Latin-1 and

Arabic blocks. The other marks are encoded in this block.

 Modern Syriac employs European numerals, as does Hebrew. The ordering of

digits follows the same scheme as in Hebrew.

 The Harklean marks are used in the Harklean translation of the

New Testament. U+070B SYRIAC HARKLEAN OBELUS and U+070D SYRIAC

HARKLEAN ASTERISCUS mark the beginning of a phrase, word, or morpheme that

has a marginal note. U+070C SYRIAC HARKLEAN METOBELUS marks the end of such

sections.

 Prior to the development of pointing, early Syriac texts did not

distinguish between a dalath and a rish, which are distinguished in later periods with

a dot below the former and a dot above the latter. Unicode provides U+0716 SYRIAC

LETTER DOTLESS DALATH RISH as an ambiguous character.

1.

◦

◦

2.

3.

Punctuation.

Digits.

Harklean Marks.

Dalath and Rish.

Middle East-I 482 9.3 Syriac

 Unlike other letters, the joining mechanism of semkath varies through the

course of history from right-joining to dual-joining. It is necessary to enter a U+200C

ZERO WIDTH NON-JOINER character after the semkath to obtain the right-joining

form where required. Two common variants of this character exist: U+0723 SYRIAC

LETTER SEMKATH and U+0724 SYRIAC LETTER FINAL SEMKATH. They occur inter‐

changeably in the same document, similar to the case of Greek sigma.

 The so-called Greek vowels may be used above or below letters. As

West Syriac texts employ a mixture of the Greek and dotted systems, both versions

are accounted for here.

 Miscellaneous general diacritics are used in Syriac text.

Their usage is explained in Table 9-14.

Code
Points

Use

U+0303,
U+0330

These are used in Swadaya to indicate letters not found in Syriac.

U+0304,
U+0320

These are used for various purposes ranging from phonological to grammatical
to orthographic markers.

U+0307,
U+0323,
U+1DF8,
U+1DFA

These points are used for various purposes—grammatical, phonological, and
otherwise. They differ typographically and semantically from the qushshaya,
rukkakha points, and the dotted vowel points. If the point appears above or
below a single letter, U+0307 or U+0323 should be used. In contrast, if the
point appears between two letters (above or below), U+1DF8 or U+1DFA
should be used following the first letter in the encoded character sequence.

U+0308
This is the plural marker. It is also used in Garshuni for the Arabic teh
marbuta.

U+030A,
U+0325

These are two other forms for the indication of qushshaya and rukkakha. They
are used interchangeably with U+0741 SYRIAC QUSHSHAYA and U+0742
SYRIAC RUKKAKHA, especially in West Syriac grammar books.

U+0324
This diacritical mark is found in ancient manuscripts. It has a grammatical and
phonological function.

U+032D This is one of the digit markers.

U+032E
This is a mark used in late and modern East Syriac texts as well as in Swadaya
to indicate a fricative pe.

 Syriac makes use of several characters from

the Arabic block, including U+0640 ARABIC TATWEEL. Modern texts use U+060C

ARABIC COMMA, U+061B ARABIC SEMICOLON, and U+061F ARABIC QUESTION

MARK. The shadda (U+0651) is also used in the core part of literary Syriac on top of a

waw in the word “O”. Arabic harakat are used in Garshuni to indicate the corre‐

sponding Arabic vowels and diacritics.

Semkath.

Vowel Marks.

Miscellaneous Diacritics.

Table 9-14. Miscellaneous Syriac Diacritic Use

Use of Characters of the Arabic Block.

Middle East-I 483 9.3 Syriac

 Rendering requirements for Syriac are similar

to those for Arabic. The remainder of this section specifies a minimum set of rules

that provides legible Syriac joining and ligature substitution behavior.

 Each Syriac letter must be depicted by one of a number of possible

contextual glyph forms. The appropriate form is determined on the basis of the

cursive joining behavior of that character as it interacts with the cursive joining

behavior of adjacent characters. The basic joining types are identical to those speci‐

fied for the Arabic script, and are specified in the file ArabicShaping.txt in the

Unicode Character Database. However, there are additional contextual rules which

govern the shaping of U+0710 SYRIAC LETTER ALAPH in final position. The addi‐

tional glyph types associated with final alaph are listed in Table 9-15.

Glyph Type Description

A
fj Final joining (alaph only)

A
fn Final non-joining except following dalath and rish (alaph only)

A
fx Final non-joining following dalath and rish (alaph only)

In the following rules, alaph refers to U+0710 SYRIAC LETTER ALAPH, which has

Joining_Group = Alaph.

These rules are intended to augment joining rules for Syriac which would otherwise

parallel the joining rules specified for Arabic in Section 9.2, Arabic. Characters with

Joining_Type = Transparent are skipped over when applying the Syriac rules for

shaping of alaph. In other words, the Syriac parallel for Arabic joining rule R1 would

take precedence over the alaph joining rules.

9.3.2 Syriac Shaping

Minimum Rendering Requirements.

Joining Types.

Table 9-15. Syriac Final Alaph Glyph Types

An alaph that has a left-joining character to its right and a non-joining

character (or end of text) to its left will take the form of A
fj

.

S1

An alaph that has a non-left-joining character to its right, except for a

character with Joining_Group = Dalath_Rish, and a non-joining char‐

acter (or end of text) to its left will take the form of A
fn

.

S2

Middle East-I 484 9.3 Syriac

The example in rule S3 is shown in the East Syriac font style.

U+0868 SYRIAC LETTER MALAYALAM LLA normally connects to

the right, but because it joins on both sides in some manuscripts, it is designated

dual-joining. To represent right-joining lla, the ZWNJ should be employed to make

sure it does not connect to the left-side letter.

 Syriac characters can be subdivided into shaping

groups, based on the behavior of their letter skeletons when shaped in context. The

Unicode character property that specifies these groups is called Joining_Group, and

is specified in ArabicShaping.txt in the Unicode Character Database. It is described

in the subsection on character joining groups in Section 9.2, Arabic.

Table 9-16 exemplifies dual-joining Syriac characters and illustrates the forms taken

by the letter skeletons in context. This table and the subsequent table use the Serto

(West Syriac) font style, whereas the Unicode code charts are in the Estrangela font

style.

Joining Group X
n

X
r

X
m

X
l Notes

BETH Includes PERSIAN BHETH

GAMAL Includes GAMAL GARSHUNI and PERSIAN GHAMAL

HETH

TETH Includes TETH GARSHUNI

YUDH

KAPH

KHAPH Sogdian

LAMADH

MIM

NUN

SEMKATH

FINAL_SEMKATH

E

PE

REVERSED_PE

An alaph that has a character with Joining_Group = Dalath_Rish to its

right and a non-joining character (or end of text) to its left will take the

form of A
fx

.

S3

Malayalam LLA.

Syriac Character Joining Groups.

Table 9-16. Dual-Joining Syriac Characters

Middle East-I 485 9.3 Syriac

FE Sogdian

QAPH

SHIN

MALAYALAM_NGA

Suriyani Malayalam

MALAYALAM_NYA

MALAYALAM_TTA

MALAYALAM_NNA

MALAYALAM_NNNA

MALAYALAM_LLA

The skeleton patterns shown in Table 9-16 include six of the Garshuni characters

encoded in the Syriac Supplement block (U+0860, U+0862..U+0865, U+0868) that

are also dual-joining, and have their own joining group values. U+0868 SYRIAC

LETTER MALAYALAM LLA, in particular, normally connects only to the right, but

occasionally occurs connected on both sides. That letter is given the dual-joining

property value. For instances when a right-joining lla occurs in a manuscript, it may

be represented with the sequence <0868, ZWNJ>.

Table 9-17 exemplifies right-joining Syriac characters, illustrating the forms they take

in context. Right-joining characters have only two distinct forms, for isolated and

final contexts, respectively.

Joining Group X
n

X
r Notes

DALATH_RISH Includes RISH, DOTLESS DALATH RISH, and PERSIAN DHALATH

HE

SYRIAC_WAW

ZAIN

ZHAIN Sogdian

YUDH_HE

SADHE

TAW

MALAYALAM_RA

Suriyani MalayalamMALAYALAM_LLLA

MALAYALAM_SSA

Table 9-17 includes three of the Garshuni characters encoded in the Syriac Supple‐

ment block (U+0867, U+0869, U+086A) that are also right-joining, and have their

own joining group values. The two other characters encoded in that block, U+0861

SYRIAC LETTER MALAYALAM JA and U+0866 SYRIAC LETTER MALAYALAM BHA, not

shown in the tables above, do not connect either to the right or the left.

Table 9-17. Right-Joining Syriac Characters

Middle East-I 486 9.3 Syriac

U+0710 SYRIAC LETTER ALAPH has the Joining_Group = Alaph and is a right-joining

character. However, as specified above in rules S1, S2, and S3, its glyph is subject to

additional contextual shaping. Table 9-18 illustrates all of the glyph forms for alaph in

each of the three major Syriac type styles.

Type Style X
n

X
r

A
fj

A
fn

A
fx

Estrangela

Serto (West Syriac)

East Syriac

 As in other scripts, ligatures in Syriac vary depending on the font

style. Table 9-19 identifies the principal valid ligatures for each font style. In some

cases, the ligatures are obligatory; those cases are highlighted in bold italic in the

table.

Characters Estrangela Serto (West Syriac) East Syriac Sources

ALAPH LAMADH N/A Dual-joining N/A Beth Gazo

GAMAL LAMADH N/A Dual-joining N/A Armalah

GAMAL E N/A Dual-joining N/A Armalah

HE YUDH N/A N/A Right-joining Qdom

YUDH TAW N/A Right-joining N/A Armalah

KAPH LAMADH N/A Dual-joining N/A Shhimo

KAPH TAW N/A Right-joining N/A Armalah

LAMADH SPACE ALAPH N/A Right-joining N/A Nomocanon

LAMADH ALAPH Right-joining Right-joining Right-joining BFBS

LAMADH LAMADH N/A Dual-joining N/A Shhimo

NUN ALAPH N/A Right-joining N/A Shhimo

SEMAKATH TETH N/A Dual-joining N/A Qurobo

SADHE NUN Right-joining Right-joining Right-joining Mushhotho

RISH SEYAME Right-joining Right-joining Right-joining BFBS

TAW ALAPH Right-joining N/A Right-joining Qdom

TAW YUDH N/A N/A Right-joining

The Syriac Supplement block contains characters used to write a dialect of Malay‐

alam called Suriyani Malayalam, which is also known as Garshuni (Karshoni) or

Syriac Malayalam.

Table 9-18. Syriac Alaph Glyph Forms

Ligature Classes.

Table 9-19. Syriac Ligatures

9.3.3 Syriac Supplement: U+0860–U+086F

Middle East-I 487 9.3 Syriac

The Samaritan script is used today by small Samaritan communities in Israel and the

Palestinian Territories to write the Samaritan Hebrew and Samaritan Aramaic

languages, primarily for religious purposes. The Samaritan religion is related to an

early form of Judaism, but the Samaritans did not leave Palestine during the Babylo‐

nian exile, so the script evolved from the linear Old Hebrew script, most likely

directly descended from Phoenician (see Section 10.3, Phoenician). In contrast, the

more recent square Hebrew script associated with Judaism derives from the Imperial

Aramaic script (see Section 10.4, Imperial Aramaic) used widely in the region during

and after the Babylonian exile, and thus well-known to educated Hebrew speakers of

that time.

Like the Phoenician and Hebrew scripts, Samaritan has 22 consonant letters. The

consonant letters do not form ligatures, nor do they have explicit final forms as some

Hebrew consonants do.

 The Samaritan script is written from right to left. Conformant imple‐

mentations of Samaritan script must use the Unicode Bidirectional Algorithm. For

more information, see Unicode Standard Annex #9, “Unicode Bidirectional Algo‐

rithm.”

 Vowel signs are optional in Samaritan, just as points are optional in

Hebrew. Combining marks are used for vowels that follow a consonant, and are

rendered above and to the left of the base consonant. With the exception of o and

short a, vowels may have up to three lengths (normal, long, and overlong), which are

distinguished by the size of the corresponding vowel sign. Sukun is centered above

the corresponding base consonant and indicates that no vowel follows the consonant.

Two vowels, i and short a, may occur in a word-initial position preceding any conso‐

nant. In this case, the separate spacing versions U+0828 SAMARITAN MODIFIER

LETTER I and U+0824 SAMARITAN MODIFIER LETTER SHORT A should be used

instead of the normal combining marks.

When U+0824 SAMARITAN MODIFIER LETTER SHORT A follows a letter used numeri‐

cally, it indicates thousands, similar to the use of U+05F3 HEBREW PUNCTUATION

GERESH for the same purpose in Hebrew.

 The two marks, U+0816 SAMARITAN MARK IN and U+0817

SAMARITAN MARK IN-ALAF, are used to indicate a pharyngeal voiced fricative /ʕ/.

These occur immediately following their base consonant and preceding any vowel

signs, and are rendered above and to the right of the base consonant.

9.4 Samaritan

9.4.1 Samaritan: U+0800–U+083F

Directionality.

Vowel Signs.

Consonant Modifiers.

Middle East-I 488 9.4 Samaritan

U+0818 SAMARITAN MARK OCCLUSION “strengthens” the consonant, for example

changing /w/ to /b/. U+0819 SAMARITAN MARK DAGESH indicates consonant gemi‐

nation. The occlusion and dagesh marks may both be applied to the same consonant,

in which case the occlusion mark should precede the dagesh in logical order, and the

dagesh is rendered above the occlusion mark. The occlusion mark is also used to

designate personal names to distinguish them from homographs.

Epenthetic yut represents a kind of glide-vowel which interacts with another vowel. It

was originally used only with the consonants alaf, iy, it, and in, in combination with

a vowel sign. The combining U+081B SAMARITAN MARK EPENTHETIC YUT should be

used for this purpose. When epenthetic yut is not fixed to one of the four consonants

listed above, a new behavior evolved in which the mark for the epenthetic yut behaves

as a spacing character, capable of bearing its own diacritical mark. U+081A SAMAR‐

ITAN MODIFIER LETTER EPENTHETIC YUT should be used instead to represent the

epenthetic yut in this context.

 Samaritan uses a large number of punctuation characters. U+0830

SAMARITAN PUNCTUATION NEQUDAA and U+0831 SAMARITAN PUNCTUATION

AFSAAQ (“interruption”) are similar to the Hebrew sof pasuq and were originally

used to separate sentences, and later to mark lesser breaks within a sentence. They

have also been described respectively as “semicolon” and “pause.” Samaritan also

uses a smaller dot as a word separator, which can be represented by U+2E31 WORD

SEPARATOR MIDDLE DOT. U+083D SAMARITAN PUNCTUATION SOF MASHFAAT is

equivalent to the full stop. U+0832 SAMARITAN PUNCTUATION ANGED (“restraint”)

indicates a break somewhat less strong than an afsaaq. U+083E SAMARITAN PUNC‐

TUATION ANNAAU (“rest”) is stronger than the afsaaq and indicates that a longer

time has passed between actions narrated in the sentences it separates.

U+0839 SAMARITAN PUNCTUATION QITSA is similar to the annaau but is used more

frequently. The qitsa marks the end of a section, and may be followed by a blank line

to further make the point. It has many glyph variants. One important variant,

U+0837 SAMARITAN PUNCTUATION MELODIC QITSA, differs significantly from any of

the others, and indicates the end of a sentence “which one should read melodically.”

Many of the punctuation characters are used in combination with each other, for

example: afsaaq + nequdaa or nequdaa + afsaaq, qitsa + nequdaa, and so on.

U+0836 SAMARITAN ABBREVIATION MARK follows an abbreviation. U+082D

SAMARITAN MARK NEQUDAA is an editorial mark which indicates that there is a

variant reading of the word.

Other Samaritan punctuation characters mark some prosodic or performative

attributes of the text preceding them, as summarized in Table 9-20.

Punctuation.

Middle East-I 489 9.4 Samaritan

Code Point Name Description

0833 bau request, prayer, humble petition

0834 atmaau expression of surprise

0835 shiyyaalaa question

0838 ziqaa shout, cry

083A zaef outburst indicating vehemence or anger

083B turu didactic expression, a “teaching”

083C arkaanu expression of submissiveness

Table 9-20. Samaritan Performative Punctuation Marks

Middle East-I 490 9.4 Samaritan

The origins of the Mandaic script are unclear, but it is thought to have evolved

between the second and seventh century CE from a cursivized form of the Aramaic

script (as did the Syriac script) or from the Parthian chancery script. It was developed

by adherents of the Mandaean gnostic religion of southern Mesopotamia to write the

dialect of Eastern Aramaic they used for liturgical purposes, which is referred to as

Classical Mandaic.

The religion has survived into modern times, with more than 50,000 Mandaeans in

several communities worldwide (most having left what is now Iraq). In addition to

the Classical Mandaic still used within some of these communities, a variety known

as Neo-Mandaic or Modern Mandaic has developed and is spoken by a small number

of people. Mandaeans consider their script sacred, with each letter having specific

mystic properties, and the script has changed very little over time.

 The character U+0847 MANDAIC LETTER IT is a pharyngeal, pronounced

[hu]. It can appear at the end of personal names or at the end of words to indicate the

third person singular suffix.

 Mandaic is unusual among Semitic scripts in being a true alphabet; the

letters halqa, ushenna, aksa, and in are used to write both long and short forms of

vowels, instead of functioning as consonants also used to write long vowels (matres

lectionis), in the manner characteristic of other Semitic scripts. This is possible

because some consonant sounds represented by the corresponding letters in other

Semitic scripts are not used in the Mandaic language.

The character U+0856 MANDAIC LETTER DUSHENNA, also called adu, has a

morphemic function. It is used to write the relative pronoun and the genitive expo‐

nent di. Dushenna is a digraph derived from an old ligature for ad + aksa. It is thus

an addition to the usual Semitic set of 22 characters. The Mandaic alphabet is tradi‐

tionally represented as the 23 letters halqa through dushenna, with halqa appended

again at the end to form a symbolically-important cycle of 24 letters.

Two additional Mandaic characters are encoded in the Unicode Standard: U+0858

MANDAIC LETTER AIN is a borrowing from U+0639 ARABIC LETTER AIN. The second

additional character, U+0857 MANDAIC LETTER KAD, is a digraph used to write the

word kd, which means “when, as, like”. There are two ways to represent kad in

Mandaic: U+0857 MANDAIC LETTER KAD or the sequence <U+084A MANDAIC

LETTER AK, U+0856 MANDAIC LETTER DUSHENNA>.

9.5 Mandaic

9.5.1 Mandaic: U+0840–U+085F

Letter It.

Structure.

Middle East-I 491 9.5 Mandaic

The Joining_Type values for U+0856 MANDAIC LETTER DUSHENNA, U+0857

MANDAIC LETTER KAD, and U+0858 MANDAIC LETTER AIN were changed in

Unicode Version 13.0 from Non_Joining to Right_Joining. See Table 9-22. In cases

where the isolated form of dushenna, ain, or kad following a right join-causing char‐

acter is desired, a U+200C ZERO WIDTH NON-JOINER should be employed to prevent

joining with the previous character. (See Table 9-4 for the definition of a right join-

causing character.)

Three diacritical marks are used in teaching materials to differentiate vowel quality;

they may be omitted from ordinary text. U+0859 MANDAIC AFFRICATION MARK is

used to extend the character set for foreign sounds (whether affrication, lenition, or

another sound). U+085A MANDAIC VOCALIZATION MARK is used to distinguish

vowel quality of halqa, ushenna, and aksa. U+085B MANDAIC GEMINATION MARK is

used to indicate what native writers call a “hard” pronunciation.

 Sentence punctuation is used sparsely. A single script-specific punctu‐

ation mark is encoded: U+085E MANDAIC PUNCTUATION. It is used to start and end

text sections, and is also used in colophons—the historical lay text added to the reli‐

gious text—where it is typically displayed in a smaller size.

 The Mandaic script is written from right to left. Conformant imple‐

mentations of Mandaic script must use the Unicode Bidirectional Algorithm (see

Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”).

 Mandaic has fully-developed joining behavior, with

forms as shown in Table 9-21 and Table 9-22. In these tables, X
n

, X
r
, X

m
, and X

l
 desig‐

nate the nominal, right-joining, dual-joining (medial), and left-joining forms respec‐

tively, just as in Table 9-6, Table 9-7, and Table 9-8.

Character X
n

X
r

X
m

X
l

AB

AG

AD

AH

USHENNA

ATT

AK

AL

AM

AN

AS

Punctuation.

Directionality.

Shaping and Layout Behavior.

Table 9-21. Dual-Joining Mandaic Characters

Middle East-I 492 9.5 Mandaic

IN

AP

ASZ

AQ

AR

AT

Character X
n

X
r

HALQA

AZ

IT

AKSA

ASH

DUSHENNA

KAD

AIN

 Spaces provide the primary line break opportunity. When text is fully

justified, words may be stretched as in Arabic. U+0640 ARABIC TATWEEL may be

inserted for this purpose.

Table 9-22. Right-Joining Mandaic Characters

Line Breaking.

Middle East-I 493 9.5 Mandaic

The Yezidi script was used to write two religious texts, Masḥafā Reš and Ketēbā Jelwa,

which may date to the 12th or 13th centuries. The history of the script between the

creation of these texts and the current period is unclear; however, the Spiritual

Council of Yezidis in Georgia decided to revive the script in 2013. As part of the revi‐

talization, two specialists modified the script to represent the Yezidi language (called

Êzdîkî in the vernacular), which is also referred to as the Kurmanji language. This

language can also be written in the Latin, Cyrillic, and Arabic scripts. Today, clergy in

the Yezidi temple in Tbilisi use the Yezidi script to write prayers, sacred books, and in

other contexts.

 Yezidi is an alphabet, written right to left. Ligatures occur in the historical

texts, but not in the modern version of the script.

 A set of ten letters have been added to the repertoire to represent the modern

Kurmanji language. Two historic letters with diacritics are separately encoded as

atomic characters: U+10EB0 YEZIDI LETTER LAM WITH DOT ABOVE and U+10EB1

YEZIDI LETTER YOT WITH CIRCUMFLEX ABOVE. The letters with diacritic marks have

distinct pronunciation: YEZIDI LETTER LAM WITH DOT ABOVE is pronounced [ɫ],

instead of [l], and YEZIDI LETTER YOT WITH CIRCUMFLEX ABOVE is pronounced [e],

instead of [j].

Long u is indicated by a ligature of <U+10EA3 YEZIDI LETTER UM, U+10EA3 YEZIDI

LETTER UM>. This sequence of two um characters may appear kerned or unkerned,

without difference in meaning.

 Two combining diacritics, U+10EAB YEZIDI COMBINING HAMZA MARK

and U+10EAC YEZIDI COMBINING MADDA MARK, appear in words of Arabic origin.

Additional diacritics appear in the Masḥafā Reš, but the meaning of the marks is

unclear, so they are not currently encoded.

U+10EAD YEZIDI HYPHENATION MARK may appear above the last

letter in a line to indicate a word break. In historic texts, the hyphenation mark may

appear at the beginning of a line or above the last letter in a line. Occasionally, the

mark can be used to denote long phonemes within a word, but this usage does not

apply to modern texts.

Yezidi also uses U+060C ARABIC COMMA, U+061B ARABIC SEMICOLON, and

U+061F ARABIC QUESTION MARK, in addition to U+002E FULL STOP and U+003A

COLON.

9.6 Yezidi

9.6.1 Yezidi: U+10E80–U+10EBF

Structure.

Letters.

Diacritics.

Punctuation.

Middle East-I 494 9.6 Yezidi

 Older texts employ Arabic-Indic numbers (U+0660..U+0669), but

Western digits are preferred in modern usage.

Numbers.

Middle East-I 495 9.6 Yezidi

Chapter 10

Middle East-II
Ancient Scripts

This chapter covers a number of ancient scripts of the Middle East. All of these

scripts were written right to left.

Old North Arabian and Old South Arabian are two branches of the South Semitic

script family used in and around Arabia from about the tenth century BCE to the

sixth century CE. The Old South Arabian script was used around the southwestern

part of the Arabian peninsula for 1,200 years beginning around the 8th century BCE.

Carried westward, it was adapted for writing the Ge’ez language, and evolved into the

root of the modern Ethiopic script.

The Phoenician alphabet was used in various forms around the Mediterranean. It is

ancestral to Latin, Greek, Hebrew, and many other scripts—both modern and histor‐

ical.

The Imperial Aramaic script evolved from Phoenician and was the source of many

other scripts, such as the square Hebrew and the Arabic script. Imperial Aramaic was

used to write the Aramaic language beginning in the eighth century BCE, and was the

principal administrative language of the Assyrian empire and then the official

language of the Achaemenid Persian empire. Inscriptional Parthian, Inscriptional

Pahlavi, and Avestan are also derived from Imperial Aramaic, and were used to write

various Middle Persian languages.

Psalter Pahlavi is a cursive alphabetic script used to write the Middle Persian

language during the 6th or 7th century CE. It is a historically conservative variety of

Pahlavi used by Christians in the Neo-Persian empire.

The Chorasmian script was used between the 2nd century and 8th to 9th centuries CE

primarily to write the Chorasmian language, an Eastern Iranian language. The script

was derived from Imperial Aramaic and is related to Parthian, Inscriptional Pahlavi,

Psalter Pahlavi, Book Pahlavi, and Old Sogdian.

The Manichaean script is a cursive alphabetic script related to Syriac, as well as

Palmyrene Aramaic. The script was used by those practicing the Manichaean reli‐

gion, which was founded during the third century CE in Babylonia, and spread

widely over the next four centuries before later vanishing.

496

The Elymaic script was used to write Achaemenid Aramaic in the state of Elymais,

which flourished from the second century BCE to the early third century CE and was

located in the southwestern portion of modern-day Iran. Elymaic derives from the

Aramaic script and is closely related to Parthian and Mandaic.

The Nabataean script developed from the Aramaic script and was used to write the

language of the Nabataean kingdom. The script was in wide use from the second

century BCE to the fourth century CE. It is generally considered the precursor of the

Arabic script.

The Palmyrene script was derived from the customary forms of Aramaic developed

during the Achaemenid empire. The script was used for writing the Palmyrene

dialect of West Aramaic, and is known from inscriptions and documents found

mainly in the city of Palmyra and other cities in the region of Syria, dating from 44

BCE to about 280 CE.

The Hatran script belongs to the North Mesopotamian branch of the Aramaic scripts,

and was used for writing a dialect of the Aramaic language. The script is known from

inscriptions discovered in the ancient city of Hatra, in present-day Iraq, dating from

98–97 BCE until circa 241 CE.

Middle East-II 497

Old North Arabian, or Ancient North Arabian, refers to a group of scripts used in the

western two-thirds of Arabia and the Levant, from Syria to the borders of Yemen. Old

North Arabian is a member of the South Semitic script family, which was used exclu‐

sively in Arabia and environs, and is a relative of the Old South Arabian script. The

earliest datable Old North Arabian texts are from the mid-sixth century BCE. The

script is thought to have fallen out of use after the fourth century CE. The encoding of

Old North Arabian is based on the Dadanitic form, which is attested in many formal

inscriptions on stelae and rock-faces, and hundreds of graffiti used in the oasis of

Dadan (Dedān, modern al-‘Ulā) in northwest Saudi Arabia.

Other forms of the Old North Arabian script, such as Minaic, Safaitic, Hismaic,

Taymanitic and Thamudic B, have many variant forms of the letters. Dialect-specific

fonts can be used to render these variant forms.

 Old North Arabian is an alphabetic script consisting only of consonants;

vowels are not indicated in the script, though some Dadanitic texts do make limited

use of consonant letters to write long vowels (matres lectionis). The script has been

encoded with right-to-left directionality, which is typical for Dadanitic. Glyphs may

be mirrored in lines when they have left-to-right directionality.

 Traditional sorting orders are poorly attested. Modern scholars special‐

izing in Old North Arabian prefer the South Semitic alphabetical order shown in the

code charts.

 Three numbers are attested in Old North Arabian: one, ten, and twenty.

The numbers have right-to-left directionality.

 A vertical word separator is usually used between words in Dadanitic,

but this is not widely used in the other Old North Arabian alphabets. U+10A9D OLD

NORTH ARABIAN NUMBER ONE is used to represent both this punctuation and the

digit one.

10.1 Old North Arabian

10.1.1 Old North Arabian: U+10A80–U+10A9F

Structure.

Ordering.

Numbers.

Punctuation.

Middle East-II 498 10.1 Old North Arabian

The Old South Arabian script was used on the Arabian peninsula (especially in what

is now Yemen) from the 8th century BCE to the 6th century CE, after which it was

supplanted by the Arabic script. It is a consonant-only script of 29 letters, and was

used to write the southwest Semitic languages of various cultures: Minean, Sabaean,

Qatabanian, Hadramite, and Himyaritic. Old South Arabian is thus known by several

other names including Mino-Sabaean, Sabaean and Sabaic. It is attested primarily in

an angular form (“Musnad”) in monumental inscriptions on stone, ceramic material,

and metallic surfaces; however, since the mid 1970s examples of a more cursive form

(“Zabur”) have been found on softer materials, such as wood and leather.

Around the end of the first millennium BCE, the westward migration of the Sabaean

people into the Horn of Africa introduced the South Arabic script into the region,

where it was adapted for writing the Ge’ez language. By the 4th century CE the script

for Ge’ez had begun to change, and eventually evolved into a left-to-right syllabary

with full vowel representation, the root of the modern Ethiopic script (see

Section 19.1, Ethiopic).

 The Old South Arabian script is typically written from right to left.

Conformant implementations of Old South Arabian script must use the Unicode

Bidirectional Algorithm (see Unicode Standard Annex #9, “Unicode Bidirectional

Algorithm”). However, some older examples of the script are written in boustro‐

phedon style, with glyphs mirrored in lines with left-to-right directionality.

 The character repertoire of Old South Arabian corresponds to the reper‐

toire of Classical Arabic, plus an additional letter presumed analogous to the letter

samekh in West Semitic alphabets. This results in four letters for different kinds of

“s’”sounds. While there is no general system for representing vowels, the letters

U+10A65 OLD SOUTH ARABIAN LETTER WAW and U+10A7A OLD SOUTH ARABIAN

LETTER YODH can also be used to represent the long vowels u and i. There is no

evidence of any kind of diacritical marks; geminate consonants are indicated simply

by writing the corresponding letter twice, for example.

 Letters are written separately, there are no connected forms. Words

are not separated with space; word boundaries are instead marked with a vertical bar.

The vertical bar is indistinguishable from U+10A7D “ ” OLD SOUTH ARABIAN

NUMBER ONE—only one character is encoded to serve both functions. Words are

broken arbitrarily at line boundaries in attested materials.

 Several letters are sometimes combined into a single group, in which

the glyphs for the constituent characters are overlaid and sometimes rotated to create

10.2 Old South Arabian

10.2.1 Old South Arabian: U+10A60–U+10A7F

Directionality.

Structure.

Segmentation.

Monograms.

Middle East-II 499 10.2 Old South Arabian

what appears to be a single unit. These combined units are traditionally called mono‐

grams by scholars of this script.

 Numeric quantities are differentiated from surrounding text by writing

U+10A7F OLD SOUTH ARABIAN NUMERIC INDICATOR before and after the number.

Six characters have numeric values as shown in Table 10-1—four of these are letters

that double as numeric values, and two are characters not used as letters.

Code Point Glyph Numeric function Other function

10A7F numeric separator

10A7D 1 word separator

10A6D 5 kheth

10A72 10 ayn

10A7E 50

10A63 100 mem

10A71 1000 alef

Numbers are built up through juxtaposition of these characters in a manner similar

to that of Roman numerals, as shown in Table 10-2. When 10, 50, or 100 occur

preceding 1000 they serve to indicate multiples of 1000. The example numbers shown

in Table 10-2 are rendered in a right-to-left direction in the last column.

Value Schematic Character Sequence Display

1 1 10A7D

2 1 + 1 10A7D 10A7D

3 1 + 1 + 1 10A7D 10A7D 10A7D

5 5 10A6D

7 5 + 1 + 1 10A6D 10A7D 10A7D

16 10 + 5 + 1 10A72 10A6D 10A7D

1000 1000 10A71

3000 1000 + 1000 + 1000 10A71 10A71 10A71

10000 10 × 1000 10A72 10A71

11000 10 × 1000 + 1000 10A72 10A71 10A71

30000 (10 + 10 + 10) × 1000 10A72 10A72 10A72 10A71

30001 (10 + 10 + 10) × 1000 + 1 10A72 10A72 10A72 10A71 10A7D

 Character names are based on those of corresponding letters in

northwest Semitic.

Numbers.

Table 10-1. Old South Arabian Numeric Characters

Table 10-2. Number Formation in Old South Arabian

Character Names.

Middle East-II 500 10.2 Old South Arabian

The Phoenician alphabet and its successors were widely used over a broad area

surrounding the Mediterranean Sea. Phoenician evolved over the period from about

the twelfth century BCE until the second century BCE, with the last neo-Punic

inscriptions dating from about the third century CE. Phoenician came into its own

from the ninth century BCE. An older form of the Phoenician alphabet is a fore‐

runner of the Greek, Old Italic (Etruscan), Latin, Hebrew, Arabic, and Syriac scripts

among others, many of which are still in modern use. It has also been suggested that

Phoenician is the ultimate source of Kharoshthi and of the Indic scripts descending

from Brahmi.

Phoenician is an historic script, and as for many other historic scripts, which often

saw continuous change in use over periods of hundreds or thousands of years, its

delineation as a script is somewhat problematic. This issue is particularly acute for

historic Semitic scripts, which share basically identical repertoires of letters, which

are historically related to each other, and which were used to write closely related

Semitic languages.

In the Unicode Standard, the Phoenician script is intended for the representation of

text in Paleo-Hebrew, Archaic Phoenician, Phoenician, Early Aramaic, Late Phoeni‐

cian cursive, Phoenician papyri, Siloam Hebrew, Hebrew seals, Ammonite, Moabite,

and Punic. The line from Phoenician to Punic is taken to constitute a single contin‐

uous branch of script evolution, distinct from that of other related but separately

encoded Semitic scripts.

The earliest Hebrew language texts were written in the Paleo-Hebrew alphabet, one

of the forms of writing considered to be encompassed within the Phoenician script as

encoded in the Unicode Standard. The Samaritans who did not go into exile

continued to use Paleo-Hebrew forms, eventually developing them into the distinct

Samaritan script. (See Section 9.4, Samaritan.) The Jews in exile gave up the Paleo-

Hebrew alphabet and instead adopted Imperial Aramaic writing, which was a

descendant of the Early Aramaic form of the Phoenician script. (See Section 10.4,

Imperial Aramaic.) Later, they transformed Imperial Aramaic into the “Jewish

Aramaic” script now called (Square) Hebrew, separately encoded in the Hebrew

block in the Unicode Standard. (See Section 9.1, Hebrew.)

Some scholars conceive of the language written in the Paleo-Hebrew form of the

Phoenician script as being quintessentially Hebrew and consistently transliterate it

into Square Hebrew. In such contexts, Paleo-Hebrew texts are often considered to

simply be Hebrew, and because the relationship between the Paleo-Hebrew letters

and Square Hebrew letters is one-to-one and quite regular, the transliteration is

10.3 Phoenician

10.3.1 Phoenician: U+10900–U+1091F

Middle East-II 501 10.3 Phoenician

conceived of as simply a font change. Other scholars of Phoenician transliterate texts

into Latin. The encoding of the Phoenician script in the Unicode Standard does not

invalidate such scholarly practice; it is simply intended to make it possible to repre‐

sent Phoenician, Punic, and similar textual materials directly in the historic script,

rather than as specialized font displays of transliterations in modern Square Hebrew.

 Phoenician is written horizontally from right to left. The characters

of the Phoenician script are all given strong right-to-left directionality.

 Inscriptions and other texts in the various forms of the Phoenician

script generally have no space between words. Dots are sometimes found between

words in later exemplars—for example, in Moabite inscriptions—and U+1091F

PHOENICIAN WORD SEPARATOR should be used to represent this punctuation. The

appearance for this word separator is somewhat variable; in some instances it may

appear as a short vertical bar, instead of a rounded dot.

 The letters for Phoenician proper and especially for Punic have

very exaggerated descenders. These descenders help distinguish the main line of

Phoenician script evolution toward Punic, as contrasted with the Hebrew forms,

where the descenders instead grew shorter over time.

 Phoenician numerals are built up from six elements used in combination.

These include elements for one, two, and three, and then separate elements for ten,

twenty, and one hundred. Numerals are constructed essentially as tallies, by repeti‐

tion of the various elements. The numbers for two and three are graphically

composed of multiples of the tally mark for one, but because in practice the values

for two or three are clumped together in display as entities separate from one another

they are encoded as individual characters. This same structure for numerals can be

seen in some other historic scripts ultimately descendant from Phoenician, such as

Imperial Aramaic and Inscriptional Parthian.

Like the letters, Phoenician numbers are written from right to left: means 143

(100 + 20 + 20 + 3). This practice differs from modern Semitic scripts like Hebrew

and Arabic, which use decimal numbers written from left to right.

 The names used for the characters here are those reconstructed

by Theodor Nöldeke in 1904, as given in Powell (1996).

Directionality.

Punctuation.

Stylistic Variation.

Numerals.

Character Names.

Middle East-II 502 10.3 Phoenician

The Aramaic language and script are descended from the Phoenician language and

script. Aramaic developed as a distinct script by the middle of the eighth century BCE

and soon became politically important, because Aramaic became first the principal

administrative language of the Assyrian empire, and then the official language of the

Achaemenid Persian empire beginning in 549 BCE. The Imperial Aramaic script was

the source of many other scripts, including the square Hebrew script, the Arabic

script, and scripts used for Middle Persian languages, including Inscriptional

Parthian, Inscriptional Pahlavi, and Avestan.

Imperial Aramaic is an alphabetic script of 22 consonant letters but no vowel marks.

It is written either in scriptio continua or with spaces between words.

 The Imperial Aramaic script is written from right to left. Conformant

implementations of the script must use the Unicode Bidirectional Algorithm. For

more information, see Unicode Standard Annex #9, “Unicode Bidirectional Algo‐

rithm”.

U+10857 IMPERIAL ARAMAIC SECTION SIGN is thought to be used to

mark topic divisions in text.

 Imperial Aramaic has its own script-specific numeric characters with

right-to-left directionality. Numbers are built up using sequences of characters for 1,

2, 3, 10, 20, 100, 1000, and 10000 as shown in Table 10-3. The example numbers

shown in the last column are rendered in a right-to-left direction.

Value Schematic Character Sequence Display

1 1 10858

2 2 10859

3 3 1085A

4 3 + 1 1085A 10858

5 3 + 2 1085A 10859

9 3 + 3 + 3 1085A 1085A 1085A

10 10 1085B

11 10 + 1 1085B 10858

12 10 + 2 1085B 10859

20 20 1085C

30 20 + 10 1085C 1085B

10.4 Imperial Aramaic

10.4.1 Imperial Aramaic: U+10840–U+1085F

Directionality.

Punctuation.

Numbers.

Table 10-3. Number Formation in Aramaic

Middle East-II 503 10.4 Imperial Aramaic

55 20 + 20 + 10 + 3 + 2 1085C 1085C 1085B 1085A 10859

70 20 + 20 + 20 + 10 1085C 1085C 1085C 1085B

100 1 × 100 10858 1085D

200 2 × 100 10859 1085D

500 (3 + 2) × 100 1085A 10859 1085D

3000 3 × 1000 1085A 1085E

30000 3 × 10000 1085A 1085F

Values in the range 1-99 are represented by a string of characters whose values are in

the range 1-20; the numeric value of the string is the sum of the numeric values of

the characters. The string is written using the minimum number of characters, with

the most significant values first. For example, 55 is represented as 20 + 20 + 10 + 3 +

2. Characters for 100, 1000, and 10000 are prefixed with a multiplier represented by a

string whose value is in the range 1-9. The Inscriptional Parthian, Inscriptional

Pahlavi, Nabataean, Palmyrene, and Hatran scripts use a similar system for forming

numeric values.

Middle East-II 504 10.4 Imperial Aramaic

The Manichaean religion was founded during the third century CE in Babylonia,

then part of the Sassanid Persian empire. It spread widely over the next four

centuries, as far west as north Africa and as far east as China, but had mostly

vanished by the fourteenth century. From 762 until around 1000 it was a state religion

in the Uyghur kingdom.

The Manichaean script was used by adherents of Manichaeism, and was based on or

influenced by the Estrangela form of Syriac, as well as Palmyrene Aramaic. It is said

to have been invented by Mani, but may be older. Because of the wide spread of

Manichaeism and Mani’s decision to spread his teachings in any language available,

the Manichaean script was used to write a variety of languages with some variation

in character repertoire: the Iranian languages Middle and Early Modern Persian,

Parthian, Sogdian, and Bactrian, as well as the Turkic language Uyghur and, to a

lesser extent, the Indo-European language Tocharian.

 The Manichaean script is written from right to left. Conformant

implementations of Manichaean script must use the Unicode Bidirectional Algo‐

rithm (see Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”).

 Manichaean is alphabetic, written with spaces between words. The

alphabet includes 24 base letters, two more than Aramaic. There are a total of 36

letters. Ten of these are formed by adding one or two dots above the base letter to

represent a spirant or other modified sound. There is also a sign representing the

conjunction ud.

In addition, two diacritical marks are used to indicate abbreviations, elisions, or

plural forms. Manichaean text paid careful attention to the layout of characters, often

stretching or shrinking letters, using abbreviations, or eliminating vowels (indicated

with elision dots) to achieve desired line widths and to avoid breaking words across

lines. Sogdian written in Manichaean script also sometimes shows the use of doubled

vowels to fill out a line.

To graphically extend a word, U+0640 ARABIC TATWEEL may be used.

 Manichaean has shaping rules and rendering requirements that are similar

to those for Syriac and Arabic, with joining forms as shown in Table 10-4, Table 10-5,

Table 10-6 and Table 10-7. In these tables, X
n

, X
r
, X

m
, and X

l
 designate the isolated,

final, medial, and initial forms respectively. The dotted letters are not shown sepa‐

rately, because their joining behavior is the same as the corresponding un-dotted

10.5 Manichaean

10.5.1 Manichaean: U+10AC0–U+10AFF

Directionality.

Structure.

Shaping.

Middle East-II 505 10.5 Manichaean

letter. Note that Manichaean has two letters with the rare Joining_Type of

Left_Joining.

Five Manichaean letters—daleth, he, mem, nun, resh—have alternate forms whose

occurrence cannot be predicted from context, although the alternate forms tend to

occur most often at the end of lines. These forms are represented using standardized

variation sequences and are shown in the tables that follow.

Table 10-4 lists the dual-joining letters Manichaean. In this and the following tables,

the standardized variation sequences are indicated in the joining group column in

separate rows showing the relevant joining group plus the variation selector.

Joining Group X
n

X
r

X
m

X
l

ALEPH

BETH

GIMEL

GHIMEL

LAMEDH

DHAMEDH

THAMEDH

MEM

MEM + VS-1

SAMEKH

AYIN

PE

QOPH

Table 10-5 lists the right-joining letters for Manichaean.

Joining Group X
n

X
r

DALETH

DALETH + VS-1

WAW

ZAYIN

TETH

YODH

KAPH

SADHE

Table 10-4. Dual-Joining Manichaean Letters

Table 10-5. Right-Joining Manichaean Letters

Middle East-II 506 10.5 Manichaean

RESH

RESH + VS-1

TAW

Table 10-6 lists the left-joining letters for Manichaean.

Joining Group X
n

X
l

HETH

NUN

NUN + VS-1

Table 10-7 lists the non-joining letters for Manichaean

Joining Group X
n

HE

HE + VS-1

JAYIN

SHIN

Manichaean has two obligatory ligatures for sadhe followed by yodh or nun. These

are shown in Table 10-8.

Character Sequence X
n

X
r

SADHE + YODH

SADHE + NUN

 Manichaean has script-specific numeric characters with right-to-left direc‐

tionality. Numbers are built up using sequences of characters for 1, 5, 10, 20, and 100

in a manner which appears similar to Imperial Aramaic number formation (see

Table 10-3); however, very few numeric values are attested in Manichaean sources.

Manichaean numeric characters exhibit contextual joining behavior, as with letters,

but the existing sources do not demonstrate all of the forms.

 Manichaean consistently uses a number of script-specific punctuation

marks. U+10AF0 MANICHAEAN PUNCTUATION STAR is used to mark the beginning

and end of headlines; U+10AF1 MANICHAEAN PUNCTUATION FLEURON and

U+10AF5 MANICHAEAN PUNCTUATION TWO DOTS are used to mark the beginning

Table 10-6. Left-Joining Manichaean Letters

Table 10-7. Non-Joining Manichaean Letters

Table 10-8. Manichaean Ligatures

Numbers.

Punctuation.

Middle East-II 507 10.5 Manichaean

and end of headlines and captions. U+10AF6 MANICHAEAN PUNCTUATION LINE

FILLER is used as a sort of ellipsis to fill out a line.

U+10AF2 MANICHAEAN PUNCTUATION DOUBLE DOT WITHIN DOT is used to indi‐

cate larger units of text in a prose text or the end of a strophe in a verse text.

U+10AF3 MANICHAEAN PUNCTUATION DOT WITHIN DOT is used to indicate smaller

units of text in a prose text or the end of a half-verse in a verse text. U+10AF4

MANICHAEAN PUNCTUATION DOT is used to indicate sub-units of text, logical parts

of a sentence or units in a list.

Middle East-II 508 10.5 Manichaean

The Inscriptional Parthian script was used to write Parthian and other languages. It

had evolved from the Imperial Aramaic script by the second century CE, and was

used as an official script during the first part of the Neo-Persian (Sasanian) empire. It

is attested primarily in surviving inscriptions, the last of which dates from 292 CE.

Inscriptional Pahlavi also evolved from the Aramaic script during the second century

CE during the late period of the Parthian Persian empire in what is now southern

Iran. It was used as a monumental script to write Middle Persian until the fifth

century CE.

Psalter Pahlavi is a cursive alphabetic script that was used to write the Middle Persian

language during the 6th or 7th century CE. It is a historically conservative variety of

Pahlavi used by Christians in the Neo-Persian empire. The name of the script is based

on its main attestation in a fragmentary manuscript of the Psalms of David, known as

the Pahlavi Psalter. The later Book Pahlavi is another variety of the script.

Inscriptional Parthian and Inscriptional Pahlavi are both alphabetic scripts and are

usually written with spaces between words. Inscriptional Parthian has 22 consonant

letters but no vowel marks, while Inscriptional Pahlavi consists of 19 consonant

letters; two of which are used for writing multiple consonants, so that it can be used

for writing the usual Phoenician-derived 22 consonants.

 Both the Inscriptional Parthian script and the Inscriptional Pahlavi

script are written from right to left. Conformant implementations must use the

Unicode Bidirectional Algorithm. For more information, see Unicode Standard

Annex #9, “Unicode Bidirectional Algorithm.”

 Inscriptional Parthian makes use of seven standard

ligatures. Ligation is common, but not obligatory; U+200C ZERO WIDTH NON-JOINER

can be used to prevent ligature formation. The same glyph is used for both the yodh-

waw and nun-waw ligatures. The letters sadhe and nun have swash tails which typi‐

cally trail under the following letter; thus two nuns will nest, and the tail of a nun

that precedes a daleth may be displayed between the two parts of the daleth glyph.

Table 10-9 shows these behaviors.

(gimel) + (waw) → (gw)

(heth) + (waw) → (xw)

10.6 Pahlavi and Parthian

10.6.1 Inscriptional Parthian: U+10B40–U+10B5F

Inscriptional Pahlavi: U+10B60–U+10B7F

Directionality.

Shaping and Layout Behavior.

Table 10-9. Inscriptional Parthian Shaping Behavior

Middle East-II 509 10.6 Pahlavi and Parthian

(yodh) + (waw) → (yw)

(nun) + (waw) → (nw)

(ayin) + (lamedh) → (‘l)

(resh) + (waw) → (rw)

(taw) + (waw) → (tw)

(nun) + (nun) → (nn)

(nun) + (daleth) → (nd)

In Inscriptional Pahlavi, U+10B61 INSCRIPTIONAL PAHLAVI LETTER BETH has a

swash tail which typically trails under the following letter, similar to the behavior of

U+10B4D INSCRIPTIONAL PARTHIAN LETTER NUN.

 Inscriptional Parthian and Inscriptional Pahlavi each have script-specific

numeric characters with right-to-left directionality. Numbers in both are built up

using sequences of characters for 1, 2, 3, 4, 10, 20, 100, and 1000 in a manner similar

to the way numbers are built up for Imperial Aramaic; see Table 10-3. In Inscriptional

Parthian the units are sometimes written with strokes of the same height, or some‐

times written with a longer ascending or descending final stroke to show the end of

the number.

 As scripts derived from Aramaic (such as Inscriptional Parthian and

Pahlavi) were adapted for writing Iranian languages, certain words continued to be

written in the Aramaic language but read using the corresponding Iranian-language

word. These are known as heterograms or xenograms, and were formerly called

“ideograms”.

 Psalter Pahlavi is an alphabetic script written from right to left. It uses

spaces between words. The script has fully-developed cursive joining behavior. To

graphically extend a word, U+0640 ARABIC TATWEEL may be used.

 Psalter Pahlavi has its own numbers, which also have right-to-left direc‐

tionality. Numbers are built up out of 1, 2, 3, 4, 10, 20, and 100. Some Psalter Pahlavi

numbers have joining behavior, and can join with letters as well as numbers.

 There are four types of large section-ending punctuation. The most

common is U+10B99 PSALTER PAHLAVI SECTION MARK, which is written with red

dots in the vertical position and black dots in the horizontal position; the red dots are

often written as rings. Less common but found together with this is U+10B9A

PSALTER PAHLAVI TURNED SECTION MARK, which is written with black dots in the

vertical position and red dots in the horizontal position. More rare are U+10B9B

PSALTER PAHLAVI FOUR DOTS WITH CROSS (sometimes found immediately following

the section mark), and U+10B9C PSALTER PAHLAVI FOUR DOTS WITH DOT.

Numbers.

Heterograms.

10.6.2 Psalter Pahlavi: U+10B80–U+10BAF

Structure.

Numbers.

Punctuation.

Middle East-II 510 10.6 Pahlavi and Parthian

The Avestan script was created around the fifth century CE to record the canon of the

Avesta, the principal collection of Zoroastrian religious texts. The Avesta had been

transmitted orally in the Avestan language, which was by then extinct except for

liturgical purposes. The Avestan script was also used to write the Middle Persian

language, which is called Pazand when written in Avestan script. The Avestan script

was derived from Book Pahlavi, but provided improved phonetic representation by

adding consonants and a complete set of vowels—the latter probably due to the influ‐

ence of the Greek script. It is an alphabetic script of 54 letters, including one that is

used only for Pazand.

 The Avestan script is written from right to left. Conformant imple‐

mentations of Avestan script must use the Unicode Bidirectional Algorithm. For

more information, see Unicode Standard Annex #9, “Unicode Bidirectional Algo‐

rithm”.

 Four ligatures are commonly used in manuscripts of the Avesta,

as shown in Table 10-10. U+200C ZERO WIDTH NON-JOINER can be used to prevent

ligature formation.

(š) + (a) → (ša)

(š) + (ce) → (šc)

(š) + (te) → (št)

(a) + (he) → (ah)

 Archaic Avestan texts use a dot to separate words. The texts generally

use a more complex grouping of dots or other marks to indicate boundaries between

larger units such as clauses and sentences, but this is not systematic. In contempo‐

rary critical editions of Avestan texts, some scholars have systematized and differenti‐

ated the usage of various Avestan punctuation marks. The most notable example is

Karl F. Geldner’s 1880 edition of the Avesta.

The Unicode Standard encodes a set of Avestan punctuation marks based on the

system established by Geldner. U+10B3A TINY TWO DOTS OVER ONE DOT PUNCTUA‐

TION functions as an Avestan colon, U+10B3B SMALL TWO DOTS OVER ONE DOT

PUNCTUATION as an Avestan semicolon, and U+10B3C LARGE TWO DOTS OVER ONE

DOT PUNCTUATION as an Avestan end of sentence mark; these indicate breaks of

increasing finality. U+10B3E LARGE TWO RINGS OVER ONE RING PUNCTUATION

functions as an Avestan end of section, and may be doubled (sometimes with a space

10.7 Avestan

10.7.1 Avestan: U+10B00–U+10B3F

Directionality.

Shaping Behavior.

Table 10-10. Avestan Shaping Behavior

Punctuation.

Middle East-II 511 10.7 Avestan

between) for extra finality. U+10B39 AVESTAN ABBREVIATION MARK is used to mark

abbreviation and repetition. U+10B3D LARGE ONE DOT OVER TWO DOTS PUNCTUA‐

TION and U+10B3F LARGE ONE RING OVER TWO RINGS PUNCTUATION are found in

Avestan texts, but are not used by Geldner.

Minimal representation of Avestan requires two separators: one to separate words

and a second mark used to delimit larger units, such as clauses or sentences.

Contemporary editions of Avestan texts show the word separator dot in a variety of

vertical positions: it may appear in a midline position or on the baseline. Dots such as

U+2E31 WORD SEPARATOR MIDDLE DOT, U+00B7 MIDDLE DOT, or U+002E FULL

STOP can be used to represent this.

Middle East-II 512 10.7 Avestan

The Chorasmian script was derived from Imperial Aramaic and is related to Parthian,

Inscriptional Pahlavi, Psalter Pahlavi, Book Pahlavi, and Old Sogdian. It was used

between the 2nd century and the 8th to 9th centuries CE primarily to write the

Chorasmian language, a now-extinct Eastern Iranian language. The script and

language were used in a region in Central Asia situated at the delta of the Amu

Darya river, classically known as the Oxus, which today is spread across Uzbekistan,

Kazakhstan, and Turkmenistan. The name of the territory was first mentioned in the

Avesta; it is found inscribed at Persepolis and referenced in classical Persian. The

name was once transcribed in English as Khwarezm, however, the Greek form

entered the English lexicon as Chorasmian, and this name is used here.

The Chorasmian script is classified into lapidary and cursive forms. The lapidary

form is non-joining and occurs on certain specific items, such as a few silver bowls

and a flask found in 2005. The cursive Chorasmian form is derived from the lapidary

form, and is found on coinage, wooden items, leather, other silver vessels, and

ossuaries, and is the form encoded in the Unicode Standard.

Chorasmian contains 21 letters and 7 numbers. The Unicode character names are

based on those of Imperial Aramaic characters.

 The Chorasmian script is a cursively joining abjad, most commonly

written from right to left, with lines that advance from top to bottom. Some inscrip‐

tions are written vertically and read top to bottom with lines that advance from left to

right.

 Letters are classified as dual-joining, right-joining, and non-

joining. Dual-joining and right-joining letters have contextual shapes that are deter‐

mined by adjacent letters. In some cases, a ZWNJ is used to prevent the left-side

connection of a dual-joining letter from joining.

 Spaces are used to separate words. There are no

special punctuation marks. There are no formal rules to break words at the end of

line.

 The primary numbers one to four are encoded atomically. The numbers

five to nine are expressed using combinations of one to four. This model aligns with

Imperial Aramaic and related scripts.

10.8 Chorasmian

10.8.1 Chorasmian: U+10FB0–U+10FDF

Directionality.

Joining Behavior.

Punctuation and Line Breaking.

Numbers.

Middle East-II 513 10.8 Chorasmian

The Elymaic script, also called “Elymaean,” was used to write Achaemenid Aramaic

in the ancient state of Elymais, which flourished from the second century BCE to the

early third century CE and was located in the southwestern portion of modern-day

Iran. Elymaic derives from the Aramaic script and is closely related to Parthian and

Mandaic. The script is found on inscriptions and coins.

 The Elymaic script is written from right to left. Conformant imple‐

mentations of the Elymaic script must use the Unicode Bidirectional Algorithm. For

more information, see Unicode Standard Annex #9, “Unicode Bidirectional Algo‐

rithm.”

 Elymaic is encoded as a non-joining abjad. Although some sources show

adjacent letters connecting or overlapping, the overall script does not contain

intrinsic cursive behavior. However, Elymaic includes one ligature: U+10FF6

ELYMAIC LIGATURE ZAYIN-YODH.

 The Elymaic character names are based on those for

Imperial Aramaic because the native names for the characters are unknown. The

representative glyphs in the code charts are based on the stone inscriptions at Tang-e

Sarvak in southwest Iran.

 There is no script-specific punctuation for Elymaic. Although word

boundaries are not generally indicated, some inscriptions have spaces between

words. Modern editors tend to use U+0020 SPACE for word separation.

 There are no known script-specific numerals.

10.9 Elymaic

10.9.1 Elymaic: U+10FE0–U+10FFF

Directionality.

Structure.

Character Names and Glyphs.

Punctuation.

Numerals.

Middle East-II 514 10.9 Elymaic

The Nabataean script developed from the Aramaic script and was used to write the

language of the Nabataean kingdom. The script was in wide use from the second

century BCE to the fourth century CE, well after the Roman province of Arabia

Petraea was formed.

Nabataean is generally considered to be the precursor of the Arabic script. The

Namara inscription, dating from the fourth century CE and believed to be one of the

oldest Arabic texts, was written in the Nabataean script.

The glyphs of the Nabataean script are more ornate than those of other scripts

derived from Aramaic, and flourishes can be found in some inscriptions. As the

script evolved, a range of ligatures was introduced. Because their usage is irregular,

no joining behavior is specified for Nabataean.

 The Nabataean script consists of 22 consonants. Nine consonants have

final forms and are treated similarly to the final letters of the Hebrew script. The final

forms are encoded separately because their occurrence in text is not predictable. For

more information about the use of distinctly encoded final consonants in Semitic

scripts, see Section 9.1, Hebrew.

 Both words and numbers in the Nabataean script are written from

right to left in horizontal lines. Conformant implementations of the script must use

the Unicode Bidirectional Algorithm. For more information on bidirectional layout,

see Unicode Standard Annex #9, “Unicode Bidirectional Algorithm.”

 Nabataean has script-specific numeral characters, with strong right-to-

left directionality. Nabataean numbers are built up using sequences of characters for

1, 2, 3, 4, 5, 10, 20, and 100 in a manner similar to the way numbers are built up for

Imperial Aramaic, which is shown in Table 10-3. A cruciform variant of the numeral

4 is encoded separately at U+108AB.

 There is no script-specific punctuation in Nabataean. The inscriptions

usually have no space between words, but modern editors tend to use U+0020 SPACE

for word separation.

10.10 Nabataean

10.10.1 Nabataean: U+10880–U+108AF

Structure.

Directionality.

Numerals.

Punctuation.

Middle East-II 515 10.10 Nabataean

The Palmyrene script was derived by modification of the customary forms of

Aramaic developed during the Achaemenid empire. The script was used for writing

the Palmyrene dialect of West Aramaic, and is known from inscriptions and docu‐

ments found mainly in the city of Palmyra and other cities in the region of Syria,

dating from 44 BCE to about 280 CE.

Palmyrene has both a monumental and a cursive form. Earlier inscriptions show

more rounded forms, while later inscriptions tend to regularize the letterforms. Most

pre-Unicode fonts for Palmyrene have followed the monumental style. Ligatures exist

in both forms of the script, but are not used consistently.

At a certain point, some Palmyrene letterforms became confused and a distin‐

guishing diacritical dot was introduced, although not regularly or systematically, as

seen in the glyphic variation of consonants daleth and resh across the various styles

of the script. Sometimes the two glyphs appear with different skeletons, which is

sufficient to distinguish them; sometimes they have the same skeleton and are differ‐

entiated by a dot; and sometimes they appear with the same skeleton and no dot, in

which case they are indistinguishable. In the Unicode code charts, a dot distin‐

guishes the daleth and resh glyphs.

 The Palmyrene script consists of 22 consonants. The consonant nun has a

final form variant, encoded as a separate character, U+1086D PALMYRENE LETTER

FINAL NUN, and used similarly to the counterpart Hebrew consonant. For informa‐

tion about the use of distinctly encoded final consonants in Semitic scripts, see

Section 9.1, Hebrew.

 Both words and numbers in the Palmyrene script are written from

right to left in horizontal lines. Conformant implementations of the script must use

the Unicode Bidirectional Algorithm. For more information on bidirectional layout,

see Unicode Standard Annex #9, “Unicode Bidirectional Algorithm.”

 Palmyrene has script-specific numeral characters, with strong right-to-left

directionality. Palmyrene numbers are built up using sequences of characters for 1, 2,

3, 4, 5, 10, 20, and 100 in a manner similar to the way numbers are built up for Impe‐

rial Aramaic, which is shown in Table 10-3. The glyphs for the numerals 10 and 100,

which had been distinct in Aramaic, coalesced into the same glyph in Palmyrene.

The two numerals are generally distinguished by their position in sequences repre‐

senting numbers rather than their shape. A single character is encoded at U+1087E

PALMYRENE NUMBER TEN and should be used for both numerals.

10.11 Palmyrene

10.11.1 Palmyrene: U+10860–U+1087F

Structure.

Directionality.

Numerals.

Middle East-II 516 10.11 Palmyrene

 Two symbols are encoded at U+10877 PALMYRENE LEFT-POINTING

FLEURON and U+10878 PALMYRENE RIGHT-POINTING FLEURON. They usually

appear next to numbers.

 There is no script-specific punctuation in Palmyrene. The inscriptions

usually have no space between words, but modern editors tend to use U+0020 SPACE

for word separation.

Symbols.

Punctuation.

Middle East-II 517 10.11 Palmyrene

The Hatran abjad belongs to the North Mesopotamian branch of the Aramaic scripts,

and was used for writing a dialect of the Aramaic language. Hatran writing was

discovered in the ancient city of Hatra in present-day Iraq. The inscriptions found

there date from 98–97 BCE until circa 241 CE, when the city of Hatra was destroyed.

Many of the known texts in Hatran are graffiti, but there are some longer texts.

 The Hatran script consists of 22 consonants, encoded as 21 characters. The

consonants daleth and resh are indistinguishable by shape and are encoded as a

single character, U+108E3 HATRAN LETTER DALETH-RESH. Ligatures can occur—for

example, the letter beth often joins or touches the letter following it—but are not used

consistently.

 Both words and numbers in the Hatran script are written from right

to left in horizontal lines. Conformant implementations of the script must use the

Unicode Bidirectional Algorithm. For more information on bidirectional layout, see

Unicode Standard Annex #9, “Unicode Bidirectional Algorithm.”

 Hatran has script-specific characters for numerals, with strong right-to-

left directionality. Hatran numbers are built up using sequences of characters for 1, 5,

10, 20, and 100 in a manner similar to the way numbers are built up for Imperial

Aramaic, which is shown in Table 10-3. The numbers 2, 3, and 4 are formed from

sequences of repeated characters for the numeral 1, and are not separately encoded.

 There is no script-specific punctuation encoded for Hatran. The

inscriptions sometimes have spaces between words; modern editors tend to insert

U+0020 SPACE for word separation even if there were no spaces in the original text.

10.12 Hatran

10.12.1 Hatran: U+108E0–U+108FF

Structure.

Directionality.

Numerals.

Punctuation.

Middle East-II 518 10.12 Hatran

Chapter 11

Cuneiform and Hieroglyphs

The following scripts are described in this chapter:

Three ancient cuneiform scripts are described in this chapter: Ugaritic, Old Persian,

and Sumero-Akkadian. The largest and oldest of these is Sumero-Akkadian. The

other two scripts are not derived directly from the Sumero-Akkadian tradition but

had common writing technology, consisting of wedges indented into clay tablets with

reed styluses. Ugaritic texts are about as old as the earliest extant Biblical texts. Old

Persian texts are newer, dating from the fifth century BCE.

Egyptian Hieroglyphs were used for more than 3,000 years from the end of the fourth

millennium BCE.

Meroitic hieroglyphs and Meroitic cursive were used from around the second century

BCE to the fourth century CE to write the Meroitic language of the Nile valley

kingdom known as Kush or Meroë. Meroitic cursive was for general use, and its

appearance was based on Egyptian demotic. Meroitic hieroglyphs were used for

inscriptions, and their appearance was based on Egyptian hieroglyphs.

Anatolian Hieroglyphs date to the second and first millennia BCE, and were used to

write the Luwian language, an Indo-European language, in the area of present-day

Turkey and environs.

519

Sumero-Akkadian Cuneiform is a logographic writing system with a strong syllabic

component. It was written from left to right on clay tablets.

 The earliest stage of Mesopotamian Cuneiform as a

complete system of writing is first attested in Uruk during the so-called Uruk IV

period (circa 3500–3200 BCE) with an initial repertoire of about 700 characters or

“signs” as Cuneiform scholars customarily call them.

Late fourth millennium ideographic tablets were also found at Susa and several other

sites in western Iran, in Assyria at Nineveh (northern Iraq), at Tell Brak (north‐

western Syria), and at Habuba Kabira in Syria. The writing system developed in

Sumer (southeastern Iraq) was repeatedly exported to peripheral regions in the third,

second, and first millennia BCE. Local variations in usage are attested, but the core of

the system is the Sumero-Akkadian writing system.

Writing emerged in Sumer simultaneously with a sudden growth in urbanization and

an attendant increase in the scope and scale of administrative needs. A large propor‐

tion of the elements of the early writing system repertoire was devised to represent

quantities and commodities for bureaucratic purposes.

At this earliest stage, signs were mainly pictographic, in that a relatively faithful

facsimile of the thing signified was traced, although some items were strictly ideo‐

graphic and represented by completely arbitrary abstractions, such as the symbol for

sheep . Some scholars believe that the abstract symbols were derived from an earlier

“token” system of accounting, but there is no general agreement on this point. Where

the pictographs are concerned, interpretation was relatively straightforward. The

head of a bull was used to denote “cattle”; an ear of barley was used to denote

“barley.” In some cases, pictographs were also interpreted logographically, so that

meaning was derived from the symbol by close conceptual association. For example,

the representation of a bowl might mean “bowl,” but it could indicate concepts asso‐

ciated with bowls, such as “food.” Renditions of a leg might variously suggest “leg,”

“stand,” or “walk.”

By the next chronological period of south Mesopotamian history (the Uruk III

period, 3200–2900 BCE), logographic usage seems to have become much more wide‐

spread. In addition, individual signs were combined into more complex designs to

express other concepts. For example, a head with a bowl next to it was used to denote

“eat” or “drink.” This is the point during script development at which one can truly

speak of the first Sumerian texts. In due course, the early graphs underwent change,

conditioned by factors such as the most widely available writing medium and writing

tools, and the need to record information more quickly and efficiently from the

standpoint of the bureaucracy that spawned the system.

11.1 Sumero-Akkadian

Early History of Cuneiform.

Cuneiform and Hieroglyphs 520 11.1 Sumero-Akkadian

Clay was the obvious writing medium in Sumer because it was widely available and

easily molded into cushion- or pillow-shaped tablets. Writing utensils were easily

made for it by sharpening pieces of reed. Because it was awkward and slow to

inscribe curvilinear lines in a piece of clay with a sharpened reed (called a stylus),

scribes tended to approximate the pictographs by means of short, wedge-shaped

impressions made with the edge of the stylus. These short, mainly straight shapes

gave rise to the modern word “cuneiform” from the Latin cuneus, meaning “wedge.”

Cuneiform proper was common from about 2700 BCE, although experts use the term

“cuneiform” to include the earlier forms as well.

 The Sumerians did not live in complete isolation, and there is

very early evidence of another significant linguistic group in the area immediately

north of Sumer known as Agade or Akkad. Those peoples spoke a Semitic language

whose dialects are subsumed by scholars under the heading “Akkadian.” In the long

run, the Akkadian speakers became the primary users and promulgators of Cunei‐

form script. Because of their trade involvement with their neighbors, Cuneiform

spread through Babylonia (the umbrella term for Sumer and Akkad) to Elam,

Assyria, eastern Syria, southern Anatolia, and even Egypt. Ultimately, many

languages came to be written in Cuneiform script, the most notable being Sumerian,

Akkadian (including Babylonian and Assyrian), Eblaite, Elamite, Hittite, and

Hurrian.

Periods of script usage are defined according to geography and primary linguistic

representation, as shown in Table 11-1.

Archaic Period
(to 2901 BCE)

Early Dynastic
(2900–2335 BCE)

Old Akkadian
(2334–2154 BCE)

Ur III (Neo-Sumerian)
(2112–2095 BCE)

Elamite
(2100–360 BCE)

Old Assyrian
(1900–1750 BCE)

Old Babylonian
(2004–1595 BCE)

Hittite
(1570–1220 BCE)

Middle Assyrian
(1500–1000 BCE) Middle Babylonian

(1595–627 BCE)Neo-Assyrian
(1000–609 BCE)

Neo-Babylonian
(626–539 BCE)

Geographic Range.

Table 11-1. Cuneiform Script Usage

Cuneiform and Hieroglyphs 521 11.1 Sumero-Akkadian

 In the Unicode Standard, the Sumero-Akkadian Cuneiform script repre‐

sents the script used from the Early Dynastic period onwards. In general, signs used

in the Ur III period or later have been encoded in the Cuneiform block, whereas

signs used solely in earlier periods have been encoded in the Early Dynastic Cunei‐

form block.

 Most Cuneiform signs are simple units; each sign of this type is repre‐

sented by a single character in the standard.

 Some Cuneiform signs are categorized as either

complex or compound signs. Complex signs are made up of a primary sign with one

of more secondary signs written within it or conjoined to it, such that the whole is

generally treated by scholars as a unit; this includes linear sequences of two or more

signs or wedge-clusters where one or more of those clusters have not been clearly

identified as characters in their own right. Complex signs, which present a relative

visual unity, are assigned single individual code points irrespective of their compo‐

nents.

Compound signs are linear sequences of two or more signs or wedge-clusters gener‐

ally treated by scholars as a single unit, when each and every such wedge-cluster

exists as a clearly identified character in its own right. Compound signs are encoded

as sequences of their component characters. Signs that shift from compound to

complex, or vice versa, generally have been treated according to their Ur III manifes‐

tation.

 Over the long history of Cuneiform, a number of signs have

simplified and merged; in other cases, a single sign has diverged and developed into

more than one distinct sign. The choice of signs for encoding as characters was made

at the point of maximum differentiation in the case of either mergers or splits to

enable the most comprehensive set for the representation of text in any period. In

particular, some signs in the main Cuneiform block, while used in the Ur III and

later periods, are distinct only in the Early Dynastic period.

 Fonts for the representation of Cuneiform text need to be designed distinctly

for optimal use for different historic periods. The glyphs in the code charts are

primarily in the style of the Ur III period, but some are in earlier styles as far back as

Early Dynastic, or later styles as late as the first millennium, to illustrate signs

specific to these periods or to disambiguate mergers and splits.

Fonts for any period will contain duplicate glyphs depending on the status of merged

or split signs at that point of the development of the writing system. These considera‐

tions are discussed in greater detail and illustrated in Unicode Technical Report #56,

“Unicode Cuneiform Sign Lists.”

11.1.1 Cuneiform: U+12000–U+123FF

Coverage.

Simple Signs.

Complex and Compound Signs.

Mergers and Splits.

Fonts.

Cuneiform and Hieroglyphs 522 11.1 Sumero-Akkadian

 Glyph variants such as

U+122EC CUNEIFORM SIGN TA ASTERISK, a Middle Assyrian form of the sign

U+122EB CUNEIFORM SIGN TA, which in Neo-Assyrian usage has its own logo‐

graphic interpretation, have been assigned separate code positions. They are to be

used only when the new interpretation applies.

 Cuneiform was often written between incised lines or in blocks

surrounded by drawn boxes known as case rules. These boxes and lines are consid‐

ered formatting and are not part of the script. Case ruling and the like are not to be

treated as punctuation.

 While there is no standard legacy encoding of Cuneiform, there is

a set of well-established conventions for unambiguous transliteration of cuneiform

text, as well as standards for the digital representation of these transliterations. The

cuneiform encoding, and in particular its handling of mergers and splits, is designed

to be compatible with the production of cuneiform text from transliterated corpora.

See Unicode Technical Report #56, “Unicode Cuneiform Sign Lists.”

 In practice, implementations of the Sumero-Akkadian Cuneiform

script require an association of sequences of code points with entries in the classical

sign lists that establish abstract character identity, and with the sign values which

provide the usual names of these signs. For more information on such ancillary data,

see Unicode Technical Report #56, “Unicode Cuneiform Sign Lists.”

 A small number of signs are occasionally used in Cunei‐

form to indicate word division, repetition, or phrase separation.

 In general, numerals have been encoded separately from

signs that are visually identical but semantically different (for example, U+1244F

CUNEIFORM NUMERIC SIGN ONE BAN2, U+12450 CUNEIFORM NUMERIC SIGN

TWO BAN2, and so on, versus U+12226 CUNEIFORM SIGN MASH, U+1227A

CUNEIFORM SIGN PA, and so on).

This block contains characters covering extensions for Cuneiform for the Early

Dynastic period, 2900-2335 BCE. The writing of this period is attested primarily from

two sites, Fāra and Tell Abū-Ṣalābīkh, both located in the southern part of Iraq. The

attestations include administrative, legal, lexical, and literary texts.

The repertoire in this block is compiled primarily from the modern Assyriological

sign list of the Early Dynastic period, Liste der archaischen Keilschriftzeichen aus Fara

(abbreviated LAK), with a few additions derived from other sources. Only Early

Glyph Variants Acquiring Independent Semantic Status.

Formatting.

Other Standards.

Ancillary Data.

11.1.2 Cuneiform Numbers and Punctuation: U+12400–U+1247F

Cuneiform Punctuation.

Cuneiform Numerals.

11.1.3 Early Dynastic Cuneiform: U+12480–U+1254F

Cuneiform and Hieroglyphs 523 11.1 Sumero-Akkadian

Dynastic signs not already included in the main Cuneiform block have been added

here.

Cuneiform and Hieroglyphs 524 11.1 Sumero-Akkadian

The city state of Ugarit was an important seaport on the Phoenician coast (directly

east of Cyprus, north of the modern town of Minet el-Beida) from about 1400 BCE

until it was completely destroyed in the twelfth century BCE. The site of Ugarit, now

called Ras Shamra (south of Latakia on the Syrian coast), was apparently continu‐

ously occupied from Neolithic times (circa 5000 BCE). It was first uncovered by a

local inhabitant while plowing a field in 1928 and subsequently excavated by Claude

Schaeffer and Georges Chenet beginning in 1929, in which year the first of many

tablets written in the Ugaritic script were discovered. They later proved to contain

extensive portions of an important Canaanite mythological and religious literature

that had long been sought and that revolutionized Biblical studies. The script was

first deciphered in a remarkably short time jointly by Hans Bauer, Edouard Dhorme,

and Charles Virolleaud.

The Ugaritic language is Semitic, variously regarded by scholars as being a distinct

language related to Akkadian and Canaanite, or a Canaanite dialect. Ugaritic is

generally written from left to right horizontally, sometimes using U+1039F

UGARITIC WORD DIVIDER. In the city of Ugarit, this script was also used to write the

Hurrian language. The letters U+1039B UGARITIC LETTER I, U+1039C UGARITIC

LETTER U, and U+1039D UGARITIC LETTER SSU are used for Hurrian.

 There is substantial variation in glyph representation for Ugaritic.

Glyphs for U+10398 UGARITIC LETTER THANNA, U+10399 UGARITIC LETTER

GHAIN, and U+1038F UGARITIC LETTER DHAL differ somewhat between modern

reference sources, as do some transliterations. U+10398 UGARITIC LETTER THANNA

is most often displayed with a glyph that looks like an occurrence of U+10393

UGARITIC LETTER AIN overlaid with U+10382 UGARITIC LETTER GAMLA.

 The ancient Ugaritic alphabetical order, which differs somewhat from the

modern Hebrew order for similar characters, has been used to encode Ugaritic in the

Unicode Standard.

 Some of the Ugaritic character names have been reconstructed;

others appear in an early fragmentary document.

11.2 Ugaritic

11.2.1 Ugaritic: U+10380–U+1039F

Variant Glyphs.

Ordering.

Character Names.

Cuneiform and Hieroglyphs 525 11.2 Ugaritic

The Old Persian script is found in a number of inscriptions in the Old Persian

language dating from the Achaemenid empire. Scholars today agree that the char‐

acter inventory of Old Persian was invented for use in monumental inscriptions of

the Achaemenid king, Darius I, by about 525 BCE. Old Persian is an alphabetic

writing system with some syllabic aspects. While the shapes of some Old Persian

letters look similar to signs in Sumero-Akkadian Cuneiform, it is clear that only one

of them, U+103BE OLD PERSIAN SIGN LA, was actually borrowed. It was derived

from the New Assyrian historic variant of Sumero-Akkadian U+121B7 CUNEI‐

FORM SIGN LA, because la is a foreign sound not used in the Old Persian language.

 Old Persian is written from left to right.

 The repertoire contains 36 signs. These represent consonants, vowels, or

consonant plus vowel syllables. There are also five numbers, one word divider, and

eight ideograms. It is considered unlikely that any additional characters will be

discovered.

 The attested numbers are built up by stringing the base numbers (1, 2, 10,

20, and 100) in sequences.

 The signs U+103C8 OLD PERSIAN SIGN AURAMAZDAA and U+103C9 OLD

PERSIAN SIGN AURAMAZDAA-2, and the signs U+103CC OLD PERSIAN SIGN

DAHYAAUSH and U+103CD OLD PERSIAN SIGN DAHYAAUSH-2, have been encoded

separately because their conventional attestation in the corpus of Old Persian texts is

quite limited and scholars consider it advantageous to distinguish the forms in plain

text representation.

11.3 Old Persian

11.3.1 Old Persian: U+103A0–U+103DF

Directionality.

Repertoire.

Numerals.

Variants.

Cuneiform and Hieroglyphs 526 11.3 Old Persian

Hieroglyphic writing appeared in Egypt at the end of the fourth millennium BCE. The

writing system is pictographic: the glyphs represent tangible objects, most of which

modern scholars have been able to identify. A great many of the pictographs are

easily recognizable even by nonspecialists. Egyptian hieroglyphs represent people

and animals, parts of the bodies of people and animals, clothing, tools, vessels, and so

on.

Hieroglyphs were used to write Egyptian for more than 3,000 years, retaining charac‐

teristic features such as use of color and detail in the more elaborated expositions.

Throughout the Old Kingdom, the Middle Kingdom, and the New Kingdom,

between 700 and 1,000 hieroglyphs were in regular use, and there were a large

number of rarer hieroglyphs. During the Greco-Roman period, the number of vari‐

ants, as distinguished by some modern scholars, grew to about 10,000.

Hieroglyphs were carved in stone, painted on frescos, and could also be written with

a reed stylus, though this cursive writing eventually became standardized in what is

called hieratic writing. The hieratic forms are not separately encoded; they are simply

considered cursive forms of the hieroglyphs encoded in this block.

The Demotic script and then later the Coptic script replaced the earlier hieroglyphic

and hieratic forms for much practical writing of Egyptian, but hieroglyphs and hier‐

atic continued in use until the fourth century CE. An inscription dated August 24,

394 CE has been found on the Gateway of Hadrian in the temple complex at Philae;

this is thought to be among the latest examples of Ancient Egyptian writing in hiero‐

glyphs.

 Egyptian hieroglyphic writing made use of 24 hieroglyphs for individual

consonants. Other hieroglyphs are used to represent a sequence of two or three

consonants. In addition to these phonetic characters, Egyptian hieroglyphic writing

made use of logograms, which could be read as a word or as a classifier, which

enables the reader to distinguish between words which were otherwise written the

same. Hieroglyphs were arranged next to one another in an aesthetically-pleasing

manner, whether horizontally, vertically, or in other arrangements within a notional

rectangle. That notional rectangle has traditionally been referred to as a quadrat.

 Characters may be written from left to right or from right to left,

either horizontally or vertically. Directionality of a text is usually easy to determine

because one reads a line facing into the glyphs depicting the faces of people or

animals.

In modern Egyptological publications, arrows are used to indicate whether the hiero‐

glyphic text is laid out horizontally in rows or vertically in columns and the direction

11.4 Egyptian Hieroglyphs

Structure.

Directionality.

Cuneiform and Hieroglyphs 527 11.4 Egyptian Hieroglyphs

the glyphs are facing. For layout in rows, two arrows are employed: U+2190 LEFT‐

WARDS ARROW and U+2192 RIGHTWARDS ARROW, with the arrow indicating the

direction of the faces. For vertical text, U+2193 DOWNWARDS ARROW is employed,

but that arrow does not specify the direction the hieroglyphs are facing.

For hieroglyphic text written in columns, U+1F8C0 LEFTWARDS ARROW FROM

DOWNWARDS ARROW is used when the faces are turned towards the left, and

U+1F8C1 RIGHTWARDS ARROW FROM DOWNWARDS ARROW when the faces are

turned towards the right.

Egyptian hieroglyphs are given strong left-to-right directionality in the Unicode Stan‐

dard, because most contemporary use of Egyptian hieroglyphs uses left-to-right direc‐

tionality as the presentation mode. When left-to-right directionality is overridden to

display Egyptian hieroglyphic text right to left, the glyphs should be mirrored from

those shown in the code charts.

 The encoded characters for Egyptian hieroglyphs in the Unicode Stan‐

dard simply represent basic text elements, or signs, of the writing system. To repre‐

sent the arrangement of signs horizontally, vertically, or in other positions, a set of

format controls should be employed (see “Egyptian Hieroglyph Format Controls”).

 In the years since Champollion published his decipherment of Egyp‐

tian in 1824, Egyptologists have shown little interest in typesetting hieratic text.

Consequently, there is no tradition of hieratic fonts in either lead or digital formats.

Because hieratic is a cursive form of the underlying hieroglyphic characters, hieratic

text is normally rendered using the more easily legible hieroglyphs, although the

hieroglyphic transcription of hieratic text has specific behaviors. (For example, see

the discussion of enclosure controls below.) In principle a hieratic font could be

devised for specialist applications.

 The set of hieroglyphic characters encoded in the Egyptian Hieroglyphs

block is loosely referred to as “the Gardiner set.” However, the Gardiner set was not

actually exhaustively described and enumerated by Gardiner, himself. The chief

source of the repertoire is Gardiner’s Middle Egyptian sign list as given in his Egyp‐

tian Grammar (Gardiner 1957). That list is supplemented by additional characters

found in his font catalogues (Gardiner 1928, Gardiner 1929, Gardiner 1931, and

Gardiner 1953), and by a collection of signs found in the Griffith Institute’s Topo‐

graphical Bibliography, which also used the Gardiner fonts.

A few other characters have been added to this set, such as entities to which Gardiner

gave specific catalog numbers. They are retained in the encoding for completeness in

representation of Gardiner’s own materials. A number of positional variants without

catalog numbers were listed in Gardiner 1957 and Gardiner 1928.

Rendering.

Hieratic Fonts.

11.4.1 Egyptian Hieroglyphs: U+13000–U+1342F

Repertoire.

Cuneiform and Hieroglyphs 528 11.4 Egyptian Hieroglyphs

 Egyptian hieroglyphic characters have traditionally been desig‐

nated in several ways:

By complex description of the pictographs: GOD WITH HEAD OF IBIS, and so

forth.

By standardized sign number: C3, E34, G16, G17, G24.

For a minority of characters, by transliterated sound.

The characters in this block use the standard Egyptological catalog numbers for the

signs. Thus, the name for U+130F9 EGYPTIAN HIEROGLYPH E034 refers uniquely

and unambiguously to the Gardiner list sign E34, described as a “DESERT HARE”

and used for the sound “wn”. The catalog values are padded to three places with

zeros.

Names for hieroglyphic characters identified explicitly in Gardiner 1953 or other

sources as variants for other hieroglyphic characters are given names by appending

“A”, “B”, ... to the sign number. In the sources these are often identified using aster‐

isks. Thus Gardiner’s G7, G7*, and G7** correspond to U+13146 EGYPTIAN HIERO‐

GLYPH G007, U+13147 EGYPTIAN HIEROGLYPH G007A, and U+13148 EGYPTIAN

HIEROGLYPH G007B, respectively.

 In Gardiner’s identification scheme, Egyptian hieroglyphs are

classified according to letters of the alphabet, so A000 refers to “Man and his occupa‐

tions,” B000 to “Woman and her occupations,” C000 to “Anthropomorphic deities,”

and so forth. The order of signs in the code charts reflects this classification. The

Gardiner categories are shown in headers in the names list accompanying the code

charts.

Some individual characters may have been identified as belonging to other classes

since their original category was assigned, but the ordering in this block of the

Unicode Standard simply follows the original category and catalog values.

 The two principal names of the king, the nomen and prenomen, were

normally written inside a cartouche: a pictographic representation of the name with

hieroglyphs that are surrounded by an oval enclosure with a vertical line at one end.

There are a several pairs of characters for the different types of enclosures used in

Egyptian hieroglyphic texts. A set of four enclosure controls U+1343C..U+1343F

were added in Unicode 15.0 to better represent the different enclosure combinations

found in actual text. For examples and details, see the discussion of enclosure

controls below.

 Egyptian numbers are encoded following the same principles used for the

encoding of Aegean and Cuneiform numbers. Gardiner does not supply a full set of

numerals with catalog numbers in his Egyptian Grammar, but does describe the

Character Names.

•

•

•

Sign Classification.

Enclosures.

Numerals.

Cuneiform and Hieroglyphs 529 11.4 Egyptian Hieroglyphs

system of numerals in detail, so that it is possible to deduce the required set of

numeric characters.

Two conventions of representing Egyptian numerals are supported in the Unicode

Standard. The first relates to the way in which hieratic numerals are represented.

Individual signs for each of the 1s, the 10s, the 100s, the 1000s, and the 10,000s are

encoded, because in hieratic these are written as units, often quite distinct from the

hieroglyphic shapes into which they are transliterated. The other convention is based

on the practice of the Manuel de Codage, and is comprised of five basic text elements

used to build up Egyptian numerals. There is some overlap between these two

systems.

This block contains additional Egyptian hieroglyphs, primarily from the Greco-

Roman period. Character names in this block are derived algorithmically by prefixing

the code point with the string “EGYPTIAN HIEROGLYPH-”. Hence the name for

U+13460 is EGYPTIAN HIEROGLYPH-13460.

The order of characters in this block follows Gardiner’s basic classification (A-Z, Aa),

but within each Gardiner category, signs are grouped based on the taxonomy of IFAO

(Institut français d’archéologie orientale), which is similar to, but not identical with,

Gardiner’s taxonomy.

For further information on all the hieroglyph characters, including the sources,

description, and function of each character, see Unicode Standard Annex #57,

“Unicode Egyptian Hieroglyph Database (Unikemet).”

The structural arrangement of Egyptian hieroglyphs in notional rectangles or

quadrats is handled by format control characters in this block. Ten of the format

characters control the basic placement of hieroglyphs in quadrats. They are used to

join hieroglyphs vertically, horizontally, as an overlay, or to insert signs into a

quadrat. Two format controls are used for grouping signs in complex combinations.

Prior to Version 12.0 of Unicode, many Egyptologists used simple markup conven‐

tions to indicate formatting, notably the scheme published in the Manuel de Codage

(MdC). MdC used ASCII characters to indicate the spatial organization of hiero‐

glyphs. Four of the Egyptian Hieroglyph format controls derive from MdC usage:

U+13430 EGYPTIAN HIEROGLYPH VERTICAL JOINER indicates a vertical join,

and corresponds to MdC use of a colon.

U+13431 EGYPTIAN HIEROGLYPH HORIZONTAL JOINER indicates a horizontal

join, and corresponds to MdC use of an asterisk.

11.4.2 Egyptian Hieroglyphs Extended-A: U+13460–U+143FF

11.4.3 Egyptian Hieroglyph Format Controls: U+13430–U+1345F

•

•

Cuneiform and Hieroglyphs 530 11.4 Egyptian Hieroglyphs

U+13437 EGYPTIAN HIEROGLYPH BEGIN SEGMENT and U+13438

EGYPTIAN HIEROGLYPH END SEGMENT indicate grouping, and correspond to

MdC use of opening and closing parentheses, respectively.

A layout of one hieroglyph above another in the quadrat is represented by inserting

U+13430 EGYPTIAN HIEROGLYPH VERTICAL JOINER between two hieroglyphs,

where the first logical glyph in the sequence is the upper of the two hieroglyphs as

shown in the first example of Figure 11-1. Similarly, U+13431 EGYPTIAN HIERO‐

GLYPH HORIZONTAL JOINER joins two adjacent hieroglyphs horizontally. The hori‐

zontal ordering of the joined glyphs matches the logical ordering of the two hiero‐

glyphs, as shown in the second example in Figure 11-1.

Image Symbolic Character Sequence

A1 O1 <13000, 13430, 13250>

W24 Z7 <133CC, 13431, 133F2>

The column labeled “Symbolic” in Figure 11-1 (and subsequent figures) emulates the

way such quadrats are represented using the MdC conventions. Thus “A1” is the

symbolic abbreviation used in MdC for U+13000 EGYPTIAN HIEROGLYPH A001 (a

seated man). MdC simply uses a few ASCII characters (“:”, “*”, “+”) for the operators

that combine signs into sequences expressing the full quadrats. So, the MdC repre‐

sentation of the first example in Figure 11-1 would be “A1:O1”. The symbolic represen‐

tation in Figure 11-1 instead uses the dotted box glyph convention to represent the

actual Unicode Egyptian Hieroglyph format controls, as for example, U+13430

EGYPTIAN HIEROGLYPH VERTICAL JOINER.

Four control characters are used in similar fashion to insert a following hieroglyph

into the corner of a preceding hieroglyph:

U+13432 EGYPTIAN HIEROGLYPH INSERT AT TOP START places a following

hieroglyph within the frame of the preceding hieroglyph in the corner at the top

edge and starting side.

U+13433 EGYPTIAN HIEROGLYPH INSERT AT BOTTOM START causes a

following hieroglyph to display in the bottom-starting corner within the frame of

the preceding hieroglyph.

•

Figure 11-1. Vertical and Horizontal Formatting of Hieroglyphs

•

•

Cuneiform and Hieroglyphs 531 11.4 Egyptian Hieroglyphs

U+13434 EGYPTIAN HIEROGLYPH INSERT AT TOP END causes a following

hieroglyph to display in the top-ending corner within the frame of the preceding

hieroglyph.

U+13435 EGYPTIAN HIEROGLYPH INSERT AT BOTTOM END causes a following

hieroglyph to display in the bottom-ending corner within the frame of the

preceding hieroglyph.

The first four rows of Figure 11-2 show examples of this use.

Image Symbolic Character Sequence

F4 X1 <13102, 13432, 133CF>

I10 A1 <13193, 13433, 13000>

D17 X1 <13087, 13434, 133CF>

G25 X1 <1315C, 13435, 133CF>

D36 V28 <1309D, 13436, 1339B>

N37 O34 <13219, 13439, 13283>

D28 J1 <13093, 1343A, 1340D>

D32 V28 <13098, 1343B, 1339B>

U+13439 EGYPTIAN HIEROGLYPH INSERT AT MIDDLE is employed to insert a sign

in the middle of another. Note that when inserting into the HWT enclosure, only a

single group of one or more signs can be inserted. If a sequence of groups is to be

enclosed into the HWT, the enclosure controls should be used, as described later in

this section under “Enclosure Controls.” When signs appear within another hiero‐

glyph that has an opening above, U+1343A EGYPTIAN HIEROGLYPH INSERT AT

TOP is employed, and for signs that appear within a hieroglyph with an opening

below, U+1343B EGYPTIAN HIEROGLYPH INSERT AT BOTTOM is used, as shown in

the bottom two examples in Figure 11-2.

Orthographic checking should handle cases where there may be ambiguity in the

encoding choice, such as a choice between insert at middle versus insert at bottom.

When an insertion is to be used with a sign without a clear space to receive the inser‐

tion, font developers may use a ligature or alternate glyph to render the expected

form, as shown in Figure 11-3.

•

•

Figure 11-2. Insertion and Overlay Formatting of Hieroglyphs

Cuneiform and Hieroglyphs 532 11.4 Egyptian Hieroglyphs

Hieroglyphs may also overlay other hieroglyphs. This arrangement is controlled by

U+13436 EGYPTIAN HIEROGLYPH OVERLAY MIDDLE. This control character causes

a following hieroglyph to overlay on top of a preceding hieroglyph, as shown in the

fifth example in Figure 11-2. Glyphs that overlay one another stack at their center

points.

 A set of four enclosure controls encoded in the range

U+1343C..U+1343F represent the different combinations of enclosures that occur in

hieroglyphic text. As shown in the upper left example in Figure 11-4, the combination

of the enclosures and the enclosure controls creates a full-form enclosing cartouche

with horizontal lines above and below. The begin and end enclosure format controls

must be used in pairs: U+1343C and U+1343D, or U+1343E and U+1343F in the case

of walled enclosures.

Horizontal lines do not appear in cartouches in hieratic text, so the enclosure

controls should not be used. An example is shown on the right in Figure 11-4. If the

enclosure controls are not present, the enclosure characters will appear as stand-

alone characters. In the case of damaged text, one or both ends of the cartouche may

be missing.

 The basic joining controls may be used in conjunction with one

another to render more complex clusters, as shown in the first example in Figure 11-5.

The two characters, U+13437 EGYPTIAN HIEROGLYPH BEGIN SEGMENT and

U+13438 EGYPTIAN HIEROGLYPH END SEGMENT, are used to group signs in

Figure 11-3. Use of U+13439 to Insert at Middle

Enclosure Controls.

Figure 11-4. Rendering Enclosures

Complex Clusters.

Cuneiform and Hieroglyphs 533 11.4 Egyptian Hieroglyphs

complex clusters comprising different levels of joining controls, as shown in the

second example in Figure 11-5.

Some rendering systems may support multiple levels of the segment controls for use

in the most complex hieroglyphic sign arrangements, as shown in the third example

in Figure 11-5.

Image Symbolic Character Sequence

I9 N35 F20 A1 <13191, 13430, 13216, 13430, 13113, 13433, 13000>

G9 N27 N27 <1314A, 13434, 13437, 1320C, 13430, 1320C, 13438>

J15 Z11 D2 D21
 X1 N25

<1341D, 13430, 133F6, 13431, 13437, 13077, 13431, 13437,
1308B, 13430, 133CF, 13438, 13430, 13209, 13438>

Some Egyptian hieroglyphs with complex structures are encoded as single characters.

The guidance on whether to use the complex characters has evolved over time:

complex characters were at first systematically recommended, then later systemati‐

cally recommended against. This guidance has since become more nuanced. The

current best practice is to use a complex character when it conveys a function that is

not covered by the meaning of its individual parts, but to use a sequence of atomic

signs joined with formatting controls when the function of the compound is covered

by the meaning of the atomic signs. Whenever sequences are preferred over a

complex character, font designers should include ligatures for these sequences so that

they render well.

For example, U+13217 EGYPTIAN HIEROGLYPH N035A looks like a stack of three

copies of U+13216 EGYPTIAN HIEROGLYPH N035 and could be represented by the

sequence <13216, 13430, 13216, 13430, 13216>. However, this compound sign is a logo‐

graph for the word for water, mw, whereas the parts are phonemograms with the

unrelated value n. As a result, the atomic character U+13217 is preferred. In contrast,

consider U+130C1 EGYPTIAN HIEROGLYPH D059, which looks like U+1309D

EGYPTIAN HIEROGLYPH D036 over U+130C0 EGYPTIAN HIEROGLYPH D058, so that

it can be represented as the sequence <130C0, 13436, 1309D>. U+130C1 is a

phonemogram with the value ꜥb, and the parts are phonemograms whose value make

up ꜥb — U+1309D has the value ꜥ and U+130C0 has the value b. In this case, the

sequence <130C0, 13436, 1309D> is preferred. For information on the function and

value of an individual hieroglyph, as well as descriptions of complex hieroglyphs in

terms of atomic parts, see Unicode Standard Annex #57, “Unicode Egyptian Hiero‐

glyph Database (Unikemet).”

Figure 11-5. Complex Cluster Formatting of Hieroglyphs

Cuneiform and Hieroglyphs 534 11.4 Egyptian Hieroglyphs

 Scribes frequently mirrored individual signs for symmetry or in

cartouches. The format control character U+13440 EGYPTIAN HIEROGLYPH

MIRROR HORIZONTALLY can be used to mirror a sign. Mirroring is based on the line

direction, and the use of this formatting character is independent of any mirroring

produced by changing the base direction of the text.

U+13440 should not be used if mirroring would change the meaning of the sign; the

separately encoded character should be used instead. For example, the logogram

U+130BB EGYPTIAN HIEROGLYPH D054 is used for “come,” but U+130BD EGYP‐

TIAN HIEROGLYPH D055 is a determinative for “going backwards,” and that character

should be used rather than mirroring.

Signs that are horizontally symmetrical do not require mirroring, and fonts might

render U+13440 EGYPTIAN HIEROGLYPH MIRROR HORIZONTALLY visibly in such

contexts.

 A rotated sign that has a distinct meaning from the unrotated sign should

be encoded as a separate character. The separately encoded rotated character should

be employed in such contexts, rather than using a variation sequence for rotation.

Rotations of signs are defined in a set of standardized variation sequences in Stan‐

dardizedVariants.txt in the Unicode Character Database. In combination with Egyp‐

tian Hieroglyphs, U+FE00 VARIATION SELECTOR-1 (VS1) is used to request a 90

degree rotation, U+FE01 (VS2) marks a 180 degree rotation and U+FE02 (VS3) is

used for 270 degree rotation, as shown in the first row of Figure 11-6. For text that

runs from left to right, the direction of rotation is clockwise, while it is counterclock‐

wise for text that runs from right to left, as shown in the second row of Figure 11-6. If

a sign is both rotated and mirrored, rotation is done before mirroring.

Mirroring.

Rotation.

Figure 11-6. Rotation of Hieroglyphs

Cuneiform and Hieroglyphs 535 11.4 Egyptian Hieroglyphs

For glyphs that are symmetrical, a 90° rotation and a 270° rotation may have the

same visual result. For example, U+13399 EGYPTIAN HIEROGLYPH V026 is hori‐

zontally positioned, but can be rotated to be vertical either with a 90° rotation or a

270° rotation. In such cases, only one sequence is defined in StandardizedVari‐

ants.txt.

 To represent an empty surface that never contained any text, U+13441

EGYPTIAN HIEROGLYPH FULL BLANK and U+13442 EGYPTIAN HIEROGLYPH HALF

BLANK characters are employed. A blank character is used, for example, when a

scribe intended to fill in a name or date later, but never filled in the space with text.

The blanks are rendered as whitespace, as shown in Figure 11-7.

 To indicate text that had existed earlier, but was later destroyed, U+13443

EGYPTIAN HIEROGLYPH LOST SIGN, U+13444 EGYPTIAN HIEROGLYPH HALF LOST

SIGN, U+13445 EGYPTIAN HIEROGLYPH TALL LOST SIGN and U+13446 EGYPTIAN

HIEROGLYPH WIDE LOST SIGN are used. Some of these lost signs are shown in

Figure 11-8 next to other extant signs. The “lost signs” may appear in groups with

other signs and are generally rendered as shaded squares or rectangles with white‐

space between the signs. If continuous shading is required without whitespace

between the signs, then U+FE00 VARIATION SELECTOR-1 immediately follows the

blank lost character, so that no whitespace appears.

 Damaged portions of text are handled by a series of 15 modifiers

(U+13447..U+13455). The surface is divided into four quarters, with a single modifier

indicating which quarters are damaged. When the entire space is damaged, U+13455

EGYPTIAN HIEROGLYPH MODIFIER DAMAGED should be employed, as shown in

the final example in Figure 11-9.

11.4.4 Editorial Marks

Blanks.

Figure 11-7. Use of Blanks

Lost Signs.

Figure 11-8. Use of Lost Signs

Damage Modifiers.

Cuneiform and Hieroglyphs 536 11.4 Egyptian Hieroglyphs

 Modern scholarship uses a variety of brackets to indicate

notable features of a text, especially destruction and emendation. Table 11-2 illustrates

the commonly used signs that may be used with Egyptian hieroglyphs. These signs

are placed logically before and after the sign or group of signs they modify. Imple‐

mentors should pay particular attention to make sure these signs are supported in

fonts and can participate in quadrat structures.

Signs Code points Function

U+005B LEFT SQUARE BRACKET,
U+005D RIGHT SQUARE BRACKET

Complete destruction of a sign or
signs

U+2E22 TOP LEFT HALF BRACKET,
U+2E23 TOP RIGHT HALF BRACKET

Partial destruction of a sign or
signs

U+27E8 MATHEMATICAL LEFT ANGLE BRACKET,
U+27E9 MATHEMATICAL RIGHT ANGLE BRACKET

Modern emendation, addition

U+007B LEFT CURLY BRACKET,
U+007D RIGHT CURLY BRACKET

Modern emendation, deletion

U+27E6 MATHEMATICAL LEFT WHITE SQUARE
BRACKET,
U+27E7 MATHEMATICAL RIGHT WHITE SQUARE
BRACKET

Ancient erasure/deletion

Figure 11-10 illustrates the use of the square brackets to denote signs that are

destroyed in the original context but have been reconstructed by a modern editor.

The complex quadrat with bracketing in Figure 11-10 is represented by the sequence

<131A3, 005B, 1308B, 13430, 133CF, 13431, 005B 133E5, 13437, 1339F 13430, 133CF,

13438, 005D>.

Figure 11-9. Damage Modifiers for Hieroglyphs

Text Critical Marks.

Table 11-2. Brackets used with Egyptian Hieroglyphs

Cuneiform and Hieroglyphs 537 11.4 Egyptian Hieroglyphs

Figure 11-10. Use of Square Brackets with Hieroglyphs

Cuneiform and Hieroglyphs 538 11.4 Egyptian Hieroglyphs

Meroitic hieroglyphs and Meroitic cursive were used from around the second century

BCE to the fourth century CE to write the Meroitic language of the Nile valley

kingdom known as Kush or Meroë. The kingdom originated south of Egypt around

850 BCE, with its capital at Napata, located in modern-day northern Sudan. At that

time official inscriptions used the Egyptian language and script. Around 560 BCE the

capital was relocated to Meroë, about 600 kilometers upriver. As the use of Egyptian

language and script declined with the greater distance from Egypt, two native scripts

developed for writing Meroitic:

Meroitic cursive was for general use, and its appearance was based on Egyptian

demotic.

Meroitic hieroglyphs were used for inscriptions on royal monuments and

temples, and their appearance was based on Egyptian hieroglyphs. (See

Section 11.4, Egyptian Hieroglyphs for more information.)

After the fourth century CE, the Meroitic language was gradually replaced by Nubian,

and by the sixth century the Meroitic scripts had been superseded by the Coptic

script, which picked up three additional symbols from Meroitic cursive to represent

Nubian.

Although the values of the script characters were deciphered around 1911 by the

English Egyptologist F. L. Griffith, the Meroitic language is still not understood

except for names and a few other words. It is not known to be related to any other

language. It may be related to Nubian.

 Unlike the Egyptian scripts, the Meroitic scripts are almost purely alpha‐

betic. There are 15 basic consonants; if not followed by an explicit vowel letter, they

are read with an inherent a. There are four vowels: e, i, o, and a. The a vowel is only

used for initial a. In addition, for unknown reasons, there are explicit letters for the

syllables ne, te, se, and to. This may have been due to dialect differences, or to the

possible use of n, t, and s as final consonants in some cases.

Meroitic cursive also uses two logograms for rmt and imn, derived from Egyptian

demotic.

 Horizontal writing is almost exclusively right-to-left, matching the

direction in which the hieroglyphs depicting people and animals are looking. This is

11.5 Meroitic

11.5.1 Meroitic Hieroglyphs: U+10980–U+1099F

Meroitic Cursive: U+109A0–U+109FF

•

•

Structure.

Directionality.

Cuneiform and Hieroglyphs 539 11.5 Meroitic

unlike Egyptian hieroglyphs, which are read into the faces of the glyphs for people

and animals. Meroitic hieroglyphs are also written vertically in columns.

 In Meroitic cursive, the letter for i usually connects to a preceding conso‐

nant. There is no other connecting behavior.

 The Meroitic scripts were among the earliest to use word division—

not always consistently—to separate basic sentence elements, such as noun phrases,

verb forms, and so on. For this purpose Meroitic hieroglyphs use three vertical dots,

represented by U+205D TRICOLON. When Meroitic hieroglyphs are presented in

vertical columns, the orientation of the three dots shifts to become three horizontal

dots. This can be represented either with U+2026 HORIZONTAL ELLIPSIS, or in more

sophisticated rendering, by glyphic rotation of U+205D TRICOLON. Meroitic cursive

uses two vertical dots, represented by U+003A COLON.

 Two ankh-like symbols are used with Meroitic hieroglyphs.

 Meroitic numbers are found only in Meroitic Cursive.

The system consists of numbers one through nine and bases for ranks: tens,

hundreds, thousands, ten thousands, and hundred thousands. The numbers for 100

and higher are systematically formed by attaching the numbers for one through nine

as a multiplier to the respective base for each rank. There is also a notation for a frac‐

tional system based on twelfths, which simply uses one to eleven dots to represent

each fraction.

Shaping.

Punctuation.

Symbols.

Meroitic Cursive Numbers.

Cuneiform and Hieroglyphs 540 11.5 Meroitic

Anatolian hieroglyphs appeared on personal seals, monumental inscriptions, and

other objects in the second and first millennia BCE in present-day Turkey and

surrounding areas. The script, known also as Luwian or Luvian hieroglyphs, was

used primarily to write the Luwian language.

 Anatolian hieroglyphs contain both syllabic and logographic elements.

Words can be represented by logographs alone, by logographs with a phonetic

complement, or solely by syllabic values.

 Anatolian hieroglyphs can be written from left to right, from right to

left, or boustrophedon, and lines are often divided by horizontal rules. Within a line,

characters are grouped vertically, typically from top to bottom, although the charac‐

ters may be placed out of phonetic or logical order for aesthetic reasons.

The characters in the Anatolian Hieroglyphs block have a strong left-to-right direc‐

tionality (Bidi_Class = L), because publications typically lay out hieroglyphs from left

to right. When Anatolian hieroglyphs are displayed right to left, the glyphs should be

mirrored from those shown in the code charts.

 The repertoire of characters is broadly based on the sign catalog of

Laroche (1960), supplemented by additions from later handbooks. Some signs

contained in Laroche are considered variants today, but have been encoded sepa‐

rately to represent the complete history of Anatolian scholarship and discussions

about the decipherment.

Character names for variant signs are usually distinguished by an “A”, “B”, or “C”

appended to the catalog number of the main sign. For example, U+14600 ANATO‐

LIAN HIEROGLYPH A457A is a variant of U+145FF ANATOLIAN HIEROGLYPH A457.

A few hieroglyphs developed a simplified, cursive shape, based on the more pictorial

shape of the signs found on monuments. The simplified forms are encoded sepa‐

rately, and are differentiated in their names.

1442B ANATOLIAN HIEROGLYPH A041 (monumental style)

= capere
= syllabic tà

1442C ANATOLIAN HIEROGLYPH A041A (cursive style)

= syllabic tà

The script contains a productive grapheme, U+145B1 ANATOLIAN HIEROGLYPH A383

RA OR RI, which appears as a part of several other signs, such as U+145B9 ANATO‐

11.6 Anatolian Hieroglyphs

11.6.1 Anatolian Hieroglyphs: U+14400–U+1467F

Structure.

Directionality.

Repertoire.

Cuneiform and Hieroglyphs 541 11.6 Anatolian Hieroglyphs

LIAN HIEROGLYPH A389. The characters containing this graphic element as part of

their form are not decomposable.

 Latin names are used traditionally to describe characters used logo‐

graphically and appear as annotations in the names list. Those characters which have

a Luwian phonetic value or are logosyllabic are identified in the annotations. When a

plus sign appears between two elements in the annotation, the elements are consid‐

ered a single graphic unit, whereas a period between the two elements indicates the

two elements are considered graphically separate.

1447E ANATOLIAN HIEROGLYPH A107
= bos+mi

14480 ANATOLIAN HIEROGLYPH A107B
= bos.mi

 In some texts, word division is indicated by U+145B5 ANATOLIAN

HIEROGLYPH A386 or its variant U+145B6 ANATOLIAN HIEROGLYPH A386A.

U+145CE ANATOLIAN HIEROGLYPH A410 BEGIN LOGOGRAM MARK and U+145CF

ANATOLIAN HIEROGLYPH A410A END LOGOGRAM MARK sometimes occur in text to

mark logograms.

The characters U+145F7 ANATOLIAN HIEROGLYPH A450 and U+144EF ANATO‐

LIAN HIEROGLYPH A209 are occasionally used to fill blank spaces, often at the end of

a word. Spaces are used in modern renditions of hieroglyphic text.

 Some of the hieroglyphic signs have been interpreted as having numeric

values. These include values for 1–5, 8–10, 12, 100, and 1000. However, all of the

Anatolian hieroglyphs have the General_Category = Other_Letter and no specific

numeric values for them are assigned in the Unicode Character Database.

 Just as for Egyptian hieroglyphs, only the basic text elements of the

script are encoded. A higher-level protocol is required for the display Anatolian

hieroglyphs in a nonlinear layout.

Annotations.

Punctuation.

Numbers.

Rendering.

Cuneiform and Hieroglyphs 542 11.6 Anatolian Hieroglyphs

Chapter 12

South and Central Asia-I
Official Scripts of India

The scripts of South Asia share so many common features that a side-by-side

comparison of a few will often reveal structural similarities even in the modern

letterforms. With minor historical exceptions, they are written from left to right. They

are all abugidas in which most symbols stand for a consonant plus an inherent vowel

(usually the sound /a/). Word-initial vowels in many of these scripts have distinct

symbols, and word-internal vowels are usually written by juxtaposing a vowel sign in

the vicinity of the affected consonant. Absence of the inherent vowel, when that

occurs, is frequently marked with a special sign. In the Unicode Standard, this sign is

denoted by the Sanskrit word virāma. In some languages, another designation is

preferred. In Hindi, for example, the word hal refers to the character itself, and

halant refers to the consonant that has its inherent vowel suppressed; in Tamil, the

word puḷḷi is used. The virama sign nominally serves to suppress the inherent vowel

of the consonant to which it is applied; it is a combining character, with its shape

varying from script to script.

Most of the scripts of South Asia, from north of the Himalayas to Sri Lanka in the

south, from Pakistan in the west to the easternmost islands of Indonesia, are derived

from the ancient Brahmi script. The oldest lengthy inscriptions of India, the edicts of

Ashoka from the third century BCE, were written in two scripts, Kharoshthi and

Brahmi. These are both ultimately of Semitic origin, probably deriving from Aramaic,

which was an important administrative language of the Middle East at that time.

Kharoshthi, written from right to left, was supplanted by Brahmi and its derivatives.

The descendants of Brahmi spread with myriad changes throughout the subconti‐

nent and outlying islands. There are said to be some 200 different scripts deriving

from it. By the eleventh century, the modern script known as Devanagari was in

ascendancy in India proper as the major script of Sanskrit literature.

The North Indian branch of scripts was, like Brahmi itself, chiefly used to write Indo-

European languages such as Pali and Sanskrit, and eventually the Hindi, Bangla, and

Gujarati languages, though it was also the source for scripts for non-Indo-European

languages such as Tibetan, Mongolian, and Lepcha.

The South Indian scripts are also derived from Brahmi and, therefore, share many

structural characteristics. These scripts were first used to write Pali and Sanskrit but

543

were later adapted for use in writing non-Indo-European languages—namely, the

languages of the Dravidian family of southern India and Sri Lanka. Because of their

use for Dravidian languages, the South Indian scripts developed many characteristics

that distinguish them from the North Indian scripts. South Indian scripts were also

exported to southeast Asia and were the source of scripts such as Tai Tham (Lanna)

and Myanmar, as well as the insular scripts of the Philippines and Indonesia.

The shapes of letters in the South Indian scripts took on a quite distinct look from the

shapes of letters in the North Indian scripts. Some scholars suggest that this occurred

because writing materials such as palm leaves encouraged changes in the way letters

were written.

The major official scripts of India proper, including Devanagari, are documented in

this chapter. They are all encoded according to a common plan, so that comparable

characters are in the same order and relative location. This structural arrangement,

which facilitates transliteration to some degree, is based on the Indian national stan‐

dard (ISCII) encoding for these scripts.

The first six columns in each script are isomorphic with the ISCII-1988 encoding,

except that the last 11 positions (U+0955..U+095F in Devanagari, for example), which

are unassigned or undefined in ISCII-1988, are used in the Unicode encoding. The

seventh column in each of these scripts, along with the last 11 positions in the sixth

column, represent additional character assignments in the Unicode Standard that are

matched across some or all of the scripts. For example, positions U+xx66..U+xx6F

and U+xxE6..U+xxEF code the Indic script digits for each script. The eighth column

for each script is reserved for script-specific additions that do not correspond from

one Indic script to the next.

While the arrangement of the encoding for the scripts of India is based on ISCII, this

does not imply that the rendering behavior of South Indian scripts in particular is the

same as that of Devanagari or other North Indian scripts. Implementations should

ensure that adequate attention is given to the actual behavior of those scripts; they

should not assume that they work just as Devanagari does. Each block description in

this chapter describes the most important aspects of rendering for a particular script

as well as unique behaviors it may have.

Many of the character names in this group of scripts represent the same sounds, and

common naming conventions are used for the scripts of India.

South and Central Asia-I 544

The Devanagari script is used for writing classical Sanskrit and its modern historical

derivative, Hindi. Extensions to the Sanskrit repertoire are used to write other related

languages of India (such as Marathi) and of Nepal (Nepali). In addition, the Devana‐

gari script is used to write the following languages: Awadhi, Bagheli, Bhatneri, Bhili,

Bihari, Braj Bhasha, Chhattisgarhi, Garhwali, Gondi (Betul, Chhindwara, and

Mandla dialects), Harauti, Ho, Jaipuri, Kachchhi, Kanauji, Konkani, Kului,

Kumaoni, Kurku, Kurukh, Marwari, Mundari, Newari, Palpa, and Santali.

All other Indic scripts, as well as the Sinhala script of Sri Lanka, the Tibetan script,

and the Southeast Asian scripts, are historically connected with the Devanagari script

as descendants of the ancient Brahmi script. The entire family of scripts shares a

large number of structural features.

The principles of the Indic scripts are covered in some detail in this introduction to

the Devanagari script. The remaining introductions to the Indic scripts are abbrevi‐

ated but highlight any differences from Devanagari where appropriate.

 The Devanagari block of the Unicode Standard is based on ISCII-1988

(Indian Script Code for Information Interchange). The ISCII standard of 1988 differs

from and is an update of earlier ISCII standards issued in 1983 and 1986.

The Unicode Standard encodes Devanagari characters in the same relative positions

as those coded in positions A0–F4
16

 in the ISCII-1988 standard. The same character

code layout is followed for eight other Indic scripts in the Unicode Standard: Bengali/

Bangla, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada, and Malayalam. This

parallel code layout emphasizes the structural similarities of the Brahmi scripts and

follows the stated intention of the Indian coding standards to enable one-to-one

mappings between analogous coding positions in different scripts in the family.

Sinhala, Tibetan, Thai, Lao, Khmer, Myanmar, and other scripts depart to a greater

extent from the Devanagari structural pattern, so the Unicode Standard does not

attempt to provide any direct mappings for these scripts to the Devanagari order.

In November 1991, at the time The Unicode Standard, Version 1.0, was published, the

Bureau of Indian Standards published a new version of ISCII in Indian Standard (IS)

13194:1991. This new version partially modified the layout and repertoire of the

ISCII-1988 standard. Because of these events, the Unicode Standard does not

precisely follow the layout of the current version of ISCII. Nevertheless, the Unicode

Standard remains a superset of the ISCII-1991 repertoire. Modern, non-Vedic texts

encoded with ISCII-1991 may be automatically converted to Unicode code points and

back to their original encoding without loss of information. The Vedic extension

12.1 Devanagari

12.1.1 Devanagari: U+0900–U+097F

Standards.

South and Central Asia-I 545 12.1 Devanagari

characters defined in IS 13194:1991 Annex G—Extended Character Set for Vedic are

now fully covered by the Unicode Standard, but the conversions between ISCII and

Unicode code points in some cases are more complex than for modern texts.

 The writing systems that employ Devanagari and other Indic

scripts constitute abugidas—a cross between syllabic writing systems and alphabetic

writing systems. The effective unit of these writing systems is the orthographic

syllable, consisting of a consonant and vowel (CV) core and, optionally, one or more

preceding consonants, with a canonical structure of (((C)C)C)V. The orthographic

syllable need not correspond exactly with a phonological syllable, especially when a

consonant cluster is involved, but the writing system is built on phonological princi‐

ples and tends to correspond quite closely to pronunciation.

The orthographic syllable is built up of alphabetic pieces, the actual letters of the

Devanagari script. These pieces consist of three distinct character types: consonant

letters, independent vowels, and dependent vowel signs. In a text sequence, these

characters are stored in logical (phonetic) order. Consonant letters by themselves

constitute a CV unit, where the V is an inherent vowel, whose exact phonetic value

may vary by writing system. Independent vowels also constitute a CV unit, where the

C is considered to be null.

A dependent vowel sign is used to represent a V in CV units where C is not null and V
is not the inherent vowel. CV units are not represented by sequences of a consonant

followed by virama followed by independent vowel. In some cases, a phonological

diphthong (such as Hindi /jāo/) is actually written as two orthographic CV
units, where the second of these units is an independent vowel letter, whose C is

considered to be null.

 Devanagari characters, like characters from

many other scripts, can combine or change shape depending on their context. A

character’s appearance is affected by its ordering with respect to other characters, the

font used to render the character, and the application or system environment. These

variables can cause the appearance of Devanagari characters to differ from their

nominal glyphs (used in the code charts).

Additionally, a few Devanagari characters cause a change in the order of the

displayed characters. This reordering is not commonly seen in non-Indic scripts and

occurs independently of any bidirectional character reordering that might be

required.

 Each consonant letter represents a single consonantal sound but

also has the peculiarity of having an inherent vowel, generally the short vowel /a/ in

Devanagari and the other Indic scripts. Thus U+0915 DEVANAGARI LETTER KA repre‐

Encoding Principles.

12.1.2 Principles of the Devanagari Script

Rendering Devanagari Characters.

Consonant Letters.

South and Central Asia-I 546 12.1 Devanagari

sents not just /k/ but also /ka/. In the presence of a dependent vowel, however, the

inherent vowel associated with a consonant letter is overridden by the dependent

vowel.

Consonant letters may also be rendered as half-forms, which are presentation forms

used within an orthographic syllable to depict initial consonants in a consonant

cluster. These half-forms do not have an inherent vowel. Their rendered forms in

Devanagari often resemble the full consonant but are missing the vertical stem,

which marks a syllabic core. The stem glyph is graphically and historically related to

the sign denoting the inherent /a/ vowel, as discussed later in this section.

Some Devanagari consonant letters have alternative presentation forms whose choice

depends on neighboring consonants. This variability is especially notable for U+0930

DEVANAGARI LETTER RA, which has numerous different forms, both as the initial

element and as the final element of a consonant cluster. Only the nominal forms,

rather than the contextual alternatives, are depicted in the code charts.

The traditional Sanskrit/Devanagari alphabetic encoding order for consonants

follows articulatory phonetic principles, starting with velar consonants and moving

forward to bilabial consonants, followed by liquids and then fricatives. ISCII and the

Unicode Standard both observe this traditional order.

 The independent vowels in Devanagari are letters that

stand on their own. The writing system treats independent vowels as orthographic CV
syllables in which the consonant is null. The independent vowel letters are used to

write syllables that start with a vowel.

 The dependent vowels serve as the common

manner of writing noninherent vowels and are generally referred to as vowel signs, or

as matras in Sanskrit. The dependent vowels do not stand alone; rather, they are

visibly depicted in combination with a base letterform. A single consonant or a

consonant cluster may have a dependent vowel applied to it to indicate the vowel

quality of the syllable, when it is different from the inherent vowel. Explicit appear‐

ance of a dependent vowel in a syllable overrides the inherent vowel of a single

consonant letter.

The greatest variation among different Indic scripts is found in the way that the

dependent vowels are applied to base letterforms. Devanagari has a collection of

nonspacing dependent vowel signs that may appear above or below a consonant

letter, as well as spacing dependent vowel signs that may occur to the right or to the

left of a consonant letter or consonant cluster. Other Indic scripts generally have one

or more of these forms, but what is a nonspacing mark in one script may be a spacing

mark in another. Also, some of the Indic scripts have single dependent vowels that

are indicated by two or more glyph components—and those glyph components may

Independent Vowel Letters.

Dependent Vowel Signs (Matras).

South and Central Asia-I 547 12.1 Devanagari

surround a consonant letter both to the left and to the right or may occur both above

and below it.

In modern usage the Devanagari script has only one character denoting a left-side

dependent vowel sign: U+093F DEVANAGARI VOWEL SIGN I. In the historic

Prishthamatra orthography, Devanagari also made use of one additional left-side

dependent vowel sign: U+094E DEVANAGARI VOWEL SIGN PRISHTHAMATRA E.

Other Indic scripts either have no such vowel signs (Telugu and Kannada) or include

as many as three of these signs (Bengali/Bangla, Tamil, and Malayalam).

 Vowel letters are encoded atomically in Unicode, even if they can be

analyzed visually as consisting of multiple parts. Table 12-1 shows vowel letters that

can be analyzed, the single code point that should be used to represent them in text,

and the sequence of code points resulting from analysis that should not be used.

For Use Do Not Use

0904 <0905, 0946>

0906 <0905, 093E>

0908 <0930, 094D, 0907>

090A <0909, 0941>

090D <090F, 0945>

090E <090F, 0946>

0910 <090F, 0947>

0911 <0905, 0949> or <0906, 0945>

0912 <0905, 094A> or <0906, 0946>

0913 <0905, 094B> or <0906, 0947>

0914 <0905, 094C> or <0906, 0948>

0972 <0905, 0945>

0973 <0905, 093A>

0974 <0905, 093B> or <0906, 093A>

0975 <0905, 094F>

0976 <0905, 0956>

0977 <0905, 0957>

 Devanagari employs a sign known in Sanskrit as the virama or

vowel omission sign. In Hindi, it is called hal or halant, and that term is used in

Vowel Letters.

Table 12-1. Devanagari Vowel Letters

Virama (Halant).

South and Central Asia-I 548 12.1 Devanagari

referring to the virama or to a consonant with its vowel suppressed by the virama.

The terms are used interchangeably in this section.

The virama sign, U+094D DEVANAGARI SIGN VIRAMA, nominally serves to cancel (or

kill) the inherent vowel of the consonant to which it is applied. When a consonant

has lost its inherent vowel by the application of virama, it is known as a dead conso‐

nant; in contrast, a live consonant is one that retains its inherent vowel or is written

with an explicit dependent vowel sign. In the Unicode Standard, a dead consonant is

defined as a sequence consisting of a consonant letter followed by a virama. The

default rendering for a dead consonant is to position the virama as a combining mark

bound to the consonant letterform.

For example, if Cn denotes the nominal form of consonant C, and Cd denotes the

dead consonant form, then a dead consonant is encoded as shown in Figure 12-1.

TAn + VIRAMAn → TAd

+ →

It could be assumed that a dead consonant may be combined with a vowel letter or

sign to represent a CV orthographic syllable. Some non-Unicode implementations

have used this approach; however, this is not done in implementations of the

Unicode Standard. Instead, a CV orthographic syllable is represented with a (live)

consonant followed by a dependent vowel. A dead consonant should not be followed

either by an independent vowel letter or by a dependent vowel sign in an attempt to

create an alternative representation of a CV orthographic syllable.

 Consonant letters are encoded

atomically in Unicode, even if they can be analyzed visually as consisting of multiple

parts. In particular, consonant half forms are dead-consonant forms that often

resemble a full consonant form minus a vertical stem. This vertical stem is visually

similar to the vowel sign denoting /ā/, U+093E DEVANAGARI VOWEL SIGN AA.

Table 12-2 shows atomic consonant letters in Devanagari that could be graphically

analyzed this way, the single code point that should be used to represent them in text,

and the sequence of code points resulting from analysis that should not be used.

For Use Do Not Use

0916 <0916, 094D, 093E>, <0916, 094D, 200D, 093E>

0917 <0917, 094D, 093E>, <0917, 094D, 200D, 093E>

Figure 12-1. Dead Consonants in Devanagari

Atomic Representation of Consonant Letters.

Table 12-2. Devanagari Atomic Consonants

South and Central Asia-I 549 12.1 Devanagari

0918 <0918, 094D, 093E>, <0918, 094D, 200D, 093E>

091A <091A, 094D, 093E>, <091A, 094D, 200D, 093E>

091C <091C, 094D, 093E>, <091C, 094D, 200D, 093E>

091D <091D, 094D, 093E>, <091D, 094D, 200D, 093E>

091E <091E, 094D, 093E>, <091E, 094D, 200D, 093E>

0923 <0923, 094D, 093E>, <0923, 094D, 200D, 093E>

0924 <0924, 094D, 093E>, <0924, 094D, 200D, 093E>

0925 <0925, 094D, 093E>, <0925, 094D, 200D, 093E>

0927 <0927, 094D, 093E>, <0927, 094D, 200D, 093E>

0928 <0928, 094D, 093E>, <0928, 094D, 200D, 093E>

0929
<0929, 094D, 093E>, <0929, 094D, 200D, 093E>,
<0928, 093C, 094D, 093E>, <0928, 093C, 094D, 200D, 093E>

092A <092A, 094D, 093E>, <092A, 094D, 200D, 093E>

092C <092C, 094D, 093E>, <092C, 094D, 200D, 093E>

092D <092D, 094D, 093E>, <092D, 094D, 200D, 093E>

092E <092E, 094D, 093E>, <092E, 094D, 200D, 093E>

092F <092F, 094D, 093E>, <092F, 094D, 200D, 093E>

0932 <0932, 094D, 093E>, <0932, 094D, 200D, 093E>

0935 <0935, 094D, 093E>, <0935, 094D, 200D, 093E>

0936 <0936, 094D, 093E>, <0936, 094D, 200D, 093E>

0937 <0937, 094D, 093E>, <0937, 094D, 200D, 093E>

0938 <0938, 094D, 093E>, <0938, 094D, 200D, 093E>

0959
<0959, 094D, 093E>, <0959, 094D, 200D, 093E>,
<0916, 093C, 094D, 093E>, <0916, 093C, 094D, 200D, 093E>

095A
<095A, 094D, 093E>, <095A, 094D, 200D, 093E>,
<0917, 093C, 094D, 093E>, <0917, 093C, 094D, 200D, 093E>

095B
<095B, 094D, 093E>, <095B, 094D, 200D, 093E>,
<091C, 093C, 094D, 093E>, <091C, 093C, 094D, 200D, 093E>

095F
<095F, 094D, 093E>, <095F, 094D, 200D, 093E>,
<092F, 093C, 094D, 093E>, <092F, 093C, 094D, 200D, 093E>

0979 <0979, 094D, 093E>, <0979, 094D, 200D, 093E>

097A <097A, 094D, 093E>, <097A, 094D, 200D, 093E>

097B <097B, 094D, 093E>, <097B, 094D, 200D, 093E>

097C <097C, 094D, 093E>, <097C, 094D, 200D, 093E>

097E <097E, 094D, 093E>, <097E, 094D, 200D, 093E>

097F <097F, 094D, 093E>, <097F, 094D, 200D, 093E>

South and Central Asia-I 550 12.1 Devanagari

The practice of using atomic consonants to represent letters is recommended. Using

a half-form plus stems should be avoided.

 The Indic scripts are noted for a large number of consonant

conjunct forms that serve as orthographic abbreviations (ligatures) of two or more

adjacent letterforms. This abbreviation takes place only in the context of a consonant

cluster. An orthographic consonant cluster is defined as a sequence of characters that

represents one or more dead consonants (denoted Cd) followed by a normal, live

consonant letter (denoted Cl).

Under normal circumstances, a consonant cluster is depicted with a conjunct glyph if

such a glyph is available in the current font. In the absence of a conjunct glyph, the

one or more dead consonants that form part of the cluster are depicted using half-

form glyphs. In the absence of half-form glyphs, the dead consonants are depicted

using the nominal consonant forms combined with visible virama signs (see

Figure 12-2).

(1) GAd + DHAl → GAh + DHAn (3) KAd + SSAl → K.SSAn

+ → + →

(2) KAd + KAl → K.KAn (4) RAd + KAl → KAl + RAsup

+ → + →

A number of types of conjunct formations appear in these examples: (1) a half-form

of GA in its combination with the full form of DHA; (2) a vertical conjunct K.KA; and

(3) a fully ligated conjunct K.SSA, in which the components are no longer distinct. In

example (4) in Figure 12-2, the dead consonant RAd is depicted with the nonspacing

combining mark RAsup (repha).

A consonant conjunct form can take a virama and so become a dead consonant

conjunct form. A dead consonant conjunct form can be followed by another conso‐

nant letter, and so form a multi-consonant conjunct. For example, Figure 12-3 illus‐

trates a three-consonant conjunct form, P.S.YA.

Consonant Conjuncts.

Figure 12-2. Conjunct Formations in Devanagari

South and Central Asia-I 551 12.1 Devanagari

PAd + SAd + YAl → P.S.YAn

+ + →

A well-designed Indic script font may contain hundreds of conjunct glyphs, but they

are not encoded as Unicode characters because they are the result of ligation of

distinct letters. Indic script rendering software must be able to map appropriate

combinations of characters in context to the appropriate conjunct glyphs in fonts.

A dead consonant conjunct may have an appearance like a half form, because the

vertical stem of the last consonant is removed. As a result, a live consonant conjunct

could be analyzed visually as consisting of the dead, consonant-conjunct half form

plus the vowel sign /ā/. As in the case of consonant letters, the live form should not

be represented using a half form followed by U+093E DEVANAGARI VOWEL SIGN AA.

Table 12-3 shows some examples of live consonant conjuncts that exhibit this visual

pattern, but that should not be represented with fully analyzed sequences. Table 12-3

also shows the sequence of code points that should be used to represent these

conjuncts in text, and the sequence of code points resulting from analysis that should

not be used.

For Use Do Not Use

<0915, 094D, 091A>
<0915, 094D, 091A, 094D, 093E>,
<0915, 094D, 091A, 094D, 200D, 093E>

<0915, 094D, 0937>
<0915, 094D, 0937, 094D, 093E>,
<0915, 094D, 0937, 094D, 200D, 093E>

<0924, 094D, 0924>
<0924, 094D, 0924, 094D, 093E>,
<0924, 094D, 0924, 094D, 200D, 093E>

<0928, 094D, 0924>
<0928, 094D, 0924, 094D, 093E>,
<0928, 094D, 0924, 094D, 200D, 093E>

Note that these are illustrative examples only. There are many consonant conjuncts

that could be visually analyzed in the same way, and the same principle applies to all

such cases: these should not be represented as dead conjunct plus vowel sign

sequences. The practice of using atomic consonants to represent letters is recom‐

mended. Using a half-form plus stems should be avoided.

 Normally a virama character serves to create dead conso‐

nants that are, in turn, combined with subsequent consonants to form conjuncts.

This behavior usually results in a virama sign not being depicted visually. Occasion‐

ally, this default behavior is not desired when a dead consonant should be excluded

from conjunct formation, in which case the virama sign is visibly rendered. To

Figure 12-3. Multi-Consonant Conjuncts in Devanagari

Table 12-3. Devanagari Consonant Conjuncts

Explicit Virama (Halant).

South and Central Asia-I 552 12.1 Devanagari

accomplish this goal, the Unicode Standard adopts the convention of placing the

character U+200C ZERO WIDTH NON-JOINER immediately after the encoded dead

consonant that is to be excluded from conjunct formation. In this case, the virama

sign is always depicted as appropriate for the consonant to which it is attached.

For example, in Figure 12-4, the use of ZERO WIDTH NON-JOINER prevents the default

formation of the conjunct form (K.SSAn).

KAd + ZWNJ + SSAl → KAd + SSAn

+ + →

 When a dead consonant participates in forming a

conjunct, the dead consonant form is often absorbed into the conjunct form, such

that it is no longer distinctly visible. In other contexts, the dead consonant may

remain visible as a half-consonant form. In general, a half-consonant form is distin‐

guished from the nominal consonant form by the loss of its inherent vowel stem, a

vertical stem appearing to the right side of the consonant form. In other cases, the

vertical stem remains but some part of its right-side geometry is missing.

In certain cases, it is desirable to prevent a dead consonant from assuming full

conjunct formation yet still not appear with an explicit virama. In these cases, the

half-form of the consonant is used. To explicitly encode a half-consonant form, the

Unicode Standard adopts the convention of placing the character U+200D ZERO

WIDTH JOINER immediately after the encoded dead consonant. The ZERO WIDTH

JOINER denotes a nonvisible letter that presents linking or cursive joining behavior

on either side (that is, to the previous or following letter). Therefore, in the present

context, the ZERO WIDTH JOINER may be considered to present a context to which a

preceding dead consonant may join so as to create the half-form of the consonant.

For example, if Ch denotes the half-form glyph of consonant C, then a half-consonant

form is represented as shown in Figure 12-5.

KAd + ZWJ + SSAl → KAh + SSAn

+ + →

In the absence of the ZERO WIDTH JOINER, the sequence in Figure 12-5 would

normally produce the full conjunct form (K.SSAn).

Figure 12-4. Preventing Conjunct Forms in Devanagari

Explicit Half-Consonants.

Figure 12-5. Half-Consonants in Devanagari

South and Central Asia-I 553 12.1 Devanagari

This encoding of half-consonant forms also applies in the absence of a base letter‐

form. That is, this technique may be used to encode independent half-forms, as

shown in Figure 12-6.

GAd + ZWJ → GAh

+ →

Other Indic scripts have similar half-forms for the initial consonants of a conjunct.

Some, such as Oriya, also have similar half-forms for the final consonants; those are

represented as shown in Figure 12-7.

NGAn + ZWJ + VIRAMA + KAl → NGAl + KAh

+ + + →

In the absence of the ZERO WIDTH JOINER, the sequence in Figure 12-7 would

normally produce the full conjunct form (NG.KAn).

 In summary, each consonant may be encoded such that it

denotes a live consonant, a dead consonant that may be absorbed into a conjunct, the

half-form of a dead consonant, or a dead consonant with an overt halant that does

not get absorbed into a conjunct (see Figure 12-8).

+ + → K.SSAn

+ + + → KAh + SSAn

+ + + → KAd + SSAn

+ + → NG.KAn

+ + + → NGAn + KAh

+ + + → NGAd + KAn

Figure 12-6. Independent Half-Forms in Devanagari

Figure 12-7. Half-Consonants in Oriya

Consonant Forms.

Figure 12-8. Consonant Forms in Devanagari and Oriya

South and Central Asia-I 554 12.1 Devanagari

As the rendering of conjuncts and half-forms depends on the availability of glyphs in

the font, the following fallback strategy should be employed:

If the coded character sequence would normally render with a full conjunct, but

such a conjunct is not available, the fallback rendering is to use half-forms. If

those are not available, the fallback rendering should use an explicit (visible)

virama.

If the coded character sequence would normally render with a half-form (it

contains a ZWJ), but half-forms are not available, the fallback rendering should

use an explicit (visible) virama.

 This section provides more formal and detailed rules for

minimal rendering of Devanagari as part of a plain text sequence. It describes the

mapping between Unicode characters and the glyphs in a Devanagari font. It also

describes the combining and ordering of those glyphs.

These rules provide minimal requirements for legibly rendering interchanged

Devanagari text. As with any script, a more complex procedure can add rendering

characteristics, depending on the font and application.

In a font that is capable of rendering Devanagari, the number of glyphs is greater

than the number of Devanagari characters.

 In the next set of rules, the following notation applies:

Cn Nominal glyph form of consonant C as it appears in the code charts.

Cl A live consonant, depicted identically to Cn.

Cd Glyph depicting the dead consonant form of consonant C.

Ch Glyph depicting the half-consonant form of consonant C.

Ln Nominal glyph form of a conjunct ligature consisting of two or more

component consonants. A conjunct ligature composed of two

consonants X and Y is also denoted X.Yn.

RAsup A nonspacing combining mark glyph form of U+0930 DEVANAGARI

LETTER RA positioned above or attached to the upper part of a base

glyph form. This form is also known as repha.

RAsub A nonspacing combining mark glyph form of U+0930 DEVANAGARI

LETTER RA positioned below or attached to the lower part of a base

glyph form.

•

•

12.1.3 Rendering Devanagari

Rules for Rendering.

Notation.

South and Central Asia-I 555 12.1 Devanagari

Vvs Glyph depicting the dependent vowel sign form of a vowel V.

VIRAMAn The nominal glyph form of the nonspacing combining mark

depicting U+094D DEVANAGARI SIGN VIRAMA.

A virama character is not always depicted. When it is depicted, it adopts this

nonspacing mark form.

 The following rule logically precedes the application of any

other rule to form a dead consonant. Once formed, a dead consonant may be subject

to other rules described next.

TAn + VIRAMAn → TAd

+ →

 The character U+0930 DEVANAGARI LETTER RA takes one of

a number of visual forms depending on its context in a consonant cluster. By default,

this letter is depicted with its nominal glyph form (as shown in the code charts). In

some contexts, it is depicted using one of two nonspacing glyph forms that combine

with a base letterform.

RAd + KAl → KAl + RAsup
Displayed

Output

+ → + →

RA¹d + RA²d → RA²d + RA¹sup

+ → + →

Dead Consonant Rule.

When a consonant Cn precedes a VIRAMAn, it is considered to be a dead

consonant Cd. A consonant Cn that does not precede VIRAMAn is considered

to be a live consonant Cl.

R1

Consonant RA Rules.

If the dead consonant RAd precedes a consonant, then it is replaced by the

superscript nonspacing mark RAsup , which is positioned so that it applies

to the logically subsequent element in the memory representation.

R2

If the superscript mark RAsup is to be applied to a dead consonant and

that dead consonant is combined with another consonant to form a

R3

South and Central Asia-I 556 12.1 Devanagari

RAd + JAd + NYAl → J.NYAn + RAsup
Displayed

Output

+ + → + →

RAd + GAd + GHAl → GAh + GHAl + RAsup
Displayed

Output

+ + → + + →

RRAn + VIRAMAn → RRAh

+ →

RAd + ZWJ → RAh

+ →

conjunct ligature, then the mark is positioned so that it applies to the

conjunct ligature form as a whole.

If the superscript mark RAsup is to be applied to a dead consonant that is

subsequently replaced by its half-consonant form, then the mark is posi‐

tioned so that it applies to the form that serves as the base of the conso‐

nant cluster.

R4

In conformance with the ISCII standard, the half-consonant form RRAh is

represented as eyelash-RA. This form of RA is commonly used in writing

Marathi and Newari.

R5

For compatibility with The Unicode Standard, Version 2.0, if the dead

consonant RAd precedes ZERO WIDTH JOINER, then the half-consonant

form RAh , depicted as eyelash-RA, is used instead of RAsup .

R5a

Except for the dead consonant RAd , when a dead consonant Cd precedes

the live consonant RAl, then Cd is replaced with its nominal form Cn , and

RA is replaced by the subscript nonspacing mark RAsub, which is posi‐

tioned so that it applies to Cn.

R6

South and Central Asia-I 557 12.1 Devanagari

TTHAd + RAl → TTHAn + RAsub
Displayed

Output

+ → + →

PHAd + RAl → PHAn + RAsub
Displayed

Output

+ → + →

TAd + RAd → TAn + RAsub + VIRAMAn → T.RAd

+ → + + →

T.RAd + YAl → T.R.YAn

+ →

 In addition to vowel signs, three other types of combining

marks may be applied to a component of an orthographic syllable or to the syllable as

a whole: nukta, bindus, and svaras (such as U+0951 DEVANAGARI STRESS SIGN

UDATTA and U+0952 DEVANAGARI STRESS SIGN ANUDATTA).

For certain consonants, the mark RAsub may graphically combine with the

consonant to form a conjunct ligature form. These combinations, such as

the one shown here, are further addressed by the ligature rules described

shortly.

R7

If a dead consonant (other than RAd) precedes RAd , then the substitution

of RA for RAsub is performed as described above; however, the VIRAMA that

formed RAd remains so as to form a dead consonant conjunct form.

R8

A dead consonant conjunct form that contains an absorbed RAd may

subsequently combine to form a multipart conjunct form.

Modifier Mark Rules.

The nukta sign, which modifies a consonant form, is placed immediately

after the consonant in the memory representation and is attached to that

consonant in rendering. If the consonant represents a dead consonant,

then NUKTA should precede VIRAMA in the memory representation.

R9

South and Central Asia-I 558 12.1 Devanagari

KAn + NUKTAn + VIRAMAn → QAd

+ + →

KAn + AAvs + CANDRABINDUn

+ + →

 Subsequent to the application of the rules just described, a set of

rules governing ligature formation apply. The precise application of these rules

depends on the availability of glyphs in the current font being used to display the

text.

JAd + NYAl → J.NYAn TTAd + TTHAl → TT.TTHAn

+ → + →

SAd + TAd + RAn → SAd + T.RAn → S.T.RAn

+ + → + →

K.SSAd + YAl → K.SSh + YAn

+ →

Other modifying marks, in particular bindus and svaras, apply to the

orthographic syllable as a whole and should follow (in the memory repre‐

sentation) all other characters that constitute the syllable. The bindus

should follow any vowel signs, and the svaras should come last. A bindu

and svara are placed side by side when they coexist on top of an ortho‐

graphic syllable; the horizontal order may vary according to typographic

concerns.

R10

Ligature Rules.

If a dead consonant immediately precedes another dead consonant or a

live consonant, then the first dead consonant may join the subsequent

element to form a two-part conjunct ligature form.

R11

A conjunct ligature form can itself behave as a dead consonant and enter

into further, more complex ligatures.

R12

A conjunct ligature form can also produce a half-form.

South and Central Asia-I 559 12.1 Devanagari

KAn + RAsub → K.RAn PHAn + RAsub → PH.RAn

+ → + →

RAl + Uvs → RUn RAl + UUvs → RUUn

+ → + →

 The storage of plain text in

Devanagari and all other Indic scripts generally follows phonetic order; that is, a CV
syllable with a dependent vowel is always encoded as a consonant letter C followed

by a vowel sign V in the memory representation. This order is employed by the ISCII

standard and corresponds to both the phonetic order and the keying order of textual

data (see Figure 12-9).

Character Order Glyph Order

KAn + Ivs → Ivs + KAn

+ →

Because Devanagari and other Indic scripts have some dependent vowels that must

be depicted to the left side of their consonant letter, the software that renders the

Indic scripts must be able to reorder elements in mapping from the logical (char‐

acter) store to the presentational (glyph) rendering. For example, if Cn denotes the

nominal form of consonant C, and Vvs denotes a left-side dependent vowel sign form

of vowel V, then a reordering of glyphs with respect to encoded characters occurs as

just shown.

If a nominal consonant or conjunct ligature form precedes RAsub as a

result of the application of rule R6, then the consonant or ligature form

may join with RAsub to form a multipart conjunct ligature (see rule R6 for

more information).

R13

In some cases, other combining marks will combine with a base conso‐

nant, either attaching at a nonstandard location or changing shape. In

minimal rendering, there are only two cases: RAl with Uvs or UUvs.

R14

Memory Representation and Rendering Order.

Figure 12-9. Rendering Order in Devanagari

South and Central Asia-I 560 12.1 Devanagari

TAd + RAl + Ivs → T.RAn + Ivs → Ivs + T.RAn

+ + → + →

TAd + ZWNJ + RAl + Ivs → TAd + Ivs + RAl

+ + + →

 In addition to reph (rule R2) and eyelash

(rule R5a), a cluster-initial RA may also take its nominal form while the following

consonant takes a reduced form. This behavior is required by languages that make a

morphological distinction between “reph on YA” and “RA with reduced YA”, such as

Braj Bhasha. To trigger this behavior, a ZWJ is placed immediately before the virama

to request a reduced form of the following consonant, while preventing the forma‐

tion of reph, as shown in the third example below.

+ + →

+ + + →

+ + + →

Similar, special rendering behavior of cluster-initial RA is noted in other scripts of

India. See, for example, “Interaction of Repha and Ya-phalaa” in Section 12.2, Bengali

(Bangla), “Reph” in Section 12.7, Telugu, and “Consonant Clusters Involving RA” in

Section 12.8, Kannada.

Table 12-4 shows examples of half-consonant forms that are

commonly used with the Devanagari script. These forms are glyphs, not characters.

They may be encoded explicitly using ZERO WIDTH JOINER as shown. In normal

conjunct formation, they may be used spontaneously to depict a dead consonant in

combination with subsequent consonant forms.

When the dependent vowel Ivs is used to override the inherent vowel of a

syllable, it is always written to the extreme left of the orthographic

syllable. If the orthographic syllable contains a consonant cluster, then

this vowel is always depicted to the left of that cluster.

R15

The presence of an explicit virama (either caused by a ZWNJ or by the

absence of a conjunct in the font) blocks this reordering, and the depen‐

dent vowel Ivsis rendered after the rightmost such explicit virama.

R16

Alternative Forms of Cluster-Initial RA.

Sample Half-Forms.

South and Central Asia-I 561 12.1 Devanagari

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

Table 12-5 shows examples of conjunct ligature forms that are

commonly used with the Devanagari script. These forms are glyphs, not characters.

Not every writing system that employs this script uses all of these forms; in partic‐

ular, many of these forms are used only in writing Sanskrit texts. Furthermore, indi‐

vidual fonts may provide fewer or more ligature forms than are depicted here.

Table 12-4. Sample Devanagari Half-Forms

Sample Ligatures.

South and Central Asia-I 562 12.1 Devanagari

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ + →

+ →

+ →

+ →

+ + →

 The phonological sequence /r vocalic_r/,

expressed with the character sequence <U+0930 ra, U+0943 vocalic_r>, can graphi‐

cally appear as either of two forms, as shown in the first row of Table 12-6. It may

appear as the full independent vowel form of the vocalic_r, with a superscript repha

Table 12-5. Sample Devanagari Ligatures

Ligature Forms for Ra + Vocalic Liquids.

South and Central Asia-I 563 12.1 Devanagari

form of the ra (V + RAsup): . Alternatively, it may appear as the full letter form of

the ra with the subscript, dependent form of the vocalic_r (RAn + Vvs): . Similarly,

the phonological sequences with the other vocalic sounds (rr, l, ll) have two written

forms, as shown in Table 12-6.

+ → or

+ → or

+ → or

+ → or

The graphical forms displayed above with the reph (RAsup) should not be represented

by sequences of RA + virama + independent vowel, as such sequences violate the

general encoding principles of the script. CV orthographic syllables are not repre‐

sented by consonant + virama + independent vowel.

The practice of writing these phonological sequences as a reph on an independent

vocalic liquid letter is also observed in other Indic scripts, such as Gujarati, Oriya,

Telugu, Kannada, and Bhaiksuki.

 In addition to half-form glyphs of individual conso‐

nants, half-forms are used to depict conjunct ligature forms. A sample of such forms

is shown in Table 12-7. These forms are glyphs, not characters. They may be encoded

explicitly using ZERO WIDTH JOINER as shown. In normal conjunct formation, they

may be used spontaneously to depict a conjunct ligature in combination with subse‐

quent consonant forms.

+ + + + →

+ + + + →

+ + + + →

+ + + + →

+ + + + →

Table 12-6. RA + Vocalic Letter Ligature Forms

Sample Half-Ligature Forms.

Table 12-7. Sample Devanagari Half-Ligature Forms

South and Central Asia-I 564 12.1 Devanagari

 In Marathi, Nepali, and some South Indian

orthographies, variant glyphs are preferred for certain letters and digits. These

include U+091D DEVANAGARI LETTER JHA, U+0932 DEVANAGARI LETTER LA,

U+0936 DEVANAGARI LETTER SHA, and the digits five, eight, and nine, as shown in

Table 12-8. Marathi also makes use of the “eyelash” form of the letter RA, as

discussed in rule R5.

Code Point Hindi Marathi Nepali

U+091D JHA

U+0932 LA

U+0936 SHA

U+096B FIVE

U+096E EIGHT

U+096F NINE

In addition, various languages written in Devanagari (or sometimes their various

orthographic traditions) tend to have different preferences for formation of certain

ligatures (see the text on “Sample Ligatures,” earlier in this section). For example,

modern Nepali orthographies prefer a smaller number of ligatures than commonly

used in Hindi or Marathi.

 Devanagari and other Indic scripts have a number of combining

marks that could be considered diacritic. One class of these marks, known as bindus,

is represented by U+0901 DEVANAGARI SIGN CANDRABINDU and U+0902 DEVANA‐

GARI SIGN ANUSVARA. These marks indicate nasalization or final nasal closure of a

syllable. U+093C DEVANAGARI SIGN NUKTA is a true diacritic. It is used to extend the

basic set of consonant letters by modifying them (with a subscript dot in Devanagari)

to create new letters.

U+0951 DEVANAGARI STRESS SIGN UDATTA and U+0952 DEVANAGARI STRESS SIGN

ANUDATTA are tone marks used in the representation of Vedic text in Devanagari.

These two combining marks may also occur in the representation of Vedic texts

written in other scripts, including transliterations in the Latin script. They are given

the Indic_Syllabic_Category value of Cantillation_Mark.

U+0953 DEVANAGARI GRAVE ACCENT and U+0954 DEVANAGARI ACUTE ACCENT

were originally encoded for Latin transliteration of Sanskrit text. However, such use

is now discouraged, and Latin transliterations should simply use the generic

combining marks, U+0300 COMBINING GRAVE ACCENT and U+0301 COMBINING

ACUTE ACCENT. Because U+0953 and U+0954 are not intended to be used with the

Devanagari script, they have no explicit property values for

Indic_Positional_Category and Indic_Syllabic_Category.

Language-Specific Allographs.

Table 12-8. Marathi and Nepali Allographs

Combining Marks.

South and Central Asia-I 565 12.1 Devanagari

 Each Indic script has a distinct set of digits appropriate to that script. These

digits may or may not be used in ordinary text in that script. European digits have

displaced the Indic script forms in modern usage in many of the scripts. Some Indic

scripts—notably Tamil—lacked a distinct digit for zero in their traditional numerical

systems, but adopted a zero based on general Indian practice.

U+0964 DEVANAGARI DANDA is similar to a full stop. U+0965

DEVANAGARI DOUBLE DANDA marks the end of a verse in traditional texts. The term

danda is from Sanskrit, and the punctuation mark is generally referred to as a viram

instead in Hindi. Although the danda and double danda are encoded in the Devana‐

gari block, the intent is that they be used as common punctuation for all the major

scripts of India covered by this chapter. Danda and double danda punctuation marks

are not separately encoded for some Indic scripts, such as Gujarati, Gurmukhi, and

Oriya. However, analogous punctuation marks for other Brahmi-derived scripts are

separately encoded, particularly for scripts used primarily outside of India.

Many modern languages written in the Devanagari script intersperse punctuation

derived from the Latin script. Thus U+002C COMMA and U+002E FULL STOP are

freely used in writing Hindi, and the danda is usually restricted to more traditional

texts. However, the danda may be preserved when such traditional texts are translit‐

erated into the Latin script.

 U+0970 DEVANAGARI ABBREVIATION SIGN appears after letters or

combinations of letters and marks the sequence as an abbreviation. It is intended

specifically for Devanagari script-based abbreviations, such as the Devanagari rupee

sign. Other symbols and signs most commonly occurring in Vedic texts are encoded

in the Devanagari Extended and Vedic Extensions blocks and are discussed in the

text that follows.

The svasti (or well-being) signs often associated with the Hindu, Buddhist, and Jain

traditions are encoded in the Tibetan block. See Section 13.4, Tibetan for further infor‐

mation.

 The characters U+097B DEVANAGARI LETTER GGA, U+097C

DEVANAGARI LETTER JJA, U+097E DEVANAGARI LETTER DDDA, and U+097F

DEVANAGARI LETTER BBA are used to write Sindhi implosive consonants. Previous

versions of the Unicode Standard recommended representing those characters as a

combination of the usual consonants with nukta and anudātta, but those combina‐

tions are no longer recommended.

12.1.4 Devanagari Digits, Punctuation, and Symbols

Digits.

Punctuation.

Other Symbols.

12.1.5 Extensions in the Main Devanagari Block

Sindhi Letters.

South and Central Asia-I 566 12.1 Devanagari

 Konkani makes use of additional sounds that can be represented with

combinations such as U+091A DEVANAGARI LETTER CA plus U+093C DEVANAGARI

SIGN NUKTA and U+091F DEVANAGARI LETTER TTA plus U+0949 DEVANAGARI

VOWEL SIGN CANDRA O.

 There are several letters for use with Kashmiri when written in

Devanagari script. Long and short versions of the independent vowel letters are

encoded in the range U+0973..U+0977. The corresponding dependent vowel signs

are U+093A DEVANAGARI VOWEL SIGN OE, U+093B DEVANAGARI VOWEL SIGN OOE,

and U+094F DEVANAGARI VOWEL SIGN AW. The forms of the independent vowels

for Kashmiri are constructed by using the glyphs of the matras U+093B DEVANAGARI

VOWEL SIGN OOE, U+094F DEVANAGARI VOWEL SIGN AW, U+0956 DEVANAGARI

VOWEL SIGN UE, and U+0957 DEVANAGARI VOWEL SIGN UUE as diacritics on

U+0905 DEVANAGARI LETTER A. However, for representation of independent vowels

in Kashmiri, use the encoded, composite characters in the range U+0973..U+0977

and not the visually equivalent sequences of U+0905 DEVANAGARI LETTER A plus

the matras. See Table 12-1. A few of the letters identified as being used for Kashmiri

are also used to write the Bihari languages.

 The orthographies of the Bodo, Dogri, and Maithili

languages of India make use of U+02BC “ ’ ” MODIFIER LETTER APOSTROPHE, either

as a tone mark or as a length mark. In Bodo and Dogri, this character functions as a

tone mark, called gojau kamaa in Bodo and sur chinha in Dogri. In Dogri, the tone

mark occurs after short vowels, including inherent vowels, and indicates a high-

falling tone. After Dogri long vowels, a high-falling tone is written instead using

U+0939 DEVANAGARI LETTER HA.

In Maithili, U+02BC “ ’ ” MODIFIER LETTER APOSTROPHE is used to indicate the

prolongation of a short a and to indicate the truncation of words. This sign is called

bikari kaamaa.

Examples illustrating the use of U+02BC “ ’ ” MODIFIER LETTER APOSTROPHE in

Bodo, Dogri, and Maithili are shown in Figure 12-10. The Maithili examples show the

same sentence, first in full form, and then using U+02BC to show truncation of

words.

Konkani.

Kashmiri Letters.

Bodo, Dogri, and Maithili.

Figure 12-10. Use of Apostrophe in Bodo, Dogri and Maithili

South and Central Asia-I 567 12.1 Devanagari

In both Dogri and Maithili, an avagraha sign, U+093D DEVANAGARI SIGN

AVAGRAHA, is used to indicate extra-long vowels. An example of the contrastive use

of this avagraha sign is shown for Dogri in Figure 12-11.

 A number of the Devanagari vowel letters have been

used to write the Bihari languages Bhojpuri, Magadhi, and Maithili, as listed in

Table 12-9.

U+090E DEVANAGARI LETTER SHORT E

U+0912 DEVANAGARI LETTER SHORT O

U+0946 DEVANAGARI VOWEL SIGN SHORT E

U+094A DEVANAGARI VOWEL SIGN SHORT O

U+0973 DEVANAGARI LETTER OE

U+0974 DEVANAGARI LETTER OOE

U+0975 DEVANAGARI LETTER AW

U+093A DEVANAGARI VOWEL SIGN OE

U+093B DEVANAGARI VOWEL SIGN OOE

U+094F DEVANAGARI VOWEL SIGN AW

 The character U+0904 DEVANAGARI LETTER SHORT A is used to

denote a short e in the Awadi language, an Indo-Aryan language spoken in the north

Indian state of Uttar Pradesh and southern Nepal. A publisher in Lucknow, Uttar

Pradesh also uses it in Hindi translations and Devanagari transliterations of the

Kannada, Telugu, Tamil, Malayalam and Kashmiri languages.

 In the historic Prishthamatra orthography, the vowel

signs for e, ai, o, and au are represented using U+094E DEVANAGARI VOWEL SIGN

PRISHTHAMATRA E (which goes on the left side of the consonant) alone or in combi‐

nation with one of U+0947 DEVANAGARI VOWEL SIGN E, U+093E DEVANAGARI

VOWEL SIGN AA or U+094B DEVANAGARI VOWEL SIGN O. Table 12-10 shows those

combinations applied to ka. In the underlying representation of text, U+094E should

be first in the sequence of dependent vowel signs after the consonant, and may be

followed by U+0947, U+093E or U+094B.

Figure 12-11. Use of Avagraha in Dogri

Letters for Bihari Languages.

Table 12-9. Devanagari Vowels Used in Bihari Languages

Letter Short a.

Prishthamatra Orthography.

South and Central Asia-I 568 12.1 Devanagari

Prishthamatra Orthography Modern Orthography

ke <0915, 094E> <0915, 0947>

kai <0915, 094E, 0947> <0915, 0948>

ko <0915, 094E, 093E> <0915, 094B>

kau <0915, 094E, 094B> <0915, 094C>

This block of characters is used chiefly for Vedic Sanskrit, although many of the char‐

acters are generic and can be used by other Indic scripts. The block includes a set of

combining digits, letters, and avagraha which is used as a system of cantillation

marks in the early Vedic Sanskrit texts. The Devanagari Extended block also includes

nasalization marks (candrabindu), and a number of editorial marks.

The Devanagari Extended block, as well as the Vedic Extensions block and the

Devanagari block, include characters that are used to indicate tone in Vedic Sanskrit.

Indian linguists describe tone as a feature of vowels, shared by the consonants in the

same syllable, or as a feature of syllables. In Vedic, vowels are marked for tone, as are

certain non-vocalic characters that are syllabified in Vedic recitation (visarga and

anusvāra); the tone marks directly follow the vowel or other character that they

modify. Vowels are categorized according to tone as either udātta (high-toned or

“acute”), anudātta (low-toned or “non-acute”), svarita (“modulated” or dropping

from high to low tone) or ekaśruti (monotone). Some of the symbols used for

marking tone indicate different tones in different traditions. Visarga may be marked

for all three tones. The tone marks also can indicate other modifications of vocal text,

such as vibration, lengthening a vowel, or skipping a tone in a descending scale.

Cantillation marks are used to indicate length, tone, and other features in the recited

text of Sāmaveda, and in the Kauthuma and Rāṇāyanīya traditions of Sāmagāna.

These marks are encoded as a series of combining digits, alphabetic characters, and

avagraha in the range U+A8E0..U+A8F1.

 One of the four major Vedic texts is

Sāmaveda. The text is both recited (Sāmaveda-Saṁhitā) and sung (Sāmagāna), and

is marked differently for the purposes of each. Cantillation marks are used to indicate

length, tone, and other features in the recited text of Sāmaveda, and in the

Kauthuma and Rāṇāyanīya traditions of Sāmagāna. These marks are encoded as a

series of combining digits, alphabetic characters, and avagraha in the range

U+A8E0..U+A8F1. The marks are rendered directly over the base letter. They are

represented in text immediately after the syllable they modify.

Table 12-10. Prishthamatra Orthography

12.1.6 Devanagari Extended: U+A8E0–U+A8FF

Cantillation Marks for the Sāmaveda.

South and Central Asia-I 569 12.1 Devanagari

In certain cases, two marks may occur over a letter: U+A8E3 COMBINING DEVANA‐

GARI DIGIT THREE may be followed by U+A8EC COMBINING DEVANAGARI LETTER

KA, for example. Although no use of U+A8E8 COMBINING DEVANAGARI DIGIT

EIGHT has been found in the Sāmagāna, it is included to provide a complete set of 0–

9 digits. The combining marks encoded for the Sāmaveda do not include characters

that may appear as subscripts and superscripts in the Jaiminīya tradition of

Sāmagāna, which used interlinear annotation. Interlinear annotation may be

rendered using Ruby and may be represented by means of markup or other higher-

level protocols.

 The set of spacing marks in the range U+A8F2..U+A8F7

include the term candrabindu in their names and indicate nasalization. These marks

are all aligned with the headline. Note that U+A8F2 DEVANAGARI SIGN SPACING

CANDRABINDU is lower than the U+0901 DEVANAGARI SIGN CANDRABINDU.

 A set of editorial marks is encoded in the range U+A8F8..U+A8FB

for use with Devanagari. U+A8F9 DEVANAGARI GAP FILLER signifies an intentional

gap that would ordinarily be filled with text. In contrast, U+A8FB DEVANAGARI

HEADSTROKE indicates illegible gaps in the original text. The glyph for DEVANAGARI

HEADSTROKE should be designed so that it does not connect to the headstroke of the

letters beside it, which will make it possible to indicate the number of illegible sylla‐

bles in a given space. U+A8F8 DEVANAGARI SIGN PUSHPIKA acts as a filler in text,

and is commonly flanked by double dandas. U+A8FA DEVANAGARI CARET, a zero-

width spacing character, marks the insertion point of omitted text, and is placed at

the insertion point between two orthographic syllables. It can also be used to indicate

word division.

 Characters in the range of U+11B00..U+11B4F represent auspicious

signs used in benedictions of Jaina manuscripts and inscriptions in western and

central India. They are functionally similar to, but distinct from siddham signs such

as U+A8FC DEVANAGARI SIGN SIDDHAM.

These auspicious signs are typically represented as sequences of up to three charac‐

ters: a head-mark (U+11B00, U+11B01), followed by an initial or bhale

(U+11B02..U+11B06), and a terminal or mīṇḍu (U+11B09, U+0966). The sequence is

usually followed by a double danda.

The Vedic Extensions block includes characters that are used in Vedic texts; they may

be used with Devanagari, as well as many other Indic scripts. This block includes a

set of characters designating tone, grouped by the various Vedic traditions in which

they occur. Characters indicating tone marks directly follow the character they

Nasalization Marks.

Editorial Marks.

12.1.7 Devanagari Extended-A: U+11B00–U+11B5F

Bhale Mīṇḍu.

12.1.8 Vedic Extensions: U+1CD0–U+1CFF

South and Central Asia-I 570 12.1 Devanagari

modify. Most of these marks indicate the tone of vowels, but three of them specifi‐

cally indicate the tone of visarga.

A number of marks for nasalization are also included in the block. U+1CD3 VEDIC

SIGN NIHSHVASA is a breaking mark which separates sections of Samavedic singing

between which a pause is disallowed. The block also contains several Vedic signs for

ardhavisarga, jihvamuliya, upadhmaniya and atikrama.

 The Vedic tone marks are all combining marks. The tone marks are

grouped together in the code charts based upon the tradition in which they appear:

they are used in the four core texts of the Vedas (Sāmaveda, Yajurveda, Rigveda, and

Atharvaveda) and in the prose text on Vedic ritual (Śatapathabrāhmaṇa). The char‐

acter U+1CD8 VEDIC TONE CANDRA BELOW is also used to identify the short vowels e

and o. In this usage, the prescribed order is the Indic syllable (aksara), followed by

U+1CD8 VEDIC TONE CANDRA BELOW and the tone mark (svara). When a tone mark

is placed below, it appears below the VEDIC TONE CANDRA BELOW.

In addition to the marks encoded in this block, Vedic texts may use other nonspacing

marks from the General Diacritics block and other blocks. For example, U+20F0

COMBINING ASTERISK ABOVE would be used to represent a mark of that shape above

a Vedic letter.

 A set of combining marks that serve as diacritics for the

visarga is encoded in the range U+1CE2..U+1CE8. These marks indicate that the

visarga has a particular tone. For example, the combination U+0903 DEVANAGARI

SIGN VISARGA plus U+1CE2 VEDIC SIGN VISARGA SVARITA represents a svarita

visarga. The upward-shaped diacritic is used for the udātta (high-toned), the down‐

ward-shaped diacritic for anudātta (low-toned), and the midline glyph indicates the

svarita (modulated tone).

In Vedic manuscripts the tonal mark (that is, the horizontal bar, upward curve and

downward curve) appears in colored ink, while the two dots of the visarga appear in

black ink. The characters for accents can be represented using separate characters, to

make it easier for color information to be maintained by means of markup or other

higher-level protocols.

 A set of spacing marks and one combining mark, U+1CED

VEDIC SIGN TIRYAK, are encoded in the range U+1CE9..U+1CF1. They describe

phonetic distinctions in the articulation of nasals. The gomukha characters from

U+1CE9..U+1CEC may be combined with U+0902 DEVANAGARI SIGN ANUSVARA or

U+0901 DEVANAGARI SIGN CANDRABINDU. U+1CF1 VEDIC SIGN ANUSVARA

UBHAYATO MUKHA may indicate a visarga with a tonal mark as well as a nasal. The

three characters, U+1CEE VEDIC SIGN HEXIFORM LONG ANUSVARA, U+1CEF VEDIC

SIGN LONG ANUSVARA, and U+1CF0 VEDIC SIGN RTHANG LONG ANUSVARA, are all

synonymous and indicate a long anusvāra after a short vowel. U+1CED VEDIC SIGN

Tone Marks.

Diacritics for the Visarga.

Nasalization Marks.

South and Central Asia-I 571 12.1 Devanagari

TIRYAK is the only combining character in this set of nasalization marks. While it

appears similar to the U+094D DEVANAGARI SIGN VIRAMA, it is used to render glyph

variants of nasal marks that occur in manuscripts and printed texts.

U+1CF2 VEDIC SIGN ARDHAVISARGA is a character that marks either

thejihvāmūlīya, a velar fricative occurring only before the unvoiced velar stops ka

and kha, or the upadhmānīya, a bilabial fricative occurring only before the unvoiced

labial stops pa and pha. Ardhavisarga is a spacing character. It is represented in text

in visual order before the consonant it modifies.

Ardhavisarga.

South and Central Asia-I 572 12.1 Devanagari

The term Bengali is used in the Unicode Standard for the script and character names.

However, users of the script in the Indian state of West Bengal and the People’s

Republic of Bangladesh prefer Bangla, so the term Bangla is used in this section and

elsewhere in this chapter. The Bangla script is used for writing languages such as

Bangla, Assamese, Bishnupriya Manipuri, Daphla, Garo, Hallam, Khasi, Mizo,

Munda, Naga, Rian, and Santali. Although the Assamese language has been written

historically using regional scripts, known generally as “Kamrupi,” its modern writing

system is similar to that presently used for Bangla, with the addition of extra charac‐

ters. The Bangla block supports the modern Assamese orthography. In the Indian

state of Assam, the script is called Asamiya or Assamese.

The Bangla script is a North Indian script historically related to Devanagari.

 The Bangla script uses the Unicode virama model to form

conjunct consonants. In Bangla, the virama is known as hasant.

 Vowel letters of Indic scripts are encoded atomically in Unicode, even

if they can be analyzed visually as consisting of multiple parts. Table 12-11 shows the

Bangla vowel letters that can be analyzed, the single code point that should be used

to represent them in text, and the sequence of code points resulting from analysis

that should not be used.

For Use Do Not Use

0986 <0985, 09BE>

09E0 <098B, 09C3>

09E1 <098C, 09E2>

There is an exception to this general pattern for the representation of Bangla inde‐

pendent vowel letters, for the Bangla script orthography of Kokborok, a major

language of Tripura state in Northeast India. Kokborok has diphthongs which can

occur as initial letters. To reflect existing practice, these diphthongs are represented

with two character sequences, rather than as atomic characters, as shown in

Table 12-12. Rendering systems which support display of the Kokborok orthography

need to be aware of these exceptional sequences. The sequence for vowel letter aw

uses U+09D7 BENGALI AU LENGTH MARK, also noted in the following discussion

of two-part vowel signs.

12.2 Bengali (Bangla)

12.2.1 Bengali: U+0980–U+09FF

Virama (Hasant).

Vowel Letters.

Table 12-11. Bangla Vowel Letters

South and Central Asia-I 573 12.2 Bengali (Bangla)

For Use Description

<0985, 09D7> vowel letter aw

<0989, 09BE> vowel letter ua

 The Bangla script, along with a number of other Indic

scripts, makes use of two-part dependent vowel signs. In these dependent vowels

(matras) one-half of the vowel is displayed on each side of a consonant letter or

cluster—for example, U+09CB BENGALI VOWEL SIGN O and U+09CC

BENGALI VOWEL SIGN AU. To provide compatibility with existing implementations of

the scripts that use two-part vowel signs, the Unicode Standard explicitly encodes the

right half of these vowel signs. For example, U+09D7 BENGALI AU LENGTH MARK

represents the right-half glyph component of U+09CC BENGALI VOWEL SIGN AU.

In Bangla orthography, the au length mark is always used in conjunction with the left

part and does not have a meaning on its own.

 U+09F2..U+09F9 are a series of Bangla additions for writing

currency and fractions.

 The characters vocalic rr, vocalic l and vocalic ll, both in their

independent and dependent forms (U+098C, U+09C4, U+09E0..U+09E3), are only

used to write Sanskrit words in the Bangla script.

 Assamese employs two letters not used for the Bangla

language. The Assamese letter ra is represented in Unicode by U+09F0 BENGALI

LETTER RA WITH MIDDLE DIAGONAL, and the Assamese letter wa is represented by

U+09F1 BENGALI LETTER RA WITH LOWER DIAGONAL.

Assamese uses a conjunct character called kssa. Although kssa is often considered a

separate letter of the alphabet, it is not separately encoded. The conjunct is repre‐

sented by the sequence <U+0995 BENGALI LETTER KA, U+09CD BENGALI SIGN

VIRAMA, U+09B7 BENGALI LETTER SSA>. This same sequence is also used to

represent the Bangla letter khinya (or khiya).

Assamese uses two additional consonant-vowel ligatures formed with U+09F0

BENGALI LETTER RA WITH MIDDLE DIAGONAL, which are not used for the Bangla

language. These consonant-vowel ligatures are shown in the “ligated” column in

Table 12-13.

Table 12-12. Diphthong Vowel Letters in Kokborok

Two-Part Vowel Signs.

Special Characters.

Historic Characters.

Characters for Assamese.

South and Central Asia-I 574 12.2 Bengali (Bangla)

 Like other Brahmic scripts in the Unicode Standard, Bangla

uses the hasant to form conjunct characters. For example, <U+09B8 BENGALI

LETTER SA, U+09CD BENGALI SIGN VIRAMA, U+0995 BENGALI LETTER KA>

yields the conjunct SKA. For general principles regarding the rendering of the

Bangla script, see the rules for rendering in Section 12.1, Devanagari.

 Some Bangla consonant plus vowel combinations

have two distinct visual presentations. The first visual presentation is a traditional

ligated form, in which the vowel combines with the consonant in a novel way. In the

second presentation, the vowel is joined to the consonant but retains its nominal

form, and the combination is not considered a ligature. These consonant-vowel

combinations are illustrated in Table 12-14.

The ligature forms of these consonant-vowel combinations are traditional. They are

used in handwriting and some printing. The “non-ligated” forms are more common;

they are used in newspapers and are associated with modern typefaces. However, the

traditional ligatures are preferred in some contexts.

No semantic distinctions are made in Bangla text on the basis of the two different

presentations of these consonant-vowel combinations. However, some users consider

it important that implementations support both forms and that the distinction be

representable in plain text. This may be accomplished by using U+200D ZERO

Table 12-13. Assamese Consonant-Vowel Combinations

Rendering Behavior.

Consonant-Vowel Ligatures.

Table 12-14. Bangla Consonant-Vowel Combinations

South and Central Asia-I 575 12.2 Bengali (Bangla)

WIDTH JOINER and U+200C ZERO WIDTH NON-JOINER to influence ligature glyph

selection. (See “Cursive Connection and Ligatures” in Section 23.2, Layout Controls.)

Joiners are rarely needed in this situation. The rendered appearance will typically be

the result of a font choice.

A given font implementation can choose whether to treat the ligature forms of the

consonant-vowel combinations as the defaults for rendering. If the non-ligated form

is the default, then ZWJ can be inserted to request a ligature, as shown in

Figure 12-12.

If the ligated form is the default for a given font implementation, then ZWNJ can be

inserted to block a ligature, as shown in Figure 12-13.

 The letter , known as khiya or khinya, is often considered as a distinct letter

of the Bangla alphabet. However, it is not encoded separately. It is represented by the

sequence <U+0995 BENGALI LETTER KA, U+09CD BENGALI SIGN VIRAMA,

U+09B7 BENGALI LETTER SSA>.

 In Bangla, a dead consonant ta makes use of a special form, U+09CE

BENGALI LETTER KHANDA TA. This form is used in all contexts except where it is

immediately followed by one of the consonants: ta, tha, na, ba, ma, ya, or ra.

Khanda ta cannot bear a vowel matra or combine with a following consonant to form

a conjunct aksara. It can form a conjunct aksara only with a preceding dead conso‐

nant ra, with the latter being displayed with a repha glyph placed on the khanda ta.

Versions of the Unicode Standard prior to Version 4.1 recommended that khanda ta

be represented as the sequence <U+09A4 BENGALI LETTER TA, U+09CD

BENGALI SIGN VIRAMA, U+200D ZERO WIDTH JOINER> in all circumstances.

Figure 12-12. Requesting Bangla Consonant-Vowel Ligature

Figure 12-13. Blocking Bangla Consonant-Vowel Ligature

Khiya.

Khanda Ta.

South and Central Asia-I 576 12.2 Bengali (Bangla)

U+09CE BENGALI LETTER KHANDA TA should instead be used explicitly in newly

generated text, but users are cautioned that instances of the older representation may

exist.

The Bangla syllable tta illustrates the usage of khanda ta when followed by ta. The

syllable tta is normally represented with the sequence <U+09A4 ta, U+09CD hasant,

U+09A4 ta>. That sequence will normally be displayed using a single glyph tta liga‐

ture, as shown in the first example in Figure 12-14.

It is also possible for the sequence <ta, hasant, ta> to be displayed with a full ta

glyph combined with a hasant glyph, followed by another full ta glyph . The

choice of form actually displayed depends on the display engine, based on the avail‐

ability of glyphs in the font.

The Unicode Standard also provides an explicit way to show the hasant glyph. To do

so, a ZERO WIDTH NON-JOINER is inserted after the hasant. That sequence is always

displayed with the explicit hasant, as shown in the second example in Figure 12-14.

When the syllable tta is written with a khanda ta, however, the character U+09CE

BENGALI LETTER KHANDA TA is used and no hasant is required, as khanda ta is

already a dead consonant. The rendering of khanda ta is illustrated in the third

example in Figure 12-14.

Ya-phalaa is a presentation form of U+09AF BENGALI LETTER YA.

Represented by the sequence <U+09CD BENGALI SIGN VIRAMA, U+09AF

BENGALI LETTER YA>, ya-phalaa has a special form . When combined with U+09BE

BENGALI VOWEL SIGN AA, it is used for transcribing [æ] as in the “a” in the English

word “bat.” The ya-phalaa appears in [ræʃ] “rash,” which provides a minimal

pair with [raʃ] “a whole lot.”

Ya-phalaa can be applied to initial vowels as well:

 = <0985, 09CD, 09AF, 09BE> (a- hasant ya -aa)

 = <098F, 09CD, 09AF, 09BE> (e- hasant ya -aa)

Figure 12-14. Bangla Syllable tta

Ya-phalaa.

South and Central Asia-I 577 12.2 Bengali (Bangla)

If a candrabindu or other combining mark needs to be added in the sequence, it

comes at the end of the sequence. For example:

 = <0985, 09CD, 09AF, 09BE, 0981> (a- hasant ya -aa candrabindu)

Further examples:

 + + + →

 + + + →

 + + + →

 The formation of the repha form is defined in

Section 12.1, Devanagari, “Rules for Rendering,” R2. Basically, the repha is formed

when a ra that has the inherent vowel killed by the hasant begins a syllable. This

scenario is shown in the following example:

The ya-phalaa is a post-base form of ya and is formed when the ya is the final conso‐

nant of a syllable cluster. In this case, the previous consonant retains its base shape

and the hasant is combined with the following ya. This scenario is shown in the

following example:

An ambiguous situation is encountered when the combination of ra + hasant + ya is

encountered:

To resolve the ambiguity with this combination, the Unicode Standard adopts the

convention of placing the character U+200D ZERO WIDTH JOINER immediately after

the ra to obtain the ya-phalaa. The repha form is rendered when no ZWJ is present,

as shown in the following example:

When the first character of the cluster is not a ra, the ya-phalaa is the normal

rendering of a ya, and a ZWJ is not necessary but can be present. Such a convention

Interaction of Repha and Ya-phalaa.

South and Central Asia-I 578 12.2 Bengali (Bangla)

would make it possible, for example, for input methods to consistently associate ya-

phalaa with the sequence <ZWJ, hasant, ya>.

 In Bangla, the voiceless velar and bilabial frica‐

tives are represented by U+1CF5 VEDIC SIGN JIHVAMULIYA and U+1CF6 VEDIC

SIGN UPADHMANIYA, respectively. When the signs appear with a following homor‐

ganic voiceless stop consonant, they can be rendered in a font as a stacked ligature

without a virama:

The sequences can also be represented linearly by inserting a U+200C ZERO WIDTH

NON-JOINER after the jihvamuliya or upadhmaniya, but before the following conso‐

nant:

Dependent vowel signs can also be added to the stack or linear sequence. Consonant

clusters containing U+1CF5 VEDIC SIGN JIHVAMULIYA and U+1CF6 VEDIC SIGN

UPADHMANIYA can occur with more than two consonants, such as ẖkra and ḫpra.

 Bangla uses punctuation marks shared across many Indic scripts,

including the danda and double danda marks. In Bangla these are called the dahri

and double dahri. For a description of these common punctuation marks, see

Section 12.1, Devanagari.

 The orthography of the Bangla language makes use of U+02BC “ ”

MODIFIER LETTER APOSTROPHE to indicate the truncation of words. This sign is

called urdha-comma. Examples illustrating the use of U+02BC MODIFIER LETTER

APOSTROPHE are shown in Table 12-15.

Example Meaning

after, on doing (something)

} above

Jihvamuliya and Upadhmaniya.

Punctuation.

Truncation.

Table 12-15. Use of Apostrophe in Bangla

South and Central Asia-I 579 12.2 Bengali (Bangla)

The Gurmukhi script is a North Indian script used to write the Punjabi (or Panjabi)

language of the Punjab state of India. Gurmukhi, which literally means “proceeding

from the mouth of the Guru,” is attributed to Angad, the second Sikh Guru (1504–

1552 CE). It is derived from an older script called Landa and is closely related to

Devanagari structurally. The script is closely associated with Sikhs and Sikhism, but

it is used on an everyday basis in East Punjab. (West Punjab, now in Pakistan, uses

the Arabic script.)

 The Gurmukhi block is based on ISCII-1988, which makes it

parallel to Devanagari. Gurmukhi, however, has a number of peculiarities described

here.

The additional consonants (called pairin bindi; literally, “with a dot in the foot,” in

Punjabi) are primarily used to differentiate Urdu or Persian loan words. They include

U+0A36 GURMUKHI LETTER SHA and U+0A33 GURMUKHI LETTER LLA, but do

not include U+0A5C GURMUKHI LETTER RRA, which is genuinely Punjabi. For

unification with the other scripts, ISCII-1991 considers rra to be equivalent to

dda+nukta, but this decomposition is not considered in Unicode. At the same time,

ISCII-1991 does not consider U+0A36 to be equivalent to <0A38, 0A3C>, or U+0A33

to be equivalent to <0A32, 0A3C>.

Two different marks can be associated with U+0902 DEVANAGARI SIGN ANUSVARA:

U+0A02 GURMUKHI SIGN BINDI and U+0A70 GURMUKHI TIPPI. Present practice

is to use bindi only with the dependent and independent forms of the vowels aa, ii,

ee, ai, oo, and au, and with the independent vowels u and uu; tippi is used in the

other contexts. Older texts may depart from this requirement. ISCII-1991 uses only

one encoding point for both marks.

U+0A71 GURMUKHI ADDAK is a special sign to indicate that the following conso‐

nant is geminate. ISCII-1991 does not have a specific code point for addak and

encodes it as a cluster. For example, the word pagg, “turban,” can be represented

with the sequence <0A2A, 0A71, 0A17> (or <pa, addak, ga>) in Unicode, while in

ISCII-1991 it would be <pa, ga, virama, ga>.

U+0A75 GURMUKHI SIGN YAKASH probably originated as a subjoined form of

U+0A2F GURMUKHI LETTER YA. However, because its usage is relatively rare and

not entirely predictable, it is encoded as a separate character. Some modern fonts

render yakash with the glyph , which varies from the traditional shape found in the

code charts. This character should occur after the consonant to which it attaches and

before any vowel sign.

12.3 Gurmukhi

12.3.1 Gurmukhi: U+0A00–U+0A7F

Encoding Principles.

South and Central Asia-I 580 12.3 Gurmukhi

U+0A51 GURMUKHI SIGN UDAAT occurs in older texts and indicates a high tone.

This character should occur after the consonant to which it attaches and before any

vowel sign.

 In older texts, such as the Sri Guru Granth Sahib

(the Sikh holy book), one can find typographic clusters with a vowel sign attached to

a vowel letter, or with two vowel signs attached to a consonant. The most common

cases are u attached to , as in and both the vowel signs and attached to a

consonant, as in goubinda; this is used to indicate the metrical shortening of /o/

or the lengthening of /u/ depending on the context. Other combinations are attested

as well, such as ghiana, represented by the sequence <U+0A17, U+0A4D,

U+0A39, U+0A3F, U+0A3E, U+0A28>.

Because of the combining classes of the characters U+0A4B GURMUKHI VOWEL

SIGN OO and U+0A41 GURMUKHI VOWEL SIGN U, the sequences <consonant,

U+0A4B, U+0A41> and <consonant, U+0A41, U+0A4B> are not canonically

equivalent. To avoid ambiguity in representation, the first sequence, with U+0A4B

before U+0A41, should be used in such cases. More generally, when a consonant or

independent vowel is modified by multiple vowel signs, the sequence of the vowel

signs in the underlying representation of the text should be: left, top, bottom, right.

 Typically, when U+0A40 GURMUKHI VOWEL SIGN

II and U+0A02 GURMUKHI SIGN BINDI coexist in an orthographic syllable, the

bindi is encoded after and rendered on the right side of the vowel sign ii. In cases

where a special left side placement of the bindi must be distinguished in encoding,

the bindi can be encoded immediately preceding the vowel sign ii instead.

In particular, this encoding order also applies when bindi must appear on top of iri

preceding vowel sign ii: <0A72 iri, 0A02 bindi, 0A40 vowel sign ii>. This sequential

encoding does not conflict with the “Do Not Use” instruction about U+0A08

GURMUKHI LETTER II in Table 12-16 because of the bindi inserted in between.

 Vowel letters are encoded atomically in Unicode, even if they can be

analyzed visually as consisting of multiple parts. Table 12-16 shows the letters that

can be analyzed, the single code point that should be used to represent them in text,

and the sequence of code points resulting from analysis that should not be used.

For Use Do Not Use

0A06 <0A05, 0A3E>

0A07 <0A72, 0A3F>

0A08 <0A72, 0A40>

0A09 <0A73, 0A41>

0A0A <0A73, 0A42>

Unusual Usage of Vowel Signs.

Unusual Positioning of bindi.

Vowel Letters.

Table 12-16. Gurmukhi Vowel Letters

South and Central Asia-I 581 12.3 Gurmukhi

0A0F <0A72, 0A47>

0A10 <0A05, 0A48>

0A13 <0A73, 0A4B>

0A14 <0A05, 0A4C>

 The Punjabi language is tonal, but the Gurmukhi script does not contain any

specific signs to indicate tones. Instead, the voiced aspirates (gha, jha, ddha, dha) and

the letter ha combine consonantal and tonal functions.

U+0A73 GURMUKHI URA and U+0A72 GURMUKHI IRI are the first

and third “letters” of the Gurmukhi syllabary, respectively. They are used as bases or

bearers for some of the independent vowels, while U+0A05 GURMUKHI LETTER A

is both the second “letter” and the base for the remaining independent vowels. As a

result, the collation order for Gurmukhi is based on a seven-by-five grid:

The first row is U+0A73 ura, U+0A05 a, U+0A72 iri, U+0A38 sa, U+0A39 ha.

This row is followed by five main rows of consonants, grouped according to the

point of articulation, as is traditional in all South and Southeast Asian scripts.

The semiconsonants follow in the seventh row: U+0A2F ya, U+0A30 ra,

U+0A32 la, U+0A35 va, U+0A5C rra.

The letters with nukta, added later, are presented in a subsequent eighth row if

needed.

 For general principles regarding the rendering of the

Gurmukhi script, see the rules for rendering in Section 12.1, Devanagari. In many

aspects, Gurmukhi is simpler than Devanagari. In modern Punjabi, there are no half-

consonants, no half-forms, no repha (upper form of U+0930 DEVANAGARI LETTER

RA), and no real ligatures. Rules R2–R5, R11, and R14 do not apply. Conversely, the

behavior for subscript RA (rules R6–R8 and R13) applies to U+0A39 GURMUKHI

LETTER HA and U+0A35 GURMUKHI LETTER VA, which also have subjoined forms,

called pairin in Punjabi. The subjoined form for RA is like a knot, while the

subjoined HA and VA are written the same as the base form, without the top bar, but

are reduced in size. As described in rule R13, they attach at the bottom of the base

consonant, and will “push” down any attached vowel sign for U or UU. When

U+0A2F GURMUKHI LETTER YA follows a dead consonant, it assumes a different

form called addha in Punjabi, without the leftmost part, and the dead consonant

returns to the nominal form, as shown in Table 12-17.

+ + → (mha) pairin ha

+ + → (pra) pairin ra

+ + → (dva) pairin va

Tones.

Ordering.

•

•

•

•

Rendering Behavior.

Table 12-17. Gurmukhi Conjuncts

South and Central Asia-I 582 12.3 Gurmukhi

+ + → (dya) addha ya

Other letters behaved similarly in old inscriptions, as shown in Table 12-18.

+ + → (sga) pairin ga

+ + → (sca) pairin ca

+ + → (stta) pairin tta

+ + → (sttha) pairin ttha

+ + → (sta) pairin ta

+ + → (sda) pairin da

+ + → (sna) pairin na

+ + → (stha) pairin tha

+ + → (sya) pairin ya

+ + → (stha) addha tha

+ + → (sma) addha ma

Older texts also exhibit another feature that is not found in modern Gurmukhi—

namely, the use of a half- or reduced form for the first consonant of a cluster,

whereas the modern practice is to represent the second consonant in a half- or

reduced form. Joiners can be used to request this older rendering, as shown in

Table 12-19. The reduced form of an initial U+0A30 GURMUKHI LETTER RA is

similar to the Devanagari superscript RA (repha), but this usage is rare, even in older

texts.

+ + → (sva)

+ + → (rva)

+ + + → (sva)

+ + + → (rva)

+ + + → (sva)

+ + + → (rva)

A rendering engine for Gurmukhi should make accommodations for the correct posi‐

tioning of the combining marks (see Section 5.13, Rendering Nonspacing Marks, and

particularly Figure 5-11). This is important, for example, in the correct centering of

the marks above and below U+0A28 GURMUKHI LETTER NA and U+0A20

GURMUKHI LETTER TTHA, which are laterally symmetrical. It is also important to

avoid collisions between the various upper marks, vowel signs, bindi, and/or addak.

Table 12-18. Additional Pairin and Addha Forms in Gurmukhi

Table 12-19. Use of Joiners in Gurmukhi

South and Central Asia-I 583 12.3 Gurmukhi

 The religious symbol khanda sometimes used in Gurmukhi texts is

encoded at U+262C ADI SHAKTI in the Miscellaneous Symbols block. U+0A74

GURMUKHI EK ONKAR, which is also a religious symbol, can have different presenta‐

tion forms, which do not change its meaning. The representative glyph shown the

code charts is a simple form that looks like the digit one, followed by a sign based on

ura, along with a long upper tail; other forms may be highly stylized.

 Danda and double danda marks as well as some other unified punctu‐

ation used with Gurmukhi are found in the Devanagari block. See Section 12.1,

Devanagari, for more information. Punjabi also uses Latin punctuation.

Other Symbols.

Punctuation.

South and Central Asia-I 584 12.3 Gurmukhi

The Gujarati script is a North Indian script closely related to Devanagari. It is most

obviously distinguished from Devanagari by not having a horizontal bar for its letter‐

forms, a characteristic of the older Kaithi script to which Gujarati is related. The

Gujarati script is used to write the Gujarati language of the Gujarat state in India.

 Vowel letters are encoded atomically in Unicode, even if they can be

analyzed visually as consisting of multiple parts. Table 12-20 shows the letters that

can be analyzed, the single code point that should be used to represent them in text,

and the sequence of code points resulting from analysis that should not be used.

For Use Do Not Use

0A86 <0A85, 0ABE>

0A8D <0A85, 0AC5>

0A8F <0A85, 0AC7>

0A90 <0A85, 0AC8>

0A91 <0A85, 0AC9>

0A93 <0A85, 0ACB> or <0A85, 0ABE, 0AC5>

0A94 <0A85, 0ACC> or <0A85, 0ABE, 0AC8>

0AC9 <0AC5, 0ABE>

 For rendering of the Gujarati script, see the rules for rendering

in Section 12.1, Devanagari. Like other Brahmic scripts in the Unicode Standard,

Gujarati uses the virama to form conjunct characters. The virama is informally called

khoḍo, which means “lame” in Gujarati. Many conjunct characters, as in Devanagari,

lose the vertical stroke; there are also vertical conjuncts. U+0AB0 GUJARATI LETTER

RA takes special forms when it combines with other consonants, as shown in

Table 12-21.

+ + → (kṣa)

+ + → (jña)

+ + → (tya)

+ + → (ṭṭa)

+ + → (rka)

+ + → (kra)

12.4 Gujarati

12.4.1 Gujarati: U+0A80–U+0AFF

Vowel Letters.

Table 12-20. Gujarati Vowel Letters

Rendering Behavior.

Table 12-21. Gujarati Conjuncts

South and Central Asia-I 585 12.4 Gujarati

 The combining marks encoded in the range

U+0AFA..U+0AFF are used for the transliteration of the Arabic script into Gujarati.

This system of transliteration was devised in the late 19th century, and is used by

Ismaili Khoja communities. These marks occur both in manuscripts and in printed

materials.

The three forms of nukta encoded in the range U+0AFD..U+0AFF are diacritics,

placed above regular Gujarati letters to create new letters corresponding to Arabic

letters for non-Gujarati sounds. U+0AFF GUJARATI SIGN TWO-CIRCLE NUKTA

ABOVE is used only with U+0A9D GUJARATI LETTER JHA, to transliterate the Arabic

zah. U+0AFE GUJARATI SIGN CIRCLE NUKTA ABOVE is used with U+0A9D

GUJARATI LETTER JHA to transliterate the Arabic thal and with U+0AB8 GUJARATI

LETTER SA to transliterate the Arabic theh. U+0AFD GUJARATI SIGN THREE-DOT

NUKTA ABOVE occurs with a number of different Gujarati letters, to transliterate a

variety of Arabic letters.

U+0AFA GUJARATI SIGN SUKUN, U+0AFB GUJARATI SIGN SHADDA, and U+0AFC

GUJARATI SIGN MADDAH are used to transliterate the Arabic sukun, shadda, and

maddah above, respectively. These marks may be applied to a Gujarati letter which

also uses one of the three above-base nukta diacritic marks. In such cases, the nukta

occurs first in the combining sequence, followed by the sukun, shadda, or maddah

mark. However, instead of being rendered above the nukta mark on the letter, the

sukun, shadda, or maddah mark is rendered to the left of the nukta mark.

 Words in Gujarati are separated by spaces. Danda and double danda

marks as well as some other unified punctuation used with Gujarati are found in the

Devanagari block; see Section 12.1, Devanagari.

Marks for Transliteration of Arabic.

Punctuation.

South and Central Asia-I 586 12.4 Gujarati

The Oriya script is used to write the Odia language of the Odisha (Orissa) state in

India, as well as minority languages such as Khondi and Santali.

Languages and scripts can be referred to in many different ways, and these terms

may evolve over time. The Oriya script is an example of this: The preferred Latin

transcription used in India for this script has shifted to the spelling Odia (as shown,

for example, by changes to the Indian constitution). The Unicode Standard retains

the traditional English spelling Oriya in discussion, to minimize the potential for

confusion when referring to immutable, standardized character names in the stan‐

dard, which were assigned long ago.

U+0B57 ORIYA AU LENGTH MARK is provided as an encoding

for the right side of the surroundrant vowel U+0B4C ORIYA VOWEL SIGN AU.

 Vowel letters are encoded atomically in Unicode, even if they can be

analyzed visually as consisting of multiple parts. Table 12-22 shows the letters that

can be analyzed, the single code point that should be used to represent them in text,

and the sequence of code points resulting from analysis that should not be used.

For Use Do Not Use

0B06 <0B05, 0B3E>

0B10 <0B0F, 0B57>

0B14 <0B13, 0B57>

 For rendering of the Oriya script, see the rules for rendering in

Section 12.1, Devanagari. Like other Brahmic scripts in the Unicode Standard, Oriya

uses the virama to suppress the inherent vowel. Oriya has a visible virama, often

being a lengthening of a part of the base consonant:

 + → (k)

The virama is also used to form conjunct consonants, as shown in Table 12-23.

+ + → (kṣa)

+ + → (kta)

+ + → (tka)

12.5 Oriya (Odia)

12.5.1 Oriya: U+0B00–U+0B7F

Special Characters.

Vowel Letters.

Table 12-22. Oriya Vowel Letters

Rendering Behavior.

Table 12-23. Oriya Conjuncts

South and Central Asia-I 587 12.5 Oriya (Odia)

+ + → (tya)

 In the initial position in a cluster, RA is reduced and placed

above the following consonant, while it is also reduced in the second position:

 + + → (rpa)

 + + → (pra)

Nasal and stop clusters may be written with conjuncts, or the anusvara may be used:

 + + + → (aṅka)

 + + → (aṁka)

 As with other scripts, some dependent vowels are rendered in front of their

consonant, some appear after it, and some are placed above or below it. Some are

rendered with parts both in front of and after their consonant. A few of the depen‐

dent vowels fuse with their consonants. U+0B01 ORIYA SIGN CANDRABINDU is used

for nasal vowels. See Table 12-24.

+ → (kā)

+ → (ki)

+ → (kī)

+ → (ku)

+ → (kū)

+ → (kṛ)

+ → (ke)

+ → (kai)

+ → (ko)

+ → (kau)

+ → (kaṁ)

An orthography for the Kuvi language makes use of a macron-shaped length mark. It

is displayed directly above written forms of the following three vowels to indicate

their corresponding long vowels:

[o] vowel letter a, or inherent vowel implied by consonant letters and conjuncts

[a] vowel letter or sign aa

[e] vowel letter or sign e

Consonant Forms.

Vowels.

Table 12-24. Oriya Vowel Placement

South and Central Asia-I 588 12.5 Oriya (Odia)

This length mark is represented in text by U+0B55 ORIYA SIGN OVERLINE. It occurs

in the text representation directly after the letter or sign it modifies, and after any

nukta which is present.

 These two letters are extensions to the basic Oriya alphabet.

Because Sanskrit vana becomes Oriya bana in orthography and pronunciation,

an extended letter U+0B35 ORIYA LETTER VA was devised by dotting U+0B2C

ORIYA LETTER BA for use in academic and technical text. For example, basic Oriya

script cannot distinguish Sanskrit bava from baba or vava, but this distinc‐

tion can be made with the modified version of ba. In some older sources, the glyph

is sometimes found for va; in others, and have been shown, which in a more

modern type style would be . The letter va is not in common use today.

In a consonant conjunct, subjoined U+0B2C ORIYA LETTER BA is usually—but not

always—pronounced [wa]:

U+0B15 ka + U+0B4D virama + U+0B2C ba → [kwa]

U+0B2E ma + U+0B4D virama + U+0B2C ba → [mba]

The extended Oriya letter U+0B71 ORIYA LETTER WA is sometimes used in Perso-

Arabic or English loan words for [w]. It appears to have originally been devised as a

ligature of o and ba, but because ligatures of independent vowels and consonants

are not normally used in Oriya, this letter has been encoded as a single character that

does not have a decomposition. It is used initially in words or orthographic syllables

to represent the foreign consonant; as a native semivowel, virama + ba is used

because that is historically accurate. Glyph variants of wa are , , and .

 Danda and double danda marks as well as some other

unified punctuation used with Oriya are found in the Devanagari block; see

Section 12.1, Devanagari. The mark U+0B70 ORIYA ISSHAR is placed before names of

persons who are deceased.

The sacred syllable om is formed by U+0B13 ORIYA LETTER O and U+0B01 ORIYA

SIGN CANDRABINDU. Ligation of the two glyphs can be encouraged or discouraged

by the use of U+200D ZERO WIDTH JOINER or U+200C ZERO WIDTH NON-JOINER

between the two characters, as seen in Table 12-25. In the absence of a joiner, both

the non-ligated and the ligated forms are acceptable renderings.

+ + → or

+ + →

 As for many other scripts of India, Oriya has characters used

to denote factional values. These were more commonly used before the advent of

Oriya VA and WA.

Punctuation and Symbols.

Table 12-25. Ligation for the Syllable om

Fraction Characters.

South and Central Asia-I 589 12.5 Oriya (Odia)

decimal weights, measures, and currencies. Oriya uses six signs: three for quarter

values (1/4, 1/2, 3/4) and three for sixteenth values (1/16, 1/8, and 3/16). These are

used additively, with quarter values appearing before sixteenths. Thus U+0B73 ORIYA

FRACTION ONE HALF followed by U+0B75 ORIYA FRACTION ONE SIXTEENTH repre‐

sents the value 5/16.

South and Central Asia-I 590 12.5 Oriya (Odia)

The Tamil script is descended from the South Indian branch of Brahmi. It is used to

write the Tamil language of the Tamil Nadu state in India as well as minority

languages such as Irula, the Dravidian language Badaga, and the Indo-European

language Saurashtra. Tamil is also used in Sri Lanka, Singapore, and parts of

Malaysia.

The Tamil script has fewer consonants than the other Indic scripts. When repre‐

senting the “missing” consonants in transcriptions of languages such as Sanskrit or

Saurashtra, superscript European digits are often used, so ² = pha, ³ = ba, and ⁴
= bha. The characters U+00B2, U+00B3, and U+2074 can be used to preserve this

distinction in plain text. The Grantha script is often also used by Tamil speakers to

write Sanskrit because Grantha contains these missing consonants.

The Tamil script also avoids the use of conjunct consonant forms, although a few

conventional conjuncts are used.

 Because the Tamil encoding in the Unicode Standard is based on

ISCII-1988 (Indian Script Code for Information Interchange), it makes use of the

abugida model. An abugida treats the basic consonants as containing an inherent

vowel, which can be canceled by the use of a visible mark, called a virama in

Sanskrit. In most Brahmi-derived scripts, the placement of a virama between two

consonants implies the deletion of the inherent vowel of the first consonant and

causes a conjoined or subjoined consonant cluster. In those scripts, U+200C ZERO

WIDTH NON-JOINER is used to display a visible virama, as shown previously in the

Devanagari example in Figure 12-4.

The situation is quite different for Tamil because the script uses very few consonant

conjuncts. An orthographic cluster consisting of multiple consonants (represented by

<C1, U+0BCD TAMIL SIGN VIRAMA, C2, …>) is normally displayed with explicit

viramas, which are called puḷḷi in Tamil. The puḷḷi is typically rendered as a dot

centered above the character. It occasionally appears as small circle instead of a dot,

but this glyph variant should be handled by the font, and not be represented by the

similar-appearing U+0B82 TAMIL SIGN ANUSVARA.

The conjuncts kssa and shrii are traditionally displayed by conjunct ligatures, as illus‐

trated for kssa in Figure 12-15, but nowadays tend to be displayed using an explicit

puḷḷi as well.

12.6 Tamil

12.6.1 Tamil: U+0B80–U+0BFF

Virama (Puḷḷi).

South and Central Asia-I 591 12.6 Tamil

 + + → kṣa

To explicitly display a puḷḷi for such sequences, U+200C ZERO WIDTH NON-JOINER

can be inserted after the puḷḷi in the sequence of characters.

 The Tamil script is complex and requires special

rules for rendering. The following discussion describes the most important features

of Tamil rendering behavior. As with any script, a more complex procedure can add

rendering characteristics, depending on the font and application.

In a font that is capable of rendering Tamil, the number of glyphs is greater than

the number of Tamil characters.

 Vowel letters are encoded atomically in Unicode, even if they can be

analyzed visually as consisting of multiple parts. Table 12-26 shows the letters that

can be analyzed, the single code point that should be used to represent them in text,

and the sequence of code points resulting from analysis that should not be used.

For Use Do Not Use

0B86 <0B85, 0BC2>

 In the Tamil script, the dependent vowel

signs are not equivalent to a sequence of virama + independent vowel. For example:

 + ≠ + +

 The Tamil vowels U+0BC6 , U+0BC7 , and U+0BC8 are

reordered in front of the consonant to which they are applied. When occurring in a

syllable, these vowels are rendered to the left side of their consonant, as shown in

Figure 12-16.

+ →

+ →

+ →

Figure 12-15. Kssa Ligature in Tamil

Rendering of the Tamil Script.

12.6.2 Tamil Vowels

Vowel Letters.

Table 12-26. Tamil Vowel Letters

Independent Versus Dependent Vowels.

Left-Side Vowels.

Figure 12-16. Tamil Vowel Reordering

South and Central Asia-I 592 12.6 Tamil

 Tamil also has several vowels that consist of elements which flank

the consonant to which they are applied. A sequence of two Unicode code points can

be used to express equivalent spellings for these vowels, as shown in Figure 12-17.

0BCA ≡ 0BC6 + 0BBE

0BCB ≡ 0BC7 + 0BBE

0BCC ≡ 0BC6 + 0BD7

In these examples, the representation on the left, which is a single code point, is the

preferred form and the form in common use for Tamil.

In the process of rendering, these two-part vowels are transformed into the two sepa‐

rate glyphs equivalent to those on the right, which are then subject to vowel

reordering, as shown in Figure 12-18.

+ →

+ + →

+ →

+ + →

+ →

+ + →

Even in the case where a two-part vowel occurs with a conjunct consonant or conso‐

nant cluster, the left part of the vowel is reordered around the conjunct or cluster, as

shown in Figure 12-19.

 + + + + → kṣō

For either left-side vowels or two-part vowels, the ordering of the elements is unam‐

biguous: the consonant or consonant cluster occurs first in the memory representa‐

tion, followed by the vowel.

U+0B94 TAMIL LETTER AU and U+0BCC TAMIL VOWEL SIGN

AU are visually indistinguishable from two semantically unrelated sequences, as

Two-Part Vowels.

Figure 12-17. Tamil Two-Part Vowels

Figure 12-18. Tamil Vowel Splitting and Reordering

Figure 12-19. Vowel Reordering Around a Tamil Conjunct

Confusable Vowels.

South and Central Asia-I 593 12.6 Tamil

shown in Figure 12-20. In the decompositions of these two vowel characters, the

rightmost part is represented as the character U+0BD7 TAMIL AU LENGTH MARK,

which looks exactly like the separate character, U+0BB3 TAMIL LETTER LLA.

0B94 ≡ 0B92 + 0BD7 ≠ 0B92 + 0BB3

0BCC ≡ 0BC6 + 0BD7 ≠ 0BC6 + 0BB3

A number of ligatures are conventionally used in Tamil. Most ligatures involve the

shape taken by a consonant plus vowel sequence. A wide variety of modern Tamil

words are written without a conjunct form, with a fully visible puḷḷi.

 The vowel signs i and ii form ligatures with the conso‐

nant tta as shown in examples 1 and 2 of Figure 12-21. These vowels often change

shape or position slightly so as to join cursively with other consonants, as shown in

examples 3 and 4 of Figure 12-21.

1 + → ṭi

2 + → ṭī

3 + → li

4 + → lī

 The vowel signs u and uu normally ligate with their

consonant, as shown in Table 12-27. In the first column, the basic consonant is

shown; the second column illustrates the ligation of that consonant with the u vowel

sign; and the third column illustrates the ligation with the uu vowel sign.

x x + x +

Figure 12-20. Confusable Vowels in Tamil

12.6.3 Tamil Ligatures

Ligatures with Vowel i.

Figure 12-21. Tamil Ligatures with i

Ligatures with Vowel u.

Table 12-27. Tamil Ligatures with u

South and Central Asia-I 594 12.6 Tamil

With certain consonants, , , , , and the conjunct , the vowel signs u

and uu take a distinct spacing form, as shown in Figure 12-22.

+ → ju

+ → jū

 Based on typographical preferences, the consonant ra may

change shape to , when it ligates. Such change, if it occurs, will happen only when

the form of U+0BB0 TAMIL LETTER RA would not be confused with the nominal

form of U+0BBE TAMIL VOWEL SIGN AA (namely, when is combined with , , or

). This change in shape is illustrated in Figure 12-23.

+ → r

+ → ri

+ → rī

However, various governmental bodies mandate that the basic shape of the conso‐

nant ra should be used for these ligatures as well, especially in school textbooks.

Media and literary publications in Malaysia and Singapore mostly use the unchanged

form of ra . Sri Lanka, on the other hand, specifies the use of the changed forms

shown in Figure 12-23.

Figure 12-22. Spacing Forms of Tamil u

Ligatures with ra.

Figure 12-23. Tamil Ligatures with ra

South and Central Asia-I 595 12.6 Tamil

 Prior to Unicode 4.1, the best mapping to represent the ligature

shri was to the sequence <U+0BB8, U+0BCD, U+0BB0, U+0BC0>. Unicode 4.1 in

2005 added the character U+0BB6 TAMIL LETTER SHA and as a consequence, the

best mapping became <U+0BB6, U+0BCD, U+0BB0, U+0BC0>. Due to slow

updates to implementations, both representations are widespread in existing text.

Therefore, treating both representations as equivalent sequences is recommended.

Figure 12-24 shows the two sequences.

+ + + →

+ + + →

 In traditional Tamil orthog‐

raphy, the vowel sign aa optionally ligates with , , or , as illustrated in

Figure 12-25.

+ → ṇā

+ → ṉā

+ → ṟā

These ligations also affect the right-hand part of two-part vowels, as shown in

Figure 12-26.

+ → ṇo

+ → ṇō

+ → ṉo

+ → ṉō

+ → ṟo

+ → ṟō

Tamil Ligature shri.

Figure 12-24. Tamil Ligatures for shri

Ligatures with aa in Traditional Tamil Orthography.

Figure 12-25. Traditional Tamil Ligatures with aa

Figure 12-26. Traditional Tamil Ligatures with o

South and Central Asia-I 596 12.6 Tamil

 In traditional Tamil orthog‐

raphy, the left-side vowel sign ai is also subject to a change in form. It is rendered

as when it occurs on the left side of , , , or , as illustrated in Figure 12-27.

+ → ṇai

+ → ṉai

+ → lai

+ → ḷai

By contrast, in modern Tamil orthography, this vowel does not change its shape, as

shown in Figure 12-28.

 + → ṇai

 The character U+0B83 TAMIL SIGN VISARGA is normally called

aytham in Tamil. It is historically related to the visarga in other Indic scripts, but has

become an ordinary spacing letter in Tamil. The aytham occurs in native Tamil

words, but is frequently used as a modifying prefix before consonants used to repre‐

sent foreign sounds. In particular, it is used in the spelling of words borrowed into

Tamil from English or other languages.

 Danda and double danda marks as well as some other unified punctu‐

ation used with Tamil are found in the Devanagari block; see Section 12.1, Devanagari.

 Modern Tamil decimal digits are encoded at U+0BE6..U+0BEF. Note that

some digits are confusable with letters, as shown in Table 12-28. In some Tamil fonts,

the digits for two and eight look exactly like the letters u and a, respectively. In other

fonts, as shown here, the shapes for the digits two and eight are adjusted to minimize

confusability.

U+0BE7 TAMIL DIGIT ONE U+0B95 TAMIL LETTER KA

U+0BE8 TAMIL DIGIT TWO U+0B89 TAMIL LETTER U

U+0BED TAMIL DIGIT SEVEN U+0B8E TAMIL LETTER E

U+0BEE TAMIL DIGIT EIGHT U+0B85 TAMIL LETTER A

Ligatures with ai in Traditional Tamil Orthography.

Figure 12-27. Traditional Tamil Ligatures with ai

Figure 12-28. Vowel ai in Modern Tamil

Tamil aytham.

Punctuation.

Numbers.

Table 12-28. Confusable Tamil Digits

South and Central Asia-I 597 12.6 Tamil

Tamil also has distinct numerals for ten, one hundred, and one thousand at

U+0BF0..U+0BF2 used for historical numbers.

 In addition to Tamil, several other languages of southern India are

written using the Tamil script. For example, Irula is written with the Tamil script.

Some of these languages contain sounds distinct from those normally written for the

Tamil language. In such cases, the writing systems of these languages apply diacritic

nukta marks to Tamil letters to represent their distinct sounds. For example, Irula

uses a double dot nukta below represented with U+1133C GRANTHA SIGN NUKTA,

and Badaga uses a single dot nukta represented by U+1133B COMBINING BINDU

BELOW for some sounds.

The Tamil Supplement block contains a set of fractions in the range

U+11FC0..U+11FD4 used for generic measurement and calculations and for money.

The block also includes symbols indicating various forms of measurement, old units

of currency, agricultural and clerical signs, and other miscellaneous abbreviations.

Most characters in this block are no longer in use, but a few appear in traditional

contexts, such as on marriage invitations printed in a traditional format.

Tamil is less complex than some of the other Indic scripts, and both conceptually and

in processing can be treated as an atomic set of elements: consonants, stand-alone

vowels, and syllables. Table 12-29 shows these atomic elements, with the corre‐

sponding Unicode characters or sequences. In cases where the atomic elements for

Tamil correspond to sequences of Unicode characters, those sequences have been

added to the approved list of Unicode named character sequences. See NamedSe‐

quences.txt in the Unicode Character Database for details.

In implementations such as natural language processing, where it may be useful to

treat such Tamil text elements as single code points for ease of processing, Tamil

named character sequences could be mapped to code points in a contiguous segment

of the Private Use Area.

In Table 12-29, the first row shows the transliterated representation of the Tamil

vowels in abbreviated form, while the first column shows the transliterated represen‐

tation of the Tamil consonants. Those row and column labels, together with identi‐

fying strings such as “TAMIL SYLLABLE” or “TAMIL CONSONANT” are concatenated to

form formal names for these sequences. For example, the sequence shown in the

table in the K row and the AA column, with the sequence <0B95, 0BBE>, gets the

associated name TAMIL SYLLABLE KAA. The sequence shown in the table in the K

row in the first column, with the sequence <0B95, 0BCD>, gets the associated name

TAMIL CONSONANT K.

Use of Nukta.

12.6.4 Tamil Supplement: U+11FC0–U+11FFF

12.6.5 Tamil Named Character Sequences

South and Central Asia-I 598 12.6 Tamil

Details on the complete names for each element can be found in NamedSe‐

quences.txt.

Table 12-29. Tamil Vowels, Consonants, and Syllables

South and Central Asia-I 599 12.6 Tamil

South and Central Asia-I 600 12.6 Tamil

The Telugu script is a South Indian script used to write the Telugu language of the

Andhra Pradesh state in India as well as minority languages such as Gondi (Adilabad

and Koi dialects) and Lambadi. The script is also used in Maharashtra, Odisha

(Orissa), Madhya Pradesh, and West Bengal. The Telugu script became distinct by the

thirteenth century CE and shares ancestors with the Kannada script.

 Telugu vowel letters and vowel signs are encoded atomically in Unicode,

even if they can be analyzed visually as consisting of multiple parts. Table 12-30

shows the letters and signs that can be analyzed, the single code point that should be

used to represent them in text, and the sequence of code points resulting from anal‐

ysis that should not be used.

For Use Do Not Use

0C13 <0C12, 0C55>

0C14 <0C12, 0C4C>

0C40 <0C3F, 0C55>

0C47 <0C46, 0C55>

0C4B <0C4A, 0C55>

 Telugu script rendering is similar to that of some other

Brahmic scripts in the Unicode Standard—in particular, the Kannada script. (See

Section 12.8, Kannada.) Many Telugu letters have a v-shaped headstroke, which is a

structural mark corresponding to the horizontal bar in Devanagari and the arch in

Oriya. When a virama (called virāmamu in Telugu) or certain vowel signs are added

to a letter with this headstroke, it is replaced:

U+0C15 ka + U+0C4D virama → (k)

U+0C15 ka + U+0C3F vowel sign i → (ki)

Telugu consonant clusters are most commonly represented by a subscripted, and

often transformed, consonant glyph for the second element of the cluster:

U+0C17 ga + U+0C4D virama + U+0C17 ga → (gga)

U+0C15 ka + U+0C4D virama + U+0C15 ka → (kka)

U+0C15 ka + U+0C4D virama + U+0C2F ya → (kya)

12.7 Telugu

12.7.1 Telugu: U+0C00–U+0C7F

Vowels.

Table 12-30. Telugu Vowels

Rendering Behavior.

South and Central Asia-I 601 12.7 Telugu

U+0C15 ka + U+0C4D virama + U+0C37 ssa → (kṣa)

U+200C ZERO WIDTH NON-JOINER is used to prevent U+0C4D TELUGU SIGN

VIRAMA from subscripting a following letter:

U+0C15 ka + U+0C4D virama + U+200C ZWNJ + U+0C15 ka →

(k.ka)

 A distinct form of a vowelless U+0C28 TELUGU LETTER NA

appears in older Telugu texts, and is known as nakāra-pollu. This form is represented

by a separate character, U+0C5D TELUGU LETTER NAKAARA POLLU. The related

form regularly used in modern texts takes an ordinary virama-joined shape , as

other consonants do, and thus is represented by the sequence <U+0C28 na,

U+0C4D virama>.

Prior to Unicode 14.0, these two distinct forms were treated as glyphic variants of that

regular sequence <U+0C28 na, U+0C4D virama>, handled at the font level.

 In modern Telugu, U+0C30 TELUGU LETTER RA behaves in the same manner

as most other initial consonants in a consonant cluster. That is, the ra appears in its

nominal form, and the second consonant takes the C2-conjoining or subscripted

form:

U+0C30 ra + U+0C4D virama + U+0C2E ma → (rma)

However, in older texts, U+0C30 TELUGU LETTER RA takes the reduced (or reph)

form when it appears first in a consonant cluster, and the following consonant

maintains its nominal form:

U+0C30 ra + U+0C4D virama + U+0C2E ma → (rma)

U+200D ZERO WIDTH JOINER is placed immediately after the virama to render the

reph explicitly in modern texts:

U+0C30 ra + U+0C4D virama + U+200D ZWJ + U+0C2E ma →

To prevent display of a reph, U+200D ZERO WIDTH JOINER is placed after the ra, but

preceding the virama:

U+0C30 ra + U+200D ZWJ + U+0C4D virama + U+0C2E ma →

U+0C55 TELUGU LENGTH MARK is provided as an encoding for

the distinguishing element appearing in certain letters and signs, however, this char‐

acter is not used in ordinary representation of Telugu texts. See “Vowel Letters”

earlier in this section for more information. U+0C56 TELUGU AI LENGTH MARK is

provided as an encoding for the second element of the surroundrant vowel U+0C48

Nakāra-Pollu.

Reph.

Special Characters.

South and Central Asia-I 602 12.7 Telugu

TELUGU VOWEL SIGN AI. The length marks are both nonspacing characters. For a

detailed discussion of the use of two-part vowels, see “Two-Part Vowels” in

Section 12.6, Tamil.

For scholarly orthographies in which a horizontal line below is used to denote an

alternative vowel or consonant for a syllable, U+0952 DEVANAGARI STRESS SIGN

ANUDATTA is recommended to represent the line analogously to a svara in an ortho‐

graphic syllable. For the encoding order of svaras, see R10 of “Rendering Devanagari”

in Section 12.1, Devanagari.

U+0C3C TELUGU SIGN NUKTA is a mark placed under letters to indicate

additional sounds from Tamil and Perso-Arabic languages. It may display as a large

dot or as a ring, and is typically placed low enough to avoid confusion and collision

with the differentiating “teardrop” that occurs under many Telugu letters. The repre‐

sentative glyph in the code chart is shown with the ring form to minimize accidental

confusability in implementations.

 Prior to the adoption of the metric system, Telugu fractions were used as

part of the system of measurement. Telugu fractions are quaternary (base-4), and use

eight marks, which are conceptually divided into two sets. The first set represents

odd-numbered negative powers of four in fractions. The second set represents even-

numbered negative powers of four in fractions. Different zeros are used with each

set. The zero from the first set is known as haḷḷi, U+0C78 TELUGU FRACTION DIGIT

ZERO FOR ODD POWERS OF FOUR. The zero for the second set is U+0C66 TELUGU

DIGIT ZERO.

 Danda and double danda are used primarily in the domain of religious

texts to indicate the equivalent of a comma and full stop, respectively. The danda and

double danda marks as well as some other unified punctuation used with Telugu are

found in the Devanagari block; see Section 12.1, Devanagari.

Nukta.

Fractions.

Punctuation.

South and Central Asia-I 603 12.7 Telugu

The Kannada script is a South Indian script. It is used to write the Kannada (or

Kanarese) language of the Karnataka state in India and to write minority languages

such as Tulu. The Kannada language is also used in many parts of Tamil Nadu,

Kerala, Andhra Pradesh, and Maharashtra. This script is very closely related to the

Telugu script both in the shapes of the letters and in the behavior of conjunct conso‐

nants. The Kannada script also shares many features common to other Indic scripts.

See Section 12.1, Devanagari, for further information.

The Unicode Standard follows the ISCII layout for encoding, which also reflects the

traditional Kannada alphabetic order.

Like Devanagari and related scripts, the Kannada script employs a halant, which is

also known as a virama or vowel omission sign, U+0CCD KANNADA SIGN

VIRAMA. The halant nominally serves to suppress the inherent vowel of the conso‐

nant to which it is applied. The halant functions as a combining character. When a

consonant loses its inherent vowel by the application of halant, it is known as a dead

consonant. The dead consonants are the presentation forms used to depict the conso‐

nants without an inherent vowel. Their rendered forms in Kannada resemble the full

consonant with the horn replaced by the halant sign. In contrast, a live consonant is

a consonant that retains its inherent vowel or is written with an explicit dependent

vowel sign. The dead consonant is defined as a sequence consisting of a consonant

letter followed by a halant. The default rendering for a dead consonant is to position

the halant as a combining mark bound to the consonant letterform.

 Vowel letters are encoded atomically in Unicode, even if they can be

analyzed visually as consisting of multiple parts. Table 12-31 shows the letters that

can be analyzed, the single code point that should be used to represent them in text,

and the sequence of code points resulting from analysis that should not be used.

For Use Do Not Use

0C8A <0C89, 0CBE>

0C94 <0C92, 0CCC>

0CE0 <0C8B, 0CBE>

 Kannada is also noted for a large number of consonant

conjunct forms that serve as ligatures of two or more adjacent forms. This use of liga‐

12.8 Kannada

12.8.1 Kannada: U+0C80–U+0CFF

12.8.2 Principles of the Kannada Script

Vowel Letters.

Table 12-31. Kannada Vowel Letters

Consonant Conjuncts.

South and Central Asia-I 604 12.8 Kannada

tures takes place in the context of a consonant cluster. A written consonant cluster is

defined as a sequence of characters that represent one or more dead consonants

followed by a normal live consonant. A separate and unique glyph corresponds to

each part of a Kannada consonant conjunct. Most of these glyphs resemble their

original consonant forms—many without the implicit vowel sign, wherever appli‐

cable.

In Kannada, conjunct formation tends to be graphically regular, using the following

pattern:

The first consonant of the cluster is rendered with the implicit vowel or a

different dependent vowel appearing as the terminal element of the cluster.

The remaining consonants (consonants between the first consonant and the

terminal vowel element) appear in conjunct consonant glyph forms in phonetic

order. They are generally depicted directly below or to the lower right of the first

consonant.

A Kannada script font contains the conjunct glyph components, but they are not

encoded as separate Unicode characters because they are simply ligatures. Kannada

script rendering software must be able to map appropriate combinations of charac‐

ters in context to the appropriate conjunct glyphs in fonts.

In a font that is capable of rendering Kannada, the number of glyphs is greater

than the number of encoded Kannada characters.

 U+0CD5 KANNADA LENGTH MARK is provided as an

encoding for the right side of the two-part vowel U+0CC7 KANNADA VOWEL SIGN

EE should it be necessary for processing. Likewise, U+0CD6 KANNADA AI

LENGTH MARK is provided as an encoding for the right side of the two-part vowel

U+0CC8 KANNADA VOWEL SIGN AI. The Kannada two-part vowels actually

consist of a nonspacing element above the consonant letter and one or more spacing

elements to the right of the consonant letter. These two length marks have no inde‐

pendent existence in the Kannada writing system and do not play any part as inde‐

pendent codes in the traditional collation order.

 U+0CDE KANNADA LETTER FA is actually an archaic

Kannada letter that is transliterated in Dravidian scholarship as ẓ, ḻ, or ṛ. This form

should have been named “LLLA”, rather than “FA”, so the name in this standard is

simply a mistake. A formal name alias KANNADA LETTER LLLA has been added to the

Unicode Character Database for this character, to clarify its identity. Collations

should treat U+0CDE as following U+0CB3 KANNADA LETTER LLA.

The letter llla has not been actively used in writing the Kannada language since the

end of the tenth century. However, the letter does have modern use in writing the

closely related Badaga language. Badaga is noteworthy for having distinct

•

•

Special Characters.

Kannada Letter LLLA.

South and Central Asia-I 605 12.8 Kannada

retroflexion in its vowel system, and a subjoined form of U+0CDE is often seen in

Badaga written documents, to indicate retroflexed pronunciation of the vowel in a

syllable. This subjoined form of U+0CDE may occur below consonants, but it also

may be subjoined to an independent vowel, to indicate retroflexion of that vowel. In

either case, the subjoined form of U+0CDE should be represented by a sequence

including U+0CCD KANNADA SIGN VIRAMA. Implementations of the Kannada

script need to be aware that these sequences involving independent vowels followed

by virama and U+0CDE are valid and required in orthographies for Badaga. Exam‐

ples of the use of subjoined U+0CDE to indicate retroflexion, both for independent

vowel letters and for dependent vowels, are shown in Figure 12-29.

Plain text in Kannada is generally stored in phonetic order; that is, a CV syllable with

a dependent vowel is always encoded as a consonant letter C followed by a vowel sign

V in the memory representation. This order is employed by the ISCII standard and

corresponds to the phonetic and keying order of textual data.

 Normally, a halant character creates dead consonants,

which in turn combine with subsequent consonants to form conjuncts. This behavior

usually results in a halant sign not being depicted visually. Occasionally, this default

behavior is not desired when a dead consonant should be excluded from conjunct

formation, in which case the halant sign is visibly rendered. To accomplish this,

U+200C ZERO WIDTH NON-JOINER is introduced immediately after the encoded

dead consonant that is to be excluded from conjunct formation. See Section 12.1,

Devanagari, for examples.

 A special form, , of a vowelless na appears in older Kannada texts,

distinct from the usual form of the vowelless na in modern texts: . The historic

form is represented by a separate character, U+0CDD KANNADA LETTER NAKAARA

POLLU. This character is named after the analogous Telugu form, nakāra-pollu,

because there is no conventional term for this form in Kannada. Prior to Unicode

14.0, these two forms were treated as glyphic variants of <U+0CA8 KANNADA

LETTER NA, U+0CCD KANNADA SIGN VIRAMA>, handled at the font level.

 Whenever a consonant cluster is formed with

the U+0CB0 KANNADA LETTER RA as the first component of the consonant cluster,

Figure 12-29. Indicating Retroflexion in Badaga Vowels

12.8.3 Rendering Kannada

Explicit Virama (Halant).

Vowelless NA.

Consonant Clusters Involving RA.

South and Central Asia-I 606 12.8 Kannada

the letter ra is depicted with two different presentation forms: one as the initial

element and the other as the final display element of the consonant cluster.

U+0CB0 ra + U+0CCD halant + U+0C95 ka → rka

U+0CB0 ra + + U+0CCD halant + U+0C95 ka → rka

U+0C95 ka + U+0CCD halant + U+0CB0 ra → kra

 Voiceless velar and bilabial fricatives in Kannada

are represented by U+0CF1 KANNADA SIGN JIHVAMULIYA and U+0CF2 KANNADA

SIGN UPADHMANIYA, respectively. When the signs appear with a following homor‐

ganic voiceless stop consonant, the combination should be rendered in the font as a

stacked ligature, without a virama:

Dependent vowels signs can also be added to the stack:

 In addition to the vowel signs, one or more types of

combining marks may be applied to a component of a written syllable or the syllable

as a whole. If the consonant represents a dead consonant, then the nukta should

precede the halant in the memory representation. The nukta is represented by a

double-dot mark, U+0CBC KANNADA SIGN NUKTA. Two such modified consonants

are used in the Kannada language: one representing the syllable za and one repre‐

senting the syllable fa.

 A spacing mark, U+0CBD KANNADA SIGN AVAGRAHA, is used

when rendering Sanskrit texts.

 Danda and double danda marks as well as some other unified punctu‐

ation used with this script are found in the Devanagari block; see Section 12.1,

Devanagari.

Jihvamuliya and Upadhmaniya.

Modifier Mark Rules.

Avagraha Sign.

Punctuation.

South and Central Asia-I 607 12.8 Kannada

The Malayalam script is a South Indian script used to write the Malayalam language

of the Kerala state. Malayalam is a Dravidian language like Kannada, Tamil, and

Telugu. Throughout its history, it has absorbed words from Tamil, Sanskrit, Arabic,

and English.

The shapes of Malayalam letters closely resemble those of Tamil. Malayalam,

however, has a very full and complex set of conjunct consonant forms.

 Vowel letters are encoded atomically in Unicode, even if they can be

analyzed visually as consisting of multiple parts. Table 12-32 shows the letters that

can be analyzed, the single code point that should be used to represent them in text,

and the sequence of code points resulting from analysis that should not be used.

For Use Do Not Use

0D08 <0D07, 0D57>

0D0A <0D09, 0D57>

0D10 <0D0E, 0D46>

0D13 <0D12, 0D3E>

0D14 <0D12, 0D57>

 The Malayalam script uses several two-part vowel characters. In

modern times, the dominant practice is to write the dependent form of the au vowel

using only “ ”, which is placed on the right side of the consonant it modifies; such

texts are represented in Unicode using U+0D57 MALAYALAM AU LENGTH MARK. In

the past, this dependent form was written using both “ ” on the left side and “ ” on

the right side; U+0D4C MALAYALAM VOWEL SIGN AU can be used for documents

following this earlier tradition. This historical simplification started much earlier

than the orthographic reforms mentioned in the text that follows.

For a detailed discussion of the use of two-part vowels, see “Two-Part Vowels” in

Section 12.6, Tamil.

U+0D5F MALAYALAM LETTER ARCHAIC II

represents an earlier form for the vowel letter ii. Characters for the letters and signs

of vocalic rr,vocalic l, andvocalic ll, as well as candrabindu and avagraha, are only

used in Sanskrit texts. U+0D54..U+0D56 are rarely used chillu forms, found only in

historical materials.

12.9 Malayalam

12.9.1 Malayalam: U+0D00–U+0D7F

Vowel Letters.

Table 12-32. Malayalam Vowel Letters

Two-Part Vowels.

Historic and Scholarly Characters.

South and Central Asia-I 608 12.9 Malayalam

U+0D3B MALAYALAM SIGN VERTICAL BAR VIRAMA and U+0D3C MALAYALAM SIGN

CIRCULAR VIRAMA are two specific forms of viramas found in historical materials.

They were used to indicate a pure consonant in different orthographies. U+0D00

MALAYALAM SIGN COMBINING ANUSVARA ABOVE is used in certain Prakrit texts,

where the ordinary anusvara indicates gemination of the following consonant.

U+0D3A MALAYALAM LETTER TTTA and U+0D29 MALAYALAM LETTER NNNA are

used in scholarly orthographies for transcribing the Malayalam language in a phonet‐

ically accurate way. They represent the alveolar plosive and nasal, respectively. The

letter nnna is parallel to U+0BA9 TAMIL LETTER NNNA.

 The Suriyani dialect of Malayalam is written using the Syriac

script. It is also called Garshuni (Karshoni) or Syriac Malayalam. This usage requires

eleven additional letters encoded in the Syriac Supplement block (U+0860..U+086F)

to represent the sounds of Malayalam. The dialect was widely used by the St. Thomas

Christians living in Kerala, India, in the 19th century.

In the 1970s and 1980s, Malayalam underwent orthographic reform due to printing

difficulties. The treatment of the combining vowel signs u and uu was simplified at

this time. These vowel signs had previously been represented using special cluster

graphemes where the vowel signs were fused beneath their consonants, but in the

reformed orthography they are represented by spacing characters following their

consonants. Table 12-33 lists a variety of consonants plus the u or uu vowel sign,

yielding a syllable. Each syllable is shown as it would be displayed in the older

orthography, contrasted with its display in the reformed orthography.

Syllable
Older

Orthography
Reformed

Orthography

ku +

gu +

chu +

ju +

ṇu +

tu +

nu +

bhu +

ru +

śu +

hu +

Suriyani Malayalam.

12.9.2 Malayalam Orthographic Reform

Table 12-33. Malayalam Orthographic Reform

South and Central Asia-I 609 12.9 Malayalam

kū +

gū +

chū +

jū +

ṇū +

tū +

nū +

bhū +

rū +

śū +

hū +

 As is the case for many other Brahmi-derived scripts in the Unicode

Standard, Malayalam uses a virama character to form consonant conjuncts. The

virama sign itself is known as candrakkala in Malayalam. Table 12-34 provides a

variety of examples of consonant conjuncts. There are both horizontal and vertical

conjuncts, some of which ligate, and some of which are merely juxtaposed.

+ + → (kṣa)

+ + → (kka)

+ + → (jña)

+ + → (ṭṭa)

+ + → (ppa)

+ + → (ccha)

+ + → (bba)

+ + → (nya)

+ + → (pra)

+ + → (śva)

When the candrakkala sign is visibly shown in Malayalam, it indicates either the

suppression of the preceding vowel or its replacement with a neutral vowel sound.

This sound is often called “half-u” or samvruthokaram. In various orthographies this

sound is typically spelled with either a vowel sign -u followed by candrakkala or a

candrakkala alone. In vernacular orthographies, candrakkala can also be seen on an

independent vowel letter or preceding an anusvara. In all cases, the candrakkala sign

is represented by the character U+0D4D MALAYALAM SIGN VIRAMA, which follows

any vowel sign that may be present and precedes any anusvara that may be present.

12.9.3 Rendering Malayalam

Candrakkala.

Table 12-34. Malayalam Conjuncts

South and Central Asia-I 610 12.9 Malayalam

Implementations need to pay careful attention to correctly shape a Malayalam ortho‐

graphic syllable when U+0D4D occurs in such locations. Examples are shown in

Table 12-35.

/pālə/ milk 0D2A, 0D3E, 0D32, 0D41, 0D4D

/ənnā/ on which day? (vernacular) 0D0E, 0D4D, 0D28, 0D4D, 0D28, 0D3E

/aiśīləm/ than ice (vernacular) 0D10, 0D36, 0D40, 0D32, 0D4D, 0D02

 The sequence <C1, virama, ZWNJ, C2>, where C1 and C2

are consonants, may be used to request display with an explicit visible candrakkala,

instead of the default conjunct form. See Table 12-36 for an example. This convention

is consistent with the use of this sequence in other Indic scripts.

 The sequence <C1, ZWJ, virama, C2> may be

used to request traditional ligatures, even if the current font defaults to the conjuncts

appropriate for the reformed orthography. When such sequences occur, a closed or

cursively connected ligature should be displayed, if available. See Table 12-36 for

examples. This convention is consistent with the use of this sequence in some other

Indic scripts, such as Kannada, Oriya, and Telugu.

 The sequence <C1, ZWNJ, virama, C2> may

be used to request open ligatures or those used in the reformed orthography, even if

the current font defaults to the conjuncts appropriate for the traditional orthography.

When such sequences occur, an open or disconnected conjunct form should be

displayed, if available. See Table 12-36 for examples. Note that such sequences are

defined for Malayalam only, and are left undefined for other Indic scripts.

+ + → or (kra)

+ + → or (ska)

+ + → or (tsa)

+ + → or or (ḻva)

+ + → (yya)

+ + + → (kra)

+ + + → (kra)

+ + + → (ska)

+ + + → (tsa)

+ + + → (ḻva)

+ + + → (kra)

+ + + → (ḻva)

Table 12-35. Candrakkala Examples

Explicit Candrakkala.

Requesting Traditional Ligatures.

Requesting Open Forms of Conjuncts.

Table 12-36. Use of Joiners in Malayalam

South and Central Asia-I 611 12.9 Malayalam

+ + + → (yya)

 The anusvara can be seen multiple times after vowels, whether indepen‐

dent letters or dependent vowel signs, as in <0D08, 0D02, 0D02, 0D02,

0D02>. Vowel signs can also be seen after digits, as in 355 <0033, 0035, 0035, 0D3E,

0D02>. More generally, rendering engines should be prepared to handle Malayalam

letters (including vowel letters), digits (both European and Malayalam), U+002D

HYPHEN-MINUS, U+00A0 NO-BREAK SPACE and U+25CC DOTTED CIRCLE as base

characters for the Malayalam vowel signs, U+0D4D MALAYALAM SIGN VIRAMA,

U+0D02 MALAYALAM SIGN ANUSVARA, and U+0D03 MALAYALAM SIGN VISARGA.

They should also be prepared to handle multiple combining marks on those bases.

U+0D4E MALAYALAM LETTER DOT REPH is used to represent the dead

consonant form of U+0D30 MALAYALAM LETTER RA, when it is displayed as a dot or

small vertical stroke above the consonant that follows it in logical order. It has the

character properties of a letter rather than those of a combining mark, but special

behavior is required in implementations. Conceptually, dot reph is analogous to the

sequence <ra, virama> which, in many Indic scripts, is rendered as a reph mark over

the following consonant. This same behavior is expected for dot reph: it should be

rendered as a mark over the following consonant. In standard Malayalam, the

sequence <ra, virama> would normally occur only within the sequence <ra, virama,

ya>, which should be rendered as the nominal form of ra with a conjoining form of

ya.

The sequence <ra, virama, ZWJ> is not used to represent the dot reph, because that

sequence has considerable preexisting usage to represent the chillu form of ra, prior

to the encoding of the chillu form as a distinct character, U+0D7C MALAYALAM

LETTER CHILLU RR.

The Malayalam dot reph was in common print usage until 1970, but has fallen into

disuse. Words that formerly used dot reph on a consonant are now spelled instead

with a chillu-rr form preceding the consonant. (See the following discussion of chillu

characters.) The dot reph form is predominantly used by those who completed

elementary education in Malayalam prior to 1970.

 The nine characters, U+0D54..U+0D56 and U+0D7A..U+0D7F,

encode dead consonants (those without an inherent vowel) known as chillu or

cillakṣaram. In Malayalam language text, chillu forms never start a word. Chillu-nn, -

n, -rr, -l, and -ll are quite common; chillu-k is relatively rare in contemporary usage;

chillu-m, -y, and -lll are found only in historical texts.

For backward-compatibility issues regarding the representation of chillu forms, see

the discussion of legacy chillu sequences later in this section.

Anusvara.

Dot Reph.

Chillu Forms.

South and Central Asia-I 612 12.9 Malayalam

Although chillus are typically written alone, they may graphically behave like ordi‐

nary consonant letters. See Table 12-37 for examples of conjuncts involving chillus.

The chillu-involving conjuncts are encoded graphically: the graphic component

bearing the ligated chillu tail is analyzed as a chillu character, and then stacking or

ligating between characters is requested by U+0D4D MALAYALAM SIGN VIRAMA.

Dependent signs such as vowel signs and candrakkala can be applied to both stand-

alone chillus and chillu-involving conjuncts, just as they are applied to ordinary

consonant letters and conjuncts.

Among the examples shown in Table 12-37, only the second conjunct, /ṉṯa/, is

used in modern Malayalam text. See “Special Cases Involving rra” later in this

section for how to deal with the contrast between this conjunct and a phonetically

related side-by-side form, .

0D7A chillu nn, 0D4D virama, 0D28 na /ṇna/

0D7B chillu n, 0D4D virama, 0D31 rra /ṉṯa/

0D28 na, 0D4D virama, 0D7B chillu n /ṉṉ/

0D7D chillu l, 0D4D virama, 0D2A pa /lpa/

0D7E chillu ll, 0D4D virama, 0D35 va /ḷva/

U+0D3B MALAYALAM SIGN VERTICAL BAR VIRAMA is not used to form chillus. It

only represents a vowel-killing vertical stroke that is identifiable as a separate stroke,

either striking through or placed above the modified letter.

 There are a number of textual representation and

reading issues involving the letter rra. These issues are discussed here and tables of

explicit examples are presented.

The letter rra is normally read /ṟa/. Repetition of that sound is naturally written by

repeating the letter: . Each occurrence can bear a vowel sign.

The same repetition of the letter rra as is also used for /ṯṯa/, which can be unam‐

biguously represented by . The sequence of two letters fundamentally behaves as

a digraph in this instance. The digraph can bear a vowel sign in which case the

digraph as a whole acts graphically as an atom: a left vowel part goes to the left of the

digraph and a right vowel part goes to the right of the digraph. Historically, the side-

by-side form was used until around 1960 when the stacked form began appearing and

supplanted the side-by-side form.

As a consequence the graphical sequence in text is ambiguous in reading. The

reader must generally use the context to understand if is read /ṟaṟa/ or /ṯṯa/. It is

only when a vowel part appears between the two that the reading cannot be /ṯṯa/.

Note that similar situations are common in many other orthographies. For example,

Table 12-37. Malayalam Conjuncts Involving Chillus

Special Cases Involving rra.

South and Central Asia-I 613 12.9 Malayalam

th in English can be a digraph (cathode) or two separate letters (cathouse); gn in

French can be a digraph (oignon) or two separate letters (gnome).

The sequence <0D31, 0D31> is rendered as , regardless of the reading of that text.

The sequence <0D31, 0D4D, 0D31> is rendered as . In both cases, vowels signs are

applied to each rendered base, as shown in Table 12-38.

0D2A 0D3E 0D31 0D31
/pāṯṯa/ cockroach

0D2A 0D3E 0D31 0D4D 0D31

0D2E 0D3E 0D31 0D46 0D31 0D3E 0D32
0D3F

/māṯṯoli/ echo
0D2E 0D3E 0D31 0D4D 0D31 0D4A 0D32
0D3F

0D2C 0D3E 0D31 0D31 0D31 0D3F
/bāṯṯaṟi/ battery

0D2C 0D3E 0D31 0D4D 0D31 0D31 0D3F

0D38 0D42 0D31 0D31 0D31 0D4D
/sūṟaṯṯ/

Surat, a town in
Gujarat0D38 0D42 0D31 0D31 0D4D 0D31 0D4D

0D1F 0D46 0D02 0D2A 0D31 0D31 0D3F
/
ṭempaṟaṟi/

temporary

0D32 0D46 0D15 0D4D 0D1A 0D31 0D31
0D4B 0D1F 0D4D

/
lekcaṟaṟōṭ/

to the lecturer

A very similar situation exists for the combination of chillu-n and rra. When

used side by side, can be read either /ṉṟa/ or /ṉṯa/, while stacked is always

read /ṉṯa/.

The sequence <0D7B, 0D31> is rendered as , regardless of the reading of that

text. The sequence <0D7B, 0D4D, 0D31> is rendered as . In both cases, vowels

signs are applied to each rendered base, as shown in Table 12-39.

0D06 0D7B 0D47 0D31 0D3E
/āṉṯō/ a proper name

0D06 0D7B 0D4D 0D31 0D4B

0D0E 0D7B 0D31 0D4B 0D7E /eṉṟōl/ enroll

 Prior to Unicode 5.1 when <0D7B

chillu-n, 0D4D virama, 0D31 rra> became the recommendation for the conjunct /

ṉṯa/, two other representations were already in use: <0D28 na, 0D4D virama, 0D31

rra> and <0D28 na, 0D4D virama, 200D ZWJ, 0D31 rra>. All three representations

are widespread because implementations have been slow to adopt the recommended

representation.

Table 12-38. Malayalam /ṟaṟa/ and /ṯṯa/

Table 12-39. Malayalam /ṉṟa/ and /ṉṯa/

Legacy Representations of Conjunct /ṉṯa/.

South and Central Asia-I 614 12.9 Malayalam

Implementations should treat <na, virama, rra> in existing text as equivalent to the

recommended representation for the conjunct , <chillu-n, virama, rra>. Newly

generated text should only use the recommended representation.

The other legacy representation <na, virama, ZWJ, rra> conflicts with the legacy

representation of the side-by-side form (see “Legacy Chillu Sequences” later in

this section). Therefore, implementations should treat <na, virama, ZWJ, rra> as a

representation of the stacked form only if they know this sequence is not used to

represent the side-by-side form .

 Prior to Unicode Version 5.1, the representation of text

with chillu forms was problematic, and not clearly described in the text of the stan‐

dard. Because older data will use different representation for chillu forms, implemen‐

tations must be prepared to handle both kinds of data. For chillu forms considered in

isolation, the following table shows the relationship between their representation in

Version 5.0 and earlier, and the recommended representation starting with Version

5.1. Note that only the five chillu forms listed in Table 12-40 were specified in the stan‐

dard before Version 5.1, and thus were represented in legacy text by <virama, ZWJ>

sequences. Other chillu forms in Malayalam are only represented as atomically

encoded chillu characters.

Visual Legacy Representation (5.0) Preferred Representation

nna, virama, ZWJ
0D23, 0D4D, 200D

0D7A MALAYALAM LETTER CHILLU NN

na, virama, ZWJ
0D28, 0D4D, 200D

0D7B MALAYALAM LETTER CHILLU N

ra, virama, ZWJ
0D30, 0D4D, 200D

0D7C MALAYALAM LETTER CHILLU RR

la, virama, ZWJ
0D32, 0D4D, 200D

0D7D MALAYALAM LETTER CHILLU L

lla, virama, ZWJ
0D33, 0D4D, 200D

0D7E MALAYALAM LETTER CHILLU LL

 The archaic numbering system for Malayalam included numbers

for 10, 100, and 1000, as well as signs for fractions. Many Malayalam-specific fraction

signs are encoded in the Malayalam block. Malayalam also made use of the fraction

signs for one quarter, one half, and three quarters encoded in the Common Indic

Number Forms block.

Legacy Chillu Sequences.

Table 12-40. Legacy Encoding of Malayalam Chillus

12.9.4 Malayalam Numbers and Punctuation

Archaic Numbers.

South and Central Asia-I 615 12.9 Malayalam

 The date mark isused only for the day of the month in dates; it is

roughly the equivalent of “th” in “June 5th.” While it has been used in modern times

it is not seen as much in contemporary use.

Danda and double danda marks as well as some other unified punctu‐

ation used with Malayalam are found in the Devanagari block; see Section 12.1,

Devanagari.

Date Mark.

Punctuation.

South and Central Asia-I 616 12.9 Malayalam

Chapter 13

South and Central Asia-II
Other Modern Scripts

This chapter describes other modern scripts in South and Central Asia.

The Thaana script is used to write Dhivehi, the language of the Republic of Maldives,

an island nation in the middle of the Indian Ocean.

Sinhala is an official script of Sri Lanka, where it is used to write the majority

language, also known as Sinhala.

The Newa script, also known as Nepaalalipi in Nepal and as Newar in English-

speaking countries, is a Brahmi-based script that dates to the tenth century CE. It was

actively used in central Nepal until the late 18th century. Newa is presently used to

write the Nepal Bhasa language, a Tibeto-Burman language spoken in the Kath‐

mandu Valley of Nepal and in the Indian state of Sikkim.

The Mongolian script was developed as an adaption of the Old Uyghur alphabets

around the beginning of the thirteenth century, during the reign of Genghis Khan. It

is used in both China and Mongolia.

The Tibetan script is used for writing the Tibetan language in several countries and

regions throughout the Himalayas. The approach to the encoding of Tibetan in the

Unicode Standard differs from that for most Brahmi-derived scripts. Instead of using

a virama-based model for consonant conjuncts, it uses a subjoined consonant model.

Limbu is a Brahmi-derived script primarily used to write the Limbu language, spoken

mainly in eastern Nepal, Sikkim, and in the Darjeeling district of West Bengal. Its

encoding follows a variant of the Tibetan model, making use of subjoined medial

consonants, but also explicitly encoded syllable-final consonants.

Lepcha is the writing system for the Lepcha language, spoken in Sikkim and in the

Darjeeling district of the West Bengal state of India. Lepcha is directly derived from

the Tibetan script, but all of the letters were rotated by ninety degrees.

Meetei Mayek is used to write Meetei, a Tibeto-Burman language spoken primarily in

Manipur, India. Like Limbu, it makes use of explicitly encoded syllable-final conso‐

nants.

617

Chakma is used to write the language of the Chakma people of southeastern

Bangladesh and surrounding areas. The language, spoken by about half a million

people, is related to other eastern Indo-European languages such as Bengali.

Saurashtra is used to write the Saurashtra language, related to Gujarati, but spoken in

southern India. The Saurashtra language is most often written using the Tamil script,

instead.

Ol Chiki is an alphabetic script invented in the 20th century to write Santali, a

Munda language of India. It is used primarily for the southern dialect of Santali

spoken in the state of Odisha (Orissa).

Ol Onal is another alphabetic script invented in the 20th century to write Bhumij, a

Munda language. It is primarily spoken in the northeast of India.

The Nag Mundari script, commonly known as “Mundari Bani,” is used to write the

Mundari language, spoken primarily in the states of Jharkhand, West Bengal and

Odisha in India. This alphabetic script was developed starting in the 1950s and is

written left to right.

Mro is a Tibeto-Burman language spoken primarily in Bangladesh. The Mro script is

a left-to-right alphabet used to write the Mro language. It was invented in the 1980s

and is unrelated to existing scripts.

The Warang Citi script is a recently devised left-to-right alphabet. The script is used

to write the Ho language, a North Munda language which has an emergent literary

tradition. The Ho people live in eastern India.

The Masaram Gondi script is an abugida. The script was created in 1918 to write the

Gondi language, a Dravidian language spoken in central and southeastern India.

While not historically related to Brahmi, its general structure is similar to that of

other Brahmi-derived Indic scripts. Presently, Masaram Gondi is used in handwritten

and printed materials.

Gunjala Gondi is also an abugida based on the Brahmi model. It is named after the

village in the Adilabad district of the southern Indian state of Telegana, where

manuscripts in the script were found. The script is used to write the Adilabad dialect

of the Gondi language. Gunjala Gondi is taught and appears in publications today,

but the dialect is more commonly written in Telugu or Devanagari.

The Wancho script is an alphabet recently devised to write the Wancho language.

Wancho is a Sino-Tibetan language used mainly in the southeast of Arunachal

Pradesh, as well as in Assam, Nagaland, Myanmar, and Bhutan.

South and Central Asia-II 618

Toto is a left-to-right alphabetic script recently created to write Toto, a Sino-Tibetan

language spoken in West Bengal, India. The script was designed by a member of the

Toto community, and officially launched in 2015.

Like Warang Citi, Wancho and Toto, Tangsa is another recently created alphabetic

script. Tangsa was created in 1990 to write the Tangsa languages spoken in Arunachal

Pradesh, India, and the Sagaing Region of northwest Myanmar.

Sunuwar is a script created in 1942 to write the Kiranti-Kõits language, spoken in

Nepal and Sikkim. In Nepal the Sunuwar script is used as an alphabet, but in Sikkim

it is used a little differently, and functions there as an abugida.

Gurung Khema is a Brahmi-based abugida developed in the 1990s to write Gurung, a

Tibeto-Burman language. It is primarily spoken in Nepal and the state of Sikkim in

India.

Kirat Rai is an abugida based on a simplified Brahmic model. It is used to write the

Bantawa language, spoken in eastern Nepal and in the Indian states of Sikkim and

West Bengal. It is mostly used by Bantawa speakers in India, and is recognized as the

official script for Bantawa in Sikkim. Kirat Rai was developed in the 1920s and has

some historical connections to the Limbu script.

South and Central Asia-II 619

The Thaana script is used to write the modern Dhivehi language of the Republic of

Maldives, a group of atolls in the Indian Ocean. Like the Arabic script, Thaana is

written from right to left and uses vowel signs, but it is not cursive. The basic Thaana

letters have been extended by a small set of dotted letters used to transcribe Arabic.

The use of modified Thaana letters to write Arabic began in the middle of the 20th

century. Loan words from Arabic may be written in the Arabic script, although this

custom is not very prevalent today. (See Section 9.2, Arabic.)

While Thaana’s glyphs were borrowed in part from Arabic (letters haa through vaavu

were based on the Arabic-Indic digits, for example), and while vowels and sukun are

marked with combining characters as in Arabic, Thaana is properly considered an

alphabet, rather than an abjad, because writing the vowels is obligatory.

 The Thaana script is written from right to left. Conformant imple‐

mentations of Thaana script must use the Unicode Bidirectional Algorithm (see

Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”).

 Consonants are always written with either a vowel sign (U+07A6..U+07AF)

or the null vowel sign (U+07B0 THAANA SUKUN). U+0787 THAANA LETTER ALIFU

with the null vowel sign denotes a glottal stop. The placement of the Thaana vowel

signs is shown in Table 13-1.

Syllable Display

tha

thaa

thi

thee

thu

thoo

the

they

tho

thoa

th

 Both European (U+0030..U+0039) and Arabic digits (U+0660..U+0669)

are used. European numbers are used more commonly and have left-to-right display

13.1 Thaana

13.1.1 Thaana: U+0780–U+07BF

Directionality.

Vowels.

Table 13-1. Thaana Glyph Placement

Numerals.

South and Central Asia-II 620 13.1 Thaana

directionality in Thaana. Arabic numeric punctuation is used with digits, whether

Arabic or European.

 The Thaana script uses spaces between words. It makes use of a

mixture of Arabic and European punctuation, though rules of usage are not clearly

defined. Sentence-final punctuation is now generally shown with a single period

(U+002E “” FULL STOP) but may also use a sequence of two periods (U+002E

followed by U+002E). Phrases may be separated with a comma (usually U+060C

ARABIC COMMA) or with a single period (U+002E). Colons, dashes, and double

quotation marks are also used in the Thaana script. In addition, Thaana makes use of

U+061F ARABIC QUESTION MARK and U+061B ARABIC SEMICOLON.

 The character names are based on the names

used in the Republic of Maldives. The character name at U+0794, yaa, is found in

some sources as yaviyani, but the former name is more common today. Characters

are listed in Thaana alphabetical order from haa to ttaa for the Thaana letters,

followed by the extended characters in Arabic alphabetical order from hhaa to

waavu.

Punctuation.

Character Names and Arrangement.

South and Central Asia-II 621 13.1 Thaana

The Sinhala script, also known as Sinhalese or Singhalese, is used to write the

Sinhala language, the majority language of Sri Lanka. It is also used to write the Pali

and Sanskrit languages. The script is a descendant of Brahmi and resembles the

scripts of South India in form and structure.

Sinhala differs from other languages of the region in that it has a series of prenasal‐

ized stops that are distinguished from the combination of a nasal followed by a stop.

In other words, both forms occur and are written differently—for example,

<U+0D85, U+0DAC> an̆ḍa [aᶯɖa] “sound” versus <U+0D85, U+0DAB,

U+0DCA, U+0DA9> aṇḍa [aɳɖa] “egg.” Sinhala also has distinct signs for both a

short and a long low front vowel whose sound [æ] is similar to the initial vowel in the

English word “apple.” The independent forms of these vowels are encoded at

U+0D87 and U+0D88; the corresponding dependent forms are U+0DD0 and

U+0DD1.

 Vowel letters are encoded atomically in Unicode, even if they can be

analyzed visually as consisting of multiple parts. Table 13-2 shows the letters that can

be analyzed, the single code point that should be used to represent them in text, and

the sequence of code points resulting from analysis that should not be used.

For Use Do Not Use

0D86 <0D85, 0DCF>

0D87 <0D85, 0DD0>

0D88 <0D85, 0DD1>

0D8C <0D8B, 0DDF>

0D8E <0D8D, 0DD8>

0D90 <0D8F, 0DDF>

0D92 <0D91, 0DCA>

0D93 <0D91, 0DD9>

0D96 <0D94, 0DDF>

 The Sinhala script may also be used to write Tamil. In this

case, some additional combinations may be required. Some letters, such as U+0DBB

SINHALA LETTER RAYANNA and U+0DB1 SINHALA LETTER DANTAJA NAYANNA,

may be modified by adding the equivalent of a nukta. There is, however, no nukta

presently encoded in the Sinhala block.

13.2 Sinhala

13.2.1 Sinhala: U+0D80–U+0DFF

Vowel Letters.

Table 13-2. Sinhala Vowel Letters

Other Letters for Tamil.

South and Central Asia-II 622 13.2 Sinhala

 Rendering Sinhala is similar to other

Brahmic scripts in the Unicode Standard, particularly Tamil, however, consonant

forms are encoded differently. Each consonant may be represented as any of the

following forms:

a live consonant

a dead consonant with a visible U+0DCA SINHALA SIGN AL-LAKUNA

a reduced form

a part of a ligated conjunct

a part of a touching conjunct

Unless combined with a U+200D ZERO WIDTH JOINER, an al-lakuna is always

visible and does not join consonants to form orthographic consonant clusters. For

example, between a pair of live consonants, U+0DAF da and U+0DB0 dha, an al-

lakuna alone merely results in a dead consonant d followed by a live consonant dha,

without a conjunct form:

 + + →

The sequence < al-lakuna, > joins consonants to form orthographic consonant

clusters in the style of reduced forms or ligated conjuncts. The sequence < , al-

lakuna> joins consonants to form orthographic consonant clusters in the style of

touching conjuncts. The latter style is productive and should not be implemented on

a case-by-case basis.

 + + + → d.ya (da with reduced ya)

 + + + → d.dha (da and dha ligated)

 + + + → d.dha (da and dha touching)

Note how the use of ZWJ in Sinhala differs from that of typical Indic scripts. The

order of an al-lakuna and a ZWJ between two consonants is not related to which

consonant will take a reduced form, but instead affects the style of orthographic

consonant clusters.

 Three reduced forms are commonly recognized:

repaya, the above-base form of ra when it is the first consonant in an orthographic

consonant cluster; yansaya and rakaaraansaya, the post-base form of ya and the

below-base form of ra, respectively, when they follow another consonant in an ortho‐

graphic consonant cluster. These three reduced forms also have Unicode named char‐

acter sequences, as shown in Table 13-3.

Virama (al-lakuna) and Consonant Forms.

•

•

•

•

•

Reduced Consonant Forms.

South and Central Asia-II 623 13.2 Sinhala

Reduced Form Representation Name

repaya ra + + SINHALA CONSONANT SIGN REPAYA

yansaya + + ya SINHALA CONSONANT SIGN YANSAYA

rakaaraansaya + + ra SINHALA CONSONANT SIGN RAKAARAANSAYA

Table 13-4 lists common ligated conjuncts formed by conjoining

two consonants with the sequence < al-lakuna, >. The conjunct j.nya is atomi‐

cally encoded as U+0DA5 SINHALA LETTER TAALUJA SANYOOGA NAAKSIKYAYA.

Conjunct Representation

k.va 0D9A ka + + + 0DC0 va

k.ssa 0D9A ka + + + 0DC2 ssa

g.dha 0D9C ga + + + 0DB0 dha

tt.ttha 0DA7 tta + + + 0DA8 ttha

t.tha 0DAD ta + + + 0DAE tha

t.va 0DAD ta + + + 0DC0 va

d.dha 0DAF da + + + 0DB0 dha

d.va 0DAF da + + + 0DC0 va

n.tha 0DB1 na + + + 0DAE tha

n.da 0DB1 na + + + 0DAF da

n.dha 0DB1 na + + + 0DB0 dha

n.va 0DB1 na + + + 0DC0 va

 Certain combinations of a base followed by a dependent sign

exhibit special interaction. Table 13-5 shows the most irregular cases, which involve a

consonant letter followed by a vowel sign.

Combination Ligature

 + rae

 + raae

 + ru

 + ruu

 + llu

 + lluu

There are several other notable, more regular cases. Bases with a structure similar to

da lose the descending tail when a below-base sign is attached.

Table 13-3. Sinhala Named Character Sequences

Ligated Conjuncts.

Table 13-4. Sinhala Ligated Conjuncts

Special Ligatures.

Table 13-5. Irregular Vowel Sign Ligatures of Sinhala

South and Central Asia-II 624 13.2 Sinhala

da + -u / -uu / rakaaraansaya → du, duu, d.ra

The vowel killer al-lakuna takes an alternative form when combined with certain

bases. For example:

ca + al-lakuna → c

Vowel signs u and uu take alternative forms when combined with the following

specific bases: ka, ga, ngga, ta, bha, and sha. They take another pair of

alternative forms when a rakaaraansaya is already present.

ka + -u / -uu → ku, kuu

k.ra + -u / -uu → k.ru, k.ruu

In particular, the alternative forms shown in the second line of this example should

not be encoded using the vowel signs ae and aae, which look similar, but are

rendered higher: k.rae, k.raae.

U+0D81 SINHALA SIGN CANDRABINDU represents the

candrabindu used in some archaic Sanskrit texts. It is not for use in modern Sinhala.

 Sinhala currently uses Western-style punctuation marks. U+0DF4

SINHALA PUNCTUATION KUNDDALIYA was used historically as a typographic orna‐

ment or to punctuate sentences, sections, and chapters. U+0964 DEVANAGARI

DANDA is used to represent dandas that only occasionally occur in historic Sanskrit

or Pali texts written in the Sinhala script.

 Modern Sinhala text uses Western digits. The set of digits in the range

U+0DE6 to U+0DEF was used into the twentieth century, primarily to write horo‐

scopes. That set of astrological digits is known as Sinhala Lith Illakkam, and includes

a form for zero.

 SLS 1134, Sinhala Character Code for Information Interchange, is Sri

Lanka’s national standard for encoding the Sinhala script.

The Sinhala Archaic Numbers block contains characters used in a historic number

system called Sinhala Illakkam, which was in use prior to 1815. Sinhala Illakkam was

not a positional notation, and lacks a digit for zero. It is distinct from the set of

Sinhala astrological digits called Sinhala Lith Illakkam (U+0DE6..U+0DEF).

Candrabindu for Sanskrit.

Punctuation.

Digits.

Standards.

13.2.2 Sinhala Archaic Numbers: U+111E0–U+111FF

South and Central Asia-II 625 13.2 Sinhala

The Newa script, also known as Nepaalalipi in Nepal and as Newar in English-

speaking countries, is a Brahmi-based script that dates to the tenth century CE. The

script is attested in inscriptions, coins, manuscripts, books, and other publications.

Newa was actively used in central Nepal until the latter half of the 18th century,

when the Newa dynasties were overthrown and the use of the script began to decline.

In 1905 the script was banned, but the ban was lifted in 1951. Today Newa is used to

write the Nepal Bhasa language, a Tibeto-Burman language spoken predominantly in

the Kathmandu Valley of Nepal and in the Indian state of Sikkim. It also is used to

write Sanskrit and Nepali. Historically, Newa has been used for Maithili, Bengali, and

Hindi. At present, the Nepal Bhasa language is most often written in the Devanagari

script.

 Like other Brahmi-derived Indic scripts, Newa is an abugida and makes

use of a virama. The script is written from left to right.

 Vowel length is usually indicated by the dependent vowel signs. The visarga

may also be used to show vowel length. Some vowels are used only for Sanskrit and

are not needed for the representation of Nepal Bhasa.

 Conjunct forms of consonant clusters are represented with

U+11442 NEWA SIGN VIRAMA. Half-forms are used for writing horizontal conjuncts,

and generally used only for consonants with right descenders. Explicit half-forms can

be produced by writing U+200D ZERO WIDTH JOINER after the virama. In particular,

a cluster-initial ra is rendered in its above-base form (repha) by default, while its half-

form (eyelash) needs to be explicitly requested. Vertical conjuncts are currently

preferred for writing consonant clusters, but manuscripts show more variation, such

as conjuncts in a horizontal or cascading shape.

 Six consonant letters are encoded to represent

murmured resonants in the Nepal Bhasa language, as shown in Table 13-6. The

murmured resonants are analyzed as individual letters in the modern orthography,

and are separately encoded. Similar-appearing conjuncts involving the consonant ha

in Sanskrit text should be represented as conjuncts, using a sequence of <C1, virama,

C2>, consistent with Sanskrit practice for other Indic scripts.

Code Point Glyph Name

U+11413 NEWA LETTER NGHA

13.3 Newa

13.3.1 Newa: U+11400–U+1147F

Structure.

Vowels.

Virama and Conjuncts.

Murmured Resonant Consonants.

Table 13-6. Murmured Resonants in Nepal Bhasa

South and Central Asia-II 626 13.3 Newa

U+11419 NEWA LETTER NYHA

U+11424 NEWA LETTER NHA

U+1142A NEWA LETTER MHA

U+1142D NEWA LETTER RHA

U+1142F NEWA LETTER LHA

 The voiceless velar and bilabial fricatives in Newa

are represented by U+11460 NEWA SIGN JIHVAMULIYA and U+11461 NEWA SIGN

UPADHMANIYA respectively. These two characters have the Indic_Syllabic_Category

value of Consonant_With_Stacker, which means that they make stacked ligatures

with the next consonant without the use of a virama. Dependent vowel signs can also

be added to the stack.

 Combinations of certain consonants and vowel signs may have special

rendering requirements. For example, the vowel signs ai, o, and au have two-part

contextual forms when the vowels occur after the consonants ga, nya, ttha, nna, tha,

dha, and sha. In addition, several consonant letters have glyphic variants. These

include ga, jha, nya, ra, and sha.

 The consonant clusters kṣa and jña are represented by the sequences

<U+1140E NEWA LETTER KA, U+11442 NEWA SIGN VIRAMA, U+11432 NEWA LETTER

SSA> and <U+11416 NEWA LETTER JA, U+11442 NEWA SIGN VIRAMA, U+11423 NEWA

LETTER NA>, respectively. The consonants ja and ra are also written as ligatures

when combined with U+11438 NEWA VOWEL SIGN U or U+11439 NEWA VOWEL SIGN

UU.

 Newa has a full set of decimal digits located at U+11450 to U+11459.

 Newa makes use of script-specific dandas, U+1144B NEWA DANDA and

U+1144C NEWA DOUBLE DANDA. Other Newa punctuation marks include U+1144D

NEWA COMMA and U+1145A NEWA DOUBLE COMMA, which are used as phrase sepa‐

rators, and U+1145D NEWA INSERTION SIGN. The punctuation mark U+1144E NEWA

GAP FILLER indicates a break or fills a gap in a line at the margin. The character

U+1145B NEWA PLACEHOLDER MARK also is used to fill a gap in a line, but may be

used to mark the end of text. U+1144F NEWA ABBREVIATION SIGN is employed to

indicate an abbreviation.

Unicode characters in other blocks may be used for other punctuation marks that

occur in Newa texts . A flower mark, used to identify the end of a text section, can be

represented by U+2055 FLOWER PUNCTUATION MARK. This mark typically occurs

with U+1144C NEWA DOUBLE DANDA on either side. To indicate a deletion, U+1DFB

COMBINING DELETION MARK can be used.

 To indicate nasalization, U+11443 NEWA SIGN CANDRABINDU and

U+11444 NEWA SIGN ANUSVARA are used. U+11445 NEWA SIGN VISARGA represents

Jihvamuliya and Upadhmaniya.

Rendering.

Ligatures.

Digits.

Punctuation.

Other Signs.

South and Central Asia-II 627 13.3 Newa

post-vocalic aspiration or can be used to mark vowel length. U+11446 NEWA SIGN

NUKTA is used to indicate sounds for which distinct characters in Newa do not exist,

such as in loanwords. The character U+11447 NEWA SIGN AVAGRAHA marks elision

of a word-initial a in Sanskrit as the result of sandhi. U+11448 NEWA SIGN FINAL

ANUSVARA has different uses. In certain manuscripts, it indicates nasalization,

whereas in other sources, it is a form of punctuation, similar to a semicolon.

Newa includes two invocation signs, U+11449 NEWA OM and U+1144A NEWA SIDDHI.

The sign om may also be written using the sequence <U+1140C NEWA LETTER O,

U+11443 NEWA SIGN CANDRABINDU>. The Newa sign siddhi is written at the begin‐

ning of text, often beside om. It represents siddhirastu, “may there be success.”

South and Central Asia-II 628 13.3 Newa

The Tibetan script is used for writing Tibetan in several countries and regions

throughout the Himalayas. Aside from Tibet itself, the script is used in Ladakh,

Nepal, and northern areas of India bordering Tibet where large Tibetan-speaking

populations now reside. The Tibetan script is also used in Bhutan to write Dzongkha,

the official language of that country. In Bhutan, as well as in some scholarly tradi‐

tions, the Tibetan script is called the Bodhi script, and the particular version written

in Bhutan is known as Joyi (mgyogs yig). In addition, Tibetan is used as the language

of philosophy and liturgy by Buddhist traditions spread from Tibet into the Mongo‐

lian cultural area that encompasses Mongolia, Buriatia, Kalmykia, and Tuva.

The Tibetan scripting and grammatical systems were originally defined together in

the sixth century by royal decree when the Tibetan King Songtsen Gampo sent 16

men to India to study Indian languages. One of those men, Thumi Sambhota, is cred‐

ited with creating the Tibetan writing system upon his return, having studied various

Indic scripts and grammars. The king’s primary purpose was to bring Buddhism from

India to Tibet. The new script system was therefore designed with compatibility

extensions for Indic (principally Sanskrit) transliteration so that Buddhist texts could

be represented properly. Because of this origin, over the last 1,500 years the Tibetan

script has been widely used to represent Indic words, a number of which have been

adopted into the Tibetan language retaining their original spelling.

A note on Latin transliteration: Tibetan spelling is traditional and does not generally

reflect modern pronunciation. Throughout this section, Tibetan words are repre‐

sented in italics when transcribed as spoken, followed at first occurrence by a paren‐

thetical transliteration; in these transliterations, the presence of the tsek (tsheg)char‐

acter is expressed with a hyphen.

Thumi Sambhota’s original grammar treatise defined two script styles. The first,

called uchen (dbu-can, “with head”), is a formal “inscriptional capitals” style said to

be based on an old form of Devanagari. It is the script used in Tibetan xylograph

books and the one used in the coding tables. The second style, called u-mey (dbu-

med, or “headless”), is more cursive and said to be based on the Wartu script.

Numerous styles of u-mey have evolved since then, including both formal calli‐

graphic styles used in manuscripts and running handwriting styles. All Tibetan

scripts follow the same lettering rules, though there is a slight difference in the way

that certain compound stacks are formed in uchen and u-mey.

 Tibetan grammar divides letters into

consonants and vowels. There are 30 consonants, and each consonant is represented

by a discrete written character. There are five vowel sounds, only four of which are

13.4 Tibetan

13.4.1 Tibetan: U+0F00–U+0FFF

General Principles of the Tibetan Script.

South and Central Asia-II 629 13.4 Tibetan

represented by written marks. The four vowels that are explicitly represented in

writing are each represented with a single mark that is applied above or below a

consonant to indicate the application of that vowel to that consonant. The absence of

one of the four marks implies that the first vowel sound (like a short “ah” in English)

is present and is not modified to one of the four other possibilities. Three of the four

marks are written above the consonants; one is written below.

Each word in Tibetan has a base or root consonant. The base consonant can be

written singly or it can have other consonants added above or below it to make a

vertically “stacked” letter. Tibetan grammar contains a very complete set of rules

regarding letter gender, and these rules dictate which letters can be written in adja‐

cent positions. The rules therefore dictate which combinations of consonants can be

joined to make stacks. Any combination not allowed by the gender rules does not

occur in native Tibetan words. However, when transcribing other languages (for

example, Sanskrit, Chinese) into Tibetan, these rules do not operate. In certain

instances other than transliteration, any consonant may be combined with any other

subjoined consonant. Implementations should therefore be prepared to accept and

display any combinations.

For example, the syllable spyir “general,” pronounced [tʃíː], is a typical example of a

Tibetan syllable that includes a stack comprising a head letter, two subscript letters,

and a vowel sign. Figure 13-1 shows the characters in the order in which they appear

in the backing store.

The model adopted to encode the Tibetan lettering set described above contains the

following groups of items: Tibetan consonants, vowels, numerals, punctuation, orna‐

mental signs and marks, and Tibetan-transliterated Sanskrit consonants and vowels.

Each of these will be described in this section.

Both in this description and in Tibetan, the terms “subjoined” (-btags) and “head” (-

mgo) are used in different senses. In the structural sense, they indicate specific slots

defined in native Tibetan orthography. In spatial terms, they refer to the position in

the stack; anything in the topmost position is “head,” anything not in the topmost

position is “subjoined.” Unless explicitly qualified, the terms “subjoined” and “head”

Figure 13-1. Tibetan Syllable Structure

South and Central Asia-II 630 13.4 Tibetan

are used here in their spatial sense. For example, in a conjunct like “rka,” the letter in

the root slot is “KA.” Because it is not the topmost letter of the stack, however, it is

expressed with a subjoined character code, while “RA”, which is structurally in the

head slot, is expressed with a nominal character code. In a conjunct “kra,” in which

the root slot is also occupied with “KA”, the “KA” is encoded with a nominal char‐

acter code because it is in the topmost position in the stack.

The Tibetan script has its own system of formatting, and details of that system rele‐

vant to the characters encoded in this standard are explained herein. However, an

increasing number of publications in Tibetan do not strictly adhere to this original

formatting system. This change is due to the partial move from publishing on long,

horizontal, loose-leaf folios, to publishing in vertically oriented, bound books. The

Tibetan script also has a punctuation set designed to meet needs quite different from

the punctuation that has evolved for Western scripts. With the appearance of Tibetan

newspapers, magazines, school textbooks, and Western-style reference books in the

last 20 or 30 years, Tibetans have begun using things like columns, indented blocks of

text, Western-style headings, and footnotes. Some Western punctuation marks,

including brackets, parentheses, and quotation marks, are becoming commonplace

in these kinds of publication. With the introduction of more sophisticated electronic

publishing systems, there is also a renaissance in the publication of voluminous reli‐

gious and philosophical works in the traditional horizontal, loose-leaf format—many

set in digital typefaces closely conforming to the proportions of traditional hand-

lettered text.

 The system described here has been devised to encode the Tibetan

system of writing consonants in both single and stacked forms.

All of the consonants are encoded a first time from U+0F40 through U+0F69. There

are the basic Tibetan consonants and, in addition, six compound consonants used to

represent the Indic consonants gha, jha, d.ha, dha, bha, and ksh.a. These codes are

used to represent occurrences of either a stand-alone consonant or a consonant in

the head position of a vertical stack. Glyphs generated from these codes will always

sit in the normal position starting at and dropping down from the design baseline. All

of the consonants are then encoded a second time. These second encodings from

U+0F90 through U+0FB9 represent consonants in subjoined stack position.

To represent a single consonant in a text stream, one of the first “nominal” set of

codes is placed. To represent a stack of consonants in the text stream, a “nominal”

consonant code is followed directly by one or more of the subjoined consonant codes.

The stack so formed continues for as long as subjoined consonant codes are contigu‐

ously placed.

This encoding method was chosen over an alternative method that would have

involved a virama-based encoding, such as Devanagari. There were two main reasons

for this choice. First, the virama is not normally used in the Tibetan writing system to

Consonants.

South and Central Asia-II 631 13.4 Tibetan

create letter combinations. There is a virama in the Tibetan script, but only because

of the need to represent Devanagari; called “srog-med”, it is encoded at U+0F84

TIBETAN MARK HALANTA. The virama is never used in writing Tibetan words and

can be—but almost never is—used as a substitute for stacking in writing Sanskrit

mantras in the Tibetan script. Second, there is a prevalence of stacking in native

Tibetan, and the model chosen specifically results in decreased data storage require‐

ments. Furthermore, in languages other than Tibetan, there are many cases where

stacks occur that do not appear in Tibetan-language texts; it is thus imperative to

have a model that allows for any consonant to be stacked with any subjoined conso‐

nant(s). Thus a model for stack building was chosen that follows the Tibetan

approach to creating letter combinations, but is not limited to a specific set of the

possible combinations.

 Each of the four basic Tibetan vowel marks is coded as a separate entity.

These code points are U+0F72, U+0F74, U+0F7A, and U+0F7C. For compatibility, a

set of several compound vowels for Sanskrit transcription is also provided in the

other code points between U+0F71 and U+0F7D. Most Tibetan users do not view

these compound vowels as single characters, and their use is limited to Sanskrit

words. It is acceptable for users to enter these compounds as a series of simpler

elements and have software render them appropriately. Canonical equivalences are

specified for all of these compound vowels, with the exception of U+0F77 TIBETAN

VOWEL SIGN VOCALIC RR and U+0F79 TIBETAN VOWEL SIGN VOCALIC LL, which for

historic reasons have only compatibility equivalences specified. These last two char‐

acters are deprecated, and their use is strongly discouraged.

A vowel sign may be applied either to a stand-alone consonant or to a stack of conso‐

nants. The vowel sign occurs in logical order after the consonant (or stack of conso‐

nants). Each of the vowel signs is a nonspacing combining mark. The four basic

vowel marks are rendered either above or below the consonant. The compound

vowel marks also appear either above or below the consonant, but in some cases have

one part displayed above and one part displayed below the consonant.

All of the symbols and punctuation marks have straightforward encodings. Further

information about many of them appears later in this section.

 In general, the correct coding order for a stream of text will be the

same as the order in which Tibetans spell and in which the characters of the text

would be written by hand. For example, the correct coding order for the most

complex Tibetan stack would be

head position consonant

first subjoined consonant

... (intermediate subjoined consonants, if any)

Vowels.

Coding Order.

South and Central Asia-II 632 13.4 Tibetan

last subjoined consonant

subjoined vowel a-chung (U+0F71)

standard or compound vowel sign, or virama

Where used, the character U+0F39 TIBETAN MARK TSA -PHRU occurs immediately

after the consonant it modifies.

 When consonants are combined to form a stack, one

of them retains the status of being the principal consonant in the stack. The principal

consonant always retains its stand-alone form. However, consonants placed in the

“head” and “subjoined” positions to the main consonant sometimes retain their

stand-alone forms and sometimes are given new, special forms. Because of this fact,

certain consonants are given a further, special encoding treatment—namely, “wa”

(U+0F5D), “ya” (U+0F61), and “ra” (U+0F62).

 When the consonant “ra” is written in the “head” position (ra-

mgo, pronounced ra-go) at the top of a stack in the normal Tibetan-defined lettering

set, the shape of the consonant can change. It can either be a full-form shape or the

full-form shape but with the bottom stroke removed (looking like a short-stemmed

letter “T”). This requirement of “ra” in the head position where the glyph repre‐

senting it can change shape is correctly coded by using the stand-alone “ra” conso‐

nant (U+0F62) followed by the appropriate subjoined consonant(s). For example, in

the normal Tibetan ra-mgo combinations, the “ra” in the head position is mostly

written as the half-ra but in the case of “ra + subjoined nya” must be written as the

full-form “ra”. Thus the normal Tibetan ra-mgo combinations are correctly encoded

with the normal “ra” consonant (U+0F62) because it can change shape as required.

It is the responsibility of the font developer to provide the correct glyphs for repre‐

senting the characters where the “ra” in the head position will change shape—for

example, as in “ra + subjoined nya”.

 Some instances of “ra” in the head position

require that the consonant be represented as a full-form “ra” that never changes. This

is not standard usage for the Tibetan language itself, but rather occurs in translitera‐

tion and transcription. Only in these cases should the character U+0F6A TIBETAN

LETTER FIXED-FORM RA be used instead of U+0F62 TIBETAN LETTER RA. This “ra”

will always be represented as a full-form “ra consonant” and will never change shape

to the form where the lower stroke has been cut off. For example, the letter combina‐

tion “ra + ya”, when appearing in transliterated Sanskrit works, is correctly written

with a full-form “ra” followed by either a modified subjoined “ya” form or a full-form

subjoined “ya” form. Note that the fixed-form “ra” should be used only in combina‐

tions where “ra” would normally transform into a short form but the user specifically

wants to prevent that change. For example, the combination “ra + subjoined nya”

never requires the use of fixed-form “ra”, because “ra” normally retains its full glyph

Allographical Considerations.

Head Position “ra”.

Full-Form “ra” in Head Position.

South and Central Asia-II 633 13.4 Tibetan

form over “nya”. It is the responsibility of the font developer to provide the appro‐

priate glyphs to represent the encodings.

 All three of these consonants can be

written in subjoined position to the main consonant according to normal Tibetan

grammar. In this position, all of them change to a new shape. The “wa” consonant

when written in subjoined position is not a full “wa” letter any longer but is literally

the bottom-right corner of the “wa” letter cut off and appended below it. For that

reason, it is called a wa-zur (wa-zur or “corner of a wa”) or, less frequently but just as

validly, wa-ta (wa-btags) to indicate that it is a subjoined “wa”. The consonants “ya”

and “ra” when in the subjoined position are called ya-ta (ya-btags) and ra-ta (ra-

btags), respectively. To encode these subjoined consonants that follow the rules of

normal Tibetan grammar, the shape-changed, subjoined forms U+0FAD TIBETAN

SUBJOINED LETTER WA, U+0FB1 TIBETAN SUBJOINED LETTER YA, and U+0FB2

TIBETAN SUBJOINED LETTER RA should be used.

All three of these subjoined consonants also have full-form non-shape-changing

counterparts for the needs of transliterated and transcribed text. For this purpose, the

full sub-joined consonants that do not change shape (encoded at U+0FBA, U+0FBB,

and U+0FBC, respectively) are used where necessary. The combinations of “ra + ya”

are a good example because they include instances of “ra” taking a short (ya-btags)

form and “ra” taking a full-form subjoined “ya”.

U+0FB0 TIBETAN SUBJOINED LETTER -A (a-chung) should be used only in the very

rare cases where a full-sized subjoined ’a-chung letter is required. The small vowel

lengthening ’a-chung encoded as U+0F71 TIBETAN VOWEL SIGN AA is far more

frequently used in Tibetan text, and it is therefore recommended that implementa‐

tions treat this character (rather than U+0FB0) as the normal subjoined ’a-chung.

 Because two sets of consonants are encoded for Tibetan, with

the second set providing explicit ligature formation, there is no need for a “dead char‐

acter” in Tibetan. When a halanta (srog-med) is used in Tibetan, its purpose is to

suppress the inherent vowel “a”. If anything, the halanta should prevent any vowel or

consonant from forming a ligature with the consonant preceding the halanta. In

Tibetan text, this character should be displayed beneath the base character as a

combining glyph and not used as a (purposeless) dead character.

 Tibetan text separates units called natively tsek-bar

(“tsheg-bar”), an inexact translation of which is “syllable.” Tsek-bar is literally the

unit of text between tseks and is generally a consonant cluster with all of its prefixes,

suffixes, and vowel signs. It is not a “syllable” in the English sense.

Tibetan script has only two break characters. The primary break character is the stan‐

dard interword tsek (tsheg), which is encoded at U+0F0B. The second break char‐

Subjoined Position “wa”, “ya”, and “ra”.

Halanta (Srog-Med).

Line Breaking Considerations.

South and Central Asia-II 634 13.4 Tibetan

acter is the space. Space or tsek characters in a stream of Tibetan text are not always

break characters and so need proper contextual handling.

The primary delimiter character in Tibetan text is the tsek (U+0F0B TIBETAN MARK

INTERSYLLABIC TSHEG). In general, automatic line breaking processes may break

after any occurrence of this tsek, except where it follows a U+0F44 TIBETAN LETTER

NGA (with or without a vowel sign) and precedes a shay (U+0F0D), or where Tibetan

grammatical rules do not permit a break. (Normally, tsek is not written before shay

except after “nga”. This type of tsek-after-nga is called “nga-phye-tsheg” and may be

expressed by U+0F0B or by the special character U+0F0C, a nonbreaking form of

tsek.) The Unicode names for these two types of tsek are misnomers, retained for

compatibility. The standard tsek U+0F0B TIBETAN MARK INTERSYLLABIC TSHEG is

always required to be a potentially breaking character, whereas the “nga-phye-tsheg”

is always required to be a nonbreaking tsek. U+0F0C TIBETAN MARK DELIMITER

TSHEG BSTAR is specifically not a “delimiter” and is not for general use.

There are no other break characters in Tibetan text. Unlike English, Tibetan has no

system for hyphenating or otherwise breaking a word within the group of letters

making up the word. Tibetan text formatting does not allow text to be broken within

a word.

Whitespace appears in Tibetan text, although it should be represented by U+00A0

NO-BREAK SPACE instead of U+0020 SPACE. Tibetan text breaks lines after tsek

instead of at whitespace.

Complete Tibetan text formatting is best handled by a formatter in the application

and not just by the code stream. If the interword and nonbreaking tseks are properly

employed as breaking and nonbreaking characters, respectively, and if all spaces are

nonbreaking spaces, then any application will still wrap lines correctly on that basis,

even though the breaks might be sometimes inelegant.

 The punctuation apparatus of Tibetan is relatively limited.

The principal punctuation characters are the tsek; the shay (transliterated “shad”),

which is a vertical stroke used to mark the end of a section of text; the space used

sparingly as a space; and two of several variant forms of the shay that are used in

specialized situations requiring a shay. There are also several other marks and signs

but they are sparingly used.

The shay at U+0F0D marks the end of a piece of text called “tshig-grub”. The mode

of marking bears no commonality with English phrases or sentences and should not

be described as a delimiter of phrases. In Tibetan grammatical terms, a shay is used

to mark the end of an expression (“brjod-pa”) and a complete expression. Two shays

are used at the end of whole topics (“don-tshan”). Because some writers use the

double shay with a different spacing than would be obtained by coding two adjacent

occurrences of U+0F0D, the double shay has been coded at U+0F0E with the intent

Tibetan Punctuation.

South and Central Asia-II 635 13.4 Tibetan

that it would have a larger spacing between component shays than if two shays were

simply written together. However, most writers do not use an unusual spacing

between the double shay, so the application should allow the user to write two

U+0F0D codes one after the other. Additionally, font designers will have to decide

whether to implement these shays with a larger than normal gap.

The U+0F11 rin-chen-pung-shay (rin-chen-spungs-shad) is a variant shay used in a

specific “new-line” situation. Its use was not defined in the original grammars but

Tibetan tradition gives it a highly defined use. The drul-shay (“sbrul-shad”) is like‐

wise not defined by the original grammars but has a highly defined use; it is used for

separating sections of meaning that are equivalent to topics (“don-tshan”) and

subtopics. A drul-shay is usually surrounded on both sides by the equivalent of about

three spaces (though no rule is specified). Hard spaces will be needed for these

instances because the drul-shay should not appear at the beginning of a new line and

the whole structure of spacing-plus-shay should not be broken up, if possible.

Tibetan texts use a yig-go (“head mark,” yig-mgo) to indicate the beginning of the

front of a folio, there being no other certain way, in the loose-leaf style of traditional

Tibetan books, to tell which is the front of a page. The head mark can and does vary

from text to text; there are many different ways to write it. The common type of head

mark has been provided for with U+0F04 TIBETAN MARK INITIAL YIG MGO MDUN

MA and its extension U+0F05 TIBETAN MARK CLOSING YIG MGO SGAB MA. An initial

mark yig-go can be written alone or combined with as many as three closing marks

following it. When the initial mark is written in combination with one or more

closing marks, the individual parts of the whole must stay in proper registration with

each other to appear authentic. Therefore, it is strongly recommended that font

developers create precomposed ligature glyphs to represent the various combinations

of these two characters. The less common head marks mainly appear in Nyingmapa

and Bonpo literature. Three of these head marks have been provided for with

U+0F01, U+0F02, and U+0F03; however, many others have not been encoded. Font

developers will have to deal with the fact that many types of head marks in use in

this literature have not been encoded, cannot be represented by a replacement that

has been encoded, and will be required by some users.

Two characters, U+0F3C TIBETAN MARK ANG KHANG GYON and U+0F3D TIBETAN

MARK ANG KHANG GYAS, are paired punctuation; they are typically used together to

form a roof over one or more digits or words. In this case, kerning or special ligatures

may be required for proper rendering. The right ang khang may also be used much as

a single closing parenthesis is used in forming lists; again, special kerning may be

required for proper rendering. The marks U+0F3E TIBETAN SIGN YAR TSHES and

U+0F3F TIBETAN SIGN MAR TSHES are paired signs used to combine with digits;

special glyphs or compositional metrics are required for their use.

A set of frequently occurring astrological and religious signs specific to Tibetan is

encoded between U+0FBE and U+0FCF.

South and Central Asia-II 636 13.4 Tibetan

U+0F34, which means “et cetera” or “and so on,” is used after the first few tsek-bar of

a recurring phrase. U+0FBE (often three times) indicates a refrain.

U+0F36 and U+0FBF are used to indicate where text should be inserted within other

text or as references to footnotes or marginal notes.

 The svasti signs encoded in the range U+0FD5..U+0FD8 are widely

used sacred symbols associated with Hinduism, Buddhism, and Jainism. They are

often printed in religious texts, marriage invitations, and decorations, and are consid‐

ered symbols of good luck and well-being. In the Hindu tradition in India, the dotted

forms are often used. The svasti signs are used to mark religious flags in Jainism and

also appear on Buddhist temples, or as map symbols to indicate the location of

Buddhist temples throughout Asia. These signs are encoded in the Tibetan block, but

are intended for general use; they occur with many other scripts in Asia.

In the Tibetan language, the right-facing svasti sign is referred to as gyung drung nang

-khor and the left-facing svasti sign as gyung drung phyi -khor. U+0FCC TIBETAN

SYMBOL NOR BU BZHI -KHYIL, or quadruple body symbol, is a Tibetan-specific

version of the left-facing svasti sign.

The svasti signs have also been borrowed into the Han script and adapted as CJK

ideographs. The CJK unified ideographs U+534D and U+5350 correspond to the left-

facing and right-facing svasti signs, respectively. These CJK unified ideographs have

adopted Han script-specific features and properties: they share metrics and type style

characteristics with other ideographs, and are given radicals and stroke counts like

those for other ideographs.

 The Wheel of Dharma, which occurs sometimes in Tibetan texts,

is encoded in the Miscellaneous Symbols block at U+2638.

The marks U+0F35 TIBETAN MARK NGAS BZUNG NYI ZLA and U+0F37 TIBETAN

MARK NGAS BZUNG SGOR RTAGS conceptually attach to a tsek-bar rather than to an

individual character and function more like attributes than characters—for example,

as underlining to mark or emphasize text. In Tibetan interspersed commentaries,

they may be used to tag the tsek-bar belonging to the root text that is being

commented on. The same thing is often accomplished by setting the tsek-bar

belonging to the root text in large type and the commentary in small type. Correct

placement of these glyphs may be problematic. If they are treated as normal

combining marks, they can be entered into the text following the vowel signs in a

stack; if used, their presence will need to be accounted for by searching algorithms,

among other things.

 The half-number forms (U+0F2A..U+0F33) are peculiar to

Tibetan, though other scripts (for example, Bangla) have similar fractional concepts.

The half-numbers are not well attested. Based on current evidence, the value of a

half-number is 0.5 less than the number within which it appears. Half numbers

Svasti Signs.

Other Characters.

Tibetan Half-Numbers.

South and Central Asia-II 637 13.4 Tibetan

appear as the last digit of a multidigit number. For example, the sequence of digits

“U+0F24 U+0F2C” could represent the numerical value 42.5.

 Tibetan tradi‐

tions are in place for transliterating other languages. Most commonly, Sanskrit has

been the language being transliterated, although Chinese has become more common

in modern times. Additionally, Mongolian has a transliterated form. There are even

some conventions for transliterating English. One feature of Tibetan script/grammar

is that it allows for totally accurate transliteration of Sanskrit. The basic Tibetan

letterforms and punctuation marks contain most of what is needed, although a few

extra things are required. With these additions, Sanskrit can be transliterated

perfectly into Tibetan, and the Tibetan transliteration can be rendered backward

perfectly into Sanskrit with no ambiguities or difficulties.

The six Sanskrit retroflex letters are interleaved among the other consonants.

The compound Sanskrit consonants are not used in normal Tibetan. Precomposed

forms of aspirate letters (and the conjunct “kssa”) are explicitly coded, along with

their corresponding subjoined forms: for example, U+0F43 TIBETAN LETTER GHA,

and U+0F93 TIBETAN SUBJOINED LETTER GHA, or U+0F69 TIBETAN LETTER KSSA,

and U+0FB9 TIBETAN SUBJOINED LETTER KSSA. However, these characters,

including the subjoined forms, decompose to stacked sequences involving subjoined

“ha” (or “reversed sha”) in all Unicode normalization forms.

The vowel signs of Sanskrit not included in Tibetan are encoded with other vowel

signs between U+0F70 and U+0F7D. U+0F7F TIBETAN SIGN RNAM BCAD (nam

chay) is the visarga, and U+0F7E TIBETAN SIGN RJES SU NGA RO (nga-ro) is the anus‐

vara. See Section 12.1, Devanagari, for more information on these two characters.

The characters encoded in the range U+0F88..U+0F8B are used in transliterated text

and are most commonly found in Kalachakra literature.

When the Tibetan script is used to transliterate Sanskrit, consonants are sometimes

stacked in ways that are not allowed in native Tibetan stacks. Even complex forms of

this stacking behavior are catered for properly by the method described earlier for

coding Tibetan stacks.

U+0F09 TIBETAN MARK BSKUR YIG MGO is a list enumerator used at

the beginning of administrative letters in Bhutan, as is the petition honorific

U+0F0A TIBETAN MARK BKA- SHOG YIG MGO.

U+0F3A TIBETAN MARK GUG RTAGS GYON and U+0F3B TIBETAN MARK GUG RTAGS

GYAS are paired punctuation marks (brackets).

The sign U+0F39 TIBETAN MARK TSA -PHRU (tsa-’phru, which is a lenition mark) is

the ornamental flaglike mark that is an integral part of the three consonants U+0F59

Tibetan Transliteration and Transcription of Other Languages.

Other Signs.

South and Central Asia-II 638 13.4 Tibetan

TIBETAN LETTER TSA, U+0F5A TIBETAN LETTER TSHA, and U+0F5B TIBETAN

LETTER DZA. Although those consonants are not decomposable, this mark has been

abstracted and may by itself be applied to “pha” and other consonants to make new

letters for use in transliteration and transcription of other languages. For example, in

modern literary Tibetan, it is one of the ways used to transcribe the Chinese “fa” and

“va” sounds not represented by the normal Tibetan consonants. Tsa-’phru is also

used to represent tsa, tsha, and dza in abbreviations.

 Native Tibetan texts

(“pecha”) are written and printed using a justification system that is, strictly

speaking, right-ragged but with an attempt to right-justify. Each page has a margin.

That margin is usually demarcated with visible border lines required of a pecha. In

modern times, when Tibetan text is produced in Western-style books, the margin

lines may be dropped and an invisible margin used. When writing the text within the

margins, an attempt is made to have the lines of text justified up to the right margin.

To do so, writers keep an eye on the overall line length as they fill lines with text and

try manually to justify to the right margin. Even then, a gap at the right margin often

cannot be filled. If the gap is short, it will be left as is and the line will be said to be

justified enough, even though by machine-justification standards the line is not truly

flush on the right. If the gap is large, the intervening space will be filled with as many

tseks as are required to justify the line. Again, the justification is not done perfectly in

the way that English text might be perfectly right-justified; as long as the last tsek is

more or less at the right margin, that will do. The net result is that of a right-justified,

blocklike look to the text, but the actual lines are always a little right-ragged.

Justifying tseks are nearly always used to pad the end of a line when the preceding

character is a tsek—in other words, when the end of a line arrives in the middle of

tshig-grub (see the previous definition under “Tibetan Punctuation”). However, it is

unusual for a line that ends at the end of a tshig-grub to have justifying tseks added to

the shay at the end of the tshig-grub. That is, a sequence like that shown in the first

line of Figure 13-2 is not usually padded as in the second line of Figure 13-2, though it

is allowable. In this case, instead of justifying the line with tseks, the space between

shays is enlarged and/or the whitespace following the final shay is usually left as is.

Padding is never applied following an actual space character. For example, given the

existence of a space after a shay, a line such as the third line of Figure 13-2 may not be

written with the padding as shown because the final shay should have a space after it,

and padding is never applied after spaces. The same rule applies where the final

consonant of a tshig-grub that ends a line is a “ka” or “ga”. In that case, the ending

shay is dropped but a space is still required after the consonant and that space must

not be padded. For example, the appearance shown in the fourth line of Figure 13-2 is

not acceptable.

Traditional Text Formatting and Line Justification.

South and Central Asia-II 639 13.4 Tibetan

Tibetan text has two rules for formatting text at the beginning of a new line. There

are severe constraints on which characters can start a new line, and the first rule is

traditionally stated as follows: A shay of any description may never start a new line.

Nothing except actual words of text can start a new line, with the only exception

being a yig-go (yig-mgo) at the head of a front page or a da-tshe (zla-tshe, meaning

“crescent moon”—for example, U+0F05) or one of its variations, which is effectively

an “in-line” yig-go (yig-mgo), on any other line. One of two or three ornamental shays

is also commonly used in short pieces of prose in place of the more formal da-tshe.

This also means that a space may not start a new line in the flow of text. If there is a

major break in a text, a new line might be indented.

A syllable (tsheg-bar) that comes at the end of a tshig-grub and that starts a new line

must have the shay that would normally follow it replaced by a rin-chen-spungs-shad

(U+0F11). The reason for this second rule is that the presence of the rin-chen-

spungs-shad makes the end of tshig-grub more visible and hence makes the text

easier to read.

In verse, the second shay following the first rin-chen-spungs-shad is sometimes

replaced by a rin-chen-spungs-shad, though the practice is formally incorrect. It is a

writer’s trick done to make a particular scribing of a text more elegant. Although a

moderately popular device, it does break the rule. Not only is rin-chen-spungs-shad

used as the replacement for the shay but a whole class of “ornamental shays” are

used for the same purpose. All are scribal variants on a rin-chen-spungs-shad, which

is correctly written with three dots above it.

 A consonant functioning as the word base (ming-gzhi) is allowed to take

only one vowel sign according to Tibetan grammar. The Tibetan shorthand writing

technique called bskungs-yig does allow one or more words to be contracted into a

single, very unusual combination of consonants and vowels. This construction

frequently entails the application of more than one vowel sign to a single consonant

or stack, and the composition of the stacks themselves can break the rules of normal

Tibetan grammar. For this reason, vowel signs sometimes interact typographically,

which accounts for their particular combining classes (see Section 4.3, Combining

Classes).

Figure 13-2. Justifying Tibetan Tseks

Tibetan Shorthand Abbreviations (bskungs-yig) and Limitations of the

Encoding.

South and Central Asia-II 640 13.4 Tibetan

The Unicode Standard accounts for plain text compounds of Tibetan that contain at

most one base consonant, any number of subjoined consonants, followed by any

number of vowel signs. This coverage constitutes the vast majority of Tibetan text.

Rarely, stacks are seen that contain more than one such consonant-vowel combina‐

tion in a vertical arrangement. These stacks are highly unusual and are considered

beyond the scope of plain text rendering. They may be handled by higher-level mech‐

anisms.

South and Central Asia-II 641 13.4 Tibetan

The Mongolians are key representatives of a cultural-linguistic group known as

Altaic, after the Altai mountains of central Asia. In the past, these peoples have

dominated the vast expanses of Asia and beyond, from the Baltic to the Sea of Japan.

Echoes of Altaic languages remain from Finland, Hungary, and Turkey, across

central Asia, to Korea and Japan. Today the Mongolians are represented politically in

the country of Mongolia (also known as Outer Mongolia) and Inner Mongolia

(formally the Inner Mongolia Autonomous Region, China), with Mongolian popula‐

tions also living in other areas of China and Russia.

 Guidelines for text representation and text shaping of

the Mongolian script can be found in Unicode Technical Note #57, Encoding and

Shaping of the Mongolian Script. For text representation, the document lists the

characters and their variants for letters and marks used in each writing system; for

text shaping, the document provides hierarchical shaping rules, detailing the

behavior of each shaping step and the conditions for the presentation of each variant.

(Unicode Technical Notes do not have normative status for the Unicode Standard.)

 The Mongolian block unifies the

traditional writing system for the Mongolian language and the three derivative

writing systems Todo, Manchu, and Sibe. The traditional writing system is also

known as “Hudum Mongolian,” and is explicitly referred to as “Hudum” in the

following text. Each of the three derivative writing systems shares some common

letters with Hudum, and these letters are encoded only once. Each derivative writing

system also has a number of modified letterforms or new letters, which are encoded

separately. The letters typically required by each writing system’s modern usage are

encoded as shown in Table 13-7.

Hudum Todo Manchu Sibe Note

1820..1842 1820
1828
182F..1831
1834
1837..1838
1840

1820
1823
1828..182A
182E..1830
1834..1836
1838
183A

1820
1823
1828
182A
182E..1830
1834
1836..1838
183A

Unified Mongolian letters

13.5 Mongolian

13.5.1 Mongolian: U+1800–U+18AF

Implementation Guidelines.

Unification of Characters in Mongolian Block.

Table 13-7. Letter Usage in Mongolian Writing Systems

South and Central Asia-II 642 13.5 Mongolian

https://www.unicode.org/notes/tn57/
https://www.unicode.org/notes/tn57/

1843..185A
185C

185D
185F..1861
1864..1869
186C..1871
1873..1877

185D..1872 Letters specific to the derivative writing systems

Mongolian, Todo, and Manchu also have a number of special “Ali Gali” letters that

are used for transcribing Tibetan and Sanskrit in Buddhist texts.

 The Mongolian code chart previously included glyphs for

positional forms of atomic characters since Version 9.0 and standardized variation

sequences since Version 7.0. As of Version 13.0, the glyphs and information about

positional forms are no longer included. For a copy of the last Mongolian code chart

before the Version 13.0 change, as well as the rationale behind the change, see

Unicode Technical Report #54, “Unicode Mongolian 12.1 Snapshot.”

 The Mongolian script was created around the beginning of the thirteenth

century, during the reign of Genghis Khan. It derives from the Old Uyghur script,

which was in use from about the eighth to the fifteenth century. Old Uyghur itself

was an adaptation of Sogdian Aramaic, a Semitic script written horizontally from

right to left. Probably under the influence of the Chinese script, the Old Uyghur

script became rotated ninety degrees counterclockwise so that the lines of text read

vertically in columns running from left to right. The Mongolian script inherited this

directionality from the Old Uyghur script.

The Mongolian script has remained in continuous use for writing Mongolian within

the Inner Mongolia Autonomous Region of China and elsewhere in China. However,

in Mongolia (Outer Mongolia), the traditional script was replaced by a Cyrillic

orthography in the early 1940s. The traditional script was revived in the early 1990s,

so that now both the Cyrillic and the Mongolian scripts are used. The spelling used

with the traditional Mongolian script represents the literary language of the seven‐

teenth and early eighteenth centuries, whereas the Cyrillic script is used to represent

the modern, colloquial pronunciation of words. As a consequence, there is no one-to-

one relationship between the traditional Mongolian orthography and Cyrillic orthog‐

raphy. Approximate correspondence mappings are indicated in the code charts, but

are not necessarily unique in either direction. All of the Cyrillic characters needed to

write Mongolian are included in the Cyrillic block of the Unicode Standard.

In addition to the traditional Mongolian script of Mongolia, several historical modifi‐

cations and adaptations of the Mongolian script have emerged elsewhere. These

adaptations are often referred to as scripts in their own right, although for the

purposes of character encoding in the Unicode Standard they are treated as styles of

the Mongolian script and share encoding of their basic letters.

The Todo script is a modified and improved version of the Mongolian script, devised

in 1648 by Zaya Pandita for use by the Kalmyk Mongolians, who had migrated to

Mongolian Code Charts.

History.

South and Central Asia-II 643 13.5 Mongolian

Russia in the sixteenth century, and who now inhabit the Republic of Kalmykia in

the Russian Federation. The name Todo means “clear” in Mongolian; it refers to the

fact that the new script eliminates the ambiguities inherent in the original Mongolian

script. The orthography of the Todo script also reflects the Oirat-Kalmyk dialects of

Mongolian rather than literary Mongolian. In Kalmykia, the Todo script was replaced

by a succession of Cyrillic and Latin orthographies from the mid-1920s and is no

longer in active use. Until very recently the Todo script was still used by speakers of

the Oirat and Kalmyk dialects within Xinjiang and Qinghai in China.

The Manchu script is an adaptation of the Mongolian script used to write Manchu, a

Tungusic language that is not closely related to Mongolian. The Mongolian script was

first adapted for writing Manchu in 1599 under the orders of the Manchu leader

Nurhachi, but few examples of this early form of the Manchu script survive. In 1632,

the Manchu scholar Dahai reformed the script by adding circles and dots to certain

letters in an effort to distinguish their different sounds and by devising new letters to

represent the sounds of the Chinese language. When the Manchu people conquered

China to rule as the Qing dynasty (1644–1911), Manchu become the language of state.

The ensuing systematic program of translation from Chinese created a large and

important corpus of books written in Manchu. Over time the Manchu people became

completely sinified, and as a spoken language Manchu is now almost extinct.

The Sibe (also spelled Sibo, Xibe, or Xibo) people are closely related to the Manchus,

and their language is often classified as a dialect of Manchu. The Sibe people are

widely dispersed across northwest and northeast China due to deliberate programs of

ethnic dispersal during the Qing dynasty. The majority have become assimilated into

the local population and no longer speak the Sibe language. However, there is a

substantial Sibe population in the Sibe Autonomous County in the Ili River valley in

Western Xinjiang, the descendants of border guards posted to Xinjiang in 1764, who

still speak and write the Sibe language. The Sibe script is based on the Manchu script,

with a few modified letters.

 The Mongolian script is written vertically from top to bottom in

columns running from left to right. In modern contexts, words or phrases may be

embedded in horizontal scripts. In such a case, the Mongolian text will be rotated

ninety degrees counterclockwise so that it reads from left to right.

When rendering Mongolian text in a system that does not support vertical layout, the

text should be laid out in horizontal lines running left to right. If such text is viewed

sideways, the usual Mongolian column order appears reversed, but this orientation

can be workable for short stretches of text. There are no bidirectional effects in such a

layout because all text is horizontal left to right.

 The encoding model for Mongolian is somewhat different

from that for any other script within Unicode, and in many respects it is the most

Directionality.

Encoding Principles.

South and Central Asia-II 644 13.5 Mongolian

complicated. For this reason, only the essential features of Mongolian shaping

behavior are presented here.

The Semitic alphabet from which the Mongolian script was ultimately derived is

fundamentally inadequate for representing the sounds of the Mongolian language.

As a result, many of the Mongolian letters are used to represent two different sounds,

and the correct pronunciation of a letter may be known only from the context. In this

respect, Mongolian orthography is similar to English spelling, in which the pronunci‐

ation of a letter such as c may be known only from the context.

Unlike in the Latin script, in which c /k/ and c /s/ are treated as the same letter and

encoded as a single character, in the Mongolian script different phonetic values of the

same glyph may be encoded as distinct characters. Modern Mongolian grammars

consider the phonetic value of a letter to be its distinguishing feature, rather than its

glyph shape. For example, the four Mongolian vowels o, u, ö, and ü are considered

four distinct letters and are encoded as four characters (U+1823, U+1824, U+1825,

and U+1826, respectively), even though o is written identically to u in all positional

forms, ö is written identically to ü in all positional forms, o and u are normally distin‐

guished from ö and ü only in the first syllable of a word. Likewise, the letters t

(U+1832) and d (U+1833) are often indistinguishable. For example, pairs of Mongo‐

lian words such as urtu “long” and ordu “palace, camp, horde” or ende “here” and

ada “devil” are written identically, but are represented using different sequences of

Unicode characters, as shown in Figure 13-3. There are many such examples in

Mongolian, but not in Todo, Manchu, or Sibe, which have largely eliminated

ambiguous letters.

Figure 13-3. Mongolian Glyph Convergence

South and Central Asia-II 645 13.5 Mongolian

 The Mongolian script is cursive, and the letters constituting a word

are normally joined together. In most cases the letters join together naturally along a

vertical stem, but in the case of certain “bowed” consonants (for example, U+182A

MONGOLIAN LETTER BA and the feminine form of U+182C MONGOLIAN LETTER QA),

which lack a trailing vertical stem, they may form ligatures with a following vowel.

This is illustrated in Figure 13-4, where the letter ba combines with the letter u to

form a ligature in the Mongolian word abu “father.”

The Joining_Type values for Mongolian characters are defined in ArabicShaping.txt

in the Unicode Character Database. For a discussion of the meaning of Joining_Type

values in the context of a vertically rendered script, see “Cursive Joining” in

Section 14.4, Phags-pa. Most Mongolian characters are Dual_Joining, as they may join

on both top and bottom.

Many letters also have distinct glyph forms depending on their position within a

word. These positional forms are classified as initial, medial, final, or isolate. The

medial form is often the same as the initial form, but the final form is always distinct

from the initial or medial form. Figure 13-5 shows the Mongolian letters U+1823 o

and U+1821 e, rendered with distinct positional forms initially and finally in the

Mongolian words odo “now” and ene “this.”

U+200C ZERO WIDTH NON-JOINER (ZWNJ) and U+200D ZERO WIDTH JOINER

(ZWJ) may be used to select a particular positional form of a letter in isolation or to

override the expected positional form within a word. Basically, they evoke the same

contextual selection effects in neighboring letters as do non-joining or joining regular

letters, but are themselves invisible (see Chapter 23, Special Areas and Format Char‐

acters). For example, the various positional forms of U+1820 MONGOLIAN LETTER A

may be selected by means of the following character sequences:

Cursive Joining.

Figure 13-4. Mongolian Ligation

Figure 13-5. Mongolian Positional Forms

South and Central Asia-II 646 13.5 Mongolian

<1820> selects the default isolate form.

<1820 200D> selects the default initial form.

<200D 1820> selects the default final form.

<200D 1820 200D> selects the default medial form.

Some letters have additional variant forms that do not depend on their position

within a word, but instead reflect differences between modern versus traditional

orthographic practice or lexical considerations—for example, special forms used for

writing foreign words. On occasion, other contextual rules may condition a variant

form selection. For example, a certain variant of a letter may be required when it

occurs in the first syllable of a word or when it occurs immediately after a particular

letter. The selection of the variant used for each letter is determined by hierarchical

shaping steps. See Unicode Technical Note #57, Encoding and Shaping of the Mongo‐

lian Script.

The various positional and variant glyph forms of a letter are considered presentation

forms and are not encoded separately. It is the responsibility of the rendering system

to select the correct glyph form for a letter according to its context.

 When a glyph form that cannot be predicted algorithmi‐

cally is required (for example, when writing a foreign word), the user needs to

append an appropriate variation selector to the letter to indicate to the rendering

system which glyph form is required. The following free variation selectors are

provided for use specifically with the Mongolian block:

U+180B MONGOLIAN FREE VARIATION SELECTOR ONE (FVS1)

U+180C MONGOLIAN FREE VARIATION SELECTOR TWO (FVS2)

U+180D MONGOLIAN FREE VARIATION SELECTOR THREE (FVS3)

U+180F MONGOLIAN FREE VARIATION SELECTOR FOUR (FVS4)

Warning

The list of standardized variants in StandardizedVariants.txt for Mongolian has

not yet been updated to synchronize with the requirements of current practice

as stated in Unicode Technical Note #57, Encoding and Shaping of the Mongo‐

lian Script. This defect will be addressed in a future version of the Unicode Stan‐

dard.

Free Variation Selectors.

South and Central Asia-II 647 13.5 Mongolian

https://www.unicode.org/notes/tn57/
https://www.unicode.org/notes/tn57/
https://www.unicode.org/notes/tn57/
https://www.unicode.org/notes/tn57/

These format characters normally have no visual appearance. When required, a free

variation selector immediately follows the base character it modifies. This combina‐

tion of base character and variation selector is known as a standardized variant. The

table of standardized variants, StandardizedVariants.txt, in the Unicode Character

Database exhaustively lists all currently defined standardized variants. All combina‐

tions not listed in the table are unspecified and are reserved for future standardiza‐

tion; no conformant process may interpret them as standardized variants. Therefore,

any free variation selector not immediately preceded by one of their defined base

characters will be ignored.

Figure 13-6 gives an example of how a free variation selector may be used to select a

particular glyph variant. In modern orthography, the initial letter ga in the Mongo‐

lian word gal “fire” is written with two dots; in traditional orthography, the letter ga is

written without any dots. By default, the dotted form of the letter ga is selected, but

this behavior may be overridden by means of FVS1, so that ga plus FVS1 selects the

undotted form of the letter ga.

182D + 1820 + 182F →

182D + 180B + 1820 + 182F →

It is important to appreciate that even though a particular standardized variant may

be defined for a letter, the user needs to apply the appropriate free variation selector

only if the correct glyph form cannot be predicted automatically by the rendering

system. In most cases, in running text, there will be few occasions when a free varia‐

tion selector is required to disambiguate the glyph form.

Older documentation, external to the Unicode Standard, listed the action of the free

variation selectors by using ZWJ to explicitly indicate the shaping environment

affected by the variation selector. The relative order of the ZWJ and the free variation

selector in these documents was different from the one required by Section 23.4, Vari‐

ation Selectors. Older implementations of Mongolian free variation selectors may

therefore interpret a sequence such as a base character followed first by ZWJ and

then by FVS1 as if it were a base character followed first by FVS1 and then by ZWJ.

 The representative glyph in the code charts is generally the

isolate form for the vowels and the initial form for the consonants. Letters that share

the same glyph forms are distinguished by using different positional forms for the

representative glyph. For example, the representative glyph for U+1823 MONGOLIAN

LETTER O is the isolate form, whereas the representative glyph for U+1824 MONGO‐

LIAN LETTER U is the initial form. However, this distinction is only nominal, as the

glyphs for the two characters are identical for the same positional form. Likewise, the

Figure 13-6. Mongolian Free Variation Selector

Representative Glyphs.

South and Central Asia-II 648 13.5 Mongolian

representative glyphs for U+1863 MONGOLIAN LETTER SIBE KA and U+1874 MONGO‐

LIAN LETTER MANCHU KA both take the final form, as their initial forms are identical

to the representative glyph for U+182C MONGOLIAN LETTER QA (the initial form).

 Mongolian has a system of vowel harmony, whereby the vowels in

a word are either all “masculine” and “neuter” vowels (that is, back vowels plus /i/)

or all “feminine” and “neuter” vowels (that is, front vowels plus /i/). Words that are

written with masculine/neuter vowels are considered to be masculine, and words

that are written with feminine/neuter vowels are considered to be feminine. Words

with only neuter vowels behave as feminine words (for example, take feminine

suffixes). Manchu and Sibe have a similar system of vowel harmony, although it is

not so strict. Some words in these two scripts may include both masculine and femi‐

nine vowels, and separated suffixes with masculine or feminine vowels may be

applied to a stem irrespective of its gender.

Vowel harmony is an important element of the encoding model, as the gender of a

word determines the glyph form of the velar series of consonant letters for Mongo‐

lian, Todo, Sibe, and Manchu. In each script, the velar letters have both masculine

and feminine forms. For Mongolian and Todo, the masculine and feminine forms of

these letters have different pronunciations.

When one of the velar consonants precedes a vowel, it takes the masculine form

before masculine vowels, and the feminine form before feminine or neuter vowels. In

the latter case, a ligature of the consonant and vowel is required.

When one of these consonants precedes another consonant or is the final letter in a

word, it may take either a masculine or feminine glyph form, depending on its

context. The rendering system should automatically select the correct gender form

for these letters based on the gender of the word (in Mongolian and Todo) or the

gender of the preceding vowel (in Manchu and Sibe). This is illustrated by

Figure 13-7, where U+182D MONGOLIAN LETTER GA takes a masculine glyph form

when it occurs finally in the masculine word jarlig “order,” but takes a feminine

glyph form when it occurs finally in the feminine word cherig “soldier.” In this

example, the gender form of the final letter ga depends on whether the first vowel in

the word is a back (masculine) vowel or a front (feminine or neuter) vowel. Where

the gender is ambiguous or a form not derivable from the context is required, the

user needs to specify which form is required by means of the appropriate free varia‐

tion selector.

1835 + 1820 + 1837 + 182F + 1822 + 182D →

Vowel Harmony.

Figure 13-7. Mongolian Gender Forms

South and Central Asia-II 649 13.5 Mongolian

1834 + 1821 + 1837 + 1822 + 182D →

 In Mongolian, the letters a (U+1820) and e

(U+1821) in a word-final position may take a “leftward tail” form or a “rightward tail”

form depending on the preceding consonant that they are attached to. In some

words, a final letter a or e is disconnected from the preceding consonant, in which

case the vowel always takes the “leftward tail” form. U+180E MONGOLIAN VOWEL

SEPARATOR (MVS) is used to represent the break between a final letter a or e and the

rest of the word. MVS divides a word and disconnects the two parts, however, the a

or e following the MVS is not a suffix but an integral part of the word stem.

Whether a final letter a or e is joined or separated is purely lexical and is not a ques‐

tion of varying orthography. This distinction is shown in Figure 13-8. The example on

the left shows the word qana <182C, 1820, 1828, 1820> without a break before the

final letter a, which means “the outer casing of a vein.” The example on the right

shows the word qana <182C, 1820, 1828, 180E, 1820> with a break before the final

letter a, which means “the wall of a tent.”

The MVS has a twofold effect on shaping. On the one hand, it always selects the left‐

ward tail form of a following letter a or e. On the other hand, it may affect the form of

the preceding letter. The particular form that is taken by a letter preceding an MVS

depends on the particular letter and in some cases on whether traditional or modern

orthography is being used. The MVS is not needed for writing Todo, Manchu, or Sibe.

 In Mongolian, Todo, Manchu, and Sibe,

certain grammatical suffixes are separated from the word stem or from other suffixes

by a gap. Many separated suffixes exhibit shapes that are distinct from ordinary

words, and thus require special shaping.

There are many separated suffixes in Mongolian, usually occurring in masculine and

feminine pairs (for example, the dative suffixes -dur and -dür), most of which require

special shaping; a stem may have multiple separated suffixes. In contrast, there are

only six separated suffixes for Manchu and Sibe, only one of which (-i) requires

special shaping; stems do not have more than one separated suffix at a time.

Special Shaping for Separated Vowels.

Figure 13-8. Mongolian Vowel Separator

Special Shaping for Separated Suffixes.

South and Central Asia-II 650 13.5 Mongolian

Because separated suffixes are usually considered an integral part of the word as a

whole, a line break opportunity does not normally occur before a separated suffix.

The whitespace preceding the suffix is often narrower than an ordinary space,

although the width may expand during justification. Prior to Unicode Version 16.0,

U+202F NARROW NO-BREAK SPACE (NNBSP) was used to represent this small white‐

space; it retains its Script_Extensions value of “Mong” to facilitate backward compat‐

ibility. However, its role has been taken over by U+180E MONGOLIAN VOWEL SEPA‐

RATOR (MVS), which not only prevents word breaking and line breaking, but also

triggers special shaping for the following separated suffix. The resulting shape

depends on the particular separated suffix. Note that MVS may be preceded by

another separated suffix, and may also appear between non-Mongolian characters

and a separated suffix.

Normally, MVS does not provide a line breaking opportunity. However, in situations

where a line is broken before a separated suffix, such as in narrow columns, it is

important not to disable the special shaping triggered by MVS. This behavior may be

achieved by placing the break so that the MVS character is at the start of the new

line. At the beginning of the line, the MVS should affect only the shaping of the

following Mongolian characters, and should display with no advance width.

 The two Mongolian baluda characters, U+1885 MONGOLIAN LETTER ALI

GALI BALUDA and U+1886 MONGOLIAN LETTER ALI GALI THREE BALUDA, are histor‐

ically related to U+0F85 TIBETAN MARK PALUTA. When used in Mongolian text

rendered vertically, a baluda or three baluda character appears to the right side of the

first character in a word. To simplify rendering implementations for Mongolian Ali

Gali texts, the baluda characters have been categorized as nonspacing combining

marks, rather than as letters.

 The Mongolian and Todo scripts use a set of ten digits derived from the

Tibetan digits. In vertical text, numbers are traditionally written from left to right

across the width of the column. In modern contexts, they are frequently rotated so

that they follow the vertical flow of the text.

The Manchu and Sibe scripts do not use any special digits, although Chinese number

ideographs may be employed—for example, for page numbering in traditional books.

 Traditional punctuation marks used for Mongolian and Todo include

the U+1800 MONGOLIAN BIRGA (marks the start of a passage or the recto side of a

folio), U+1802 MONGOLIAN COMMA, U+1803 MONGOLIAN FULL STOP, and U+1805

MONGOLIAN FOUR DOTS (marks the end of a passage). The birga occurs in several

different glyph forms.

In writing Mongolian and Todo, U+1806 MONGOLIAN TODO SOFT HYPHEN is used at

the beginning of the second line to indicate resumption of a broken word. It func‐

Baluda.

Numbers.

Punctuation.

South and Central Asia-II 651 13.5 Mongolian

tions like U+2010 HYPHEN, except that U+1806 appears at the beginning of a line

rather than at the end.

The Manchu script normally uses only two punctuation marks: U+1808 MONGOLIAN

MANCHU COMMA and U+1809 MONGOLIAN MANCHU FULL STOP.

In modern contexts, Mongolian, Todo, and Sibe may use a variety of Western punctu‐

ation marks, such as parentheses, quotation marks, question marks, and exclamation

marks. U+2048 QUESTION EXCLAMATION MARK and U+2049 EXCLAMATION QUES‐

TION MARK are used for side-by-side display of a question mark and an exclamation

mark together in vertical text. Todo and Sibe may additionally use punctuation marks

borrowed from Chinese, such as U+3001 IDEOGRAPHIC COMMA, U+3002 IDEO‐

GRAPHIC FULL STOP, U+300A LEFT DOUBLE ANGLE BRACKET, and U+300B RIGHT

DOUBLE ANGLE BRACKET.

U+180A MONGOLIAN NIRUGU acts as a stem extender. In traditional

Mongolian typography, it is used to physically extend the stem joining letters, so as to

increase the separation between all letters in a word. This stretching behavior should

preferably be carried out in the font rather than by the user manually inserting

U+180A.

The nirugu may also be used to separate two parts of a compound word. For example,

altan-agula “The Golden Mountains” may be written with the words altan, “golden,”

and agula, “mountains,” joined together using the nirugu. In this usage the nirugu is

similar to the use of hyphen in Latin scripts, but it is nonbreaking.

U+1807 MONGOLIAN SIBE SYLLABLE BOUNDARY

MARKER is used to disambiguate syllable boundaries within a word. It is mainly used

for writing Sibe, but may also occur in Manchu texts. In native Manchu or Sibe

words, syllable boundaries are never ambiguous; when transcribing Chinese proper

names in the Manchu or Sibe script, however, the syllable boundary may be

ambiguous. In such cases, U+1807 may be inserted into the character sequence at the

syllable boundary.

The Mongolian Supplement block contains a supplemental collection of birga head

mark signs of various shapes and orientations. These complement the basic U+1800

MONGOLIAN BIRGA.

Nirugu.

Syllable Boundary Marker.

13.5.2 Mongolian Supplement: U+11660–U+1167F

South and Central Asia-II 652 13.5 Mongolian

The Limbu script is a Brahmic script primarily used to write the Limbu language.

Limbu is a Tibeto-Burman language of the East Himalayish group and is spoken by

about 200,000 persons mainly in eastern Nepal, but also in the neighboring Indian

states of Sikkim and West Bengal (Darjeeling district). Its close relatives are the

languages of the East Himalayish or “Kiranti” group in Eastern Nepal. Limbu is

distantly related to the Lepcha (Róng) language of Sikkim and to Tibetan. Limbu was

recognized as an official language in Sikkim in 1981.

The Nepali name Limbu is of uncertain origin. In Limbu, the Limbu call themselves

yakthuŋ. Individual Limbus often take the surname “Subba,” a Nepali term of Arabic

origin meaning “headman.” The Limbu script is often called “Sirijanga” after the

Limbu culture-hero Sirijanga, who is credited with its invention. It is also sometimes

called Kirat, kirāta being a Sanskrit term probably referring to some variety of non-

Aryan hill-dwellers.

The oldest known writings in the Limbu script, most of which are held in the India

Office Library, London, were collected in Darjeeling district in the 1850s. The modern

script was developed beginning in 1925 in Kalimpong (Darjeeling district) in an effort

to revive writing in Limbu, which had fallen into disuse. The encoding in the

Unicode Standard supports the three versions of the Limbu script: the nineteenth-

century script, found in manuscript documents; the early modern script, used in a

few, mainly mimeographed, publications between 1928 and the 1970s; and the current

script, used in Nepal and India (especially Sikkim) since the 1970s. There are signifi‐

cant differences, particularly between some of the glyphs required for the nineteenth-

century and modern scripts.

Virtually all Limbu speakers are bilingual in Nepali, and far more Limbus are literate

in Nepali than in Limbu. For this reason, many Limbu publications contain material

both in Nepali and in Limbu, and in some cases Limbu appears in both the Limbu

script and the Devanagari script. In some publications, literary coinages are glossed

in Nepali or in English.

 Consonant letters and clusters represent syllable initial consonants and

clusters followed by the inherent vowel, short open o ([ɔ]). Subjoined consonant

letters are joined to the bottom of the consonant letters, extending to the right to indi‐

cate “medials” in syllable-initial consonant clusters. There are very few of these clus‐

ters in native Limbu words. The script provides for subjoined -ya, -ra, and -

wa. Small letters are used to indicate syllable-final consonants. (See the following

information on vowel length for further details.) The small letter consonants are

found in the range U+1930..U+1938, corresponding to the syllable finals of native

13.6 Limbu

13.6.1 Limbu: U+1900–U+194F

Consonants.

South and Central Asia-II 653 13.6 Limbu

Limbu words. These letters are independent forms that, unlike the conjoined or half-

letter forms of Indian scripts, may appear alone as word-final consonants (where

Indian scripts use full consonant letters and a virama). The syllable finals are

pronounced without a following vowel.

Limbu is a language with a well-defined syllable structure, in which syllable-initial

stops are pronounced differently from finals. Syllable initials may be voiced following

a vowel, whereas finals are never voiced but are pronounced unreleased with a

simultaneous glottal closure, and geminated before a vowel. Therefore, the Limbu

block encodes an explicit set of ten syllable-final consonants. These are called LIMBU

SMALL LETTER KA, and so on.

 The Limbu vowel system has seven phonologically distinct timbres: [i, e, ɛ, a,

ɔ, o, u]. The vowel [ɔ] functions as the inherent vowel in the modern Limbu script. To

indicate a syllable with a vowel other than the inherent vowel, a vowel sign is added

over, under, or to the right of the initial consonant letter or cluster. Although the

vowel [ɔ] is the inherent vowel, the Limbu script has a combining vowel sign that

may optionally be used to represent it. Many writers avoid using this sign because

they consider it redundant.

Syllable-initial vowels are represented by a vowel-carrier character, U+1900 LIMBU

VOWEL-CARRIER LETTER, together with the appropriate vowel sign. Used without a

following vowel sound, the vowel-carrier letter represents syllable-initial [ɔ], the

inherent vowel. The initial consonant letters have been named ka, kha, and so on, in

this encoding, although they are in fact pronounced [kɔ], [kʰɔ], and so on, and do

not represent the Limbu syllables [ka], [kʰa], and so on. This is in keeping with

the practice of educated Limbus in writing the letter-names in Devanagari. It would

have been confusing to call the vowel-carrier letter A, however, so an artificial name

is used in the Unicode Standard. The native name is [ɔm].

 Vowel length is phonologically distinctive in many contexts. Length

in open syllables is indicated by writing U+193A LIMBU SIGN KEMPHRENG, which

looks like the diaeresis sign, over the initial consonant or cluster: tā.

In closed syllables, two different methods are used to indicate vowel length. In the

first method, vowel length is not indicated by kemphreng. The syllable-final conso‐

nant is written as a full form (that is, like a syllable-initial consonant), marked by

U+193B LIMBU SIGN SA-I: pān “speech.” This sign marks vowel length in addi‐

tion to functioning as a virama by suppressing the inherent vowel of the syllable-final

consonant. This method is widely used in Sikkim.

In the second method, which is in use in Nepal, vowel length is indicated by

kemphreng, as for open syllables, and the syllable-final consonant appears in “small”

form without sa-i: pān “speech.” Writers who consistently follow this practice

reserve the use of sa-i for syllable-final consonants that do not have small forms,

Vowels.

Vowel Length.

South and Central Asia-II 654 13.6 Limbu

regardless of the length of the syllable vowel: nesse “it lay,” lāb “moon.”

Because almost all of the syllable finals that normally occur in native Limbu words

have small forms, sa-i is used only for consonant combinations in loan words and for

some indications of rapid speech.

U+193B LIMBU SIGN SA-I is based on the Indic virama, but for a majority of current

writers it has a different semantics because it indicates the length of the preceding

vowel in addition to “killing” the inherent vowel of consonants functioning as

syllable finals. It is therefore not suitable for use as a general virama as used in other

Brahmic scripts in the Unicode Standard.

U+1939 LIMBU SIGN MUKPHRENG represents glottalization.

Mukphreng never appears as a syllable initial. Although some linguists consider that

word-final nasal consonants may be glottalized, this is never indicated in the script;

mukphreng is not currently written after final consonants. No other syllable-final

consonant clusters occur in Limbu.

 There is no universally accepted alphabetical order for Limbu

script. One ordering is based on the Limbu dictionary edited by Bairagi Kainla, with

the addition of the obsolete letters, whose positions are not problematic. In Sikkim, a

somewhat different order is used: the letter na is placed before ta, and the letter

gha is placed at the end of the alphabet.

 The glyph positions for Limbu combining characters are summa‐

rized in Table 13-8.

Syllable Glyphs Code Point Sequence

ta 190B 1920

ti 190B 1921

tu 190B 1922

tee 190B 1923

tai 190B 1924

too 190B 1925

tau 190B 1926

te 190B 1927

to 190B 1928

tya 190B 1929

tra 190B 192A

twa 190B 192B

tak 190B 1930

taŋ 190B 1931

Glottalization.

Collating Order.

Glyph Placement.

Table 13-8. Positions of Limbu Combining Characters

South and Central Asia-II 655 13.6 Limbu

taṁ 190B 1932

tat 190B 1933

tan 190B 1934

tap 190B 1935

tam 190B 1936

tar 190B 1937

tal 190B 1938

tā 190B 1920 193A

tī 190B 1921 193A

 The main punctuation mark used is the double vertical line, U+0965

DEVANAGARI DOUBLE DANDA. U+1945 LIMBU QUESTION MARK and U+1944

LIMBU EXCLAMATION MARK have shapes peculiar to Limbu, especially in Sikkimese

typography. They are encoded in the Unicode Standard to facilitate the use of both

Limbu and Devanagari scripts in the same documents. U+1940 LIMBU SIGN LOO is

used for the exclamatory particle lo. This particle is also often simply spelled out .

 Limbu digits have distinctive forms and are assigned code points because

Limbu and Devanagari (or Limbu and Arabic-Indic) numbers are often used in the

same document.

Punctuation.

Digits.

South and Central Asia-II 656 13.6 Limbu

Meetei Mayek is a script used for Meetei, a Tibeto-Burman language spoken

primarily in Manipur, India. The script originates from the Tibetan group of scripts,

which in turn derive from Gupta Brahmi. The script has experienced a recent resur‐

gence in use. The modern-day Meetei Mayek script is made up of a core repertoire of

27 letters, alongside letters and symbols for final consonants, dependent vowel signs,

punctuation, and digits.

The name “Meetei Mayek” is used in official documentation in Manipur. The script

may also appear with other spellings and names, such as “Meitei Mayek,” “Methei,”

“Meetei,” or the older “Manipuri.”

 Meetei Mayek is a Brahmic script with consonants bearing the inherent

vowel and vowel matras modifying it. However, unlike most other Brahmi-derived

scripts, Meetei Mayek employs explicit final consonants which contain no final

vowels.

Meetei Mayek has a killer character, U+ABED MEETEI MAYEK APUN IYEK, which

may be used to indicate the lack of an inherent vowel when no explicit consonant

letter exists. In modern orthography, the killer does not cause conjunct formation

and is always visible. The use of the killer is optional in spelling; for example, while

 may be read kara or kra, must be read kra. In the medial position, the glyph

of the killer usually extends below the killed letter and the following letter.

 In modern use, only three vowel characters, U+ABD1 MEETEI

MAYEK LETTER ATIYA, U+ABCF MEETEI MAYEK LETTER I, and U+ABCE MEETEI

MAYEK LETTER UN (= u), may appear initially or word-internally. Other vowels

without independent forms are represented by vowel matras applied to U+ABD1

MEETEI MAYEK LETTER ATIYA. In modern orthography, the seven dependent vowel

signs and the anusvara, U+ABEA MEETEI MAYEK VOWEL SIGN NUNG, located from

U+ABE3..U+ABEA, are used with consonants.

Syllable initial combinations for vowels can occur in modern usage to represent diph‐

thongs.

 There are three ways to indicate final consonants in Meetei

Mayek: by the eight explicit final consonant letters, by U+ABEA MEETEI MAYEK

VOWEL SIGN NUNG, which acts as an anusvara, or by U+ABCE MEETEI MAYEK

LETTER UN, which may act as a final consonant without modification.

13.7 Meetei Mayek

13.7.1 Meetei Mayek: U+ABC0–U+ABFF

Structure.

Vowel Letters.

Final Consonants.

South and Central Asia-II 657 13.7 Meetei Mayek

 Unusual abbreviations composed of a single consonant and more

than one matra may occur in a manner similar that found in Tibetan. In such cases,

the vowel matra may occur at the end of a word.

 The order of the first 18 Meetei letters is based upon the parts of the body.

This system is discussed in a religious manuscript, the Wakoklon hilel thilel salai

amailon pukok puya (commonly referred to as the Wakoklon puya), which describes

the letters, and relates them to the corresponding body part. The Meetei Mayek letter

kok, for example, means “head,” sam designates “hair-parting,” and lai is “forehead.”

The last 9 letters,gok, jham, rai, and so forth, derive from a subset of the original 18.

The ordering system employed today differs from the Brahmi-based order, which

relies on the point of articulation.

 The modern Meetei Mayek script uses two punctuation marks in addi‐

tion to the killer. U+ABEB MEETEI MAYEK CHEIKHEI functions as a double danda

mark. U+ABEC MEETEI MAYEK LUM IYEK is a heavy tone mark, used to orthograph‐

ically distinguish words which would otherwise not be differentiated.

 Meetei Mayek has a unique set of ten digits for zero to nine encoded in the

range at U+ABF0..U+ABF9.

The Meetei Mayek Extensions block contains additional characters needed to repre‐

sent the historical orthographies of Meetei. The block includes nine consonants,

encoded in the range U+AAE2..U+AAEA, two independent vowel signs (U+AAE0

MEETEI MAYEK LETTER E and U+AAE1 MEETEI MAYEK LETTER O), and five depen‐

dent vowels signs in the range U+AAEB..U+AAEF.

U+AAF6 MEETEI MAYEK VIRAMA should be used to represent conjuncts that may

occur in historical texts. The virama is not visibly rendered, but it behaves as in other

Brahmi-derived scripts. For example, the conjunct /ṅha/ is represented by the

sequence <ABC9, AAF6, ABCD>.

This block also includes two punctuation marks, U+AAF0 MEETEI MAYEK

CHEIKHAN and U+AAF1 MEETEI MAYEK AHANG KHUDAM. The cheikhan is a single

danda, and ahang khudam is a question mark. U+AAF2 MEETEI MAYEK ANJI is a

philosophical sign indicating auspiciousness. Finally, two repetition marks are

included in the block: U+AAF3 MEETEI MAYEK SYLLABLE REPETITION MARK and

U+AAF4 MEETEI MAYEK WORD REPETITION MARK.

Abbreviations.

Order.

Punctuation.

Digits.

13.7.2 Meetei Mayek Extensions: U+AAE0–U+AAFF

South and Central Asia-II 658 13.7 Meetei Mayek

The Mro script was invented in the 1980s. It is used to write the Mro (or Mru)

language, a language of the Mruic branch of Tibeto-Burman spoken in Southeastern

Bangladesh and neighboring areas of Myanmar. (This language is distinct from Mro-

Khimi, a language of the Kukish branch of Tibeto-Burman spoken in Myanmar.)

The Mro script is unrelated to any other script. Some of the letters of the Mro

alphabet have a visual similarity to letters from other alphabets, but such similarities

are coincidental.

 The Mro script is a left-to-right alphabet with no combining characters or

tone marks. Some sounds are represented by more than one letter.

 Consonant letter names are traditional, based on phonetic tran‐

scription.

 Mro has a script-specific set of digits.

 There are two script-specific punctuation characters, U+16A6E MRO

DANDA and U+16A6F MRO DOUBLE DANDA. Words are separated by spaces.

Two of the Mro letters are used as abbreviations. U+16A5E MRO LETTER TEK can be

used instead of the word “tek,” meaning “quote.” U+16A5C MRO LETTER HAI can be

used for various groups of letters.

13.8 Mro

13.8.1 Mro: U+16A40–U+16A6F

Structure.

Character Names.

Digits.

Punctuation.

South and Central Asia-II 659 13.8 Mro

The Warang Citi script is used to write the Ho language. Ho is a North Munda

language. Warang Citi was devised by community leader Lako Bodra as an improve‐

ment over scripts used by Christian missionary linguists. Speakers of Ho live in the

Indian states of Odisha (formerly Orissa) and Jharkhand. There are at present two

publications in the script: a yearly magazine and a biweekly publication.

The Ho community is primarily an oral community, with an emergent literary tradi‐

tion. Many Ho speakers do not write their language in any form. In some areas, Ho

speakers use the Devanagari script or Warang Citi, in other locations they use the

Oriya (now officially known as Odia) script or Warang Citi. There are also people

who use Latin letters to write Ho on an ad-hoc basis.

 Warang Citi is an alphabet, written from left to right. Unlike many other

Indic scripts, vowels are written as full letters, with no vowel-modifiers. However,

consonants may have an inherent vowel; it typically is pronounced [a] or [ɔ], and less

often [ɛ], but this vowel does not occur in final position in a word. Because these

inherent vowels are not written explicitly, there can be ambiguity in the reading of

certain words.

Warang Citi has no regular system of conjuncts nor an explicit virama. However, a

small number of conjunct forms are used; most of these represent doubled conso‐

nants. The choice of a conjunct form does not appear to be predictable. The recom‐

mended mechanism for representing these conjuncts is to make use of U+200D

ZERO WIDTH JOINER.

Warang Citi uses case distinctions, so both uppercase and lowercase letters are

encoded.

The script does not include a diacritical mark for anusvara as in Devanagari, but

rather has a separate character, U+118C0 WARANG CITI SMALL LETTER NGAA.

 Warang Citi has a set of digits and numbers, but the ortho‐

graphic conventions for writing numbers have not yet stabilized. European digits are

also used, though not consistently.

 Warang Citi uses Latin punctuation. There is no script-specific punctu‐

ation.

13.9 Warang Citi

13.9.1 Warang Citi: U+118A0–U+118FF

Structure.

Digits and Numbers.

Punctuation.

South and Central Asia-II 660 13.9 Warang Citi

The Ol Chiki script was invented by Pandit Raghunath Murmu in the first half of the

20th century CE to write Santali, a Munda language of India. The script is also called

Ol Cemet’, Ol Ciki, or simply Ol. Santali has also been written with the Devanagari,

Bengali, and Oriya scripts, as well as the Latin alphabet.

Various dialects of Santali are spoken by 5.8 million people, with 25% to 50% literacy

rates, mostly in India, with a few in Nepal or Bangladesh. The Ol Chiki script is used

primarily for the southern dialect of Santali as spoken in the Odishan Mayurbhañj

district. The script has received some official recognition by the Odishan government.

Ol Chiki has recently been promoted by some Santal organizations, with uncertain

success, for use in writing certain other Munda languages in the Chota Nagpur area,

as well as for the Dravidian Dhangar-Kudux language.

 Ol Chiki is an alphabet written from left to right, and has none of the

structural properties of the abugidas typical for other Indic scripts. Vowels are

written with standalone letters. A number of modifier letters are used to indicate

tone, nasalization, vowel length, and deglottalization. There are no combining char‐

acters in the script. (See Section 13.12, Nag Mundari, for a similarly structured script.)

 The southern dialect of Santali has only six vowels, each repre‐

sented by a single vowel letter. The Santal Parganas dialect, on the other hand, has

eight or nine vowels. The extra vowels for Santal Parganas are represented by a

sequence of one of the vowel letters U+1C5A, U+1C5F, or U+1C6E followed by the

diacritic modifier letter, U+1C79 OL CHIKI GAAHLAA TTUDDAAG, displayed as a base‐

line dot.

Nasalization is indicated by the modifier letter, U+1C78 OL CHIKI MU TTUDDAG,

displayed as a raised dot. This mark can follow any vowel, long or short.

When the vowel diacritic and nasalization occur together, the combination is repre‐

sented by a separate modifier letter, U+1C7A OL CHIKI MU-GAAHLAA TTUDDAAG,

displayed as both a baseline and a raised dot. The combination is treated as a separate

character and is entered using a separate key on Ol Chiki keyboards.

U+1C7B OL CHIKI RELAA is a length mark, which can be used with any oral or nasal‐

ized vowel.

U+1C7D OL CHIKI AHAD is a special letter indicating the deglottal‐

ization of an Ol Chiki consonant in final position. This unique feature of the writing

system preserves the morphophonemic relationship between the glottalized (ejective)

13.10 Ol Chiki

13.10.1 Ol Chiki: U+1C50–U+1C7F

Structure.

Modifier Letters.

Glottalization.

South and Central Asia-II 661 13.10 Ol Chiki

and voiced equivalents of consonants. For example, U+1C5C OL CHIKI LETTER AG

represents an ejective [k’] when written in word-final position, but voiced [g] when

written word-initially. A voiced [g] in word-final position is written with the deglot‐

talization mark as a sequence: <U+1C5C OL CHIKI LETTER AG, U+1C7D OL CHIKI

AHAD>.

U+1C7C OL CHIKI PHAARKAA serves the opposite function. It is a “glottal protector.”

When it follows one of the four ejective consonants, it preserves the ejective sound,

even in word-initial position followed by a vowel.

 Aspirated consonants are written as digraphs, with U+1C77 OL CHIKI

LETTER OH as the second element, indicating the aspiration.

 Ligatures are not a normal feature of printed Ol Chiki. However, in hand‐

writing and script fonts, letters form cursive ligatures with the deglottalization mark,

U+1C7D OL CHIKI AHAD.

 Western-style punctuation, such as the comma, exclamation mark,

question mark, and quotation marks are used in Ol Chiki text. U+002E “ . ” FULL

STOP is not used, because it is visually confusable with the modifier letter U+1C79 OL

CHIKI GAAHLAA TTUDDAAG.

The danda, U+1C7E OL CHIKI PUNCTUATION MUCAAD, is used as a text delimiter in

prose. The danda and the double danda, U+1C7F OL CHIKI PUNCTUATION DOUBLE

MUCAAD, are both used in poetic text.

 The Ol Chiki script has its own set of digits, encoded in the Ol Chiki block in

the range U+1C50..U+1C59.

Aspiration.

Ligatures.

Punctuation.

Digits.

South and Central Asia-II 662 13.10 Ol Chiki

The Ol Onal script was invented by Mahendra Nath Sardar toward the end of the

20th century CE to write Bhumij, a Munda language of India. The script is also

known as Bhumij Lipi or Bhumij Onal. Bhumij is also written with the Devanagari,

Bengali, and Oriya scripts, as well as with the Latin script.

The Bhumij language is an Austroasiatic language of the North Munda group.

Mundari and Bhumij are closely related and mutually intelligible, but with consider‐

able differences.

Ol Onal was originally designed as a bicameral alphabetical script: the uppercase

letters are called Ol Onal, while the lowercase letters are known as Galang Onal.

However, all the teaching and printed materials in Bhumij have been produced using

Ol Onal (that is, capital letters). There is no record of Galang Onal ever being used, so

lowercase letters are not encoded.

 Ol Onal is an alphabet written from left to right, and has none of the

structural properties of the abugidas typical for other Indic scripts. Vowels are

written with standalone letters. There are three additional signs, mu, ikir, and

hoddond, collectively referred to as ṭiḍaḥ. (See Section 13.10, Ol Chiki, for a similarly

structured script.)

 Nasalization is indicated by U+1E5EE OL ONAL SIGN MU. It appears as a dot

positioned above vowels. The nonspacing mark U+1E5EF OL ONAL SIGN IKIR indi‐

cates a long phoneme, and currently it is only used below the letter U+1E5D6 OL

ONAL LETTER A. The letter a can carry both nasalization and lengthening signs

simultaneously.

U+1E5F0 OL ONAL SIGN HODDOND is a letter indicating glottalization. It can follow

the letters U+1E5D8 OL ONAL LETTER AB and U+1E5E5 OL ONAL LETTER UJ.

 Ol Onal uses U+0964 DEVANAGARI DANDA to end sentences.

Western-style punctuation is also used, such as comma, question mark, dash, colon,

parentheses, slash, and backslash, as well as the percent sign.

A separate U+1E5FF OL ONAL ABBREVIATION SIGN is attested for use to indicate an

abbreviation.

 The Ol Onal script has its own set of digits, encoded in the range

U+1E5F1..U+1E5FA.

13.11 Ol Onal

13.11.1 Ol Onal: U+1E5D0–U+1E5FF

Structure.

Signs.

Punctuation.

Digits.

South and Central Asia-II 663 13.11 Ol Onal

Nag Mundari is a script used to write the Mundari language, spoken primarily in the

states of Jharkhand, West Bengal and Odisha in India. The block is named after the

script’s creator Rohidas Singh Nag, while in the community the script is most

commonly known as “Mundari Bani.” Less common names for the script include

“Mundari Lipi” and “Hoḍo Jagar.” While the earliest work on the script began in the

early 1950s, this block encodes a reformed version of the script from 2008 by Bharat

Munda Samaj and Mundari Samaj Sanwar Jamda.

 Nag Mundari is an alphabetic script written left to right, with no attested

ligatures. Nag Mundari is alphabetic and has none of the structural properties of the

abugidas typical for other Indic scripts. There are separate letters representing conso‐

nants and vowels. (See Section 13.10, Ol Chiki, for a similarly structured script.)

 A collection of extended marks in the range U+1E4EB..U+1E4EF, referred to

as tong, are used to indicate nasalization, vowel length, phonetic changes and sounds

that are not native to the writing system.

Vowel nasalization is indicated by the sign U+1E4EC NAG MUNDARI SIGN MUHOR,

written to the top right of the vowel with which it combines.

Long vowels are indicated by the sign U+1E4ED NAG MUNDARI SIGN TOYOR,

although the lack of toyor does not necessarily imply a short vowel. It is written to

the top right of the vowel.

U+1E4EE NAG MUNDARI SIGN IKIR is used to denote that a vowel is preceded by

the /w/ sound.

U+1E4EF NAG MUNDARI SIGN SUTUH is used for producing characters to represent

sounds not native to the Mundari language. The sign may be used with any Nag

Mundari letter, including vowels and consonants.

The modifier letter U+1E4EB NAG MUNDARI SIGN OJOD can be used variously to

denote checked consonants, or to indicate consonant gemination when transcribing

other languages. Note that ojod should be distinguished from the visually similar

U+1E4E1 NAG MUNDARI LETTER UD.

 Western-style punctuation, such as the full stop, comma, exclamation

mark, question mark, quotation marks and hyphen-minus are used in Nag Mundari

text. Hyphen or hyphen-minus can be used to represent the dash known as eced in

Nag Mundari, which marks compound words, reduplications and similar construc‐

tions.

13.12 Nag Mundari

13.12.1 Nag Mundari: U+1E4D0–U+1E4FF

Structure.

Signs.

Punctuation.

South and Central Asia-II 664 13.12 Nag Mundari

 The Nag Mundari script has its own set of digits encoded in the Nag Mundari

block in the range U+1E4F0..U+1E4F9. European, Devanagari, Bengali or Oriya

digits are also used.

Digits.

South and Central Asia-II 665 13.12 Nag Mundari

The Chakma people, who live in southeast Bangladesh near Chittagong City, as well

as in parts of India such as Mizoram, Assam, Tripura, and Arunachal Pradesh, speak

an Indo-European language also called Chakma. The language, spoken by about

500,000 people, is related to the Assamese, Bengali, Chittagonian, and Sylheti

languages.

The Chakma script is Brahmi-derived, and is sometimes also called Ajhā pāṭh or

Ojhopath. There are some efforts to adapt the Chakma script to write the closely

related Tanchangya language. One of the interesting features of Chakma writing is

that candrabindu (cānaphudā) can be used together with anusvara (ekaphudā) and

visarga (dviphudā).

 Like other Brahmi-derived scripts, Chakma uses consonant

letters that contain an inherent vowel. Consonant clusters are written with conjunct

characters, while a visible “vowel killer” (called the maayyaa) shows the deletion of

the inherent vowel when there is no conjunct. There are four independent vowels:

U+11103 CHAKMA LETTER AA /ā/, U+11104 CHAKMA LETTER I /i/, U+11105 CHAKMA

LETTER U /u/, and U+11106 CHAKMA LETTER E /e/. Other vowels in the initial posi‐

tion are formed by adding a dependent vowel sign to the independent vowel /ā/, to

form vowels such as /ī/, /ō/, /ai/, and /oi/.

 Like the Myanmar script and the characters used to write

historic Meetei Mayek, Chakma is encoded with two vowel-killing characters to

conform to modern user expectations. In most cases vowels are killed with the use of

U+11134 CHAKMA MAAYYAA. In addition to that visible killer, U+11133 CHAKMA

VIRAMA joins two consonant letters to form a conjunct, which may be either a

subjoined stack or a ligature. Whether a conjunct is required or not is part of the

spelling of a word.

U+11134 CHAKMA MAAYYAA is also used to indicate geminated consonants, in which

case the consonant letter is typically followed by two combining marks, first the

maayyaa and then a vowel sign.

In 2001, an orthographic reform was recommended in the book Cāṅmā pattham pāt,

limiting the standard repertoire of conjuncts to those composed with the five letters

U+11121 CHAKMA LETTER YAA /yā/, U+11122 CHAKMA LETTER RAA /rā/, U+11123

CHAKMA LETTER LAA /lā/, U+11124 CHAKMA LETTER WAA /wā/, and U+1111A

CHAKMA LETTER NAA /nā/.

13.13 Chakma

13.13.1 Chakma: U+11100–U+1114F

Independent Vowels.

Vowel Killer and Virama.

South and Central Asia-II 666 13.13 Chakma

 Chakma fonts by default should display the subjoined form of

letters that follow virama to ensure legibility.

 Chakma has a single and double danda. There is also a unique ques‐

tion mark and a section mark, phulacihna.

 A distinct set of digits is encoded for Chakma. Bengali digits are also used

with Chakma. Myanmar digits are used with the Chakma script when writing

Tanchangya.

Chakma Fonts.

Punctuation.

Digits.

South and Central Asia-II 667 13.13 Chakma

Lepcha is a Sino-Tibetan language spoken by people in Sikkim and in the West

Bengal state of India, especially in the Darjeeling district, which borders Sikkim. The

Lepcha script is a writing system thought to have been invented around 1720 CE by

the Sikkim king Phyag-rdor rNam-rgyal (“Chakdor Namgyal,” born 1686). Both the

language and the script are also commonly known by the term Rong.

 The Lepcha script was based directly on the Tibetan script. The letter‐

forms are obviously related to corresponding Tibetan letters. However, the dbu-med

Tibetan precursors to Lepcha were originally written in vertical columns, possibly

influenced by Chinese conventions. When Lepcha was invented it changed the dbu-

med text to a left-to-right, horizontal orientation. In the process, the entire script was

effectively rotated ninety degrees counterclockwise, so that the letters resemble

Tibetan letters turned on their sides. This reorientation resulted in some letters

which are nonspacing marks in Tibetan becoming spacing letters in Lepcha. Lepcha

also introduced its own innovations, such as the use of diacritical marks to represent

final consonants.

The Lepcha script is an abugida: the consonant letters have an inherent vowel, and

dependent vowels (matras) are used to modify the inherent vowel of the consonant.

No virama (or vowel killer) is used to remove the inherent vowel. Instead, the script

has a separate set of explicit final consonants which are used to represent a conso‐

nant with no inherent vowel.

 Initial vowels are represented by the neutral letter U+1C23 LEPCHA LETTER

A, followed by the appropriate dependent vowel. U+1C23 LEPCHA LETTER A thus

functions as a vowel carrier.

The dependent vowel signs in Lepcha always follow the base consonant in logical

order. However, in rendering, three of these dependent vowel signs, -i, -o, and -oo,

reorder to the left side of their base consonant. One of the dependent vowel signs, -e,

is a nonspacing mark which renders below its base consonant.

 There are three medial consonants, or glides: -ya, -ra, and -la. The first two

are represented by separate characters, U+1C24 LEPCHA SUBJOINED LETTER YA and

U+1C25 LEPCHA SUBJOINED LETTER RA. These are called “subjoined”, by analogy

with the corresponding letters in Tibetan, which actually do join below a Tibetan

consonant, but in Lepcha these are spacing forms which occur to the right of a

consonant letter and then ligate with it. These two medials can also occur in

sequence to form a composite medial, -rya. In that case both medials ligate with the

preceding consonant.

13.14 Lepcha

13.14.1 Lepcha: U+1C00–U+1C4F

Structure.

Vowels.

Medials.

South and Central Asia-II 668 13.14 Lepcha

On the other hand, Lepcha does not have a separate character to represent the medial

-la. Phonological consonant clusters of the form kla, gla, pla, and so on simply have

separate, atomic characters encoded for them. With few exceptions, these letters for

phonological clusters with the medial -la are independent letterforms, not clearly

related to the corresponding consonants without -la.

 The Lepcha language contains three retroflex consonants:

[ṭ], [ṭh], and [ḍ]. Traditionally, these retroflex consonants have been written in the

Lepcha script with the syllables kra, hra, and gra, respectively. In other words, the

retroflex t would be represented as <U+1C00 LEPCHA LETTER KA, U+1C25 LEPCHA

SUBJOINED LETTER RA>. To distinguish such a sequence representing a retroflex t

from a sequence representing the actual syllable [kra], it is common to use the nukta

diacritic sign, U+1C37 LEPCHA SIGN NUKTA. In that case, the retroflex t would be

visually distinct, and would be represented by the sequence <U+1C00 LEPCHA

LETTER KA, U+1C37 LEPCHA SIGN NUKTA, U+1C25 LEPCHA SUBJOINED LETTER

RA>. Recently, three newly invented letters have been added to the script to unam‐

biguously represent the retroflex consonants: U+1C4D LEPCHA LETTER TTA,

U+1C4E LEPCHA LETTER TTHA, and U+1C4F LEPCHA LETTER DDA.

 Dependent vowels and other signs are encoded

after the consonant to which they apply. The ordering of elements is shown in more

detail in Table 13-9.

Class Example Encoding

consonant, letter a [U+1C00..U+1C23, U+1C4D..U+1C4F]

nukta U+1C37

medial -ra U+1C25

medial -ya U+1C24

dependent vowel [U+1C26..U+1C2C]

final consonant sign [U+1C2D..U+1C35]

syllabic modifier U+1C36

 Most final consonants consist of nonspacing marks rendered above the

base consonant of a syllable.

The combining mark U+1C36 LEPCHA SIGN RAN occurs after the inherent vowel -a

or the dependent vowel -i. When it occurs together with a final consonant sign, the

ran sign renders above the sign for that final consonant.

The two final consonants representing the velar nasal occur in complementary

contexts. U+1C34 LEPCHA CONSONANT SIGN NYIN-DO is only used when there is no

dependent vowel in the syllable. U+1C35 LEPCHA CONSONANT SIGN KANG is used

Retroflex Consonants.

Ordering of Syllable Components.

Table 13-9. Lepcha Syllabic Structure

Rendering.

South and Central Asia-II 669 13.14 Lepcha

instead when there is a dependent vowel. These two consonant signs are rendered to

the left of the base consonant. If used with a left-side dependent vowel, the glyph for

the kang is rendered to the left of the dependent vowel. This behavior is understand‐

able because these two marks are derived from the Tibetan analogues of the Brahmic

bindu and candrabindu, which normally stand above a Brahmic aksara.

 The Lepcha script has its own, distinctive set of digits.

 Currently the Lepchas use traditional punctuation marks only when

copying the old books. In everyday writing they use common Western punctuation

marks such as comma, full stop, and question mark.

The traditional punctuation marks include a script-specific danda mark, U+1C3B

LEPCHA PUNCTUATION TA-ROL, and a double danda, U+1C3C LEPCHA PUNCTUA‐

TION NYET THYOOM TA-ROL. Depending on style and hand, the Lepcha ta-rol may

have a glyph appearance more like its Tibetan analogue, U+0F0D TIBETAN MARK

SHAD.

Digits.

Punctuation.

South and Central Asia-II 670 13.14 Lepcha

Saurashtra is an Indo-European language, related to Gujarati and spoken by about

310,000 people in southern India. The Telugu, Tamil, Devanagari, and Saurashtra

scripts have been used to publish books in Saurashtra since the end of the 19th

century. At present, Saurashtra is most often written in the Tamil script, augmented

with the use of superscript digits and a colon to indicate sounds not available in the

Tamil script.

The Saurashtra script is of the Brahmic type. Early Saurashtra text made use of

conjuncts, which can be handled with the usual Brahmic shaping rules. The modern‐

ized script, developed in the 1880s, has undergone some simplification. Modern

Saurashtra does not use complex consonant clusters, but instead marks a killed vowel

with a visible virama, U+A8C4 SAURASHTRA SIGN VIRAMA. An exception to the

non-occurrence of complex consonant clusters is the conjunct kṣa, formed by the

sequence <U+A892, U+A8C4, U+200D, U+A8B0>. This conjunct is sorted as a

unique letter in older dictionaries. Apart from its use to form kṣa, the virama is

always visible by default in modern Saurashtra. If necessary, U+200D ZERO WIDTH

JOINER may be used to force conjunct behavior.

The Unicode encoding of the Saurashtra script supports both older and newer

conventions for writing Saurashtra text.

 The vowel signs (matras) in Saurashtra follow the consonant to

which they are applied. The long and short -i vowels, however, are typographically

joined to the top right corner of their consonant. Vowel signs are also applied to

U+A8B4 SAURASHTRA CONSONANT SIGN HAARU.

 The Saurashtra script has its own set of digits. These are separately encoded

in the Saurashtra block.

 Western-style punctuation, such as comma, full stop, and the question

mark are used in modern Saurashtra text. U+A8CE SAURASHTRA DANDA is used as a

text delimiter in traditional prose. U+A8CE SAURASHTRA DANDA and U+A8CF

SAURASHTRA DOUBLE DANDA are used in poetic text.

 The character U+A8B4 SAURASHTRA CONSO‐

NANT SIGN HAARU, transliterated as “H”, is unique to Saurashtra, and does not have

an equivalent in the Devanagari, Tamil, or Telugu scripts. It functions in some

regards like the Tamil aytam, modifying other letters to represent sounds not found

in the basic Brahmic alphabet. It is a dependent consonant and is thus classified as a

consonant sign in the encoding.

13.15 Saurashtra

13.15.1 Saurashtra: U+A880–U+A8DF

Glyph Placement.

Digits.

Punctuation.

Saurashtra Consonant Sign Haaru.

South and Central Asia-II 671 13.15 Saurashtra

The Masaram Gondi script was created in 1918 by Munshi Mangal Singh Masaram of

Madhya Pradesh, India to write the Gondi language, a Dravidian language spoken in

central and southeastern India. The Gondi language, which is typically written with

the Devanagari or Telugu scripts, also has another script associated with it, Gunjala

Gondi, which is unrelated to the Masaram Gondi script. Masaram Gondi is actively

used today in handwritten and printed materials.

 Masaram Gondi is an abugida, written left to right. While not historically

related to Brahmi, its general structure is similar to that of other Brahmi-derived

Indic scripts. Masaram Gondi uses a conjunct-forming character (virama) to invoke

conjoined consonants. In addition, there is an explicit vowel-killing character

(halanta).

 Consonants have an inherent /a/ vowel, which is graphically repre‐

sented by a horizontal stroke extending rightward from the right-hand edge of each

consonant letter. A bare consonant (with no vowel) is represented by removing this

stroke. Alternatively, consonants that appear in word-final position can be repre‐

sented by the addition of U+11D44 MASARAM GONDI SIGN HALANTA. This use of

halanta is a recent innovation employed by some modern users.

 Consonant clusters in Masaram Gondi are represented by the sequence

<C, virama, C>. The consonants in a cluster appear in a linear sequence as bare

forms without the horizontal stroke, except the last consonant, which retains its orig‐

inal form, as shown in Figure 13-9.

ka → ka

ka + virama + ta → kta

ka + virama + ta + virama + va → ktva

There are a few exceptions to the consonant cluster formation rule: the conjuncts

kssa, jyna, and tra are atomically encoded, whereas consonant clusters with U+11D26

MASARAM GONDI LETTER RA have special contextual forms. When ra occurs as the

first consonant in a cluster and does not mark a morphological boundary, it is gener‐

ally rendered with U+11D46 MASARAM GONDI REPHA. Repha is represented in

logical order at the beginning of a cluster, and does not interact with any combining

signs. When ra appears first in a cluster and marks a morphological distinction, the

bare consonant appears. There is also a cluster-final form of ra, a combining sign

13.16 Masaram Gondi

13.16.1 Masaram Gondi: U+11D00–U+11D5F

Structure.

Consonants.

Conjuncts.

Figure 13-9. Masaram Gondi Consonant Clusters

South and Central Asia-II 672 13.16 Masaram Gondi

called U+11D47 ra-kara. The ra-kara appears in logical order before any vowel sign.

Neither repha nor ra-kara interact with the virama. Details are shown in Figure 13-10.

repha + ka → rka

ka + ra-kara → kra

ra + virama + ka → rka

ka + virama + ra → kra

 Masaram Gondi uses various signs, as summarized in Table 13-10.

Character Use

11D40 MASARAM GONDI SIGN ANUSVARA Indicates nasalization

11D41 MASARAM GONDI SIGN VISARGA Used to represent Sanskrit words

11D42 MASARAM GONDI SIGN NUKTA
Used to indicate sounds for which distinct
characters in Masaram Gondi do not exist, such as
loanwords

11D43 MASARAM GONDI SIGN CANDRA
Used to transcribe vowel sounds not native to
Gondi

 Masaram Gondi has a full set of decimal digits. There are

no script-specific marks of punctuation. For dandas, Masaram Gondi uses U+0964

DEVANAGARI DANDA and U+0965 DEVANAGARI DOUBLE DANDA.

Figure 13-10. Rendering of ra in Masaram Gondi

Various Signs.

Table 13-10. Various Signs in Masaram Gondi

Digits and Punctuation.

South and Central Asia-II 673 13.16 Masaram Gondi

Gunjala Gondi is named after the village in the Adilabad district of the southern

Indian state of Telegana, where manuscripts in the script were found. The script, also

called Koytura Gunjala Lipi, is used to write the Adilabad dialect of the Gondi

language, which is a member of the Dravidian family. Gunjala Gondi is taught today

and appears in publications, but the dialect is more commonly written in Telugu or

Devanagari. Although the Gunjala Gondi script is formally unrelated to Masaram

Gondi and other scripts, it strongly resembles the Modi script in appearance and

structure.

 Gunjala Gondi is an abugida, structurally based on the Brahmi model.

The vowel letters follow the order found in Brahmi-derived scripts, but the conso‐

nants appear in a different order: the first consonant is ya, instead of ka, for example.

The script uses a virama to create conjuncts, but it does not suppress the inherent

vowel. The script is written from left to right.

 The script does not have letters for palatal na and retroflex na.

U+11D7A GUNJALA GONDI LETTER NA and U+11D95 GUNJALA GONDI SIGN ANUS‐

VARA are used to represent these letters. The script does not have distinct letters for

palatal sa and retroflex sa, so U+11D89 GUNJALA GONDI LETTER SA is used to repre‐

sent those letters. No special forms of ra appear in Gunjala Gondi. The half-form of

U+11D88 GUNJALA GONDI LETTER RA is used in the cluster-initial position.

 Unlike scripts used to write other Dravidian languages, Gunjala Gondi does

not distinguish between long and short /e/ or /o/. U+11D67 GUNJALA GONDI LETTER

EE designates both the short and the long /e/, and U+11D6A GUNJALA GONDI

LETTER OO is used for short and long /o/. For the dependent vowel signs, the script

similarly does not distinguish the long and short vowels /e/ and /o/, instead using

U+11D90 GUNJALA GONDI VOWEL SIGN EE and U+11D93 GUNJALA GONDI VOWEL

SIGN OO, respectively.

 Consonant clusters are represented with a virama between

the consonants in the conjunct. The initial and medial consonants in a cluster are

written horizontally with half-forms, but the final consonant appears in its full form.

13.17 Gunjala Gondi

13.17.1 Gunjala Gondi: U+11D60–U+11DAF

Structure.

Consonants.

Vowels.

Consonant Conjuncts.

Figure 13-11. Gunjala Gondi Conjunct Formation

South and Central Asia-II 674 13.17 Gunjala Gondi

Conjuncts composed of a consonant and the vowels signs -aa, -oo, and -au are

usually written as ligatures with a modified form of the consonant.

 Gunjala Gondi has a full set of decimal digits in the range

U+11DA0..U+11DA9. Gunjala Gondi uses dandas and European punctuation, such

as middle dots, periods, and colons to mark word and sentence boundaries. Gunjala

Gondi uses U+0964 DEVANAGARI DANDA and U+0965 DEVANAGARI DOUBLE

DANDA.

U+11D95 GUNJALA GONDI SIGN ANUSVARA indicates nasalization.

U+11D96 GUNJALA GONDI SIGN VISARGA represents post-vocalic aspiration in words

of Sanskrit origin. The om sign is encoded at U+11D98.

Digits and Punctuation.

Other Signs.

South and Central Asia-II 675 13.17 Gunjala Gondi

The Wancho script was devised between 2001 and 2012 by Banwang Losu, a teacher

at a government middle school in his home village in Arunachal Pradesh, India; it is

taught today in schools. The Wancho language is a Sino-Tibetan language that has

some 50,000 speakers and is used chiefly in the southeast of Arunachal Pradesh, as

well as in Assam and Nagaland, and in the countries of Myanmar and Bhutan.

 Wancho is a simple left-to-right alphabetic script comprised of letters

which represent both consonants and vowels. Diacritical marks are used on vowel

letters to indicate tone.

 There are four tone marks in Wancho:

U+1E2EC WANCHO TONE TUP

U+1E2ED WANCHO TONE TUPNI

U+1E2EE WANCHO TONE KOI

U+1E2EF WANCHO TONE KOINI

The four tone marks are in two pairs. One pair, WANCHO TONE TUP and WANCHO

TONE TUPNI, is used with Southern Wancho, and the second pair, WANCHO TONE KOI

and WANCHO TONE KOINI, is used with Northern Wancho.

 Common Western punctuation marks such as comma, full stop, and

question mark are used in Wancho.

 The Wancho currency sign, U+1E2FF WANCHO NGUN SIGN, is used

to indicate rupees.

 Wancho uses decimal digits 0–9 encoded in the range U+1E2F0..U+1E2F9.

Common operators are used for mathematical operations.

13.18 Wancho

13.18.1 Wancho: U+1E2C0–U+1E2FF

Structure.

Tones.

•

•

•

•

Punctuation.

Currency Sign.

Digits.

South and Central Asia-II 676 13.18 Wancho

The Toto script was created to write Toto, a Sino-Tibetan language spoken in West

Bengal, India, near the Bhutan border. It was designed by Dhaniram Toto, a member

of the Toto community, and officially launched in 2015. The language is also written

with the Bengali/Bangla and Latin scripts.

 Toto is a left-to-right alphabetic script comprised of letters representing

consonants and vowels. There are five breathy vowels, which are separately encoded.

The breathy vowels display a common distinguishing mark below the letter, such as

is found in U+1E2A7 TOTO LETTER BREATHY E. The distinguishing mark is not

separately encoded; these characters are all treated atomically, and do not decom‐

pose. The mark below U+1E29C TOTO LETTER WA has a similar appearance, but

does not indicate breathiness.

U+02BC MODIFIER LETTER APOSTROPHE is used for the glottal stop.

 Toto has one tone mark, U+1E2AE TOTO SIGN RISING TONE, which appears

only above vowels. The similar-shaped mark which appears above U+1E297 TOTO

LETTER NA and U+1E298 TOTO LETTER NGA is not a tone mark, and those letters

do not decompose.

 Common Western punctuation marks are currently used in

Toto. The Toto script has no script-specific digits.

13.19 Toto

13.19.1 Toto: U+1E290–U+1E2BF

Structure.

Tone.

Punctuation and Digits.

South and Central Asia-II 677 13.19 Toto

Tangsa is an alphabetic script created by the late Lakhum Mossang in 1990 to write

the Tangsa languages spoken in Arunachal Pradesh, India, and the Sagaing Region of

northwest Myanmar. In January 2020 a few new characters (U+16A78..U+16A7B)

were officially added to the script, including four characters for a short /a/-like

sound.

In India the script is taught in some schools to write the local Muishvung (Mossang)

variety of Tangsa. Some areas of India and Myanmar also use different Latin-based

orthographies to write Tangsa languages.

 The script is written left to right and contains 48 vowels and 31 conso‐

nants. Each vowel or diphthong contains an inherent tone, identified in the character

name by an appended letter (Z, C, Q, X) used to mark tones in the Latin orthography

developed by Reverend Gam Win. The tone letters indicate the tones numbered by

linguists as 1, 3, 4, and 2, respectively. The Z, C, Q, X order reflects the order defined

by the script’s creator for the Muishvung variety of the language.

 Western-style punctuation is employed in Tangsa.

 Tangsa has script-specific decimal digits encoded in the range

U+16AC0..U+16AC9.

13.20 Tangsa

13.20.1 Tangsa: U+16A70–U+16ACF

Structure.

Punctuation.

Digits.

South and Central Asia-II 678 13.20 Tangsa

The modern form of the Sunuwar script was developed by Karna Jentich in 1942, to

write the Kiranti-Kõits (Sunuwar/Mukhia) language, which is spoken by around

40,000 people in Nepal and Sikkim (India). The script has been used in newspapers,

government records, and other publications. In Nepal, the use of the script is

promoted by the Sunuwar Welfare Society. Kiranti-Kõits has also been one of the offi‐

cial languages of Sikkim since 1996. In 2001 the Sikkim government mandated that

state-run schools should offer instruction in both the primary language of the state

and in a local language. Various additions and improvements have been made to the

script, particularly around the turn of the century, and further changes to the orthog‐

raphy were proposed as recently as the early 2020s in Nepal.

 Sunuwar text runs from left to right in horizontal lines. Words are

separated by spaces, and the script is unicameral.

In Nepal the Sunuwar script is used as an alphabet, whereas in Sikkim it is used as an

abugida. The repertoire for each is largely the same, but there are differences in usage

and in a small number of letter forms.

 There are regional variations between characters used in Sikkim

and Nepal. For examples, see Figure 13-12.

Character Sikkim Nepal

U+11BC5 SUNUWAR LETTER UTTHI or

U+11BC6 SUNUWAR LETTER KIK

U+11BCC SUNUWAR LETTER CARMI

U+11BD2 SUNUWAR LETTER SHYELE

 The Sunuwar block contains 27 consonant letters. Around the early

2000s the repertoire was augmented with new consonant letters to represent aspi‐

rated and retroflex sounds. However, use of the script is not yet fully standardized,

and sometimes older ambiguous or digraph-based spellings still appear.

In Nepal, consonants have no inherent vowel and consonant clusters are simply indi‐

cated by groups of consonant letters. A lone consonant is not pronounced with a

following vowel. In Sikkim, however, consonants have an inherent vowel,

pronounced /ə/, and U+0331 COMBINING MACRON BELOW (called sangmilu) is

13.21 Sunuwar

13.21.1 Sunuwar: U+11BC0–U+11BFF

Basic Features.

Glyph Variants.

Figure 13-12. Glyph Variants in Sunuwar

Consonants.

South and Central Asia-II 679 13.21 Sunuwar

used to indicate suppression of the inherent vowel in clusters or when the letter

stands alone. There are no conjuncts.

Onset consonant clusters with /-j/ or /-r/ follow a similar pattern. In Nepal these

medial consonants are written using ordinary consonant letters, whereas in Sikkim a

medial /-j/ is written using sangmilu followed by U+11BD4 SUNUWAR LETTER YAT

and medial /-r/ is written using U+032D COMBINING CIRCUMFLEX ACCENT BELOW

(called sangrums).

 The Sunuwar block has six vowel letters that are all ordinary, spacing char‐

acters. Long vowel sounds can be indicated using a symbol called laissi after the

vowel letter. U+003A “” COLON is used for this. A colon may also be used as punctu‐

ation; if it occurs after a word ending with a vowel letter it will typically be preceded

by a space in order to remove ambiguity.

Nasalization is indicated in Nepal using U+0303 COMBINING TILDE above a vowel

letter. In Sikkim, nasalization is indicated instead with a flat line and dot above,

called taslathenk. This mark is represented with U+0310 COMBINING CANDRA‐

BINDU, with a Sunuwar font-specific rendering. These conventions are illustrated on

the left and right sides of Figure 13-13, respectively.

/dẽː/ “snail”

 A set of three combining marks are promoted in Nepal to represent

Sunuwar tones. These are encoded as U+030D COMBINING VERTICAL LINE ABOVE,

U+0301 COMBINING ACUTE ACCENT, and U+0300 COMBINING GRAVE ACCENT.

Over diphthongs the tone mark typically appears above the first vowel, and the nasal‐

isation mark over the second, avoiding the need for stacked glyphs. In Sikkim, tone

marks are not used.

U+11BE1 SUNUWAR SIGN PVO represents an “auspicious syllable,”

which is uttered, often twice, before a formulaic phrase. The sign is written in saluta‐

tions and benedictions, and its basic trident shape can vary in the details. It repre‐

sents the sound /ɓ/ and is transcribed as pvo.

Other punctuation is the same as that used for the Latin script.

 A set of Sunuwar digits is encoded in the range U+10D40..U+10D49.

 Line breaking and justification are primarily based on inter-word

spaces.

Vowels.

Figure 13-13. Sunuwar Nasalization in Nepal and Sikkim

Tone Marks.

Punctuation.

Numbers.

Line Breaking.

South and Central Asia-II 680 13.21 Sunuwar

The Gurung Khema script was developed by Bal Narsingh Gurung to write Gurung, a

Tibeto-Burman language used in Nepal and the northeastern state of Sikkim in

India. The script was introduced to the community in 1995 and revised several times,

most recently in 2019. Another script for Gurung was created by Jagan Lal Gurung in

1944, called Khe Prih. Gurung is also written with the Devanagari, Tibetan, and Latin

scripts.

 Gurung Khema is an abugida based on Brahmic scripts, written from left

to right. It makes use of a visible vowel killer, a nasalization mark, and four medial

signs.

 The script uses vowel signs on consonants to modify the inherent vowel. The

vowel signs can also be used on U+16100 GURUNG KHEMA LETTER A to represent

initial vowels. Originally Gurung Khema did not distinguish between short and long

vowels, but four more vowel signs were added in 2019 to represent the long vowels.

U+16129 GURUNG KHEMA VOWEL LENGTH MARK is required for decomposition of

certain vowel signs, as shown in Figure 13-14. It is not used on its own.

16121 sign u ≡ 1611E sign aa + 1611E sign aa

16122 sign uu ≡ 1611E sign aa + 16129 length mark

16123 sign e ≡ 1611E sign aa + 1611F sign i

16124 sign ee ≡ 16129 length mark + 1611F sign i

16125 sign ai ≡ 1611E sign aa + 16120 sign ii

16126 sign o ≡ 16121 sign u + 1611F sign i

16127 sign oo ≡ 16122 sign uu + 1611F sign i

16128 sign au ≡ 16121 sign u + 16120 sign ii

 Medial signs imply the loss of the implicit vowel and follow conso‐

nants directly. A syllable can only contain a single instance of a ya, va, or ra medial

sign. However, when a syllable contains any of those medial signs, it can optionally

also be followed by the medial sign ha. When medial sign ha is used with another

medial sign, ha always comes second in sequence, regardless of the implied phonetic

order of the segments.

13.22 Gurung Khema

13.22.1 Gurung Khema: U+16100–U+1613F

Structure.

Vowels.

Figure 13-14. Canonical Decomposition of Gurung Khema Vowel

Signs

Medial Signs.

South and Central Asia-II 681 13.22 Gurung Khema

U+1612D GURUNG KHEMA SIGN ANUSVARA is used to indicate nasal‐

ization. U+1612F GURUNG KHEMA SIGN THOLHOMA represents the vowel killer.

The vowel killer is always visible; the script does not form conjuncts. Both signs can

be used in combination with the medial signs.

The mark for the anusvara is a small wedge shape that typically appears on top of

vowel signs that have flat line glyphs, but underneath vowels signs consisting of a

small circle or two circles. This means that it may also appear between parts of a

vowel sign in the cases of complex vowels that have both circle and flat line parts in

their glyphs. In all cases the anusvara is represented in the text directly after the

vowel sign. The correct rendering of anusvara when combined with vowel signs is

shown in Figure 13-15.

sign i sign u sign e sign o

sign aa sign ii sign uu sign ee sign oo

sign ai sign au

 Gurung Khema uses Western-style punctuation along with U+0965

DEVANAGARI DOUBLE DANDA.

 Gurung Khema script-specific digits are encoded in the range

U+16130..U+16139.

Other Signs.

Figure 13-15. Gurung Khema Vowel Signs with anusvara

Punctuation.

Digits.

South and Central Asia-II 682 13.22 Gurung Khema

Kirat Rai is a script used to write the Bantawa language, spoken in eastern Nepal and

the Indian states of Sikkim and West Bengal. The script is primarily used in India.

The most common name for the script is “Kirat Rai,” however it is sometimes called

“Khambu Rai Lipi” in West Bengal. The Kirat Rai script should not be confused with

the Limbu script, which has sometimes been called Kirat Rai.

 Kirat Rai is an abugida based on a simplified Brahmic model. It is written

from left to right. The script does not have the rendering complexity of traditional

Brahmic scripts (no reordering, no combining marks, and no conjuncts). Consonant

letters have an inherent vowel, which is not pronounced in the final position. The

script has no system of conjuncts but uses U+16D6B KIRAT RAI SIGN VIRAMA and

U+16D6C KIRAT RAI SIGN SAAT to mute the inherent vowel. Vowel signs are not

encoded as combining marks, but nevertheless must follow a consonant letter or the

vowel carrier, U+16D43 KIRAT RAI LETTER A.

 Eight vowel signs are encoded in the range U+16D63..U+16D6A. Three of

these vowels can be visually analyzed as consisting of multiple parts corresponding

to the shapes of other vowels: U+16D63 KIRAT RAI VOWEL SIGN AA and U+16D67

KIRAT RAI VOWEL SIGN E, as shown in Figure 13-16. These multipart vowels have

been given canonical decompositions, so the atomic characters and the corre‐

sponding sequences are canonical equivalents. The atomic characters are the typical

form when generating text.

U+16D68 KIRAT RAI VOWEL SIGN AI ≡ 16D67 + 16D67

U+16D69 KIRAT RAI VOWEL SIGN O ≡ 16D63 + 16D67

U+16D6A KIRAT RAI VOWEL SIGN AU ≡ 16D69 + 16D67

Note that because canonical decompositions are applied recursively when normal‐

izing Unicode text, the fully decomposed (NFD) form of U+16D6A KIRAT RAI

VOWEL SIGN AU is the three character sequence <16D63 , 16D67 , 16D67 >.

 Kirat Rai multipart vowels should not be broken apart when deter‐

mining grapheme clusters. Structurally, they behave as if they were atomic elements,

even if represented with a decomposed sequence. The Kirat Rai vowel letters have

the property value Grapheme_Cluster_Break=V, which functions to keep the vowel

letter sequences together when determining grapheme cluster boundaries.

13.23 Kirat Rai

13.23.1 Kirat Rai: U+16D40–U+16D7F

Structure.

Vowels.

Figure 13-16. Kirat Rai Multipart Vowels

Segmentation.

South and Central Asia-II 683 13.23 Kirat Rai

 Kirat Rai uses Western-style punctuation. U+002D “ ” HYPHEN-

MINUS represents the chamri sign to form compound words, and U+16D6D KIRAT

RAI SIGN YUPI marks abbreviations. In addition, Kirat Rai uses two script-specific

dandas: U+16D6E KIRAT RAI DANDA and U+16D6F KIRAT RAI DOUBLE DANDA.

 Kirat Rai script-specific digits are encoded in the range U+16D70..U+16D79.

U+16D40 KIRAT RAI SIGN ANUSVARA denotes [n] and [ŋ]

phonemes. Nasalization of vowels is indicated by U+16D41 KIRAT RAI SIGN TONPI.

U+16D42 KIRAT RAI SIGN VISARGA represents the glottal stop phoneme.

Both U+16D6B KIRAT RAI SIGN VIRAMA and U+16D6C KIRAT RAI SIGN SAAT are

used to mute the inherent vowel sound. Saat is only used to mute the inherent vowel

of the first letter of the word; all other places are represented by virama.

Punctuation.

Digits.

Various Signs.

South and Central Asia-II 684 13.23 Kirat Rai

Chapter 14

South and Central Asia-III
Ancient Scripts

The oldest lengthy inscriptions of India, the edicts of Ashoka from the third century

BCE, were written in two scripts, Kharoshthi and Brahmi. These are both ultimately

of Semitic origin, probably deriving from Aramaic, which was an important adminis‐

trative language of the Middle East at that time. Kharoshthi, which was written from

right to left, was supplanted by Brahmi and its derivatives.

The Bhaiksuki script is a Brahmi-derived script used around 1000 CE, primarily in

the area of the present-day states of Bihar and West Bengal in India and northern

Bangladesh. Surviving Bhaiksuki texts are limited to a few Buddhist manuscripts and

inscriptions.

Phags-pa is an historical script related to Tibetan that was created as the national

script of the Mongol empire. Phags-pa was used mostly in Eastern and Central Asia

for writing text in the Mongolian and Chinese languages.

The Marchen script (Tibetan sMar-chen) is a Brahmi-derived script used in the

Tibetan Bön liturgical tradition. Marchen is used to write Tibetan and the historic

Zhang-zhung language. Although few historical examples of the script have been

found, Marchen appears in modern-day inscriptions and in modern Bön literature.

The Old Turkic script is known from eighth-century Siberian stone inscriptions, and

is the oldest known form of writing for a Turkic language. Also referred to as Turkic

Runes due to its superficial resemblance to Germanic Runes, it appears to have

evolved from the Sogdian script, which is in turn derived from Aramaic.

Both the Soyombo script and the Zanabazar Square script are historic scripts used to

write Mongolian, Sanskrit, and Tibetan. These two scripts were both invented by

Zanabazar (1635–1723), one of the most important Buddhist leaders in Mongolia.

Each script is an abugida. Soyombo appears primarily in Buddhist texts in Central

Asia. Zanabazar Square has also been called “Horizontal Square” script, “Mongolian

Horizontal Square” script and “Xewtee Dörböljin Bicig.”

Old Sogdian and Sogdian are related scripts used in Central Asia. The Old Sogdian

script was used for a group of related writing systems dating from the third to the

sixth century CE. These writing systems were all used to write Sogdian, an eastern

685

Iranian language. Old Sogdian is a non-joining abjad. Its basic repertoire consists of

20 of the 22 letters of the Aramaic alphabet.

The Sogdian script, which derives from Old Sogdian, is also an abjad, and was used

from the seventh to the fourteenth century CE, also to write Sogdian. Its repertoire

corresponds to that of Old Sogdian, but has a number of differences in the glyphs and

also has additional characters. The script was also used to write Chinese, Sanskrit,

and Uyghur. Sogdian is the ancestor of the Old Uyghur and Mongolian scripts.

The Old Uyghur script flourished between the 8th and 17th centuries in northwest

China and other parts of Asia. Originally used to write medieval Turkish languages,

its use later expanded to write other languages, including Chinese, Mongolian,

Tibetan and Arabic. Old Uyghur is a cursive joining alphabet, and developed from

the cursive style of the Sogdian script. The default orientation of the script is hori‐

zontal, with the script being read from right to left.

South and Central Asia-III 686

The Brahmi script is an historical script of India attested from the third century BCE

until the late first millennium CE. Over the centuries Brahmi developed many

regional varieties, which ultimately became the modern Indian writing systems,

including Devanagari, Tamil and so on. The encoding of the Brahmi script in the

Unicode Standard supports the representation of texts in Indian languages from this

historical period. For texts written in historically transitional scripts—that is,

between Brahmi and its modern derivatives—there may be alternative choices to

represent the text. In some cases, there may be a separate encoding for a regional

medieval script, whose use would be appropriate. In other cases, users should

consider whether the use of Brahmi or a particular modern script best suits their

needs.

 The Brahmi script is an abugida and is encoded using the Unicode

virama model. Consonants have an inherent vowel /a/. A separate character is

encoded for the virama: U+11046 BRAHMI VIRAMA. The virama is used between

consonants to form conjunct consonants. It is also used as an explicit killer to indi‐

cate a vowelless consonant.

 Vowel letters are encoded atomically in Brahmi, even if they can be

analyzed visually as consisting of multiple parts. Table 14-1 shows the letters that can

be analyzed, the single code point that should be used to represent them in text, and

the sequence of code points resulting from analysis that should not be used.

For Use Do Not Use

11006 <11005, 11038>

1100C <1100B, 1103E>

11010 <1100F, 11042>

 Consonant conjuncts are represented by a sequence including

virama: <C, virama, C>. In Brahmi these consonant conjuncts are rendered as conso‐

nant ligatures. Up to a very late date, Brahmi used vertical conjuncts exclusively, in

which the ligation involves stacking of the consonant glyphs vertically. The Brahmi

script does not have a parallel series of half-consonants, as developed in Devanagari

and some other modern Indic scripts.

The elements of consonant ligatures are laid out from top left to bottom right, as

shown for sva in Figure 14-1. Preconsonantal r, postconsonantal r and postconso‐

nantal y assume special reduced shapes in all except the earliest varieties of Brahmi.

14.1 Brahmi

14.1.1 Brahmi: U+11000–U+1107F

Encoding Model.

Vowel Letters.

Table 14-1. Brahmi Vowel Letters

Rendering Behavior.

South and Central Asia-III 687 14.1 Brahmi

The kṣa and jña ligatures, however, are often transparent, as also shown in

Figure 14-1.

A vowelless consonant is represented in text by following the consonant with a

virama: <C, virama>. The presence of the virama “kills” the vowel. Such vowelless

consonants have visible distinctions from regular consonants, and are rendered in

one of two major styles. In the first style, the vowelless consonant is written smaller

and lower than regular consonants, and often has a connecting line drawn from the

vowelless consonant to the preceding aksara. In the second style, a horizontal line is

drawn above the vowelless consonant. The second style is the basis for the represen‐

tative glyph for U+11046 BRAHMI VIRAMA in the code charts. These differences in

presentation are purely stylistic; it is up to the font developers and rendering systems

to render Brahmi vowelless consonants in the appropriate style.

U+11000 BRAHMI SIGN CANDRABINDU indicates nasalization of a

vowel. U+11001 BRAHMI SIGN ANUSVARA is used to indicate that a vowel is nasalized

(when the next syllable starts with a fricative), or that it is followed by a nasal

segment (when the next syllable starts with a stop). U+11002 BRAHMI SIGN VISARGA

is used to write syllable-final voiceless /h/. The velar and labial allophones of /h/

(that is, [x] and [ɸ], followed by voiceless velar and labial stops respectively) are

sometimes written with separate signs U+11003 BRAHMI SIGN JIHVAMULIYA and

U+11004 BRAHMI SIGN UPADHMANIYA. Unlike visarga, these two signs have the

properties of a letter, and are not considered combining marks. They enter into liga‐

tures with the following homorganic voiceless stop consonant, without the use of a

virama.

 Brahmi was used to write the Tamil language starting from the

second century BCE. The different orthographies used to write Tamil in the Brahmi

script are covered by the Unicode encoding of Brahmi.

In one of these orthographies the inherent vowel of Brahmi consonant letters is

dropped, and U+11038 BRAHMI VOWEL SIGN AA is used to represent both short and

long [a] / [a:]. In this orthography, consonant signs without a vowel sign always

represent the bare consonant without an inherent vowel.

Figure 14-1. Consonant Ligatures in Brahmi

Vowel Modifiers.

Old Tamil Brahmi.

South and Central Asia-III 688 14.1 Brahmi

Some orthographies employ U+11070 BRAHMI SIGN OLD TAMIL VIRAMA to cancel

the inherent vowel of the consonants, but the virama does not form conjuncts. The

glyph for Old Tamil virama is a dot, called a puḷḷi, which may appear identical to

U+11001 BRAHMI SIGN ANUSVARA. Fonts may differentiate the Old Tamil virama

from the Brahmi anusvara by placing the dots at different positions according to the

style of the font. These orthographies also use Old Tamil short vowels [e] and [o],

which are atomically encoded at U+11071..U+11074. The glyphs for these vowels

appear with a puḷḷi, but the short vowels [e] and [o] are not decomposed.

Distinct Old Tamil consonants not found in Prakrit and Sanskrit are encoded at

U+11035..U+11037 and U+11075. When U+1102B BRAHMI LETTER MA occurs in Old

Tamil text, it may be shown with a glyphic variant distinct from the form shown in

the Brahmi code charts.

 Ten short Middle Indo-Aryan inscriptions from the second

century BCE found at Bhattiprolu in Andhra Pradesh show an orthography that

seems to be derived from the Tamil Brahmi system. To avoid the phonetic ambiguity

of the Tamil Brahmi U+11038 BRAHMI VOWEL SIGN AA (standing for either [a] or

[a:]), the Bhattiprolu inscriptions introduced a separate vowel sign for long [a:] by

adding a vertical stroke to the end of the earlier sign. This is encoded as U+11039

BRAHMI VOWEL SIGN BHATTIPROLU AA.

 There are seven punctuation marks in the encoded repertoire for

Brahmi. The single and double dandas, U+11047 BRAHMI DANDA and U+11048

BRAHMI DOUBLE DANDA, delimit clauses and verses. U+11049 BRAHMI PUNCTUA‐

TION DOT, U+1104A BRAHMI PUNCTUATION DOUBLE DOT, and U+1104B BRAHMI

PUNCTUATION LINE delimit smaller textual units, while U+1104C BRAHMI PUNCTU‐

ATION CRESCENT BAR and U+1104D BRAHMI PUNCTUATION LOTUS separate larger

textual units.

 Line breaks may occur after every orthographic syllable.

 Two sets of numbers, used for different numbering systems, are attested

in Brahmi documents. The first set is the old additive-multiplicative system that goes

back to the beginning of the Brahmi script. The second is a set of ten decimal digits

that occurs side by side with the earlier numbering system in manuscripts and

inscriptions during the late Brahmi period.

The set of additive-multiplicative numerals of the Brahmi script contains separate

signs for the digits from 1 to 9, the tens from 10 to 90, as well as signs for 100 and

1000. Numbers are written additively, with the higher-valued signs preceding the

lower-valued ones. Multiples of 100 and of 1000 are expressed multiplicatively with

character sequences consisting of the sign for 100 or 1000, followed by U+1107F

BRAHMI NUMBER JOINER and then the multiplier. The component parts of additive

numbers are rendered unligated, whereas multiples are rendered in ligated form.

Bhattiprolu Brahmi.

Punctuation.

Line Breaking.

Numerals.

South and Central Asia-III 689 14.1 Brahmi

For example, the sequence <U+11064 BRAHMI NUMBER ONE HUNDRED, U+11055

BRAHMI NUMBER FOUR> represents the number 100 + 4 = 104 and is rendered unli‐

gated, whereas the sequence <U+11064 BRAHMI NUMBER ONE HUNDRED, U+1107F

BRAHMI NUMBER JOINER, U+11055 BRAHMI NUMBER FOUR> represents the number

100 × 4 = 400 and is rendered as a ligature.

U+1107F BRAHMI NUMBER JOINER forms a ligature between the two numeral char‐

acters surrounding it. It functions similarly to U+2D7F TIFINAGH CONSONANT

JOINER, but is intended to be used only with Brahmi numerals in the range U+11052

BRAHMI NUMBER ONE through U+11065 BRAHMI NUMBER ONE THOUSAND, and not

with consonants or other characters. Because U+1107F BRAHMI NUMBER JOINER

marks a semantic distinction between additive numbers and multiples, it should be

rendered with a visible fallback glyph to indicate its presence in the text when it

cannot be displayed by normal rendering.

In addition to the ligated forms of the multiples of 100 and 1000, other examples

from the middle and late Brahmi periods show the signs for 200, 300, and 2000 in

special forms not obviously connected with a ligature of the component parts. Such

forms may be enabled in fonts using a ligature substitution.

A special sign for zero was invented later, and the positional system came into use.

This system is the ancestor of modern decimal number systems. Due to the different

systemic features and shapes, the signs in this set are separately encoded in the range

from U+11066 BRAHMI DIGIT ZERO through U+1106F BRAHMI DIGIT NINE. These

signs have the same properties as the modern Indic digits. Examples are shown in

Table 14-2. Brahmi decimal digits are categorized as regular bases and can act as

vowel carriers, whereas the numerals U+11052 BRAHMI NUMBER ONE through

U+11065 BRAHMI NUMBER ONE THOUSAND and their ligatures formed with U+1107F

BRAHMI NUMBER JOINER are not used as vowel carriers.

Display Value Code Points

0 11066

1 11067

2 11068

3 11069

4 1106A

10 <11067, 11066>

234 <11068, 11069, 1106A>

Table 14-2. Brahmi Positional Digits

South and Central Asia-III 690 14.1 Brahmi

The Kharoshthi script, properly spelled as Kharoṣṭhī, was used historically to write

Gāndhārī and Sanskrit as well as various mixed dialects. Kharoshthi is an Indic script

of the abugida type. However, unlike other Indic scripts, it is written from right to

left. The Kharoshthi script was initially deciphered around the middle of the 19th

century by James Prinsep and others who worked from short Greek and Kharoshthi

inscriptions on the coins of the Indo-Greek and Indo-Scythian kings. The decipher‐

ment has been refined over the last 150 years as more material has come to light.

The Kharoshthi script is one of the two ancient writing systems of India. Unlike the

pan-Indian Brāhmī script, Kharoshthi was confined to the northwest of India

centered on the region of Gandhāra (modern northern Pakistan and eastern

Afghanistan, as shown in Figure 14-2). Gandhara proper is shown on the map as the

dark gray area near Peshawar. The lighter gray areas represent places where the

Kharoshthi script was used and where manuscripts and inscriptions have been

found.

The exact details of the origin of the Kharoshthi script remain obscure, but it is

almost certainly related to Aramaic. The Kharoshthi script first appears in a fully

developed form in the Aśokan inscriptions at Shahbazgarhi and Mansehra which

have been dated to around 250 BCE. The script continued to be used in Gandhara and

neighboring regions, sometimes alongside Brahmi, until around the third century CE,

when it disappeared from its homeland. Kharoshthi was also used for official docu‐

14.2 Kharoshthi

14.2.1 Kharoshthi: U+10A00–U+10A5F

Figure 14-2. Geographical Extent of the Kharoshthi Script

South and Central Asia-III 691 14.2 Kharoshthi

ments and epigraphs in the Central Asian cities of Khotan and Niya in the third and

fourth centuries CE, and it appears to have survived in Kucha and neighboring areas

along the Northern Silk Road until the seventh century. The Central Asian form of

the script used during these later centuries is termed Formal Kharoshthi and was

used to write both Gandhari and Tocharian B. Representation of Kharoshthi in the

Unicode code charts uses forms based on manuscripts of the first century CE.

 Kharoshthi can be implemented using the rules of the Unicode Bidi‐

rectional Algorithm. Both letters and digits are written from right to left. Kharoshthi

letters do not have positional variants.

 All vowels other than a are written with diacritical

marks in Kharoshthi. In addition, there are six vowel modifiers and three consonant

modifiers that are written with combining diacritics. In general, only one combining

vowel sign is applied to each syllable (aksara). However, there are some examples of

two vowel signs on aksaras in the Kharoshthi of Central Asia.

 Kharoshthi employs a set of eight numeral signs unique to the script.

Like the letters, the numerals are written from right to left. Numbers in Kharoshthi

are based on an additive system. There is no zero, nor separate signs for the numbers

five through nine. The number 1996, for example, would logically be represented as

1000 4 4 1 100 20 20 20 20 10 4 2 and would appear as shown in Figure 14-3. The

numerals are encoded in the range U+10A40..U+10A47.

 Nine different punctuation marks are used in manuscripts and

inscriptions. The punctuation marks are encoded in the range U+10A50..U+10A58.

 Most Kharoshthi manuscripts are

written as continuous text with no indication of word boundaries. Only a few exam‐

ples are known where spaces have been used to separate words or verse quarters.

Most scribes tried to finish a word before starting a new line. There are no examples

of anything akin to hyphenation in Kharoshthi manuscripts. In cases where a word

would not completely fit into a line, its continuation appears at the start of the next

line. Modern scholarly practice uses spaces and hyphenation. When necessary,

hyphenation should follow Sanskrit practice.

 There is an ancient ordering connected with Kharoshthi called Arapacana,

named after the first five aksaras. However, there is no evidence that words were

sorted in this order, and there is no record of the complete Arapacana sequence. In

modern scholarly practice, Gandhari is sorted in much the same order as Sanskrit.

Vowel length, even when marked, is ignored when sorting Kharoshthi.

Directionality.

Diacritical Marks and Vowels.

Numerals.

Figure 14-3. Kharoshthi Number 1996

Punctuation.

Word Breaks, Line Breaks, and Hyphenation.

Sorting.

South and Central Asia-III 692 14.2 Kharoshthi

Rendering requirements for Kharoshthi are similar to those for Devanagari. This

section specifies a minimum set of combining rules that provide legible Kharoshthi

diacritic and ligature substitution behavior.

All unmarked consonants include the inherent vowel a. Other vowels are indicated

by one of the combining vowel diacritics. Some letters may take more than one

diacritical mark. In these cases the preferred sequence is Letter + {Consonant Modi‐

fier} + {Vowel Sign} + {Vowel Modifier}. For example the Sanskrit word parārdhyaiḥ

might be rendered in Kharoshthi script as *parār aiḥ, written from right to left, as

shown in Figure 14-4.

 The various combining vowels attach to characters in different

ways. A number of groupings have been determined on the basis of their visual types,

such as horizontal or vertical, as shown in Table 14-3.

Type Example Group Members

Vowel sign i

Horizontal
a + -i → i
 + → A, NA, HA

Vertical
tha + -i → thi

 + → THA, PA, PHA, MA, LA, SHA

Diagonal
ka + -i → ki

 + → All other letters

Vowel sign u

Independent
ha + -u → hu
 + → TTA, HA

Ligated
ma + -u → mu

 + → MA

14.2.2 Rendering Kharoshthi

Figure 14-4. Kharoshthi Rendering Example

Combining Vowels.

Table 14-3. Kharoshthi Vowel Signs

South and Central Asia-III 693 14.2 Kharoshthi

Attached
a + -u → u
 + → All other letters

Vowel sign vocalic r

Attached
a + - →
 + →

A, KA, KKA, KHA, GA, GHA, CA, CHA, JA, TA, DA, DHA,
NA, PA, PHA, BA, BHA, VA, SHA, SA

Independent
ma +- → m

 + → MA, HA

Vowel sign e

Horizontal
a + -e → e
 + → A, NA, HA

Vertical
tha + -e → the

 + → THA, PA, PHA, LA, SSA

Ligated
da + -e → de
 + → DA, MA

Diagonal
ka + -e → ke

 + → All other letters

Vowel sign o

Vertical
pa + -o → po

 + → PA, PHA, YA, SHA

Diagonal
a + -o → o
 + → All other letters

 U+10A0C KHAROSHTHI VOWEL LENGTH MARK

indicates equivalent long vowels and, when used in combination with -e and -o, indi‐

cates the diphthongs –ai and –au. U+10A0D KHAROSHTHI SIGN DOUBLE RING

BELOW appears in some Central Asian documents, but its precise phonetic value has

not yet been established. These two modifiers have been found only in manuscripts

and inscriptions from the first century CE onward. U+10A0E KHAROSHTHI SIGN

ANUSVARA indicates nasalization, and U+10A0F KHAROSHTHI SIGN VISARGA is

generally used to indicate unvoiced syllable-final [h], but has a secondary use as a

vowel length marker. Visarga is found only in Sanskritized forms of the language and

is not known to occur in a single aksara with anusvara. The modifiers and the vowels

they modify are given in Table 14-4.

Type Example Group Members

Vowel length mark
ma + → mā

 + → A, I, U, R, E, O

Double ring below
sa + → s
 + → A, U

Anusvara
a + -ṃ → aṃ
 + → A, I, U, R, E, O

Combining Vowel Modifiers.

Table 14-4. Kharoshthi Vowel Modifiers

South and Central Asia-III 694 14.2 Kharoshthi

Visarga
ka + -ḥ → kaḥ

 + → A, I, U, R, E, O

 U+10A38 KHAROSHTHI SIGN BAR ABOVE indi‐

cates various modified pronunciations depending on the consonants involved, such

as nasalization or aspiration. U+10A39 KHAROSHTHI SIGN CAUDA indicates

various modified pronunciations of consonants, particularly fricativization. The

precise value of U+10A3A KHAROSHTHI SIGN DOT BELOW has not yet been deter‐

mined. Usually only one consonant modifier can be applied to a single consonant.

The resulting combined form may also combine with vowel diacritics, one of the

vowel modifiers, or anusvara or visarga. The modifiers and the consonants they

modify are given in Table 14-5.

Type Example Group Members

Bar above
ja + → a
 + → GA, CA, JA, NA, MA, SHA, SSA, SA, HA

Cauda
ga + → ǵa

 + → GA, JA, DDA, TA, DA, PA, YA, VA, SHA, SA

Dot below
ma + → ṃa

 + → MA, HA

 The virama is used to indicate the suppression of the inherent vowel. The

glyph for U+10A3F KHAROSHTHI VIRAMA shown in the code charts is arbitrary

and is not actually rendered directly; the dotted box around the glyph indicates that

special rendering is required. When not followed by a consonant, the virama causes

the preceding consonant to be written as subscript to the left of the letter preceding

it. If followed by another consonant, the virama will trigger a combined form

consisting of two or more consonants. The resulting form may also be subject to

combinations with the previously noted combining diacritics.

The virama can follow only a consonant or a consonant modifier. It cannot follow a

space, a vowel, a vowel modifier, a number, a punctuation sign, or another virama.

Examples of the use of the Kharoshthi virama are given in Table 14-6.

Type Example

Pure virama
dha + i + k + virama → dhik
 + + + →

Ligatures
ka + virama + a → k a

 + + →

Consonants with special combining forms
sa + virama + ya → sya
 + + →

Combining Consonant Modifiers.

Table 14-5. Kharoshthi Consonant Modifiers

Virama.

Table 14-6. Examples of Kharoshthi Virama

South and Central Asia-III 695 14.2 Kharoshthi

Consonants with full combined form
ka + virama + ta → kta

 + + →

 A special form of subjoined ya appears in the Kharoshthi documents

from Niya. In most cases this sign occurs in loan words into Gandhari. The most

common source for these loans is presumed to be Tocharian A, where the sequence -

ly- is normal. This special form resembles the full form of ya (), attached cursively to

the stem of the preceding consonant sign. This contrasts with the common form of

subjoined ya which is a looped flourish extension of the stem. The special form of ya

can be requested using U+200D ZERO WIDTH JOINER as shown in Figure 14-5.

la + virama + ya → lya
+ + →

la + ZWJ + virama + ya → lýa
+ + + →

Subjoined ya.

Figure 14-5. Subjoined Forms of ya

South and Central Asia-III 696 14.2 Kharoshthi

The Bhaiksuki script is a Brahmi-derived script used from about the 10th to the 13th

centuries CE, primarily in the area of the present-day states of Bihar and West Bengal

in India and northern Bangladesh. The original name of the script was Saindhavī

(that is, the Sindhu or Indus script), but after its discovery in the late 19th century,

scholars called it Bhaiksuki or they used a descriptive name, the Arrow-headed

script. The script is used to write the Middle Indic language, which is also called

Saindhavī. Surviving Bhaiksuki texts are limited to a few Buddhist manuscripts and

inscriptions.

 The structure of Bhaiksuki script is similar to that of other Brahmi-based

Indic scripts. It is an abugida that makes use of a virama. The script is written from

left to right.

 Many of the vowel signs have contextual variants when they occur with

certain consonants. The consonants U+11C22 BHAIKSUKI LETTER PA, U+11C27

BHAIKSUKI LETTER YA, and U+11C28 BHAIKSUKI LETTER RA have special combining

forms when they occur with certain vowel signs.

 The script includes a virama, U+11C3F BHAIKSUKI SIGN

VIRAMA, which functions to suppress the inherent vowel and to form conjuncts.

Consonant clusters are generally rendered as vertically stacked ligatures, with non-

initial consonants attached below the initial letter. Above-base vowel signs and

consonant letters attach to the glyph of the initial consonant, while below-base vowel

signs attach to the glyph of the final consonant. The letters ka, pa, ra, and ya take

special forms when they occur in conjuncts.

The Bhaiksuki dependent vowel signs in the range U+11C38..U+11C3B, e, ai, o, and

au, are simply treated as above-base vowel signs. Although the historically cognate

vowel signs may be treated as having left-side parts, or as two- or three-part vowels in

many other scripts of India, the peculiarities of rendering for these vowel signs in the

Bhaiksuki script can be handled more easily with the above-base designations. The

dependent vowel signs ai, o, and au are not given formal canonical decompositions,

but are encoded instead as atomic characters.

The sequence <C, virama> is rendered using a visible virama by default. The combi‐

nations <ta, virama>, <na, virama>, and <ma, virama> may also be displayed with

special ligatures; there is no apparent semantic distinction between sequences

containing the visible virama and sequences displayed as ligatures.

14.3 Bhaiksuki

14.3.1 Bhaiksuki: U+11C00–U+11C6F

Structure.

Rendering.

Virama and Conjuncts.

South and Central Asia-III 697 14.3 Bhaiksuki

 Nasalization is represented by U+11C3C BHAIKSUKI SIGN CANDRA‐

BINDU and U+11C3D BHAIKSUKI SIGN ANUSVARA. Post-vocalic aspiration in Sanskrit

is indicated by U+11C3E BHAIKSUKI SIGN VISARGA. Use of U+11C40 BHAIKSUKI

SIGN AVAGRAHA indicates elision of a word-initial a in Sanskrit as a result of sandhi.

 Bhaiksuki has a script-specific set of decimal digits. Because

the glyphs for zero and three have not been yet identified in the Bhaiksuki corpus,

representative glyphs for U+11C50 BHAIKSUKI DIGIT ZERO and U+11C53 BHAIKSUKI

DIGIT THREE are based upon corresponding digits in other scripts that are contempo‐

raneous with Bhaiksuki.

In addition to the decimal digits, the script has a distinct numerical notation system.

Bhaiksuki contains numbers for primary and tens units, and U+11C6C BHAIKSUKI

HUNDREDS UNIT MARK. The numbers are written vertically, with the largest number

written above smaller units. Control of vertical orientation is managed at the font

level, but the default rendering is horizontal left to right.

 The script employs script-specific dandas, U+11C41 BHAIKSUKI

DANDA and U+11C42 BHAIKSUKI DOUBLE DANDA. Words are separated by U+11C43

BHAIKSUKI WORD SEPARATOR. Two characters, U+11C44 BHAIKSUKI GAP FILLER-1

and U+11C45 BHAIKSUKI GAP FILLER-2, are used as spacing or completion marks,

especially to indicate the end of a line. They also can indicate a deliberate elision or

an otherwise missing portion of text.

Various Signs.

Digits and Numbers.

Punctuation.

South and Central Asia-III 698 14.3 Bhaiksuki

The Phags-pa script is an historic script with some limited modern use. It bears some

similarity to Tibetan and has no case distinctions. It is written vertically in columns

running from left to right, like Mongolian. Units are often composed of several sylla‐

bles and may be separated by whitespace.

The term Phags-pa is often written with an initial apostrophe: ’Phags-pa. The

Unicode Standard makes use of the alternative spelling without an initial apostrophe

because apostrophes are not allowed in the normative character and block names.

 The Phags-pa script was devised by the Tibetan lama Blo-gros rGyal-mtshan

[lodoi jaltsan] (1235–1280 CE), commonly known by the title Phags-pa Lama (“exalted

monk”), at the behest of Khubilai Khan (reigned 1260–1294) when he assumed lead‐

ership of the Mongol tribes in 1260. In 1269, the “new Mongolian script,” as it was

called, was promulgated by imperial edict for use as the national script of the Mongol

empire, which from 1279 to 1368, as the Yuan dynasty, encompassed all of China.

The new script was not only intended to replace the Uyghur-derived script that had

been used to write Mongolian since the time of Genghis Khan (reigned 1206–1227),

but was also intended to be used to write all the diverse languages spoken throughout

the empire. Although the Phags-pa script never succeeded in replacing the earlier

Mongolian script and had only very limited usage in writing languages other than

Mongolian and Chinese, it was used quite extensively during the Yuan dynasty for a

variety of purposes. There are many monumental inscriptions and manuscript copies

of imperial edicts written in Mongolian or Chinese using the Phags-pa script. The

script can also be found on a wide range of artifacts, including seals, official passes,

coins, and banknotes. It was even used for engraving the inscriptions on Christian

tombstones. A number of books are known to have been printed in the Phags-pa

script, but all that has survived are some fragments from a printed edition of the

Mongolian translation of a religious treatise by the Phags-pa Lama’s uncle, Sakya

Pandita. Of particular interest to scholars of Chinese historical linguistics is a

rhyming dictionary of Chinese with phonetic readings for Chinese ideographs given

in the Phags-pa script.

An ornate, pseudo-archaic “seal script” version of the Phags-pa script was developed

specifically for engraving inscriptions on seals. The letters of the seal script form of

Phags-pa mimic the labyrinthine strokes of Chinese seal script characters. A great

many official seals and seal impressions from the Yuan dynasty are known. The seal

script was also sometimes used for carving the title inscription on stone stelae, but

never for writing ordinary running text.

14.4 Phags-pa

14.4.1 Phags-pa: U+A840–U+A87F

History.

South and Central Asia-III 699 14.4 Phags-pa

Although the vast majority of extant Phags-pa texts and inscriptions from the thir‐

teenth and fourteenth centuries are written in the Mongolian or Chinese languages,

there are also examples of the script being used for writing Uyghur, Tibetan, and

Sanskrit, including two long Buddhist inscriptions in Sanskrit carved in 1345.

After the fall of the Yuan dynasty in 1368, the Phags-pa script was no longer used for

writing Chinese or Mongolian. However, the script continued to be used on a limited

scale in Tibet for special purposes such as engraving seals. By the late sixteenth

century, a distinctive, stylized variety of Phags-pa script had developed in Tibet, and

this Tibetan-style Phags-pa script, known as hor-yig, “Mongolian writing” in Tibetan,

is still used today as a decorative script. In addition to being used for engraving seals,

the Tibetan-style Phags-pa script is used for writing book titles on the covers of tradi‐

tional style books, for architectural inscriptions such as those found on temple

columns and doorways, and for calligraphic samplers.

 The Phags-pa script is based on Tibetan, but unlike any other

Brahmic script Phags-pa is written vertically from top to bottom in columns

advancing from left to right across the writing surface. This unusual directionality is

borrowed from Mongolian, as is the way in which Phags-pa letters are ligated

together along a vertical stem axis. In modern contexts, when embedded in horizon‐

tally oriented scripts, short sections of Phags-pa text may be laid out horizontally

from left to right.

Despite the difference in directionality, the Phags-pa script fundamentally follows the

Tibetan model of writing, and consonant letters have an inherent /a/ vowel sound.

However, Phags-pa vowels are independent letters, not vowel signs as is the case with

Tibetan, so they may start a syllable without being attached to a null consonant.

Nevertheless, a null consonant (U+A85D PHAGS-PA LETTER A) is still needed to write

an initial /a/ and is orthographically required before a diphthong or the semivowel

U+A867 PHAGS-PA SUBJOINED LETTER WA. Only when writing Tibetan in the Phags-

pa script is the null consonant required before an initial pure vowel sound.

Except for the candrabindu (which is discussed later in this section), Phags-pa letters

read from top to bottom in logical order, so the vowel letters i, e, and o are placed

below the preceding consonant—unlike in Tibetan, where they are placed above the

consonant they modify.

 Text written in the Phags-pa script is broken into discrete syllabic

units separated by whitespace. When used for writing Chinese, each Phags-pa

syllabic unit corresponds to a single Han ideograph. For Mongolian and other poly‐

syllabic languages, a single word is typically written as several syllabic units, each

separated from each other by whitespace.

For example, the Mongolian word tengri, “heaven,” which is written as a single

ligated unit in the Mongolian script, is written as two separate syllabic units, deng ri,

Basic Structure.

Syllable Division.

South and Central Asia-III 700 14.4 Phags-pa

in the Phags-pa script. Syllable division does not necessarily correspond directly to

grammatical structure. For instance, the Mongolian word usun, “water,” is written u

sun in the Phags-pa script, but its genitive form usunu is written u su nu.

Within a single syllabic unit, the Phags-pa letters are normally ligated together. Most

letters ligate along a righthand stem axis, although reversed-form letters may instead

ligate along a lefthand stem axis. The letter U+A861 PHAGS-PA LETTER O ligates

along a central stem axis.

In traditional Phags-pa texts, normally no distinction is made between the white‐

space used in between syllables belonging to the same word and the whitespace used

in between syllables belonging to different words. Line breaks may occur between

any syllable, regardless of word status. In contrast, in modern contexts, influenced by

practices used in the processing of Mongolian text, U+202F NARROW NO-BREAK

SPACE (NNBSP) may be used to separate syllables within a word, whereas U+0020

SPACE is used between words—and line breaking would be affected accordingly.

U+A873 PHAGS-PA LETTER CANDRABINDU is used in writing

Sanskrit mantras, where it represents a final nasal sound. However, although it repre‐

sents the final sound in a syllable unit, it is always written as the first glyph in the

sequence of letters, above the initial consonant or vowel of the syllable, but not

ligated to the following letter. For example, om is written as a candrabindu followed

by the letter o. To simplify cursor placement, text selection, and so on, the candra‐

bindu is encoded in visual order rather than logical order. Thus om would be repre‐

sented by the sequence <U+A873, U+A861>, rendered as shown in Figure 14-6.

As the candrabindu is separated from the following letter, it does not take part in the

shaping behavior of the syllable unit. Thus, in the syllable om, the letter o (U+A861)

takes the isolate positional form.

 Four alternate forms of the letters ya, sha, ha, and fa are encoded

for use in writing Chinese under certain circumstances:

U+A86D PHAGS-PA LETTER ALTERNATE YA

U+A86E PHAGS-PA LETTER VOICELESS SHA

U+A86F PHAGS-PA LETTER VOICED HA

U+A870 PHAGS-PA LETTER ASPIRATED FA

These letters are used in the early-fourteenth-century Phags-pa rhyming dictionary of

Chinese, Menggu ziyun, to represent historical phonetic differences between Chinese

Candrabindu.

Figure 14-6. Phags-pa Syllable Om

Alternate Letters.

South and Central Asia-III 701 14.4 Phags-pa

syllables that were no longer reflected in the contemporary Chinese language. This

dictionary follows the standard phonetic classification of Chinese syllables into 36

initials, but as these had been defined many centuries previously, by the fourteenth

century some of the initials had merged together or diverged into separate sounds. To

distinguish historical phonetic characteristics, the dictionary uses two slightly

different forms of the letters ya, sha, ha, and fa.

The historical phonetic values that U+A86E, U+A86F, and U+A870 represent are

indicated by their character names, but this is not the case for U+A86D, so there may

be some confusion as to when to use U+A857 PHAGS-PA LETTER YA and when to use

U+A86D PHAGS-PA LETTER ALTERNATE YA. U+A857 is used to represent historic

null initials, whereas U+A86D is used to represent historic palatal initials.

 There are no special characters for numbers in the Phags-pa script, so

numbers are spelled out in full in the appropriate language.

 The vast majority of traditional Phags-pa texts do not make use of any

punctuation marks. However, some Mongolian inscriptions borrow the Mongolian

punctuation marks U+1802 MONGOLIAN COMMA, U+1803 MONGOLIAN FULL STOP,

and U+1805 MONGOLIAN FOUR DOTS.

Additionally, a small circle punctuation mark is used in some printed Phags-pa texts.

This mark can be represented by U+3002 IDEOGRAPHIC FULL STOP, but for Phags-pa

the ideographic full stop should be centered, not positioned to one side of the column.

This follows traditional, historic practice for rendering the ideographic full stop in

Chinese text, rather than more modern typography.

Tibetan Phags-pa texts also use head marks, U+A874 PHAGS-PA SINGLE HEAD MARK

U+A875 PHAGS-PA DOUBLE HEAD MARK, to mark the start of an inscription, and

shad marks, U+A876 PHAGS-PA MARK SHAD and U+A877 PHAGS-PA MARK DOUBLE

SHAD, to mark the end of a section of text.

 The four vowel letters U+A85E PHAGS-PA LETTER I, U+A85F

PHAGS-PA LETTER U, U+A860 PHAGS-PA LETTER E, and U+A861 PHAGS-PA LETTER

O have different isolate, initial, medial, and final glyph forms depending on whether

they are immediately preceded or followed by another Phags-pa letter (other than

U+A873 PHAGS-PA LETTER CANDRABINDU, which does not affect the shaping of

adjacent letters). The code charts show these four characters in their isolate form.

The various positional forms of these letters are shown in Table 14-7.

Letter Isolate Initial Medial Final

U+A85E PHAGS-PA LETTER I

U+A85F PHAGS-PA LETTER U

Numbers.

Punctuation.

Positional Variants.

Table 14-7. Phags-pa Positional Forms of I, U, E, and O

South and Central Asia-III 702 14.4 Phags-pa

U+A860 PHAGS-PA LETTER E

U+A861 PHAGS-PA LETTER O

Consonant letters and the vowel letter U+A866 PHAGS-PA LETTER EE do not have

distinct positional forms, although initial, medial, final, and isolate forms of these

letters may be distinguished by the presence or absence of a stem extender that is

used to ligate to the following letter.

The invisible format characters U+200D ZERO WIDTH JOINER (ZWJ) and U+200C

ZERO WIDTH NON-JOINER (ZWNJ) may be used to override the expected shaping

behavior, in the same way that they do for Mongolian and other scripts (see Chapter

23, Special Areas and Format Characters). For example, ZWJ may be used to select

the initial, medial, or final form of a letter in isolation:

<U+200D, U+A861, U+200D> selects the medial form of PHAGS-PA LETTER O

<U+200D, U+A861> selects the final form of PHAGS-PA LETTER O

<U+A861, U+200D> selects the initial form of PHAGS-PA LETTER O

Conversely, ZWNJ may be used to inhibit expected shaping. For example, in the

sequence <U+A85E, U+200C, U+A85F, U+200C, U+A860, U+200C, U+A861>

there will be no cursive joining between the Phags-pa letters i, u, e, and o.

 The four characters U+A869 PHAGS-PA LETTER TTA, U+A86A

PHAGS-PA LETTER TTHA, U+A86B PHAGS-PA LETTER DDA, and U+A86C PHAGS-PA

LETTER NNA are mirrored forms of the letters U+A848 PHAGS-PA LETTER TA,

U+A849 PHAGS-PA LETTER THA, U+A84A PHAGS-PA LETTER DA, and U+A84B

PHAGS-PA LETTER NA, respectively, and are used to represent the Sanskrit retroflex

dental series of letters. Because these letters are mirrored, their stem axis is on the

lefthand side rather than the righthand side, as is the case for all other consonant

letters. This means that when the letters tta, ttha, dda, and nna occur at the start of a

syllable unit, to correctly ligate with them any following letters normally take a

mirrored glyph form. Because only a limited number of words use these letters, only

the letters U+A856 PHAGS-PA LETTER SMALL A, U+A85C PHAGS-PA LETTER HA,

U+A85E PHAGS-PA LETTER I, U+A85F PHAGS-PA LETTER U, U+A860 PHAGS-PA

LETTER E, and U+A868 PHAGS-PA SUBJOINED LETTER YA are affected by this glyph

mirroring behavior. The Sanskrit syllables that exhibit glyph mirroring after tta, ttha,

dda, and nna are shown in Table 14-8.

Character
Syllables with Glyph
Mirroring

Syllables without
Glyph Mirroring

U+A856 PHAGS-PA LETTER SMALL A tthā ttā, tthā

Mirrored Variants.

Table 14-8. Contextual Glyph Mirroring in Phags-pa

South and Central Asia-III 703 14.4 Phags-pa

U+A85E PHAGS-PA LETTER I tthi, nni tthi

U+A85F PHAGS-PA LETTER U nnu

U+A860 PHAGS-PA LETTER E tthe, dde, nne

U+A85C PHAGS-PA LETTER HA ddha

U+A868 PHAGS-PA SUBJOINED LETTER YA nnya

Glyph mirroring is not consistently applied to the letters U+A856 PHAGS-PA LETTER

SMALL A and U+A85E PHAGS-PA LETTER I in the extant Sanskrit Phags-pa inscrip‐

tions. The letter i may occur both mirrored and unmirrored after the letter ttha,

although it always occurs mirrored after the letter nna. Small a is not normally

mirrored after the letters tta and ttha as its mirrored glyph is identical in shape to

U+A85A PHAGS-PA LETTER SHA. Nevertheless, small a does sometimes occur in a

mirrored form after the letter ttha, in which case context indicates that this is a

mirrored letter small a and not the letter sha.

When any of the letters small a, i, u, e, ha, or subjoined ya immediately follow either

tta, ttha, dda, or nna directly or another mirrored letter, then a mirrored glyph form

of the letter should be selected automatically by the rendering system. Although

small a is not normally mirrored in extant inscriptions, for consistency it is mirrored

by default after tta, ttha, dda, and nna in the rendering model for Phags-pa.

To override the default mirroring behavior of the letters small a, ha, i, u, e, and

subjoined ya, U+FE00 VARIATION SELECTOR-1 (VS1) may be applied to the appro‐

priate character, as shown in Table 14-9. Note that only the variation sequences

shown in Table 14-9 are valid; any other sequence of a Phags-pa letter and VS1 is

unspecified.

Character Sequence Description of Variant Appearance

<U+A856, U+FE00> phags-pa letter reversed shaping small a

<U+A85C, U+FE00> phags-pa letter reversed shaping ha

<U+A85E, U+FE00> phags-pa letter reversed shaping i

<U+A85F, U+FE00> phags-pa letter reversed shaping u

<U+A860, U+FE00> phags-pa letter reversed shaping e

<U+A868, U+FE00> phags-pa letter reversed shaping ya

In Table 14-9, “reversed shaping” means that the appearance of the character is

reversed with respect to its expected appearance. Thus, if no mirroring would be

expected for the character in the given context, applying VS1 would cause the

rendering engine to select a mirrored glyph form. Similarly, if context would dictate

glyph mirroring, application of VS1 would inhibit the expected glyph mirroring. This

mechanism will typically be used to select a mirrored glyph for the letters small a, ha,

i,u, e, or subjoined ya in isolation (for example, in discussion of the Phags-pa script)

Table 14-9. Phags-pa Standardized Variants

South and Central Asia-III 704 14.4 Phags-pa

or to inhibit mirroring of the letters small a and i when they are not mirrored after

the letters tta and ttha, as shown in Figure 14-7.

The first example illustrates the normal shaping for the syllable thi. The second

example shows the reversed shaping for i in that syllable and would be represented

by a standardized variation sequence: <U+A849, U+A85E, U+FE00>. Example 3

illustrates the normal shaping for the Sanskrit syllable tthi, where the reversal of the

glyph for the letter i is automatically conditioned by the lefthand stem placement of

the Sanskrit letter ttha. Example 4 shows reversed shaping for i in the syllable tthi

and would be represented by a standardized variation sequence: <U+A86A,

U+A85E, U+FE00>.

 Joining types are defined for Phags-pa characters in the file Arabic‐

Shaping.txt. Joining types identify the joining behavior of characters in cursive

joining scripts and were originally introduced for the Arabic script. Because the

Phags-pa script is typically rendered from top to bottom, Joining_Type = L

(Left_Joining) conventionally refers to bottom joining that is, joining to a character

which follows (is below) it. Joining_Type = R (Right_Joining) is not used for the

Phags-pa script, but would refer to top joining, that is, joining to a character which

precedes (is above) it. Most Phags-pa characters are Dual_Joining, as they may join

on both top and bottom.

The L and R designations of the Joining_Type property should not be confused with

the left-hand and right-hand placement of stem axes in the Phags-pa script in vertical

layout. Whether a Phags-pa character joins on the left-hand or right-hand side in its

stem axis is not defined in ArabicShaping.txt.

Figure 14-7. Phags-pa Reversed Shaping

Cursive Joining.

South and Central Asia-III 705 14.4 Phags-pa

The Marchen script (Tibetan sMar-chen) is a Brahmi-derived script used in the

Tibetan Bön liturgical tradition. Marchen is used to write Tibetan and also the

historic Zhang-zhung language. The script is said to originate in the ancient kingdom

of Zhang-zhung, which flourished in western and northern Tibet before Buddhism

was introduced in the area in the seventh century. Although few historical examples

of the script have been found, Marchen appears in modern-day inscriptions and is

widely used in modern Bön literature.

 The encoding model for Marchen follows that of Tibetan.

Marchen contains thirty base consonants and thirty subjoined consonants, which can

be used to form vertical stacks of two or more consonants. Although not all

subjoined consonants have been identified in extant texts, the full set of subjoined

forms is encoded, so that all possible stack combinations can be represented.

 As in Tibetan, two or more Marchen consonants can stack

vertically. Vowel signs are placed above, below, or alongside a stack of one or more

consonants.

 Marchen includes a vowel lengthener, U+11CB0 MARCHEN VOWEL

SIGN AA, known as a-chung. Nasalization is represented by U+11CB6 MARCHEN SIGN

CANDRABINDU and U+11CB5 MARCHEN SIGN ANUSVARA.

 There are two script-specific punctuation marks encoded. U+11C70

MARCHEN HEAD MARK corresponds to U+0F04 TIBETAN MARK INITIAL YIG MGO

MDUN MA. The sentence-final shad mark, U+11C71 MARCHEN MARK SHAD, corre‐

sponds to U+0F0D TIBETAN MARK SHAD. Marchen does not use an explicit mark to

separate syllables; this differs from the use of the Tibetan tsek (tsheg) mark.

14.5 Marchen

14.5.1 Marchen: U+11C70–U+11CBF

Encoding Model.

Vowels and Consonants.

Other Signs.

Punctuation.

South and Central Asia-III 706 14.5 Marchen

The Zanabazar Square script is an abugida based upon Tibetan and inspired by the

Brahmi model. The script has some similarities with both Tibetan and Phags-pa. It

was used to write Mongolian, Sanskrit, and Tibetan, and has also been called “Hori‐

zontal Square” script, “Mongolian Horizontal Square” script and “Xewtee Dörböljin

Bicig.”

The script was invented by Zanabazar (1635–1723), one of the most important

Buddhist leaders in Mongolia, who also developed the Soyombo script. Its creation

likely preceded that of Soyombo.

 The Zanabazar Square script is written from left to right. The script is

generally written horizontally, but in some instances occurs in vertical environments.

Consonant letters possess the inherent vowel /a/.

The phonetic value of a consonant letter is changed by the attachment of a vowel

sign. In Mongolian, the inherent vowel is suppressed by a final-consonant mark,

which indicates both a syllable-final consonant and a syllabic boundary. In Sanskrit

or Tibetan, the virama silences the inherent vowel of a consonant, but does not mark

syllable boundaries.

 The Zanabazar Square script has one vowel letter, nine

dependent vowel marks, and one vowel length mark. The letter a vowel, U+11A00

ZANABAZAR SQUARE LETTER A, has the value /a/ when it occurs independently. It

can also assume the value of a combined vowel sign.

A long vowel is represented by placing the vowel length mark, U+11A0A

ZANABAZAR SQUARE VOWEL LENGTH MARK, after a consonant or vowel sign. When

combined with the letter a vowel or a consonant letter, the length mark lengthens the

inherent vowel /a/ to /ā/. Vowel signs are used with the letter a vowel and with

consonants. Multiple vowel signs may combine with a single base letter. Independent

vowels are represented by attaching vowel signs to the letter a vowel , except for

U+11A09 ZANABAZAR SQUARE VOWEL SIGN REVERSED I. The vowel sign reversed i is

used for writing four Sanskrit vocalic letters.

U+11A07 ZANABAZAR SQUARE VOWEL SIGN AI and U+11A08 ZANABAZAR SQUARE

VOWEL SIGN AU represent the diphthongs ai and au. They also function as secondary

vowel signs for i and u to produce additional diphthongs in Mongolian.

 There are 40 consonants, including the following:

U+11A26 ZANABAZAR SQUARE LETTER DZHA represents Sanskrit jha

14.6 Zanabazar Square

14.6.1 Zanabazar Square: U+11A00–U+11A4F

Structure.

Vowels and Diphthongs.

Consonants.

•

South and Central Asia-III 707 14.6 Zanabazar Square

U+11A29 ZANABAZAR SQUARE LETTER -A represents Tibetan ’a chung

U+11A32 ZANABAZAR SQUARE LETTER KSSA represents Sanskrit cluster kṣa (/

kṣa/)

Consonant clusters are written as conjuncts, which are generally rendered as vertical

stacks, with each non-initial letter subjoined sequentially beneath the initial letter of

the cluster.

The consonants ya, ra, la, va have different representations when they occur in

Sanskrit and Tibetan conjuncts. Therefore, contextual forms of these letters are

encoded as separate characters.

U+11A34 ZANABAZAR SQUARE SIGN VIRAMA is used to

silence the inherent vowel of a consonant for writing Sanskrit and Tibetan. The

virama is used only with a consonant and behaves as other combining marks in the

script, always with a visible display.

Vowel-silencing characters in Brahmi-based scripts often have a secondary function

of controlling conjunct formation, however, the Zanabazar Square script does not

follow this pattern. A separate character, U+11A47 ZANABAZAR SQUARE SUBJOINER,

is used to control conjunct formation.

The representation of a vertical conjunct stack uses the subjoiner character between

each consonant of the cluster. For example, the syllable mstu is represented with the

sequence <ma, subjoiner, sa, subjoiner, ta, vowel sign ue>, as shown in the second

line of Figure 14-8. To suppress the visual stacking of a cluster, the virama character is

used instead, which kills the vowel and results in a visual marking of the dead conso‐

nant which does not stack. For example, if the syllable mstu is represented with the

sequence <ma, virama, sa, virama, ta, vowel sign ue>, the rendering is as shown in

the first row of Figure 14-8.

 There are four head marks in the Zanabazar Square script. These four

head marks are used in transliterations of Tibetan texts when written with the

Zanabazar Square script. They occur at the beginning of texts.

U+11A3F ZANABAZAR SQUARE INITIAL HEAD MARK

•

•

Virama and Subjoiner.

Figure 14-8. Conjunct Stacking in Zanabazar Square

Head Marks.

•

South and Central Asia-III 708 14.6 Zanabazar Square

U+11A40 ZANABAZAR SQUARE CLOSING HEAD MARK

U+11A45 ZANABAZAR SQUARE INITIAL DOUBLE-LINED HEAD MARK

U+11A46 ZANABAZAR SQUARE CLOSING DOUBLE-LINED HEAD MARK

Both U+11A3F ZANABAZAR SQUARE INITIAL HEAD MARK and U+11A45 ZANABAZAR

SQUARE INITIAL DOUBLE-LINED HEAD MARK are used as a base for candrabindu and

anusvara signs.

The U+11A40 ZANABAZAR SQUARE CLOSING HEAD MARK and U+11A46

ZANABAZAR SQUARE CLOSING DOUBLE-LINED HEAD MARK may be used for

producing extended head marks, similar to usage in Tibetan.

 Two vowel modifiers are used to transliterate words of Sanskrit origin:

U+11A38 ZANABAZAR SQUARE SIGN ANUSVARA indicates nasalization

U+11A39 ZANABAZAR SQUARE SIGN VISARGA indicates post-vocalic aspiration

In addition, three combining signs are used as nasalization marks and ornaments for

the head mark:

U+11A35 ZANABAZAR SQUARE SIGN CANDRABINDU

U+11A36 ZANABAZAR SQUARE SIGN CANDRABINDU WITH ORNAMENT

U+11A37 ZANABAZAR SQUARE SIGN CANDRA WITH ORNAMENT

The U+11A33 ZANABAZAR SQUARE FINAL CONSONANT MARK marks syllable-final

consonants when writing Mongolian.

 There are no known script-specific numerals.

 The Zanabazar Square script includes four punctuation marks used for

writing Tibetan:

U+11A41 ZANABAZAR SQUARE MARK TSHEG indicates the end of a syllable

U+11A42 ZANABAZAR SQUARE MARK SHAD indicates the end of the phrase or

sentence

U+11A43 ZANABAZAR SQUARE MARK DOUBLE SHAD marks the end of a text

section

U+11A44 ZANABAZAR SQUARE MARK LONG TSHEG behaves as a comma

•

•

•

Other Marks.

•

•

•

•

•

Numerals.

Punctuation.

•

•

•

•

South and Central Asia-III 709 14.6 Zanabazar Square

The Soyombo script is an historic script used to write Mongolian, Sanskrit, and

Tibetan. It was created in 1686 by Zanabazar (1635–1723), who also developed the

Zanabazar Square script. The script appears primarily in Buddhist texts in Central

Asia. Most of these texts consist of either handwritten manuscripts or inscriptions.

 Soyombo is an abugida. Consonants generally include an inherent vowel /

a/, as is the case with many other Brahmi-derived scripts. The script also includes

final consonant signs and four cluster-initial letters. A special subjoiner is employed

to create conjuncts.

Soyombo text is typically written horizontally from left to right. In vertically written

text, characters are oriented in columns laid out from left to right, with upright

glyphs.

The graphical structure of Soyombo letters consists of two parts: a frame, made up of

a vertical bar with a triangle at the top, and a nucleus that represents a phoneme.

Together the frame and the nucleus represent the atomic letter. Vowel signs, final

consonants, and other phonetic features appear as dependent signs attached to the

letters. The signs may appear above or to the right of the frame, or below the nucleus.

 The vowel a is represented by U+11A50 SOYOMBO LETTER

A. When it occurs with a vowel sign, SOYOMBO LETTER A serves as a vowel-carrier,

indicating an independent vowel. Long vowels are represented by appending

U+11A5B SOYOMBO VOWEL LENGTH MARK. When used to write Mongolian,

U+11A57 SOYOMBO VOWEL SIGN AI and U+11A58 SOYOMBO VOWEL SIGN AU are

used with other vowel signs to represent diphthongs.

 Mongolian syllable-final consonants are represented by U+11A50

SOYOMBO LETTER A followed by a final consonant sign. To indicate geminated conso‐

nants, U+11A98 SOYOMBO GEMINATION MARK is stacked above the triangle of the

frame. In the backing store, it occurs immediately after the base letter, but before any

other combining mark. Other above-base signs are shown above the gemination

mark.

Generally, consonant clusters are written as a conjunct forms. Because Soyombo does

not have a native virama, a special subjoiner character, U+11A99 SOYOMBO

SUBJOINER, is used. Conjuncts are represented by using a subjoiner between each

pair of consonants in a cluster. A conjunct is rendered as a vertical stack of the

regular form of the initial letter and the nucleus of each non-initial letter. Four

cluster-initial letters have special forms: la, sha, sa and ra. Depending upon the

14.7 Soyombo

14.7.1 Soyombo: U+11A50–U+11AAF

Structure.

Vowels and Diphthongs.

Consonants.

South and Central Asia-III 710 14.7 Soyombo

context, clusters involving these four letters may be rendered using the stacked or

prefixed forms. The consonant cluster kssa has the structure of an atomic letter, and

is separately encoded as U+11A83 SOYOMBO LETTER KSSA.

 The character names are based on their values for writing

Tibetan, with the exception of the final consonant signs, which reflect their Mongo‐

lian usage. The order of the consonant letters follows the alphabetical order of the

Tibetan script. This also matches the order of letters in the Zanabazar Square script.

 Two vowel modifiers are used to transliterate words of Sanskrit origin,

U+11A96 SOYOMBO SIGN ANUSVARA, which indicates nasalization, and U+11A97

SOYOMBO SIGN VISARGA, which is used to indicate post-vocalic aspiration. Indepen‐

dent forms of these modifiers are represented by combining them with U+11A50

SOYOMBO LETTER A.

 There are no known script-specific numerals.

 The Soyombo script includes a number of punctuation marks.

U+11A9A SOYOMBO MARK TSHEG indicates the end of a syllable, and corresponds to

U+0F0B TIBETAN MARK INTERSYLLABIC TSHEG. To indicate the end of a phrase or

syllable, U+11A9B SOYOMBO MARK SHAD may be employed. It corresponds to

U+0F0D TIBETAN MARK SHAD and U+0964 DEVANAGARI DANDA. The end of a

section is marked by U+11A9C SOYOMBO MARK DOUBLE SHAD, corresponding to

U+0F0E TIBETAN MARK NYIS SHAD and U+0965 DEVANAGARI DOUBLE DANDA.

The script also contains three head marks, similar to those used in Mongolian and

Tibetan. The Soyombo marks may be followed by a shad or double shad. The

U+11A9E SOYOMBO HEAD MARK WITH MOON AND SUN AND TRIPLE FLAME, also

known as the Svayambhu or “Soyombo” sign, is the official symbol of Mongolia. In

addition, the script includes terminal marks, which appear at the end of text.

Character Names.

Other Marks.

Numerals.

Punctuation.

South and Central Asia-III 711 14.7 Soyombo

The origins of the Old Turkic script are unclear, but it seems to have evolved from a

non-cursive form of the Sogdian script, one of the Aramaic-derived scripts used to

write Iranian languages, in order to write the Old Turkish language. Old Turkic is

attested in stone inscriptions from the early eighth century CE found around the

Orkhon River in Mongolia, and in a slightly different version in stone inscriptions of

the later eighth century found in Siberia near the Yenisei River and elsewhere. These

inscriptions are the earliest written examples of a Turkic language. By the ninth

century the Old Turkic script had been supplanted by the Uyghur script.

Because Old Turkic characters superficially resemble Germanic runes, the script is

also known as Turkic Runes and Turkic Runiform, in addition to the names Orkhon

script, Yenisei script, and Siberian script.

Where the Orkhon and Yenisei versions of a given Old Turkic letter differ signifi‐

cantly, each is separately encoded.

 Old Turkish vowels can be classified into two groups based on their front

or back articulation. A given word uses vowels from only one of these groups; the

group is indicated by the form of the consonants in the word, because most conso‐

nants have separate forms to match the two vowel types. Other phonetic rules permit

prediction of rounded and unrounded vowels, and high, medium or low vowels

within a word. Some consonants also indicate that the preceding vowel is a high

vowel. Thus, most initial and medial vowels are not explicitly written; only vowels

that end a word are always written, and there is sometimes ambiguity about whether

a vowel precedes a given consonant.

 Old Turkic includes one ligature, which is used to represent [tʃi]. It should

be represented as:

 For horizontal writing, the Old Turkic script is written from right to

left within a row, with rows running from bottom to top. Conformant implementa‐

tions of Old Turkic script must use the Unicode Bidirectional Algorithm (see

Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”).

In some cases, under Chinese influence, the layout was rotated ninety degrees coun‐

terclockwise to produce vertical columns of text in which the characters are read top

to bottom within a column, and the columns are read right to left.

14.8 Old Turkic

14.8.1 Old Turkic: U+10C00–U+10C4F

Structure.

Ligature.

Directionality.

South and Central Asia-III 712 14.8 Old Turkic

 Word division and some other punctuation functions are usually indi‐

cated by a two-dot mark similar to a colon; U+205A TWO DOT PUNCTUATION may be

used to represent this punctuation mark. In some cases a mark such as U+2E30 RING

POINT is used instead.

Punctuation.

South and Central Asia-III 713 14.8 Old Turkic

The Old Sogdian script is used to represent a group of related writing systems of

Central Asia dating from the third to the sixth century CE. These writing systems

were all used to write Sogdian, an eastern Iranian language. Old Sogdian is based on

four sets of written materials: the Kultobe inscriptions in modern Kazakhstan; the

preserved epistles called the “Ancient Letters,” which are the earliest attested Sogdian

manuscripts found in Dunhuang, China; inscriptions from the Upper Indus area of

Pakistan; and inscriptions found on coins and vessels around Tashkent, Uzbekistan.

 The basic repertoire consists of 20 of the 22 letters of the Aramaic

alphabet. However, some of the original Aramaic letters ceased to be distinct in Old

Sogdian. In the Ancient Letters, the usual glyph for resh is identical to the glyph for

daleth and for ayin. As a result, resh, ayin and daleth are unified as a single character,

U+10F18 OLD SOGDIAN LETTER RESH-AYIN-DALETH. In addition, the Old Sogdian

repertoire includes six final letters, three final letters with vertical tail, and one alter‐

nate letter, U+10F13 OLD SOGDIAN LETTER ALTERNATE AYIN. The script also

includes one heterogram, U+10F27 OLD SOGDIAN LIGATURE AYIN-DALETH, meaning

“to,” used in salutations in the Ancient Letters.

 Old Sogdian is a non-joining abjad, like Hebrew. The letters retain their

shape within a word, and six letters, aleph, beth, he, nun, sadhe, and taw, have

distinctive word-final forms. Adjacent letters may connect or overlap due to cursive

writing, but unlike the later Sogdian script, letters do not change their shape based

on word position.

 Most Old Sogdian text is written right to left, in lines running from top

to bottom. Some Upper Indus inscriptions are written vertically, with the letters

rotated ninety degrees counter-clockwise, in columns running from left to right. As a

result of this behavior in vertical writing, Old Sogdian characters are given the

Vertical_Orientation property value R.

 Ten Sogdian-specific numbers and fractions are encoded in the range

U+10F1D..U+10F26.

 No script-specific punctuation marks have been attested.

14.9 Old Sogdian

14.9.1 Old Sogdian: U+10F00–U+10F2F

Repertoire.

Structure.

Orientation.

Numbers.

Punctuation.

South and Central Asia-III 714 14.9 Old Sogdian

Derived from Old Sogdian, the Sogdian script was used from the seventh to the four‐

teenth century CE in Central Asia to write the eastern Iranian language Sogdian. It

was also used to write Chinese, Sanskrit, and Uyghur. Sogdian is the ancestor of the

Mongolian and Old Uyghur scripts. It is attested in manuscripts and inscribed on

coins, stone, pottery, and other media. The script has two major styles: “formal,” used

in Buddhist sutra manuscripts, and a simplified, “cursive” style. The Old Uyghur

script is believed to have derived from the Sogdian cursive style in the eighth or ninth

century CE.

 Sogdian is an abjad that can be written horizontally from right to left, or

vertically from top to bottom, in columns running from left to right. When the script

appears in vertical orientation, the glyphs are rotated ninety degrees counter-clock‐

wise. Unlike Old Sogdian, Sogdian is a cursive joining script. Eleven combining signs

in the range U+10F46..U+10F50 are used for disambiguation and transcription.

The Sogdian repertoire corresponds to that of Old Sogdian, but has a number of

differences in the glyphs and also has additional characters. Sogdian has a special

form of ayin for an Aramaic heterogram, and includes two characters not found in

Old Sogdian, feth and lesh. The letter feth is used to represent [f]. Lesh or “hooked

resh” is an extension of resh-ayin with a below-base hook that has become an

intrinsic part of the letter. The repertoire includes one phonogram, U+10F45

SOGDIAN INDEPENDENT SHIN, an alternate form of isolated shin, used to transcribe

one Chinese character, U+6240 所. The glyph for ayin is identical to the glyph for

resh; therefore the two letters have been unified as a single character, U+10F40

SOGDIAN LETTER RESH-AYIN.

 The representative glyphs are generally based on the isolated or independent

form of letters found in the formal style of Sogdian. Fonts may be used to show the

formal or cursive style of a text. As in other abjads, the letters connect and change

shape based on their position within a word. In the later Sogdian styles, some letters,

such as nun, gimel and beth, remain unconnected from a following letter to distin‐

guish them from similar shapes.

 The Sogdian script includes script-specific numbers encoded in the range

U+10F51..U+10F54.

 Five script-specific punctuation characters are included in the reper‐

toire. The four Sogdian punctuation characters, U+10F55 SOGDIAN PUNCTUATION

TWO VERTICAL BARS, U+10F56 SOGDIAN PUNCTUATION TWO VERTICAL BARS WITH

DOTS, U+10F57 SOGDIAN PUNCTUATION CIRCLE WITH DOT and U+10F58 SOGDIAN

14.10 Sogdian

14.10.1 Sogdian: U+10F30–U+10F6F

Structure.

Glyphs.

Numbers.

Punctuation.

South and Central Asia-III 715 14.10 Sogdian

PUNCTUATION TWO CIRCLES WITH DOTS, delimit text segments and may vary in

shape. U+10F59 SOGDIAN PUNCTUATION HALF CIRCLE WITH DOT generally indi‐

cates the completion of a text. Various other punctuation marks occur in Sogdian

texts, and in some cases may be represented by punctuation characters from other

blocks, such as General Punctuation.

South and Central Asia-III 716 14.10 Sogdian

The historical Old Uyghur script flourished between the 8th and 17th centuries,

primarily in the Tarim Basin of northwest China and other parts of Asia. The script

was originally used to write medieval Turkish languages, but was later expanded to

write other languages, including Chinese, Mongolian, Tibetan and Arabic. Old

Uyghur developed from the cursive style of the Sogdian script (see Section 14.10,

Sogdian) and is the ancestor of the Mongolian script (see Section 13.5, Mongolian).

The script has two main styles. “Square” style is a formal, book style where the letters

are carefully written out. The square style is found in manuscripts, official docu‐

ments, and in block printing for religious and literary texts. The second main style is

“cursive,” used for rapid writing, particularly for administrative documents, as well as

religious and literary texts. Other styles also developed, such as “post-Mongolic,”

which was employed for literary and civil documents after the 14th century.

 Old Uyghur is a cursive joining alphabet. The default orientation of the

script is horizontal, with the script being read from right to left. Although the script is

traditionally laid out vertically in columns that run left to right, horizontal orienta‐

tion facilitates the handling of Old Uyghur in multilingual contexts. Texts with

vertical orientation should be handled by vertical text layout.

 Based on evidence from 9th century documents, the Old Uyghur reper‐

toire contained 15 consonants and three additional letters—aleph, waw and yodh—

used to mark long vowels. The letters aleph, waw and yodh combine as digraphs and

trigraphs to represent vowels of the Turkic languages.

Over time, some Old Uyghur letters fell together. For example, in the 11th century

samekh and shin were both represented by shin. Diacritics were used to distinguish

the merged letters: samekh was written using U+10F7F OLD UYGHUR LETTER SHIN,

and shin was written with <U+10F7F OLD UYGHUR LETTER SHIN, U+10F85 OLD

UYGHUR COMBINING TWO DOTS BELOW>. The reading of Old Uyghur text may be

ambiguous due to the merger of letters and the nature of rapid, cursive writing. This

ambiguity can be addressed using markup.

 The representative glyphs are based on the isolated form of

the square style letters. Contextual forms of the letters are based on normalized

shapes of the square style and from block prints. The square and cursive styles are

not encoded separately. Fonts should handle the different styles, which can vary

across regions and time. The terminals of many Old Uyghur letters, such as aleph and

beth, may have different orientations and should be treated as glyph variants.

14.11 Old Uyghur

14.11.1 Old Uyghur: U+10F70–U+10FAF

Structure.

Repertoire.

Representative Glyphs.

South and Central Asia-III 717 14.11 Old Uyghur

 Most Old Uyghur characters are dual-joining, except zayin and

heth, which are right-joining.

U+10F86 OLD UYGHUR PUNCTUATION BAR and U+10F87 OLD

UYGHUR PUNCTUATION TWO BARS delimit text sections for shorter and longer

sections, respectively. In a similar way, U+10F88 OLD UYGHUR PUNCTUATION TWO

DOTS separates shorter text units and U+10F89 OLD UYGHUR PUNCTUATION FOUR

DOTS separates longer sections. The script also uses a sign that is unified with

U+10AF2 MANICHAEAN PUNCTUATION DOUBLE DOT WITHIN DOT.

Word boundaries are indicated by spaces. In documents with the square script, letters

with extended horizontal terminals may be stretched to touch the initial letter of the

following word. However, this behavior reflects no semantic distinction, and in plain

text spaces should be used between words. To represent the joining of the two words

calligraphically, U+200C ZERO WIDTH NON-JOINER may be used. Some texts extend

the initial baseline to fill out the space on a line. For example, the space between the

last word in the line and the margin may be filled by using U+0640 ARABIC

TATWEEL between the last two letters of a word.

 Four diacritics with dots encoded in the range U+10F82..U+10F85

differentiate merged letters and indicate sounds for which no distinct letter exists.

The diacritics, whose shapes may vary across different script styles, commonly occur

with nun, gimel, heth, samekh, and shin. No script-specific digits have been encoded.

Shaping Behavior.

Punctuation.

Other Signs.

South and Central Asia-III 718 14.11 Old Uyghur

Chapter 15

South and Central Asia-IV
Other Historic Scripts

This chapter documents other modern and historic scripts of South and Central Asia.

Most of these scripts are historically related to the other scripts of India, and most are

ultimately derived from the Brahmi script. None of them were standardized in ISCII.

The encoding for each script is done on its own terms, and the blocks do not make

use of a common pattern for the layout of code points.

This introduction briefly identifies each script, occasionally highlighting the most

salient distinctive attributes of the script. Details are provided in the individual block

descriptions that follow.

Syloti Nagri is used to write the modern Sylheti language of northeast Bangladesh

and southeast Assam in India.

Kaithi is a historic North Indian script, closely related to the Devanagari and Gujarati

scripts. It was used in the area of the present-day states of Bihar and Uttar Pradesh in

northern India, from the 16th century until the early 20th century.

Sharada is a historical script that was used to write Sanskrit, Kashmiri, and other

languages of northern South Asia; it was the principal inscriptional and literary

script of Kashmir from the 8th century CE until the 20th century. It has limited and

specialized modern use.

Takri, descended from Sharada, is used in northern India and surrounding countries.

It is the traditional writing system for the Chambeali and Dogri languages, as well as

several “Pahari” languages. In addition to popular usage for commercial and

informal purposes, Takri served as the official script of several princely states of

northern and northwestern India from the 17th century until the middle of the 20th

century.

During the 17th century, the Brahmi-based Dogra script was used to write the Dogri

language in Jammu and Kashmir in the northern region of the Indian subcontinent.

The Dogra script was standardized in the 1860s, and is closely related to the Takri

script. Dogri is now usually written with the Devanagari script.

719

Siddham is another Brahmi-based writing system related to Sharada, and structurally

similar to Devanagari. It originated in India, and was used across South, Central, and

East Asia, and is presently predominantly used in East Asia. Originally used for

writing Buddhist manuscripts, the script is still used by Japanese Buddhist communi‐

ties.

Mahajani is a Brahmi-based alphabet commonly used by bankers and money lenders

across northern India until the middle of the 20th century. It is a specialized

commercial script used for writing accounts and financial records. Mahajani has

similarities to Landa, Kaithi, and Devanagari.

Khojki is a writing system used by the Nizari Ismaili community of South Asia for

recording religious literature. It is one of two Landa scripts—the other being

Gurmukhi—that were developed into formal liturgical scripts for use by religious

communities. It is still used today.

Khudawadi is a Landa-based script that was used to write the Sindhi language

spoken in India and Pakistan. It is related to Sharada. Known as the shopkeeper and

merchant script, it was used for routine writing, accounting, and other commercial

purposes.

The Multani script was used write the Seraiki language of eastern and southeastern

Pakistan during the 19th and 20th centuries. Multani is related to Gurmukhi and

more distantly related to Khudawadi and Khojki. It was used for routine writing and

commercial activities.

Tirhuta, another Brahmi-based script, is related to the Bengali, Newari, and Oriya

scripts. Tirhuta was the traditional writing system for the Maithili language, which is

spoken by more than 35 million people in parts of India and Nepal. Maithili is an offi‐

cial regional language of India and the second most spoken language in Nepal.

Modi is another Brahmi-based script mainly used to write Marathi, a language

spoken in western and central India. It emerged in the 16th century and derives from

the Nagari scripts. It is still used some today.

Nandinagari is a Brahmi-based abugida that was used in southern India between the

11th and 19th centuries for manuscripts and inscriptions in Sanskrit. It is related to

Devanagari. The script was also used for writing Kannada in Karnataka.

Grantha, a script with a long history, is used to write the Sanskrit language in parts of

South India, Sri Lanka and elsewhere. It is in daily use by Vedic scholars and Hindu

temple priests.

Tulu-Tigalari is a historic script attested in a large number of manuscripts from

Karnataka and northern Kerala dating to as early as 1300 CE. It was used to write

Sanskrit, Tulu, and Malayalam, but most attestations are manuscripts of Sanskrit reli‐

South and Central Asia-IV 720

gious texts written by Shivalli, Havyaka, and Kota brahmins. The script is known by a

wide variety of names. It is currently undergoing revival among Tulu speakers in

Karnataka, with some innovations, as a modern writing system alternative to the

Kannada script for that language.

Dives Akuru is a Brahmi-derived script used to write the Dhivehi language on the

Maldives from the 9th to the 20th centuries. The script is most closely related to a

medieval form of the Sinhala script.

Ahom is a script of northeast India that dates to about the 16th century and was used

primarily to write the Tai Ahom language. The script has seen a revival in the 20th

century, and continues in some use today.

Sora Sompeng is used to write the Sora language spoken by the Sora people, who live

in eastern India between the Oriya- and Telugu-speaking populations. The script was

created in 1936 and is used in religious contexts.

South and Central Asia-IV 721

Syloti Nagri is a lesser-known Brahmi-derived script used for writing the Sylheti

language. Sylheti is an Indo-European language spoken by some 5 million speakers

in the Barak Valley region of northeast Bangladesh and southeast Assam in India.

Worldwide there may be as many as 10 million speakers. Sylheti has commonly been

regarded as a dialect of Bengali, with which it shares a high proportion of vocabulary.

The Syloti Nagri script has 27 consonant letters with an inherent vowel of /o/ and 5

independent vowel letters. There are 5 dependent vowel signs that are attached to a

consonant letter. Unlike Devanagari, there are no vowel signs that appear to the left

of their associated consonant.

Only two proper diacritics are encoded to support Syloti Nagri: anusvara and

hasanta. Aside from its traditional Indic designation, anusvara can also be consid‐

ered a final form for the sequence /-ng/, which does not have a base glyph in Syloti

Nagri because it does not occur in other positions. Anusvara can also occur with the

vowels U+A824 SYLOTI NAGRI VOWEL SIGN I and U+A826 SYLOTI NAGRI

VOWEL SIGN E, creating a potential problem with the display of both items. It is

recommended that anusvara always occur in sequence after any vowel signs, as a

final character.

 Conjuncts are not always necessary in contexts involving a

dead consonant, nor are they limited to sequences involving dead consonants. They

can also represent a variety of vowel + consonant (VC) syllables, such as ar, al, as, at,

ir, and it, as well as the CCV combinations typical of other Indic scripts. In practice, it

is rare to overtly indicate a dead consonant with an explicit hasanta, and not always

obligatory to use a conjunct.

U+A806 SYLOTI NAGRI SIGN HASANTA, whose glyph is shaped like a circumflex, was

introduced into the script relatively recently and is used in limited contexts. The

character appears overtly in pedagogical materials introducing readers to the script.

More commonly, the hasanta is inserted between consonants to represent a conjunct.

Occasionally, it indicates a word-final consonant whose vowel is silenced; however,

the hasanta is generally not required in such cases. A second hasanta, U+A82C

SYLOTI NAGRI SIGN ALTERNATE HASANTA, specifically indicates a word-final conso‐

nant. The glyph for the alternate hasanta, resembles U+09CD BENGALI SIGN

VIRAMA and is used when the glyph for circumflex-shaped hasanta would overhang

the following space. The alternate hasanta has very limited modern-day use.

 There are no unique Syloti Nagri digits. When digits do appear in Syloti Nagri

texts, they are generally Bengali forms. Any font designed to support Syloti Nagri

15.1 Syloti Nagri

15.1.1 Syloti Nagri: U+A800–U+A82F

Virama and Conjuncts.

Digits.

South and Central Asia-IV 722 15.1 Syloti Nagri

should include the Bengali digits because there is no guarantee that they would

otherwise exist in a user’s computing environment. They should use the corre‐

sponding Bengali block code points, U+09E6..U+09EF.

 With the advent of digital type and the modernization of the Syloti

Nagri script, one can expect to find all of the traditional punctuation marks borrowed

from the Latin typography: period, comma, colon, semicolon, question mark, and so

on. In addition, the Devanagari single danda and double danda are used with great

frequency.

 Four native poetry marks are included in the Syloti Nagri block. The

script also makes use of U+2055 FLOWER PUNCTUATION MARK (in the General

Punctuation block) as a poetry mark.

Punctuation.

Poetry Marks.

South and Central Asia-IV 723 15.1 Syloti Nagri

Kaithi, properly transliterated Kaith , is a North Indian script, related to the Devana‐

gari and Gujarati scripts. It was used in the area of the present-day states of Bihar

and Uttar Pradesh in northern India.

Kaithi was employed for administrative purposes, commercial transactions, corre‐

spondence, and personal records, as well as to write religious and literary materials.

As a means of administrative communication, the script was in use at least from the

16th century until the early 20th century, when it was eventually eclipsed by Devana‐

gari. Kaithi was used to write Bhojpuri, Magahi, Awadhi, Maithili, Urdu, and other

languages related to Hindi.

 There is no preexisting character encoding standard for the Kaithi script.

The repertoire encoded in this block is based on the standard form of Kaithi devel‐

oped by the British government of Bihar and the British provinces of northwest India

in the 19th century. A few additional Kaithi characters found in manuscripts, printed

books, alphabet charts, and other inventories of the script are also included.

 There are three presentation styles of the Kaithi script, each generally associ‐

ated with a different language: Bhojpuri, Magahi, or Maithili. The Magahi style was

adopted for official purposes in the state of Bihar, and is the basis for the representa‐

tive glyphs in the code charts.

 Kaithi is a Brahmi-derived script closely related to Devanagari.

In general, the rules for Devanagari rendering apply to Kaithi as well. For more infor‐

mation, see Section 12.1, Devanagari.

 An independent Kaithi letter for vocalic r is represented by the conso‐

nant-vowel combination: U+110A9 KAITHI LETTER RA and U+110B2 KAITHI VOWEL

SIGN II.

In print, the distinction between short and long forms of i and u is maintained.

However, in handwritten text, there is a tendency to use the long vowels for both

lengths.

 Consonant clusters were handled in various ways in Kaithi.

Some spoken languages that used the Kaithi script simplified clusters by inserting a

vowel between the consonants, or through metathesis. When no such simplification

occurred, conjuncts were represented in different ways: by ligatures, as the combina‐

tion of the half-form of the first consonant and the following consonant, with an

explicit virama (U+110B9 KAITHI SIGN VIRAMA) between two consonants, or as two

consonants without a virama.

15.2 Kaithi

15.2.1 Kaithi: U+11080–U+110CF

Standards.

Styles.

Rendering Behavior.

Vowel Letters.

Consonant Conjuncts.

South and Central Asia-IV 724 15.2 Kaithi

Consonant conjuncts in Kaithi are represented with a virama between the two conso‐

nants in the conjunct. For example, the ordinary representation of the conjunct mba

would be by the sequence:

U+110A7 KAITHI LETTER MA + U+110B9 KAITHI SIGN VIRAMA + U+110A5

KAITHI LETTER BA

Consonant conjuncts may be rendered in distinct ways. Where there is a need to

render conjuncts in the exact form as they appear in a particular source document,

U+200C ZERO WIDTH NON-JOINER and U+200D ZERO WIDTH JOINER can be used to

request the appropriate presentation by the rendering system. For example, to display

the explicitly ligated glyph for the conjunct mba, U+200D ZERO WIDTH JOINER is

inserted after the virama:

U+110A7 KAITHI LETTER MA + U+110B9 KAITHI SIGN VIRAMA + U+200D

ZERO WIDTH JOINER + U+110A5 KAITHI LETTER BA

To block use of a ligated glyph for the conjunct, and instead to display the conjunct

with an explicit virama, U+200C ZERO WIDTH NON-JOINER is inserted after the

virama:

U+110A7 KAITHI LETTER MA + U+110B9 KAITHI SIGN VIRAMA + U+200C

ZERO WIDTH NON-JOINER + U+110A5 KAITHI LETTER BA

Conjuncts composed of a nasal and a consonant may be written either as a ligature

with the half-form of the appropriate class nasal letter, or the full form of the nasal

letter with an explicit virama (U+110B9 KAITHI SIGN VIRAMA) and consonant. In

Grierson’s Linguistic Survey of India, however, U+110A2 KAITHI LETTER NA is used

for all articulation classes, both in ligatures and when the full form of the nasal

appears with the virama.

 Kaithi, unlike Devanagari, does not employ a headstroke. While several

manuscripts and books show a headstroke similar to that of Devanagari, the line is

actually a ruled line used for emphasis, titling or sectioning, and is not broken

between individual letters. Some Kaithi fonts, however, were designed with a head‐

stroke, but the line is not broken between individual letters, as would occur in

Devanagari.

 Kaithi includes a nukta sign, U+110BA KAITHI SIGN NUKTA, a dot which is

used as a diacritic below various consonants to form new letters. For example, the

nukta is used to distinguish the sound va from ba. The precomposed character

U+110AB KAITHI LETTER VA is separately encoded, and has a canonical decomposi‐

tion into the sequence of U+110A5 KAITHI LETTER BA plus U+110BA KAITHI SIGN

NUKTA. Precomposed characters are also encoded for two other Kaithi letters, rha

and dddha.

Ruled Lines.

Nukta.

South and Central Asia-IV 725 15.2 Kaithi

The glyph for U+110A8 KAITHI LETTER YA may appear with or without a nukta.

Because the form without the nukta is considered a glyph variant, it is not separately

encoded as a character. The representative glyph used in the chart contains the dot.

The nukta diacritic also marks letters representing some sounds in Urdu or sounds

not native to Hindi. No precomposed characters are encoded in those cases, and such

letters must be represented by a base character followed by the nukta.

 A number of Kaithi-specific punctuation marks are encoded. Two

marks designate the ends of text sections: U+110BE KAITHI SECTION MARK, which

generally indicates the end of a sentence, and U+110BF KAITHI DOUBLE SECTION

MARK, which delimits larger blocks of text, such as paragraphs. Both section marks

are generally drawn so that their glyphs extend to the edge of the text margins, partic‐

ularly in manuscripts.

The character U+110BD KAITHI NUMBER SIGN is a format control that interacts with

digits. It occurs below a digit or sequence of digits, indicating a numerical reference.

The related character U+110CD KAITHI NUMBER SIGN ABOVE occurs above a digit or

sequence of digits, and indicates a number in an itemized list, similar to U+2116

NUMERO SIGN. Like U+0600 ARABIC NUMBER SIGN and the other Arabic signs that

span numbers (see Section 9.2, Arabic), these Kaithi format controls precede the

numbers they graphically interact with, rather than following them. U+110BC

KAITHI ENUMERATION SIGN is a standalone, spacing symbol for inline usage.

U+110BB KAITHI ABBREVIATION SIGN, shaped like a small circle, is used in Kaithi to

indicate abbreviations. This mark is placed at the point of elision or after a ligature to

indicate common words or phrases that are abbreviated, in a similar way to U+0970

DEVANAGARI ABBREVIATION SIGN.

Kaithi makes use of two script-specific dandas: U+110C0 KAITHI DANDA and

U+110C1 KAITHI DOUBLE DANDA.

For other punctuation marks occurring in Kaithi texts, available Unicode characters

may be used. A cross-shaped character, used to mark phrase boundaries, can be

represented by U+002B PLUS SIGN. For hyphenation, users should follow whatever is

the recommended practice found in similar Indic script traditions, which might be

U+2010 HYPHEN or U+002D HYPHEN-MINUS. For dot-like marks that appear as

word-separators, U+2E31 WORD SEPARATOR MIDDLE DOT, or, if the word boundary

is more like a dash, U+2010 HYPHEN can be used.

 The digits in Kaithi are considered to be stylistic variants of those used in

Devanagari. Hence the Devanagari digits located at U+0966..U+096F should be

employed. To indicate fractions and unit marks, Kaithi uses characters encoded in

the Common Indic Number Forms block, U+A830..U+A839.

Punctuation.

Digits.

South and Central Asia-IV 726 15.2 Kaithi

Sharada is a historical script that was used to write Sanskrit, Kashmiri, and other

languages of northern South Asia. It served as the principal inscriptional and literary

script of Kashmir from the 8th century CE until the 20th century. In the 19th century,

expanded use of the Arabic script to write Kashmiri and the growth of Devanagari

contributed to the marginalization of Sharada. Today the script is employed in a

limited capacity by Kashmiri pandits for horoscopes and ritual purposes.

 Sharada is a Brahmi-based script, closely related to Devana‐

gari. In general, the rules for Devanagari rendering apply to Sharada as well. For

more information, see Section 12.1, Devanagari.

 Vowel letters are encoded atomically in Unicode, even if they can be

analyzed visually as consisting of multiple parts. Table 15-1 shows the Sharada letter

that can be analyzed, the single code point that should be used to represent it in text,

and the sequence of code points resulting from analysis that should not be used. In

contrast, the atomic U+111C4 SHARADA OM is not recommended for use; the om

should be written in Sharada with a character sequence, instead.

For Use Do Not Use

1118E <1118D , 111BC >

<1118F , 11180 > 111C4

 While the headstroke is an important structural feature of a character’s

glyph in Sharada, there is no rule governing the joining of headstrokes of characters

to other characters. The variation was probably due to scribal preference, and should

be handled at the font level.

 The U+111C0 SHARADA SIGN VIRAMA is a spacing mark, written to the

right of the consonant letter it modifies. Semantically, it is identical to the Devanagari

virama and other similar Indic scripts.

U+11180 SHARADA SIGN CANDRABINDU indicates

nasalization of a vowel. It may appear in manuscripts in an inverted form but with

no semantic difference. Such glyph variants should be handled in the font. U+111C1

SHARADA SIGN AVAGRAHA represents the elision of a word-initial a. Unlike the usual

practice in Devanagari in which the avagraha is written at the normal letter height

and attaches to the top stroke of the following character, the avagraha in Sharada is

written at or below the baseline and does not connect to the neighboring letter.

15.3 Sharada

15.3.1 Sharada: U+11180–U+111DF

Rendering Behavior.

Vowel Letters.

Table 15-1. Sharada Vowel Letters and om

Ruled Lines.

Virama.

Candrabindu and Avagraha.

South and Central Asia-IV 727 15.3 Sharada

 The velar and labial allophones of /h/, followed

by voiceless velar and labial stops respectively, are written in Sharada with separate

signs, U+111C2 SHARADA SIGN JIHVAMULIYA and U+111C3 SHARADA SIGN

UPADHMANIYA. These two signs have the properties of a letter and appear only in

stacked conjuncts without the use of virama. Jihvamuliya is used to represent the

velar fricative [x] in the context of a following voiceless velar stop:

U+111C2 jihvamuliya + U+11191 ka →

U+111C2 jihvamuliya + U+11192 kha →

Upadhmaniya is used to represent the bilabial fricative [] in the context of a

following voiceless labial stop:

U+111C3 upadhmaniya + U+111A5 pa →

U+111C3 upadhmaniya + U+111A6 pha →

U+111C7 SHARADA ABBREVIATION SIGN appears after letters or

combinations of letters. It marks the sequence as an abbreviation. A word separator,

U+111C8 SHARADA SEPARATOR, indicates word and other boundaries. Sharada also

makes use of two script-specific dandas: U+111C5 SHARADA DANDA and U+111C6

SHARADA DOUBLE DANDA.

 Sharada has a distinctive set of digits encoded in the range

U+111D0..U+111D9.

Jihvamuliya and Upadhmaniya.

Punctuation.

Digits.

South and Central Asia-IV 728 15.3 Sharada

Takri is a script used in northern India and surrounding countries in South Asia,

including the areas that comprise present-day Jammu and Kashmir, Himachal

Pradesh, Punjab, and Uttarakhand. It is the traditional writing system for the Cham‐

beali and Dogri languages, as well as several “Pahari” languages, such as Jaunsari,

Kulvi, and Mandeali. It is related to the Gurmukhi, Landa, and Sharada scripts. Like

other Brahmi-derived scripts, Takri is an abugida, with consonants taking an

inherent vowel unless accompanied by a vowel marker or the virama (vowel killer).

Takri is descended from Sharada through an intermediate form known as Devāśeṣa,

which emerged in the 14th century. Devāśeṣa was a script used for religious and offi‐

cial purposes, while its popular form, known as Takri, was used for commercial and

informal purposes. Takri became differentiated from Devāśeṣa during the 16th

century. In its various regional manifestations, Takri served as the official script of

several princely states of northern and northwestern India from the 17th century

until the middle of the 20th century. Until the late 19th century, Takri was used

concurrently with Devanagari, but it was gradually replaced by the latter.

Owing to its use as both an official and a popular script, Takri appears in numerous

records, from manuscripts to inscriptions to postage stamps. There are efforts to

revive the use of Takri for languages such as Dogri, Kishtwari, and Kulvi as a means

of preserving access to these language’s literatures.

There is no universal, standard form of Takri. Where Takri was standardized, the

reformed script was limited to a particular polity, such as a kingdom or a princely

state. The representative glyphs shown in the code charts are taken mainly from the

forms used in a variant established as the official script for writing the Chambeali

language in the former Chamba State, now in Himachal Pradesh, India. There are a

number of other regional varieties of Takri that have varying letterforms, sometimes

quite different from the representative forms shown in the code charts. Such regional

forms are considered glyphic variants and should be handled at the font level.

 Vowel letters are encoded atomically in Unicode, even if they can be

analyzed visually as consisting of multiple parts. Table 15-2 shows the letters that can

be analyzed, the single code point that should be used to represent them in text, and

the sequence of code points resulting from analysis that should not be used.

For Use Do Not Use

11681 <11680, 116AD>

15.4 Takri

15.4.1 Takri: U+11680–U+116CF

Vowel Letters.

Table 15-2. Takri Vowel Letters

South and Central Asia-IV 729 15.4 Takri

11687 <11686, 116B2>

11688 <11680, 116B4>

11689 <11680, 116B5>

 Conjuncts in Takri are infrequent and, when written, consist

of two consonants, the second of which is always ya, ra, or ha. Takri ya is written as a

subjoining form; Takri ra can be written as a ligature or a subjoining form; and Takri

ha is written as a half-form.

 A combining nukta character is encoded as U+116B7 TAKRI SIGN NUKTA.

Characters that use this sound, mainly loan words and words from other languages,

may be represented using the base character plus nukta.

 Unlike Devanagari, headlines are not generally used in Takri. However,

headlines do appear in the glyph shapes of certain Takri letters. The headline is an

intrinsic feature of glyph shapes in some regional varieties such as Dogra Akkhar,

where it appears to be inspired by the design of Devanagari characters. There are no

fixed rules for the joining of headlines. For example, the headlines of two sequential

characters possessing headlines are left unjoined in Chambeali, while the headlines

of a letter and a vowel sign are joined in printed Dogra Akkhar.

 Takri uses U+0964 DEVANAGARI DANDA and U+0965 DEVANAGARI

DOUBLE DANDA from Devanagari.

 Fraction signs and currency marks found in Takri documents use the

characters in the Common Indic Number Forms block (U+A830..U+A83F).

Consonant Conjuncts.

Nukta.

Headlines.

Punctuation.

Fractions.

South and Central Asia-IV 730 15.4 Takri

Siddham is a Brahmi-based writing system that originated in India, and is presently

used primarily in East Asia. The script is also known as Siddhamātṛkā and Kuṭila.

The name Siddhamatrika has broad historic and regional usage throughout India

and East Asia. However, modern usage is most strongly associated with the Shingon

and Tendai Buddhist traditions in Japan, where the script is also known as Bonji. The

representative glyphs in the code charts are based upon Japanese forms of Siddham

characters.

The historical record shows the use of Siddham in Central Asia, but the predominant

examples are of its use for writing Sanskrit in China, Japan, and Korea, notably for

Buddhist manuscripts. Today, it is mainly used for ceremonial and ritualistic

purposes associated with esoteric Buddhist practices.

Siddham is most closely related to Sharada, another Brahmi-based script that origi‐

nated in Kashmir.

 The sign U+115C0 SIDDHAM SIGN NUKTA is used for transcribing sounds

that are not native to the writing system. The nukta sign is not a traditional Siddham

character, but it is part of modern Siddham, so that it can accommodate the writing

of Japanese and English.

 The Siddham vowel signs for u and uu may appear in two forms. The regular

forms, called “cloud” forms, are represented by U+115B2 SIDDHAM VOWEL SIGN U

and U+115B3 SIDDHAM VOWEL SIGN UU. Alternate vowel sign forms, referred to as

“warbler” forms, are represented instead by U+115DC SIDDHAM VOWEL SIGN ALTER‐

NATE U and U+115DD SIDDHAM VOWEL SIGN ALTERNATE UU.

The combination of ra and u should be written with the sequence <U+115A8

SIDDHAM LETTER RA, U+115DC SIDDHAM VOWEL SIGN ALTERNATE U> and

rendered as . For the combination ra and uu, the form should be employed, repre‐

sented by the sequence <U+115A8 SIDDHAM LETTER RA, U+115DD SIDDHAM VOWEL

SIGN ALTERNATE UU>.

 The virama, U+115BF SIDDHAM SIGN VIRAMA, is iden‐

tical to the corresponding character in Devanagari and silences the inherent vowel of

a consonant. The default rendering of the Siddham virama is as a visible sign.

Consonant clusters in Siddham are written as conjuncts and follow the same model

as conjuncts in Devanagari. Conjuncts are represented using the Siddham virama,

which is written between each consonant in the cluster. Conjuncts may be written

15.5 Siddham

15.5.1 Siddham: U+11580–U+115FF

Nukta.

Vowels.

Virama and Conjuncts.

South and Central Asia-IV 731 15.5 Siddham

vertically, horizontally, or as independent ligatures. There are traditional Chinese and

Japanese tabulations for Siddham conjuncts.

Siddham conjuncts may represent clusters with a large number of consonants. For

example, rkṣvrya is a conjunct cluster produced by a sequence of six conjuncts, as

shown in Figure 15-1.

 The mark U+115C1 SIDDHAM SIGN SIDDHAM is written at the

beginning of a text. Paleographically, the sign corresponds to characters used in other

scripts, such as U+0FD3 TIBETAN MARK INITIAL BRDA RNYING YIG MGO MDUN

MA. It represents the Sanskrit word siddham, “accomplished,” and the phrase siddhi‐

rastu, “may there be success.” A vertically-oriented glyph variant is used for vertical

text layout.

 Three marks, U+115C6 SIDDHAM REPETITION MARK-1,

U+115C7 SIDDHAM REPETITION MARK-2, and U+115C8 SIDDHAM REPETITION

MARK-3 are used to indicate the text repetition. They are written after the text that is

to be repeated.

 A set of fourteen section marks are used in Siddham to indicate the

ends of sentences, phrases, verses, and sections. They appear in manuscripts and

script manuals. According to the Shingon philosophy, the characters possess esoteric

qualities that relay information regarding the interpretation of the text.

 There are five other punctuation marks encoded for Siddham, as

shown in Table 15-3. Both Siddham danda and Siddham double danda have graphical

variants used in informal Japanese writing of Siddham.

Code Point and Name Purpose

115C2 SIDDHAM DANDA
marks the end of sentences and other short text
sections

115C3 SIDDHAM DOUBLE DANDA used at the end of paragraphs and larger text blocks

115C4 SIDDHAM SEPARATOR DOT
marks boundaries between syllables, words, and
phrases; written at the head-height.

115C5 SIDDHAM SEPARATOR BAR
marks boundaries between syllables, words, and
phrases

115C9 SIDDHAM END OF TEXT MARK indicates the end or completion of a text

Figure 15-1. Siddham Consonant Cluster

Head Marks.

Repetition Marks.

Section Signs.

Punctuation.

Table 15-3. Siddham Punctuation Characters

South and Central Asia-IV 732 15.5 Siddham

Mahajani is a Brahmi-based writing system that was commonly used across northern

India until the middle of the 20th century. It is a specialized commercial script used

for writing accounts and financial records. It was used for recording several

languages: Hindi, Marwari, and Punjabi. Mahajani was taught and used as a medium

of education in Punjab, Rajasthan, Uttar Pradesh, Bihar, and Madhya Pradesh in

schools where students from merchant and trading communities learned the script

and other writing skills required for business. The name “Mahajani” refers to bankers

and money lenders, who were the primary users of the script. The majority of Maha‐

jani records are account books. Although the Mahajani script is no longer in general

use, it is an important key to the historical financial records of northern India.

Mahajani has similarities to Landa, Kaithi, and Devanagari. In structure and orthog‐

raphy, Mahajani resembles scripts of the Landa family used in Punjab and Sindh,

which are related to Sharada.

 Mahajani is written from left to right. It is based upon the Brahmi model,

but it is structurally simpler and behaves as an alphabet. Vowel signs are not used,

and there is no virama. Consonant clusters are not written in Mahajani using half-

forms or ligatures (except for one ligature for shri), or even a visible virama. The

elements of a consonant cluster are written sequentially using regular consonant

letters.

Vowel signs are not written. Consonant letters theoretically bear the inherent vowel /

a/, but the glyph for ka for example represents not only ka, but also any one of the

syllables ka, kā, ki, kī, ke, and so on. In cases where greater precision is required, a

vowel letter may be written after a consonant to convey the intended vocalic context.

In general, the value of a consonant letter must be inferred at the morphological

level.

Nasalization is not represented using special signs, such as anusvara. Instead

U+11167 MAHAJANI LETTER NA is used in cases where nasalization is explicitly

recorded. In several cases, words are written simply with nasalization deleted.

U+11173 MAHAJANI SIGN NUKTA is used for writing sounds that are not represented

by a unique character, such as allophonic variants and sounds that occur in local

dialects or in loanwords. It has limited use in Mahajani.

Several letters have glyphic variants. Those variants are not separately encoded.

 Mahajani does not have distinctive script-specific digits. The Devanagari

digits located at U+0966..U+096F should be used.

15.6 Mahajani

15.6.1 Mahajani: U+11150–U+1117F

Structure.

Digits.

South and Central Asia-IV 733 15.6 Mahajani

 Fraction signs and unit marks are found in Mahajani documents,

and may be represented using the characters encoded in the “Common Indic

Number Forms” block.

 Mahajani employs a dash, middle dot, and colon, which should be

represented by the corresponding Latin characters. For the dandas, Mahajani

employs U+0964 DEVANAGARI DANDA and U+0965 DEVANAGARI DOUBLE DANDA.

Mahajani also contains two other script-specific punctuation signs, U+11174 MAHA‐

JANI ABBREVIATION SIGN and U+11175 MAHAJANI SECTION MARK. There are no

formal rules for punctuation, and word spacing is not generally observed.

Other Symbols.

Punctuation.

South and Central Asia-IV 734 15.6 Mahajani

Khojki is a writing system used by the Nizari Ismaili community of South Asia for

recording religious literature. It was developed in Sindh, now in Pakistan, for repre‐

senting the Sindhi language. The script spread to surrounding regions and was used

for writing Gujarati, Punjabi, and Siraiki, as well as several languages related to

Hindi. It was also used for writing Arabic and Persian. Popular Nizari Ismaili tradi‐

tion states that Khojki was invented and propagated by Pir Sadruddin, an Ismaili

missionary.

Khojki is one of two Landa scripts that were developed into formal liturgical scripts

for use by religious communities; the other is Gurmukhi, which was developed for

writing the sacred literature of the Sikh tradition.

Khojki is also called “Sindhi” and “Khwajah Sindhi.” Khojki was in use by the 16th

century CE, as attested by manuscript evidence. The printing of Khojki books flour‐

ished after Laljibhai Devraj produced metal types for Khojki in Germany for use at

his Khoja Sindhi Printing Press in Mumbai.

While usage of Khojki has declined over the past century, it is used wherever Nizari

Ismaili Muslims of South Asian origin reside. The largest communities are found in

Pakistan, India, Canada, United States, the United Kingdom, Kenya, Tanzania, and

Uganda. Khojki primers continue to be published in Pakistan for teaching the script.

Khojki manuscripts and books are used in Ismaili ceremonies not only in South Asia,

but in east and south Africa, where large diaspora communities formed by the 19th

century. The script was also used by communities related to the Nizari Ismailis, such

as the Imamshahis of Gujarat.

 The general structure of Khojki is similar to that of other Brahmi-derived

Indic scripts. It is written from left to right.

Khojki has a smaller repertoire of independent vowel letters than other Brahmi-

derived scripts. Conventionally, the letters U+11202 KHOJKI LETTER I and U+11203

KHOJKI LETTER U are used for writing both short and long forms of i and u, respec‐

tively. However, some Khojki texts distinguish between the short and long forms of i.

Those texts should use U+11202 KHOJKI LETTER I to represent long i and U+11240

KHOJKI LETTER SHORT I to represent short i. The letters U+11205 KHOJKI LETTER AI

and U+11207 KHOJKI LETTER AU represent diphthongs. Although they are attested in

manuscripts and books, Khojki originally did not have unique letters for these

vowels. In early Khojki records, diphthongs are generally represented as digraphs.

Several variant forms of vowel letters are also attested.

15.7 Khojki

15.7.1 Khojki: U+11200–U+1124F

Structure.

South and Central Asia-IV 735 15.7 Khojki

The repertoire of dependent vowel signs is larger than that of independent vowel

letters. There are separate signs for U+1122D KHOJKI VOWEL SIGN I and U+1122E

KHOJKI VOWEL SIGN II, but no form for uu. Instead, the single sign U+1122F KHOJKI

VOWEL SIGN U is used for both short and long forms. U+11232 KHOJKI VOWEL SIGN O

is often written by placing the U+11230 KHOJKI VOWEL SIGN E element above the

consonant letter.

Geminate consonants are marked by the U+11237 KHOJKI SIGN SHADDA, written

above the consonant letter that is doubled. The positioning may change in relation to

vowel signs.

Nasalization is indicated by the sign U+11234 KHOJKI SIGN ANUSVARA. It is written

to the right of the letter or sign with which it combines.

U+11235 KHOJKI SIGN VIRAMA is identical in function to corresponding characters in

other Indic scripts. It is written to the right of a consonant letter.

U+11236 KHOJKI SIGN NUKTA is used for producing characters to represent sounds

not native to Sindhi. The sign may be written with vowel letters, vowel signs, and

consonant letters. The nukta is written above a letter.

 Khojki vowel letters and vowel signs are encoded atomically in Unicode,

even if they can be analyzed visually as consisting of multiple parts. Table 15-4 shows

the letters and signs that can be analyzed, the single code point that should be used to

represent them in text, and the sequence of code points resulting from analysis that

should not be used.

For Use Do Not Use

11201 <11200, 1122C>

11202 <11240, 1122E>

11203 <11206, 1122C>

11205 <11200, 11231>

11207 <11200, 11233> or <11200, 1122C, 11231>

11232 <1122C, 11230>

11233 <1122C, 11231>

 Khojki separates words using U+1123A KHOJKI WORD SEPARATOR.

U+11238 KHOJKI DANDA and U+11239 KHOJKI DOUBLE DANDA are used to mark the

end of sentences. The DOUBLE DANDA is also used to mark verse sections. Typically,

DOUBLE DANDA is written with U+1123A KHOJKI WORD SEPARATOR to the left and

right of verse numbers.

Vowels.

Table 15-4. Khojki Vowels

Punctuation.

South and Central Asia-IV 736 15.7 Khojki

Section marks appear frequently in Khojki manuscripts as punctuation that delimits

the end of a section or another larger block of text. The U+1123B KHOJKI SECTION

MARK is generally used to mark the end of a sentence, while U+1123C KHOJKI

DOUBLE SECTION MARK is used to delimit larger blocks of text, such as paragraphs.

Both generally extend to the margin of the text-block.

Latin punctuation marks are also used in printed Khojki.

U+1123D KHOJKI ABBREVIATION SIGN is used for marking abbreviations.

 Khojki makes use of Gujarati digits U+0AE6 through U+0AEF.Digits.

South and Central Asia-IV 737 15.7 Khojki

In the 17th century, the Dogra script was used to write the Dogri language in Jammu

and Kashmir in the northern region of the Indian subcontinent. Dogri is an Indo-

Aryan language now usually written with the Devanagari script. The Dogra script

was standardized in the 1860s, and is closely related to the Takri script. The official

form, known as “Name Dogra Akkar” or “New Dogra Script,” appears in administra‐

tive documents, on currency, postcards, postage stamps, and in literary works. The

unofficial, common written form of the script is called “Old Dogra.” The glyphs in the

code chart are based on New Dogra.

 Dogra is an abugida, based on Brahmi. It is written left to right. The script

includes a virama, U+11839 DOGRA SIGN VIRAMA, to create conjuncts and to

suppress the inherent vowel.

 Because the glyphs for Dogra vowel letters changed over time, the phonetic

value of three vowel letters varies between New and Old Dogra. Old Dogra uses

U+11802 DOGRA LETTER I for u, U+11803 DOGRA LETTER II for i, and U+11804

DOGRA LETTER U for o and au. The shapes of the vowel signs also vary between Old

and New Dogra. Distinct fonts can be used to reflect the Old Dogra vowel shapes, as

opposed to the New Dogra shapes.

A feature of Dogra is that the dependent vowel may be represented either by the

independent vowel letter, or by the dependent vowel sign. For example, the syllable

ke may be represented by <ka, e> or <ka, vowel sign e>.

U+11831 DOGRA VOWEL SIGN VOCALIC R,

U+11832 DOGRA VOWEL SIGN VOCALIC RR, and U+11828 DOGRA LETTER SSA are

used in New Dogra to represent sounds of Sanskrit origin.

 Consonant clusters in Dogra may be rendered in different

ways. The most common method is to place a virama beneath each bare consonant.

Certain consonant clusters may also be written as conjuncts. A conjunct may be an

atomic ligature, such as kṣa (represented with <ka, virama, ssa>), or a looser liga‐

ture, such as sṭa (<sa, virama, tta>), in which the individual shapes of each letter

are visible.

In particular, although Dogra does not normally use repha to represent the initial ra

in a consonant cluster, a non-initial ra is sometimes conjoined to form a ligature. A

conjoined non-initial ra is usually attached below the base letter, in a somewhat

reduced form. Depending on the graphical structure of the preceding consonant, the

non-initial ra may also appear to be the base of the cluster, with the preceding conso‐

15.8 Dogra

15.8.1 Dogra: U+11800–U+1184F

Structure.

Vowels.

Characters Used to Represent Sanskrit.

Consonant Conjuncts.

South and Central Asia-IV 738 15.8 Dogra

nant taking a half-form instead. For example, New Dogra consistently uses the

conjunct śra (<sha, virama, ra>) in the Sanskrit honorific śrī, which shows a half-

form ofśa.

U+11837 DOGRA SIGN ANUSVARA indicates nasalization, and

U+11838 DOGRA SIGN VISARGA indicates post-vocalic aspiration in words of Sanskrit

origin, while U+1183A DOGRA SIGN NUKTA is used to transcribe sounds that are not

native to the Dogri language.

U+1183B DOGRA ABBREVIATION SIGN denotes abbreviations. U+0964

DEVANAGARI DANDA and U+0965 DEVANAGARI DOUBLE DANDA indicate the ends of

sentences and paragraphs.

 Digits in Dogra vary across written and printed sources:

some Old Dogra digits resemble Takri digits, while digits in some New Dogra docu‐

ments resemble Devanagari. Because of this wide variation, script-specific digits have

not been encoded. Devanagari digits should be used to represent digits in Dogra text.

For representation of Dogra fraction and currency signs, use characters from the

Common Indic Number Forms block.

Other Symbols.

Punctuation.

Digits and Number Forms.

South and Central Asia-IV 739 15.8 Dogra

Khudawadi is a script used historically for writing the Sindhi language, which is

spoken in India and Pakistan. Official forms of Khudawadi are known as “Hindi

Sindhi,” “Hindu Sindhi,” and “Standard Sindhi.” Khudawadi is a Landa-based script

and related to Sharada. Like other Landa writing systems, Khudawadi is a mercantile

script used for routine writing, accounting, and other commercial purposes and was

known as the shopkeeper and merchant script. It is associated with the merchant

communities of Hyderabad, Sindh. In addition to mercantile records, Khudawadi

was used in education, book printing, and for court records.

In the 1860s, Khudawadi was chosen as the basis for a written standard for education

and administration in Sindh and was developed as an official language. Official

Khudawadi possesses unique characters for each vowel and consonant sound of the

Sindhi language, as well as vowel signs. In the late 19th century, an Arabic-based

script became the official writing system for Sindhi in Pakistan and India. Sindhi is

also written in the Devanagari script in India. Khudawadi is now obsolete.

 The general structure of Khudawadi is similar to that of other Brahmi-

based Indic scripts. It is written from left to right.

 Some independent vowel letters may be represented using a combina‐

tion of a base vowel letter and a dependent vowel sign. This practice is not recom‐

mended. The atomic character for the independent vowel letter should always be

used.

For Use Do Not Use

112B1 112B0 + 112E0

112B6 112B0 + 112E5

112B7 112B0 + 112E6

112B8 112B0 + 112E7

112B9 112B0 + 112E8

 Consonant clusters generally consist of two consonants.

These are written using a visible virama. The encoded representation is <C1 +

virama + C2>. Half-forms and ligated conjunct forms are not attested.

 U+112DF KHUDAWADI SIGN ANUSVARA is used for indicating nasal‐

ization.

15.9 Khudawadi

15.9.1 Khudawadi: U+112B0–U+112FF

Structure.

Vowel Letters.

Table 15-5. Khudawadi Vowel Letters

Consonant Conjuncts.

Nasalization.

South and Central Asia-IV 740 15.9 Khudawadi

 U+112E9 KHUDAWADI SIGN NUKTA is used for representing sounds not

native to Sindhi, such as those that may occur in Persian and Arabic loanwords.

Attested Khudawadi letters with nukta are shown in Table 15-6, along with the Arabic

letters for which they substitute. JA + NUKTA, pronounced za, corresponds to a

number of distinct Arabic letters.

Sound Khudawadi Arabic

kha KHA + NUKTA U+062E ARABIC LETTER KHAH

ġa GA + NUKTA U+063A ARABIC LETTER GHAIN

za JA + NUKTA

U+0630 ARABIC LETTER THAL
U+0632 ARABIC LETTER ZAIN
U+0636 ARABIC LETTER DAD
U+0638 ARABIC LETTER ZAH

fa PHA + NUKTA U+0641 ARABIC LETTER FEH

In principle, the nukta may be written with any Khudawadi vowel or consonant

letter. If other combining marks, such as a dependent vowel sign or anusvara, also

occur in a combining sequence applied to that base character, then the convention is

to represent the nukta first in the combining sequence.

 The Khudawadi uses dandas and European punctuation, such as

periods, dashes, colons, and semi-colons. Khudawadi dandas are unified with those

of Devanagari. Line breaking for Khudawadi characters follows the rules for Devana‐

gari.

 Khudawadi has a full set of decimal digits. Fraction signs and currency marks

are attested in Khudawadi records. These may be represented using characters in the

Common Indic Number Forms block found at U+A830..U+A83F.

Nukta.

Table 15-6. Representation of Arabic Sounds in Khudawadi

Punctuation.

Digits.

South and Central Asia-IV 741 15.9 Khudawadi

The Multani script was used to write the Seraiki language, an Indo-Aryan language

spoken in the Punjab in eastern Pakistan and the northern Sindh area of south‐

eastern Pakistan. Multani is a Landa-based script, related to Gurmukhi, and distantly

related to Khudawadi and Khojki. The script, also known as Karikki or Sarai, was

used for routine writing and commercial activities. The first book in the Multani

script was published in 1819. By the latter half of the 19th century, the British admin‐

istration introduced the Arabic script as the standard for writing the languages of the

Sindh, which led to the demise of various non-Arabic scripts, including Multani. The

script continued to be used into the 20th century. Today Seraiki is written in the

Arabic script.

There is no standard form of the Multani script. The representative glyphs shown in

the code charts are based on printed forms from an 1819 version of the New Testa‐

ment, with additional characters that are found only in handwritten documents.

Such variant forms are considered glyphic variants and should be handled at the font

level.

The script underwent orthographic changes in the first quarter of the 20th century,

with a reduction in the character repertoire. The repertoire encoded in this block is

based on the set of all characters that are distinctly attested.

 Although Multani is based on the Brahmi model, it is closer in structure

to an abjad than an abugida. There are four independent vowel letters, a, i, u and e,

and no dependent vowel signs. Consonants theoretically possess the inherent /a/

vowel, but as vowels are not marked, the actual syllabic vowel of a consonant in

running text is ambiguous and must be inferred from context. Consonant clusters are

written using independent letters, rather than with conjuncts. There is no virama.

Vowels are generally not written unless they occur in isolation, in word initial posi‐

tion, or in the final position of monosyllabic words.

The letter a is used to represent /a/, /a:/ and in some sources /e/ and /æ/. The

letter i represents /i/ and /i:/ and commonly the semivowel /j/. The letter u repre‐

sents /u/, /u:/ and /o/. The letter e represents /e/, and in some sources /æ/ and /o/.

 The Gurmukhi digits U+0A66..U+0A6F should be employed to represent

digits in Multani.

 Multani has only one script-specific punctuation mark, U+112A9

MULTANI SECTION MARK, which indicates the end of a sentence.

15.10 Multani

15.10.1 Multani: U+11280–U+112AF

Structure.

Digits.

Punctuation.

South and Central Asia-IV 742 15.10 Multani

Tirhuta was the traditional writing system for the Maithili language, which is spoken

by more than 35 million people in the state of Bihar in India, and in the Koshi and

Madhesh provinces of Nepal. Maithili is an official regional language of India and

the second most spoken language in Nepal. Tirhuta is a Brahmi-based script derived

from Gauḍī, or “Proto-Bengali,” which evolved from the Kuṭila branch of Brahmi by

the 10th century. It is related to the Bengali, Newari, and Oriya scripts, which are also

descended from Gauḍī, and became differentiated from them by the 14th century.

Tirhuta remained the primary writing system for Maithili until the late 20th century,

when it was replaced by Devanagari. The Tirhuta script forms the basis of scholarly

and religious scribal traditions that have been associated with the Maithili and

Sanskrit languages since the 14th century. Tirhuta continues to be used for writing

manuscripts of religious and literary texts, as well as personal correspondence. Since

the 1950s, various literary societies, such as the Maithili Akademi and Chetna Samiti,

have been publishing literary, educational, and linguistic materials in Tirhuta. The

script is also used in signage in Darbhanga and other districts of north Bihar, and as

an optional script for writing the civil services examination in Bihar.

Although several Tirhuta characters, ligatures or combined shapes bear resemblance

to those of Bengali, these similarities are superficial.

 The general structure (phonetic order, matra reordering, use of virama,

and so on) of Tirhuta is similar to that of other Brahmi-based Indic scripts. The script

is written from left to right.

 Tirhuta uses independent vowel letters and corresponding combining vowel

signs. The signs U+114BA TIRHUTA VOWEL SIGN SHORT E and U+114BD TIRHUTA

VOWEL SIGN SHORT O do not have corresponding independent forms, because the

sounds they represent do not occur in word initial position.

Vowel letters are encoded atomically in Unicode, even if they can be analyzed

visually as consisting of multiple parts. Table 15-7 shows the letters that can be

analyzed, the single code point that should be used to represent them in text, and the

sequence of code points resulting from analysis that should not be used.

For Use Do Not Use

11482 <11481, 114B0>

11489 <114AA, 114B5>

15.11 Tirhuta

15.11.1 Tirhuta: U+11480–U+114DF

Structure.

Vowels.

Table 15-7. Tirhuta Vowel Letters

South and Central Asia-IV 743 15.11 Tirhuta

1148A <114AA, 114B6>

1148C <1148B, 114BA>

1148E <1148D, 114BA>

 Some of the 33 consonants look like Bengali consonants, but represent

different sounds. For example, U+114A9 TIRHUTA LETTER RA has the same form as

U+09AC BENGALI LETTER BA, and U+114AB TIRHUTA LETTER VA has the same

shape as U+09B0 BENGALI LETTER RA.

Consonants combined with vowel signs, combined in conjuncts, or appearing at the

end of a word commonly use context-dependent ligatures or glyph combinations.

These shapes also contrast with usage in Bengali. For example, the consonant-vowel

combination <U+1149E TIRHUTA LETTER TA, U+114B3 TIRHUTA VOWEL SIGN U> in

Tirhuta produces the same shape as the conjunct <U+09A4 BENGALI LETTER TA,

U+09CD BENGALI SIGN VIRAMA, U+09A4 BENGALI LETTER TA> in the Bengali

script.

All variant forms for letters, character elements and conjuncts in Tirhuta should be

managed at the font level.

U+114C2 TIRHUTA SIGN VIRAMA is identical in function to the corre‐

sponding character in other Indic scripts.

 Nasalization is indicated by U+114BF TIRHUTA SIGN CANDRABINDU

and U+114C0 TIRHUTA SIGN ANUSVARA. These signs are written centered above the

base. If written with an above-base sign or a letter with a graphical element that

extends past the headstroke, they are placed to the right of such signs and elements.

 Two characters are attested in Vedic and

classical Sanskrit manuscripts written in Tirhuta. U+114C1 TIRHUTA SIGN VISARGA

represents an allophone of ra or sa at word-final position in Sanskrit orthography.

U+114C5 TIRHUTA GVANG represents nasalization. It belongs to the same class of

characters as U+1CE9 VEDIC SIGN ANUSVARA ANTARGOMUKHA, U+1CEA VEDIC

SIGN ANUSVARA BAHIRGOMUKHA, and so on.

Tirhuta also uses U+1CF2 VEDIC SIGN ARDHAVISARGA which can be found in the

Vedic Extensions block.

U+114C3 TIRHUTA SIGN NUKTA is used for writing sounds that are not repre‐

sented by a unique character, such as allophonic variants and sounds that occur in

local dialects or in loanwords. The nukta may be written with any vowel or conso‐

nant letter. If other combining marks, such as a vowel sign or anusvara, also appear

with the base character, then the nukta is written first.

Consonants.

Virama.

Nasalization.

Characters for Representing Sanskrit.

Nukta.

South and Central Asia-IV 744 15.11 Tirhuta

U+114A5 TIRHUTA LETTER BA and U+114AB TIRHUTA LETTER VA have shapes that

include a dot, but this is not semantically equivalent to a nukta. These letters do not

decompose to nukta, and are treated as atomic characters.

 Tirhuta uses U+0964 DEVANAGARI DANDA and U+0965 DEVANAGARI

DOUBLE DANDA from the Devanagari block.

U+114C6 TIRHUTA ABBREVIATION SIGN denotes abbreviations. There

are also two special script-specific signs in Tirhuta. The first, U+11480 TIRHUTA ANJI,

is used in the invocations of letters, manuscripts, books, and charts of the script. The

sign anji is said to represent the tusk of the deity Ganesa, patron of learning. The

second, U+114C7 TIRHUTA OM, contrasts with the Bengali sign for om, the latter

being a simple combination of U+0993 BENGALI LETTER O plus U+0981 BENGALI

SIGN CANDRABINDU.

 Tirhuta has a full set of decimal digits.

 Number forms and unit marks are also found in Tirhuta documents. The

most common of these are signs for writing fractions and currency, and they are

represented using characters in the Common Indic Number Forms block

(U+A830..U+A83F). They include U+A831 NORTH INDIC FRACTION ONE HALF,

U+A832 NORTH INDIC FRACTION THREE QUARTERS, and so on, as well as U+A838

NORTH INDIC RUPEE MARK. Tirhuta also uses Bengali “currency numerators,” such

as U+09F4 BENGALI CURRENCY NUMERATOR ONE.

Punctuation.

Special Signs.

Digits.

Fractions.

South and Central Asia-IV 745 15.11 Tirhuta

Modi is a Brahmi-based script used mainly for writing Marathi. Modi was also used

to write other regional languages such as Hindi, Gujarati, Kannada, Konkani,

Persian, Tamil, and Telugu. According to an old legend, the Modi script was brought

to India from Sri Lanka by Hemadri Pandit, known also as Hemadpant, who was the

chief minister of Ramacandra, the last king of the Yadava dynasty, who reigned from

1271 to about 1309. Another tradition credits the creation of the script to Balaji Avaji,

secretary of state to the late 17th-century Maratha king Shivaji Raje Bhonsle, also

known as Chhatrapati Shivaji Maharaj. While the veracity of such accounts is diffi‐

cult to ascertain, it is clear that Modi derives from the Nagari family of scripts and is

a modification of the Nagari model intended for continuous writing.

Modi emerged as an administrative writing system in the 16th century before the rise

of the Maratha dynasties. It was adopted by the Marathas as an official script begin‐

ning in the 17th century and was used in such a capacity in Maharashtra until the

middle of the 20th century. In the 1950s the use of Modi was formally discontinued

and the Devanagari script, known as “Balbodh,” was promoted as the standard

writing system for Marathi.

There are thousands of Modi documents preserved in South Asia and Europe. The

majority of these are in various archives in Maharashtra, while smaller collections

are kept in Denmark and other countries, because of European presence in Tanjore,

Pondicherry, and other regions in South Asia through the 19th century. The earliest

extant Modi document dates from the early 17th century. While the majority of Modi

documents are official letters, land records, and other administrative documents, the

script was also used in education, journalism, and other routine activities before the

1950s. Printing in Modi began in the early 19th century after Charles Wilkins cut the

first metal fonts for the script in Calcutta. Newspapers were published in Modi;

primers were produced to teach the script in schools, and various personal papers

and diaries were kept in the script.

 Modi is a Brahmi-based script related to Devanagari. It is written from left

to right. In general, the rules for Devanagari rendering also apply to Modi (see

Section 12.1, Devanagari). However, one characteristic feature of Modi is a large

number of context-dependent forms of consonants and vowel-signs. Shaping and

glyph substitutions for these contextual forms are managed in the font.

 Generally, the distinction between regular and long forms of i and u

is not preserved in Modi. The letter U+11603 MODI LETTER II may represent both i

and ī, and U+11604 MODI LETTER U may be used for writing both u and ū. The same

15.12 Modi

15.12.1 Modi: U+11600–U+1165F

Structure.

Vowel Letters.

South and Central Asia-IV 746 15.12 Modi

can be said of the corresponding dependent vowel signs. Both regular and long forms

appear in the Modi block, because they are attested in documentation about Modi.

The vocalic letters in the range U+11635..U+11638 are included in the encoding, but

are not in modern use, as is the case in other Indic scripts. Modi vocalic r may alter‐

natively be written as the sequence <U+11628 MODI LETTER RA, U+11632 MODI

VOWEL SIGN II> rī.

Vowel letters are encoded atomically in Unicode, even if they can be analyzed

visually as consisting of multiple parts. Table 15-8 shows the letters that can be

analyzed, the single code point that should be used to represent them in text, and the

sequence of code points resulting from analysis that should not be used.

For Use Do Not Use

1160A <11600, 11639>

1160B <11600, 1163A>

1160C <11601, 11639>

1160D <11601, 1163A>

 Many of the consonant-vowel and consonant-consonant combinations in

Modi involve special contextual forms of the consonant or vowel-sign or both. These

are rendered by means of contextual rules in the font, using specially shaped and

positioned glyph pieces or preformed ligatures.

 A number of contextual forms are used for

U+11628 MODI LETTER RA. Some of these are similar to the use of ra in Devana‐

gari. As the first consonant in a cluster it is generally rendered as a repha; however,

Modi also uses the eyelash ra in place of repha in certain native Marathi contexts. As

in Devanagari, the eyelash ra is produced using the sequence <U+11628 MODI

LETTER RA, U+1163F MODI SIGN VIRAMA, U+200D ZERO WIDTH JOINER>.

Non-initial ra in conjuncts is typically rendered using one of two subjoined forms;

however, some conjuncts with ra are represented as distinct ligatures. The most

common of these is the conjunct represented by the sequence <U+1161D MODI

LETTER TA, U+1163F MODI SIGN VIRAMA, U+11628 MODI LETTER RA>.

Sequences of ra following some other consonants, such as <ka, ra>, <ka, -aa, ra>, or

<sa, ra> are also displayed by distinct ligatures, as shown in Figure 15-2. The

sequence of initial ra followed by the rounded consonants kha, dha, or ha, may also

appear with distinct ligatures.

Table 15-8. Modi Vowel Letters

Rendering.

Consonant Clusters Involving ra.

South and Central Asia-IV 747 15.12 Modi

Unusually, the shape of ra is also influenced at the word level, depending upon the

characters in the preceding syllable. See the last example in Figure 15-2. This influ‐

ence on the shape of ra may even occur preceding punctuation; in certain environ‐

ments, ra following a danda or double danda is written using a special contextual

form. For example:

U+11642 double danda + U+11628 ra →

To produce this behavior, the danda and double danda characters in the Modi block

should be used instead of the ones in the Devanagari block.

 Traditionally, word boundaries are not marked

in Modi because it is an administrative script, characterized by the practice of rapid

writing without lifting the pen. Paragraph and other section boundaries are, however,

indicated in some Modi documents through the use of whitespace. Modern practice

uses spaces and various punctuation conventions, including danda and Western

punctuation marks. Some printed books use a period instead of a danda to indicate a

sentence boundary.

 Nasalization is indicated by U+1163D MODI SIGN ANUSVARA, and

abbreviations are indicated using U+11643 MODI ABBREVIATION SIGN. U+1163E

MODI SIGN VISARGA represents an allophone of ra or sa at word-final position in

Sanskrit orthography. U+11640 MODI SIGN ARDHACANDRA is used for transcribing

sounds used in English names and loanwords.

U+11644 MODI SIGN HUVA is written as an invocation in several Modi documents. It

is derived from the Arabic huwa.

Currency values are written using U+A838 NORTH INDIC RUPEE MARK.

 Modi has a full set of decimal digits. Several number forms and unit

marks are used for writing Modi and are represented using characters in the

Common Indic Number Forms block. They include the base-16 fraction signs

U+A830..U+A835. The absence of intermediate units is indicated by U+A837 NORTH

Figure 15-2. Modi Shaping for ra

Punctuation and Word Boundaries.

Various Signs.

Numbers.

South and Central Asia-IV 748 15.12 Modi

INDIC PLACEHOLDER MARK, which is called ali in Marathi. U+A836 NORTH INDIC

QUARTER MARK is used for representing anna values.

South and Central Asia-IV 749 15.12 Modi

Nandinagari is a Brahmi-based script that was used in southern India between the

11th and 19th centuries for manuscripts and inscriptions in Sanskrit in south Maha‐

rashtra, Karnataka and Andhra Pradesh. It is related to Devanagari, and was the offi‐

cial script of the Vijayanagara kingdom of southern India (1336–1646 CE). There are

numerous manuscripts and inscriptions containing Nandinagari text. This script was

also used for writing Kannada in Karnataka.

 With minor historical exceptions, Nandinagari is an abugida written from

left to right where there is a consonant plus an inherent vowel (usually the sound /

a/), similar to Devanagari. The absence of the inherent vowel is frequently marked

with a virama. The virama sign that suppresses the inherent vowel of the consonant

is a combining character.

 These are an inherent feature of Nandinagari letters, but their

behavior differs from headstrokes in modern Devanagari. Headstroke connections in

Nandinagari generally are restricted to an aksara (orthographic syllable) and do not

extend to neighboring syllables. The headstroke connects vowel or consonant letters

and spacing dependent vowels of an aksara, while spaces separate individual

aksaras.

 There are 12 vowel letters in the range U+119A0..U+119AD and 11 dependent

vowel signs in the range U+119D1..U+119DD. U+119D2 NANDINAGARI VOWEL SIGN I

is positioned at the top-left edge of letters that have headstrokes. For other letters

U+119D2 hangs above the top-left portion of the body. However, the style of writing

the sign varies considerably, particularly in handwriting.

 There are 35 consonant letters. U+119D0 NANDINAGARI LETTER RRA

appears to have been introduced in the 11th century for transcribing the Kannada

letter RRA, and is not part of the traditional repertoire of Nandinagari.

U+119E0 NANDINAGARI SIGN VIRAMA has two functions, similar to the

corresponding Devanagari character. Used as a halanta, it marks the absence of the

inherent vowel of a consonant letter. U+119E0 is also a format character used to

produce conjuncts.

U+119DE NANDINAGARI SIGN ANUSVARA indicates nasalization.

It is placed to the right of a base letter or right-side vowel sign. U+119DF NANDINA‐

GARI SIGN VISARGA represents post-vocalic aspiration in words of Sanskrit origin.

15.13 Nandinagari

15.13.1 Nandinagari: U+119A0–U+119FF

Structure.

Headstrokes.

Vowels.

Consonants.

Virama.

Vowel Modifiers.

South and Central Asia-IV 750 15.13 Nandinagari

U+119E1 NANDINAGARI SIGN AVAGRAHA marks the elision of word-

initial a in Sanskrit as a result of sandhi. The auspicious sign U+119E2 NANDINAGARI

SIGN SIDDHAM indicates an invocation at the beginning of documents.

U+119E3 NANDINAGARI HEADSTROKE is used as a sign of spacing or

joining a word. It may connect a word that is broken on account of imperfections on

a writing surface. U+119E3 can also serve as a gap filler. Nandinagari uses the danda

and double danda marks encoded in the Devanagari block.

 The Nandinagari digits are glyph variants of the Kannada digits

U+0CE6..U+0CEF. No script specific digits are encoded for Nandinagari.

Other Signs.

Punctuation.

Digits.

South and Central Asia-IV 751 15.13 Nandinagari

The Grantha script descends from Brahmi. The modern form is chiefly used to write

the Sanskrit language, including Vedic Sanskrit. It is used primarily in Tamil Nadu,

and to a lesser extent in Sri Lanka and other parts of South India.

The Grantha script is frequently mixed with the Tamil script to write Sanskrit words.

Grantha has also been used to write the Sanskrit words of Tamil Manipravalam—a

mixed Sanskrit-Tamil language—though this usage has become rare. In addition,

Grantha characters may occasionally be employed with the Tamil script in the

writing systems of minority languages of southern India.

Historically, intermediate forms which gave rise to the Grantha script are attested as

of the fourth century CE. The earliest examples are found in inscriptions of the early

Pallava kings who ruled over parts of what is currently northern Tamil Nadu and

southern Andhra Pradesh. Modern Grantha, which this encoding represents, belongs

to the period after the thirteenth century CE.

Modern Grantha is frequently used by Tamil speakers to represent Sanskrit because

Grantha’s large set of letters can represent all the sounds of Sanskrit without the use

of diacritical marks. The Tamil script has a smaller repertoire of letters that requires

diacritical marks to represent Sanskrit directly. This use of diacritical marks often

leads to confusion regarding the pronunciation of Sanskrit when written in the Tamil

script.

Although the Grantha script is visually similar to Tamil, its structure is similar to

other Indic scripts that are used to write Sanskrit. Written Sanskrit requires support

for stacked consonant structures.

 Some consonant clusters are stacks, some consonant structures

are a combination of ligatures and stacks, and some are just ligatures. Ligatures are

often used instead of stacks, and consonant clusters are frequently written as a

combination of ligatures and stacking.

The typical stack height found in print in non-Vedic Sanskrit is two elements, but it is

three in Vedic Sanskrit. Stacks, like ligatures, are equivalent to single consonants for

the purpose of application of vowel signs.

Instances requiring more than three elements in a stack require special handling. In

these cases, the initial elements are pushed out of the consonant stack and may form

15.14 Grantha

15.14.1 Grantha: U+11300–U+1137F

15.14.2 Rendering Grantha

Consonant Clusters.

South and Central Asia-IV 752 15.14 Grantha

their own stacks. Such special cases are illustrated in Figure 15-3. In this situation, a

single phonological consonant cluster followed by a vowel may be represented by

more than one orthographic cluster.

two elements → two-level stack

three elements → three-level stack

four elements → vowelless element + three-level stack

five elements → vowelless two-level stack + three-level stack

six elements → vowelless three-level stack + three-level stack

 Grantha follows the same virama model as Telugu and Kannada, in which

the sequence consonant + virama should be rendered as the vowelless form of the

consonant in the desired orthographic style. For example, in the prevalent ortho‐

graphic style used in modern printing, ta, na, and ma consistently fuse with the

virama; ra and la superficially connect with it, and the virama stands apart for all

other consonants, as shown in Table 15-9.

Fused

ta + virama + →
na + virama + →
ma + virama + →
Connected

ra + virama + →
la + virama + →
Unconnected

ka + virama + →
tta + virama + →

These visual distinctions in the rendering of explicit viramas also apply to the various

ligated conjuncts of Grantha.

 There are two forms of the au vowel sign: U+11357 GRANTHA AU LENGTH

MARK is the modern one-part form, while the two-part form U+1134C GRANTHA

VOWEL SIGN AU, is somewhat archaic, but is found in manuscripts.

Only two vowel signs touch their base consonant in printed Grantha: U+1133F

GRANTHA VOWEL SIGN I and U+11340 GRANTHA VOWEL SIGN II. U+11347 GRANTHA

VOWEL SIGN EE and U+11348 GRANTHA VOWEL SIGN AI are rendered to the left of

their base. U+1134B GRANTHA VOWEL SIGN OO and the archaic U+1134C GRANTHA

Figure 15-3. Splitting Large Conjunct Stacks in Grantha

Virama.

Table 15-9. Rendering of Explicit Virama Forms in Grantha

Vowels.

South and Central Asia-IV 753 15.14 Grantha

VOWEL SIGN AU are two-part vowels with one part placed to the left of the base and

one part to the right. All other vowel signs are placed to the right of the base.

Manuscripts written in Grantha will show archaic ligatures of consonants with vowel

signs. The vowel signs U+11362 GRANTHA VOWEL SIGN VOCALIC L and U+11363

GRANTHA VOWEL SIGN VOCALIC LL are sometimes placed below and sometimes

placed to the right of the base consonant. In contemporary printing practice, vowel

signs are placed to the right.

 Grantha uses the pluta sign to denote vowel lengthening. The pluta is not in

current use, but it is found in Vedic manuscripts. The nukta is not used to write

Sanskrit, but is used to transcribe words from other languages, such as Irula.

 Grantha uses a number of cantillation marks to represent tone,

stress, and breathing in Vedic texts. These marks include the twelve marks encoded

in the Grantha block in the range from U+11366..U+11374, and many encoded in

other blocks as well, including those listed in Table 15-10.

Generic Vedic Accents

0951 DEVANAGARI STRESS SIGN UDATTA

0952 DEVANAGARI STRESS SIGN ANUDATTA

Samavedic Marks

1CD0 VEDIC TONE KARSHANA

1CD2 VEDIC TONE PRENKHA

1CD3 VEDIC SIGN NIHSHVASA

20F0 COMBINING ASTERISK ABOVE

Additional Marks

1CF2 VEDIC SIGN ARDHAVISARGA

1CF3 VEDIC SIGN ROTATED ARDHAVISARGA

1CF4 VEDIC TONE CANDRA ABOVE

1CF8 VEDIC TONE RING ABOVE

1CF9 VEDIC TONE DOUBLE RING ABOVE

These nonspacing marks are normally applied to independent vowels, to consonants

with an inherent vowel, and to consonants with vowel signs. Sometimes they are also

applied to dead consonants which are displayed with a visible virama.

The preferred placement of svara marks in Grantha is horizontally centered relative

to the syllable. These marks should not extend beyond the horizontal span of the

base syllable. The svara marks can be applied to either syllables or digits, and used in

combination with each other.

Signs.

Cantillation Marks.

Table 15-10. Additional Svara Marks used in Grantha

South and Central Asia-IV 754 15.14 Grantha

Danda and double danda marks used with Grantha are found in the

Devanagari block; see Section 12.1, Devanagari.

 Line breaks may occur after every orthographic syllable. Hyphens

are not used.

 Grantha makes use of the Tamil digits U+0BE6 through U+0BEF, as well

as the Tamil historical numerals for ten, one hundred, and one thousand at

U+0BF0..U+0BF2. Grantha also uses some numbers and symbols from the Tamil

Supplement block in the range U+11FC0..U+11FFF, that contains a set of historic

fractions and other symbols.

Punctuation.

Line Breaking.

Numbers.

South and Central Asia-IV 755 15.14 Grantha

Dives Akuru or Divehi Akuru was a script used to write the Dhivehi language on the

Maldives from the 9th to the 20th centuries. Dives Akuru literally means “islanders’

letters.” The script is most closely related to a medieval form of the Sinhala script. In

the 18th century, the Thaana script appeared alongside Dives Akuru. By the turn of

the 19th century, Thaana had replaced Dives Akuru as the regular script for Dhivehi.

However, individuals and scholars continued to study and use Dives Akuru into the

20th century.

Today, the script style from the 12th to the 14th centuries is termed evēla akuru, while

the script style after the 14th century is called dives akuru. Both styles are unified in

the Dives Akuru repertoire. Because no traditional documentation of the letter inven‐

tory exists for the script, the repertoire is based on texts found on copper plates,

paper, and wooden boards, with the broadest repertoire found in the evēla akuru

documents. The different styles and specific variants of characters should be handled

through fonts.

 Dives Akuru is an abugida, written left to right. Like other Brahmi-

derived scripts, each consonant letter contains an inherent vowel a. To indicate the

bare consonant, U+1193D DIVES AKURU SIGN HALANTA is used. Consonant clusters

are typically rendered by conjuncts.

 Independent vowels are represented either by the distinctive vowel letters

(U+11900..U+11909) or by an orthographic syllable composed of U+11925 DIVES

AKURU LETTER YA, which acts as a vowel carrier, and the dependent vowel sign.

 In general, consonant clusters are rendered as conjuncts in Dives Akuru.

Most conjuncts consist of clusters of two consonants, but conjuncts with up to three

consonants are attested. Four conjoining forms are encoded atomically: two are

cluster-initial (U+11941 DIVES AKURU INITIAL RA and U+1193F DIVES AKURU

PREFIXED NASAL SIGN) and two are syllable medial (U+11940 DIVES AKURU MEDIAL

YA and U+11942 DIVES AKURU MEDIAL RA).

The conjunct structure visually consists of letters that are joined in a distinctive liga‐

ture or as a touching ligature. A touching ligature is produced when writing letters

together without spaces, so they touch at adjacent edges.

The script uses U+1193E DIVES AKURU VIRAMA to create conjuncts, but no virama is

required when using the four atomically-encoded conjoining form characters. Vowel

letters may participate in clustering, especially when the second member of the

15.15 Dives Akuru

15.15.1 Dives Akuru: U+11900–U+1195F

Structure.

Vowels.

Conjuncts.

South and Central Asia-IV 756 15.15 Dives Akuru

cluster appears in a touching ligature, right after the word boundary. Vowel signs are

encoded after the conjunct.

 In Dives Akuru, U+1193D DIVES AKURU SIGN HALANTA has multiple

functions. As a vowel-killer, the halanta generally attaches to the right-hand side of a

letter, and forms a ligature with its base. While the halanta typically suppresses a

consonant’s inherent vowel, in some cases the sequence <consonant, halanta> is

pronounced as a syllable with /u/. In addition, the consonants ka, na, tta, and ta with

an attached halanta may, in certain cases, be rendered as superscripts.

 Post-vocalic nasalization is indicated using U+1193C DIVES

AKURU SIGN CANDRABINDU and U+1193B DIVES AKURU SIGN ANUSVARA.

U+11943 DIVES AKURU SIGN NUKTA is used to transcribe sounds that are not

native to Dhivehi. The nukta is written below the letter which most closely approxi‐

mates the foreign sound.

 Script-specific digits are used for Dives Akuru. They are encoded in the range

U+11950..U+11959.

 Three marks of punctuation are encoded for representing Dives Akuru

text. A script-specific double danda is encoded at U+11944. Another punctuation

mark, U+11945 DIVES AKURU GAP FILLER, is used to fill space at the ends of lines or

to signify the end of a document. U+11946 DIVES AKURU END OF TEXT MARK

appears at the end of a document, and is often accompanied by U+11945 DIVES

AKURU GAP FILLER.

 Line breaks may occur after any orthographic syllable. Hyphens are

not used. Fillers may be used to fill space at the ends of lines, as described in the

description of punctuation.

Halanta.

Nasalization Signs.

Nukta.

Digits.

Punctuation.

Line Breaking.

South and Central Asia-IV 757 15.15 Dives Akuru

The Ahom script is used in northeast India, primarily to write the Tai Ahom

language. The oldest surviving Ahom text is the “Snake Pillar” inscription which was

inscribed in the time of King Siuw Hum Miung (1497-1539). The script also appears

on other stone inscriptions, coins, brass plates and a large corpus of manuscripts.

Although the use of the Tai Ahom language declined in the late 17th century, tradi‐

tional priests used the language and the Ahom script in their religious practices

throughout the 19th century.

Modern use of the Ahom script is considered to have begun in 1920 with the publica‐

tion of an Ahom-Assamese-English dictionary. This was followed by publication of

other dictionaries, word lists, and primers. The publication of Ahom texts has

progressed more rapidly in recent decades, thanks to the availability of computers.

Today there are large numbers of books published in Assam that contain some Ahom

content.

 Like most other Brahmi-derived scripts, Ahom is an abugida, for which

consonant letters are associated with an inherent vowel “a”. The encoding also

includes three medial consonants, in the range U+1171D..U+1171F, which follow and

graphically attach to an initial consonant letter. In addition, Ahom has a visible

virama that functions as a vowel killer, U+1172B AHOM SIGN KILLER. The use of the

killer is only obligatory in modern Ahom.

 Ahom has no independent vowels, but instead uses U+11712 AHOM LETTER

A followed by the corresponding dependent vowel sign (or signs).

 Ahom has closed syllables, and optional medials may occur after

initial consonants. Vowels can occur in sequences of U+11712 AHOM LETTER A and

dependent vowel signs, or a series of dependent vowel signs. Final consonants take

U+1172B AHOM SIGN KILLER.

 The original Ahom numeral system was not a decimal radix system;

however, in modern use a digit zero has been added, and the digits can be used to

express decimal radix numerals. In traditional use, the digits may also be mixed with

word spellings when writing out numbers.

The forms of the Ahom digits are derived from several sources. U+11732 AHOM DIGIT

TWO is visually identical to U+11701 AHOM LETTER KHA and probably derives from

it. The digits 3, 4, and 5 are usually expressed by the Ahom words for those numbers

spelled out. U+1173B AHOM NUMBER TWENTY is also just the Ahom word for 20

spelled out.

15.16 Ahom

15.16.1 Ahom: U+11700–U+1174F

Structure.

Vowels.

Syllabic Structure.

Numerals.

South and Central Asia-IV 758 15.16 Ahom

 Ahom uses two punctuation characters which function similarly to

dandas: U+1173C AHOM SIGN SMALL SECTION and U+1173D AHOM SIGN SECTION.

The script also uses a paragraph mark, U+1173E AHOM SIGN RULAI, and a symbol

that indicates an exclamation, U+1173F AHOM SYMBOL VI.

Modern Ahom uses spaces to indicate word boundaries. This convention is seen in

some early Ahom manuscripts, but is not consistent in the early material.

 A number of variant letterforms are found in manuscripts, but are

no longer used in modern Ahom. Specific characters are encoded to represent the

historic variants of ta, ga, ba, and the medial ligating ra.

Punctuation.

Variant Forms.

South and Central Asia-IV 759 15.16 Ahom

The Sora Sompeng script is used to write the Sora language. Sora is a member of the

Munda family of languages, which, together with the Mon-Khmer languages, makes

up Austro-Asiatic.

The Sora people live between the Oriya- and Telugu-speaking populations in what is

now the Odisha-Andhra border area.

Sora Sompeng was devised in 1936 by Mangei Gomango, who was inspired by the

vision he had of the 24 letters. The script was promulgated as part of a comprehen‐

sive cultural program, and was offered as an improvement over IPA-based scripts

used by linguists and missionaries, and the Telugu and Oriya scripts used by Hindus.

Sora Sompeng is used in religious contexts, and is published in a variety of printed

materials.

 The Sora Sompeng script is an abugida. The consonant letters

contain an inherent vowel. There are no conjunct characters for consonant clusters,

and there is no visible vowel killer to show the deletion of the inherent vowel. The

reader must determine the presence or absence of the inherent schwa based on

recognition of each word. The character repertoire does not match the phonemic

repertoire of Sora very well.

U+110E4 SORA SOMPENG LETTER IH is used for both [i] and [ɨ], and U+110E6 SORA

SOMPENG LETTER OH is used for both [o] and [ɔ], for instance. The glottal stop is

written with U+110DE SORA SOMPENG LETTER HAH, and the sequence of U+110DD

SORA SOMPENG LETTER RAH and U+110D4 SORA SOMPENG LETTER DAH is used to

write retroflex [ɽ]. There is also an additional “auxiliary” U+110E8 SORA SOMPENG

LETTER MAE used to transcribe foreign sounds.

 Consonant letter names for Sora Sompeng are derived by adding

[aʔa] (written ah) to the consonant.

 Sora Sompeng uses Western-style punctuation.

 Letters and digits behave as in Latin and other alphabetic scripts.

15.17 Sora Sompeng

15.17.1 Sora Sompeng: U+110D0–U+110FF

Encoding Structure.

Character Names.

Punctuation.

Line Breaking.

South and Central Asia-IV 760 15.17 Sora Sompeng

Tulu-Tigalari was used to primarily write Sanskrit religious texts, but a small number

of Tulu and Kannada language texts are written using this script. Tulu-Tigalari is

influenced by scripts such as medieval Grantha, Vatteluttu, and Telugu-Kannada.

The script has been used since at least 1250 CE.

 The structure of the Tulu-Tigalari script is similar to that of other

Brahmic scripts. Each consonant letter contains an inherent vowel a. It is an abugida

that makes use of a virama. The script is written from left to right.

 There are 36 consonants in Tulu-Tigalari, encoded in the range

U+11392..U+113B5. Two of the consonants represent Dravidian sounds and are quite

rare: U+113B4 TULU-TIGALARI LETTER RRA and U+113B5 TULU-TIGALARI

LETTER LLLA.

 Tulu-Tigalari has 14 independent vowels, encoded in the range

U+11380..U+11391. These include the two diphthongs, U+1138E TULU-TIGALARI

LETTER AI and U+11391 TULU-TIGALARI LETTER AU. Similarly to many other Indic

scripts, these 14 vowels are encoded atomically.

The alternate or rare forms of vowel letters i, u, vocalic r, vocalic rr and vocalic l

should be handled as sequences, as shown in Figure 15-4.

11382 + 113B8 →

11382 + 113BC →

11384 + 113BC →

11384 + 113C9 →

113D1 + 11386 →

113D1 + 11387 →

113D1 + 11388 →

 All independent vowels except for U+11380 TULU-

TIGALARI LETTER A have a corresponding dependent vowel sign, encoded in the

15.18 Tulu-Tigalari

15.18.1 Tulu-Tigalari: U+11380–U+113FF

Structure.

Consonant Letters.

Independent Vowels.

Figure 15-4. Rare Forms of Tulu-Tigalari Vowels

Dependent Vowel Signs.

South and Central Asia-IV 761 15.18 Tulu-Tigalari

range U+113B8..U+113C8. These signs are positioned to the left, right, or below

consonants and conjuncts, replacing the inherent vowel a.

Four Tulu-Tigalari vowel signs are rendered as ligatures which appear below the

consonant or conjunct and ligate to the right. These are U+113BB TULU-TIGALARI

VOWEL SIGN U, U+113BC TULU-TIGALARI VOWEL SIGN UU, U+113BD TULU-

TIGALARI VOWEL SIGN VOCALIC R, and U+113BE TULU-TIGALARI VOWEL SIGN

VOCALIC RR.

Additionally, the vowel signs u and uu change their shape depending on the conso‐

nant or conjunct they combine with. Some consonant plus vowel sign sequences can

have alternate forms. A few of the many possible ligatures are shown in Figure 15-5.

pa + sign u → pu

cha + sign u → chu

ka + sign u → ku

The Tulu-Tigalari script encodes several two-part vowel characters. U+113C7

TULU-TIGALARI VOWEL SIGN OO and U+113C8 TULU-TIGALARI VOWEL SIGN AU

are split vowel signs that appear both before and after a character or conjunct. For a

detailed discussion of the use of two-part vowels, see “Two-Part Vowels” in

Section 12.6, Tamil.

 Some of the independent and dependent vowels can be

visually analyzed as consisting of multiple parts corresponding to the shapes of other

vowels, as shown in Figure 15-6. These multipart vowels have canonical decomposi‐

tions, so that the atomic characters and the corresponding sequences are canonical

equivalents. The atomic characters are the typical representation used when gener‐

ating text.

11383 ≡ 11382 + 113C9

11385 ≡ 11384 + 113BB

1138E ≡ 1138B + 113C2

11391 ≡ 11390 + 113C9

113C5 ≡ 113C2 + 113C2

113C7 ≡ 113C2 + 113B8

113C8 ≡ 113C2 + 113C9

Figure 15-5. Examples of Ligatures in Tulu-Tigalari

Canonical Equivalences.

Figure 15-6. Tulu-Tigalari Canonical Sequences

South and Central Asia-IV 762 15.18 Tulu-Tigalari

U+113C9 TULU-TIGALARI AU LENGTH MARK is not used on its

own as a complete vowel sign. This mark is used to render the two-part vowel sign au

and the letter ii.

The U+113CA TULU-TIGALARI SIGN CANDRA ANUNASIKA mark is analogous to

the candrabindu found in other Indic scripts. It can combine with all letters and

vowel signs.

A pure nasal sound is represented by U+113CC TULU-TIGALARI SIGN ANUSVARA.

U+113CD TULU-TIGALARI SIGN VISARGA indicates a voiceless glottal fricative. Both

anusvara and visarga are rendered to the right of the affected character.

A spacing mark, U+113B7 TULU-TIGALARI SIGN AVAGRAHA, is used when rendering

Sanskrit texts. U+113D3 TULU-TIGALARI SIGN PLUTA is used to denote vowel

lengthening.

U+113E1 TULU-TIGALARI VEDIC TONE SVARITA and U+113E2 TULU-TIGALARI

VEDIC TONE ANUDATTA are tone marks used in the representation of Vedic text in

Tulu-Tigalari. These two combining marks are centered directly above or below a

cluster, respectively.

U+113CE TULU-TIGALARI SIGN VIRAMA is an inherent

vowel killer, and is also used in combination with other vowels to represent the Tulu

vowels ŭ [ɯ] and ŭ̄ [ɯː]. Consequently, it can appear after vowel signs. Figure 15-7

shows the usual convention. The virama always appears at the end of and to the top

right of a cluster.

a + virama → ŭ

ka + virama → k(ŭ)

aa + virama → ŭ̄

ka + sign aa + virama → kŭ̄

Unlike in Devanagari or Kannada, viramas in Tulu-Tigalari do not form conjuncts.

Instead, U+113D0 TULU-TIGALARI CONJOINER is used for the formation of

conjuncts. Consonants can combine horizontally, vertically, or have a combination of

both, as shown in Figure 15-8. There is a preference for horizontal ligatures (where

attested) over stacked vertical conjuncts. U+113CF TULU-TIGALARI SIGN LOOPED

VIRAMA is used to form the looped virama ligatures. It is only attested for ka, ga, tta,

ta, and na (and some conjuncts that end with these consonants). The looped virama

is tightly bound to the preceding character and does not apply at a syllable level.

Conjunct sequences that end with a looped virama are rare.

Various Signs.

Viramas and Conjoiner.

Figure 15-7. Examples of Vowels ŭ and ŭ̄ in Tulu-Tigalari

South and Central Asia-IV 763 15.18 Tulu-Tigalari

ka + virama + ka → k(ŭ)ka

ka + conjoiner + ka → kka

ka + conjoiner + kha → kkha

ka + looped virama + ka → kka

ka + looped virama + conjoiner + ka → kka

ka + conjoiner + ka + looped virama → kk

The common way of representing gemination is by conjuncts. However, a gemina‐

tion mark is also used in many manuscripts. The U+113D2 TULU-TIGALARI GEMI‐

NATION MARK is placed after the base letter. Other combining vowel signs are added

after the gemination mark.

U+113D1 TULU-TIGALARI REPHA is used to indicate a ra without the

inherent vowel that precedes a vowel, consonant, or semi-vowel. The repha is shown

in the code charts with a dashed box to emphasize its unusual behavior in interacting

with the following consonant.

The repha most commonly displays as a short vertical line above the base consonant

or conjunct, as shown in Figure 15-9.

repha + ka → rka

However, repha typically ligates with ma, ya, or va, as shown in Figure 15-10.

repha + ma → rma

repha + ya → rya

repha + va → rva

When repha and a virama co-occur in a syllable, the repha visually ligates with the

virama, as shown in Figure 15-11.

Figure 15-8. Conjuncts and Viramas in Tulu-Tigalari

Repha.

Figure 15-9. Repha Rendered as a Short Vertical Line

Figure 15-10. Repha Ligating with ma, ya, or va

South and Central Asia-IV 764 15.18 Tulu-Tigalari

repha + ka + virama → rk(ŭ)

 The Kannada digits U+0CE6..U+0CEF should be employed to represent

digits in Tulu-Tigalari.

 Tulu-Tigalari has script-specific forms of the danda and double danda

punctuation marks: U+113D4 TULU-TIGALARI DANDA and U+113D5 TULU-

TIGALARI DOUBLE DANDA.

U+113D7 TULU-TIGALARI SIGN OM PUSHPIKA can either represent the om sound or

it can be used as an indicator for beginnings, pauses, endings, or space fillers.

Although om pushpika and U+113D8 TULU-TIGALARI SIGN SHRII PUSHPIKA may

superficially resemble the corresponding phonetic syllables, they are used as space

fillers and for other decorative purposes.

Figure 15-11. Repha Ligating with Virama

Digits.

Punctuation.

South and Central Asia-IV 765 15.18 Tulu-Tigalari

Chapter 16

Southeast Asia-I
Thailand, Laos, Myanmar, Cambodia,

Vietnam

This chapter documents the scripts of mainland Southeast Asia, also known as the

Indochinese Peninsula.

Most scripts of Southeast Asia described in this chapter are written from left to right;

many use no interword spacing but use spaces or marks between phrases. They are

mostly abugidas, but with various idiosyncrasies that distinguish them from the

scripts of South Asia.

Thai and Lao are the official scripts of Thailand and Laos, respectively, and are

closely related. These scripts are unusual for Brahmi-derived scripts in the Unicode

Standard, because for various implementation reasons they depart from logical order

in the representation of consonant-vowel sequences. Vowels that occur to the left side

of their consonant are represented in visual order before the consonant in a string,

even though they are pronounced afterward.

Myanmar is the official script of Myanmar, and is used to write the Burmese

language, as well as many minority languages of Myanmar and Northern Thailand. It

has a mixed encoding model, making use of both a virama and a killer character, and

having explicitly encoded medial consonants.

The Khmer script is used for the Khmer and related languages in the Kingdom of

Cambodia.

The term “Tai” refers to a family of languages spoken in Southeast Asia, including

Thai, Lao, and Shan. This term is also part of the name of a number of scripts

encoded in the Unicode Standard. The Tai Le script is used to write the language of

the same name, which is spoken in south central Yunnan (China). The New Tai Lue

script, also known as Xishuangbanna Dai, is unrelated to the Tai Le script, but is also

used in south Yunnan. New Tai Lue is a simplified form of the more traditional Tai

Tham script, which is also known as Lanna. The Tai Tham script is used for the

Northern Thai, Tai Lue, and Khün languages. The Tai Viet script is used for the Tai

Dam, Tai Dón, and Thai Song languages of northwestern Vietnam, northern Laos,

766

and central Thailand. Unlike the other Tai scripts, the Tai Viet script makes use of a

visual order model, similar to that for the Thai and Lao scripts.

Kayah Li is a relatively recently invented script, used to write the Kayah Li languages

of Myanmar and Thailand. Although influenced by the Myanmar script, Kayah Li is

basically an alphabet in structure.

Cham is a Brahmi-derived script used by the Austronesian language Cham, spoken

in the southern part of Vietnam and in Cambodia. It does not use a virama. Instead,

the encoding makes use of medial consonant signs and explicitly encoded final

consonants.

Pahawh Hmong is an alphabetic script devised for writing the Hmong language in

the latter half of the 20th century. Its development includes several revisions. The

script is used by Hmong communities in several countries, including the United

States and Australia.

Nyiakeng Puachue Hmong is a writing system created in the 1980s to write the White

Hmong and Green Hmong languages. It is also called the Ntawv Txawjvaag or Cher‐

vang script, and was devised for use in the United Christians Liberty Evangelical

church in the United States. The script is written from left to right, and is reported to

be used in Laos, Thailand, Vietnam, France and Australia.

The Pau Cin Hau alphabet is a liturgical script of the Laipian religious tradition,

which emerged in the Chin Hills region of present-day Chin State, Myanmar at the

turn of the 20th century.

Hanifi Rohingya is an alphabetic script used to write the Rohingya language, an

Indo-Aryan language spoken by one million people primarily in Myanmar and

Bangladesh. The script was developed in the 1980s and shows Arabic influence in its

general appearance and structure.

Southeast Asia-I 767

The Thai script is used to write Thai and other Southeast Asian languages, such as

Kuy, Lanna Tai, and Pali. It is a member of the Indic family of scripts descended from

Brahmi. Thai modifies the original Brahmi letter shapes and extends the number of

letters to accommodate features of the Thai language, including tone marks derived

from superscript digits. At the same time, the Thai script lacks the conjunct conso‐

nant mechanism and independent vowel letters found in most other Brahmi-derived

scripts. As in all scripts of this family, the predominant writing direction is from left

to right.

 Thai layout in the Unicode Standard is based on the Thai Industrial Stan‐

dard 620-2529, and its updated version 620-2533.

 In common with most Brahmi-derived scripts, each Thai

consonant letter represents a syllable possessing an inherent vowel sound. For Thai,

that inherent vowel is /o/ in the medial position and /a/ in the final position.

The consonants are divided into classes that historically represented distinct sounds,

but in modern Thai indicate tonal differences. The inherent vowel and tone of a

syllable are then modified by addition of vowel signs and tone marks attached to the

base consonant letter. Some of the vowel signs and all of the tone marks are rendered

in the script as diacritics attached above or below the base consonant. These

combining signs and marks are encoded after the modified consonant in the memory

representation.

Most of the Thai vowel signs are rendered by full letter-sized inline glyphs placed

either before (that is, to the left of), after (to the right of), or around (on both sides of)

the glyph for the base consonant letter. In the Thai encoding, the letter-sized glyphs

that are placed before (left of) the base consonant letter, in full or partial representa‐

tion of a vowel sign, are, in fact, encoded as separate characters that are typed and

stored before the base consonant character. This encoding for left-side Thai vowel

sign glyphs (and similarly in Lao and in Tai Viet) differs from the conventions for all

other Indic scripts, which uniformly encode all vowels after the base consonant. The

difference is necessitated by the encoding practice commonly employed with Thai

character data as represented by the Thai Industrial Standard.

The glyph positions for Thai syllables are summarized in Table 16-1.

Syllable Glyphs Code Point Sequence

16.1 Thai

16.1.1 Thai: U+0E00–U+0E7F

Standards.

Encoding Principles.

Table 16-1. Glyph Positions in Thai Syllables

Southeast Asia-I 768 16.1 Thai

ka 0E01 0E30

ka: 0E01 0E32

ki 0E01 0E34

ki: 0E01 0E35

ku 0E01 0E38

ku: 0E01 0E39

ku’ 0E01 0E36

ku’: 0E01 0E37

ke 0E40 0E01 0E30

ke: 0E40 0E01

kae 0E41 0E01 0E30

kae: 0E41 0E01

ko 0E42 0E01 0E30

ko: 0E42 0E01

ko’ 0E40 0E01 0E32 0E30

ko’: 0E01 0E2D

koe 0E40 0E01 0E2D 0E30

koe: 0E40 0E01 0E2D

kia 0E40 0E01 0E35 0E22

ku’a 0E40 0E01 0E37 0E2D

kua 0E01 0E31 0E27

kaw 0E40 0E01 0E32

koe:y 0E40 0E01 0E22

kay 0E44 0E01

kay 0E43 0E01

kam 0E01 0E33

kri 0E01 0E24

 The canonical combining classes assigned to

tone marks (ccc = 107) and to other combining characters displayed above (ccc = 0)

do not fully account for their typographic interaction.

For the purpose of rendering, the Thai combining marks above (U+0E31,

U+0E34..U+0E37, U+0E47..U+0E4E) should be displayed outward from the base

character they modify, in the order in which they appear in the text. In particular, a

sequence containing <U+0E48 THAI CHARACTER MAI EK, U+0E4D THAI CHAR‐

ACTER NIKHAHIT> should be displayed with the nikhahit above the mai ek, and a

sequence containing <U+0E4D THAI CHARACTER NIKHAHIT, U+0E48 THAI CHAR‐

ACTER MAI EK> should be displayed with the mai ek above the nikhahit.

Rendering of Thai Combining Marks.

Southeast Asia-I 769 16.1 Thai

This does not preclude input processors from helping the user by pointing out or

correcting typing mistakes, perhaps taking into account the language. For example,

because the string <mai ek, nikhahit> is not useful for the Thai language and is likely

a typing mistake, an input processor could reject it or correct it to <nikhahit, mai

ek>.

When the character U+0E33 THAI CHARACTER SARA AM follows one or more tone

marks (U+0E48..U+0E4B), the nikhahit that is part of the sara am should be

displayed below those tone marks. In particular, a sequence containing <U+0E48

THAI CHARACTER MAI EK, U+0E33 THAI CHARACTER SARA AM> should be

displayed with the mai ek above the nikhahit.

 Thai uses a variety of punctuation marks particular to this script.

U+0E4F THAI CHARACTER FONGMAN is the Thai bullet, which is used to mark items

in lists or appears at the beginning of a verse, sentence, paragraph, or other textual

segment. U+0E46 THAI CHARACTER MAIYAMOK is used to mark repetition of

preceding letters. U+0E2F THAI CHARACTER PAIYANNOI is used to indicate elision or

abbreviation of letters; it is itself viewed as a kind of letter, however, and is used with

considerable frequency because of its appearance in such words as the Thai name for

Bangkok. Paiyannoi is also used in combination (U+0E2F U+0E25 U+0E2F) to

create a construct called paiyanyai, which means “et cetera, and so forth.” The Thai

paiyanyai is comparable to its analogue in the Khmer script: U+17D8 KHMER SIGN

BEYYAL.

U+0E5A THAI CHARACTER ANGKHANKHU is used to mark the end of a long

segment of text. It can be combined with a following U+0E30 THAI CHARACTER

SARA A to mark a larger segment of text; typically this usage can be seen at the end of

a verse in poetry. U+0E5B THAI CHARACTER KHOMUT marks the end of a chapter or

document, where it always follows the angkhankhu + sara a combination. The Thai

angkhankhu and its combination with sara a to mark breaks in text have analogues

in many other Brahmi-derived scripts. For example, they are closely related to

U+17D4 KHMER SIGN KHAN and U+17D5 KHMER SIGN BARIYOOSAN, which are

themselves ultimately related to the danda and double danda of Devanagari.

 Thai words are not separated by spaces. Instead, text is laid out with spaces

introduced at text segments where Western typography would typically make use of

commas or periods. However, Latin-based punctuation such as comma, period, and

colon are also used in text, particularly in conjunction with Latin letters or in format‐

ting numbers, addresses, and so forth. If explicit word break or line break opportuni‐

ties are desired—for example, for the use of automatic line layout algorithms—the

character U+200B ZERO WIDTH SPACE should be used to place invisible marks for

such breaks. The ZERO WIDTH SPACE is ignored when justification or letter spacing is

applied to the text. See Table 23-2.

Thai Punctuation.

Spacing.

Southeast Asia-I 770 16.1 Thai

 The Thai script is frequently used to

write Pali and Sanskrit. When so used, consonant clusters are represented by the

explicit use of U+0E3A THAI CHARACTER PHINTHU (virama) to mark the removal of

the inherent vowel. There is no conjoining behavior, unlike in other Indic scripts.

U+0E4D THAI CHARACTER NIKHAHIT is the Pali nigghahita and Sanskrit anusvara.

U+0E30 THAI CHARACTER SARA A is the Sanskrit visarga. U+0E24 THAI CHAR‐

ACTER RU and U+0E26 THAI CHARACTER LU are vocalic /r/ and /l/, with U+0E45

THAI CHARACTER LAKKHANGYAO used to indicate their lengthening.

 The Patani Malay orthography makes use of additional diacritics. A

line below a consonant indicates that its sound differs from Thai. The line below is

represented using U+0331 COMBINING MACRON BELOW. Nasalization is indicated by

U+0303 COMBINING TILDE. Glottalization is marked with the character U+02BC

MODIFIER LETTER APOSTROPHE. The character U+02D7 MODIFIER LETTER MINUS

SIGN indicates an elision between two vowel sequences.

In Thai script, use of marks from the Combining Diacritical Marks block, such as

U+0331 COMBINING MACRON BELOW and U+0303 COMBINING TILDE, imposes addi‐

tional constraints for rendering systems. This is because the canonical ordering of

these marks with respect to Thai vowels and tone marks may put them in an order

that requires rearrangement during rendering.

In particular, when used as a consonant diacritic, U+0331 COMBINING MACRON

BELOW can occur with vowel signs U+0E38 THAI CHARACTER SARA U or U+0E39

THAI CHARACTER SARA UU. These vowel signs have a fixed-position canonical

combining class of 103. A character sequence would normally be entered in the order

consonant + macron below + vowel sign. However, in normalized text, these

combining marks would be re-ordered, resulting in a sequence consonant + vowel

sign + macron below. Thai rendering implementations must ensure that the vowel

signs SARA U and SARA UU are less-closely bound to the consonant letter than conso‐

nant diacritics. In other words, SARA U and SARA UU must appear below COMBINING

MACRON BELOW in normalized text, and not vice versa.

Likewise, Thai tone marks U+0E48..U+0E4B have a fixed-position canonical

combining class of 107. If a combining mark such as U+0303 COMBINING TILDE is

used as a vowel sign, then it can potentially occur with the tone marks. Characters

would likely be entered in the order consonant + tilde + tone, but in normalized text

these would be reordered as consonant + tone + tilde. Thai rendering implementa‐

tions must ensure that the tone marks display above the combining tilde.

Thai Transcription of Pali and Sanskrit.

Patani Malay.

Southeast Asia-I 771 16.1 Thai

The Lao language and script are closely related to Thai. The Unicode Standard

encodes the characters of the Lao script in roughly the same relative order as the

Thai characters.

 Lao contains fewer letters than Thai because by 1960 it was

simplified to be fairly phonemic, whereas Thai maintains many etymological

spellings that are homonyms. Unlike in Thai, Lao consonant letters are conceived of

as simply representing the consonant sound, rather than a syllable with an inherent

vowel. The vowel [a] is always represented explicitly with U+0EB0 LAO VOWEL SIGN

A.

 Regular word spacing is not used in Lao; spaces separate phrases or

sentences instead.

 The glyph placements for Lao syllables are summarized in

Table 16-2.

Syllable Glyphs Code Point Sequence

ka 0E81 0EB0

ka: 0E81 0EB2

ki 0E81 0EB4

ki: 0E81 0EB5

ku 0E81 0EB8

ku: 0E81 0EB9

ku’ 0E81 0EB6

ku’: 0E81 0EB7

ke 0EC0 0E81 0EB0

ke: 0EC0 0E81

kae 0EC1 0E81 0EB0

kae: 0EC1 0E81

ko 0EC2 0E81 0EB0

ko: 0EC2 0E81

ko’ 0EC0 0E81 0EB2 0EB0

ko’: 0E81 0ECD

koe 0EC0 0E81 0EB4

koe: 0EC0 0E81 0EB5

16.2 Lao

16.2.1 Lao: U+0E80–U+0EFF

Encoding Principles.

Punctuation.

Glyph Placement.

Table 16-2. Glyph Positions in Lao Syllables

Southeast Asia-I 772 16.2 Lao

kia
0EC0 0E81 0EB1 0EBD
0EC0 0E81 0EA2

ku’a 0EC0 0E81 0EB7 0EAD

kua 0E81 0EBB 0EA7

kaw 0EC0 0E81 0EBB 0EB2

koe:y
0EC0 0E81 0EB5 0EBD
0EC0 0E81 0EB5 0EA2

kay 0EC4 0E81

kay 0EC3 0E81

kam 0E81 0EB3

 A few additional letters in Lao have no match in Thai:

U+0EBB LAO VOWEL SIGN MAI KON

U+0EBC LAO SEMIVOWEL SIGN LO

U+0EBD LAO SEMIVOWEL SIGN NYO

The preceding two semivowel signs are the last remnants of the system of subscript

medials, which in Myanmar retains additional distinctions. Myanmar and Khmer

include a full set of subscript consonant forms used for conjuncts. Thai no longer

uses any of these forms; Lao has just the two.

 The canonical combining classes assigned to

tone marks (ccc = 122) and to other combining characters displayed above (ccc = 0)

do not fully account for their typographic interaction.

For the purpose of rendering, the Lao combining marks above (U+0EB1,

U+0EB4..U+0EB7, U+0EBB, U+0EC8..U+0ECD) should be displayed outward from

the base character they modify, in the order in which they appear in the text. In

particular, a sequence containing <U+0EC8 LAO TONE MAI EK, U+0ECD LAO

NIGGAHITA> should be displayed with the niggahita above the mai ek, and a

sequence containing <U+0ECD LAO NIGGAHITA, U+0EC8 LAO TONE MAI EK>

should be displayed with the mai ek above the niggahita.

This does not preclude input processors from helping the user by pointing out or

correcting typing mistakes, perhaps taking into account the language. For example,

because the string <mai ek, niggahita> is not useful for the Lao language and is likely

a typing mistake, an input processor could reject it or correct it to <niggahita, mai

ek>.

When the character U+0EB3 LAO VOWEL SIGN AM follows one or more tone marks

(U+0EC8..U+0ECB), the niggahita that is part of the sara am should be displayed

below those tone marks. In particular, a sequence containing <U+0EC8 LAO TONE

Additional Letters.

Rendering of Lao Combining Marks.

Southeast Asia-I 773 16.2 Lao

MAI EK, U+0EB3 LAO VOWEL SIGN AM> should be displayed with the mai ek above

the niggahita.

 Lao words are not separated by spaces. Use of spaces and Latin-based punc‐

tuation is very similar to that of Thai. For more information, as well as the use of

U+200B ZERO WIDTH SPACE for explicit word break or line break opportunities, see

Thai Spacing.

 The Unicode character encoding includes two ligatures for

Lao: U+0EDC LAO HO NO and U+0EDD LAO HO MO. They correspond to sequences

of [h] plus [n] or [h] plus [m] without ligating. Their function in Lao is to provide

versions of the [n] and [m] consonants with a different inherent tonal implication.

 Traditionally the Lao script is not used to write

Pali and Sanskrit. The Lao consonant repertoire originally contained only the letters

needed by the modern Lao language. An extended writing system was designed in

the 1930s by Maha Sila Viravong to transcribe consonant clusters and additional

consonants of Pali. The additional characters required by the extension are listed in

Table 16-3.

Characters Note

0EBA Virama

0E86, 0E89, 0E8C, 0E8E..0E93, 0E98, 0EA0, 0EAC Consonant letters

0EA8..0EA9 Sanskrit-specific consonant letters

U+0EBA LAO SIGN PALI VIRAMA marks the removal of the inherent vowel of a

consonant letter, and does not indicate conjoining or stacking behavior. U+0EA8 LAO

LETTER SANSKRIT SHA and U+0EA9 LAO LETTER SANSKRIT SSA are used only in

Sanskrit.

Implementations should not assume transliteration mappings or a cognate relation‐

ship between all Lao and Thai characters based on their relative locations in the

blocks. For example, Pali nya, a cognate of U+0E0D THAI CHARACTER YO YING, is

encoded at U+0E8E instead of the corresponding location U+0E8D because the

latter is already occupied by Lao nyo, a phonetically related non-cognate of Thai yo

ying.

Spacing.

Lao Aspirated Nasals.

Transcription of Pali and Sanskrit.

Table 16-3. Additional Characters for Pali and Sanskrit

Southeast Asia-I 774 16.2 Lao

The Myanmar script is used to write Burmese, the majority language of Myanmar

(formerly called Burma). Variations and extensions of the script are used to write

other languages of the region, such as Mon, Karen, Kayah, Shan, and Palaung, as

well as Pali and Sanskrit. The Myanmar script was formerly known as the Burmese

script, but the term “Myanmar” is now preferred.

The Myanmar writing system derives from a Brahmi-related script borrowed from

South India in about the eighth century to write the Mon language. The first inscrip‐

tion in the Myanmar script dates from the eleventh century and uses an alphabet

almost identical to that of the Mon inscriptions. Aside from rounding of the origi‐

nally square characters, this script has remained largely unchanged to the present. It

is said that the rounder forms were developed to permit writing on palm leaves

without tearing the writing surface of the leaf.

The Myanmar script shares structural features with other Brahmi-based scripts such

as Khmer: consonant symbols include an inherent “a” vowel; various signs are

attached to a consonant to indicate a different vowel; medial consonants are attached

to the consonant; and the overall writing direction is from left to right.

 There is not yet an official national standard for the encoding of

Myanmar/Burmese. The current encoding was prepared with the consultation of

experts from the Myanmar Information Technology Standardization Committee

(MITSC) in Yangon (Rangoon). The MITSC, formed by the government in 1997,

consists of experts from the Myanmar Computer Scientists’ Association, Myanmar

Language Commission, and Myanmar Historical Commission.

 As with Indic scripts, the Myanmar encoding represents only

the basic underlying characters; multiple glyphs and rendering transformations are

required to assemble the final visual form for each syllable. Characters and combina‐

tions that may appear visually identical in some fonts, such as U+101D MYANMAR

LETTER WA and U+1040 MYANMAR DIGIT ZERO, are distinguished by their under‐

lying encoding.

 As is the case in many other scripts, some Myanmar letters

or signs may be analyzed as composites of two or more other characters and are not

encoded separately. The following are three examples of Myanmar letters represented

by combining character sequences:

U+1000 ka + U+1031 vowel sign e + U+102C vowel sign aa → /kàw/

16.3 Myanmar

16.3.1 Myanmar: U+1000–U+109F

Standards.

Encoding Principles.

Composite Characters.

Southeast Asia-I 775 16.3 Myanmar

U+1000 ka + U+1031 vowel sign e + U+102C vowel sign aa + U+103A

asat → /kaw/

U+1000 ka + U+102D vowel sign i + U+102F vowel sign u → /ko/

 The basic consonants, medials, independent vowels, and

dependent vowel signs required for writing the Myanmar language are encoded at

the beginning of the Myanmar block. Those are followed by script-specific digits,

punctuation, and various signs. The last part of the block contains extensions for

consonants, medials, vowels, and tone marks needed to represent historic text and

various other languages. These extensions support Pali and Sanskrit, as well as letters

and tone marks for Mon, Karen, Kayah, and Shan. The extensions include two tone

marks for Khamti Shan and two vowel signs for Aiton and Phake, but the majority of

the additional characters needed to support those languages are found in the

Myanmar Extended-A block.

 As in other Indic-derived scripts, conjunction of two consonant letters is

indicated by the insertion of a virama U+1039 MYANMAR SIGN VIRAMA between

them. It causes the second consonant to be displayed in a smaller form below the

first; the virama is not visibly rendered.

 The conjunct form of U+1004 MYANMAR LETTER NGA is rendered as a

superscript sign called kinzi. That superscript sign is not encoded as a separate mark,

but instead is simply the rendering form of the nga in a conjunct context. The nga is

represented in logical order first in the sequence, before the consonant which actu‐

ally bears the visible kinzi superscript sign in final rendered form. For example, kinzi

applied to U+1000 MYANMAR LETTER KA would be written via the following

sequence:

U+1004 nga + U+103A asat + U+1039 virama + U+1000 ka → ka

Note that this sequence includes both U+103A asat and U+1039 virama between the

nga and the ka. Use of the virama alone would ordinarily indicate stacking of the

consonants, with a small ka appearing under the nga. Use of the asat killer in addi‐

tion to the virama gives a sequence that can be distinguished from normal stacking:

the sequence <U+1004, U+103A, U+1039> always maps unambiguously to a visible

kinzi superscript sign on the following consonant.

 The Myanmar script traditionally distinguishes a set of

“medial” consonants: forms of ya, ra, wa, and ha that are considered to be modifiers

of the syllable’s vowel. Graphically, these medial consonants are sometimes written

as subscripts, but sometimes, as in the case of ra, they surround the base consonant

instead. In the Myanmar encoding, the medial consonants are encoded separately.

For example, the word [kjwei] (“to drop off”) would be written via the following

sequence:

Encoding Subranges.

Conjuncts.

Kinzi.

Medial Consonants.

Southeast Asia-I 776 16.3 Myanmar

U+1000 ka + U+103C medial ra + U+103D medial wa + U+1031 vowel

sign e → /kjwei/

In Pali and Sanskrit texts written in the Myanmar script, as well as in older orthogra‐

phies of Burmese, the consonants ya, ra, wa, and ha are sometimes rendered in

subjoined form. In those cases, U+1039 MYANMAR SIGN VIRAMA and the regular

form of the consonant are used.

 The asat, or killer, is a visibly displayed sign. In some cases it indicates that the

inherent vowel sound of a consonant letter is suppressed. In other cases it combines

with other characters to form a vowel letter. Regardless of its function, this visible

sign is always represented by the character U+103A MYANMAR SIGN ASAT.

 In a few Myanmar words, the repetition of a consonant sound is

written with a single occurrence of the letter for the consonant sound together with

an asat sign. This asat sign occurs immediately after the double-acting consonant in

the coded representation:

U+101A ya + U+1031 vowel sign e + U+102C vowel sign aa + U+1000

ka + U+103A asat + U+103B medial ya + U+102C vowel sign aa +

U+1038 visarga → man, husband

U+1000 ka + U+103B medial ya + U+103D medial wa + U+1014 na +

U+103A asat + U+102F vowel sign u + U+1015 pa + U+103A asat →
 I (first person singular)

 The great sa is encoded as U+103F MYANMAR LETTER GREAT SA. This

letter should be represented with <U+103F>, while the sequence <U+101E, U+1039,

U+101E> should be used for the regular conjunct form of two sa, , and the

sequence <U+101E, U+103A, U+101E> should be used for the form with an asat

sign, .

 The two shapes and are both used to write the sound /a/. In Burmese

orthography, both shapes are used, depending on the visual context. In S’gaw Karen

orthography, only the tall form is used. For this reason, two characters are encoded:

U+102B MYANMAR VOWEL SIGN TALL AA and U+102C MYANMAR VOWEL SIGN

AA. In Burmese texts, the coded character appropriate to the visual context should be

used.

 Dependent vowels and other signs are encoded

after the consonant to which they apply, except for kinzi, which precedes the conso‐

nant. Characters occur in the relative order shown in Table 16-4.

Class Example Encoding

Asat.

Contractions.

Great sa.

Tall aa.

Ordering of Syllable Components.

Table 16-4. Modern Burmese Syllabic Structure

Southeast Asia-I 777 16.3 Myanmar

kinzi <U+1004, U+103A, U+1039>

consonant and vowel letters
[U+1000..U+1021, U+1023..U+1027, U+1029,
U+102A, U+103F, U+104E]

subscript consonant
<U+1039, [U+1000..U+1008, U+100A..U+1019,
U+101B, U+101C, U+101E, U+1020, U+1021]>

asat sign U+103A

medial ya (potentially
followed by asat sign)

<U+103B, (U+103A)>

medial ra U+103C

medial wa U+103D

medial ha U+103E

vowel sign e U+1031

vowel sign i, ii, ai , , [U+102D, U+102E, U+1032]

vowel sign u, uu , [U+102F, U+1030]

vowel sign tall aa, aa
(potentially followed by asat
sign)

, <[U+102B, U+102C], (U+103A)>

anusvara U+1036

dot below U+1037

visarga U+1038

U+1031 MYANMAR VOWEL SIGN E is encoded after its consonant (as in the earlier

example), although in visual presentation its glyph appears before (to the left of) the

consonant form.

Table 16-4 nominally refers to the character sequences used in representing the

syllabic structure of the modern Burmese language proper. Canonical normalization

may result in a different ordering, specifically with some occurrences of U+103A

MYANMAR SIGN ASAT reordered after U+1037 MYANMAR SIGN DOT BELOW. As

such reorderings are canonically equivalent, implementations should support both

orders and treat them as fundamentally the same text.

Table 16-4 would require further extensions and modifications to cover various other

languages, such as Karen, Mon, Shan, Sanskrit, and Old Burmese, which also use the

Myanmar script. For some such extensions and modifications, refer to Unicode Tech‐

nical Note #11, “Representing Myanmar in Unicode: Details and Examples,” or also

Microsoft Typography’s “Creating and Supporting OpenType Fonts for Myanmar

Script.” Note that those documents are not normative for the Unicode Standard, and

they also differ from each other in some details.

 Myanmar does not use any whitespace between words. If explicit word

break or line break opportunities are desired—for example, for the use of automatic

line layout algorithms—the character U+200B ZERO WIDTH SPACE should be used to

place invisible marks for such breaks. The ZERO WIDTH SPACE can grow to have a

Spacing.

Southeast Asia-I 778 16.3 Myanmar

visible width when justified. Spaces are used to mark phrases. Some phrases are rela‐

tively short (two or three syllables).

This block provides additional characters to support Khamti Shan, Aiton and Phake.

The block also contains a few additional tone marks for Pa’o Karen and Tai Laing,

and two additional letters for Shwe Palaung. Khamti Shan is spoken by approxi‐

mately 14,000 people in Myanmar and India. Aiton and Phake are smaller language

communities of around 2,000 each. Many of the characters needed for these

languages are provided by the main Myanmar block. Khamti Shan, Aiton, and Phake

writing conventions are based on Shan, and as such follow the general Myanmar

model of encoding.

The Khamti Shan language has a long literary tradition which has largely been lost,

for a variety of reasons. The old script did not mark tones, and it had a scribal tradi‐

tion that encouraged restriction to a reading elite whose traditions have not been

passed on. The script has recently undergone a revival, with plans for it to be taught

throughout the Khamti-Shan-speaking regions in Myanmar. A new version of the

script has been adopted by the Khamti in Myanmar. The Khamti Shan characters in

the Myanmar Extended-A block supplement those in the Myanmar block and

provide complete support for the modern Khamti Shan writing system as written in

Myanmar. Another revision of the old script was made in India under the leadership

of Chau Khouk Manpoong in the 1990s. That revision has not gained significant

popularity, although it enjoys some currency today.

 Approximately half of the consonants used in Khamti Shan are

encoded in the Myanmar block. Following the conventions used for Shan, Mon, and

other extensions to the Myanmar script, separate consonants are encoded specifically

for Khamti Shan in this block when they differ significantly in shape from corre‐

sponding letters conveying the same consonant sounds in Myanmar proper. Khamti

Shan also uses the three Myanmar medial consonants encoded in the range

U+101B..U+101D.

The consonants in this block are displayed in the code charts using a Burmese style,

so that glyphs for the entire Myanmar script are harmonized in a single typeface.

However, the local style preferred for Khamti Shan is slightly different, typically

adding a small dot to each character.

 The vowels and dependent vowel signs used in Khamti Shan are located in

the Myanmar block.

16.3.2 Myanmar Extended-A: U+AA60–U+AA7F

16.3.3 Khamti Shan

Consonants.

Vowels.

Southeast Asia-I 779 16.3 Myanmar

 Khamti Shan has eight tones. Seven of these are written with explicit tone

marks; one is unmarked. All of the explicit tone marks are encoded in the Myanmar

block. Khamti Shan makes use of four of the Shan tone marks and the visarga. In

addition, two Khamti Shan-specific tone marks are separately encoded. These tone

marks for Khamti Shan are listed in Table 16-5.

Tone Character

1 U+109A MYANMAR SIGN KHAMTI TONE-1

2 U+1089 MYANMAR SIGN SHAN TONE-5

3 U+109B MYANMAR SIGN KHAMTI TONE-3

4 U+1087 MYANMAR SIGN SHAN TONE-2

5 U+1088 MYANMAR SIGN SHAN TONE-3

6 U+1038 MYANMAR SIGN VISARGA

7 unmarked

8 U+108A MYANMAR SIGN SHAN TONE-6

The vertical positioning of the small circle in some of these tone marks is considered

distinctive. U+109A MYANMAR SIGN KHAMTI TONE-1 (with a high position) is not

the same as U+108B MYANMAR SIGN SHAN COUNCIL TONE-2 (with a mid-level posi‐

tion). Neither of those should be confused with U+1089 MYANMAR SIGN SHAN

TONE-5 (with a low position).

The tone mark characters in Shan fonts are typically displayed with open circles.

However, in Khamti Shan, the circles in the tone marks normally are filled in (black).

 Khamti Shan uses the Shan digits from the range U+1090..U+109A.

 Khamti Shan uses the punctuation marks U+104A MYANMAR SIGN

LITTLE SECTION and U+104B MYANMAR SIGN SECTION. The repetition mark

U+AA70 MYANMAR MODIFIER LETTER KHAMTI REDUPLICATION is functionally

equivalent to U+0E46 THAI CHARACTER MAIYAMOK.

Three logogram characters are also used. These logograms can take tone marks, and

their meaning varies according to the tone they take. They are used when tran‐

scribing speech rather than in formal writing. For example, U+AA75 MYANMAR

LOGOGRAM KHAMTI QN takes three tones and means “negative,” “giving” or “yes,”

according to which tone is applied. The other two logograms are U+AA74 MYANMAR

LOGOGRAM KHAMTI OAY and U+AA76 MYANMAR LOGOGRAM KHAMTI HM.

 Khamti Shan does not use subjoined characters.

 The characters of historical Khamti Shan are for the most

part identical to those used in the New Khamti Shan orthography. Most variation is

Tones.

Table 16-5. Khamti Shan Tone Marks

Digits.

Other Symbols.

Subjoined Characters.

Historical Khamti Shan.

Southeast Asia-I 780 16.3 Myanmar

merely stylistic. There were no Pali characters. The only significant character differ‐

ence lies with ra—which follows Aiton and Phake in using a la with medial ra

(U+AA7A MYANMAR LETTER AITON RA).

During the development of the New Khamti Shan orthography a few new character

shapes were introduced that were subsequently revised. Because materials have been

published using these shapes, and these shapes cannot be considered stylistic vari‐

ants of other characters, these characters are separately encoded in the range

U+AA71..U+AA73.

The Aiton and Phake writing systems are very closely related. There are a small

number of differences in shape between Aiton and Phake characters, but these are

considered only glyphic differences. As for Khamti Shan, most of the characters

needed for Aiton and Phake are found in the Myanmar block.

U+107A MYANMAR LETTER SHAN NYA is used rather than following

the Khamti U+AA65 MYANMAR LETTER KHAMTI NYA because the character shape

follows Shan rather than Khamti.

 Aiton and Phake have a system of subjoining consonants to

chain syllables in a polysyllabic word. This system follows that of Burmese and is

encoded in the same way: with U+1039 MYANMAR SIGN VIRAMA followed by the

code of the consonant being subjoined. The following characters may take a

subjoined form, which takes the same shape as the base character but smaller:

U+1000, U+AA61, U+1010, U+1011, U+1015, U+101A, U+101C. No other subjoined

characters are known in Aiton and Phake.

 The vowels follow Shan for the most part, and are therefore based on the

characters in the Myanmar block. In addition to the simple vowels there are a

number of diphthongs in Aiton and Phake. One vowel and one diphthong required

for these languages were added as extensions at the end of the Myanmar block. A

number of the vowel letters and diphthongs in the Aiton and Phake alphabets are

composed of a sequence of code points. For example, the vowel -ue is represented by

the sequence <U+102D, U+102F, U+101D, U+103A>.

 The characters in the range U+AA77..U+AA79 are a set of ligature

symbols that follow the same principles used for U+109E MYANMAR SYMBOL SHAN

ONE and U+109F MYANMAR SYMBOL SHAN EXCLAMATION. They are symbols that

constitute a word in their own right and do not take diacritics.

 Traditionally tones are not marked in Aiton and Phake, although U+109C

MYANMAR VOWEL SIGN AITON A (short -a) can be used as a type of tone marker. All

16.3.4 Aiton and Phake

Consonants.

Subjoined Consonants.

Vowels.

Ligatures.

Tones.

Southeast Asia-I 781 16.3 Myanmar

proposed patterns for adding tone marking to Aiton and Phake can be represented

with the tone marks used for Shan or Khamti Shan.

This block contains additional characters for Shan Pali that represent Sanskrit

sounds written in Shan. It also contains many characters for Tai Laing, a Tai language

related to Khamti and spoken in the Kachin state of Myanmar.

 Tai Laing has a distinct set of digits that differ in appearance from both the

main set of Myanmar digits and the Shan digits encoded in the main Myanmar block.

This block contains two additional sets of digits, one for the PaʼO language, and one

for Eastern Pwo Karen. The writers of these languages often use standard Myanmar

digits or the Western (ASCII) digits, but use of the language-specific forms of digits is

also found.

16.3.5 Myanmar Extended-B: U+A9E0–U+A9FF

Digits.

16.3.6 Myanmar Extended-C: U+116D0–U+116FF

Southeast Asia-I 782 16.3 Myanmar

Khmer, also known as Cambodian, is the official language of the Kingdom of

Cambodia. Mutually intelligible dialects are also spoken in northeastern Thailand

and in the Mekong Delta region of Vietnam. Although Khmer is not an Indo-Euro‐

pean language, it has borrowed much vocabulary from Sanskrit and Pali, and reli‐

gious texts in those languages have been both transliterated and translated into

Khmer. The Khmer script is also used to render a number of regional minority

languages, such as Tampuan, Krung, and Cham.

The Khmer script, called aksaa khmae (“Khmer letters”), is also the official script of

Cambodia. It is descended from the Brahmi script of South India, as are Thai, Lao,

Myanmar, Old Mon, and others. The exact sources have not been determined, but

there is a great similarity between the earliest inscriptions in the region and the

Pallawa script of the Coromandel coast of India. Khmer has been a unique and inde‐

pendent script for more than 1,400 years. Modern Khmer has two basic styles of

script: the aksaa crieng (“slanted script”) and the aksaa muul (“round script”). There

is no fundamental structural difference between the two. The slanted script (in its

“standing” variant) is chosen as representative in the code charts.

Structurally, the Khmer script has many features in common with other Brahmi-

derived scripts, such as Devanagari and Myanmar. Consonant characters bear an

inherent vowel sound, with additional signs placed before, above, below, and/or after

the consonants to indicate a vowel other than the inherent one. The overall writing

direction is left to right.

In comparison with the Devanagari script, explained in detail in Section 12.1, Devana‐

gari, the Khmer script has developed several distinctive features during its evolution.

 The Khmer script has a consonant character for a glottal stop

(qa) that bears an inherent vowel sound and can have an optional vowel sign. While

Khmer also has independent vowel characters like Devanagari, as shown in

Table 16-6, in principle many of its sounds can be represented by using qa and a

vowel sign. This does not mean these representations are always interchangeable in

real words. Some words are written with one variant to the exclusion of others.

Name Independent Vowel Qa with Vowel Sign(s)

16.4 Khmer

16.4.1 Khmer: U+1780–U+17FF

16.4.2 Principles of the Khmer Script

Glottal Consonant.

Table 16-6. Independent Khmer Vowel Characters

Southeast Asia-I 783 16.4 Khmer

i , ,

ii ,

u ,

uk

uu ,

uuv

e ,

ai

oo ,

au

Name Independent Vowel Ra or La with Vowel Sign

ry

ryy

ly

lyy

 Subscript consonant signs differ from independent conso‐

nant characters and are called coeng (literally, “foot, leg”) after their subscript posi‐

tion. While a consonant character can constitute an orthographic syllable by itself, a

subscript consonant sign cannot. Note that U+17A1 KHMER LETTER LA does not

have a corresponding subscript consonant sign in standard Khmer, but does have a

subscript in the Khmer script used in Thailand.

Subscript consonant signs are used to represent any consonant following the first

consonant in an orthographic syllable. They also have an inherent vowel sound,

which may be suppressed if the syllable bears a vowel sign or another subscript

consonant.

Subscript Consonants.

Southeast Asia-I 784 16.4 Khmer

The subscript consonant signs are often used to represent a consonant cluster. Two

consecutive consonant characters cannot represent a consonant cluster because the

inherent vowel sound in between is retained. To suppress the vowel, a subscript

consonant sign (or rarely a subscript independent vowel) replaces the second conso‐

nant character. Theoretically, any consonant cluster composed of any number of

consonant sounds without inherent vowel sounds in between can be represented

systematically by a consonant character and as many subscript consonant signs as

necessary.

Examples of subscript consonant signs for a consonant cluster follow:

lo + coeng + ngo [lŋɔ̀ː] “sesame” (compare lo + ngo [lɔ̀ː ŋ] “to haunt”)

lo + ka + coeng + sa + coeng + mo + ii [lɛə̀ksmei] “beauty, luck”

ka + aa + ha + coeng + vo + e [kaːfeː] “coffee”

The subscript consonant signs in the Khmer script can be used to denote a final

consonant, although this practice is uncommon.

Examples of subscript consonant signs for a closing consonant follow:

to + aa + nikahit + coeng + ngo [tɛə̀ŋ] “both” (=) (≠ * [tŋɔə̀m])

ha + oe + coeng + yo [haəi] “already” (=) (≠ * [hjaə])

While these subscript consonant signs are usually attached to a consonant character,

they can also be attached to an independent vowel character. Although this practice

is relatively rare, it is used in one very common word, meaning “to give.”

Examples of subscript consonant signs attached to an independent vowel character

follow:

qoo-1 + coeng + yo [ʔaoi] “to give” (= and also)

qoo-1 + coeng + mo [ʔaom] “exclamation of solemn affirmation” (=)

 Some independent vowel characters also have

corresponding subscript independent vowel signs, although these are rarely used

today.

Examples of subscript independent vowel signs follow:

pha + coeng + qe + mo [pʰʔaem] “sweet” (= pha + coeng + qa + ae +

mo)

Subscript Independent Vowel Signs.

Southeast Asia-I 785 16.4 Khmer

ha + coeng + ry + to + samyok sannya + yo [harɯtej] “heart” (royal) (=

ha + ry + to + samyok sannya + yo)

 The Khmer language has a richer set of vowels than the

languages for which the ancestral script was used, although it has a smaller set of

consonant sounds. The Khmer script takes advantage of this situation by assigning

different characters to represent the same consonant using different inherent vowels.

Khmer consonant characters and signs are organized into two series or registers,

whose inherent vowels are nominally -a in the first register and -o in the second

register, as shown in Table 16-7.

Row First Register Second Register

1 ka [kɔː] “neck” ko [kɔ̀ː] “mute”

2 ro + muusikatoan [rɔː] “small saw” ro [rɔ̀ː] “fence (in the water)”

3 sa + ka [sɔːk] “to peel, to shed one’s skin” sa + triisap + ka [sɔ̀ː k] “to insert”

4 ba + ka [bɔːk] “to return” * ba + triisap + ka [bɔ̀ː k]

5 ba + muusikatoan + mo [pɔːm] “blockhouse” po + mo [pɔ̀ː m] “to put into the mouth”

6 ka + u + ro [koː] “to stir” ko + u + ro [kuː] “to sketch”

The register of a consonant character is generally reflected on the last letter of its

transliterated name. Some consonant characters and signs have a counterpart whose

consonant sound is the same but whose register is different, as ka and ko in the first

row of the table. For the other consonant characters and signs, two “shifter” signs are

available. U+17C9 KHMER SIGN MUUSIKATOAN converts a consonant character and

sign from the second to the first register, while U+17CA KHMER SIGN TRIISAP

converts a consonant from the first register to the second (rows 2–4). To represent pa,

however, muusikatoan is attached not to po but to ba, in an exceptional use (row 5).

The phonetic value of a dependent vowel sign may also change depending on the

context of the consonant(s) to which it is attached (row 6).

 Like other related scripts, the Khmer encoding represents only

the basic underlying characters; multiple glyphs and rendering transformations are

required to assemble the final visual form for each orthographic syllable. Individual

characters, such as U+1789 KHMER LETTER NYO, may assume variant forms

depending on the other characters with which they combine.

 In the way that many Cambodians analyze Khmer

today, subscript consonant signs are considered to be different entities from conso‐

nant characters. The Unicode Standard does not assign independent code points for

the subscript consonant signs. Instead, each of these signs is represented by the

sequence of two characters: a special control character (U+17D2 KHMER SIGN

Consonant Registers.

Table 16-7. Two Registers of Khmer Consonants

Encoding Principles.

Subscript Consonant Signs.

Southeast Asia-I 786 16.4 Khmer

COENG) and a corresponding consonant character. This is analogous to the virama

model employed for representing conjuncts in other related scripts. Subscripted inde‐

pendent vowels are encoded in the same manner. Because the coeng sign character

does not exist as a letter or sign in the Khmer script, the Unicode model departs from

the ordinary way that Khmer is conceived of and taught to native Khmer speakers.

Consequently, the encoding may not be intuitive to a native user of the Khmer

writing system, although it is able to represent Khmer correctly.

U+17D2 KHMER SIGN COENG is not actually a coeng but a coeng generator, because

coeng in Khmer refers to the subscript consonant sign. The glyph for KHMER SIGN

COENG shown in the code charts is arbitrary and is not actually rendered directly; the

dotted box around the glyph indicates that special rendering is required. To aid

Khmer script users, a listing of typical Khmer subscript consonant letters has been

provided in Table 16-8 together with their descriptive names following preferred

Khmer practice. While the Unicode encoding represents both the subscripts and the

combined vowel letters with a pair of code points, they should be treated as a unit for

most processing purposes. In other words, the sequence functions as if it had been

encoded as a single character. A number of independent vowels also have subscript

forms, as shown in Table 16-8.

Glyph Code Name

17D2 1780 khmer consonant sign coeng ka

17D2 1781 khmer consonant sign coeng kha

17D2 1782 khmer consonant sign coeng ko

17D2 1783 khmer consonant sign coeng kho

17D2 1784 khmer consonant sign coeng ngo

17D2 1785 khmer consonant sign coeng ca

17D2 1786 khmer consonant sign coeng cha

17D2 1787 khmer consonant sign coeng co

17D2 1788 khmer consonant sign coeng cho

17D2 1789 khmer consonant sign coeng nyo

17D2 178A khmer consonant sign coeng da

17D2 178B khmer consonant sign coeng ttha

17D2 178C khmer consonant sign coeng do

Table 16-8. Khmer Subscript Consonant Signs

Southeast Asia-I 787 16.4 Khmer

17D2 178D khmer consonant sign coeng ttho

17D2 178E khmer consonant sign coeng na

17D2 178F khmer consonant sign coeng ta

17D2 1790 khmer consonant sign coeng tha

17D2 1791 khmer consonant sign coeng to

17D2 1792 khmer consonant sign coeng tho

17D2 1793 khmer consonant sign coeng no

17D2 1794 khmer consonant sign coeng ba

17D2 1795 khmer consonant sign coeng pha

17D2 1796 khmer consonant sign coeng po

17D2 1797 khmer consonant sign coeng pho

17D2 1798 khmer consonant sign coeng mo

17D2 1799 khmer consonant sign coeng yo

17D2 179A khmer consonant sign coeng ro

17D2 179B khmer consonant sign coeng lo

17D2 179C khmer consonant sign coeng vo

17D2 179D khmer consonant sign coeng sha

17D2 179E khmer consonant sign coeng ssa

17D2 179F khmer consonant sign coeng sa

17D2 17A0 khmer consonant sign coeng ha

17D2 17A1 khmer consonant sign coeng la

17D2 17A2 khmer vowel sign coeng qa

As noted earlier, <U+17D2, U+17A1> represents a subscript form of la that is not

used in Cambodia, although it is employed in Thailand.

 Most of the Khmer dependent vowel signs are represented

with a single character that is applied after the base consonant character and optional

subscript consonant signs. Three of these Khmer vowel signs are not encoded as

Dependent Vowel Signs.

Southeast Asia-I 788 16.4 Khmer

single characters in in the Unicode Standard. The vowel sign am is encoded as a

nasalization sign, U+17C6 KHMER SIGN NIKAHIT. Two vowel signs, om and aam,

have not been assigned independent code points. They are represented by the

sequence of a vowel (U+17BB KHMER VOWEL SIGN U and U+17B6 KHMER

VOWEL SIGN AA, respectively) and U+17C6 KHMER SIGN NIKAHIT.

The nikahit is superficially similar to anusvara, the nasalization sign in the Devana‐

gari script, although in Khmer it is usually regarded as a vowel sign am. Anusvara

not only represents a special nasal sound, but also can be used in place of one of the

five nasal consonants homorganic to the subsequent consonant (velar, palatal,

retroflex, dental, or labial, respectively). Anusvara can be used concurrently with any

vowel sign in the same orthographic syllable. Nikahit, in contrast, functions differ‐

ently. Its final sound is [m], irrespective of the type of the subsequent consonant. It is

not used concurrently with the vowels ii, e, ua, oe, oo, and so on, although it is used

with the vowel signs aa and u. In these cases the combination is sometimes regarded

as a unit—aam and om, respectively. The sound that aam represents is [ɔə̀m], not

[aːm]. The sequences used for these combinations are shown in Table 16-9.

Glyph Code Name

17BB 17C6 khmer vowel sign om

17B6 17C6 khmer vowel sign aam

Examples of dependent vowel signs ending with [m] follow:

da + nikahit [dɔm] “to pound” (compare da + mo [dɔːm] “nectar”)

po + aa + nikahit [pɔə̀m] “to carry in the beak” (compare po + aa + mo

[pèəm] “mouth of a river”)

 In Khmer, as in other Brahmic scripts, some inde‐

pendent vowels have their own letterforms, although the sounds they represent may

more often be represented with the consonant character for the glottal stop (U+17A2

KHMER LETTER QA) modified by vowel signs (and optionally a consonant char‐

acter). These independent vowels are encoded as separate characters in the Unicode

Standard.

 Some independent vowels have corresponding

subscript independent vowel signs, although these are rarely used. Each is repre‐

sented by the sequence of U+17D2 KHMER SIGN COENG and an independent

vowel, as shown in Table 16-10.

Table 16-9. Khmer Composite Dependent Vowel Signs with Nikahit

Independent Vowel Characters.

Subscript Independent Vowel Signs.

Southeast Asia-I 789 16.4 Khmer

Glyph Code Name

17D2 17A7 khmer independent vowel sign coeng qu

17D2 17AB khmer independent vowel sign coeng ry

17D2 17AC khmer independent vowel sign coeng ryy

17D2 17AF khmer independent vowel sign coeng qe

 The Khmer sign robat historically corre‐

sponds to the Devanagari repha, a representation of syllable-initial r-. However, the

Khmer script can treat the initial r- in the same way as the other initial consonants—

namely, a consonant character ro and as many subscript consonant signs as neces‐

sary. Some old loan words from Sanskrit and Pali include robat, but in some of them

the robat is not pronounced and is preserved in a fossilized spelling. Because robat is

a distinct sign from the consonant character ro, the Unicode Standard encodes

U+17CC KHMER SIGN ROBAT, but it treats the Devanagari repha as a part of a liga‐

ture without encoding it. The authoritative Chuon Nath dictionary sorts robat as if it

were a base consonant character, just as the repha is sorted in scripts that use it. The

consonant over which robat resides is then sorted as if it were a subscript.

Examples of consonant clusters beginning with ro and robat follow:

ro + aa + co + ro + coeng + sa + ii [rèəcrsei] “king hermit”

qa + aa + yo + robat [ʔaːrja] “civilized” (= qa + aa + ro + coeng + yo)

po + ta + robat + mo + aa + no [pɔ̀ː dɔmèən] “news” (compare Sanskrit

vartamāna “the present time”)

U+17DD KHMER SIGN ATTHACAN is a rarely used sign that denotes that the base

consonant character keeps its inherent vowel sound. This use contrasts with U+17D1

KHMER SIGN VIRIAM, which indicates the removal of the inherent vowel sound of

a base consonant. U+17CB KHMER SIGN BANTOC shortens the vowel sound of the

previous orthographic syllable. U+17C7 KHMER SIGN REAHMUK, U+17C8

KHMER SIGN YUUKALEAPINTU, U+17CD KHMER SIGN TOANDAKHIAT, U+17CE

KHMER SIGN KAKABAT, U+17CF KHMER SIGN AHSDA, and U+17D0 KHMER SIGN

SAMYOK SANNYA are also explicitly encoded signs used to compose an orthographic

syllable.

 Some vowel signs form ligatures with consonant characters and signs.

These ligatures are not encoded separately, but should be presented graphically by

the rendering software. Some common ligatures are shown in Figure 16-1.

Table 16-10. Khmer Subscript Independent Vowel Signs

Other Signs as Syllabic Components.

Ligatures.

Southeast Asia-I 790 16.4 Khmer

ka + aa + ro = [kaː] “job”

ba + aa = [baː] “father, male of an animal”; used to prevent confusion with ha

ba + au = [baw] “to suck”

mo + coeng sa + au = [msaw] “powder”

sa + ngo + coeng kha + coeng yo + aa = [sɔŋkʰjaː] “counting”

 A single character may assume different forms according to

context. For example, a part of the glyph for nyo is omitted when a subscript conso‐

nant sign is attached. The implementation must render the correct glyph according to

context. Coeng nyo also changes its shape when it is attached to nyo. The correct

glyph for the sequence <U+17D2 KHMER SIGN COENG, U+1789 KHMER LETTER

NYO> is rendered according to context, as shown in Figure 16-2. This kind of glyph

alternation is very common in Khmer. Some spacing subscript consonant signs

change their height depending on the orthographic context. Similarly, the vertical

position of many signs varies according to context. Their presentation is left to the

rendering software.

U+17B2 KHMER INDEPENDENT VOWEL QOO TYPE TWO is thought to be a variant of

U+17B1 KHMER INDEPENDENT VOWEL QOO TYPE ONE, but it is explicitly encoded

in the Unicode Standard. The variant is used in very few words, but these include the

very common word aoi “to give,” as noted in Figure 16-2.

nyo + nyo + y + mo [ɲɔɲ̀ɯm] “to smile”

ca + i + nyo + coeng + ca + oe + mo [ceɲcaəm] “eyebrow”

sa + coeng nyo + ba + bantoc [sɲɔp] “to respect”

ka + nyo + coeng + nyo + aa [kaɲɲaː] “girl, Miss, September”

qoo-2 + coeng + yo (= qoo-1 + coeng + yo) [ʔaoi] “to give”

 Some of the Khmer characters encoded in

the Unicode Standard are not recommended for use for various reasons.

U+17A3 KHMER INDEPENDENT VOWEL QAQ and U+17A4 KHMER INDEPENDENT

VOWEL QAA are deprecated, and their use is strongly discouraged. One feature of the

Khmer script is the introduction of the consonant character for a glottal stop

(U+17A2 KHMER LETTER QA). This made it unnecessary for each initial vowel

sound to have its own independent vowel character, although some independent

Figure 16-1. Common Ligatures in Khmer

Multiple Glyphs.

Figure 16-2. Common Multiple Forms in Khmer

Characters Whose Use Is Discouraged.

Southeast Asia-I 791 16.4 Khmer

vowels exist. Neither U+17A3 nor U+17A4 actually exists in the Khmer script. Other

related scripts, including the Devanagari script, have independent vowel characters

corresponding to them (a and aa), but they can be transliterated by khmer letter qa

and khmer letter qa + khmer vowel aa, respectively, without ambiguity because these

scripts have no consonant character corresponding to the khmer qa.

The use of U+17B4 KHMER VOWEL INHERENT AQ and U+17B5 KHMER VOWEL

INHERENT AA is discouraged. These newly invented characters do not exist in the

Khmer script. They were intended to be used to represent a phonetic difference not

expressed by the spelling, so as to assist in phonetic sorting. However, they are insuf‐

ficient for that purpose and should be considered errors in the encoding. These two

characters are ignored by default for collation.

The use of U+17D8 KHMER SIGN BEYYAL is discouraged. It was supposed to repre‐

sent “et cetera” in Khmer. However, it is a word rather than a symbol. Moreover, it

has several different spellings. It should be spelled out fully using normal letters.

Beyyal can be written as follows:

khan + ba + e + khan

en dash + ba + e + en dash

khan + lo + khan

en dash + lo + en dash

 The standard order of components in an ortho‐

graphic syllable as expressed in BNF is

B {R | C} {S {R}}* {{Z} V} {O} {S}

where

B is a base character (consonant character, independent vowel character, and so on)

R is a robat

C is a consonant shifter

S is a subscript consonant or independent vowel sign

V is a dependent vowel sign

Z is a zero width non-joiner or a zero width joiner

O is any other sign

Ordering of Syllable Components.

Southeast Asia-I 792 16.4 Khmer

For example, the common word khnyom “I” is composed of the following three

elements: (1) consonant character kha as B; (2) subscript consonant sign coeng nyo as

S; and (3) dependent vowel sign om as V. In the Unicode Standard, coeng nyo and om

are further decomposed, and the whole word is represented by five coded characters.

kha + coeng + nyo + u + nikahit [kʰɲom] “I”

The order of coded characters does not always match the visual order. For example,

some of the dependent vowel signs and their fragments may seem to precede a

consonant character, but they are always put after it in the sequence of coded charac‐

ters. This is also the case with coeng ro. Examples of visual reordering and other

aspects of syllabic order are shown in Figure 16-3.

to + e [tèː] “much”

ca + coeng + ro + oe + no [craən] “much”

sa + ngo + coeng + ko + coeng + ro + aa + mo [sɔŋkrèəm] “war”

ha + oe + coeng + yo [haəi] “already”

sa + nyo + coeng + nyo + aa [saɲɲaː] “sign”

sa + triisap + ii [siː] “eat”

ba + muusikatoan + ii [pei] “a kind of flute”

U+17C9 KHMER SIGN MUUSIKATOAN and U+17CA KHMER

SIGN TRIISAP are consonant shifters, also known as register shifters. In the presence

of other superscript glyphs, both of these signs are usually rendered with the same

glyph shape as that of U+17BB KHMER VOWEL SIGN U, as shown in the last two

examples of Figure 16-3.

Although the consonant shifter in handwriting may be written after the subscript,

the consonant shifter should always be encoded immediately following the base

consonant, except when it is preceded by U+200C ZERO WIDTH NON-JOINER. This

provides Khmer with a fixed order of character placement, making it easier to search

for words in a document.

mo + muusikatoan + coeng + ngo + ai [mŋai] “one day”

mo + triisap + coeng + ha + ae + ta + lek too [mhɛ̀ː tmhɛ̀ː t] “bland”

If either muusikatoan or triisap needs to keep its superscript shape (as an exception

to the general rule that states other superscripts typically force the alternative

Figure 16-3. Examples of Syllabic Order in Khmer

Consonant Shifters.

Southeast Asia-I 793 16.4 Khmer

subscript glyph for either character), U+200C ZERO WIDTH NON-JOINER should

be inserted before the consonant shifter to show the normal glyph for a consonant

shifter when the general rule requires the alternative glyph. In such cases, U+200C

ZERO WIDTH NON-JOINER is inserted before the vowel sign, as shown in the

following examples:

ba + + triisap + ii + yo + ae + ro [bijɛ̀ː] “beer”

ba + coeng + ro + ta + yy + ngo + qa + + triisap + y + reahmuk

[prɔtəːŋʔɯh] “urgent, too busy”

ba + coeng + ro + ta + yy + ngo + qa + triisap + y + reahmuk

 In the aksaa muul font style, some vowel signs ligate with the

consonant characters to which they are applied. The font tables should determine

whether they form a ligature; ligature use in muul fonts does not affect the meaning.

However, U+200C ZERO WIDTH NON-JOINER may be inserted before the vowel

sign to explicitly suppress such a ligature, as shown in Figure 16-4 for the word

“savant,” pronounced [vitu:].

vo + i + to + uu (aksaa crieng font)

, vo + i + to + uu (ligature dependent on the muul font)

vo + + i + to + uu (to prevent the ligature in a muul font)

vo + + i + to + uu (to request the ligature in a muul font)

 Khmer does not use whitespace between words, although it does use white‐

space between clauses and between parts of a name. If word boundary indications

are desired—for example, as part of automatic line layout algorithms—the character

U+200B ZERO WIDTH SPACE should be used to place invisible marks for such

breaks. The ZERO WIDTH SPACE can grow to have a visible width when justified. See

Table 23-2.

 Many symbols for punctuation, digits, and numerals for divination lore are

encoded as independent entities. Symbols for the lunar calendar are encoded as

single characters that cannot be decomposed even if their appearance might seem to

be decomposable. U+19E0 KHMER SYMBOL PATHAMASAT represents the first

ashadha (eighth month) of the lunar calendar. During the type of leap year in the

lunar calendar known as adhikameas, there is also a second ashadha. U+19F0

KHMER SYMBOL TUTEYASAT represents that second ashadha. The 15 characters from

U+19E1 KHMER SYMBOL MUOY KOET to U+19EF KHMER SYMBOL DAP-PRAM

Ligature Control.

Figure 16-4. Ligation in Muul Style in Khmer

Spacing.

16.4.3 Khmer Symbols: U+19E0–U+19FF

Symbols.

Southeast Asia-I 794 16.4 Khmer

KOET represent the first through the fifteenth lunar waxing days, respectively. The 15

characters from U+19F1 KHMER SYMBOL MUOY ROC through U+19FF KHMER

SYMBOL DAP-PRAM ROC represent the first through the fifteenth waning days, respec‐

tively. The typographical form of these lunar dates is a top and bottom section of the

same size text. The dividing line between the upper and lower halves of the symbol is

the vertical center of the line height.

Southeast Asia-I 795 16.4 Khmer

The Tai Le script has a history of 700–800 years, during which time several ortho‐

graphic conventions were used. The modern form of the script was developed in the

years following 1954; it rationalized the older system and added a systematic repre‐

sentation of tones with the use of combining diacritics. The new system was revised

again in 1988, when spacing tone marks were introduced to replace the combining

diacritics. The Unicode encoding of Tai Le handles both the modern form of the

script and its more recent revision.

The Tai Le language is also known as Tai Nüa, Dehong Dai, Tai Mau, Tai Kong, and

Chinese Shan. Tai Le is a transliteration of the indigenous designation, [tai2

lə6] (in older orthography). The modern Tai Le orthographies are straightfor‐

ward: initial consonants precede vowels, vowels precede final consonants, and tone

marks, if any, follow the entire syllable. There is a one-to-one correspondence

between the tone mark letters now used and existing nonspacing marks in the

Unicode Standard. The tone mark is the last character in a syllable string in both

orthographies. When one of the combining diacritics follows a tall letter , , , , or ,

it is displayed to the right of the letter, as shown in Table 16-11.

Syllable
New

Orthography
Old

Orthography

ta

ta2

ta3

ta4

ta5

ta6

ti

ti2

ti3

ti4

ti5

ti6

16.5 Tai Le

16.5.1 Tai Le: U+1950–U+197F

Table 16-11. Tai Le Tone Marks

Southeast Asia-I 796 16.5 Tai Le

 In China, European digits (U+0030..U+0039) are mainly used, although

Myanmar digits (U+1040..U+1049) are also used with slight glyph variants. Note the

differences, in particular, for the digits 2, 6, 8, and 9, as shown in Table 16-12.

Value Myanmar Tai Le

0

1

2

3

4

5

6

7

8

9

 Both CJK punctuation and Western punctuation are used. Typographi‐

cally, European digits are about the same height and depth as the tall characters and

. In some fonts, the baseline for punctuation is the depth of those characters.

Digits.

Table 16-12. Myanmar Digits in Tai Le

Punctuation.

Southeast Asia-I 797 16.5 Tai Le

The New Tai Lue script, also known as Xishuangbanna Dai, is used mainly in

southern China. The script was developed in the 20th century as an orthographic

simplification of the historic Lanna script used to write the Tai Lue language.

“Lanna” refers to a region in present-day northern Thailand as well as to a Tai princi‐

pality that existed in that region from approximately the late thirteenth century to the

early 20th century. The Lanna script grew out of the Mon script and was adapted in

various forms in the Lanna kingdom and by Tai-speaking communities in

surrounding areas that had close contact with the kingdom, including southern

China. The Lanna script, also known as the Tai Tham script (see Section 16.7, Tai

Tham), is still used to write various languages of the Tai family today, including Tai

Lue. The approved orthography for this language uses the New Tai Lue script;

however, usage of the older orthography based on a variant of Lanna script can still

be found.

New Tai Lue differs from Tai Tham in that it regularizes the consonant repertoire,

simplifies the writing of consonant clusters and syllable-final consonants, and uses

only spacing vowel signs, which appear before or after the consonants they modify,

and which are stored in visual order. By contrast, Lanna uses both spacing vowel

signs and nonspacing vowel signs, which appear above or below the consonants they

modify, and all of which are stored in logical order.

 New Tai Lue is written left to right. Despite its simplification from the Tai

Tham (Lanna) script, it retains an important feature of abugidas: the consonant

letters have the inherent vowel /a/, which is modified to some other vowel by the

addition of an explicit vowel letter.

 The New Tai Lue script uses visual ordering—a characteristic it shares

with the Thai and Lao scripts. This means that the four New Tai Lue vowels that

occur visually on the left side of their associated consonant are stored ahead of those

consonants in text. This practice differs from the usual pattern for Brahmi-derived

scripts, in which all dependent vowels are stored in logical order after their associ‐

ated consonants, even when they are displayed to the left of those consonants.

Visual order for New Tai Lue vowels results in simpler rendering for the script and

follows current accepted practice for data entry. However, it complicates syllable

identification and the processes for searching and sorting. Implementers can take

advantage of techniques developed for processing Thai script data to address the

issues associated with visual order encoding.

16.6 New Tai Lue

16.6.1 New Tai Lue: U+1980–U+19DF

Structure.

Visual Order.

Southeast Asia-I 798 16.6 New Tai Lue

The four New Tai Lue vowel letters that occur in visual order ahead of their associ‐

ated consonants are given the property value Logical_Order_Exception = True in the

Unicode Character Database.

Implementers should note that the visual order model for New Tai Lue was formally

introduced as of Unicode 8.0. When New Tai Lue was added to the Unicode Standard

in Version 4.1, the text model for the script followed the normal Indic practice: all

dependent vowels were intended to follow their consonant, regardless of visual place‐

ment. However, in practice, the majority of New Tai Lue text data using Unicode

characters prior to Unicode 8.0 already uses visual ordering, and many extant New

Tai Lue fonts also assume visual ordering. As a result, the model change for New Tai

Lue as of Unicode 8.0 should not pose a substantial migration issue for data or fonts.

However, implementations may have glitches in some algorithmic behavior until

underlying libraries and platform support catch up to the character property changes

for New Tai Lue as of Unicode 8.0 or later versions.

 Some vowels in New Tai Lue are represented with two vowel

letters—one to the left of the consonant letter and one to the right. In these cases, the

characters are simply stored in visual order: first the vowel letter on the left, then the

consonant letter, and finally the vowel letter on the right. U+19B6 NEW TAI LUE

VOWEL SIGN AE is considered a single letter and is displayed to the left of its conso‐

nant letter. It is not represented by a sequence of two characters for U+19B5 NEW TAI

LUE VOWEL SIGN E. If a tone mark appears in a syllable, it occurs last in the represen‐

tation, after any right side vowel, again in visual order. Table 16-13 shows several

examples of these ordering relations.

e + ka + t1 → [ke:2]

e + ka + i → [kə:1]

e + ka + iy → [kəi1]

e + ka + iy + t1 → [kəi2]

e + ka + iy + t2 → [kəi3]

 A virama or killer character is not used to create conjunct conso‐

nants in New Tai Lue, because clusters of consonants do not regularly occur. New Tai

Lue has a limited set of final consonants, which are modified with a hook showing

that the inherent vowel is killed.

 Similar to the Thai and Lao scripts, New Tai Lue consonant letters come in

pairs that denote two tonal registers. The tone of a syllable is indicated by the combi‐

nation of the tonal register of the consonant letter plus a tone mark written at the

end of the syllable, as shown in Table 16-14.

Two-Part Vowels.

Table 16-13. New Tai Lue Vowel Placement

Final Consonants.

Tones.

Southeast Asia-I 799 16.6 New Tai Lue

Display Sequence Register Tone Mark Tone Transcription

kah high 1 [ka1]

kah + t1 high t1 2 [ka2]

kah + t2 high t2 3 [ka3]

kal low 4 [ka4]

kal + t1 low t1 5 [ka5]

ka1 + t2 low t2 6 [ka6]

 The New Tai Lue script adapted its digits from the Tai Tham (or Lanna) script.

Tai Tham used two separate sets of digits, one known as the hora set, and one known

as the tham set. The New Tai Lue digits are adapted from the hora set.

The one exception is the additional New Tai Lue digit for one: U+19DA NEW TAI

LUE THAM DIGIT ONE. The regular hora form for the digit, U+19D1 NEW TAI LUE

DIGIT ONE, has the exact same glyph shape as a common New Tai Lue vowel,

U+19B1 NEW TAI LUE VOWEL SIGN AA. For this reason, U+19DA is often substi‐

tuted for U+19D1 in contexts which are not obviously numeric, to avoid visual ambi‐

guity. Implementations of New Tai Lue digits need to be aware of this usage, as

U+19DA may occur frequently in text.

Table 16-14. New Tai Lue Registers and Tones

Digits.

Southeast Asia-I 800 16.6 New Tai Lue

The script called Tai Tham is used for three living languages, Lue, Khuen, and

Northern Thai, which are spoken in China, Myanmar, Northern Thailand, and

surrounding areas. In addition, the script is used for Lao Tham (or Old Lao) and

other dialect variants found in Buddhist palm leaves and notebooks. Although the

script has no single, commonly recognized name across the region today, it is known

by various language-specific and region-specific names, such as Old Xishuangbanna

Dai or Old Tai Lue in China, Khün in Myanmar, and Tua Mueang, Lanna, or Yuan in

Thailand.

Few of the six million speakers of Northern Thai are literate in the Tai Tham script,

although there is some rising interest in the script among the young. There are about

690,000 speakers of Tai Lue. Of those, many people born before 1950 are literate in

the Tai Tham script, and newspapers and other literature are regularly produced in

the Xishuangbanna region of Yunnan using the script. Younger speakers are taught

the New Tai Lue script, instead. (See Section 16.6, New Tai Lue.) The Tai Tham script

continues to be taught in the Tai Lue monasteries. There are 107,000 speakers of

Khün, for which Tai Tham is the only script.

 Consonants have an inherent -a vowel sound. Most consonants have a

combining subjoined form, but unlike most other Brahmi-derived scripts, the

subjoining of a consonant does not mean that the vowel of the previous consonant is

killed. A subjoined consonant may be the first consonant of the following syllable.

The encoding model for Tai Tham is more similar to the Khmer coeng model than to

the usual virama model: the character U+1A60 TAI THAM SIGN SAKOT is entered

before a consonant which is to take the subjoined form. A subjoined consonant may

be attached to a dependent vowel sign.

U+1A4B TAI THAM LETTER A represents a glottal consonant. Its rendering in

Northern Thai differs from that typical for Tai Lue and Khün.

A number of Tai Tham characters did not traditionally take subjoined forms, but

modern innovations in borrowed vocabulary suggest that fonts should make provi‐

sion for subjoining behavior for all of the consonants except the historical vocalic r

and l.

 Independent vowels are used as in other Brahmi-derived

scripts. U+1A52 TAI THAM LETTER OO is not used in Northern Thai.

 Seven dependent consonant signs occur. Two of these

are used as medials: U+1A55 TAI THAM CONSONANT SIGN MEDIAL RA and U+1A56

16.7 Tai Tham

16.7.1 Tai Tham: U+1A20–U+1AAF

Consonants.

Independent Vowels.

Dependent Consonant Signs.

Southeast Asia-I 801 16.7 Tai Tham

TAI THAM CONSONANT SIGN MEDIAL LA form clusters and immediately follow a

consonant.

U+1A58 TAI THAM SIGN MAI KANG LAI is used as a final -ng in Northern Thai and

Tai Lue. Its shape is distinct in Khün. U+1A59 TAI THAM CONSONANT SIGN FINAL

NGA is also used as a final -ng in Northern Thai.

U+1A5B TAI THAM CONSONANT SIGN HIGH RATHA OR LOW PA represents high ratha

in santhān “shape” and low pa in sappa “omniscience”.

 Dependent vowel signs are used in a manner similar to

that employed by other Brahmi-derived scripts, although Tai Tham uses many of

them in combination.

U+1A63 TAI THAM VOWEL SIGN AA and U+1A64 TAI THAM VOWEL SIGN TALL AA

are separately encoded because the choice of which form to use cannot be reliably

predicted from context.

The Khün character U+1A6D TAI THAM VOWEL SIGN OY is not used in Northern

Thai. Khün vowel order is quite different from that of Northern Thai.

 Tai Tham has two combining tone marks, U+1A75 TAI THAM SIGN

TONE-1 and U+1A76 TAI THAM SIGN TONE-2, which are used in Tai Lue and in

Northern Thai. These are rendered above the vowel over the base consonant. Three

additional tone marks are used in Khün: U+1A77 TAI THAM SIGN KHUEN TONE-3,

U+1A78 TAI THAM SIGN KHUEN TONE-4, and U+1A79 TAI THAM SIGN KHUEN

TONE-5, which are rendered above and to the right of the vowel over the base conso‐

nant. Tone marks are represented in logical order following the vowel over the base

consonant or consonant stack. If there is no vowel over a base consonant, then the

tone is rendered directly over the consonant; this is the same way tones are treated in

the Thai script.

U+1A7A TAI THAM SIGN RA HAAM is used in Northern

Thai to indicate that the character or characters it follows are not sounded. The

precise range of characters not to be sounded is indeterminant; it is defined instead

by reading rules. In Tai Lue, ra haam is used as a final -n.

The mark U+1A7B TAI THAM SIGN MAI SAM has a range of uses in Northern Thai:

It is used as a repetition mark, stored as the last character in the word to be

repeated: tang “be different”, tangtang “be different in my view”.

It is used to disambiguate the use of a subjoined letters. A subjoined letter may

be a medial or final, or it may be the start of a new syllable.

It is used to mark “double-acting” consonants. It is stored where the consonant

would be stored if there were a separate consonant used.

Dependent Vowel Signs.

Tone Marks.

Other Combining Marks.

•

•

•

Southeast Asia-I 802 16.7 Tai Tham

U+1A7F TAI THAM COMBINING CRYPTOGRAMMIC DOT is used singly or multiply

beneath letters to give each letter a different value according to some hidden agree‐

ment between reader and writer.

 Two sets of digits are in common use: a secular set (Hora) and an ecclesias‐

tical set (Tham). European digits are also found in books.

 The four signs U+1AA8 TAI THAM SIGN KAAN, U+1AA9 TAI THAM

SIGN KAANKUU, U+1AAA TAI THAM SIGN SATKAAN, and U+1AAB TAI THAM SIGN

SATKAANKUU, are used in a variety of ways, with progressive values of finality.

U+1AAB TAI THAM SIGN SATKAANKUU is similar to U+0E5A THAI CHARACTER

ANGKHANKHU.

At the end of a section, U+1AA9 TAI THAM SIGN KAANKUU and U+1AAC TAI THAM

SIGN HANG may be combined with U+1AA6 TAI THAM SIGN REVERSED ROTATED

RANA in a number of ways. The symbols U+1AA1 TAI THAM SIGN WIANGWAAK,

U+1AA0 TAI THAM SIGN WIANG, and U+1AA2 TAI THAM SIGN SAWAN are

logographs for “village,” “city,” and “heaven,” respectively.

The three signs U+1AA3 TAI THAM SIGN KEOW, “courtyard,” U+1AA4 TAI THAM

SIGN HOY, “oyster,” and U+1AA5 TAI THAM SIGN DOKMAI, “flower” are used as ding‐

bats and as section starters. The mark U+1AA7 TAI THAM SIGN MAI YAMOK is used

in the same way as its Thai counterpart, U+0E46 THAI CHARACTER MAIYAMOK.

European punctuation like question mark, exclamation mark, parentheses, and

quotation marks is also used.

 There is no firmly established sorting order for the Tai Tham script.

The order in the code charts is based on Northern Thai and Thai. U+1A60 TAI THAM

SIGN SAKOT is ignored for sorting purposes.

 Opportunities for line breaking are lexical, but a line break may not

be inserted between a base letter and a combining diacritic. There is no insertion of

visible hyphens at line boundaries.

Digits.

Punctuation.

Collating Order.

Line Breaking.

Southeast Asia-I 803 16.7 Tai Tham

The Tai Viet script is used by three Tai languages spoken primarily in northwestern

Vietnam, northern Laos, and central Thailand: Tai Dam (also Black Tai or Tai Noir),

Tai Dón (White Tai or Tai Blanc), and Thai Song (Lao Song or Lao Song Dam). The

Thai Song of Thailand are geographically removed from, but linguistically related to

the Tai people of Vietnam and Laos. There are also populations in Australia, China,

France, and the United States. The script is related to other Tai scripts used

throughout Southeast Asia. The total population using the three languages, across all

countries, is estimated to be 1.3 million (Tai Dam 764,000, Tai Dón 490,000, Thai

Song 32,000). The script is still used by the Tai people in Vietnam, and there is a

desire to introduce it into formal education there. It is unknown whether it is in

current use in Laos, Thailand, or China.

Several different spellings have been employed for the name of the script, including

Tay Viet. Linguists commonly use “Thai” to indicate the language of central Thai‐

land, and “Tai” to indicate the language family; however, even that usage is inconsis‐

tent.

 The Tai Viet script shares many features with other Tai alphabets. It is

written left to right and has a double set of initial consonants, one for the low tone

class and one for the high tone class. Vowels marks are positioned before, after,

above, or below the syllable’s initial consonant, depending on the vowel. Some

vowels are written with digraphs. The consonants do not carry an implicit vowel. The

vowel must always be written explicitly.

The Tai languages are almost exclusively monosyllabic. A very small number of

words have an unstressed initial syllable, and loan words may be polysyllabic.

 The Tai Viet script uses visual ordering—a characteristic it shares with

the Thai and Lao scripts. This means that the five Tai Viet vowels that occur visually

on the left side of their associated consonant are stored ahead of those consonants in

text. This practice differs from the usual pattern for Brahmi-derived scripts, in which

all dependent vowels are stored in logical order after their associated consonants,

even when they are displayed to the left of those consonants.

Visual order for Tai Viet vowels results in simpler rendering for the script and follows

accepted practice for data entry. However, it complicates syllable identification and

the processes for searching and sorting. Implementers can take advantage of tech‐

niques developed for processing Thai script data to address the issues associated with

visual order encoding.

16.8 Tai Viet

16.8.1 Tai Viet: U+AA80–U+AADF

Structure.

Visual Order.

Southeast Asia-I 804 16.8 Tai Viet

The five Tai Viet vowels that occur in visual order ahead of their associated conso‐

nants are given the property value Logical_Order_Exception = True in the Unicode

Character Database.

 In the Tai Viet script each consonant has two forms.

The low form of the initial consonant indicates that the syllable uses tone 1, 2, or 3.

The high form of the initial consonant indicates that the syllable uses tone 4, 5, or 6.

This is sufficient to define the tone of closed syllables (those ending /p/, /t/, /k/, or /

ʔ/), in that these syllables are restricted to tones 2 and 5.

Traditionally, the Tai Viet script did not use any further marking for tone. The reader

had to determine the tone of unchecked syllables from the context. Recently, several

groups have introduced tone marks into Tai Viet writing. Tai Dam speakers in the

United States began using Lao tone marks with their script in the 1970s, and those

marks are included in SIL’s Tai Heritage font. These symbols are written as

combining marks above the initial consonant, or above a combining vowel, and are

identified by their Laotian names, mai ek and mai tho. These marks are also used by

the Song Petburi font (developed for the Thai Song language), although they were

probably borrowed from the Thai alphabet rather than the Lao.

The Tai community in Vietnam invented their own tone marks written on the base

line at the end of the syllable, which they call mai nueng and mai song.

When combined with the consonant class, two tone marks are sufficient to unam‐

biguously mark the tone. No tone is written on loan words or on the unstressed

initial syllable of a native word.

U+AA9A TAI VIET LETTER LOW BO and U+AA92 TAI VIET

LETTER LOW DO are used to write syllable-final /p/ and /t/, respectively, as is the

practice in many Tai scripts. U+AA80 TAI VIET LETTER LOW KO is used for both final

/k/ and final /ʔ/. The high-tone class symbols are used for writing final /j/ and the

final nasals, /m/, /n/, and /ŋ/. U+AAAB TAI VIET LETTER HIGH VO is used for final /

w/.

There are a number of exceptions to the above rules in the form of vowels which

carry an inherent final consonant. These vary from region to region. The ones

included in the Tai Viet block are the ones with the broadest usage: /-aj/, /-am/, /-

an/, and /-əw/.

 There are five special symbols in Tai Viet. The meaning

and use of these symbols is summarized in Table 16-15.

Code Glyph Name Meaning

AADB kon person

Tone Classes and Tone Marks.

Final Consonants.

Symbols and Punctuation.

Table 16-15. Tai Viet Symbols and Punctuation

Southeast Asia-I 805 16.8 Tai Viet

AADC nueng one

AADD sam signals repetition of the previous word

AADE ho hoi beginning of text (used in songs and poems)

AADF koi koi end of text (used in songs and poems)

U+AADB TAI VIET SYMBOL KON and U+AADC TAI VIET SYMBOL NUENG may be

regarded as word ligatures. They are, however, encoded as atomic symbols, without

decompositions. In the case of kon, the word ligature symbol is used to distinguish

the common word “person” from otherwise homophonous words.

 Traditionally, the Tai Viet script was written without spaces between

words. In the last thirty years, users in both Vietnam and the United States have

started writing spaces between words, in both handwritten and machine produced

texts. Most users now use interword spacing. Polysyllabic words may be written

without space between the syllables.

 The Tai Viet script does not have an established standard for

sorting. Sequences have sometimes been borrowed from neighboring languages.

Some sources use the Lao order, adjusted for differences between the Tai Dam and

Lao character repertoires. Other sources prefer an order based on the Vietnamese

alphabet. It is possible that communities in different countries will want to use

different orders.

Word Spacing.

Collating Order.

Southeast Asia-I 806 16.8 Tai Viet

The Kayah Li script was invented in 1962 by Htae Bu Phae (also written Hteh Bu

Phe), and is used to write the Eastern and Western Kayah Li languages of Myanmar

and Thailand. The Kayah Li languages are members of the Karenic branch of the

Sino-Tibetan family, and are tonal and mostly monosyllabic. There is no mutual intel‐

ligibility with other Karenic languages.

The term Kayah Li is an ethnonym referring to a particular Karen people who speak

these languages. Kayah means “person” and li means “red,” so Kayah Li literally

means “red Karen.” This use of color terms in ethnonyms and names for languages is

a common pattern in this part of Southeast Asia.

 Although Kayah Li is a relatively recently invented script, its structure

was clearly influenced by Brahmi-derived scripts, and in particular the Myanmar

script, which is used to write other Karenic languages. The order of letters is a variant

of the general Brahmic pattern, and the shapes and names of some letters are

Brahmi-derived. Other letters are innovations or relate more specifically to

Myanmar-based orthographies.

The Kayah Li script resembles an abugida such as the Myanmar script, in terms of

the derivation of some vowel forms, but otherwise Kayah Li is closer to a true

alphabet. Its consonants have no inherent vowel, and thus no virama is needed to

remove an inherent vowel.

 Four of the Kayah Li vowels (a, ơ, i, ô) are written as independent spacing

letters. Five others (ư, e, u, ê, o) are written by means of diacritics applied above the

base letter U+A922 KAYAH LI LETTER A, which thus serves as a vowel-carrier. The

same vowel diacritics are also written above the base letter U+A923 KAYAH LI

LETTER OE to represent sounds found in loanwords.

 Tone marks are indicated by combining marks which subjoin to the four

independent vowel letters. The vowel diacritic U+A92A KAYAH LI VOWEL O and the

mid-tone mark, U+A92D KAYAH LI TONE CALYA PLOPHU, are each analyzable as

composite signs, but encoding of each as a single character in the standard reflects

usage in didactic materials produced by the Kayah Li user community.

 The Kayah Li script has its own set of distinctive digits.

 Kayah Li text makes use of modern Western punctuation conventions,

but the script also has two unique punctuation marks: U+A92E KAYAH LI SIGN CWI

and U+A92F KAYAH LI SIGN SHYA. The shya is a script-specific form of a danda

mark.

16.9 Kayah Li

16.9.1 Kayah Li: U+A900–U+A92F

Structure.

Vowels.

Tones.

Digits.

Punctuation.

Southeast Asia-I 807 16.9 Kayah Li

Cham is a Austronesian language of the Malayo-Polynesian family. The Cham

language has two major dialects: Eastern Cham and Western Cham. Eastern Cham

speakers live primarily in the southern part of Vietnam and number about 73,000.

Western Cham is spoken mostly in Cambodia, with about 220,000 speakers there and

about 25,000 in Vietnam. The Cham script is used more by the Eastern Cham

community.

 Cham is a Brahmi-derived script. Consonants have an inherent vowel.

The inherent vowel is -a in the case of most consonants, but is -ư in the case of nasal

consonants. There is no virama and hence no killing of the inherent vowel. Depen‐

dent vowels (matras) are used to modify the inherent vowel and separately encoded,

explicit final consonants are used where there is no inherent vowel. The script does

not have productive formation of consonant conjuncts.

 Six of the initial vowels in Cham are represented with

unique, independent vowels. These separately-encoded characters always indicate a

syllable-initial vowel, but they may occur word-internally at a syllable break. Other

Cham vowels which do not have independent forms are instead represented by

dependent vowels (matras) applied to U+AA00 CHAM LETTER A. Four of the other

independent vowel letters are also attested bearing matras.

 Cham consonants can be followed by consonant signs to represent the

glides: -ya, -ra, -la, or -wa. U+AA33 CHAM CONSONANT SIGN YA, in particular,

normally ligates with the base consonant it modifies. When it does so, any dependent

vowel is graphically applied to it, rather than to the base consonant.

The independent vowel U+AA00 CHAM LETTER A can cooccur with two of the

medial consonant signs: -ya or -wa. The writing system distinguishes these sequences

from single letters which are pronounced the same. Thus, <a, -ya> [ja] contrasts

with U+AA22 CHAM LETTER YA, also pronounced [ja], and <a, -wa> [wa] contrasts

with U+AA25 CHAM LETTER VA, also pronounced [wa].

Four medial clusters of two consonant signs in a row occur: <-ra, -ya> [-rja], <-ra, -

wa> [-rwa], <-la, -ya> [-lja], and <-la, -wa> [-lwa].

There are three types of final consonants. The majority are simply encoded as sepa‐

rate base characters. Graphically, those final forms appear similar to the corre‐

sponding non-final consonants, but typically have a lengthened stroke at the right

side of their glyphs. The second type consist of combining marks to represent final -

ng, -m, and -h. Finally, U+AA25 CHAM LETTER VA occurs unchanged either in initial

16.10 Cham

16.10.1 Cham: U+AA00–U+AA5F

Structure.

Independent Vowel Letters.

Consonants.

Southeast Asia-I 808 16.10 Cham

or final positions. Final consonants may occur word-internally, in which case they

indicate the presence of a syllable boundary.

 Dependent vowels and other signs are encoded

after the consonant to which they apply. The ordering of elements is shown in more

detail in Table 16-16.

Class Examples Encoding

consonant or independent vowel [U+AA00..U+AA28]

consonant sign -ra, -la , [U+AA34, U+AA35]

consonant sign -ya, -wa , [U+AA33, U+AA36]

left-side dependent vowel , [U+AA2F, U+AA30]

other dependent vowel [U+AA2A..U+AA2E, U+AA31..U+AA32]

vowel lengthener -aa U+AA29

final consonant or va , [U+AA40..U+AA4D, U+AA25]

The left-side dependent vowels U+AA2F CHAM VOWEL SIGN O and U+AA30 CHAM

VOWEL SIGN AI occur in logical order after the consonant (and any medial consonant

signs), but in visual presentation their glyphs appear before (to the left of) the conso‐

nant. U+AA2F CHAM VOWEL SIGN O, in particular, may occur together in a sequence

with another dependent vowel, the vowel lengthener, or both. In such cases, the

glyph for U+AA2F appears to the left of the consonant, but the glyphs for the second

dependent vowel and the vowel lengthener are rendered above or to the right of the

consonant.

 The Cham script has its own set of digits, which are encoded in this block.

However, European digits are also known and occur in Cham texts because of the

influence of Vietnamese.

 Cham uses danda marks to indicate text units. Three levels are recog‐

nized, marked respectively with danda, double danda, and triple danda.

U+AA5C CHAM PUNCTUATION SPIRAL often begins a section of text. It can be

compared to the usage of Tibetan head marks. The spiral may also occur in combina‐

tion with a danda.

Modern Cham text also makes use of European punctuation marks, such as the ques‐

tion mark, hyphen and colon.

 Opportunities for line breaks occur after any full orthographic

syllable in Cham. Modern Cham text makes use of spaces between words, and those

are also line break opportunities. Line breaks occur after dandas.

Ordering of Syllable Components.

Table 16-16. Cham Syllabic Structure

Digits.

Punctuation.

Line Breaking.

Southeast Asia-I 809 16.10 Cham

The Pahawh Hmong script was originally devised by Shong Lue Yang in 1959 to write

the Hmong language. The script was devised in Laos, and taken to refugee camps in

northern Thailand. In the late 20th century, it then moved with waves of immigrants

to Australia and the United States, where it remains in current use. The Hmong

language is also commonly written using the Romanized Popular Alphabet (RPA),

which uses the Latin script.

The Pahawh Hmong writing system has had four stages of development: the Source

version, the Second Stage Reduced Version, the Third Stage Reduced Version, and the

Final Version. Only the Second and Third Stage versions are in current use. The char‐

acters in the Pahawh Hmong block support text written in the Second Stage Reduced,

Third Stage Reduced, and Final versions.

 The Pahawh Hmong character names are based on the Third

Stage Reduced Version, which provides a one-to-one mapping between the Third

Stage tone diacritics and the widely used Romanized Popular Alphabet tone mark

letters. The Second Stage names are listed as annotations in the names list.

 The Pahawh Hmong script is written left to right. Text consists of a

sequence of syllables that may contain a maximum length of four characters (two

base characters and two diacritics). Syllables are separated by spaces.

Unlike other writing systems, Pahawh Hmong writes the vowel of a syllable before

the syllable-initial consonant, as illustrated in Figure 16-5.

The example in Figure 16-5 uses Second Stage Reduced Version conventions. The

representation of the syllable is in straightforward visual order. U+16B16 PAHAWH

HMONG VOWEL KAB is the base character representing the [a] vowel of the syllable.

The combining mark U+16B30 represents the tone mark for the vowel. U+16B1D

PAHAWH HMONG CONSONANT NTSAU is the base character representing the initial

consonant of the syllable. The combining mark U+16B35 is a diacritical mark which

changes the sound of the consonant from [nts] to [ph]. Altogether, the sequence

represents the syllable [phâ].

16.11 Pahawh Hmong

16.11.1 Pahawh Hmong: U+16B00–U+16B8F

Character Names.

Structure.

Figure 16-5. Pahawh Hmong Syllable Structure

Southeast Asia-I 810 16.11 Pahawh Hmong

Because the order of characters in memory matches the visual written order of the

text, display rendering does not require any reordering of glyphs. However, imple‐

mentations such as text-to-speech need to be aware that Pahawh Hmong has unusual

reading rules, because initial consonants for syllables graphically follow the vowels

which they precede in pronunciation.

 The characters in the range U+16B00..U+16B1B represent vowels. The addi‐

tion of a diacritic alters the tone of the vowel. The special characters U+16B1A

PAHAWH HMONG VOWEL KAAB and U+16B1B PAHAWH HMONG VOWEL KAAV are

atomic characters and do not decompose.

 U+16B1C..U+16B2F represent consonants. These are phonologically

initial in a syllable, but occur after the vowel in written order.

 The combining marks in the range U+16B30..U+16B36 are used

as tone marks. They combine with the vowel letters to indicate particular tones for

the syllable. The use for representation of particular tones differs for the two different

stages.

U+16B30 PAHAWH HMONG MARK CIM TUB and U+16B35 PAHAWH HMONG MARK

CIM HOM also combine with initial consonant letters. When used this way, these

marks function as diacritics and indicate a different sound for the consonant letter.

Usually the resultant sound is unrelated to that of the unmodified base letter—the

particular modification by the diacritic is not predictable.

 Pahawh Hmong makes use of common European

punctuation marks as well as script-specific punctuation marks (U+16B37..U+16B3B

and U+16B44..U+16B45). The script employs several mathematical operators

(U+16B3C..U+16B3F) in simple arithmetic expressions. Those operators are consid‐

ered script-specific to Pahawh Hmong, and are not part of the repertoire of symbols

used in international mathematical notation; hence they are given a

General_Category value of Other_Symbol, rather than Math_Symbol.

Pahawh Hmong also includes a set of modifiers that have various uses:

U+16B42..U+16B43 indicate reduplication, U+16B40 identifies the chanting nature

of a text, and U+16B41 indicates the following syllable has a non-Hmong pronuncia‐

tion.

 The decimal digits 0–9 are encoded from U+16B50..U+16B59.

The representative glyph for U+16B50 PAHAWH HMONG DIGIT ZERO resembles an

“I”, and is found in the Second Stage Reduced Version orthography. In contrast, the

Third Stage Reduced Version orthography has a circular glyph.

A non-decimal system also exists in Pahawh Hmong and is taught today, however, it

is not used for arithmetic calculation. The non-decimal numbers are encoded in the

range from U+16B5B..U+16B61. The Second Stage Reduced Version glyph for

Vowels.

Consonants.

Combining Marks.

Punctuation and Other Symbols.

Digits and Numbers.

Southeast Asia-I 811 16.11 Pahawh Hmong

U+16B5B PAHAWH HMONG NUMBER TENS resembles a “W”. The Third Stage

Reduced Version glyph looks like an “I”, and should be distinguished in fonts from

U+16B50 PAHAWH HMONG DIGIT ZERO.

 Characters encoded from U+16B63..U+16B8F are logographs. These

include a grammatical classifier (U+16B63). Also included are characters designating

periods of time (U+16B64..U+16B6C), correspondence (U+16B6D..U+16B77), and

clan names (U+16B7E..U+16B8F). The clan names are encoded for historical reasons,

and are not in widespread current use.

Logographs.

Southeast Asia-I 812 16.11 Pahawh Hmong

Nyiakeng Puachue Hmong is a writing system created in the 1980s by Reverend

Chervang Kong to write the White Hmong and Green Hmong languages. It is also

called the Ntawv Txawjvaag or Chervang script, and was devised for use in the

United Christians Liberty Evangelical church in the United States. It is reportedly

used today in Laos, Thailand, Vietnam, France and Australia. Several of the letters

appear to derive from shapes of Hebrew letters.

 Nyiakeng Puachue Hmong is written from left to right. The script consists

of an alphabet with letters for both consonants and vowels. It has combining marks

to indicate tones. Syllables are often run together, but when a syllable begins with a

vowel, a space must precede it.

 U+1E124..U+1E12C represent vowels. Diphthongs are written as sequences

of two vowels.

 The characters in the range U+1E100..U+1E123 represent consonants.

Preaspirated and devoiced consonants are written with U+1E104 NYIAKENG

PUACHUE HMONG LETTER HA following the base consonant. Two consonants can be

read as vowels: U+1E123 NYIAKENG PUACHUE HMONG LETTER RRA can be read as

the diphthong ai and U+1E11F NYIAKENG PUACHUE HMONG LETTER HAH can be

read as the vowel o.

 The combining marks in the range U+1E130..U+1E136 indicate

tone. They appear above the central character of a word, whether a consonant or a

vowel. If a word has three or more consonants before a vowel, the mark goes on the

center of the whole word, usually on the first vowel, although the user has some

discretion regarding its exact placement.

 Nyiakeng Puachue Hmong text makes use of standard Western punc‐

tuation marks.

 Characters from U+1E137..U+1E13B are determinatives, which

indicate that the preceding noun is the name of a person, place, thing, vertebrate or

invertebrate animal, or a pet name for the animal. Determinatives are not

pronounced, but help distinguish homophones. They appear as the last character in a

word, and are not separated by a space.

 Script-specific digits are used for Nyiakeng Puachue Hmong. They are

encoded in the range from U+1E140…U+1E149.

16.12 Nyiakeng Puachue Hmong

16.12.1 Nyiakeng Puachue Hmong: U+1E100–U+1E14F

Structure.

Vowels.

Consonants.

Combining Marks.

Punctuation.

Determinatives.

Digits.

Southeast Asia-I 813 16.12 Nyiakeng Puachue Hmong

 The character U+1E13C NYIAKENG PUACHUE HMONG SIGN XW XW

indicates that the preceding short word or syllable should be repeated. When sepa‐

rated by a space, it can be used to repeat a whole phrase or sentence. Its use is similar

to U+0E46 THAI CHARACTER MAIYAMOK and U+0EC6 LAO KO LA.

U+1E13D NYIAKENG PUACHUE HMONG SYLLABLE LENGTHENER indicates that a

vowel is lengthened in a word or phrase.

The logogram U+1E14E NYIAKENG PUACHUE HMONG LOGOGRAM NYAJ represents

the word for “money, currency,” and can be used in place of the word “money” or

before a number or amount. The symbol U+1E14F NYIAKENG PUACHUE HMONG

CIRCLED CA indicates ownership.

Other Symbols.

Southeast Asia-I 814 16.12 Nyiakeng Puachue Hmong

The Pau Cin Hau alphabet is a liturgical script of the Laipian religious tradition,

which emerged in the Chin Hills region of present-day Chin State, Myanmar at the

turn of the 20th century. The script is named after Pau Cin Hau (1859–1948), a Tedim

Chin, who founded the Laipian tradition and developed the script to convey his

teachings. In an account given by J. J. Bennison in the 1931 Census of India report for

Burma, Pau Cin Hau stated that the characters of his script were revealed to him in a

dream in 1902.

The script was designed to represent Tedim, a language of the northern branch of the

Kuki-Chin group of the Tibeto-Burman family, which is spoken in Chin State. Tedim

is the modern name for the language previously known as Tiddim; it also refers to

the Tedim dialects Kamhau (Kamhow) and Sokte.

While the script was developed for writing Tedim, several letters and tone marks

represent sounds that are not attested in Tedim, but which exist in other Chin

languages, suggesting that the alphabet may have been created as a universal script

for the Chin languages.

There are two distinct writing systems associated with Pau Cin Hau and the Laipian

tradition. One is an obsolete syllabary and the other is the alphabetic system encoded

in this block. Both are attested in manuscript and printed sources. The alphabetic

script is derived from the syllabary. Neither of these scripts has any genetic relation‐

ship with any other writing system.

 The Pau Cin Hau alphabet has 57 characters consisting of 21 consonant

letters, 7 vowel letters, 9 final-consonant letters, and 20 tone marks. It is written from

left to right. Vowels, consonants, and tone marks are written linearly as independent

characters. The syllable canon for Tedim may be described as (C1)V1(V2)(C2)T. The

tone (T) is represented using one of the 20 tone marks. These marks are used for

indicating vowel length, tone, and glottal stop, as well as punctuation. Of these, 15

represent tones and 5 represent glottal stop. Ten of the tone marks have a dual role

and simultaneously denote tone (or glottal stop) and sentence ending.

 Pau Cin Hau uses European digits.

 Word boundaries are indicated using spaces. The end of a sentence is

marked with final forms of tone marks. Western punctuation is also used. In some

cases, sentence-final tone marks may be redundantly followed by a full stop or other

Western punctuation mark.

16.13 Pau Cin Hau

16.13.1 Pau Cin Hau: U+11AC0–U+11AFF

Structure.

Digits.

Punctuation.

Southeast Asia-I 815 16.13 Pau Cin Hau

Line breaking should occur at spaces. Words are not broken at end-of-line and no

hyphen is used or attested. No breaking may occur between a tone mark and the

character that precedes it.

Southeast Asia-I 816 16.13 Pau Cin Hau

Hanifi Rohingya is a script used to write the Rohingya language, an Indo-Aryan

language spoken by approximately one million people primarily in Myanmar and

Bangladesh, but also spoken in other countries along the Indian Ocean. The script

was developed by the Rohingya Language Committee in the 1980s under the guid‐

ance of Maulana Mohammed Hanif. Rohingya is also written using the Myanmar,

Arabic, and Latin scripts. The Hanifi Rohingya script is a modern construction that

exhibits Arabic influence in the general appearance and structure of the script. Some

letter shapes also show influence from Latin and Myanmar. The script is used for the

publication of books and newspapers, both handwritten and printed.

 Hanifi Rohingya is an alphabetic script written from right to left. The

script is structurally conjoining and is modeled after Arabic. Adjacent letters join at

the baseline. Although letters may not be completely connected at the baseline in

handwritten texts, connections between letters are consistently maintained in

modern printed texts.

 Consonant letters represent pure consonants. However, the

letter-like sign U+10D22 HANIFI ROHINGYA MARK SAKIN is often used optionally to

indicate a consonant shown in isolation or a consonant at the end of a word. The

consonant gemination sign U+10D27 HANIFI ROHINGYA SIGN TASSI indicates

doubled consonants. When both the tassi and a tonal sign are present, the tassi is

placed first and the tonal sign is displayed visually to its left.

 Vowels are expressed using five letter-like vowel signs (U+10D1D..U+10D21)

placed after a consonant. These vowel signs represent short vowels. Vowel length and

stress are indicated by three tone signs placed above vowel signs:

U+10D24 HANIFI ROHINGYA SIGN HARBAHAY

U+10D25 HANIFI ROHINGYA SIGN TAHALA

U+10D26 HANIFI ROHINGYA SIGN TANA

An independent or word-initial vowel is represented using the vowel carrier

U+10D00 HANIFI ROHINGYA LETTER A plus a vowel sign.

 Nasalization is indicated using the letter-like sign U+10D23 HANIFI

ROHINGYA MARK NA KHONNA placed after a vowel sign.

 Words are separated with spaces. Both Latin and Arabic punctuation

signs such as periods, commas, colons, and hyphens are commonly used for delim‐

16.14 Hanifi Rohingya

16.14.1 Hanifi Rohingya: U+10D00–U+10D3F

Structure.

Consonant Letters.

Vowels.

Nasalization.

Punctuation.

Southeast Asia-I 817 16.14 Hanifi Rohingya

iting text segments. An elongation feature using the Arabic kashida (U+0640 ARABIC

TATWEEL) is often used for justification.

 As in Arabic, digits in Hanifi Rohingya (U+1D030..U+1D039) are written

from left to right.

Digits.

Southeast Asia-I 818 16.14 Hanifi Rohingya

Chapter 17

Southeast Asia-II
Indonesia and the Philippines

Four traditional Philippine scripts are described here: Tagalog (Baybayin), Hanunóo,

Buhid, and Tagbanwa. They have limited current use. Each is a very simplified

abugida which makes use of a few nonspacing vowel signs.

Although the official language of Indonesia, Bahasa Indonesia, is written in the Latin

script, Indonesia has many local, traditional scripts, which are ultimately derived

from Brahmi. Some of these scripts are documented in this chapter. Balinese and

Javanese are closely related, highly ornate scripts; Balinese is primarily used for the

Balinese language on the island of Bali, and Javanese for the Javanese language on

the island of Java. Sundanese is used to write the Sundanese language on the island

of Java. The Rejang script is used to write the Rejang language in southwest Sumatra,

and the Batak script is used to write several Batak dialects, also on the island of

Sumatra. Buginese (Lontara) and Makasar are two similar scripts that developed on

the island of Sulawesi and are used to write Buginese, Makasar, and other languages.

Kawi, a historical script derived from Brahmi, is the common ancestor of several or

perhaps all of the scripts described in this chapter. Kawi was used to write the Old

Javanese, Sanskrit, Old Malay, Old Balinese, and Old Sundanese languages in insular

southeast Asia between the 8th and 16th century.

819

The Tagalog (Baybayin), Hanunóo, Buhid, and Tagbanwa scripts are traditional

scripts of the Philippines, and are in limited use today. South Indian scripts of the

Pallava dynasty made their way to the Philippines, although the exact route is uncer‐

tain. They may have been transported by way of the Kavi scripts of Western Java

between the tenth and fourteenth centuries CE.

Written accounts of the Tagalog script by Spanish missionaries and documents in

Tagalog date from the mid-1500s. The first book in this script was printed in Manila

in 1593. While the Tagalog script (also known as Baybayin), was used to write

Tagalog, Bisaya, Ilocano, and other languages, it fell out of normal use by the

mid-1700s. The modern Tagalog language (also known as Filipino) is now primarily

written in the Latin script.

The Hanunóo, Buhid, and Tagbanwa scripts are related to Tagalog but may not be

directly descended from it. The Hanunóo and the Buhid peoples live in Mindoro,

while the Tagbanwa live in Palawan. Hanunóo enjoys the most use; it is widely used

to write love poetry, a popular pastime among the Hanunóo. Tagbanwa is used less

often.

The Philippine scripts share features with the other Brahmi-derived scripts to which

they are related.

 Philippine scripts have consonants containing an inherent -a

vowel, which may be modified by the addition of vowel signs or canceled (killed) by

the use of a virama-type mark. No conjunct consonants are employed in the Philip‐

pine scripts.

Two forms of the Tagalog letter ra are encoded: U+170D TAGALOG LETTER RA repre‐

sents the preferred modern form that derived from the letter da. In contrast, U+171F

17.1 Philippine Scripts: Tagalog, Hanunóo,

Buhid, and Tagbanwa

17.1.1 Tagalog: U+1700–U+171F

Hanunóo: U+1720–U+173F

Buhid: U+1740–U+175F

Tagbanwa: U+1760–U+177F

17.1.2 Principles of the Philippine Scripts

Consonant Letters.

Southeast Asia-II 820
17.1 Philippine Scripts: Tagalog,

Hanunóo, Buhid, and Tagbanwa

TAGALOG LETTER ARCHAIC RA represents a distinct historical form, also known as

the Zambales ra.

 Philippine scripts use independent vowels to write

syllables that do not begin with one of the consonant letters.

 The vowel -i is written with a mark above the associated

consonant, and the vowel -u with an identical mark below. The mark is known as

kudlit “diacritic,” tuldik “accent,” or tuldok “dot” in Tagalog, and as ulitan “diacritic”

in Tagbanwa. The Philippine scripts employ only the two vowel signs i and u, which

are also used to stand for the vowels e and o, respectively.

 Although all languages normally written with the Philippine scripts have

syllables ending in consonants, not all of the scripts have a mechanism for expressing

the canceled -a. As a result, in those orthographies, the final consonants are unex‐

pressed.

Francisco Lopez introduced a cross-shaped virama for the Tagalog script in his 1620

catechism, but this innovation did not seem to find favor with native users, who seem

to have considered the script adequate without it (they preferred kakapi to

kakampi). A similar reform for the Hanunóo script seems to have been

better received. The Hanunóo pamudpod was devised by Antoon Postma, who went

to the Philippines from the Netherlands in the mid-1950s. In traditional orthography,

si apu ba upada is, with the pamudpod, rendered more accurately as

si aypud bay upadan; the Hanunóo pronunciation is si

aypod bay upadan. U+1715 TAGALOG SIGN PAMUDPOD represents the pamudpod sign

borrowed from Hanunóo for use in contemporary texts of the Tagalog script.

The Tagalog virama, Hanunóo pamudpod, and Tagalog pamudpod only cancel the

inherent -a; they do not conjoin letters.

 The Philippine scripts are read from left to right in horizontal lines

running from top to bottom. They may be written or carved either in that manner or

in vertical lines running from bottom to top, moving from left to right. In the latter

case, the letters are written sideways so they may be read horizontally. This method

of writing is probably due to the medium and writing implements used. Text is often

scratched with a sharp instrument onto beaten strips of bamboo, which are held

pointing away from the body and worked from the proximal to distal ends, in

columns from left to right.

 In Tagalog and Tagbanwa, the vowel signs simply rest over or under the

consonants. In Hanunóo and Buhid, ligatures are often formed, as shown in

Table 17-1.

Independent Vowel Letters.

Dependent Vowel Signs.

Virama.

Directionality.

Rendering.

Southeast Asia-II 821
17.1 Philippine Scripts: Tagalog,

Hanunóo, Buhid, and Tagbanwa

Hanunóo Buhid

x x + x+ x x + x+

 Punctuation has been unified for the Philippine scripts. In the

Hanunóo block, U+1735 PHILIPPINE SINGLE PUNCTUATION and U+1736 PHILIPPINE

DOUBLE PUNCTUATION are encoded.

Table 17-1. Hanunóo and Buhid Vowel Sign Combinations

Punctuation.

Southeast Asia-II 822
17.1 Philippine Scripts: Tagalog,

Hanunóo, Buhid, and Tagbanwa

The Buginese script is used on the island of Sulawesi, mainly in the southwest. A

variety of traditional literature has been printed in it. As of 1971, as many as 2.3

million speakers of Buginese were reported in the southern part of Sulawesi. The

Buginese script is one of the easternmost of the Brahmi scripts and is perhaps related

to Javanese. It is attested as early as the fourteenth century CE. Buginese bears some

affinity to Tagalog and, like Tagalog, does not traditionally record final consonants.

The Buginese language, an Austronesian language with a rich traditional literature,

is one of the foremost languages of Indonesia. The script was previously also used to

write the Makasar, Bimanese, and Madurese languages.

 The repertoire contained in the Buginese block is intended to represent

the core set of Buginese characters in standard printing fonts developed in the mid

19th century for the Bugis and Makasar languages. Variant letterforms and other

extensions seen in palm leaf manuscripts or additional letters used in some

languages are not yet encoded in this block. A visible virama symbol has also been

attested, but is not needed for this core repertoire for Buginese.

 Buginese vowel signs are used in a manner similar to that seen in other

Brahmi-derived scripts. Consonants have an inherent /a/ vowel sound. Consonant

conjuncts are not formed.

 One ligature is found in the Buginese script. It is formed by the ligation of

<a, -i> + ya to represent îya, as shown in the first line of Figure 17-1. The ligature

takes the shape of the Buginese letter ya, but with a dot applied at the far left side.

Contrast that with the normal representation of the syllable yi, in which the dot indi‐

cating the vowel sign occurs in a centered position, as shown in the second line of

Figure 17-1. The ligature for îya is not obligatory; it would be requested by inserting a

zero width joiner.

 Several orderings are possible for Buginese. The Unicode Standard encodes

the Buginese characters in the Matthes order.

17.2 Buginese

17.2.1 Buginese: U+1A00–U+1A1F

Repertoire.

Structure.

Ligature.

Figure 17-1. Buginese Ligature

Order.

Southeast Asia-II 823 17.2 Buginese

 Buginese uses spaces between certain units. One punctuation symbol,

U+1A1E BUGINESE PALLAWA, is functionally similar to the full stop and comma of

the Latin script. There is also another separation mark, U+1A1F BUGINESE END OF

SECTION.

U+A9CF JAVANESE PANGRANGKEP or a doubling of the vowel sign (especially

U+1A19 BUGINESE VOWEL SIGN E and U+1A1A BUGINESE VOWEL SIGN O) is some‐

times used to denote word reduplication. The shape of the Buginese reduplication

sign is based on the Arabic digit two. The functionally similar U+A9CF JAVANESE

PANGRANGKEP which has the same shape, is recommended for this sign in Buginese,

rather than U+0662 ARABIC-INDIC DIGIT TWO, to avoid potential problems for text

layout.

 There are no known digits specific to the Buginese script.

Punctuation.

Numerals.

Southeast Asia-II 824 17.2 Buginese

The Balinese script, or aksara Bali, is used for writing the Balinese language, the

native language of the people of Bali, known locally as basa Bali. It is a descendant of

the ancient Brahmi script of India, and therefore it has many similarities with

modern scripts of South Asia and Southeast Asia, which are also members of that

family. The Balinese script is used to write Kawi, or Old Javanese, which strongly

influenced the Balinese language in the eleventh century CE. The script is also used

to write the Sasak language, which is spoken on the island of Lombok to the east of

Bali. Some Balinese words have been borrowed from Sanskrit, which may also be

written in the Balinese script.

 Balinese consonants have an inherent -a vowel sound. Consonants

combine with following consonants in the usual Brahmic fashion: the inherent vowel

is “killed” by U+1B44 BALINESE ADEG ADEG (virama), and the following conso‐

nant is subjoined, often with a change in shape. Table 17-2 shows the base consonants

and their conjunct forms.

Consonant Base Form Conjunct Form

ka

kha

ga

gha

nga

ca

cha

ja

jha

nya

tta

17.3 Balinese

17.3.1 Balinese: U+1B00–U+1B7F

Structure.

Table 17-2. Balinese Base Consonants and Conjunct Forms

Southeast Asia-II 825 17.3 Balinese

ttha

dda

ddha

nna

ta

tha

da

dha

na

pa

pha

ba

bha

ma

ya

ra

la

wa

sha

ssa

sa

ha

The seven letters U+1B45 BALINESE LETTER KAF SASAK through U+1B4B

BALINESE LETTER ASYURA SASAK were proposed in the late 20th century as exten‐

sions for the Sasak language to replace use of the nukta, U+1B34 BALINESE SIGN

REREKAN, but have seen little use.

Southeast Asia-II 826 17.3 Balinese

Balinese dependent vowel signs are used in a manner similar to that employed by

other Brahmic scripts.

Independent vowels are used in a manner similar to that seen in other Brahmic

scripts, with a few differences. For example, U+1B05 BALINESE LETTER AKARA

and U+1B0B BALINESE LETTER RA REPA can be treated as consonants; that is, they

can be followed by adeg adeg. In Sasak, the vowel letter akara can be followed by an

explicit adeg adeg in word- or syllable-final position, where it indicates the glottal

stop; other consonants can also be subjoined to it.

U+1B03 BALINESE SIGN SURANG typically represents a final

consonant -r. This sign is derived from the cluster-initial sign r- (also known as

repha) of the parent script Kawi; it still represents a repha when transliterating Kawi,

but it has been reanalyzed to represent a final -r in the Balinese orthography. As

shown in Figure 17-2, the same written form, pronounced as dhamar in the Balinese

language, represents dharma in transliterated Kawi. Because a surang used as a final

-r cannot be visually distinguished from a surang used as repha, they are encoded in

the same way. When combined with another above-base sign, a surang used as repha

may be rendered to the left of the other sign rather than to the right.

For searching and sorting, surang should be treated as equivalent to ra. When the

processed text is transliterated Kawi, surang also needs to be reordered to precede its

orthographic syllable. Two other combining signs are also equivalent to base letters

for searching and sorting: U+1B02 BALINESE SIGN CECEK (anusvara) is equivalent

to nga, and U+1B04 BALINESE SIGN BISAH (visarga) is equivalent to ha.

 The unique behavior of U+1B0B BALINESE LETTER RA REPA

(vocalic ṛ) results from a reanalysis of the independent vowel letter as a consonant. In

a compound word in which the first element ends in a consonant and the second

element begins with an original ra + pepet, such as Pak Rërëh “Mr Rërëh”, the

subjoined form of ra repa is used; this particular sequence is encoded ka + adeg

adeg + ra repa. However, in other contexts where the ra repa represents the original

Sanskrit vowel, U+1B3A BALINESE VOWEL SIGN RA REPA is used, as in Krësna .

Behavior of ra.

Figure 17-2. Writing dharma in Balinese

Behavior of ra repa.

Southeast Asia-II 827 17.3 Balinese

 The vowel signs u and uu take different forms when combined with

subscripted consonant clusters, as shown in Table 17-3. The upper limit of consonants

in a cluster is three, the last of which can be y, w, or r.

Syllable Glyph

kyu

kyuu

kwu

kwuu

kru

kruu

kryu

kryuu

skru

skruu

 The combining mark U+1B34 BALINESE SIGN REREKAN (nukta) is used to

extend the character repertoire for foreign sounds.

 The character U+1B4C BALINESE LETTER ARCHAIC JNYA is occa‐

sionally used in older texts in place of ja +subjoined nya. Both forms may be present

in the same text, but the archaic form is not found in modern Balinese texts. A

subjoined form of this character is unattested.

 The traditional order ha na ca ra ka | da ta sa wa la | ma ga ba nga | pa ja

ya nya is taught in schools, although van der Tuuk followed the Javanese order pa ja

ya nya | ma ga ba nga for the second half. The arrangement of characters in the code

charts follows the Brahmic ordering.

U+1B5E BALINESE CARIK SIKI and U+1B5F BALINESE CARIK

PAREREN are used as comma and full stop, respectively. Their inverted versions

U+1B4E BALINESE INVERTED CARIK SIKI and U+1B4F BALINESE INVERTED

CARIK PAREREN have been used in some manuscripts to indicate finer subdivisions.

U+1B5D BALINESE CARIK PAMUNGKAH is used as a colon.

Rendering.

Table 17-3. Balinese Consonant Clusters with u and uu

Nukta.

Archaic Jnya.

Ordering.

Punctuation.

Southeast Asia-II 828 17.3 Balinese

Both U+1B5A BALINESE PANTI and U+1B5B BALINESE PAMADA are used to

begin a section of text. A shorter version of panti, U+1B7F BALINESE PANTI BAWAK,

may be used to indicate finer subdivisions.

A variety of punctuation marks are used to indicate the end of a section. These

usually consist of U+1B5C BALINESE WINDU enclosed within two other punctua‐

tion marks, which vary depending on which sign began the section. Examples

include: carik siki , carik pareren (sometimes called pasalinan), panti , and

carik agung .

At the end of a text, U+1B7D BALINESE PANTI LANTANG and U+1B7E

BALINESE PAMADA LANTANG may be used, depending on the secular or religious

nature of the text. These may also be used together with U+1B5C BALINESE WINDU

or their short counterparts in combinations such as and .

 Line breaks may occur after any orthographic syllable. Traditional

Balinese texts are written on palm leaves; books of these leaves bound together are

called lontar. U+1B60 BALINESE PAMENENG may be inserted in lontar texts at the

end of a line to fill the line.

 Bali is well known for its rich musical heritage. A number of

related notation systems are used to write music. To represent degrees of a scale, the

syllables ding dong dang deng dung are used (encoded at U+1B61..U+1B64, U+1B66),

in the same way that do re mi fa so la ti is used in Western tradition. The symbols

representing these syllables are based on the vowel matras, together with some other

symbols. However, unlike the regular vowel matras, these stand-alone spacing char‐

acters take diacritical marks. They also have different positions and sizes relative to

the baseline. These matra-like symbols are encoded in the range U+1B61..U+1B6A,

along with a modified aikara. Some notation systems use other spacing letters, such

as U+1B09 BALINESE LETTER UKARA and U+1B27 BALINESE LETTER PA, which

are not separately encoded for musical use. The U+1B01 BALINESE SIGN ULU

CANDRA (candrabindu) can also be used with U+1B62 BALINESE MUSICAL

SYMBOL DENG and U+1B68 BALINESE MUSICAL SYMBOL DEUNG, and possibly

others. BALINESE SIGN ULU CANDRA can be used to indicate modre symbols as well.

A range of diacritical marks is used with these musical notation base characters to

indicate metrical information. Some additional combining marks indicate the instru‐

ments used; this set is encoded at U+1B6B..U+1B73. A set of symbols describing

certain features of performance are encoded at U+1B74..U+1B7C. These symbols

describe the use of the right or left hand, the open or closed hand position, the

“male” or “female” drum (of the pair) which is struck, and the quality of the striking.

Line Breaking.

Musical Symbols.

Southeast Asia-II 829 17.3 Balinese

More information about Balinese musical notations is available in Unicode Technical

Note 51, “Musical Symbols and Sasak Characters in the Balinese Script”.

 The Balinese script also includes a range of “holy letters” called

modre symbols. Most of these letters can be composed from the constituent parts

currently encoded, including U+1B01 BALINESE SIGN ULU CANDRA.

Modre Symbols.

Southeast Asia-II 830 17.3 Balinese

The Javanese script, or aksara Jawa, is used for writing the Javanese language,

known locally as basa Jawa. The script is a descendent of the ancient Brahmi script

of India, and so has many similarities with the modern scripts of South Asia and

Southeast Asia which are also members of that family. The Javanese script is also

used for writing Sanskrit, Jawa Kuna (a kind of Sanskritized Javanese), and transcrip‐

tions of Kawi, as well as the Sundanese language, also spoken on the island of Java,

and the Sasak language, spoken on the island of Lombok.

The Javanese script was in current use in Java until about 1945; in 1928 Bahasa

Indonesia was made the national language of Indonesia and its influence eclipsed

that of other languages and their scripts. Traditional Javanese texts are written on

palm leaves; books of these bound together are called lontar, a word which derives

from ron “leaf” and tal “palm”.

 Consonants have an inherent -a vowel sound. Consonants combine

with following consonants in the usual Brahmic fashion: the inherent vowel is

“killed” by U+A9C0 JAVANESE PANGKON, and the following consonant is subjoined,

often with a change in shape.

In Javanese, Sanskrit vocalic liquids (short and long versions of ṛ and ḷ) are treated as

consonant letters with an alternate inherent vowel: rĕ, reu, lĕ, and leu; they are not

independent vowels with dependent vowel equivalents, as is the case in Balinese or

Devanagari. Short and long versions of the vocalic-ḷ are separately encoded, as

U+A98A JAVANESE LETTER NGA LELET and U+A98B JAVANESE LETTER NGA LELET

RASWADI. In contrast, the long version of the vocalic-ṛ is represented by a sequence of

the short vowel U+A989 JAVANESE LETTER PA CEREK followed by the dependent

vowel sign -aa, U+A9B4 JAVANESE VOWEL SIGN TARUNG, serving as a length mark

in this case.

U+A9B3 JAVANESE SIGN CECAK TELU is a diacritic used with various consonantal

base letters to represent foreign sounds. Typically these diacritic-marked consonants

are used for sounds borrowed from Arabic.

 Independent vowel letters are used essentially as in other

Brahmic scripts. Modern Javanese uses U+A986 JAVANESE LETTER I and U+A987

JAVANESE LETTER II for short and long i, but the Kawi orthography instead uses

U+A985 JAVANESE LETTER I KAWI and U+A986 JAVANESE LETTER I for short and

long i, respectively.

17.4 Javanese

17.4.1 Javanese: U+A980–U+A9DF

Consonants.

Independent Vowels.

Southeast Asia-II 831 17.4 Javanese

The long versions of the u and o vowels are written as sequences, using U+A9B4

JAVANESE VOWEL SIGN TARUNG as a length mark.

 Javanese—unlike Balinese—represents multipart dependent

vowels with sequences of characters, in a manner similar to the Myanmar script. The

Balinese community considers it important to be able to directly transliterate

Sanskrit into Balinese, so multipart dependent vowels are encoded as single,

composite forms in Balinese, as is done in Devanagari. In contrast, for the Javanese

script, the correspondence with Sanskrit letters is not so critical, and a different

approach to the encoding has been taken. Similar to the treatment of long versions of

Javanese independent vowels, the two-part dependent vowels are explicitly repre‐

sented with a sequence of two characters, using U+A9B4 JAVANESE VOWEL SIGN

TARUNG, as shown in Figure 17-3.

Tarung is not used alone when writing the Javanese language, but it represents the

vowel aa when writing Sanskrit and o when writing Sundanese. An alternative glyph

of tarung has been separately encoded as U+A9B5 JAVANESE VOWEL SIGN TOLONG,

which is not normally needed, except when used in contrast with the ordinary

tarung.

 The characters U+A980 JAVANESE SIGN PANYANGGA, U+A981

JAVANESE SIGN CECAK, and U+A983 JAVANESE SIGN WIGNYAN are analogous to

U+0901 DEVANAGARI SIGN CANDRABINDU, U+0902 DEVANAGARI SIGN ANUSVARA,

and U+0903 DEVANAGARI SIGN VISARGA and behave in much the same way.

There are three medial consonant signs, U+A9BD JAVANESE CONSONANT SIGN

KERET, U+A9BE JAVANESE CONSONANT SIGN PENGKAL, and U+A9BF JAVANESE

CONSONANT SIGN CAKRA, which represent -rĕ, -ya, and-ra respectively. These medial

consonant signs contrast with the subjoined forms of the letters rĕ, ya, and ra. The

Dependent Vowels.

Figure 17-3. Representation of Javanese Two-Part Vowels

Consonant Signs.

Southeast Asia-II 832 17.4 Javanese

subjoined forms may indicate a syllabic boundary, whereas keret, pengkal, and cakra

are used in ordinary consonant clusters.

 There are many conjunct forms in Javanese, though most are fairly

regular and easy to identify. Subjoined consonants and vowel signs rendered below

them usually interact typographically. For example, the vowel signs [u] and [u:] take

different forms when combined with subscripted consonant clusters. Consonant

clusters may have up to three elements. In three-element clusters, the last element is

always one of the medial glides: -ya, -wa, or -ra.

 The Javanese script has its own set of digits, seven of which (1, 2, 3, 6, 7, 8, 9)

look just like letters of the alphabet. Implementations with concerns about security

issues need to take this into account. The punctuation mark U+A9C7 JAVANESE

PADA PANGKAT is often used with digits in order to help to distinguish numbers from

sequences of letters.

 A large number of punctuation marks are used in Javanese. Titles may

be flanked by the pair of ornamental characters, U+A9C1 JAVANESE LEFT

RERENGGAN and U+A9C2 JAVANESE RIGHT RERENGGAN; glyphs used for these may

vary widely.

U+A9C8 JAVANESE PADA LINGSA is a danda mark that corresponds functionally to

the use of a comma. The doubled form, U+A9C9 JAVANESE PADA LUNGSI, corre‐

sponds functionally to the use of a full stop. It is also used as a “ditto” mark in

vertical lists. U+A9C7 JAVANESE PADA PANGKAT is used much like the European

colon.

U+A9C7 JAVANESE PADA PANGKAT is used to abbreviate personal names and is

placed at the end of the abbreviation.

The doubled U+A9CB JAVANESE PADA ADEG ADEG typically begins a paragraph or

section, while the simple U+A9CA JAVANESE PADA ADEG is used as a common

divider though it can be used in pairs marking text for attention. The two characters,

U+A9CC JAVANESE PADA PISELEH and U+A9CD JAVANESE TURNED PADA PISELEH,

are used similarly, either both together or with U+A9CC JAVANESE PADA PISELEH

simply repeated.

The punctuation ring, U+A9C6 JAVANESE PADA WINDU, is not used alone, a situa‐

tion similar to the pattern of use for its Balinese counterpart U+1B5C BALINESE

WINDU. When used with U+A9CB JAVANESE PADA ADEG ADEG this windu sign is

called pada guru, pada bab, or uger-uger, and is used to begin correspondence where

the writer does not desire to indicate a rank distinction as compared to his audience.

More formal letters may begin with one of the three signs: U+A9C3 JAVANESE PADA

ANDAP (for addressing a higher-ranked person), U+A9C4 JAVANESE PADA MADYA

(for addressing an equally-ranked person), or U+A9C5 JAVANESE PADA LUHUR (for

addressing a lower-ranked person).

Rendering.

Digits.

Punctuation.

Southeast Asia-II 833 17.4 Javanese

U+A9CF JAVANESE PANGRANGKEP is used to show the reduplica‐

tion of a syllable. The character derives from U+0662 ARABIC-INDIC DIGIT TWO but

in Javanese it does not have a numeric use. The Javanese reduplication mark is

encoded as a separate character from the Arabic digit, because it differs in its

Bidi_Class property value.

 Opportunities for line breaking occur after any full orthographic

syllable. Hyphens are not used.

In some printed texts, an epenthetic spacing U+A9BA JAVANESE VOWEL SIGN

TALING is placed at the end of a line when the next line begins with the glyph for

U+A9BA JAVANESE VOWEL SIGN TALING, which is reminiscent of a specialized

hyphenation (or of quire marking). This practice is nearly impossible to implement

in a free-flowing text environment. Typographers wishing to duplicate a printed page

may manually insert U+00A0 NO-BREAK SPACE before U+A9BA JAVANESE VOWEL

SIGN TALING at the end of a line, but this would not be orthographically correct.

Reduplication.

Line Breaking.

Southeast Asia-II 834 17.4 Javanese

The Rejang language is spoken by about 200,000 people living on the Indonesian

island of Sumatra, mainly in the southwest. There are five major dialects: Lebong,

Musi, Kebanagun, Pesisir (all in Bengkulu Province), and Rawas (in South Sumatra

Province). Most Rejang speakers live in fairly remote rural areas, and slightly less

than half of them are literate.

The Rejang script was in use prior to the introduction of Islam to the Rejang area.

The earliest attested document appears to date from the mid-18th century CE. The

traditional Rejang corpus consists chiefly of ritual texts, medical incantations, and

poetry.

 Rejang is a Brahmi-derived script. It is related to other scripts of the

Indonesian region, such as Batak and Buginese.

Consonants in Rejang have an inherent /a/ vowel sound. Vowel signs are used in a

manner similar to that employed by other Brahmi-derived scripts. There are no

consonant conjuncts. The basic syllabic structure is C(V)(F): a consonant, followed

by an optional vowel sign and an optional final consonant sign or virama.

 Rejang texts tend to have a slanted appearance typified by the appear‐

ance of U+A937 REJANG LETTER BA. This sense that the script is tilted to the right

affects the placement of the combining marks for vowel signs. Vowel signs above a

letter are offset to the right, and vowel signs below a letter are offset to the left, as the

“above” and “below” positions for letters are perceived in terms of the overall slant of

the letters.

 The ordering of the consonants and vowel signs for Rejang in the code

charts follows a generic Brahmic script pattern. The Brahmic ordering of Rejang

consonants is attested in numerous sources. There is little evidence one way or the

other for preferences in the relative order of Rejang vowel signs and consonant signs.

 There are no known script-specific digits for the Rejang script.

 European punctuation marks such as comma, full stop, and colon, are

used in modern writing. U+A95F REJANG SECTION MARK may be used at the begin‐

ning and end of paragraphs.

Traditional Rejang texts tend not to use spaces between words, but their use does

occur in more recent texts. There is no known use of hyphenation.

17.5 Rejang

17.5.1 Rejang: U+A930–U+A95F

Structure.

Rendering.

Ordering.

Digits.

Punctuation.

Southeast Asia-II 835 17.5 Rejang

The Batak script is used on the island of Sumatra to write the five Batak dialects:

Karo, Mandailing, Pakpak, Simalungun, and Toba. The script is called si-sia-sia or

surat na sampulu sia, which means “the nineteen letters.” The script is taught in

schools mainly for cultural purposes, and is used on some signs for shops and

government offices.

 Batak is a Brahmi-derived script. It is written left to right.

Consonants in Batak have an inherent /a/ vowel sound. Batak uses a vowel killer

which is called pangolat in Mandailing, Pakpak, and Toba. In Karo the killer is called

penengen, and in Simalungen it is known as panongonan. The appearance of the

killer differs between some of the dialects.

Batak has three independent vowels and makes use of a number of vowel signs and

two consonant signs. Some vowel signs are only used by certain language communi‐

ties. There are no consonant conjuncts. The basic syllabic structure is C(V)(C
s
|C

d
): a

consonant, followed by an optional vowel sign, which may be followed either by a

consonant sign C
s
 (-ng or -h) or a killed final consonant C

d
.

 Most vowel signs and the two killers, U+1BF2 BATAK PANGOLAT and

U+1BF3 BATAK PANONGONAN, are spacing marks. U+1BEE BATAK VOWEL SIGN U

can ligate with its base consonant.

The two consonant signs, U+1BF0 BATAK CONSONANT SIGN NG and U+1BF1 BATAK

CONSONANT SIGN H, are nonspacing marks, usually rendered above the spacing

vowel signs. When U+1BF0 BATAK CONSONANT SIGN NG occurs together with the

nonspacing mark, U+1BE9 BATAK VOWEL SIGN EE, both are rendered above the base

consonant, with the glyph for the ee at the top left and the glyph for the ng at the top

right.

The main peculiarity of Batak rendering concerns the reordering of the glyphs for

vowel signs when one of the two killers, pangolat or panongonan, is used to close the

syllable by killing the inherent vowel of a final consonant. This reordering for display

is entirely regular. So, while the representation of the syllable /tip/ is done in logical

order: <ta, vowel sign i, pa, pangolat>, when rendered for display the glyph for the

vowel sign is visually applied to the final consonant, pa, rather than to the ta. The

glyph for the pangolat always stays at the end of the syllable.

 Punctuation is not normally used; instead all letters simply run

together. However, a number of bindu characters are occasionally used to disam‐

17.6 Batak

17.6.1 Batak: U+1BC0–U+1BFF

Structure.

Rendering.

Punctuation.

Southeast Asia-II 836 17.6 Batak

biguate similar words or phrases. U+1BFF BATAK SYMBOL BINDU PANGOLAT is

trailing punctuation, following a word, surrounding the previous character some‐

what.

The minor mark used to begin paragraphs and stanzas is U+1BFC BATAK SYMBOL

BINDU NA METEK, which means “small bindu.” It has a shape-based variant,

U+1BFD BATAK SYMBOL BINDU PINARBORAS (“rice-shaped bindu”), which is like‐

wise used to separate sections of text. U+1BFE BATAK SYMBOL BINDU JUDUL (“title

bindu”) is sometimes used to separate a title from the main text, which normally

begins on the same line.

 Traditionally, line breaks can occur before any spacing character.

However, the vowel reordering described above is required even when a line break

occurs between the characters involved. In typical Unicode-based implementations,

this requires keeping the characters involved on the same line.

Line Breaking.

Southeast Asia-II 837 17.6 Batak

The Sundanese script, or aksara Sunda, is used for writing the Sundanese language,

one of the languages of the island of Java in Indonesia. It is a descendant of the

ancient Brahmi script of India, and so has similarities with the modern scripts of

South Asia and Southeast Asia which are also members of that family. The script has

official support. It is taught in schools and used on road signs.

The Sundanese language has been written using a number of different scripts over

the years. Pallawa or Pra-Nagari was first used in West Java to write Sanskrit from the

fifth to the eighth centuries CE. Sunda Kuna or Old Sundanese was derived from

Pallawa and was used in the Sunda Kingdom from the 14th to the 18th centuries. The

earliest example of Old Sundanese is the Prasasti Kawali stone. The Javanese script

was used to write Sundanese from the 17th to the 19th centuries, and the Arabic script

was used from the 17th to the 20th centuries. The Latin script has been in wide use

since the 20th century. The modern Sundanese script, called Sunda Baku or Official

Sundanese, became official in 1996. This modern script was derived from Old

Sundanese.

 Sundanese consonants have an inherent vowel /a/. This inherent vowel

can be modified by the addition of dependent vowel signs (matras). The script also

has independent vowels.

In the modern orthography, an explicit vowel killer character, U+1BAA SUNDANESE

SIGN PAMAAEH, is used to indicate the absence, or “killing,” of the inherent vowel,

but does not build consonant conjuncts. In Old Sundanese, however, consonant

conjuncts do appear, and are formed with U+1BAB SUNDANESE SIGN VIRAMA.

 In the modern orthography, initial Sundanese consonants can be followed

by one of the three consonant signs for medial consonants, -ya, -ra, or -la. These

medial consonants are graphically displayed as subjoined elements to their base

consonants, and are not considered conjuncts proper, because they are not formed

using a virama. In Old Sundanese, a subjoined ma, U+1BAC SUNDANESE CONSO‐

NANT SIGN PASANGAN MA, and a subjoined wa, U+1BAD SUNDANESE CONSONANT

SIGN PASANGAN WA, occur. They contrast with the conjunct forms created with the

virama.

 Sundanese historical texts employ a final consonant, U+1BBE

SUNDANESE LETTER FINAL K, which is distinct from the modern representation with

the explicit vowel killer U+1BAA SUNDANESE SIGN PAMAAEH: <1B8A, 1BAA>.

U+1BBF SUNDANESE LETTER FINAL M was used in a 21st-century document,

based on a scribal error in an old Sundanese manuscript, and should not be used in

17.7 Sundanese

17.7.1 Sundanese: U+1B80–U+1BBF

Structure.

Medials.

Final Consonants.

Southeast Asia-II 838 17.7 Sundanese

current practice. Rather, both old and modern representations of final m use

<1B99, 1BAA>.

 Three final consonants are separately encoded as combining

marks: -ng, -r, -h. These are analogues of Brahmic anusvara, repha, and visarga,

respectively.

 Additional historic consonants appear only in old texts: reu,

leu, and archaic i. The archaic i is represented by U+1BBD SUNDANESE LETTER

BHA because it was misinterpreted as bha in early transcriptions; the erroneous name

has been corrected with formal name alias SUNDANESE LETTER ARCHAIC I.

Another historic character, U+1BBA SUNDANESE AVAGRAHA, has two functions. In

one, it kills the inherent vowel of the preceding consonant and causes hiatus before

an initial a. In the other, it doubles the preceding consonant, from which it may be

separated in writing by a dependent vowel.

 Two supplemental consonant letters are used in the

modern script: U+1BAE SUNDANESE LETTER KHA and U+1BAF SUNDANESE

LETTER SYA. These are used to represent the borrowed sounds denoted by the Arabic

letters kha and sheen, respectively.

 Sundanese has its own script-specific digits, which are separately encoded in

this block.

 Sundanese uses European punctuation marks, such as comma, full

stop, question mark, and quotation marks. Spaces are used in text. Opportunities for

hyphenation occur after any full orthographic syllable.

 The order of characters in the code charts follows the Brahmic ordering.

The ha-na-ca-ra-ka order found in Javanese and Balinese does not seem to be used in

Sundanese.

 Dependent vowels and other signs are encoded

after the consonant to which they apply. The ordering of elements for the modern

Sundanese orthography is shown in more detail in Table 17-4.

Class Examples Encoding

consonant or independent vowel [U+1B83..U+1BA0, U+1BAE, U+1BAF]

consonant sign -ya, -ra, -la , , [U+1BA1..U+1BA3]

dependent vowel, killer , [U+1BA4..U+1BA9, U+1BAA]

final consonant [U+1B80..U+1B82]

Combining Marks.

Historic Characters.

Additional Consonants.

Digits.

Punctuation.

Ordering.

Ordering of Syllable Components.

Table 17-4. Modern Sundanese Syllabic Structure

Southeast Asia-II 839 17.7 Sundanese

The killer (pamaaeh) occupies the same logical position as a dependent vowel, but

indicates the absence, rather than the presence of a vowel. It cannot be followed by a

combining mark for a final consonant, nor can it be preceded by a consonant sign.

The left-side dependent vowel U+1BA6 SUNDANESE VOWEL SIGN PANAELAENG

occurs in logical order after the consonant (and any medial consonant sign), but in

visual presentation its glyph appears before (to the left of) the consonant.

 When more than one sign appears above or below a consonant, the two

are rendered side-by-side, rather than being stacked vertically.

The Sundanese Supplement block contains eight bindu punctuation marks found in

historical materials.

Rendering.

17.7.2 Sundanese Supplement: U+1CC0–U+1CCF

Southeast Asia-II 840 17.7 Sundanese

The Makasar script was used historically in South Sulawesi, Indonesia for writing the

Makasar language. It is sometimes spelled “Makassar,” and is also referred to as “Old

Makassarese” or “Makassarese bird script.” The script was maintained for official

purposes in the kingdoms of Makasar in the 17th century, and it was used for writing

a number of historical accounts, such as the “Chronicles of Gowa and Tallo’,” but it

was superseded by the Buginese script in the 19th century and is no longer used.

Although Makasar is thought to have evolved from Rejang, it shares several similari‐

ties with Buginese.

 Makasar is a Brahmi-derived abugida. It is written horizontally, from left

to right. Consonant signs carry an inherent /a/ vowel sign. Alternative vowel sounds

are expressed by applying one of four combining characters to a consonant. Each

vowel sign appears on a different side of the base consonant: right, left, top, and

bottom. They are all encoded as combining characters following the consonant.

Like Buginese, geminated and clustered consonants are not indicated, nor are

syllable-final consonants. However, Makasar differs from the Buginese script in that

it does not have the pre-nasalized clusters, such as /ŋka/, that occur in Buginese, and

it includes special features for consonant repetition.

There is only one independent vowel sign, U+11EF1 MAKASAR LETTER A. Vowel

signs can be attached to this character to produce other vowel sounds when a syllable

has no consonant, such as at the beginning of a word.

 Adjacent syllables that use the same consonant can be

written by appending two vowel signs to a single consonant, as shown in the

following example. Usually both vowels are the same in this case, and a consonant

can take a maximum of two vowel signs.

U+11EE7 da + U+11EF4 vowel sign u + U+11EF4 vowel sign u → [dudu]

U+11EF2 MAKASAR ANGKA can also be used to repeat the consonant used in the

previous syllable. This is particularly useful when one or both syllables use the

inherent vowel, but angka may also be followed by a different vowel sound from that

of the previous syllable. Angka is associated with the inherent vowel or a vowel sign

in the same way as any normal consonant character. For example:

U+11EED ra + U+11EF4 vowel sign u + U+11EF2 angka → [rura]

U+11EE5 ma + U+11EF2 angka + U+11EF3 vowel sign i → [mami]

17.8 Makasar

17.8.1 Makasar: U+11EE0–U+11EFF

Structure.

Consonant Repetition.

Southeast Asia-II 841 17.8 Makasar

U+11EEF MAKASAR LETTER VA is named “VA” even though the conso‐

nant is pronounced /w/ in the Makasar language. The name for this character aligns

with the name for the related letter U+1A13 BUGINESE LETTER VA.

 The available Makasar manuscript sources show two distinct sets of digits.

The first set strongly resembles European digits and can be represented with

U+0030..U+0039. The second set strongly resembles Arabic-Indic digits, and can be

represented with U+0660..U+0669. Therefore, script-specific digits for Makasar are

not separately encoded. Digits are frequently used, and both sets occur concurrently

in the sources.

The Arabic-Indic digits are restricted to Arabic-language environments—particularly

for expressing dates of the Hijri era. The European digits are used for general

purposes, but occur within Arabic-language contexts for writing non-Hijri dates,

specifically those of the Gregorian calendar.

Digits may occur above U+0600 ARABIC NUMBER SIGN or U+0601 ARABIC

SIGN SANAH, see Figure 9-7 for an example.

 Sentences are delimited with U+11EF7 MAKASAR PASSIMBANG, and

sections are terminated with U+11EF8 MAKASAR END OF SECTION. Words are

often, but not always, separated by spaces. Line breaks normally appear after syllable

boundaries. Hyphens or other marks indicating continuance are not used.

The end of a text is often marked using a stylized rendering of the Arabic word

tammat , meaning “it is complete.” There is no atomic character encoded for this

symbol, so the sequence should be represented using Arabic letters <ta + meem +

shadda + ta>, where the shadda is optional.

Letter va.

Digits.

Punctuation.

Southeast Asia-II 842 17.8 Makasar

The Kawi script is a historical Brahmi-derived script that was used between the 8th

and 16th century in insular southeast Asia to write the Old Javanese, Sanskrit, Old

Malay, Old Balinese, and Old Sundanese languages. A large portion of its corpus is

found in Java, but Kawi materials have also been found in Sumatra, the Malay Penin‐

sula, Bali, and the Philippines. Letter shapes evolved significantly over its 800 years

of use, and later Kawi shows many variations over its wide geographic distribution;

eventually, these variants evolved into the many modern Brahmic scripts of insular

southeast Asia. The 21st century has brought renewed interest in the script, including

some use in social media to write the modern Javanese or Indonesian languages.

The typeface used here is primarily based on early Kawi inscriptions, with some

glyphs adapted from later attestations.

 The Kawi script is an abugida and written from left to right. The inherent

vowel of a consonant can be overridden by attaching a dependent vowel sign. It can

also be suppressed by attaching a virama sign, U+11F41 KAWI SIGN KILLER, or the

conjunct form of another consonant or vocalic liquid, which is encoded by preceding

the consonant or vocalic liquid with U+11F42 KAWI CONJOINER. A vowelless

consonant r- that starts an orthographic syllable may be represented by a repha,

which is encoded as U+11F02 KAWI SIGN REPHA. Consonant stacks with up to

four consonants are known.

Table 17-5 shows the base consonants and their conjunct forms.

Consonant Base Form Conjunct Form

ka

kha

ga

gha

nga

ca

cha

ja

jha

17.9 Kawi

17.9.1 Kawi: U+11F00–U+11F5F

Structure.

Consonants.

Table 17-5. Kawi Base Consonants and Conjunct Forms

Southeast Asia-II 843 17.9 Kawi

nya

tta

ttha

dda

ddha

nna

ta

tha

da

dha

na

pa

pha

ba

bha

ma

ya

ra ,

la

wa

sha

ssa ,

sa

ha ,

The below-base conjunct form of ra is commonly used when the pre-base form

would collide with other marks, but can also be used as a stylistic variant. The second

conjunct forms of ssa and ha are stylistic variants.

A vowelless r- that starts an orthographic syllable is normally written with a repha

above the following consonant, but occasionally with the base form of ra with a

subjoined consonant, for example, rwa versus . In some late Kawi varieties, the

repha glyph may be used for a final -r consonant.

Southeast Asia-II 844 17.9 Kawi

U+11F33 KAWI LETTER JNYA is a graphic simplification of the consonant cluster

jnya; it has no conjunct form. Additional marks can be attached to it.

 The Kawi script has a set of independent vowels and vocalic

liquid letters. Dependent vowel signs and other signs can be attached to them. Letters

au, eu, and euu are visually composites of other letters and dependent vowels, and

are encoded as such. Letters aa, ii, and uu occur in both composite and visually

distinct forms; the latter are encoded separately. See Table 17-6.

Vowel Visually Distinct Composite

aa 11F05 <11F04, 11F34>

ii 11F07 <11F06, 11F34>

uu 11F09 <11F08, 11F34>

au <11F10, 11F34>

eu <11F04, 11F40>

euu <11F04, 11F40, 11F34>

Two vocalic liquid letters have conjunct forms—the nature of is not entirely clear.

They are shown in Table 17-7.

Vocalic Liquid Base Form Conjunct Form

Vocalic r

Vocalic l

 The dependent vowels o, au, and euu are visually composites of

other letters and dependent vowels, and are encoded as such, as shown in Table 17-8.

Vowel Composite

o <11F3E, 11F34>

au <11F3F, 11F34>

euu <11F40, 11F34>

Independent Vowels.

Table 17-6. Kawi Independent Vowels with Composite

Representations

Table 17-7. Kawi Vocalic Liquids with Conjunct Forms

Dependent Vowels.

Table 17-8. Kawi Dependent Vowels with Composite Representations

Southeast Asia-II 845 17.9 Kawi

The dependent vowel aa has several glyph variants. The primary form is U+11F34

KAWI VOWEL SIGN AA; one alternate form has been encoded as U+11F35 KAWI

VOWEL SIGN ALTERNATE AA, as its use may be required to avoid confusability. Other

variants, such as , may be supported as stylistic variants.

The dependent vowel aa has been repurposed as a consonant reduplicator in some

manuscripts, and can in this case be combined with other vowels, for example, ppi

<11F26, 11F36, 11F34>.

The dependent vowels i and u are sometimes used together in a single cluster to

mark the cluster as canceled and not meant to be read, for example, for a

misspelled la, li, or lu.

In some inscriptions, the dependent vowels ai and au are written with pre-

base components that look similar to sequences of two dependent vowels e. To

transcribe these, use twice: for and for .

U+11F00 KAWI SIGN CANDRABINDU indicates nasalization in specific

words such as om. U+11F01 KAWI SIGN ANUSVARA represents final -ŋ, while

U+11F03 KAWI SIGN VISARGA represents final -h. U+11F5A KAWI SIGN NUKTA is

used to modify a few consonants to represent foreign sounds, typically coming from

Arabic. For example, combining it with U+11F26 KAWI LETTER PA results in fa.

 The Kawi script has its own set of decimal digits. The digit U+11F52 KAWI

DIGIT TWO is used for the syllable ro in some manuscripts; additional marks can be

attached to it in this usage.

 Kawi materials use several punctuation characters to divide text into

sections.

U+11F48 KAWI PUNCTUATION SPACE FILLER is used to justify texts or fill gaps that

are too small to fit another letter in the middle or at the end of a line. This character

looks like U+11F54 KAWI DIGIT FOUR in some inscriptions, but differs in others.

U+11F45 KAWI PUNCTUATION SECTION MARKER, U+11F46 KAWI PUNCTUATION

ALTERNATE SECTION MARKER (which differs from U+11F45 in having some addi‐

tional flourish), U+11F4E KAWI PUNCTUATION SPIRAL, and U+11F4F KAWI

PUNCTUATION CLOSING SPIRAL are similar in function to siddham signs in various

other scripts, which are generally used as invocations at the beginning of texts. The

Kawi analogues to the siddham signs have several distinct variants, which are often

used in combination with other punctuation marks to indicate opening, closing, and

major breaks in a text, such as or .

 Information on the encoding order of syllable

components and on rendering is available in Unicode Technical Note #48, “Imple‐

menting Kawi.”

Other Signs.

Digits.

Punctuation.

Encoding Order and Rendering.

Southeast Asia-II 846 17.9 Kawi

 Opportunities for line breaking occur after any full orthographic

syllable. Hyphens are not used.

Line Breaking.

Southeast Asia-II 847 17.9 Kawi

Chapter 18

East Asia

This chapter presents scripts used in East Asia. This includes major writing systems

associated with Chinese, Japanese, and Korean. It also includes several scripts for

minority languages spoken in southern China, as well as the historic Khitan Small

Script of northern China, and the historic Tangut script.

The characters that are now called East Asian ideographs, and known as Han ideo‐

graphs in the Unicode Standard, were developed in China in the second millennium

BCE. The basic system of writing Chinese using ideographs has not changed since

that time, although the set of ideographs used, their specific shapes, and the tech‐

nologies involved have developed over the centuries. The encoding of Chinese ideo‐

graphs in the Unicode Standard is described in Section 18.1, Han. For more on usage

of the term ideograph, see “Logosyllabaries” in Section 6.1, Writing Systems.

As civilizations developed surrounding China, they frequently adapted China’s ideo‐

graphs for writing their own languages. Japan, Korea, and Vietnam all borrowed and

modified Chinese ideographs for their own languages. Chinese is an isolating

language, monosyllabic and noninflecting, and ideographic writing suits it well. As

Han ideographs were adopted for unrelated languages, however, extensive modifica‐

tions were required.

Chinese ideographs were originally used to write Japanese, for which they are, in

fact, ill suited. As an adaptation, the Japanese developed two syllabaries, Hiragana

and Katakana, whose shapes are simplified or stylized versions of certain ideographs.

(See Section 18.4, Hiragana and Katakana.) Chinese ideographs are called kanji in

Japanese and are still used, in combination with Hiragana and Katakana, in modern

Japanese.

In Korea, Chinese ideographs were originally used to write Korean, for which they

are also ill suited. The Koreans developed an alphabetic system, Hangul, discussed in

Section 18.6, Hangul. The shapes of Hangul syllables or the letter-like jamos from

which they are composed are not directly influenced by Chinese ideographs.

However, the individual jamos are grouped into syllabic blocks that resemble ideo‐

graphs both visually and in the relationship they have to the spoken language (one

syllable per block). Chinese ideographs are called hanja in Korean and are still used

together with Hangul in South Korea for modern Korean. The Unicode Standard

includes a complete set of Korean Hangul syllables as well as the individual jamos,

848

which can also be used to write Korean. Section 3.12, Conjoining Jamo Behavior,

describes how to use the conjoining jamos and how to convert between the two

methods for representing Korean.

In Vietnam, a set of native ideographs was created for Vietnamese based on the same

principles used to create new ideographs for Chinese. These Vietnamese ideographs

were used through the beginning of the 20th century and are occasionally used in

more recent signage and other limited contexts.

Yi was originally written using a set of ideographs invented in imitation of the

Chinese. Modern Yi as encoded in the Unicode Standard is a syllabary derived from

these ideographs and is discussed in Section 18.7, Yi.

Bopomofo, discussed in Section 18.3, Bopomofo, is another recently invented syllabic

system, used to represent Chinese phonetics.

In all these East Asian scripts, the characters (Chinese ideographs, Japanese kana,

Korean Hangul syllables, and Yi syllables) are written within uniformly sized rectan‐

gles, usually squares. Traditionally, the basic writing direction followed the conven‐

tions of Chinese handwriting, in top-down vertical lines arranged from right to left

across the page. Under the influence of Western printing technologies, a horizontal,

left-to-right directionality has become common, and proportional fonts are seeing

increased use, particularly in Japan. Horizontal, right-to-left text is also found on

occasion, usually for shorter texts such as inscriptions or store signs. Diacritical

marks are rarely used, although phonetic annotations are not uncommon. Older

editions of the Chinese classics sometimes use the ideographic tone marks

(U+302A..U+302D) to indicate unusual pronunciations of characters.

Many older character sets include characters intended to simplify the implementa‐

tion of East Asian scripts, such as variant punctuation forms for text written verti‐

cally, halfwidth forms (which occupy only half a rectangle), and fullwidth forms

(which allow Latin letters to occupy a full rectangle). These characters are included

in the Unicode Standard for compatibility with older standards.

Appendix E, Han Unification History, describes how the diverse typographic tradi‐

tions of mainland China, Taiwan, Japan, Korea, and Vietnam have been reconciled to

provide a common set of ideographs in the Unicode Standard for all these languages

and regions.

Nüshu is a siniform script devised by and for women to write the local Chinese

dialect of southeastern Hunan province, China. Nüshu is based on Chinese Han

characters. Unlike Chinese, the characters typically denote the phonetic value of

syllables. Less often Nüshu characters are used as ideographs. Although very few

fluent Nüshu users were alive in the late twentieth century, the script has drawn

national and international attention, leading to the study and preservation of the

script.

East Asia 849

The Lisu script was developed in the early 20th century by using a combination of

Latin letters, rotated Latin letters, and Latin punctuation repurposed as tone letters,

to create a writing system for the Lisu language, spoken by large communities,

mostly in Yunnan province in China. It sees considerable use in China, where it has

been an official script since 1992.

The Miao script was created in 1904 by adapting Latin letter variants, English short‐

hand characters, Miao pictographs, and Cree syllable forms. The script was originally

developed to write the Northeast Yunnan Miao language of southern China. Today it

is also used to write other Miao dialects and the languages of the Yi and Lisu nation‐

alities of southern China.

Tangut is a large, historic siniform ideographic script used to write the Tangut

language, a Tibeto-Burman language spoken from about the 11th century CE until the

16th century in the area of present-day northwestern China. Tangut was re-discov‐

ered in the late 19th century, and has been largely deciphered. Today the script is of

interest to students and scholars.

Khitan Small Script was created about 925 CE, and was one of two scripts used by the

Khitan people of Northern China to write the Khitan language during the Liao

dynasty, the Qara Khitai empire, and the Jin dynasty. It is only partially deciphered.

The script contains logograms and phonograms written in vertical columns, running

right to left, similar to how Chinese is traditionally written.

East Asia 850

The Unicode Standard contains a set of unified Han ideographic characters used in

the written Chinese, Japanese, and Korean languages. The term Han, derived from

the Chinese Han Dynasty, refers generally to Chinese traditional culture. The Han

ideographic characters make up a coherent script, which was traditionally written

vertically, with the vertical lines ordered from right to left. In modern usage, espe‐

cially in technical works and in computer-rendered text, the Han script is written

horizontally from left to right and is freely mixed with Latin or other scripts. When

used in writing Japanese or Korean, the Han characters are interspersed with other

scripts unique to those languages (Hiragana and Katakana for Japanese; Hangul

syllables for Korean).

Although the term “CJK”—Chinese, Japanese, and Korean—is used throughout this

text to describe the languages that currently use Han ideographic characters, it

should be noted that earlier Vietnamese writing systems were based on Han ideo‐

graphs. Consequently, the term “CJKV” would be more accurate in a historical sense.

Han ideographs are still used for historical, religious, and pedagogical purposes in

Vietnam. For more on usage of the term ideograph, see “Logosyllabaries” in

Section 6.1, Writing Systems.

The term “Han ideographic characters” is used within the Unicode Standard as a

common term traditionally used in Western texts, although “sinogram” is preferred

by professional linguists. Taken literally, the word “ideograph” applies only to some

of the ancient original character forms, which indeed arose as ideographic depic‐

tions. The vast majority of Han characters were developed later via composition,

borrowing, and other non-ideographic principles, but the term “Han ideographs”

remains in English usage as a conventional cover term for the script as a whole.

The Han ideographic characters constitute a very large set, numbering in the tens of

thousands. They have a long history of use in East Asia. Enormous compendia of

Han ideographic characters exist because of a continuous, millennia-long scholarly

tradition of collecting all Han character citations, including variant, mistaken, and

nonce forms, into annotated character dictionaries.

The Unicode Standard draws its unified Han character repertoire from a number of

different character set standards. These standards are grouped into a number of

sources listed in tables in Appendix E.3, CJK Sources.

Because of the large size of the Han ideographic character repertoire, and because of

the particular problems that the characters pose for standardizing their encoding,

this character block description is more extended than that for other scripts and is

18.1 Han

18.1.1 CJK Unified Ideographs

East Asia 851 18.1 Han

divided into several subsections. The first subsection, “Blocks Containing Han Ideo‐

graphs,” describes the way in which the Unicode Standard divides Han ideographs

into blocks. This subsection is followed by an extended discussion of the characteris‐

tics of Han characters, with particular attention being paid to the problem of unifica‐

tion of encoding for characters used for different languages. There is a formal state‐

ment of the principles behind the Unified Han character encoding adopted in the

Unicode Standard and the order of its arrangement. For a detailed account of the

background and history of development of the Unified Han character encoding, see

Appendix E, Han Unification History.

Han ideographic characters are found in several blocks of the Unicode Standard, as

shown in Table 18-1.

Block Range Comment

CJK Unified Ideographs 4E00–9FFF Common

CJK Unified Ideographs Extension A 3400–4DBF Rare

CJK Unified Ideographs Extension B 20000–2A6DF Rare, historic

CJK Unified Ideographs Extension C 2A700–2B73F Rare, historic

CJK Unified Ideographs Extension D 2B740–2B81F Urgently needed

CJK Unified Ideographs Extension E 2B820–2CEAF Rare, historic

CJK Unified Ideographs Extension F 2CEB0–2EBEF Rare, historic

CJK Unified Ideographs Extension G 30000–3134F Rare, historic

CJK Unified Ideographs Extension H 31350–323AF Rare, historic

CJK Unified Ideographs Extension I 2EBF0–2EE5F Urgently needed

CJK Compatibility Ideographs F900–FAFF
Duplicates, unifiable variants,
corporate characters

CJK Compatibility Ideographs Supplement 2F800–2FA1F Unifiable variants

Characters in the unified ideograph blocks are defined by the IRG, based on Han

unification principles explained later in this section.

The two compatibility ideographs blocks contain various duplicate or unifiable

variant characters encoded for round-trip compatibility with various legacy stan‐

dards. For historic reasons, the CJK Compatibility Ideographs block also contains

twelve CJK unified ideographs. Those twelve ideographs are clearly labeled in the

code charts for that block.

 The initial repertoire of the CJK Unified Ideographs block

included characters submitted to the IRG prior to 1992, consisting of commonly used

characters. That initial repertoire, also known as the Unified Repertoire and

18.1.2 Blocks Containing Han Ideographs

Table 18-1. Blocks Containing Han Ideographs

Extensions to the URO.

East Asia 852 18.1 Han

Ordering, or URO, was derived entirely from the G, T, J, and K sources. The repertoire

in the CJK Unified Ideographs block has subsequently been extended with small sets

of unified ideographs or ideographic components needed for interoperability with

various standards, or for other reasons, as shown in Table 18-2. The range

U+9FFD..U+9FFF filled the reserved space at the end of this block.

Range Version Comment

9FA6–9FB3 4.1 Interoperability with HKSCS standard

9FB4–9FBB 4.1 Interoperability with GB 18030 standard

9FBC–9FC2 5.1 Interoperability with commercial implementations

9FC3 5.1 Correction of mistaken unification

9FC4–9FC6 5.2 Interoperability with ARIB standard

9FC7–9FCB 5.2 Interoperability with HKSCS standard

9FCC 6.1 Interoperability with commercial implementations

9FCD–9FCF 8.0 Interoperability with TGH 2013 standard

9FD0 8.0 Correction of mistaken unification

9FD1–9FD5 8.0 Miscellaneous urgently needed characters

9FD6–9FE9 10.0 Ideographs for Slavonic transcription

9FEA 10.0 Correction of mistaken unification

9FEB–9FED 11.0 Ideographs for chemical elements

9FEE–9FEF 11.0 Interoperability with government implementations

9FF0–9FFC 13.0 Zoological, chemical, and geological terms

9FFD–9FFF 14.0 Interoperability with government implementations

4DB6–4DBF 13.0 Corrections of mistaken unifications

2A6D7–2A6DD 13.0 Gongche characters for Kunqu Opera

2A6DE–2A6DF 14.0 Interoperability with government implementations

2B735–2B736 14.0 Corrections of mistaken unifications

2B737 14.0 Urgently needed character

2B738 14.0 Correction of mistaken unification

2B739 15.0 Urgently needed character

 Starting with Version 13.0, some of the small

repertoire extensions have involved reserved ranges at the end of other CJK blocks.

Those ranges are also shown in Table 18-2. The range U+4DB6..U+4DBF filled the

reserved space at the end of the CJK Unified Ideographs Extension A block, the

range U+2A6DE..U+2A6DF filled the reserved space at the end of the CJK Unified

Ideographs Extension B block, and the range U+2B735..U+2B739 used reserved space

at the end of the CJK Unified Ideographs Extension C block.

Table 18-2. Small Extensions to CJK Blocks

Extensions to Other CJK Blocks.

East Asia 853 18.1 Han

 The URO includes twenty CJK

Unified Ideographs, U+9FD6 through U+9FE9, which are used for transcribing

Slavonic literary documents into Chinese. Renewed contact between the Russian and

Chinese Empires from the 18th to the 20th centuries led to the translation of Slavonic

literary documents into both classical and vernacular Chinese. The Russian Mission

in Beijing was a driving force behind this effort, and many of these characters were

coined by Archimandrite Gurias, who was the head of the 14th Russian Mission

(1858–1864). Although some existing CJK Unified Ideographs can be used for tran‐

scribing Slavonic, these twenty characters are distinct. Many of these characters are

unusual in that they represent syllables not usually found in Chinese.

 Characters in the CJK Unified Ideographs Extension

A block are rare and are not unifiable with characters in the CJK Unified Ideographs

block. They were submitted to the IRG during 1992–1998 and are derived entirely

from the G, T, J, K, and V sources.

The CJK Unified Ideographs Extension B block contains rare and historic characters

that are also not unifiable with characters in the CJK Unified Ideographs block. They

were derived from versions of national standards submitted to the IRG during 1998–

2000. The characters encoded in Extension B may, in some instances, differ slightly

from published versions of those standards.

The CJK Unified Ideographs Extension C through I blocks mostly contain rare,

historic, uncommon, or urgently needed characters that are not unifiable with char‐

acters in any previously encoded CJK Unified Ideographs block. Extension D and

Extension I are somewhat unique in that they are made up of urgently needed char‐

acters from various regions. Extension C ideographs were submitted to the IRG

during 2002–2006. Extension D ideographs were submitted to the IRG during 2006–

2009. Extension E ideographs were submitted to the IRG during 2006–2013. Exten‐

sion F ideographs were submitted during 2012–2015. Extension G ideographs were

submitted during 2015. Extension H ideographs were submitted during 2017. Exten‐

sion I is unique, in that it consists entirely of urgently needed characters from China.

 The only principled difference in the unification work

done by the IRG on the unified ideograph blocks is that the Source Separation Rule

(rule R1) was applied only to the original CJK Unified Ideographs block and not to

the extension blocks. The Source Separation Rule states that ideographs that are

distinctly encoded in a source must not be unified. (For further discussion, see “Prin‐

ciples of Han Unification” later in this section.)

The unified ideograph blocks are not closed repertoires. Each may contain a small

range of reserved code points at the end of the block. Additional unified ideographs

may eventually be encoded in those ranges—as has already occurred in the CJK

Unified Ideographs block, as well as in Extensions A through C. There is no guar‐

antee that any such Han ideographic additions would be of the same types or from

Han Ideographs for Slavonic Transcription.

Other Large CJK Extensions.

Principles for Extensions.

East Asia 854 18.1 Han

the same sources as preexisting characters in the block, and implementations should

be careful not to make hard-coded assumptions regarding the range of assignments

within the Han ideographic blocks in general.

Several Han characters unique to the U source and which are not unifiable with

other characters in the CJK Unified Ideographs block are found in the CJK Compati‐

bility Ideographs block. There are 12 of these characters: U+FA0E, U+FA0F,

U+FA11, U+FA13, U+FA14, U+FA1F, U+FA21, U+FA23, U+FA24, U+FA27,

U+FA28, and U+FA29. The remaining characters in the CJK Compatibility Ideo‐

graphs block and the CJK Compatibility Ideographs Supplement block are either

duplicates or unifiable variants of a character in one of the blocks of unified ideo‐

graphs.

 IICore (International Ideograph Core) is a set of important Han ideographs,

incorporating characters from all the defined blocks. This set of nearly 10,000 charac‐

ters has been developed by the IRG and represents the set of characters in everyday

use throughout East Asia. By covering the characters in IICore, developers guarantee

that they can handle all the needs of almost all of their customers. This coverage is of

particular use on devices such as cell phones or PDAs, which have relatively strin‐

gent resource limitations. Characters in IICore are explicitly tagged as such in the

Unihan Database (see Unicode Standard Annex #38, “Unicode Han Database

(Unihan)”).

 UnihanCore2020 is a set of over 20,000 Han ideographs. The set

includes 68 compatibility characters necessary for some regions. Like IICore, this set

is intended to cover the needs of customers in East Asia, but its repertoire is much

larger because of the increased memory and storage capacity of contemporary hard‐

ware, including mobile devices. The repertoire of the UnihanCore2020 subset is iden‐

tified with the kUnihanCore2020 key in the Unihan Database. See Unicode Standard

Annex #38, “Unicode Han Database (Unihan)”.

The authoritative Japanese dictionary Koujien (1983) defines Han characters to be:

...characters that originated among the Chinese to write the Chinese language.

They are now used in China, Japan, and Korea. They are logographic (each char‐

acter represents a word, not just a sound) characters that developed from picto‐

graphic and ideographic principles. They are also used phonetically. In Japan

they are generally called kanji (Han, that is, Chinese, characters) including the

“national characters” (kokuji) such as touge (mountain pass), which have been

created using the same principles.

For many centuries, written Chinese was the accepted written standard throughout

East Asia. The influence of the Chinese language and its written form on the modern

IICore.

UnihanCore2020.

18.1.3 General Characteristics of Han Ideographs

East Asia 855 18.1 Han

East Asian languages is similar to the influence of Latin on the vocabulary and

written forms of languages in the West. This influence is immediately visible in the

mixture of Han characters and native phonetic scripts (kana in Japan, hangul in

Korea) as now used in the orthographies of Japan and Korea (see Table 18-3).

Han Character Chinese Japanese Korean English Translation

tiān ten, ame chen heaven, sky

dì chi, tsuchi ji earth, ground

rén jin, hito in man, person

shān san, yama san mountain

shuǐ sui, mizu su water

shàng jou, ue sang above

xià ka, shita ha below

The evolution of character shapes and semantic drift over the centuries has resulted

in changes to the original forms and meanings. For example, the Chinese character

tāng (Japanese tou or yu, Korean thang), which originally meant “hot water,” has

come to mean “soup” in Chinese. “Hot water” remains the primary meaning in Japa‐

nese and Korean, whereas “soup” appears in more recent borrowings from Chinese,

such as “soup noodles” (Japanese tanmen; Korean thangmyen). Still, the identical

appearance and similarities in meaning are dramatic and more than justify the

concept of a unified Han script that transcends language.

The “nationality” of the Han characters became an issue only when each country

began to create coded character sets (for example, China’s GB 2312-80, Japan’s JIS X

0208-1978, and Korea’s KS C 5601-87) based on purely local needs. This problem

appears to have arisen more from the priority placed on local requirements and lack

of coordination with other countries, rather than out of conscious design. Neverthe‐

less, the identity of the Han characters is fundamentally independent of language, as

shown by dictionary definitions, vocabulary lists, and encoding standards.

 Several standard romanizations of the term used to refer to East Asian

ideographic characters are commonly used. They include hànzì (Chinese), kanzi

(Japanese), kanji (colloquial Japanese), hanja (Korean), and Chữ hán (Vietnamese).

The standard English translations for these terms are interchangeable: Han char‐

acter, Han ideographic character, East Asian ideographic character, or CJK ideo‐

graphic character. For clarity, the Unicode Standard uses some subset of the English

terms when referring to these characters. The term Kanzi is used in reference to a

specific Japanese government publication. The unrelated term Kangxi (which is a

Chinese reign name, rather than another romanization of “Han character”) is used

only when referring to the primary dictionary used for determining Han character

arrangement in the Unicode Standard. (See Table 18-7.)

Table 18-3. Common Han Characters

Terminology.

East Asia 856 18.1 Han

 There is some concern

that unifying the Han characters may lead to confusion because they are sometimes

used differently by the various East Asian languages. Computationally, Han character

unification presents no more difficulty than employing a single Latin character set

that is used to write languages as different as English and French. Programmers do

not expect the characters “c”, “h”, “a”, and “t” alone to tell us whether chat is a French

word for cat or an English word meaning “informal talk.” Likewise, we depend on

context to identify the American hood (of a car) with the British bonnet. Few

computer users are confused by the fact that ASCII can also be used to represent

such words as the Welsh word ynghyd, which are strange looking to English eyes.

Although it would be convenient to identify words by language for programs such as

spell-checkers, it is neither practical nor productive to encode a separate Latin char‐

acter set for every language that uses it.

Similarly, the Han characters are often combined to “spell” words whose meaning

may not be evident from the constituent characters. For example, the two characters

“to cut” and “hand” mean “postage stamp” in Japanese, but the compound may

appear to be nonsense to a speaker of Chinese or Korean (see Figure 18-1).

Even within one language, a computer requires context to distinguish the meanings

of words represented by coded characters. The word chuugoku in Japanese, for

example, may refer to China or to a district in central west Honshuu (see Figure 18-2).

Coding these two characters as four so as to capture this distinction would probably

cause more confusion and still not provide a general solution. The Unicode Standard

leaves the issues of language tagging and word recognition up to a higher level of

software and does not attempt to encode the language of the Han characters.

 There are currently two main varieties of

written Chinese: “simplified Chinese” (jiǎntǐzì), used in most parts of the People’s

Republic of China (PRC) and Singapore, and “traditional Chinese” (fántǐzì), used

predominantly in the Hong Kong and Macao SARs, Taiwan, and overseas Chinese

communities. The process of interconverting between the two is a complex one. This

complexity arises largely because a single simplified form may correspond to

Distinguishing Han Character Usage Between Languages.

Figure 18-1. Han Spelling

Figure 18-2. Semantic Context for Han Characters

Simplified and Traditional Chinese.

East Asia 857 18.1 Han

multiple traditional forms, such as U+53F0 , which is a traditional character in its

own right and the simplified form for U+6AAF , U+81FA , and U+98B1 .

Moreover, vocabulary differences have arisen between Mandarin as spoken in Taiwan

and Mandarin as spoken in the PRC, the most notable of which is the usual name of

the language itself: guóyǔ (the National Language) in Taiwan and pǔtōnghuà (the

Common Speech) in the PRC. Merely converting the character content of a text from

simplified Chinese to the appropriate traditional counterpart is insufficient to change

a simplified Chinese document to traditional Chinese, or vice versa. (The vast

majority of Chinese characters are the same in both simplified and traditional

Chinese.)

There are two PRC national standards, GB 2312-80 and GB 12345-90, which are

intended to represent simplified and traditional Chinese, respectively. The character

repertoires of the two are the same, but the simplified forms occur in GB 2312-80 and

the traditional ones in GB 12345-90. These are both part of the IRG G source, with

traditional forms and simplified forms separated where they differ. As a result, the

Unicode Standard contains a number of distinct simplifications for characters, such

as U+8AAC and U+8BF4 .

While there are lists of official simplifications published by the PRC, most of these

are obtained by applying a few general principles to specific areas. In particular, there

is a set of radicals (such as U+2F94 KANGXI RADICAL SPEECH, U+2F99

KANGXI RADICAL SHELL, U+2FA8 KANGXI RADICAL GATE, and U+2FC3

KANGXI RADICAL BIRD) for which simplifications exist (U+2EC8 CJK RADICAL C-

SIMPLIFIED SPEECH, U+2EC9 CJK RADICAL C-SIMPLIFIED SHELL, U+2ED4

CJK RADICAL C-SIMPLIFIED GATE, and U+2EE6 CJK RADICAL C-SIMPLIFIED

BIRD). The basic technique for simplifying a character containing one of these radi‐

cals is to substitute the simplified radical, as in the previous example.

The Unicode Standard does not explicitly encode all simplified forms for traditional

Chinese characters. Where the simplified and traditional forms exist as different

encoded characters, each should be used as appropriate. The Unicode Standard does

not specify how to represent a new simplified form (or, more rarely, a new traditional

form) that can be derived algorithmically from an encoded traditional form (simpli‐

fied form).

 Prior to the 20th century, the standard form of written

Chinese was literary Chinese, a form derived from the classical Chinese that was

written, but probably not spoken, by Confucius in the sixth century BCE.

The repertoire of CJK unified ideographs encoded in the Unicode Standard covers

modern Chinese, literary Chinese, and classical Chinese.

 The Unicode Standard does not define a method by which

ideographic characters are sorted; the requirements for sorting differ by locale and

Early Forms of Chinese.

Sorting Han Ideographs.

East Asia 858 18.1 Han

application. Possible collating sequences include phonetic, radical-stroke (Kangxi,

Xinhua Zidian, and so on), four-corner, and total stroke count. Raw character codes

alone are seldom sufficient to achieve a usable ordering in any of these schemes;

ancillary data are usually required. (See Table 18-7 for a summary of the authoritative

sources used to determine the order of Han ideographs in the code charts.)

 In form, Han characters are monospaced. Every character takes

the same vertical and horizontal space, regardless of how simple or complex its

particular form is. This practice follows from the long history of printing and typo‐

graphical practice in China, which traditionally placed each character in a square

cell. When written vertically, there are also a number of named cursive styles for Han

characters, but the cursive forms of the characters tend to be quite idiosyncratic and

are not implemented in general-purpose Han character fonts for computers.

There may be a wide variation in the glyphs used in different countries and for

different applications. The most commonly used typefaces in one country may not be

used in others.

The types of glyphs used to depict characters in the Han ideographic repertoire of the

Unicode Standard have been constrained by available fonts. Users are advised to

consult authoritative sources for the appropriate glyphs for individual markets and

applications. It is assumed that most Unicode implementations will provide users

with the ability to select the font (or mixture of fonts) that is most appropriate for a

given locale.

 To develop the explicit rules for unifica‐

tion, a conceptual framework was developed to model the nature of Han ideographic

characters. This model expresses written elements in terms of three primary

attributes: semantic (meaning, function), abstract shape (general form), and actual

shape (instantiated, typeface form). These attributes are graphically represented in

three dimensions according to the X, Y, and Z axes (see Figure 18-3).

Character Glyphs.

18.1.4 Principles of Han Unification

Three-Dimensional Conceptual Model.

East Asia 859 18.1 Han

The semantic attribute (represented along the X axis) distinguishes characters by

meaning and usage. Distinctions are made between entirely unrelated characters

such as (marsh) and (machine) as well as extensions or borrowings beyond the

original semantic cluster such as
1
 (a phonetic borrowing used as a simplified form

of) and
2
 (table, the original meaning).

The abstract shape attribute (the Y axis) distinguishes the variant forms of a single

character with a single semantic attribute (that is, a character with a single position

on the X axis).

The actual shape (typeface) attribute (the Z axis) is for differences of type design (the

actual shape used in imaging) of each variant form.

Z-axis typeface and stylistic differences are generally ignored for the purpose of

encoding Han ideographs, but can be represented in text by the use of variation

sequences; see Section 23.4, Variation Selectors.

The following rules were applied during the process of merging Han characters from

the different source character sets.

Figure 18-3. Three-Dimensional Conceptual Model

X (semantic)

Z
(t
yp

ef
ac

e)

Y
(a
bs
tra

ct
sh
ap

e)

18.1.5 Unification Rules

East Asia 860 18.1 Han

This rule is sometimes called the round-trip rule because its goal is to facilitate a

round-trip conversion of character data between an IRG source standard and the

Unicode Standard without loss of information.

This rule was applied only for the work on the original CJK Unified Ideographs

block [also known as the Unified Repertoire and Ordering (URO)]. The IRG

dropped this rule in 1992 and will not use it in future work.

Figure 18-4 illustrates six variants of the CJK ideograph meaning “sword.”

Each of the six variants in Figure 18-4 is separately encoded in one of the primary

source standards—in this case, J0 (JIS X 0208-1990), as shown in Table 18-4.

Unicode JIS

U+5263 J0-3775

U+528D J0-5178

U+5271 J0-517B

U+5294 J0-5179

U+5292 J0-517A

U+91FC J0-6E5F

Because the six sword characters are historically related, they are not subject to

disunification by the Noncognate Rule (R2) and thus would ordinarily have been

considered for possible abstract shape-based unification by R3. Under that rule, the

fourth and fifth variants would probably have been unified for encoding. However,

the Source Separation Rule required that all six variants be separately encoded,

precluding them from any consideration of shape-based unification. Further variants

of the “sword” ideograph, U+5251 and U+528E, are also separately encoded because

of application of the Source Separation Rule—in that case applied to one or more

Chinese primary source standards, rather than to the J0 Japanese primary source

standard.

Source Separation Rule. If two ideographs are distinct in a primary

source standard, then they are not unified.

R1

•

•

Figure 18-4. CJK Source Separation

Table 18-4. Source Encoding for Sword Variants

East Asia 861 18.1 Han

For example, the ideographs in Figure 18-5, although visually quite similar, are never‐

theless not unified because they are historically unrelated and have distinct mean‐

ings.

 Using the three-dimensional model, characters are

analyzed in a two-level classification. The two-level classification distinguishes char‐

acters by abstract shape (Y axis) and actual shape of a particular typeface (Z axis).

Variant forms are identified based on the difference of abstract shapes.

To determine differences in abstract shape and actual shape, the structure and

features of each component of an ideograph are analyzed as follows.

 The component structure of each ideograph is

examined. A component is a geometrical combination of primitive elements. Various

ideographs can be configured with these components used in conjunction with other

components. Some components can be combined to make a component more

complicated in its structure. Therefore, an ideograph can be defined as a component

tree with the entire ideograph as the root node and with the bottom nodes consisting

of primitive elements (see Figure 18-6 and Figure 18-7).

Noncognate Rule. In general, if two ideographs are unrelated in historical

derivation (noncognate characters), then they are not unified.

R2

Figure 18-5. Not Cognates, Not Unified

By means of a two-level classification (described next), the abstract shape

of each ideograph is determined. Any two ideographs that possess the

same abstract shape are then unified provided that their unification is not

disallowed by either the Source Separation Rule or the Noncognate Rule.

R3

18.1.6 Abstract Shape

Two-Level Classification.

Ideographic Component Structure.

Figure 18-6. Ideographic Component Structure

East Asia 862 18.1 Han

 The following features of each ideograph to be compared are

examined:

Number of components

Relative positions of components in each complete ideograph

Structure of a corresponding component

Treatment in a source character set

Radical contained in a component

 If one or more of these features are different between

the ideographs compared, the ideographs are considered to have different abstract

shapes and, therefore, are considered unique characters and are not unified. If all of

these features are identical between the ideographs, the ideographs are considered to

have the same abstract shape and are unified.

 Ideographs may exist as a unit or may be a component of more

complex ideographs. A source standard may describe a requirement for a component

with a specific spatial positioning that would be otherwise unified on the principle of

having the same abstract shape as an existing full ideograph. Examples of spatial

positioning for ideographic components are left half, top half, and so on.

 The examples in Table 18-5 illustrate the reasons for not unifying charac‐

ters, including typical differences in abstract character shape.

Characters Reason

Non-cognate characters

Characters treated as distinct in a source character set

Different number of components

Same number of components placed in different relative positions

Same number and same relative position of components, corresponding
components structured differently

Characters with different radical in a component

Figure 18-7. The Most Superior Node of an Ideographic Component

Ideograph Features.

•

•

•

•

•

Uniqueness or Unification.

Spatial Positioning.

Examples.

Table 18-5. Ideographs Not Unified

East Asia 863 18.1 Han

Differences in the actual shapes of ideographs that have been unified are illustrated

in Table 18-6.

Characters Reason

Different writing sequence

Differences in overshoot at the stroke termination

Differences in contact of strokes

Differences in protrusion at the folded corner of strokes

Differences in bent strokes

Differences in stroke termination

Differences in accent at the stroke initiation

Difference in rooftop modification

Difference in rotated strokes/dots†

† These ideographs (having the same abstract shape) would have been

unified except for the Source Separation Rule.

The arrangement of the Unicode Han characters is based on the positions of charac‐

ters as they are listed in four major dictionaries. The Kangxi Zidian was chosen as

primary because it contains most of the source characters and because the dictionary

itself and the principles of character ordering it employs are commonly used

throughout East Asia.

The Han ideograph arrangement follows the index (page and position) of the dictio‐

naries listed in Table 18-7 with their priorities.

Priority Dictionary City Publisher Version

1 Kangxi Zidian Beijing Zhonghua Bookstore, 1989 Seventh edition

2 Dai Kan-Wa Jiten Tokyo Taishuukan Shoten, 1986 Revised edition

3 Hanyu Da Zidian Chengdu Sichuan Cishu Publishing, 1986 First edition

4 Dae Jaweon Seoul Samseong Publishing Co. Ltd, 1988 First edition

When a character is found in the Kangxi Zidian, it follows the Kangxi Zidian order.

When it is not found in the Kangxi Zidian and it is found in Dai Kan-Wa Jiten, it is

Table 18-6. Ideographs Unified

18.1.7 Han Ideograph Arrangement

Table 18-7. Han Ideograph Arrangement

East Asia 864 18.1 Han

given a position extrapolated from the Kangxi position of the preceding character in

Dai Kan-Wa Jiten. When it is not found in either Kangxi or Dai Kan-Wa, then the

Hanyu Da Zidian and Dae Jaweon dictionaries are consulted in a similar manner.

Ideographs with simplified Kangxi radicals are placed in a group following the tradi‐

tional Kangxi radical from which the simplified radical is derived. For example, char‐

acters with the simplified radical corresponding to Kangxi radical follow the

last nonsimplified character having as a radical. The arrangement for these simpli‐

fied characters is that of the Hanyu Da Zidian.

The few characters that are not found in any of the four dictionaries are placed

following characters with the same Kangxi radical and stroke count. The radical-

stroke order that results is a culturally neutral order. It does not exactly match the

order found in common dictionaries.

Information for sorting all CJK ideographs by the radical-stroke method is found in

the Unihan Database (see Unicode Standard Annex #38, “Unicode Han Database

(Unihan)”). It should be used if characters from the various blocks containing ideo‐

graphs (see Table 18-1) are to be properly interleaved. Note, however, that there is no

standard way of ordering characters with the same radical-stroke count; for most

purposes, Unicode code point order would be as acceptable as any other way.

Details regarding the form of the online charts for the CJK unified ideographs are

discussed in Section 24.2, CJK and Other Ideographs.

Various radical-stroke indices are provided on the Unicode website to ease the search

for particular Han ideographs in the Unicode Standard. An interactive radical-stroke

index page enables queries by specific Kangxi radical numbers and the number of

residual strokes. Three radical-stroke indices are also provided in PDF format. The

more extensive of them covers all of the ideographs in the CJK Unified Ideographs

and CJK Compatibility Ideographs blocks. There are also more compact radical-

stroke indices that are limited to the Han ideographs as specified by the IICore and

UnihanCore2020 subsets.

The most authoritative source for radical-stroke information is the eighteenth-

century Kangxi dictionary, which established the classification system of 214 radicals.

The main issue with using Kangxi radicals today is that many simplified ideographs

are difficult to classify under the system of 214 Kangxi radicals. As a result, various

modern radical classification systems have been established. However, none of them

is in general use, and the 214 Kangxi radicals remain the most universally recognized

to this day. See “CJK and Kangxi Radicals” later in this section for more details.

18.1.8 Radical-Stroke Indices

East Asia 865 18.1 Han

According to the traditional radical-stroke classification system, each Han ideograph

is considered to be written with a radical plus its residual strokes. For example, the

ideograph is assigned to the radical and has seven residual strokes. To find the

ideograph in a dictionary, one would first locate the section for its radical, , and

then find the subsection for ideographs with seven residual strokes. With the excep‐

tion of ideographs that are classified under a simplified radical, simplified ideographs

are generally classified under the same radical as their traditional forms. For

example, the simplified ideograph and its traditional form, , are both classified

under the radical .

This classification system is complicated by the fact that there are occasional ambigu‐

ities in the counting of strokes of the radical itself or the ideograph’s residual compo‐

nents. It is further complicated in that two or more ideograph dictionaries may

disagree under which particular radical an ideograph is classified. Ideographs classi‐

fied under more than one radical may thus appear more than once in the radical-

stroke indices.

The mappings defined by the IRG between the ideographs in the Unicode Standard

and the IRG sources are specified in the Unihan Database. These mappings are

considered to be normative parts of ISO/IEC 10646 and of the Unicode Standard; that

is, the characters are defined to be the targets for conversion of these characters in

these character set standards.

These mappings have been derived from editions of the source standards provided

directly to the IRG by its member bodies, and they may not match mappings derived

from the published editions of these standards. For this reason, developers may

choose to use alternative mappings more directly correlated with published editions.

Specialized conversion systems may also choose more sophisticated mapping mecha‐

nisms—for example, semantic conversion, variant normalization, or conversion

between simplified and traditional Chinese.

The Unicode Consortium also provides mapping information that extends beyond

the normative mappings defined by the IRG. These additional mappings include

mappings to character set standards included in the U source, including duplicate

characters from KS C 5601-1987, mappings to portions of character set standards

omitted from IRG sources, references to standard dictionaries, and suggested char‐

acter/stroke counts.

The Korean national standard KS C 5601-1987 (now known as KS X 1001:1998), which

served as one of the primary source sets for the Unified CJK Ideograph Repertoire

18.1.9 Mappings for Han Ideographs

18.1.10 CJK Compatibility Ideographs: U+F900–U+FAFF

East Asia 866 18.1 Han

and Ordering, Version 2.0, contains 268 duplicate encodings of identical ideograph

forms to denote alternative pronunciations. That is, in certain cases, the standard

encodes a single character multiple times to denote different linguistic uses. This

approach is like encoding the letter “a” five times to denote the different pronuncia‐

tions it has in the words hat, able, art, father, and adrift. Because they are in all ways

identical in shape to their nominal counterparts, they were excluded by the IRG from

its sources. For round-trip conversion with KS C 5601-1987, they are encoded sepa‐

rately from the primary CJK Unified Ideographs block.

Another 34 ideographs from various regional and industry standards were encoded in

this block, primarily to achieve round-trip conversion compatibility. Twelve of these

ideographs (U+FA0E, U+FA0F, U+FA11, U+FA13, U+FA14, U+FA1F, U+FA21,

U+FA23, U+FA24, U+FA27, U+FA28, and U+FA29) are not encoded in blocks for

CJK unified ideographs. These 12 characters are not duplicates and should be treated

as a small extension to the set of unified ideographs.

Except for the 12 unified ideographs just enumerated, CJK compatibility ideographs

from this block are not used in Ideographic Description Sequences.

An additional 59 compatibility ideographs are found from U+FA30 to U+FA6A. They

are included in the Unicode Standard to provide full round-trip compatibility with

the ideographic repertoire of JIS X 0213:2000 and should not be used for any other

purpose.

An additional three compatibility ideographs are encoded at the range U+FA6B to

U+FA6D. They are included in the Unicode Standard to provide full round-trip

compatibility with the ideographic repertoire of the Japanese television standard,

ARIB STD-B24, and should not be used for any other purpose.

An additional 106 compatibility ideographs are encoded at the range U+FA70 to

U+FAD9. They are included in the Unicode Standard to provide full round-trip

compatibility with the ideographic repertoire of KPS 10721-2000. They should not be

used for any other purpose.

The names for the compatibility ideographs are also algorithmically derived. Thus

the name for the compatibility ideograph U+F900 is CJK COMPATIBILITY IDEO‐

GRAPH-F900. See the formal definition of the Name property in Section 4.8, Name.

All of the compatibility ideographs in this block, except for the 12 unified ideographs,

have standardized variation sequences defined in StandardizedVariants.txt. See the

discussion in Section 23.4, Variation Selectors for more details.

The CJK Compatibility Ideographs Supplement block consists of additional compati‐

bility ideographs required for round-trip compatibility with CNS 11643-1992, planes 3,

18.1.11 CJK Compatibility Supplement: U+2F800–U+2FA1D

East Asia 867 18.1 Han

4, 5, 6, 7, and 15. They should not be used for any other purpose and, in particular,

may not be used in Ideographic Description Sequences.

All of the additional compatibility ideographs in this block have standardized varia‐

tion sequences defined in StandardizedVariants.txt. See the discussion in Section 23.4,

Variation Selectors for more details.

This block contains a set of Kanbun marks that are used in Japanese literary texts to

indicate the Japanese reading order of Classical Chinese poetry and prose. These

marks, named for the Japanese word for Chinese writing (漢文), occur particularly in

Japanese educational and scholastic texts. They are typically written in an annotation

style, placed interlinearly at the left side of each line of vertically rendered original

Chinese text. Typesetting Kanbun text is inherently complex, requiring some form of

markup and special handling to achieve the desired layout results.

Fourteen of the Kanbun marks, in the range U+3192 IDEOGRAPHIC ANNOTATION

ONE MARK through U+319F IDEOGRAPHIC ANNOTATION MAN MARK, have

compatibility decompositions to a corresponding CJK unified ideograph. These

marks are merely special-purpose variants of those CJK unified ideographs, used

with a specialized meaning and layout rules in Kanbun text. The way the glyphs are

shown in the code charts at reduced size and raised above the baseline is intended to

mimic their appearance as formatted for use in annotations. This appearance is the

reason the compatibility mappings have been assigned the tag <super>. The compat‐

ibility mappings do not imply that these characters are appropriate for use as super‐

script forms in ordinary Chinese text; the preferred means for that purpose are text

styles or markup in rich text. (See Section 22.4, Superscript and Subscript Symbols for

more information.) Common practice for existing Japanese fonts that support these

characters is to provide their glyphs at full size, with the expectation that the layout

engine will scale and position them accordingly, per the layout specification for

Kanbun text in JIS X 4051.

A number of symbols derived from Han ideographs can be found in other blocks. See

“Enclosed CJK Letters and Months: U+3200–U+32FF,” “CJK Compatibility:

U+3300–U+33FF,” and “Enclosed Ideographic Supplement: U+1F200–U+1F2FF” in

Section 22.10, Enclosed and Square.

18.1.12 Kanbun: U+3190–U+319F

18.1.13 Symbols Derived from Han Ideographs

East Asia 868 18.1 Han

The Unicode Standard includes two blocks of Han ideographic radicals that are

commonly used to index ideograph dictionaries: the Kangxi Radicals block

(U+2F00..U+2FD5), which contains the 214 radicals as used in the eighteenth-

century Kangxi dictionary, and the CJK Radicals Supplement block

(U+2E80..U+2EF3), which contains variant forms of some Kangxi radicals, either

when they occur as ideograph components or in simplified form according to

conventions in China and Japan.

The term radical comes from the Latin radix, which means “root,” and refers to the

part of an ideograph under which it is classified in most ideograph dictionaries. See

“Radical-Stroke Indices” earlier in this section for a more detailed discussion of how

ideographic radicals are used in radical-stroke indices.

Nearly all of the characters in the Kangxi Radicals and CJK Radicals Supplement

blocks are equivalent to ideographs in the CJK Unified Ideographs blocks, but should

not be used interchangeably. (See the “Semantics” subsection below.) Radicals that

have one form as an independent ideograph and another as part of an ideograph are

generally encoded in both forms in the CJK Unified Ideographs blocks, such as

U+6C34 and U+6C35 for the radical meaning “water.” See the Equiva‐

lent_Unified_Ideograph property in the Unicode Character Database for mappings of

nearly all characters in these blocks to equivalent ideographs in the CJK Unified

Ideographs blocks.

 CNS 11643-1992 included a block of radicals separate from its ideograph

block, which included 213 of the 214 Kangxi radicals. The missing radical is the 34th

one, which is encoded as U+2F21 KANGXI RADICAL GO in the Unicode Standard.

Amendment 1 of the CNS 11643:2007 standard, which was published in 2023,

appended the missing radical to this block, which now includes all 214 Kangxi radi‐

cals.

 Chinese is not the only language

whose writing system uses simplified radicals. Japanese, and to some extent Viet‐

namese, also make use of simplified radicals. Among the simplified radicals, a small

number are shared by Chinese and non-Chinese languages, such as U+2EA6 CJK

RADICAL SIMPLIFIED HALF TREE TRUNK and U+2EE8 CJK RADICAL SIMPLIFIED

WHEAT. Others have separate Chinese and Japanese forms, such as U+2EEE CJK

RADICAL C-SIMPLIFIED TOOTH and U+2EED CJK RADICAL J-SIMPLIFIED TOOTH.

Some simplified radicals are not included in the CJK Radicals Supplement block,

such as U+9F21 , which is the Japanese simplified form of U+2FCF KANGXI

RADICAL RAT. See Table 18-8 for a complete treatment of Chinese simplified and non-

Chinese simplified radicals, together with their equivalent unified ideographs.

18.1.14 Kangxi Radicals and CJK Radicals Supplement: U+2F00–

U+2FD5, U+2E80–U+2EF3

Standards.

Chinese and Non-Chinese Simplified Radicals.

East Asia 869 18.1 Han

Radical Traditional Form Chinese Simplified Form Non-Chinese Simplified Form

182 U+2FB5 U+98A8 U+2EDB U+98CE U+322C4

208 U+2FCF U+9F20 U+9F21

210 U+2FD1 U+9F4A U+2EEC U+9F50 U+2EEB U+6589

211 U+2FD2 U+9F52 U+2EEE U+9F7F U+2EED U+6B6F

212 U+2FD3 U+9F8D U+2EF0 U+9F99
U+2EEF U+7ADC

U+31DE5

213 U+2FD4 U+9F9C U+2EF3 U+9F9F U+2EF2 U+4E80

 Characters in the CJK Radicals Supplement and Kangxi Radicals blocks

should not be used as ideographs, because they have different properties and seman‐

tics. For example, U+2F00 KANGXI RADICAL ONE should not be used in lieu of

U+4E00 CJK UNIFIED IDEOGRAPH-4E00. The former is to be treated as a symbol,

and the latter is to be treated as a word or a part of a word. Except in circumstances

where it is necessary to make a semantic distinction between an ideograph in its role

as a radical and the same ideograph in its role as an ideograph, the characters in the

CJK Unified Ideographs blocks should be used instead of the characters in these

blocks.

 The Kangxi Radicals block uses representative glyphs that

closely adhere to the forms as found in the Kangxi dictionary itself, which are inde‐

pendent of any particular regional convention. However, the CJK Radicals Supple‐

ment block includes regional variants whose representative glyphs are appropriate

for the region. For example, U+2EEB CJK RADICAL J-SIMPLIFIED EVEN and

U+2EEF CJK RADICAL J-SIMPLIFIED DRAGON adhere to conventions as used in

Japan.

Several characters have been encoded because of developments in HKSCS-2001 (the

Hong Kong Supplementary Character Set) and GB 18030-2000 (the PRC National

Standard). Both of these encoding standards were published with mappings to

Unicode Private Use Area code points. PUA ideographic characters that could not be

remapped to non-PUA CJK ideographs were added to the existing block of CJK

Unified Ideographs. Fourteen new ideographs (U+9FA6..U+9FB3) were added from

HKSCS, and eight multistroke ideographic components (U+9FB4..U+9FBB) were

added from GB 18030.

To complete the mapping to these two Chinese standards, a number of non-ideo‐

graphic characters were encoded elsewhere in the standard. In particular, two symbol

characters from HKSCS were added to the existing Miscellaneous Technical block:

Table 18-8. Chinese Simplified Versus Non-Chinese Simplified

Radicals

Semantics.

Representative Glyphs.

18.1.15 CJK Additions from HKSCS and GB 18030

East Asia 870 18.1 Han

U+23DA EARTH GROUND and U+23DB FUSE. A new block, CJK Strokes

(U+31C0..U+31EF), was created and populated with a number of stroke symbols

from HKSCS. Another block, Vertical Forms (U+FE10..U+FE1F), was created for

vertical punctuation compatibility characters from GB 18030.

Characters in the CJK Strokes block are single-stroke components of CJK ideographs.

The first characters assigned to this block were 16 HKSCS–2001 PUA characters that

had been excluded from CJK Unified Ideograph Extension B on the grounds that

they were not true ideographs. Further additions consist of traditionally defined

stroke types attested in the representative forms appearing in the Unicode CJK ideo‐

graph code charts or occurring in pre-unification source glyphs. See the Equiva‐

lent_Unified_Ideograph property in the Unicode Character Database for mappings of

most CJK strokes to equivalent CJK unified ideographs.

CJK strokes are used with highly specific semantics (primarily to index ideographs),

but they may lack the monosyllabic pronunciations and logographic functions typi‐

cally associated with independent ideographs. The strokes in this block are single

strokes of well-defined types. For more information about these strokes, see

Appendix F, Documentation of CJK Strokes.

The Ideographic Symbols and Punctuation block covers historic and less common

symbols and punctuation associated with various ideographic scripts. Included, for

example, are iteration marks for Tangut, Nüshu, and old Chinese, as well as reading

marks associated with Vietnamese use of Han characters.

18.1.16 CJK Strokes: U+31C0–U+31EF

18.1.17 Ideographic Symbols and Punctuation: U+16FE0–

U+16FFF

East Asia 871 18.1 Han

Although the Unicode Standard includes nearly 100,000 CJK unified ideographs,

thousands of extremely rare CJK ideographs have nevertheless been left unencoded.

Research into cataloging additional ideographs for encoding continues, but it is antic‐

ipated that at no point will the entire set of potential, encodable ideographs be

completely exhausted. In particular, ideographs continue to be coined and such new

coinages will invariably be unencoded.

The 16 characters in the Ideographic Description Characters block plus the additional

Ideographic Description character encoded at U+31EF provide a mechanism for the

standard interchange of text that must reference unencoded ideographs. Unencoded

ideographs can be described using these characters and encoded ideographs; the

reader can then create a mental picture of the ideographs from the description.

This process is different from a formal encoding of an ideograph. There is no canon‐

ical description of unencoded ideographs; there is no semantic assigned to described

ideographs; there is no equivalence defined for described ideographs. Conceptually,

ideographic descriptions are more akin to the English phrase “an ‘e’ with an acute

accent on it” than to the character sequence <U+0065, U+0301>.

In particular, support for the characters in the Ideographic Description Characters

block does not require the rendering engine to recreate the graphic appearance of the

described character.

Note also that many of the ideographs that users might represent using the Ideo‐

graphic Description characters will be formally encoded in future versions of the

Unicode Standard.

The Ideographic Description Algorithm depends on the fact that virtually all CJK

ideographs can be broken down into smaller pieces that are themselves ideographs.

The broad coverage of the ideographs already encoded in the Unicode Standard

implies that the vast majority of unencoded ideographs can be represented using the

Ideographic Description characters.

Although Ideographic Description Sequences are intended primarily to represent

unencoded ideographs and should not be used in data interchange to represent

encoded ideographs, they also have pedagogical and analytic uses. A researcher, for

example, may choose to represent the character U+86D9 as “ ” in a data‐

base to provide a link between it and other characters sharing its phonetic, such as

U+5A03 . The IRG is using Ideographic Description Sequences in this fashion to

18.2 Ideographic Description Characters

18.2.1 Ideographic Description Characters: U+2FF0–U+2FFF

East Asia 872
18.2 Ideographic Description

Characters

help provide a first-approximation, machine-generated set of unifications for its

current work.

 The characters in the Ideographic Description Char‐

acters block were originally derived from a Chinese standard and were encoded for

use specifically in describing CJK ideographs. As a result, the following detailed

description of Ideographic Description Sequences is specified entirely in terms of

CJK unified ideographs and CJK radicals. However, there are several large, historic

East Asian scripts whose writing systems were heavily influenced by the Han script.

Like the Han script, those siniform historic scripts, which include Tangut, Jurchen,

and Khitan, are logographic in nature. Furthermore, they built up characters using

radicals and components, and with side-by-side and top-to-bottom stacking very

similar in structure to the way CJK ideographs are composed.

The general usefulness of Ideographic Description Sequences for describing unen‐

coded characters and the applicability of the characters in the Ideographic Descrip‐

tion Characters block to description of siniform logographs mean that the syntax for

Ideographic Description Sequences can be generalized to extend to additional East

Asian logographic scripts.

 Ideographic Description Sequences are

defined by the following grammar. The list of characters associated with the Ideo‐

graphic and Radical properties can be found in the Unicode Character Database. In

particular, the Ideographic property is intended to apply to other siniform ideographic

systems, in addition to CJK ideographs. Nüshu ideographs, Tangut ideographs, and

Tangut components can also be used as elements of an Ideographic Description

Sequence.

IDS := Ideographic | Radical | CJK_Stroke | Private Use | 	U+FF1F
 | IDS_UnaryOperator IDS
 | IDS_BinaryOperator IDS IDS
 | IDS_TrinaryOperator IDS IDS IDS
C	JK_	Stroke := 	U+31C0 | ... | 	U+31E5
IDS_UnaryOperator := 	U+2FFE | 	U+2FFF
IDS_BinaryOperator := 	U+2FF0 | 	U+2FF1 | 	U+2FF4 | ... | 	U+2FFD
 | 	U+31EF
IDS_TrinaryOperator := 	U+2FF2 | 	U+2FF3

Previous versions of the Unicode Standard imposed various limits on the length of a

sequence or parts of it, and restricted the use of IDSes to CJK Unified Ideographs.

Those limits and restrictions are no longer imposed by the standard. Although not

formally proscribed by the syntax, it is not a good idea to mix scripts in any given

Ideographic Description Sequence. For example, it is not meaningful to mix CJK

ideographs or CJK radicals with Tangut ideographs or components in a single

description.

Applicability to Other Scripts.

Ideographic Description Sequences.

East Asia 873
18.2 Ideographic Description

Characters

The operators indicate the relative graphic positions of the operands running from

left to right, from top to bottom, or from enclosure to enclosed. A user wishing to

represent an unencoded ideograph will need to analyze its structure to determine

how to describe it using an Ideographic Description Sequence. As a rule, it is best to

use the natural radical-phonetic division for an ideograph if it has one and to use as

short a description sequence as possible; however, there is no requirement that these

rules be followed. Beyond that, the shortest possible Ideographic Description

Sequence is preferred.

Figure 18-8 provides an example IDS for each of the IDCs, along with annotated

versions of the IDCs that indicate the order of their operands.

U+2FF0 U+4EC1 →
U+2FF1 U+5409 →
U+2FF2 U+8857 →
U+2FF3 U+58F9 →
U+2FF4 U+56DE →
U+2FF5 U+51F0 →
U+2FF6 U+51F6 →
U+2FF7 U+5321 →
U+2FF8 U+4EC4 →
U+2FF9 U+5F0F →
U+2FFA U+8D85 →
U+2FFB U+5DEB →
U+2FFC U+355A →
U+2FFD U+6C37 →
U+2FFE U+23944 →
U+2FFF U+20114 →

U+31EF
U+2002A

→
U+5187

In contrast to the other IDCs, most of which are used to combine components,

U+31EF IDEOGRAPHIC DESCRIPTION CHARACTER SUBTRACTION is used to describe

the removal (or “subtraction”) of a stroke (or more complex component) from a

target character. Its first argument is the ideograph (or component) from which a

piece is to be deleted, and the second argument is the stroke (or component) that is to

Figure 18-8. Examples of Ideographic Description Characters

East Asia 874
18.2 Ideographic Description

Characters

be removed. If the target character lacks the stroke or component to be removed, the

sequence has no meaning. The typical use case for U+31EF would be in describing

the many historical instances of Han naming taboo characters that exhibit removal of

a stroke in the character to avoid the given name of an emperor or an emperor's

ancestor. It might also be used to describe modern neologisms, such as the characters

for pīngpāng, derived by removal of one stroke each from .

Figure 18-9 illustrates the use of the IDS grammar to provide descriptions of encoded

or unencoded ideographs. Examples 9 through 14 illustrate more complex Ideo‐

graphic Description Sequences showing the use of some of the less common opera‐

tors.

 Many unencoded ideographs can be described in more than one way

using this algorithm, either because the pieces of a description can themselves be

broken down further (examples 1 through 3 in Figure 18-9) or because duplications

appear within the Unicode Standard (examples 5 through 8 in Figure 18-9).

Figure 18-9. Using the Ideographic Description Characters

Equivalence.

East Asia 875
18.2 Ideographic Description

Characters

The Unicode Standard does not define equivalence for two Ideographic Description

Sequences that are not identical. Figure 18-9 contains numerous examples illustrating

how different Ideographic Description Sequences might be used to describe the same

ideograph.

In particular, Ideographic Description Sequences should not be used to provide alter‐

native graphic representations of encoded ideographs in data interchange. Searching,

collation, and other content-based text operations would then fail.

U+303E IDEOGRAPHIC VARIA‐

TION INDICATOR (IVI) normally occurs before a CJK unified ideograph, but it may

also be placed before an Ideographic Description Sequence to indicate that the

description is merely an approximation of the ideograph desired. The IVI is not

considered a part of the Ideographic Description Sequence and does not invalidate

the sequence.

 Ideographic Description characters are visible characters and are not to

be treated as control characters. Thus the sequence U+2FF1 U+4E95 U+86D9 must

have a distinct appearance from U+4E95 U+86D9.

An implementation may render a valid Ideographic Description Sequence either by

rendering the individual characters separately or by parsing the Ideographic Descrip‐

tion Sequence and drawing the ideograph so described. In the latter case, the Ideo‐

graphic Description Sequence should be treated as a ligature of the individual charac‐

ters for purposes of hit testing, cursor movement, and other user interface operations.

(See Section 5.11, Editing and Selection.)

 Ideographic Description characters are not combining char‐

acters, and there is no requirement that they affect character or word boundaries.

Thus U+2FF1 U+4E95 U+86D9 may be treated as a sequence of three characters or

even three words.

Implementations of the Unicode Standard may choose to parse Ideographic Descrip‐

tion Sequences when calculating word and character boundaries. Note that such a

decision will make the algorithms involved significantly more complicated and

slower.

 Most of the Ideographic Description characters are found in GBK—an

extension to GB 2312-80 that added all 20,902 Unicode Version 1.1 ideographs not

already in GB 2312-80. GBK is defined as a normative annex of GB 13000.1-93.

Interaction with the Ideographic Variation Mark.

Rendering.

Character Boundaries.

Standards.

East Asia 876
18.2 Ideographic Description

Characters

Bopomofo constitute a set of characters used to annotate or teach the phonetics of

Chinese, primarily the standard Mandarin language. These characters are used in

dictionaries and teaching materials, but not in the actual writing of Chinese text. The

formal Chinese names for this alphabet are Zhuyin-Zimu (“phonetic alphabet”) and

Zhuyin-Fuhao (“phonetic symbols”), but the informal term “Bopomofo” (analogous

to “ABCs”) provides a more serviceable English name and is also used in China. The

Bopomofo were developed as part of a populist literacy campaign following the 1911

revolution; thus they are acceptable to all branches of modern Chinese culture,

although in the People’s Republic of China their function has been largely taken over

by the Pinyin romanization system.

Bopomofo is a hybrid writing system—part alphabet and part syllabary. The letters of

Bopomofo are used to represent either the initial parts or the final parts of a Chinese

syllable. The initials are just consonants, as for an alphabet. The finals constitute

either simple vowels, vocalic diphthongs, or vowels plus nasal consonant combina‐

tions. Because a number of Chinese syllables have no initial consonant, the Bopo‐

mofo letters for finals may constitute an entire syllable by themselves. More typically,

a Chinese syllable is represented by one initial consonant letter, followed by one final

letter. In some instances, a third letter is used to indicate a complex vowel nucleus for

the syllable. For example, the syllable that would be written luan in Pinyin is

segmented l-u-an in Bopomofo—that is, <U+310C, U+3128, U+3122>.

 The standard Mandarin set of Bopomofo is included in the People’s

Republic of China standards GB 2312 and GB 18030, and in the Republic of China

(Taiwan) standard CNS 11643.

 Small modifier letters used to indicate the five Mandarin

tones are part of the Bopomofo system. In the Unicode Standard they have been

unified into the Modifier Letter range, as shown in Table 18-9.

first tone U+02C9 MODIFIER LETTER MACRON

second tone U+02CA MODIFIER LETTER ACUTE ACCENT

third tone U+02C7 CARON

fourth tone U+02CB MODIFIER LETTER GRAVE ACCENT

light tone U+02D9 DOT ABOVE

 The order of the Mandarin Bopomofo letters

U+3105.. U+3129 is standard worldwide. The code offset of the first letter U+3105

18.3 Bopomofo

18.3.1 Bopomofo: U+3100–U+312F, U+31A0–U+31BF

Standards.

Mandarin Tone Marks.

Table 18-9. Mandarin Tone Marks

Standard Mandarin Bopomofo.

East Asia 877 18.3 Bopomofo

BOPOMOFO LETTER B from a multiple of 16 is included to match the offset in the ISO-

registered standard GB 2312.

 To represent the sounds of Chinese dialects other than

Mandarin, the basic Bopomofo set U+3105..U+3129 has been augmented by addi‐

tional phonetic characters. These extensions are much less broadly recognized than

the basic Mandarin set. The three extended Bopomofo characters U+312A..U+312C

are cited in some standard reference works, such as the encyclopedia Xin Ci Hai.

Another set of 24 extended Bopomofo, encoded at U+31A0..U+31B7, was designed in

1948 to cover additional sounds of the Minnan and Hakka dialects. The extensions

are used together with the main set of Bopomofo characters to provide a complete

phonetic orthography for those dialects. The four characters encoded at

U+31BC..U+31BF were designed to represent additional sounds found in Cantonese.

The small characters encoded at U+31B4..U+31B7 and U+31BB represent syllable-

final consonants not present in standard Mandarin or in Mandarin dialects. They

have the same shapes as Bopomofo “b”, “d”, “k”, “h”, and “g,” respectively, but are

rendered in a smaller form than the initial consonants; they are also generally shown

close to the syllable medial vowel character. These final letters are encoded separately

so that the Minnan and Hakka dialects can be represented unambiguously in plain

text without having to resort to subscripting or other fancy text mechanisms to repre‐

sent the final consonants. In Cantonese, final consonants not covered by the set of

standard Bopomofo rhymes ending in -n or -ng are instead represented by full-sized

letters for “p”, “t”, “k”, “m”, “n”, “ng”.

Three Bopomofo letters for sounds found in non-Chinese languages are encoded in

the range U+31B8..U+31BA. These characters are used in the Hmu and Ge

languages, members of the Hmong-Mien (or Miao-Yao) language family, spoken

primarily in southeastern Guizhou. The characters are part of an obsolete orthog‐

raphy for Hmu and Ge devised by the missionary Maurice Hutton in the 1920s and

1930s. A small group of Hmu Christians are still using a hymnal text written by

Hutton that contains these characters.

U+312E BOPOMOFO LETTER O WITH DOT ABOVE, which was initially thought to be

a CJK Unified Ideograph because it appears in Japan’s Dai Kan-Wa Jiten as a kanji, is

the original form of U+311C BOPOMOFO LETTER E. The Mandarin sound “e” was

originally written as U+311B BOPOMOFO LETTER O with a dot above. This dotted

form was later replaced by a new character that uses a vertical stroke instead of a dot,

which is U+311C BOPOMOFO LETTER E.

 In addition to the Mandarin tone marks enumer‐

ated in Table 18-9, other tone marks appropriate for use with the extended Bopomofo

transcriptions of Minnan and Hakka can be found in the Modifier Letter range, as

shown in Table 18-10. The “departing tone” refers to the qusheng in traditional

Chinese tonal analysis, with the yin variant historically derived from voiceless initials

Extended Bopomofo.

Extended Bopomofo Tone Marks.

East Asia 878 18.3 Bopomofo

and the yang variant from voiced initials. Southern Chinese dialects in general main‐

tain more tonal distinctions than Mandarin does.

yin departing tone U+02EA MODIFIER LETTER YIN DEPARTING TONE MARK

yang departing tone U+02EB MODIFIER LETTER YANG DEPARTING TONE MARK

 Bopomofo is rendered from left to right in horizontal text,

but also commonly appears in vertical text. It may be used by itself in either orienta‐

tion, but typically appears in interlinear annotation of Chinese (Han character) text.

Children’s books are often completely annotated with Bopomofo pronunciations for

every character. This interlinear annotation is structurally quite similar to the system

of Japanese ruby annotation, but it has additional complications that result from the

explicit usage of tone marks with the Bopomofo letters.

U+3127 BOPOMOFO LETTER I has notable variation in rendering in horizontal and

vertical layout contexts. In traditional typesetting, the stroke of the glyph was chosen

to stand perpendicular to the writing direction. In that practice, the glyph is shown as

a horizontal stroke in vertically set text, and as a vertical stroke in horizontally set

text. However, modern digital typography has changed this practice. All modern

fonts use a horizontal stroke glyph for U+3127, and that form is generally used in

both horizontal and vertical layout contexts. In the Unicode Standard, the form in the

charts follows the modern practice, showing a horizontal stroke for the glyph; the

vertical stroke form is considered to be an occasionally occurring variant. Earlier

versions of the standard followed traditional typographic practice, and showed a

vertical stroke glyph in the charts.

In horizontal interlineation, the Bopomofo is generally placed above the corre‐

sponding Han character(s); tone marks, if present, appear at the end of each syllabic

group of Bopomofo letters. In vertical interlineation, the Bopomofo is generally

placed on the right side of the corresponding Han character(s); tone marks, if

present, appear in a separate interlinear row to the right side of the vowel letter.

When using extended Bopomofo for Minnan and Hakka, the tone marks may also be

mixed with European digits 0–9 to express changes in actual tonetic values resulting

from juxtaposition of basic tones.

Table 18-10. Minnan and Hakka Tone Marks

Rendering of Bopomofo.

East Asia 879 18.3 Bopomofo

Hiragana is the cursive syllabary used to write Japanese words phonetically and to

write sentence particles and inflectional endings. It is also commonly used to indicate

the pronunciation of Japanese words. Hiragana syllables are phonetically equivalent

to the corresponding Katakana syllables.

 The Hiragana block is based on the JIS X 0208-1990 standard, extended

by the nonstandard syllable U+3094 HIRAGANA LETTER VU, which is included in

some Japanese corporate standards. Some additions are based on the JIS X 0213:2000

standard.

 Hiragana and the related script Katakana use U+3099

COMBINING KATAKANA-HIRAGANA VOICED SOUND MARK and U+309A COMBINING

KATAKANA-HIRAGANA SEMI-VOICED SOUND MARK to generate voiced and

semivoiced syllables from the base syllables, respectively. All common precomposed

combinations of base syllable forms using these marks are already encoded as char‐

acters, and use of these precomposed forms is the predominant JIS usage. These

combining marks must follow the base character to which they apply. Because most

implementations and JIS standards treat these marks as spacing characters, the

Unicode Standard contains two corresponding noncombining (spacing) marks at

U+309B and U+309C.

 The two characters U+309D HIRAGANA ITERATION MARK and

U+309E HIRAGANA VOICED ITERATION MARK are punctuation-like characters that

denote the iteration (repetition) of a previous syllable according to whether the

repeated syllable has an unvoiced or voiced consonant, respectively.

U+309F HIRAGANA DIGRAPH YORI is a digraph form which

was historically used in vertical display contexts, but which is now also found in hori‐

zontal layout.

Katakana is the noncursive syllabary used to write non-Japanese (usually Western)

words phonetically in Japanese. It is also used to write Japanese words with visual

emphasis. Katakana syllables are phonetically equivalent to corresponding Hiragana

syllables. Katakana contains two characters, U+30F5 KATAKANA LETTER SMALL KA

and U+30F6 KATAKANA LETTER SMALL KE, that are used in special Japanese

spelling conventions (for example, the spelling of place names that include archaic

Japanese connective particles).

18.4 Hiragana and Katakana

18.4.1 Hiragana: U+3040–U+309F

Standards.

Combining Marks.

Iteration Marks.

Vertical Text Digraph.

18.4.2 Katakana: U+30A0–U+30FF

East Asia 880 18.4 Hiragana and Katakana

 The Katakana block is based on the JIS X 0208-1990 standard. Some

additions are based on the JIS X 0213:2000 standard.

U+30FB KATAKANA MIDDLE DOT is used to separate

words when writing non-Japanese phrases. U+30A0 KATAKANA-HIRAGANA DOUBLE

HYPHEN is a delimiter occasionally used in analyzed Katakana or Hiragana textual

material.

U+30FC KATAKANA-HIRAGANA PROLONGED SOUND MARK is used predominantly

with Katakana and occasionally with Hiragana to denote a lengthened vowel of the

previously written syllable. The two iteration marks, U+30FD KATAKANA ITERATION

MARK and U+30FE KATAKANA VOICED ITERATION MARK, serve the same function

in Katakana writing that the two Hiragana iteration marks serve in Hiragana writing.

U+30FF KATAKANA DIGRAPH KOTO is a digraph form which

was historically used in vertical display contexts, but which is now also found in hori‐

zontal layout.

These extensions to the Katakana syllabary are all “small” variants. They are used in

Japan for phonetic transcription of Ainu and other languages. They may be used in

combination with U+3099 COMBINING KATAKANA-HIRAGANA VOICED SOUND

MARK and U+309A COMBINING KATAKANA-HIRAGANA SEMI-VOICED SOUND MARK

to indicate modification of the sounds represented.

 The Katakana Phonetic Extensions block is based on the JIS X 0213:2000

standard.

The Small Kana Extension block contains additional small variants for the Hiragana

syllabary and the Katakana syllabary. A significant number of these small variant

kana are attested from sources, which include phonetic transcription of non-Japa‐

nese terms in musical scores, maps showing place names, and other documents. The

small kana variants currently included in this block cover the best attested subset,

including forms used in Old Japanese. They are ordered so that gaps in the code chart

may be filled in with further small variant kana, when their attestations are better

documented.

Standards.

Punctuation-like Characters.

Vertical Text Digraph.

18.4.3 Katakana Phonetic Extensions: U+31F0–U+31FF

Standards.

18.4.4 Small Kana Extension: U+1B130-U+1B16F

East Asia 881 18.4 Hiragana and Katakana

The Kana Supplement and Kana Extended-A blocks are intended for the encoding of

historic and variant forms of Japanese kana characters, including those variants

collectively known as hentaigana (variant shaped kana) in Japanese.

The character U+1B000 KATAKANA LETTER ARCHAIC E is an obsolete form of

U+30A8 KATAKANA LETTER E, which has not been used in Japanese orthography for

about one thousand years. In its pre-10th century use, this character represented the

syllable “e”, and U+30A8 KATAKANA LETTER E represented the syllable “ye”. The

character U+1B001 HIRAGANA LETTER ARCHAIC YE was originally encoded to repre‐

sent a long-obsolete syllable that would have come between U+3086 HIRAGANA

LETTER YU and U+3088 HIRAGANA LETTER YO. This syllable merged with “e”, which

is now represented by U+3048 HIRAGANA LETTER E. These relationships are illus‐

trated in Figure 18-10.

The hentaigana , which would have been named HENTAIGANA LETTER E-1, has

been unified with the existing U+1B001 HIRAGANA LETTER ARCHAIC YE and is

aliased accordingly. When sorting, U+1B001 HIRAGANA LETTER ARCHAIC YE should

appear between U+1B00E HENTAIGANA LETTER U-5 and U+1B00F HENTAIGANA

LETTER E-2.

The 285 remaining characters in these blocks are additional hentaigana that repre‐

sent obsolete or nonstandard hiragana that were in use in Japan up until the script

reform of 1900 that standardized the use of a single character for each syllable.

Hentaigana are still in use today in Japan, but are limited to Japan’s family registry

(koseki in Japanese) and specialized uses, such as business signage and other decor

that are specifically designed to convey a feeling of nostalgia or traditional charm.

Each hentaigana is associated with a single parent unified ideograph, a cursive form

of which served as the basis for its shape, and generally correspond to a single

syllable. Hentaigana that correspond to the same syllable, but that do not share the

same parent unified ideograph have different shapes and are therefore encoded sepa‐

rately. For example, U+1B006 HENTAIGANA LETTER I-1 through U+1B009

18.4.5 Kana Supplement: U+1B000–U+1B0FF

Kana Extended-A: U+1B100–U+1B12F

Figure 18-10. Japanese Historic Kana for e and ye

East Asia 882 18.4 Hiragana and Katakana

HENTAIGANA LETTER I-4 all correspond to the same syllable i (U+3044 HIRAGANA

LETTER I), but have parent unified ideographs U+4EE5 , U+4F0A , U+610F ,

and U+79FB , respectively, as shown in Figure 18-11.

Some hentaigana that correspond to the same syllable and share the same parent

unified ideograph are also encoded separately because they have different shapes. For

example, U+1B080 HENTAIGANA LETTER NA-3 through U+1B082 HENTAIGANA

LETTER NA-5 correspond to the same syllable na (U+306A HIRAGANA LETTER NA)

and share the same parent unified ideograph U+5948 , as shown in Figure 18-12.

A small number of hentaigana that share the same parent unified ideograph are asso‐

ciated with two or three different syllables reflected in their names, such as U+1B07D

HENTAIGANA LETTER TO-RA that is associated with the syllables to (U+3068 HIRA‐

GANA LETTER TO) and ra (U+3089 HIRAGANA LETTER RA), and U+1B11D

HENTAIGANA LETTER N-MU-MO-1 that is associated with the syllables n (U+3093

HIRAGANA LETTER N), mu (U+3080 HIRAGANA LETTER MU), and mo (U+3082

HIRAGANA LETTER MO). Their parent unified ideographs are U+7B49 and

U+65E0 , respectively. These associations are also illustrated in Figure 18-12.

The Kana Extended-B block encodes tone marks used alongside furigana to annotate

Minnan languages in an orthography known in Japanese as Taiwanese kana (台湾語

Figure 18-11. Hentaigana Distinct Parent Ideographs

Figure 18-12. Other Hentaigana Examples

18.4.6 Kana Extended-B: U+1AFF0-U+1AFFF

East Asia 883 18.4 Hiragana and Katakana

仮名, taiwango kana). These character forms date back to the work of the Japanese

linguist Naoyoshi Ogawa (小川尚義) in the early 20th century.

These characters are not, however, a mere historical curiosity. The linguist Âng Ûi-jîn

(洪惟仁) produced a dictionary using them as recently as 1993, the Tâi-ji̍t Tōa Sû-tián

(臺日大辭典).

The kana with their tone marks appear historically as interlinear annotations to the

right of each ideographic character in vertical text. They are not historically attested

in horizontally typeset documents. The tone marks in this block appear to the right of

the kana characters, in some ways similar to the rendering of tone marks with Bopo‐

mofo characters, described in Section 18.3, Bopomofo. At most one tone mark from

this block appears to the right of each syllabic group. Marks from other blocks may

also appear above or below the kana.

The orthography contains two diacritics, which represent various sound changes

depending on the Minnan language being annotated. U+0323 COMBINING DOT

BELOW is used to represent the aspiration mark (送氣符, sàng-khì hû). U+0305

COMBINING OVERLINE is used to represent the line above which, depending on the

dialect of Minnan being annotated, results in various sound changes (発音符, huat-

im hû). COMBINING OVERLINE may occur over both the small and large versions of

the vowels and when the Quanzhou dialect (泉州話, Choân-chiu-oē) is being

annotated.

Figure 18-13 shows an example with the annotated Minnan phrase 恬恬聽, which

means “quietly listening,” typeset in vertical interlineation. Such interlinear text

cannot be represented directly in plain text; higher level protocols must render the

ideographic block characters and the furigana in separate runs. For this and subse‐

quent examples, the CJK ideograph sequence is <606C 606C 807D>. The furigana

annotation sequence in each case is <30C1 0305 30A1 30E0 1AFF5 30C1 0305 30A1

30E0 1AFF5 30C1 0305 0323 30A2 1AFF7>. The dialect of Minnan affects the annota‐

tion, so this is but one possible annotation of 恬恬聽, from a Taiwanese textbook for

teaching Japanese published in 1902.

Figure 18-13. Vertical Layout with Interlineation

East Asia 884 18.4 Hiragana and Katakana

In non-interlinear vertical katakana text, the tone marks once again appear to the

right side of the katakana, as shown in Figure 18-14. Historically, they were most

often used for this purpose in pedagogical materials.

As most modern CJK documents are horizontally typeset, it may be convenient to

include these furigana in horizontal interlineation. However, as there are neither

historic nor widely accepted forms of the tone mark characters when displayed above

ideographic characters, rather than to their right, the furigana may be rendered as if

the text were vertical, but with the ideographic characters being written in horizontal

order, as in Figure 18-15.

In non-interlinear horizontal text the recommended presentation is to display the

tone marks after the katakana syllables, as shown in Figure 18-16. Horizontal text

which uses Kana Extended-B characters is ahistorical, but still extant, as modern CJK

languages are often written horizontally.

The characters of the Kana Extended-B block only annotate regular, fullwidth

katakana characters. There are no historical examples of the annotation of halfwidth

forms of katakana found in the block Halfwidth and Fullwidth Forms.

Figure 18-14. Vertical Layout without Interlineation

Figure 18-15. Horizontal Layout with Interlineation

Figure 18-16. Horizontal Layout without Interlineation

East Asia 885 18.4 Hiragana and Katakana

In the context of East Asian coding systems, a double-byte character set (DBCS),

such as JIS X 0208-1990 or KS X 1001:1998, is generally used together with a single-

byte character set (SBCS), such as ASCII or a variant of ASCII. Text that is encoded

with both a DBCS and SBCS is typically displayed such that the glyphs representing

DBCS characters occupy two display cells—where a display cell is defined in terms of

the glyphs used to display the SBCS (ASCII) characters. In these systems, the two-

display-cell width is known as the fullwidth or zenkaku form, and the one-display-cell

width is known as the halfwidth or hankaku form. While zenkaku and hankaku are

Japanese terms, the display-width concepts apply equally to Korean and Chinese

implementations.

Because of this mixture of display widths, certain characters often appear twice—

once in fullwidth form in the DBCS repertoire and once in halfwidth form in the

SBCS repertoire. To achieve round-trip conversion compatibility with such mixed-

width encoding systems, it is necessary to encode both fullwidth and halfwidth forms

of certain characters. This block consists of the additional forms needed to support

conversion for existing texts that employ both forms.

In the context of conversion to and from such mixed-width encodings, all characters

in the General Scripts Area should be construed as halfwidth (hankaku) characters if

they have a fullwidth equivalent elsewhere in the standard or if they do not occur in

the mixed-width encoding; otherwise, they should be construed as fullwidth

(zenkaku). Specifically, most characters in the CJK Miscellaneous Area and the CJKV

Ideograph Area, along with the characters in the CJK Compatibility Ideographs, CJK

Compatibility Forms, and Small Form Variants blocks, should be construed as full‐

width (zenkaku) characters. For a complete description of the East Asian Width prop‐

erty, see Unicode Standard Annex #11, “East Asian Width.”

The characters in this block consist of fullwidth forms of the ASCII block (except

SPACE), certain characters of the Latin-1 Supplement, and some currency symbols. In

addition, this block contains halfwidth forms of the Katakana and Hangul Compati‐

bility Jamo characters. Finally, a number of symbol characters are replicated here

(U+FFE8..U+FFEE) with explicit halfwidth semantics.

 The fullwidth form of U+0020 SPACE is unified with U+3000 IDEO‐

GRAPHIC SPACE.

18.5 Halfwidth and Fullwidth Forms

18.5.1 Halfwidth and Fullwidth Forms: U+FF00–U+FFEF

Unifications.

East Asia 886 18.5 Halfwidth and Fullwidth Forms

Korean Hangul may be considered a featural syllabic script. As opposed to many

other syllabic scripts, the syllables are formed from a set of alphabetic components in

a regular fashion. These alphabetic components are called jamo.

The name Hangul itself is just one of several terms that may be used to refer to the

script. In some contexts, the preferred term is simply the generic Korean characters.

Hangul is used more frequently in South Korea, whereas a basically synonymous

term Choseongul is preferred in North Korea. A politically neutral term, Jeongum,

may also be used.

The Unicode Standard contains both the complete set of precomposed modern

Hangul syllable blocks and a set of conjoining Hangul jamo. The conjoining Hangul

jamo can be used to represent all of the modern Hangul syllable blocks, as well as the

obsolete syllable blocks composed of at least one Hangul jamo that the Korean ortho‐

graphic standard in 1933 excluded from modern use. For a description of conjoining

jamo behavior and precomposed Hangul syllables, see Section 3.12, Conjoining Jamo

Behavior. For a discussion of the interaction of combining marks with jamo and

Hangul syllables, see “Combining Marks and Korean Syllables” in Section 3.6, Combi‐

nation. Note that the representation of Old Korean requires two combining tone

marks for Hangul, U+302E and U+302F.

For other blocks containing characters related to Hangul, see “Enclosed CJK Letters

and Months: U+3200–U+32FF” and “CJK Compatibility: U+3300–U+33FF” in

Section 22.10, Enclosed and Square, as well as Section 18.5, Halfwidth and Fullwidth

Forms.

The Hangul Jamo block contains the most frequently used conjoining jamo. These

include all of the jamo used in modern Hangul syllable blocks, as well as many of the

jamo for Old Korean.

The Hangul jamo are divided into three classes: choseong (leading consonants, or

syllable-initial characters), jungseong (vowels, or syllable-peak characters), and

jongseong (trailing consonants, or syllable-final characters). Each class may, in turn,

consist of one to three subunits. For example, a choseong syllable-initial character

may either represent a single consonant sound, or a consonant cluster consisting of

two or three consonant sounds. Likewise, a jungseong syllable-peak character may

represent a simple vowel sound, or a complex diphthong or triphthong with onglide

or offglide sounds. Each of these complex sequences of two or three sounds is

encoded as a single conjoining jamo character. Therefore, a complete Hangul syllable

18.6 Hangul

18.6.1 Hangul Jamo: U+1100–U+11FF

East Asia 887 18.6 Hangul

can always be conceived of as a single choseong followed by a single jungseong and

(optionally) a single jongseong.

This block also contains two invisible filler characters which act as placeholders for a

missing choseong or jungseong in an incomplete syllable. These filler characters are

U+115F HANGUL CHOSEONG FILLER and U+1160 HANGUL JUNGSEONG FILLER.

This block is an extension of the conjoining jamo. It contains additional complex

leading consonants (choseong) needed to complete the set of conjoining jamo for the

representation of Old Korean.

This block is an extension of the conjoining jamo. It contains additional complex

vowels (jungseong) and trailing consonants (jongseong) needed to complete the set of

conjoining jamo for the representation of Old Korean.

This block consists of spacing, nonconjoining Hangul consonant and vowel (jamo)

elements. These characters are provided solely for compatibility with the KS X

1001:1998 standard. Unlike the characters found in the Hangul Jamo block

(U+1100..U+11FF), the jamo characters in this block have no conjoining semantics.

The characters of this block are considered to be fullwidth forms in contrast with the

halfwidth Hangul compatibility jamo found at U+FFA0..U+FFDF.

 The Unicode Standard follows KS X 1001:1998 for Hangul Jamo elements.

 When Hangul compatibility jamo are transformed with a compati‐

bility normalization form, NFKD or NFKC, the characters are converted to the corre‐

sponding conjoining jamo characters. Where the characters are intended to remain in

separate syllables after such transformation, they may require separation from adja‐

cent characters. This separation can be achieved by inserting any non-Korean char‐

acter.

U+200B ZERO WIDTH SPACE is recommended where the characters are to allow

a line break.

U+2060 WORD JOINER can be used where the characters are not to break across

lines.

Table 18-11 illustrates how two Hangul compatibility jamo can be separated in display,

even after transforming them with NFKD or NFKC.

18.6.2 Hangul Jamo Extended-A: U+A960–U+A97F

18.6.3 Hangul Jamo Extended-B: U+D7B0–U+D7FF

18.6.4 Hangul Compatibility Jamo: U+3130–U+318F

Standards.

Normalization.

•

•

East Asia 888 18.6 Hangul

The Hangul script used in the Korean writing system consists of individual conso‐

nant and vowel letters (jamo) that are visually combined into square display cells to

form entire syllable blocks. Hangul syllables may be encoded directly as precom‐

posed combinations of individual jamo or as decomposed sequences of conjoining

jamo.

Modern Hangul syllable blocks can be expressed with either two or three jamo, either

in the form consonant + vowel or in the form consonant + vowel + consonant. There

are 19 possible leading (initial) consonants (choseong), 21 vowels (jungseong), and 27

trailing (final) consonants (jongseong). Thus there are 399 possible two-jamo syllable

blocks and 10,773 possible three-jamo syllable blocks, giving a total of 11,172 modern

Hangul syllable blocks. This collection of 11,172 modern Hangul syllables encoded in

this block is known as the Johab set.

 The Hangul syllables are taken from KS C 5601-1992, representing the

full Johab set. This group represents a superset of the Hangul syllables encoded in

earlier versions of Korean standards (KS C 5601-1987 and KS C 5657-1991).

 Each of the Hangul syllables encoded in this block may be represented

by an equivalent sequence of conjoining jamo. The converse is not true because thou‐

sands of archaic Hangul syllables may be represented only as a sequence of

conjoining jamo.

 The Hangul syllables can be derived from

conjoining jamo by a regular process of composition. The algorithm that maps a

sequence of conjoining jamo to the encoding point for a Hangul syllable in the Johab

set is detailed in Section 3.12, Conjoining Jamo Behavior.

 Any Hangul syllable from the Johab set can be

decomposed into a sequence of conjoining jamo characters. The algorithm that

details the formula for decomposition is also provided in Section 3.12, Conjoining

Jamo Behavior.

Table 18-11. Separating Jamo Characters

18.6.5 Hangul Syllables: U+AC00–U+D7AF

Standards.

Equivalence.

Hangul Syllable Composition.

Hangul Syllable Decomposition.

East Asia 889 18.6 Hangul

 The character names for Hangul syllables are derived algo‐

rithmically from the decomposition. (For full details, see Section 3.12, Conjoining

Jamo Behavior.)

 The representative glyph for a Hangul

syllable can be formed from its decomposition based on the categorization of vowels

shown in Table 18-12.

Vertical Horizontal Both

1161 A 1169 O 116A WA

1162 AE 116D YO 116B WAE

1163 YA 116E U 116C OE

1164 YAE 1172 YU 116F WEO

1165 EO 1173 EU 1170 WE

1166 E 1171 WI

1167 YEO 1174 YI

1168 YE

1175 I

If the vowel of the syllable is based on a vertical line, place the preceding consonant

to its left. If the vowel is based on a horizontal line, place the preceding consonant

above it. If the vowel is based on a combination of vertical and horizontal lines, place

the preceding consonant above the horizontal line and to the left of the vertical line.

In either case, place a following consonant, if any, below the middle of the resulting

group.

In any particular font, the exact placement, shape, and size of the components will

vary according to the shapes of the other characters and the overall design of the

font.

 The unit of collation in Korean text is normally the Hangul syllable. The

order of the syllables in the Hangul Syllables block reflects the preferred collation

order used in the Republic of Korea. If sequences of Hangul syllables are collated

with a simple binary comparison, the result will reflect that collation order. More

sophisticated collation algorithms are required to obtain other collation orders, such

as the one preferred in the Democratic People’s Republic of Korea.

When Korean text includes sequences of conjoining jamo, as for Old Korean, or

mixtures of precomposed syllable blocks and conjoining jamo, the easiest approach

for collation is to decompose the precomposed syllable blocks into conjoining jamo

before comparing. Additional steps must be taken to ensure that comparison is then

done for sequences of conjoining jamo that comprise complete syllables. See Unicode

Hangul Syllable Name.

Hangul Syllable Representative Glyph.

Table 18-12. Line-Based Placement of Jungseong

Collation.

East Asia 890 18.6 Hangul

Technical Report #10, “Unicode Collation Algorithm,” for more discussion about the

collation of Korean.

East Asia 891 18.6 Hangul

The Yi syllabary encoded in Unicode is used to write the Liangshan dialect of the Yi

language, a member of the Sino-Tibetan language family.

Yi is the Chinese name for one of the largest ethnic minorities in the People’s

Republic of China. The Yi, also known historically and in English as the Lolo, do not

have a single ethnonym, but refer to themselves variously as Nuosu, Sani, Axi or

Misapo. According to the 1990 census, more than 6.5 million Yi live in southwestern

China in the provinces of Sichuan, Guizhou, Yunnan, and Guangxi. Smaller popula‐

tions of Yi are also to be found in Myanmar, Laos, and Vietnam. Yi is one of the offi‐

cial languages of the PRC, with between 4 and 5 million speakers.

The Yi language is divided into six major dialects. The Northern dialect, which is also

known as the Liangshan dialect because it is spoken throughout the region of the

Greater and Lesser Liangshan Mountains, is the largest and linguistically most

coherent of these dialects. In 1991, there were about 1.6 million speakers of the Liang‐

shan Yi dialect. The ethnonym of speakers of the Liangshan dialect is Nuosu.

 The traditional Yi script, historically known as Cuan or Wei,

is an ideographic script. Unlike in other Chinese-influenced siniform scripts,

however, the ideographs of Yi appear not to be derived from Han ideographs. One of

the more widespread traditions relates that the script, comprising about 1,840 ideo‐

graphs, was devised by someone named Aki during the Tang dynasty (618–907 CE).

The earliest surviving examples of the Yi script are monumental inscriptions dating

from about 500 years ago; the earliest example is an inscription on a bronze bell

dated 1485.

There is no single unified Yi script, but rather many local script traditions that vary

considerably with regard to the repertoire, shapes, and orientations of individual

glyphs and the overall writing direction. The profusion of local script variants

occurred largely because until modern times the Yi script was mainly used for

writing religious, magical, medical, or genealogical texts that were handed down

from generation to generation by the priests of individual villages, and not as a

means of communication between different communities or for the general dissemi‐

nation of knowledge. Although a vast number of manuscripts written in the tradi‐

tional Yi script have survived to the present day, the Yi script was not widely used in

printing before the 20th century.

Because the traditional Yi script is not standardized, a considerable number of glyphs

are used in the various script traditions. According to one authority, there are more

than 14,200 glyphs used in Yunnan, more than 8,000 in Sichuan, more than 7,000 in

18.7 Yi

18.7.1 Yi: U+A000–U+A4CF

Traditional Yi Script.

East Asia 892 18.7 Yi

Guizhou, and more than 600 in Guangxi. However, these figures are misleading—

most of the glyphs are simple variants of the same abstract character. For example, a

1989 dictionary of the Guizhou Yi script contains about 8,000 individual glyphs, but

excluding glyph variants reduces this count to about 1,700 basic characters, which is

quite close to the figure of 1,840 characters that Aki is reputed to have devised.

 There has never been a high level of literacy in the tradi‐

tional Yi script. Usage of the traditional script has remained limited even in modern

times because the traditional script does not accurately reflect the phonetic character‐

istics of the modern Yi language, and because it has numerous variant glyphs and

differences from locality to locality.

To improve literacy in Yi, a scheme for representing the Liangshan dialect using the

Latin alphabet was introduced in 1956. A standardized form of the traditional script

used for writing the Liangshan Yi dialect was devised in 1974 and officially promul‐

gated in 1980. The standardized Liangshan Yi script encoded in Unicode is suitable

for writing only the Liangshan Yi dialect; it is not intended as a unified script for

writing all Yi dialects. Standardized versions of other local variants of traditional Yi

scripts do not yet exist.

The standardized Yi syllabary comprises 1,164 signs representing each of the allow‐

able syllables in the Liangshan Yi dialect. There are 819 unique signs representing

syllables pronounced in the high level, low falling, and midlevel tones, and 345

composite signs representing syllables pronounced in the secondary high tone. The

signs for syllables in the secondary high tone consist of the sign for the corre‐

sponding syllable in the midlevel tone (or in three cases the low falling tone), plus a

diacritical mark shaped like an inverted breve. For example, U+A001 YI SYLLABLE IX

is the same as U+A002 YI SYLLABLE I plus a diacritical mark. In addition to the 1,164

signs representing specific syllables, a syllable iteration mark is used to indicate redu‐

plication of the preceding syllable, which is frequently used in interrogative

constructs.

 In 1991, a national standard for Yi was adopted by China as GB 13134-91.

This encoding includes all 1,164 Yi syllables as well as the syllable iteration mark, and

is the basis for the encoding in the Unicode Standard. The syllables in the secondary

high tone, which are differentiated from the corresponding syllable in the midlevel

tone or the low falling tone by a diacritical mark, are not decomposable.

 The Yi syllables are named on the basis of the

spelling of the syllable in the standard Liangshan Yi romanization introduced in

1956. The tone of the syllable is indicated by the final letter: “t” indicates the high

level tone, “p” indicates the low falling tone, “x” indicates the secondary high tone,

and an absence of final “t”, “p”, or “x” indicates the midlevel tone.

Standardized Yi Script.

Standards.

Naming Conventions and Order.

East Asia 893 18.7 Yi

With the exception of U+A015, the Yi syllables are ordered according to their

phonetic order in the Liangshan Yi romanization—that is, by initial consonant, then

by vowel, and finally by tone (t, x, unmarked, and p). This is the order used in dictio‐

naries of Liangshan Yi that are ordered phonetically.

U+A015 YI SYLLABLE WU does not represent a specific

syllable in the Yi language, but rather is used as a syllable iteration mark. Its char‐

acter properties therefore differ from those for the rest of the Yi syllable characters.

The misnomer of U+A015 as YI SYLLABLE WU derives from the fact that it is repre‐

sented by the letter w in the romanized Yi alphabet, and from some confusion about

the meaning of the gap in traditional Yi syllable charts for the hypothetical syllable

“wu”.

The Yi syllable iteration mark is used to replace the second occurrence of a redupli‐

cated syllable under all circumstances. It is very common in both formal and

informal Yi texts.

 The standardized Yi script does not have any special punctuation

marks, but relies on the same set of punctuation marks used for writing modern

Chinese in the PRC, including U+3001 IDEOGRAPHIC COMMA and U+3002 IDEO‐

GRAPHIC FULL STOP.

 The traditional Yi script used a variety of writing directions—for

example, right-to-left in the Liangshan region of Sichuan, and top-to-bottom in

columns running from left to right in Guizhou and Yunnan. The standardized Yi

script follows the writing rules for Han ideographs, so characters are generally

written from left to right or occasionally from top to bottom. There is no typographic

interaction between individual characters of the Yi script.

 To facilitate the lookup of Yi characters in dictionaries, sets of radicals

modeled on Han radicals have been devised for the various Yi scripts. (For informa‐

tion on Han radicals, see “CJK and Kangxi Radicals” in Section 18.1, Han). The tradi‐

tional Guizhou Yi script has 119 radicals; the traditional Liangshan Yi script has 170

radicals; and the traditional Yunnan Sani Yi script has 25 radicals. The standardized

Liangshan Yi script encoded in Unicode has a set of 55 radical characters, which are

encoded in the Yi Radicals block (U+A490..U+A4C5). Each radical represents a

distinctive stroke element that is common to a subset of the characters encoded in

the Yi Syllables block. The name used for each radical character is that of the corre‐

sponding Yi syllable closest to it in shape.

Yi Syllable Iteration Mark.

Punctuation.

Rendering.

Yi Radicals.

East Asia 894 18.7 Yi

Nüshu is a siniform script devised by women to write the local Chinese dialect of

Jiangyong county in the Xiaoshui Valley of southeastern Hunan province in China.

Nüshu means “women’s writing,” and was originally used only by women, many of

whom could not write Chinese Han characters. The script appeared in handwritten

cloth-bound booklets of poems and songs, called San Chao Shu (三朝書), that were

passed down from one “sworn sister” to another upon marriage. Nüshu also was

used for other purposes, and on different media. By the late twentieth century, very

few women fluent in the script were still alive. National and international attention

to Nüshu has led to active efforts to study and preserve the script.

 Nüshu is written vertically in columns which are laid out from right to

left. Although largely based on Chinese Han characters, Nüshu characters typically

represent the phonetic values of syllables, with many characters representing several

homophonous words. Some signs are used as ideographs.

 Nüshu characters are named sequentially by prefixing the string “NUSHU

CHARACTER-” to the code point. The diaeresis is not included in this prefix because

of the constraints on letters that can be used in character names.

 The Nüshu characters are ordered by stroke count, then by vowel, consonant,

and tone.

 Nüshu has one punctuation mark, U+16FE1 NUSHU ITERATION

MARK, located in the Ideographic Symbols and Punctuation block.

 The Unicode Character Database contains a source data file for Nüshu

called NushuSources.txt. This data file contains normative information on the source

references for each Nüshu character. NushuSources.txt also contains an informative

reading value for each character.

18.8 Nüshu

18.8.1 Nüshu: U+1B170–U+1B2FF

Structure.

Names.

Order.

Punctuation.

Sources.

East Asia 895 18.8 Nüshu

Somewhere between 1908 and 1914 a Karen evangelist from Myanmar by the name of

Ba Thaw modified the shapes of Latin characters and created the Lisu script. After‐

wards, British missionary James Outram Fraser and some Lisu pastors revised and

improved the script. The script is commonly known in the West as the Fraser script.

It is also sometimes called the Old Lisu script, to distinguish it from newer, Latin-

based orthographies for the Lisu language.

There are 630,000 Lisu people in China, mainly in the regions of Nujiang, Diqing,

Lijiang, Dehong, Baoshan, Kunming and Chuxiong in the Yunnan Province. Another

350,000 Lisu live in Myanmar, Thailand and India. Other user communities are

mostly Christians from the Dulong, the Nu and the Bai nationalities in China.

At present, about 200,000 Lisu in China use the Lisu script and about 160,000 in the

other countries are literate in it. The Lisu script is widely used in China in education,

publishing, the media and religion. Various schools and universities at the national,

provincial and prefectural levels have been offering Lisu courses for many years.

Globally, the script is also widely used in a variety of Lisu literature.

 There are 40 letters in the Lisu alphabet. These consist of 30 consonants

and 10 vowels. Each letter was originally derived from the capital letters of the Latin

alphabet. Twenty-five of them look like sans-serif Latin capital letters (all but “Q”) in

upright positions; the other 15 are derived from sans-serif Latin capital letters rotated

180 degrees.

Although the letters of the Lisu script clearly derived originally from the Latin

alphabet, the Lisu script is distinguished from the Latin script. The Latin script is

bicameral, with case mappings between uppercase and lowercase letters. The Lisu

script is unicameral; it has no casing, and the letters do not change form. Further‐

more, typography for the Lisu script is rather sharply distinguished from typography

for the Latin script. There is not the same range of font faces as for the Latin script,

and Lisu typography is typically monospaced and heavily influenced by the conven‐

tions of Chinese typography.

Consonant letters have an inherent [ɑ] vowel unless followed by an explicit vowel

letter. Three letters sometimes represent a vowel and sometimes a consonant:

U+A4EA LISU LETTER WA, U+A4EC LISU LETTER YA, and U+A4ED LISU LETTER

GHA.

18.9 Lisu

18.9.1 Lisu: U+A4D0–U+A4FF

Structure.

East Asia 896 18.9 Lisu

 The Lisu script has six tone letters which are placed after the syllable to

mark tones. These tone letters are listed in Table 18-13, with the tones identified in

terms of their pitch contours.

Code Glyph Name Tone

A4F8 mya ti 55

A4F9 na po 35

A4FA mya cya 44

A4FB mya bo 33

A4FC mya na 42

A4FD mya jeu 31

Each of the six tone letters represents one simple tone. Although the tone letters

clearly derive from Western punctuation marks (full stop, comma, semicolon, and

colon), they do not function as punctuation at all. Rather, they are word-forming

modifier letters.

The first four tone letters can be used in combination with the last two to represent

certain combination tones. Of the various possibilities, only “,;” is still in use; the rest

are now rarely seen in China. In monospaced fonts where all letters have the same

advance width (for example, one em), it is desirable to fit such a combination of tone

letters into the advance width of a simple tone letter.

 Nasalized vowels are denoted by a nasalization mark

following the vowel. This word-forming character is not encoded separately in the

Lisu script, but is represented by U+02BC MODIFIER LETTER APOSTROPHE, which

has the requisite shape and properties (General_Category = Lm) and is used in

similar contexts.

A glide based on the vowel A, pronounced as [ɑ] without an initial glottal stop (and

normally bearing a 31 low falling pitch), is written after a verbal form to mark various

aspects. This word-forming modifier letters is represented by U+02CD MODIFIER

LETTER LOW MACRON. In a Lisu font, this modifier letter should be rendered on the

baseline, to harmonize with the position of the tone letters.

 There are no unique Lisu digits. The Lisu use European

digits for counting. The thousands separator and the decimal point are represented

with U+002C COMMA and U+002E FULL STOP, respectively. To separate chapter and

verse numbers, U+003A COLON and U+003B SEMICOLON are used. These can be

readily distinguished from the similar-appearing tone letters by their numerical

context.

Tone Letters.

Table 18-13. Lisu Tone Letters

Other Modifier Letters.

Digits and Separators.

East Asia 897 18.9 Lisu

U+A4FE “ ” LISU PUNCTUATION COMMA and U+A4FF “ ” LISU

PUNCTUATION FULL STOP are punctuation marks used respectively to denote a lesser

and a greater degree of finality. These characters are similar in appearance to

sequences of Latin punctuation marks, but are not unified with them.

Over time various other punctuation marks from European or Chinese traditions

have been adopted into Lisu orthography. Table 18-14 lists all known adopted punctu‐

ation, along with the respective contexts of use.

Code Glyph Name Context

002D - hyphen-minus syllable separation in names

003F ? question mark questions

0021 ! exclamation mark exclamations

0022 " quotation mark quotations

0028/0029 () parentheses parenthetical notes

300A/
300B

double angle
brackets

book titles

2026 … ellipsis
omission of words (always doubled in Chinese
usage)

U+2010 HYPHEN may be preferred to U+002D HYPHEN-MINUS for the dash used to

separate syllables in names, as its semantics are less ambiguous than U+002D.

The use of the U+003F “ ” QUESTION MARK replaced the older Lisu tradition of

using a tone letter combination to represent the question prosody, followed by a Lisu

full stop: “..:=”

 A line break is not allowed within an orthographic syllable in Lisu. A

line break is also prohibited before a punctuation mark, even if it is preceded by a

space. In general there is no hyphenation of words across line breaks, except for

proper nouns, where a break is allowed after the hyphen used as a syllable separator.

 The Lisu script separates syllables using a space or, for proper

names, a hyphen. In the case of polysyllabic words, it can be ambiguous as to which

syllables join together to form a word. Thus for most text processing at the character

level, a syllable (starting after a space or punctuation and ending before another

space or punctuation) is treated as a word except for proper names—where the

occurrence of a hyphen holds the word together.

Punctuation.

Table 18-14. Punctuation Adopted in Lisu Orthography

Line Breaking.

Word Separation.

East Asia 898 18.9 Lisu

The Miao script, also called Lao Miaowen (“Old Miao Script”) in Chinese, was

created in 1904 by Samuel Pollard and others, to write the Northeast Yunnan Miao

language of southern China. The script has also been referred to as the Pollard script,

but that usage is no longer preferred. The Miao script was created by an adaptation of

Latin letter variants, English shorthand characters, Miao pictographs, and Cree

syllable forms. (See Section 20.2, Canadian Aboriginal Syllabics.) Today, the script is

used to write various Miao dialects, as well as languages of the Yi and Lisu nationali‐

ties in southern China.

The script was reformed in the 1950s by Yang Rongxin and others, and was later

adopted as the “Normalized” writing system of Kunming City and Chuxiong Prefec‐

ture. The main difference between the pre-reformed and the reformed orthographies

is in how they mark tones. Both orthographies can be correctly represented using the

Miao characters encoded in the Unicode Standard.

 Extensive guidelines for the implementation of the

Miao script can be found in Unicode Technical Note #56, Representing Miao in

Unicode. That document provides information on the encoding order of syllables, on

rendering, and on glyph variants. (Unicode Technical Notes do not have normative

status for the Unicode Standard.)

 The script is written left to right. The basic syllabic structure

contains an initial consonant or consonant cluster and a final. The final consists of

either a vowel or vowel cluster, an optional final nasal, plus a tone mark. The initial

consonant may be preceded by U+16F50 MIAO LETTER NASALIZATION, and can be

followed by combining marks for voicing (U+16F52 MIAO SIGN REFORMED VOICING)

or aspiration (U+16F51 MIAO SIGN ASPIRATION and U+16F53 MIAO SIGN REFORMED

ASPIRATION).

The Gan Yi variety of Miao has an additional combining mark, U+16F4F MIAO SIGN

CONSONANT MODIFIER BAR. That mark is only applied to two consonants, U+16F0E

MIAO LETTER TTA or U+16F10 MIAO LETTER NA, indicating a distinct place of articu‐

lation. The mark follows the consonant in logical order, as for all combining marks,

but is rendered with a small vertical bar at the lower left-hand side of the modified

consonant.

 In the Chuxiong reformed orthography, vowels and final nasals appear

on the baseline. If no explicit tone mark is present, this indicates the default tone 3.

An additional tone mark, encoded in the range U+16F93..U+16F99, may follow the

18.10 Miao

18.10.1 Miao: U+16F00–U+16F9F

Implementation Guidelines.

Encoding Principles.

Tone Marks.

East Asia 899 18.10 Miao

https://www.unicode.org/notes/tn56/
https://www.unicode.org/notes/tn56/

vowel to indicate other tones. A set of archaic tone marks used in the reformed

orthography is encoded in the range U+16F9A..U+16F9F.

In the pre-reformed orthography, such as that used for the language Ahmao

(Northern Hmong), the tone marks are represented in a different manner, using one

of five shifter characters. These are represented in sequence following the vowel or

vowel sequence and indicate where the vowel letter is to be rendered in relation to

the consonant. If more than one vowel letter appears before the shifter, all of the

vowel glyphs are moved together to the appropriate position.

 Several Miao consonants appear in the code charts with a

“wart” attached to the glyph, usually on the left-hand side. In the Chuxiong orthog‐

raphy, a dot appears instead of the wart on these consonants. Because the user

communities consider the appearance of the wart or dot to be a different way to write

the same characters and not a difference of the character’s identity, the differences in

appearance are a matter of font style.

 The order of Miao characters in the code charts derives from a reference

ordering widely employed in China, based in part on the order of Bopomofo phonetic

characters. The expected collation order for Miao strings varies by language and user

communities, and requires tailoring. See Unicode Technical Standard #10, “Unicode

Collation Algorithm.”

 Miao uses European digits.

 The Miao script employs a variety of punctuation marks, both from

the East Asian typographical tradition and from the Western typographical tradition.

There are no script-specific punctuation marks.

Rendering of “wart”.

Ordering.

Digits.

Punctuation.

East Asia 900 18.10 Miao

Tangut, also known as Xixia, is a large, historic siniform ideographic script used to

write the Tangut language, a Tibeto-Burman language spoken from about the 11th

century CE until the 16th century in the area of present-day northwestern China. The

Tangut script was created under the first emperor of Western Xia about 1036 CE. After

the fall of the Western Xia to the Mongols, the script continued to be used during the

Yuan and Ming dynasties, but it had become obsolete by the end of Ming dynasty.

Tangut was re-discovered in the late 19th century, and has been largely deciphered,

thanks to the ground-breaking work done in the early 20th century by N. A. Nevskij.

Tangut is found in thousands of official, private, and religious texts, including books

and sutras, inscriptions, and manuscripts. Today the study of Tangut is a separate

discipline, with scholars in China, Japan, Russia, and other countries publishing

works on Tangut language and culture.

 Tangut characters superficially resemble Chinese ideographs; however,

the script is unique and unrelated to Chinese ideographs. Tangut was originally

written top to bottom, with columns laid out right to left, in the same manner as

Chinese was traditionally written. In current practice, the script is written horizon‐

tally left to right. Most Tangut characters are made up of 8 to 15 strokes. The script

has no combining characters.

 The repertoire of Tangut characters is intended to cover all

Tangut characters used as head entries or index entries in the major works of modern

Tangut lexicography and scholarship. A number of principles have been adopted to

handle variant glyph shapes, because Tangut characters are often written with

different glyph shapes in the primary sources. When character variants are not used

contrastively in a single source reference, they are unified as a single character, typi‐

cally using the glyph found in Li Fanwen 2008. However, if a single source includes

two or more variants as separate head or index entries, then the variants are encoded

as separate characters. In cases where two characters with the same shape are cata‐

loged separately in a single source, but have different pronunciations or meanings,

only one character is encoded. Also, a few erroneous or “ghost” characters in modern

dictionaries are separately encoded.

The Tangut Supplement block contains additional Tangut ideographs that did not fit

within the initial allocation range for the Tangut block. In some cases, these addi‐

tional ideographs are disunifications resulting from scholarly analysis of some

components that have very closely-related graphical appearances.

18.11 Tangut

18.11.1 Tangut: U+17000–U+187FF

Tangut Supplement: U+18D00–U+18D7F

Structure.

Encoding Principles.

East Asia 901 18.11 Tangut

 The names for the Tangut characters are algorithmically derived

by prefixing the code point with the string “TANGUT IDEOGRAPH-”. Hence the name

for U+17000 is TANGUT IDEOGRAPH-17000.

 Contemporary sources use U+16FE0 TANGUT ITERATION MARK,

located in the Ideographic Symbols and Punctuation block. There are no other script-

specific punctuation marks.

 The Unicode Character Database contains a source data file for Tangut

called TangutSources.txt. This data file contains normative information on the source

references for each Tangut character. TangutSources.txt also contains the informative

radical-stroke values for each character. The data in TangutSources.txt shares the

same format as the Unihan data files in the UCD. The Tangut code chart also indi‐

cates the source reference and the radical-stroke value for each character.

 No universally accepted or standard character sort order exists for Tangut.

All extant Tangut dictionaries dating to the Western Xia period (1038-1227) base their

ordering on phonetic principles, which do not help in locating specific characters.

Almost all modern Tangut dictionaries and glossaries order characters by radical and

stroke count. However, the radical/stroke indices in modern handbooks all differ

from one another. The radical system adopted in the Tangut block is based on that of

Han Xiaomang 2004, with some modifications. In the Tangut block, signs are

grouped by radical, and radicals are ordered by stroke count and stroke order. Within

each radical, signs are ordered by stroke count and stroke order.

 Because current day Tangut dictionaries do not provide information

on how Tangut characters should be written or on their stroke count, modern

scholars have reconstructed stroke count and stroke order based on the analogy to

Chinese characters. The stroke order used by scholars may not reflect the actual

stroke order used by Tangut scribes.

Tangut characters are composed of structural elements called components. The

components and stroke order are used by scholars to index Tangut ideographs in

modern dictionaries and glossaries. The components are also used to describe and

analyze Tangut ideographs.

Because there is no single standard set of components, different scholars have

devised their own systems. The Tangut Components block represents a unification of

seventeen Chinese, Japanese, Russian, and English language dictionaries of Tangut

and other publications. All components used in important recent Tangut dictionaries

are included, as well as an additional 24 components required for describing Tangut

ideographs. The components can be used in Ideographic Description Sequences

(IDS) to describe Tangut ideographs.

Character Names.

Punctuation.

Sources.

Sorting.

Stroke Order.

18.11.2 Tangut Components: U+18800–U+18AFF

East Asia 902 18.11 Tangut

 A total of 755 components are encoded. Of these, 505 components func‐

tion as radicals under which the Tangut ideographs are ordered. Some sources use

single strokes to describe or to index characters. In some cases, these single strokes

are encoded as components (U+18900..U+18909), but other single strokes may be

represented using the corresponding character from the CJK Strokes block instead.

 The characters in the Tangut Components block are named sequentially by

prefixing the string “TANGUT COMPONENT-” to a three digit numerical sequence

code. Hence, the names range from TANGUT COMPONENT-001 through TANGUT

COMPONENT-755.

 The Tangut components are ordered by stroke count and stroke order.

 The Unicode Character Database contains the Tangut

radical-stroke values for each character in the data file TangutSources.txt. This data is

informative, and is in the same format as Unihan. The Tangut code chart also indi‐

cates the source reference and the radical-stroke value for each character.

Repertoire.

Names.

Order.

Radical-Stroke Values.

East Asia 903 18.11 Tangut

Khitan Small Script was one of two scripts used by the Khitan people of Northern

China to write the Khitan language during the Liao dynasty (907–1125 CE), the Qara

Khitai empire (or Western Liao dynasty, 1124–1218), and the Jin dynasty (1115–1234).

The other script is known as Khitan Large Script. Both scripts are only partially deci‐

phered today but were used over the same time period, in the same geographical

area, and for the same functions.

Khitan Small Script was created about 925 by Yelü Diela, and its creation is said to

have been inspired by the Uyghur script, although there appear to be few similarities

between the two scripts. The main source of texts in Khitan Small Script are funerary

epitaphs engraved on stone tablets and buried with members of Khitan royalty and

aristocracy. The script also appears on walls and monuments, as well as on bronze

mirrors, tallies, non-circulation coins, and a single jade cup.

 The Khitan Small Script contains logograms and phonograms written in

vertical columns, running right to left, similar to how Chinese is traditionally written.

The logograms generally appear on their own, and phonograms typically combine

into clusters of two to eight characters to represent an individual word.

A small number of frequently occurring logograms represent numbers, calendrical

terms, kinship terms, and so on. Some of these may appear with dotted and undotted

forms. The dotted forms are thought to indicate masculine gender, while the

undotted forms indicate feminine gender or are gender-neutral.

Most Khitan words are written phonetically with characters that represent conso‐

nants, vowels, diphthongs or syllables. The phonetic values of many of the phono‐

grams have been reconstructed, but many values are still unknown. A few characters

seem to act both as logograms and phonograms.

 The Khitan Small Script characters are named sequentially by

prefixing “KHITAN SMALL SCRIPT CHARACTER-” to the code point, with the excep‐

tion of one format control character, U+16FE4 KHITAN SMALL SCRIPT FILLER. The

filler character is located in the Ideographic Symbols and Punctuation block.

 Phonograms may occur in isolation, but typically, two or more

phonograms combine into a cluster representing a single word of one or more sylla‐

bles. Within the cluster, the characters are ordered from left to right and then from

top to bottom. Less often, a phonogram starts with a single centered character at the

top. Some logograms may take a grammatical suffix and therefore appear as the first

character in a phonogram cluster.

18.12 Khitan Small Script

18.12.1 Khitan Small Script: U+18B00–U+18CFF

Structure.

Character Names.

Phonogram Clusters.

East Asia 904 18.12 Khitan Small Script

There are two cluster patterns in Khitan Small Script. The prevalent pattern, Type A,

starts with two side-by-side adjacent Khitan Small Script characters, and ends with

either a single centered character or two additional side-by-side adjacent characters.

The alternate pattern, Type B, occurs occasionally. It starts with a single, centered

Khitan Small Script character at the top, usually followed by two, sometimes three,

and very rarely more than three characters, as shown in Figure 18-17. The two

patterns seem to be a stylistic choice, rather than a semantic distinction.

The original Khitan Small Script texts show a narrow gap between clusters, between

clusters and standalone characters, and often between adjacent standalone charac‐

ters. Modern scholarly transcriptions of texts generally show a clear gap between

standalone characters and sequences of characters. To indicate the gap, U+0020

SPACE should be used.

Clusters of Type A are predominant. A rendering system should lay out clusters of

this type automatically, by default. To indicate clusters of Type B, the format char‐

acter U+16FE4 KHITAN SMALL SCRIPT FILLER is used, placed directly after the first

character.

Additional rendering support is required to lay out Khitan Small Script in the various

attested orientations: in clusters within vertical text, in clusters within left-to-right

horizontal text, or simply character-by-character in a horizontal, linear format.

Figure 18-17. Cluster Patterns in Khitan Small Script

East Asia 905 18.12 Khitan Small Script

 Khitan Small Script contains an iteration mark, U+18B00 KHITAN

SMALL SCRIPT CHARACTER-18B00. This mark indicates that the preceding cluster is

repeated in reading.

 Occasionally a Khitan Small Script character may

be obscured or missing in source materials, often as a result of damage to inscrip‐

tions. In such cases, U+18CFF KHITAN SMALL SCRIPT CHARACTER-18CFF can be

used to represent the obscured or missing character. The representative glyph for

U+18CFF is a white square box, but it may also be shown with dashed or dotted

edges. This symbolic indicator of a missing character participates in Khitan Small

Script cluster rendering behavior, and so the aspect and/or size of the box may vary,

depending on how the clusters are rendered in context.

Iteration Mark.

Obscured or Missing Characters.

East Asia 906 18.12 Khitan Small Script

Chapter 19

Africa

Ethiopic and Tifinagh are scripts with long histories. Although their roots can be

traced back to the original Semitic and North African writing systems, they would

not be classified as Middle Eastern scripts today.

The remaining scripts in this chapter have been developed relatively recently. Some

of them show roots in Latin and other letterforms. They are all original creative

contributions intended specifically to serve the linguistic communities that use them.

Osmanya is an alphabetic script developed in the early 20th century to write the

Somali language. N’Ko is a right-to-left alphabetic script devised in 1949 as a writing

system for Manden languages in West Africa. Vai is a syllabic script used for the Vai

language in Liberia and Sierra Leone; it was developed in the 1830s, but the standard

syllabary was published in 1962. Bamum is a syllabary developed between 1896 and

1910, used for writing the Bamum language in western Cameroon. Modern Bassa Vah

is an alphabetic script developed early in the 20th century. Mende Kikakui is a right-

to-left script used for writing Mende. It was also created in the early 20th century.

Adlam is an alphabetic script used to write Fulani and other African languages. The

Fulani are a widespread ethnic group in Africa, and the Fulani language is spoken by

more than 40 million people. The script was developed in the late 1980s, and was

subsequently widely adopted among Fulani communities, where it is taught in

schools.

The Medefaidrin script is used to write the liturgical language Medefaidrin by

members of an indigenous Christian church in Nigeria. According to community

tradition, the language was revealed to one of the founders of the community in 1927

by divine inspiration. It is presently used for Sunday school lessons and prayers or

meditation.

Garay is a right-to-left alphabetic script used to write Wolof in Senegal. It was created

by Assane Faye and first published in 1961. It has a small user community in Senegal.

The script is designed to be easy to learn and use by people familiar with the Arabic

script.

907

The Ethiopic syllabary originally evolved for writing the Semitic language Ge’ez.

Indeed, the English noun “Ethiopic” simply means “the Ge’ez language.” Ge’ez itself

is now limited to liturgical usage, but its script has been adopted for modern use in

writing several languages of central east Africa, including Amharic, Tigre, and

Oromo.

 The Ethiopic characters encoded here include the

basic set that has become established in common usage for writing major languages.

As with other productive scripts, the basic Ethiopic forms are sometimes modified to

produce an extended range of characters for writing additional languages.

 The syllables of the Ethiopic script are traditionally presented

as a two-dimensional matrix of consonant-vowel combinations. The encoding follows

this structure; in particular, the codespace range U+1200..U+1357 is interpreted as a

matrix of 43 consonants crossed with 8 vowels, making 344 conceptual syllables.

Most of these consonant-vowel syllables are represented by characters in the script,

but some of them happen to be unused, accounting for the blank cells in the matrix.

 A given Ethiopic syllable may be represented by different

glyph forms, analogous to the glyph variants of Latin lowercase “a” or “g”, which do

not coexist in the same font. Thus the particular glyph shown in the code chart for

each position in the matrix is merely one representation of that conceptual syllable,

and the glyph itself is not the object that is encoded.

 A few Ethiopic consonants have labialized (“W”) forms that

are traditionally allotted their own consonant series in the syllable matrix, although

only a subset of the possible vowel forms are realized. Each of these derivative series

is encoded immediately after the corresponding main consonant series. Because the

standard vowel series includes both “AA” and “WAA”, two different cells of the

syllable matrix might represent the “consonant + W + AA” syllable. For example:

U+1257 = QH + WAA: potential but unused version of QHWAA

U+125B = QHW + AA: ETHIOPIC SYLLABLE QHWAA

In these cases, where the two conceptual syllables are equivalent, the entry in the

labialized subseries is encoded and not the “consonant + WAA” entry in the main

syllable series. The six specific cases are enumerated in Table 19-1. In three of these

cases, the -WAA position in the syllable matrix has been reanalyzed and used for

encoding a syllable in -OA for extended Ethiopic.

19.1 Ethiopic

19.1.1 Ethiopic: U+1200–U+137F

Basic and Extended Ethiopic.

Encoding Principles.

Variant Glyph Forms.

Labialized Subseries.

Africa 908 19.1 Ethiopic

-WAA Form Encoded as Not Used Contrast

QWAA U+124B 1247 U+1247 QOA

QHWAA U+125B 1257

XWAA U+128B 1287 U+1287 XOA

KWAA U+12B3 12AF U+12AF KOA

KXWAA U+12C3 12BF

GWAA U+1313 130F

Also, within the labialized subseries, the sixth vowel (“-E”) forms are sometimes

considered to be second vowel (“-U”) forms. For example:

U+1249 = QW + U: unused version of QWE

U+124D = QW + E: ETHIOPIC SYLLABLE QWE

In these cases, where the two syllables are nearly equivalent, the “-E” entry is

encoded and not the “-U” entry. The six specific cases are enumerated in Table 19-2.

“-WE” Form Encoded as Not Used

QWE U+124D 1249

QHWE U+125D 1259

XWE U+128D 1289

KWE U+12B5 12B1

KXWE U+12C5 12C1

GWE U+1315 1311

 Because the Ethiopic script includes more than 300 characters, the

units of keyboard input must constitute some smaller set of entities, typically 43+8

codes interpreted as the coordinates of the syllable matrix. Because these keyboard

input codes are expected to be transient entities that are resolved into syllabic charac‐

ters before they enter stored text, keyboard input codes are not specified in this stan‐

dard.

 The Ethiopic script often has multiple syllables corresponding to

the same Latin letter, making it difficult to assign unique Latin names. Therefore the

names list makes use of certain devices (such as doubling a Latin letter in the name)

merely to create uniqueness; this device has no relation to the phonetics of these

syllables in any particular language.

Table 19-1. Labialized Forms in Ethiopic -WAA

Table 19-2. Labialized Forms in Ethiopic -WE

Keyboard Input.

Syllable Names.

Africa 909 19.1 Ethiopic

 The order of the consonants in the encoding is based

on the traditional alphabetical order. It may differ from the sort order used for one or

another language, if only because in many languages various pairs or triplets of sylla‐

bles are treated as equivalent in the first sorting pass. For example, an Amharic

dictionary may start out with a section headed by three H-like syllables:

U+1200 ETHIOPIC SYLLABLE HA

U+1210 ETHIOPIC SYLLABLE HHA

U+1280 ETHIOPIC SYLLABLE XA

Thus the encoding order cannot and does not implement a collation procedure for

any particular language using this script.

 The Ethiopic script generally makes no use of diacritical marks,

but they are sometimes employed for scholarly or didactic purposes. In particular,

U+135F ETHIOPIC COMBINING GEMINATION MARK and U+030E COMBINING

DOUBLE VERTICAL LINE ABOVE are sometimes used to indicate emphasis or gemina‐

tion (consonant doubling).

 Ethiopic digit glyphs are derived from the Greek alphabet, possibly

borrowed from Coptic letterforms. In modern use, European digits are often used.

The Ethiopic number system does not use a zero, nor is it based on digital-positional

notation. A number is denoted as a sequence of powers of 100, each preceded by a

coefficient (2 through 99). In each term of the series, the power 100^n is indicated by

n HUNDRED characters (merged to a digraph when n = 2). The coefficient is indi‐

cated by a tens digit and a ones digit, either of which is absent if its value is zero.

For example, the number 2,345 is represented by

2,345 = (20 + 3)*100^1 + (40 + 5)*100^0

= 20 3 100 40 5

= TWENTY THREE HUNDRED FORTY FIVE

= 1373 136B 137B 1375 136D

A language using the Ethiopic script may have a word for “thousand,” such as

Amharic “SHI” (U+123A), and a quantity such as 2,345 may also be written as it is

spoken in that language, which in the case of Amharic happens to parallel English:

2,345 = TWO thousand THREE HUNDRED FORTY FIVE

= 136A 123A 136B 137B 1375 136D

Encoding Order and Sorting.

Diacritical Marks.

Numbers.

Africa 910 19.1 Ethiopic

In Ge’ez language manuscripts the conjunction “ ” is frequently used to write

numbers as they would be spoken.

For example, the number 2,345 would then be written in a Ge’ez language document

as

2,345 = TWENTY and THREE HUNDRED with FORTY and FIVE

= 136A 12C8 136B 137B 12C8 1375 12C8 136D

 The traditional word separator is U+1361 ETHIOPIC WORDSPACE (

:). In modern usage, a plain white wordspace (U+0020 SPACE) is becoming common.

 One or more section marks are typically used on a separate line to

mark the separation of sections. Commonly, an odd number is used and they are

separated by spaces.

The Ethiopic script is used for a large number of languages and dialects in Ethiopia

and in some instances has been extended significantly beyond the set of characters

used for major languages such as Amharic and Tigre. There are four blocks of exten‐

sions to the Ethiopic script: Ethiopic Supplement U+1380..U+139F, Ethiopic

Extended U+2D80..U+2DDF, Ethiopic Extended-A U+AB00..U+AB2F, and Ethiopic

Extended-B U+1E7E0..U+1E7FF. Those extensions cover such languages as Me’en,

Blin, and the Gurage languages, which use many additional characters. The Ethiopic

Extended-A block, in particular, includes characters for the Gamo-Gofa-Dawro,

Basketo, and Gumuz languages. Several other characters for Ethiopic script exten‐

sions can be found in the main Ethiopic script block in the range U+1200..U+137F,

including combining diacritical marks used for Basketo.

The Ethiopic Extended-B block contains characters for the modern Gurage orthog‐

raphy, which covers the Inor, Mesqan, Sebatbeit, and Soddo languages. Additional

characters for this orthography can be found in the Ethiopic Supplement and

Ethiopic Extended blocks. Some of the character names in these blocks include the

word “SEBATBEIT” because they were originally encoded for the older Sebatbeit

orthography. The modern Gurage orthography uses some of these characters for all

Gurage languages, including Sebatbeit.

The Ethiopic Supplement block also contains a set of tonal marks. They are used in

multiline scored layout. Like other musical (an)notational systems of this type, these

tonal marks require a higher-level protocol to enable proper rendering.

Word Separators.

Section Mark.

19.1.2 Ethiopic Extensions

Africa 911 19.1 Ethiopic

The Osmanya script, which in Somali is called far Soomaali “Somali

writing” or Cismaanya, was devised in 1920–1922 by

(Cismaan Yuusuf Keenadiid) to represent the Somali

language. It replaced an attempt by Sheikh Uweys of the Confraternity Qadiriyyah

(died 1909) to devise an Arabic-based orthography for Somali. It has, in turn, been

replaced by the Latin orthography of Muuse Xaaji Ismaaciil Galaal (1914–1980). In

1961, both the Latin and the Osmanya scripts were adopted for use in Somalia, but in

1969 there was a coup, with one of its stated aims being the resolution of the debate

over the country’s writing system. A Latin orthography was finally adopted in 1973.

Gregersen (1977) states that some 20,000 or more people use Osmanya in private

correspondence and bookkeeping, and that several books and a biweekly journal

Horseed (“Vanguard”) were published in cyclostyled format.

 Osmanya is an alphabetic script, read from left to right in horizontal lines

running from top to bottom. It has 22 consonants and 8 vowels. Unique long vowels

are written for U+1049B OSMANYA LETTER AA, U+1049C OSMANYA LETTER EE,

and U+1049D OSMANYA LETTER OO; long uu and ii are written with the conso‐

nants U+10493 OSMANYA LETTER WAW and U+10495 OSMANYA LETTER YA,

respectively.

 Alphabetical ordering is based on the order of the Arabic alphabet, as

specified by Osman Abdihalim Yuusuf Osman Keenadiid. This ordering is similar to

the ordering given in Diringer (1996).

 The character names used in the Unicode Standard

are as given by Osman. The glyphs shown in the code charts are taken from Afkeenna

iyo fartysa (“Our language and its handwriting”) 1971.

19.2 Osmanya

19.2.1 Osmanya: U+10480–U+104AF

Structure.

Ordering.

Character Names and Glyphs.

Africa 912 19.2 Osmanya

The Tifinagh script is used by approximately 20 million people who speak varieties of

languages commonly called Berber or Amazigh. The three main varieties in Morocco

are known as Tarifite, Tamazighe, and Tachelhite. In Morocco, more than 40% of the

population speaks Berber. The Berber language, written in the Tifinagh script, is

currently taught to approximately 300,000 pupils in 10,000 schools—mostly primary

schools—in Morocco. Three Moroccan universities offer Berber courses in the Tifi‐

nagh script leading to a Master’s degree.

Tifinagh is an alphabetic writing system. It uses spaces to separate words and makes

use of Western punctuation.

 The earliest variety of the Berber alphabet is Libyan. Two forms exist: a

Western form and an Eastern form. The Western variety was used along the Mediter‐

ranean coast from Kabylia to Morocco and most probably to the Canary Islands. The

Eastern variety, Old Tifinagh, is also called Libyan-Berber or Old Tuareg. It contains

signs not found in the Libyan variety and was used to transcribe Old Tuareg. The

word tifinagh is a feminine plural noun whose singular would be tafniqt; it means

“the Phoenician (letters).”

Neo-Tifinagh refers to the writing systems that were developed to represent the

Maghreb Berber dialects. A number of variants of Neo-Tifinagh exist, the first of

which was proposed in the 1960s by the Académie Berbère. That variant has spread

in Morocco and Algeria, especially in Kabylia. Other Neo-Tifinagh systems are nearly

identical to the Académie Berbère system. The encoding in the Tifinagh block is

based on the Neo-Tifinagh systems.

 The encoding consists of four Tifinagh character subsets: the

basic set of the Institut Royal de la Culture Amazighe (IRCAM), the extended

IRCAM set, other Neo-Tifinagh letters in use, and modern Tuareg letters. The first

subset represents the set of characters chosen by IRCAM to unify the orthography of

the different Moroccan modern-day Berber dialects while using the historical Tifi‐

nagh script.

 The letters are arranged according to the order specified by IRCAM. Other

Neo-Tifinagh and Tuareg letters are interspersed according to their pronunciation.

 Historically, Berber texts did not have a fixed direction. Early inscrip‐

tions were written horizontally from left to right, from right to left, vertically (bottom

to top, top to bottom); boustrophedon directionality was also known. Modern-day

Berber script is most frequently written in horizontal lines from left to right; there‐

19.3 Tifinagh

19.3.1 Tifinagh: U+2D30–U+2D7F

History.

Source Standards.

Ordering.

Directionality.

Africa 913 19.3 Tifinagh

fore the bidirectional class for Tifinagh letters is specified as strong left-to-right.

Displaying Berber texts in other directions can be accomplished by the use of direc‐

tional overrides or by the use of higher-level protocols.

 Modern Tifinagh variants tend to use combining diacritical

marks to complement the Tifinagh block. The Hawad notation, for example, uses

diacritical marks from the Combining Diacritical Marks block (U+0300–U+036F).

These marks are used to represent vowels and foreign consonants. In this notation,

<U+2D35, U+0307> represents “a”, <U+2D49, U+0309> represents a long “i” /iː/,

and <U+2D31, U+0302> represents a “p”. Some long vowels are represented using

two diacritical marks above. A long “e” /eː/ is thus written <U+2D49, U+0307,

U+0304>. These marks are displayed side by side above their base letter in the order

in which they are encoded, instead of being stacked.

 While the neo-Tifinagh glyph for U+2D4D TIFINAGH LETTER YAL in

Morocco is typically rendered with two bars linked by a small slanted stroke , tradi‐

tional texts from all areas, and modern-day materials from areas outside Morocco

often represent yal with two vertical strokes . However, the two vertical bar shape

can cause visual ambiguity in words with consonant clusters, because yal may be

mistaken for two instances of U+2D4F TIFINAGH LETTER YAN, whose glyph is a

single vertical stroke . Individual font designers, local traditions, and national prefer‐

ences employ various means to prevent confusion, including varying the spacing

between the bars, and slanting or lowering the bars. Figure 19-1 shows examples that

illustrate contextual shaping by slanting the bars of yal and yan.

 Bi-consonants are additional letterforms used in the Tifinagh script,

particularly for Tuareg, to represent a consonant cluster—a sequence of two conso‐

nants without an intervening vowel. These bi-consonants, sometimes also referred to

as bigraphs, are not directly encoded as single characters in the Unicode Standard.

Instead, they are represented as a sequence of the two consonant letters, separated

Diacritical Marks.

Yal and Yan.

Figure 19-1. Tifinagh Contextual Shaping

Bi-Consonants.

Africa 914 19.3 Tifinagh

either by U+200D ZERO WIDTH JOINER or by U+2D7F TIFINAGH CONSONANT

JOINER.

When a bi-consonant is considered obligatory in text, it is represented by the two

consonant letters, with U+2D7F TIFINAGH CONSONANT JOINER inserted between

them. This use of U+2D7F is comparable in function to the use of U+0652 ARABIC

SUKUN to indicate the absence of a vowel after a consonant, when Tuareg is written

in the Arabic script. However, instead of appearing as a visible mark in the text,

U+2D7F TIFINAGH CONSONANT JOINER indicates the presence of a bi-consonant,

which should then be rendered with a preformed glyph for the sequence. Examples

of common Tifinagh bi-consonants and their representation are shown in Figure 19-2.

If a rendering system cannot display obligatory bi-consonants with the correct, fully-

formed bi-consonant glyphs, a fallback rendering should be used which displays the

TIFINAGH CONSONANT JOINER visibly, so that the correct textual distinctions are

maintained, even if they cannot be properly displayed.

When a bi-consonant is considered merely an optional, ligated form of two conso‐

nant letters, the bi-consonant can be represented by the two consonant letters, with

U+200D ZERO WIDTH JOINER inserted between them, as a hint that the ligated form

is preferred. If a rendering system cannot display the optional, ligated form, the fall‐

back display should simply be the sequence of consonants, with no visible display of

the ZWJ.

Bi-consonants often have regional glyph variants, so fonts may need to be designed

differently for different regional uses of the Tifinagh script.

Figure 19-2. Tifinagh Consonant Joiner and Bi-consonants

Africa 915 19.3 Tifinagh

N’Ko is a literary dialect used by the Manden (or Manding) people, who live

primarily in West Africa. The script was devised by Solomana Kante in 1949 as a

writing system for the Manden languages. The Manden language group is known as

Mandenkan, where the suffix -kan means “language of.” In addition to the substan‐

tial number of Mandens, some non-Mandens speak Mandenkan as a second

language. There are an estimated 20 million Mandenkan speakers.

The major dialects of the Manden language are Bamanan, Jula, Maninka, and

Mandinka. There are a number of other related dialects. When Mandens from

different subgroups talk to each other, it is common practice for them to switch—

consciously or subconsciously—from their own dialect to the conventional, literary

dialect commonly known as Kangbe, “the clear language,” also known as N’Ko. This

dialect switching can occur in conversations between the Bamanan of Mali, the

Maninka of Guinea, the Jula of the Ivory Coast, and the Mandinka of Gambia or

Senegal, for example. Although there are great similarities between their dialects,

speakers sometimes find it necessary to switch to Kangbe (N’Ko) by using a common

word or phrase, similar to the accommodations Danes, Swedes, and Norwegians

sometimes make when speaking to one another. For example, the word for “name” in

Bamanan is togo, while it is tooh in Maninka. Speakers of both dialects will write it as

 , although each may pronounce it differently.

 Although the traditional name of the N’Ko

language and script includes an apostrophe, apostrophes are disallowed in Unicode

character and block names. Because of this, the formal block name is “NKo” and the

script portion of the Unicode character names is “NKO”.

 The N’Ko script is written from right to left. It is phonetic in nature (one

symbol, one sound). N’Ko has seven vowels, each of which can bear one of seven

diacritical marks that modify the tone of the vowel as well as an optional diacritical

mark that indicates nasalization. N’Ko has 19 consonants and two “abstract” conso‐

nants, U+07E0 NKO LETTER NA WOLOSO and U+07E7 NKO LETTER NYA WOLOSO,

which indicate original consonants mutated by a preceding nasal, either word-inter‐

nally or across word boundaries. Some consonants can bear one of three diacritical

marks to transcribe foreign sounds or to transliterate foreign letters.

U+07D2 NKO LETTER N is considered neither a vowel nor a consonant; it indicates a

syllabic alveolar or velar nasal. It can bear a diacritical mark, but cannot bear the

nasal diacritic. The letter U+07D1 NKO LETTER DAGBASINNA has a special function

in N’Ko orthography. The standard spelling rule is that when two successive syllables

have the same vowel, the vowel is written only after the second of the two syllables.

19.4 N’Ko

19.4.1 N’Ko: U+07C0–U+07FF

Character Names and Block Name.

Structure.

Africa 916 19.4 N’Ko

For example, <ba, la, oo> is pronounced [bolo], but in a foreign syllable to be

pronounced [blo], the dagbasinna is inserted for <ba, dagbasinna, la, oo> to

show that a consonant cluster is intended.

 N’Ko diacritical marks are script-specific, despite superficial

resemblances to other diacritical marks encoded for more general use. Some N’Ko

diacritics have a wider range of glyph representation than the generic marks do, and

are typically drawn rather higher and bolder than the generic marks.

Two of the tone diacritics, when applied to consonants, indicate specific sounds from

other languages—in particular, Arabic or French language sounds. U+07F3 NKO

COMBINING DOUBLE DOT ABOVE is also used as a diacritic to represent sounds from

other languages. The combinations used are as shown in Table 19-3.

Character
Applied
To

Represents

U+07EB NKO COMBINING SHORT HIGH
TONE

SA [ᵴ] or Arabic SAD

GBA [ɣ] or Arabic GHAIN

KA [q] or Arabic QAF

U+07ED NKO COMBINING SHORT RISING
TONE

BA [ɓ]

TA [ᵵ] or Arabic TAH

JA [z] or Arabic ZAIN

CHA
[ð] or Arabic THAL and also
French [ʒ]

DA [ᵭ] or Arabic DAD

RA French [ʀ]

SA [ʃ] or Arabic SHEEN

GBA [ɡ]

FA [v]

KA [x] or Arabic KHAH

LA [lʕ]

MA [ɱ]

NYA [ŋ]

HA [ħ] or Arabic HAH

YA [j]̰

U+07F3 NKO COMBINING DOUBLE DOT
ABOVE

A [ʕa] or Arabic AIN + A

EE French [ə]

U French [y]

JA [ᵶ] or Arabic ZAH

DA [ḍ]

Diacritical Marks.

Table 19-3. N’Ko Diacritic Usage

Africa 917 19.4 N’Ko

SA [θ] or Arabic THEH

GBA [kp]

Table 19-4 shows the use of the tone diacritics when applied to vowels.

Character Tone Applied To

U+07EB NKO COMBINING SHORT HIGH TONE high short vowel

U+07EC NKO COMBINING SHORT LOW TONE low short vowel

U+07ED NKO COMBINING SHORT RISING TONE rising-falling short vowel

U+07EE NKO COMBINING LONG DESCENDING TONE descending long vowel

U+07EF NKO COMBINING LONG HIGH TONE high long vowel

U+07F0 NKO COMBINING LONG LOW TONE long low long vowel

U+07F1 NKO COMBINING LONG RISING TONE rising long vowel

When applied to a vowel, U+07F2 NKO COMBINING NASALIZATION MARK indicates

the nasalization of that vowel. In the text stream, this mark is applied before any of

the tone marks because combining marks below precede combining marks above in

canonical order.

 N’Ko uses decimal digits specific to the script. These digits have strong right-

to-left directionality. Numbers are stored in text in logical order with most significant

digit first; when displayed, numerals are then laid out in right-to-left order, with the

most significant digit at the rightmost side, as illustrated for the numeral 144 in

Figure 19-3. This situation differs from how numerals are handled in Hebrew and

Arabic, where numerals are laid out in left-to-right order, even though the overall text

direction is right to left.

 Diacritical marks are also used to mark ordinal numbers. The

first ordinal is indicated by applying U+07ED NKO COMBINING SHORT RISING TONE

(a dot above) to U+07C1 NKO DIGIT ONE. All other ordinal numbers are indicated by

applying U+07F2 NKO COMBINING NASALIZATION MARK (an oval dot below) to the

last digit in any sequence of digits composing the number. Thus the nasalization

mark under the digit two would indicate the ordinal value 2nd, while the nasaliza‐

tion mark under the final digit four in the numeral 144 would indicate the ordinal

value 144th, as shown in Figure 19-3.

1st

2nd

3rd

144th

Table 19-4. N’Ko Tone Diacritics on Vowels

Digits.

Ordinal Numbers.

Figure 19-3. Examples of N’Ko Ordinals

Africa 918 19.4 N’Ko

 N’Ko uses a number of punctuation marks in common with other

scripts. U+061F ARABIC QUESTION MARK, U+060C ARABIC COMMA, U+061B

ARABIC SEMICOLON, and the paired U+FD3E ORNATE LEFT PARENTHESIS and

U+FD3F ORNATE RIGHT PARENTHESIS are used, often with different shapes than are

used in Arabic. A script-specific U+07F8 NKO COMMA and U+07F9 NKO EXCLAMA‐

TION MARK are encoded. The NKO COMMA differs in shape from the ARABIC

COMMA, and the two are sometimes used distinctively in the same N’Ko text.

The character U+07F6 NKO SYMBOL OO DENNEN is used as an addition to phrases to

indicate remote future placement of the topic under discussion. The decorative

U+07F7 NKO SYMBOL GBAKURUNEN represents the three stones that hold a

cooking pot over the fire and is used to end major sections of text.

The two tonal apostrophes, U+07F4 NKO HIGH TONE APOSTROPHE and U+07F5 NKO

LOW TONE APOSTROPHE, are used to show the elision of a vowel while preserving the

tonal information of the syllable. Their glyph representations can vary in height rela‐

tive to the baseline. N’Ko also uses a set of paired punctuation, U+2E1C LEFT LOW

PARAPHRASE BRACKET and U+2E1D RIGHT LOW PARAPHRASE BRACKET, to indicate

indirect quotations.

 The order of N’Ko characters in the code charts reflects the traditional

ordering of N’Ko. However, in collation, the three archaic letters U+07E8 NKO

LETTER JONA JA, U+07E9 NKO LETTER JONA CHA, and U+07EA NKO LETTER JONA

RA should be weighted as variants of U+07D6 NKO LETTER JA, U+07D7 NKO LETTER

CHA, and U+07D9 NKO LETTER RA, respectively.

 N’Ko letters have shaping behavior similar to that of Arabic. Each letter

can take one of four possible forms, as shown in Table 19-5.

Character X
n

X
r

X
m

X
l

A

EE

I

E

U

OO

O

DAGBASINNA

N

BA

PA

Punctuation.

Ordering.

Rendering.

Table 19-5. N’Ko Letter Shaping

Africa 919 19.4 N’Ko

TA

JA

CHA

DA

RA

RRA

SA

GBA

FA

KA

LA

NA WOLOSO

MA

NYA

NA

HA

WA

YA

NYA WOLOSO

JONA JA

JONA CHA

JONA RA

A noncursive style of N’Ko writing exists where no joining line is used between the

letters in a word. This is a font convention, not a dynamic style like bold or italic,

both of which are also valid dynamic styles for N’Ko. Noncursive fonts are mostly

used as display fonts for the titles of books and articles. U+07FA NKO LAJANYALAN is

sometimes used like U+0640 ARABIC TATWEEL to justify lines, although Latin-style

justification where space is increased tends to be more common.

Africa 920 19.4 N’Ko

The Vai script is used for the Vai language, spoken in coastal areas of western Liberia

and eastern Sierra Leone. It was developed in the early 1830s primarily by Mọmọlu

Duwalu Bukẹlẹ of Jondu, Liberia, who later stated that the inspiration had come to

him in a dream. He may have also been aware of, and influenced by, other scripts

including Latin, Arabic, and possibly Cherokee, or he may have phoneticized and

regularized an earlier pictographic script. In the years afterward, the Vai built an

educational infrastructure that enabled the script to flourish; by the late 1800s Euro‐

pean traders reported that most Vai were literate in the script. Although there were

standardization efforts in 1899 and again at a 1962 conference at the University of

Liberia, nowadays the script is learned informally and there is no means to ensure

adherence to a standardized version; most Vai literates know only a subset of the

standardized characters. The script is primarily used for correspondence and record-

keeping, mainly among merchants and traders. Literacy in Vai coexists with literacy

in English and Arabic.

 The primary sources for the Vai characters in Unicode are the 1962 Vai Stan‐

dard Syllabary, modern primers and texts which use the Standard Syllabary

(including a few glyph modifications reflecting modern preferences), the 1911 addi‐

tions of Momolu Massaquoi, and the characters found in The Book of Ndole, the

longest surviving text from the early period of Vai script usage.

 Vai is a syllabic script written left to right. The Vai language has

seven oral vowels [e i a o u ɔ ɛ], five of which also occur in nasal form [ĩ ã ũ ɔ̃ ɛ]̃. The

standard syllabary includes standalone vowel characters for the oral vowels and three

of the nasal ones, characters for most of the consonant-vowel combinations formed

from each of thirty consonants or consonant clusters, and a character for the final

velar nasal consonant [ŋ].

The writing system has a moraic structure: the weight (or duration) of a syllable

determines the number of characters used to write it (as with Japanese kana). A

short syllable is written with any single character in the range U+A500..U+A60B.

Long syllables are written with two characters, and involve a long vowel, a diph‐

thong, or a syllable ending with U+A60B VAI SYLLABLE NG. Note that the only

closed syllables in Vai—that is, those that end with a consonant—are those ending

with VAI SYLLABLE NG. The long vowel is generally written using either an additional

standalone vowel to double the vowel sound of the preceding character, or using

U+A60C VAI SYLLABLE LENGTHENER, while the diphthong is generally written

using an additional standalone vowel. In some cases, the second character for a long

vowel or diphthong may be written using characters such as U+A54C VAI SYLLABLE

HA or U+A54E VAI SYLLABLE WA instead of standalone vowels.

19.5 Vai

19.5.1 Vai: U+A500–U+A63F

Sources.

Basic Structure.

Africa 921 19.5 Vai

 In The Book of Ndole more than one character may be used to

represent a pronounced syllable; they have been separately encoded.

 The oldest Vai texts used an additional set of symbols called

“logograms,” representing complete syllables with an associated meaning or range of

meanings; these symbols may be remnants from a precursor pictographic script. At

least two of these symbols are still used: U+A618 VAI SYMBOL FAA represents the

word meaning “die, kill” and is used alongside a person’s date of death (the glyph is

said to represent a wilting tree); U+A613 VAI SYMBOL FEENG represents the word

meaning “thing.”

 In the 1920s ten decimal digits were devised for Vai; these digits were “Vai-

style” glyph variants of European digits. They never became popular with Vai people,

but are encoded in the standard for historical purposes. Modern literature uses Euro‐

pean digits.

 Vai makes use of European punctuation, although a small number of

script-specific punctuation marks commonly occur. U+A60D VAI COMMA rests on or

slightly below the baseline; U+A60E VAI FULL STOP rests on the baseline and can be

doubled for use as an exclamation mark. U+A60F VAI QUESTION MARK also rests on

the baseline; it is rarely used. Some modern primers prefer these Vai punctuation

marks; some prefer the European equivalents. Some Vai writers mark the end of a

sentence by using U+A502 VAI SYLLABLE HEE instead of punctuation.

 Vai is written without spaces between words. Line breaking opportu‐

nities can occur between most characters except that line breaks should not occur

before U+A60B VAI SYLLABLE NG used as a syllable final, or before U+A60C VAI

SYLLABLE LENGTHENER (which is always a syllable final). Line breaks also should

not occur before one of the “h-” characters (U+A502, U+A526, U+A54C, U+A573,

U+A597, U+A5BD, U+A5E4) when it is used to extend the vowel of the preceding

character (that is, when it is a syllable final), and line breaks should not occur before

the punctuation characters U+A60D VAI COMMA, U+A60E VAI FULL STOP, and

U+A60F VAI QUESTION MARK.

 There is no evidence of traditional conventions on ordering apart from the

order of listings found in syllabary charts. The syllables in the Vai block are arranged

in the order recommended by a panel of Vai script experts. Logograms should be

sorted by their phonetic values.

Historic Syllables.

Logograms.

Digits.

Punctuation.

Segmentation.

Ordering.

Africa 922 19.5 Vai

The Bamum script is used for the Bamum language, spoken primarily in western

Cameroon. It was developed between 1896 and 1910, mostly by King Ibrahim Njoya of

the Bamum Kingdom. Apparently inspired by a dream and by awareness of other

writing, his original idea for the script was to collect and provide approximately 500

logographic symbols (denoting objects and actions) to serve more as a memory aid

than as a representation of language.

Using the rebus principle, the script was rapidly simplified through six stages, known

as Stage A, Stage B, and so on, into a syllabary known as A-ka-u-ku, consisting of 80

syllable characters or letters. These letters are used with two combining diacritics and

six punctuation marks. The repertoire in this block covers the A-ka-u-ku syllabary, or

Phase G form, which remains in modern use.

 Modern Bamum is written from left to right. One interesting feature is

that sometimes more letters than necessary are used to write a given syllable. For

example, the word lam “wedding” is written using the sequence of syllabic charac‐

ters, la + a + m. This feature is known as pleonastic syllable representation.

U+A6F0 BAMUM COMBINING MARK KOQNDON may be applied

to any of the 80 letters. It usually functions to glottalize the final vowel of a syllable.

U+A6F1 BAMUM COMBINING MARK TUKWENTIS is only known to be used with 13

letters—usually to truncate a full syllable to its final consonant.

U+A6F2 BAMUM NJAEMLI was a character used in the original set of

logographic symbols to introduce proper names or to change the meaning of a word.

The shape of the glyph for njaemli has changed, but the character is still in use. The

other punctuation marks correspond in function to the similarly-named punctuation

marks used in European typography.

 The last ten letters in the syllabary are also used to represent digits. Histori‐

cally, the last of these was used for 10, but its meaning was changed to represent zero

when decimal-based mathematics was introduced.

The Bamum Supplement block contains archaic characters no longer used in the

modern Bamum orthography. These historical characters are analogous in some ways

to the medievalist characters encoded for the Latin script. Most Bamum writers do

not use them, but they are used by specialist linguists and historians.

19.6 Bamum

19.6.1 Bamum: U+A6A0–U+A6FF

Structure.

Diacritical Marks.

Punctuation.

Digits.

19.6.2 Bamum Supplement: U+16800–U+16A3F

Africa 923 19.6 Bamum

The main source for the repertoire of Bamum extensions is an analysis in Dugast and

Jeffreys 1950. The Bamum script was developed in six phases, labeled with letters.

Phase A is the earliest form of the script. Phase G is the modern script encoded in the

main Bamum block. The Bamum Supplement block covers distinct characters from

the earlier phases which are no longer part of the modern Bamum script.

The character names in this block include a reference to the last phase in which they

appear. So, for example, U+16867 BAMUM LETTER PHASE-B PIT was last used during

Phase B, while U+168EE BAMUM LETTER PHASE-C PIN continued in use and is

attested through Phase C.

Traditional Bamum texts using these historical characters do not use punctuation or

digits. Numerical values for digits are written out as words instead.

Africa 924 19.6 Bamum

The Bassa Vah script is used for the tonal Bassa language of Liberia, which is distinct

from the Basa language of Nigeria and the Basaa (sometimes also spelled Bassa)

language of Cameroon. Its modern usage and perhaps form are due primarily to Dr.

Thomas Flo Lewis in the early 1900s. According to Bassa tradition, an earlier ideo‐

graphic script was simplified around 1800 by a man named Dirah, and then remained

in use primarily among Bassa brought to the Americas as slaves (as was Dirah).

While studying abroad in the United States, Lewis learned a version of that script

from Dirah’s son Jenni and possibly others of Bassa origin in the Americas, and may

have made further improvements. The script may also have been influenced by Vai.

Lewis actively published about the script; he also arranged for the production of a

typesetting machine and primers for Vah, and on his return to Liberia promoted

education in the script.

 Modern Bassa Vah is a simple alphabetic script, written from left to right,

consisting of 23 consonants, 7 vowels, and 5 tone marks. Except for discussions about

the alphabet itself, the vowel letters are always written with tone marks; these marks

are placed in a central open area of each vowel glyph. The tone marks are encoded as

combining characters.

 Bassa Vah uses a script-specific full stop resembling a plus

sign, as well as the European comma, full stop, and quotation marks. It also uses the

European digits 0–9.

19.7 Bassa Vah

19.7.1 Bassa Vah: U+16AD0–U+16AFF

Structure.

Punctuation and Digits.

Africa 925 19.7 Bassa Vah

The Mende Kikakui script is used for the Mende language of Sierra Leone. It is

named Kikakui after the sound of its first three characters. Kikakui was popular for

correspondence and record-keeping. However, during the 1940s it was largely

supplanted by a Latin-based orthography promoted by the British-established Protec‐

torate Literacy Bureau.

An early version of 42 characters was created around 1917 by the Islamic scholar

Mohamed Turay, likely influenced both by the Vai syllabary and by Arabic. It was

further developed over the next few years by his student and son-in-law Kisimi

Kamara who added over 150 more syllabic characters, actively promoted the script,

and is generally credited as its primary inventor. The repertoire is based on Tuch‐

scherer 1996. Annotations in the names list provide occasional references to the

syllabaries of Amara Mansaray, a prominent script practitioner, and David Dalby

(Dalby 1967). The annotations note where Mansaray or Dalby vary from Tuchscherer.

 The Mende Kikakui script has 185 consonant and vowel (CV) syllabic

characters and 12 vowels. No script-specific punctuation is known.

 The Mende Kikakui script is written from right to left, unlike Vai.

Conformant implementations of the script must use the Unicode Bidirectional Algo‐

rithm (see Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”).

 Although both European digits and Arabic digits have been used with

Mende Kikakui, it also has its own unique non-decimal number system. This system

uses the following characters:

A set of digits one through nine

A set of multiplier subscripts for powers of ten from 10 through 1,000,000,

encoded as combining marks

A special subscript for teens, also encoded as a combining mark

Number units in the range 11 through 19 are represented as a digit plus the teens

mark. Numbers such as 20, 300, or 5,000 are represented as a digit plus the appro‐

priate multiplier mark. Complete numbers are written as a right-to-left sequence of

number units, largest unit first (displayed on the right), whose values are added to

produce the numeric value, as shown in the examples in Table 19-6.

Value Character Sequence Display

19.8 Mende Kikakui

19.8.1 Mende Kikakui: U+1E800–U+1E8DF

Structure.

Directionality.

Numbers.

•

•

•

Table 19-6. Number Formation in Mende Kikakui

Africa 926 19.8 Mende Kikakui

10
1E8C7 MENDE KIKAKUI DIGIT ONE
1E8D1 MENDE KIKAKUI COMBINING NUMBER TENS

14
1E8CA MENDE KIKAKUI DIGIT FOUR
1E8D0 MENDE KIKAKUI COMBINING NUMBER TEENS

27
1E8C8 MENDE KIKAKUI DIGIT TWO
1E8D1 MENDE KIKAKUI COMBINING NUMBER TENS
1E8CD MENDE KIKAKUI DIGIT SEVEN

206
1E8C8 MENDE KIKAKUI DIGIT TWO
1E8D2 MENDE KIKAKUI COMBINING NUMBER HUNDREDS
1E8CC MENDE KIKAKUI DIGIT SIX

417

1E8CA MENDE KIKAKUI DIGIT FOUR
1E8D2 MENDE KIKAKUI COMBINING NUMBER HUNDREDS
1E8CD MENDE KIKAKUI DIGIT SEVEN
1E8D0 MENDE KIKAKUI COMBINING NUMBER TEENS

784

1E8CD MENDE KIKAKUI DIGIT SEVEN
1E8D2 MENDE KIKAKUI COMBINING NUMBER HUNDREDS
1E8CE MENDE KIKAKUI DIGIT EIGHT
1E8D1 MENDE KIKAKUI COMBINING NUMBER TENS
1E8CA MENDE KIKAKUI DIGIT FOUR

Africa 927 19.8 Mende Kikakui

Adlam is a script used to write Fulani and other African languages. The Fulani are a

large, historically nomadic tribe of Africa numbering more than 45 million and

spread across Senegambia (Senegal) to the banks of the Nile and the Red Sea.

Depending on the language, they are called by different names, including Fulani,

Fula, Peul, Pul, Fut, Fellata, Tekruri, Toucouleur, Peulh, Wasolonka, and Kourte.

The Fulani are today a widespread ethnic group in Africa, and the Fulani language is

spoken by more than 40 million.

During the late 1980s, brothers Ibrahima and Abdoulaye Barry devised this alpha‐

betic script to represent the Fulani language. After several years of development it

was widely adopted among Fulani communities and is currently taught at schools in

Guinea, Nigeria, Liberia and other nearby countries. The name Adlam is derived

from the first four letters of the alphabet (A, D, L, M), standing for Alkule Dandaydhe

Leñol Mulugol (“the alphabet that protects the peoples from vanishing”).

 Adlam is a casing script with right-to-left directionality. Its letters can be

written separately or can be cursively joined in the same way that Arabic and N’Ko

are. Joining is optional, not obligatory.

 A range of diacritical marks is used. The lengthener U+1E944

ADLAM ALIF LENGTHENER is used only on the letters U+1E900 ADLAM CAPITAL

LETTER ALIF and U+1E922 ADLAM SMALL LETTER ALIF. The lengthener U+1E945

ADLAM VOWEL LENGTHENER is used with other vowels. The U+1E946 ADLAM GEMI‐

NATION MARK marks long consonants. These diacritical marks are typically high

with capital letters, and high with small letters with ascenders, but low with other

small letters.

The diacritical mark U+1E947 ADLAM HAMZA is used atop a consonant when a

glottal stop occurs between it and the following vowel. The hamza has high and low

variants. The mark U+1E948 ADLAM CONSONANT MODIFIER is used to indicate

foreign sounds, primarily in Arabic transcription.

The U+1E94A ADLAM NUKTA is used to indicate both native and borrowed sounds.

When vowels are lengthened, however, the nukta is drawn below the vowels to indi‐

cate the change. When drawn above a letter, the nukta is called hoortobbhere (“dot

above”) in Fulani; when drawn below, it is called lestobbhere (“dot below”).

This varied rendering of the Adlam nukta is similar to the behavior of some accents

in Latin typography, for which the rendering often depends on the availability of

fonts, cultural preferences, or the geographical area. A Latin example is the prefer‐

19.9 Adlam

19.9.1 Adlam: U+1E900–U+1E95F

Structure.

Diacritical Marks.

Africa 928 19.9 Adlam

ence in Latvian and in Romanian for a comma below diacritic shape for some letters,

while a cedilla shape is preferred for the same letters in Turkish and in Marshallese.

 Letters have the same line breaking behavior as N’Ko.

 Adlam uses ten digits with a right-to-left directionality like the digits in

N’Ko.

 Adlam uses European punctuation and the U+061F ARABIC QUES‐

TION MARK.

 Cursive joining is used in some contexts. In a cursive context, all

letters are dual-joining with a base form, a left-joining form, a dual-joining form, and

a right-joining form. Diacritics do not break cursive connections.

Digits and punctuation do not participate in shaping. In a cursive context, U+0640

ARABIC TATWEEL can be used for elongation.

Line Breaking.

Numbers.

Punctuation.

Cursive Joining.

Africa 929 19.9 Adlam

The Medefaidrin script is used to write the liturgical language Medefaidrin by

members of an indigenous Christian church, Oberi Okaime (“Church freely given”),

which was active in the Nigerian province of Calabar in the 1930s near the Western

bank of Cross River. The main spoken language for this group is Ibibio-Efik, which

belongs to the Atlantic family of the Niger-Congo languages.

The Medefaidrin script shows the strong influence of English orthography with the

use of capital and small letters, and a special sign for the pronoun “I”, which has both

an upper and lowercase form (U+16E44 MEDEFAIDRIN CAPITAL LETTER ATIU and

U+16E64 MEDEFAIDRIN SMALL LETTER ATIU). The community tradition is that this

spirit language was revealed to Bishop Ukpong, one of the founders of the commu‐

nity, in 1927 by divine inspiration. The secretary of the group, Jakeld Udofia, tran‐

scribed the language to writing. Presently, the religious community counts about

4,000 members. The Medefaidrin language is used for teaching Sunday school

lessons and for saying prayers or meditation on the scriptures.

 Medefaidrin is written left to right. There is a close relationship between

the phonological analysis and the writing system: the letters are pronounced mostly

as written.

 The order of Medefaidrin characters in the code charts reflects the tradi‐

tional ordering of Medefaidrin found in instruction materials.

 Medefaidrin uses a vigesimal (base-20)

number system that requires twenty digits. Script-specific punctuation marks are

U+16E97 MEDEFAIDRIN COMMA, U+16E98 MEDEFAIDRIN FULL STOP, and U+16E9A

MEDEFAIDRIN EXCLAMATION OH. Another unique mark is a symbol for the conjunc‐

tion “or,” represented by the Medefaidrin aiva, U+16E99 MEDEFAIDRIN SYMBOL

AIVA.

19.10 Medefaidrin

19.10.1 Medefaidrin: U+16E40–U+16E9F

Structure.

Ordering.

Punctuation, Digits, and Other Marks.

Africa 930 19.10 Medefaidrin

The Garay script was created by Assane Faye in Senegal to write Wolof, and first

appeared in publications in January 1961. The official script in Senegal for Wolof is

Latin, although the Wolofal orthography (an Arabic-based orthography written in the

Ajami style) is also used. The Garay script has been taught informally for more than

fifty years since its invention. However, although it is used by women’s groups and

adult literacy for Mandinka as well as for Wolof, the user community for Garay

remains small. Faye designed Garay to be easy to learn for anyone familiar with the

Arabic script, but gave it a simpler design. Faye has written manuscripts that include

textbooks, folktales, and maps; there also exists a Quran with interlinear translations

into Wolof using the Garay script.

 Garay is an alphabet. Text runs from right to left in horizontal lines,

and words are separated by spaces.

Garay has no joining behavior, but the consonant letters are bicameral. Capital letters

are used at the beginning of sentences and for proper nouns. They are generally

distinguished from lowercase letters by a swash. Unlike consonants, Garay vowel

letters do not have uppercase and lowercase forms.

Tone does not need to be marked because languages in the Atlantic group of the

Niger-Congo family, of which Wolof is one, are unusual in that they are not tonal.

A particular feature of Garay handwriting is a swash tail which often swings back

under the word-final letter, and sometimes extends the whole length of the word, but

it is not obligatory and has no semantic significance.

 Garay uses 19 consonant letters, each with both uppercase and lower‐

case forms, but digraphs and various diacritics over letters are used to support addi‐

tional consonant sounds, including four pre-nasalized stops.

Consonant gemination is common and phonetically distinctive, and is written by

following the consonant with U+10D6A GARAY CONSONANT GEMINATION MARK.

Another combining mark, U+10D6D GARAY CONSONANT NASALIZATION MARK,

can be used to nasalize sounds in foreign words.

To enable digitization of older Garay manuscripts, the Garay block contains four

additional characters that represent obsolete glyphs for the letters K and N.

 Garay uses five characters, including one combining mark, to represent nine

vowel sounds. The other four vowels are formed by combining the vowel characters

into digraphs.

19.11 Garay

19.11.1 Garay: U+10D40–U+10D8F

Basic Features.

Consonants.

Vowels.

Africa 931 19.11 Garay

Long vowels are indicated by following the vowel character(s) with U+10D4E

GARAY VOWEL LENGTH MARK.

The combining mark U+10D69 GARAY VOWEL SIGN E represents the vowel /ɛ/. It is

also used to indicate prenasalized stops. When the vowel /ɛ/ follows prenasalized

stops such as /ᵐb/ or other consonant letters with combining marks above, Garay

instead uses the spacing mark U+10D4D GARAY VOWEL SIGN EE to represent that

vowel. In the same context, the vowel /e/, normally represented as <U+10D69 ,

U+10D4D >, is written as <U+10D4D , U+10D4D >. This spelling approach is

also used with the four consonants that could be prenasalized, /b/, /d/, /ɟ/, /ɡ/, even

when they are not.

Figure 19-4 illustrates these distinctions, with examples for the ordinary case with /k/

and then examples with /ᵐb/ and /b/.

/k/ /ᵐb/ /b/

/kɛ/ /ᵐbɛ/ /bɛ/

/ke/ /ᵐbe/ /be/

Words that begin with a vowel sound use a “vowel carrier,” U+10D70 GARAY SMALL

LETTER A or its uppercase equivalent U+10D50 GARAY CAPITAL LETTER A, much

like the alef in Arabic.

The Garay block also contains U+10D4F GARAY SUKUN to indicate vowel absence,

but that character is now considered obsolete.

 Garay uses a mixture of Western and Arabic punctuation.

The Garay block also includes U+10D6E GARAY HYPHEN, used at the end of a line

when a word is split during line-breaking.

The symbol U+10D6F GARAY REDUPLICATION MARK, is used to repeat a word.

 A set of Garay digits is encoded in the range

U+10D40..U+10D49. The block also contains Garay mathematical symbols for plus

and minus signs.

Figure 19-4. Representing /ɛ/ and /e/ in Garay

Punctuation.

Numbers and Mathematical Symbols.

Africa 932 19.11 Garay

Chapter 20

Americas

The Cherokee script is a syllabary developed between 1815 and 1821, to write the

Cherokee language. The Cherokee script is still used by small communities in Okla‐

homa and North Carolina.

Canadian Aboriginal Syllabics were invented in the 1830s for Algonquian languages

in Canada. The system has been extended many times, and is now actively used by

other communities, including speakers of Inuktitut and Athapascan languages.

The Osage script is an alphabet used to write the Osage language spoken by a Native

American tribe in the United States. The script was written with a variety of ad-hoc

orthographies and transcriptions for two centuries until the Osage Nation recently

developed its standard orthography in 2014.

Deseret is a phonemic alphabet devised in the 1850s to write English. It saw limited

use for a few decades by members of The Church of Jesus Christ of Latter-day Saints.

933

The Cherokee script is used to write the Cherokee language. Cherokee is a member

of the Iroquoian language family. It is related to Cayuga, Seneca, Onondaga,

Wyandot-Huron, Tuscarora, Oneida, and Mohawk. The relationship is not close

because roughly 3,000 years ago the Cherokees migrated southeastward from the

Great Lakes region of North America to what is now North Carolina, Tennessee, and

Georgia. Cherokee is the native tongue of approximately 20,000 people, although

most speakers today use it as a second language. The Cherokee word for both the

language and the people is Tsalagi.

The Cherokee syllabary, as invented by Sequoyah between 1815 and 1821, contained 6

vowels and 17 consonants. Sequoyah avoided copying from other alphabets, but his

original letters were modified to make them easier to print. Samuel Worcester

worked in conjunction with Sequoyah, Chief Charles Hicks, and Charles Thompson

(first cousin of Sequoyah) in the design of the Cherokee type which was finalized in

1827. Using fonts available to him, Worcester assigned a number of Latin letters to the

Cherokee syllables. At this time the Cherokee letter “MV” was dropped, and the

Cherokee syllabary reached the size of 85 letters. Worcester’s press printed 13,980,000

pages of Native American-language text, most of it in Cherokee.

 Cherokee is a left-to-right script. It has no Cherokee-specific combining

characters.

 Most existing Cherokee text is caseless. Traditionally, the forms of the

syllable letters were designed as caps height—and in fact, a number of the Cherokee

syllables are visually indistinguishable from Latin uppercase letters. As a result, most

Cherokee text has the visual appearance of all caps. The characters used for repre‐

senting such unicameral Cherokee text are the basic syllables in the Cherokee block:

U+13A0 CHEROKEE LETTER A, and so forth.

In some old printed material, such as the Cherokee New Testament, case conventions

adapted from the Latin script were used. Sentence-initial letters and initial letters for

personal and place names, for example, were typeset using a larger size font. Further‐

more, systematic distinction in casing has become more prevalent in modern typeset

materials, as well.

Starting with Version 8.0, the Unicode Standard includes a set of lowercase Cherokee

syllables to accommodate the need to represent casing distinctions in Cherokee text.

The Cherokee script is now encoded as a fully bicameral script, with case mapping.

20.1 Cherokee

20.1.1 Cherokee: U+13A0–U+13FF

Cherokee Supplement: U+AB70–U+ABBF

Structure.

Casing.

Americas 934 20.1 Cherokee

The lowercase syllable letters are mostly encoded in the Cherokee Supplement block.

A few are encoded at the end of the Cherokee block, after the basic Cherokee syllable

letters, which are now treated as the uppercase of the case pairs.

The usual way for a script originally encoded in the Unicode Standard as a unicam‐

eral script to later gain casing is by adding a new set of uppercase letters for it. The

Cherokee script is an important exception because the previously encoded Cherokee

unicameral set is treated as the uppercase as of Version 8.0, and the new set of letters

are the lowercase. The reason for this exception has to do with Cherokee typography

and the status of existing fonts. Because all existing fonts already treated Cherokee

syllable letters as cap height, attempting to extend them by changing the existing

letters to less than cap height and adding new uppercase letters to the fonts would

have destabilized the layout of all existing Cherokee text. On the other hand, inno‐

vating in the fonts by adding new lowercase forms with a smaller size and less than

cap height allows a graceful introduction of casing without invalidating the layout of

existing text.

This exceptional introduction of a lowercase set to change a unicameral encoding

into a bicameral encoding has important implications that implementers of the

Cherokee script need to keep in mind. First, in order to preserve case folding stability,

Cherokee case folds to the previously encoded uppercase letters, rather than to the

newly encoded lowercase letters. This exceptional case folding behavior impacts

identifiers, and so can trip up implementations if they are not prepared for it. Second,

representation of cased Cherokee text requires using the new lowercase letters for

most of the body text, instead of just changing a few initial letters to uppercase. That

means that representation of traditional text such as the Cherokee New Testament

requires substantial re-encoding of the text. Third, the fact that uppercase Cherokee

still represents the default and is most widely supported in fonts means that input

systems which are extended to support the new lowercase letters face unusual design

choices.

 Each Cherokee syllable can be spoken on one of four pitch or tone levels, or

can slide from one pitch to one or two others within the same syllable. However, only

in certain words does the tone of a syllable change the meaning. Tones are

unmarked.

 Several keyboarding conventions exist for inputting Cherokee. Some involve

dead-key input based on Latin transliterations; some are based on sound-mnemonics

related to Latin letters on keyboards; and some are ergonomic systems based on

frequency of the syllables in the Cherokee language

 Although Sequoyah invented a Cherokee number system, it was not

adopted and is not encoded in the Unicode Standard. The Cherokee Nation uses

European numbers. Cherokee speakers pay careful attention to the use of ordinal and

cardinal numbers. When speaking of a numbered series, they will use ordinals. For

Tones.

Input.

Numbers.

Americas 935 20.1 Cherokee

example, when numbering chapters in a book, Cherokee headings would use First

Chapter, Second Chapter, and so on, instead of Chapter One, Chapter Two, and so on.

 Cherokee uses standard Latin punctuation.

 There are no other encoding standards for Cherokee. Cherokee spelling

is not standardized: each person spells as the word sounds to him or her.

Punctuation.

Standards.

Americas 936 20.1 Cherokee

The characters in this block are a unification of various local syllabaries of Canada

into a single repertoire based on character appearance. The syllabics were invented in

the late 1830s by James Evans for Algonquian languages. As other communities and

linguistic groups adopted the script, the main structural principles described in this

section were adopted. The primary user community for this script consists of several

aboriginal groups throughout Canada, including Algonquian, Inuktitut, and Atha‐

pascan language families. The script is also used by governmental agencies and in

business, education, and media.

 The repertoire is organized primarily on structural principles found

in the CASEC [1994] report, and is essentially a glyphic encoding. The canonical

structure of each character series consists of a consonant shape with five variants.

Typically the shape points down when the consonant is combined with the vowel /e/,

up when combined with the vowel /i/, right when combined with the vowel /o/, and

left when combined with the vowel /a/. It is reduced and superscripted when in

syllable-final position, not followed by a vowel. For example:

PE PI PO PA P

Some variations in vowels also occur. For example, in Inuktitut usage, the syllable

U+1450 CANADIAN SYLLABICS TO is transcribed into Latin letters as “TU” rather

than “TO”, but the structure of the syllabary is generally the same regardless of

language.

 The arrangement of signs follows the Algonquian ordering (down-

pointing, up-pointing, right-pointing, left-pointing), as in the previous example.

Sorted within each series are the variant forms for that series. Algonquian variants

appear first, then Inuktitut variants, then Athapascan variants. This arrangement is

convenient and consistent with the historical diffusion of Syllabics writing; it does

not imply any hierarchy.

Some glyphs do not show the same down/up/right/left directions in the typical

fashion—for example, beginning with U+146B CANADIAN SYLLABICS KE. These

glyphs are variations of the rule because of the shape of the basic glyph; they do not

affect the convention.

Vowel length and labialization modify the character series through the addition of

various marks (for example, U+143E CANADIAN SYLLABICS PWII). Such modified

20.2 Canadian Aboriginal Syllabics

20.2.1 Unified Canadian Aboriginal Syllabics: U+1400–U+167F

Organization.

Arrangement.

Americas 937 20.2 Canadian Aboriginal Syllabics

characters are considered unique syllables. They are not decomposed into base char‐

acters and one or more diacritics. Some language families have different conventions

for placement of the modifying mark. For the sake of consistency and simplicity, and

to support multiple North American languages in the same document, each of these

variants is assigned a unique code point.

 The Carrier syllabics orthography has been unified with the

Unified Canadian Aboriginal Syllabics blocks, but many characters are unique.

Carrier syllabics differ from more widely-used systems like Cree and Inuktitut.

Carrier syllables have a square proportion and are uniform in width and height, and

the syllable finals are vertically centered rather than superscripted, as shown in

Figure 20-1. Font designers need to pay particular attention to these distinctions in

pan-Syllabics fonts that try to cover the entire Unified Canadian Aboriginal Syllabics

character repertoire. Using the Cree or Inuktitut proportions for Carrier syllabics

would look very wrong to Carrier users.

 A few additional syllables in the range U+166F..U+167F at the end of

this block have been added for Inuktitut, Woods Cree, and Blackfoot. Because these

extensions were encoded well after the main repertoire in the block, their arrange‐

ment in the code charts is outside the framework for the rest of the characters in the

block.

 Languages written using the Canadian Aboriginal

Syllabics make use of the common punctuation marks of Western typography.

However, a few punctuation marks are specific in form and are separately encoded as

script-specific marks for syllabics. These include: U+166E CANADIAN SYLLABICS

FULL STOP and U+1400 CANADIAN SYLLABICS HYPHEN.

There is also a special symbol, U+166D CANADIAN SYLLABICS CHI SIGN, used in reli‐

gious texts as a symbol to denote Christ.

This block contains many additional syllables attested in various local traditions of

syllabics usage in Canada. These additional characters include extensions for several

Algonquian communities (Cree, Moose Cree, and Ojibway), and for several Dene

communities (Beaver Dene, Hare Dene, Chipewyan, and Carrier).

Carrier Syllabics.

Figure 20-1. Position of Carrier Syllable Finals

Extensions.

Punctuation and Symbols.

20.2.2 Unified Canadian Aboriginal Syllabics Extended: U+18B0–

U+18FF

Americas 938 20.2 Canadian Aboriginal Syllabics

This block contains twelve syllables at U+11AB0..U+11ABB needed for rendering

unique sounds in the Nattilik language (Nattilingmiutut) used in Western Nunavut, a

member of the Western Canadian Inuktitut language family. These syllables improve

the support for Nattilik provided in other blocks. This block also includes four

historic syllables at U+11ABC..U+11ABF used in early documents for the Cree and

Ojibway languages.

20.2.3 Unified Canadian Aboriginal Syllabics Extended-A:

U+11AB0–U+11ABF

Americas 939 20.2 Canadian Aboriginal Syllabics

The Osage script is used to write the Osage language. This language is spoken by a

Native American tribe of the Great Plains that originated in the Ohio River valley

area of the present-day United States. By the 17th century, the Osage people had

migrated to their current locations in Missouri, Kansas, Arkansas, Oklahoma, and

Texas. The term “Osage” roughly translates to “mid-waters.”

For two centuries, the Osage language was written with a variety of ad-hoc Latin

orthographies and transcription systems. In 2004, the Osage Nation initiated a

program to develop a standard orthography to write the language. By 2006, a prac‐

tical orthography had been designed based on modifications or fusions of the shapes

of Latin letters. Use of the Osage orthography led to further improvements, culmi‐

nating in the adoption of the current set of letters in 2014.

 Osage is a left-to-right alphabetic script. It has no Osage-specific

combining characters, but makes use of common diacritical marks.

 Casing is used in the standard Osage orthography.

 Diacritical marks are used in Osage to distinguish length, nasalization, and

accents. The particular diacritical marks used to make these distinctions are shown

in Table 20-1.

Nasal vowels U+0358 COMBINING DOT ABOVE RIGHT

Long vowels U+0304 COMBINING MACRON

Pitch accents U+0301 COMBINING ACUTE ACCENT

Pitch accent with vowel length U+030B COMBINING DOUBLE ACUTE ACCENT

 Osage uses European numbers and standard Latin

punctuation.

20.3 Osage

20.3.1 Osage: U+104B0–U+104FF

Structure.

Casing.

Vowels.

Table 20-1. Combining Marks used in Osage

Numbers and Punctuation.

Americas 940 20.3 Osage

Deseret is a phonemic alphabet devised to write the English language. It was origi‐

nally developed in the 1850s by the regents of the University of Deseret, now the

University of Utah. It was promoted by The Church of Jesus Christ of Latter-day

Saints, also known as the “Mormon” or LDS Church, under Church President

Brigham Young (1801–1877). The name Deseret is taken from a word in the Book of

Mormon defined to mean “honeybee” and reflects the LDS use of the beehive as a

symbol of cooperative industry. Most literature about the script treats the term

Deseret Alphabet as a proper noun and capitalizes it as such.

Among the designers of the Deseret Alphabet was George D. Watt, who had been

trained in shorthand and served as Brigham Young’s secretary. It is possible that,

under Watt’s influence, Sir Isaac Pitman’s 1847 English Phonotypic Alphabet was

used as the model for the Deseret Alphabet.

The Deseret Alphabet was a work in progress through most of the 1850s, with the set

of letters and their shapes changing from time to time. The final version was used for

the printed material of the late 1860s, but earlier versions are found in handwritten

manuscripts.

The Church commissioned two typefaces and published four books using the Deseret

Alphabet. The Church-owned Deseret News also published passages of scripture

using the alphabet on occasion. In addition, some historical records, diaries, and

other materials were handwritten using this script, and it had limited use on coins

and signs. There is also one tombstone in Cedar City, Utah, written in the Deseret

Alphabet. However, the script failed to gain wide acceptance and was not actively

promoted after 1869. Today, the Deseret Alphabet remains of interest primarily to

historians and hobbyists.

 Pedagogical materials produced by the LDS Church gave

names to all of the non-vowel letters and indicated the vowel sounds with English

examples. In the Unicode Standard, the spelling of the non-vowel letter names has

been modified to clarify their pronunciations, and the vowels have been given names

that emphasize the parallel structure of the two vowel runs.

The glyphs used in the Unicode Standard are derived from the second typeface

commissioned by the LDS Church and represent the shapes most commonly encoun‐

tered. Alternate glyphs are found in the first typeface and in some instructional mate‐

rial.

20.4 Deseret

20.4.1 Deseret: U+10400–U+1044F

Letter Names and Shapes.

Americas 941 20.4 Deseret

 The final version of the script consists of 38 letters, LONG I through ENG.

Two additional letters, OI and EW, found only in handwritten materials, are encoded

after the first 38. The alphabet is bicameral; capital and small letters differ only in size

and not in shape. The order of the letters is phonetic: letters for similar classes of

sound are grouped together. In particular, most consonants come in unvoiced/voiced

pairs. Forty-letter versions of the alphabet inserted OI after AY and EW after OW.

 The order of the letters in the Unicode Standard is the one used in all but

one of the nineteenth-century descriptions of the alphabet. The exception is one in

which the letters WU and YEE are inverted. The order YEE-WU follows the order of

the “coalescents” in Pitman’s work; the order WU-YEE appears in a greater number of

Deseret materials, however, and has been followed here.

Alphabetized material followed the standard order of the Deseret Alphabet in the

code charts, except that the short and long vowel pairs are grouped together, in the

order long vowel first, and then short vowel.

 The Deseret Alphabet is written from left to right. Punc‐

tuation, capitalization, and digits are the same as in English. All words are written

phonemically with the exception of short words that have pronunciations equivalent

to letter names, as shown in Figure 20-2.

AY is written for eye or I

YEE is written for ye

BEE is written for be or bee

GAY is written for gay

THEE is written for the or thee

 An approximate IPA transcription of the sounds represented by the

Deseret Alphabet is shown in Table 20-2.

Structure.

Sorting.

Typographic Conventions.

Figure 20-2. Short Words Equivalent to Deseret Letter Names

Phonetics.

Americas 942 20.4 Deseret

Table 20-2. IPA Transcription of Deseret

Americas 943 20.4 Deseret

Chapter 21

Notational Systems

Braille consists of a related set of notational systems, using raised dots embossed on

paper or other mediums to provide a tactile writing system for the blind. The patterns

of dots are associated with the letters or syllables of other writing systems, but the

particular rules of association vary from language to language. The Unicode Standard

encodes a complete set of symbols for the shapes of Braille patterns; however the

association of letters to the patterns is left to other standards. Text should normally be

represented using the regular Unicode characters of the script. Only when the intent

is to convey a particular binding of text to a Braille pattern sequence should it be

represented using the symbols for the Braille patterns.

Musical notation—particularly Western musical notation—is different from ordinary

text in the way it is laid out, especially the representation of pitch and duration in

Western musical notation. However, ordinary text commonly refers to the basic

graphical elements that are used in musical notation, so such symbols are encoded in

the Unicode Standard. Additional sets of symbols for Ancient Greek, Byzantine, and

Znamenny notation are encoded to support historical systems of musical notation.

Duployan is an uncased, alphabetic stenographic writing system invented by Emile

Duployé, and published in 1860. It was one of the two most commonly used French

shorthands. The Duployan shorthands are used as a secondary shorthand for writing

French, English, German, Spanish, and Romanian. An adaptation and augmentation

of Duployan was used as an alternate primary script for several First Nations’

languages in interior British Columbia, Canada.

Sutton SignWriting is a notational system developed in 1974 by Valerie Sutton and

used for the transcription of many sign languages. It is a featural writing system, in

which visually iconic basic symbols are arranged in two-dimensional layout to form

snapshots of the individual signs of a sign language, which are roughly equivalent to

words. The Unicode Standard encodes the basic symbols as atomic characters or

combining character sequences.

944

Braille is a writing system used by blind people worldwide. It uses a system of six or

eight raised dots, arranged in two vertical rows of three or four dots, respectively.

Eight-dot systems build on six-dot systems by adding two extra dots above or below

the core matrix. Six-dot Braille allows 64 possible combinations, and eight-dot Braille

allows 256 possible patterns of dot combinations. There is no fixed correspondence

between a dot pattern and a character or symbol of any given script. Dot pattern

assignments are dependent on context and user community. A single pattern can

represent an abbreviation or a frequently occurring short word. For a number of

contexts and user communities, the series of ISO technical reports starting with ISO/

TR 11548-1 provide standardized correspondence tables as well as invocation

sequences to indicate a context switch.

The Unicode Standard encodes a single complete set of 256 eight-dot patterns. This

set includes the 64 dot patterns needed for six-dot Braille.

The character names for Braille patterns are based on the assignments of the dots of

the Braille pattern to digits 1 to 8 as follows:

1 ●● 4
2 ●● 5
3 ●● 6
7 ●● 8

The designation of dots 1 to 6 corresponds to that of six-dot Braille. The additional

dots 7 and 8 are added beneath. The character name for a Braille pattern consists of

BRAILLE PATTERN DOTS-12345678, where only those digits corresponding to dots in

the pattern are included. The name for the empty pattern is BRAILLE PATTERN

BLANK.

The 256 Braille patterns are arranged in the same sequence as in ISO/TR 11548-1,

which is based on an octal number generated from the pattern arrangement. Octal

numbers are associated with each dot of a Braille pattern in the following way:

1 ●● 10
2 ●● 20
4 ●● 40

100 ●● 200

The octal number is obtained by adding the values corresponding to the dots present

in the pattern. Octal numbers smaller than 100 are expanded to three digits by

inserting leading zeroes. For example, the dots of BRAILLE PATTERN DOTS-1247 are

21.1 Braille

21.1.1 Braille Patterns: U+2800–U+28FF

Notational Systems 945 21.1 Braille

assigned to the octal values of 1
8
, 2

8
, 10

8
, and 100

8
. The octal number representing

the sum of these values is 113
8
.

The assignment of meanings to Braille patterns is outside the scope of this standard.

 According to ISO/TR 11548-2, the character LATIN CAPITAL LETTER F can

be represented in eight-dot Braille by the combination of the dots 1, 2, 4, and 7

(BRAILLE PATTERN DOTS-1247). A full circle corresponds to a tangible (set) dot, and

empty circles serve as position indicators for dots not set within the dot matrix:

1 ●● 4
2 ●○ 5
3 ○○ 6
7 ●○ 8

 The eight-dot Braille patterns in the Unicode Standard are intended to

be used with either style of eight-dot Braille system, whether the additional two dots

are considered to be in the top row or in the bottom row. These two systems are never

intermixed in the same context, so their distinction is a matter of convention. The

intent of encoding the 256 Braille patterns in the Unicode Standard is to allow input

and output devices to be implemented that can interchange Braille data without

having to go through a context-dependent conversion from semantic values to

patterns, or vice versa. In this manner, final-form documents can be exchanged and

faithfully rendered. At the same time, processing of textual data that require

semantic support is intended to take place using the regular character assignments in

the Unicode Standard.

 When output on a Braille device, dots shown as black are intended to be

rendered as tangible. Dots shown in the standard as open circles are blank (not

rendered as tangible). The Unicode Standard does not specify any physical dimension

of Braille characters.

In the absence of a higher-level protocol, Braille patterns are output from left to right.

When used to render final form (tangible) documents, Braille patterns are normally

not intermixed with any other Unicode characters except control codes.

 Unlike other sets of symbols, the Braille Patterns are given their own, unique

value of the Script property in the Unicode Standard. This follows both from the

behavior of Braille in forming a consistent writing system on its own terms, as well as

from the independent bibliographic status of books and other documents printed in

Braille. For more information on the Script property, see Unicode Standard Annex

#24, “Unicode Script Property.”

Example.

Usage Model.

Imaging.

Script.

Notational Systems 946 21.1 Braille

The musical symbols encoded in the Musical Symbols block are intended to cover

basic Western musical notation and its antecedents: mensural notation and plainsong

(or Gregorian) notation, as well as closely related systems, such as Kievan notation.

The most comprehensive coded language in regular use for representing sound is the

common musical notation (CMN) of the Western world. Western musical notation is

a system of symbols that is relatively, but not completely, self-consistent and rela‐

tively stable but still, like music itself, evolving. This open-ended system has survived

over time partly because of its flexibility and extensibility. In the Unicode Standard,

musical symbols have been drawn primarily from CMN. Commonly recognized addi‐

tions to the CMN repertoire, such as quarter-tone accidentals, cluster noteheads, and

shape-note noteheads, have also been included.

Graphical score elements are not included in the Musical Symbols block. These

pictographs are usually created for a specific repertoire or sometimes even a single

piece. Characters that have some specialized meaning in music but that are found in

other character blocks are not included. They include numbers for time signatures

and figured basses, letters for section labels and Roman numeral harmonic analysis,

and so on.

Musical symbols are used worldwide in a more or less standard manner by a very

large group of users. The symbols frequently occur in running text and may be

treated as simple spacing characters with no special properties, with a few excep‐

tions. Musical symbols are used in contexts such as theoretical works, pedagogical

texts, terminological dictionaries, bibliographic databases, thematic catalogs, and

databases of musical data. The musical symbol characters are also intended to be

used within higher-level protocols, such as music description languages and file

formats for the representation of musical data and musical scores.

Because of the complexities of layout and of pitch representation in general, the

encoding of musical pitch is intentionally outside the scope of the Unicode Standard.

The Musical Symbols block provides a common set of elements for interchange and

processing. Encoding of pitch, and layout of the resulting musical structure, involves

specifications not only for the vertical relationship between multiple notes simulta‐

neously, but also in multiple staves, between instrumental parts, and so forth. These

musical features are expected to be handled entirely in higher-level protocols making

use of the graphical elements provided. Lack of pitch encoding is not a shortcoming,

but rather is a necessary feature of the encoding.

 The glyphs for musical symbols shown in the code charts, are representative

of typical cases; however, note in particular that the stem direction is not specified by

21.2 Western Musical Symbols

21.2.1 Musical Symbols: U+1D100–U+1D1FF

Glyphs.

Notational Systems 947 21.2 Western Musical Symbols

the Unicode Standard and can be determined only in context. For a font that is

intended to provide musical symbols in running text, either stem direction is accept‐

able. In some contexts—particularly for applications in early music—note heads,

stems, flags, and other associated symbols may need to be rendered in different colors

—for example, red.

U+266D MUSIC FLAT SIGN, U+266E MUSIC NATURAL

SIGN, and U+266F MUSIC SHARP SIGN—three characters that occur frequently in

musical notation—are encoded in the Miscellaneous Symbols block

(U+2600..U+267F). However, four characters also encoded in that block are to be

interpreted merely as dingbats or miscellaneous symbols, not as representing actual

musical notes:

U+2669 QUARTER NOTE

U+266A EIGHTH NOTE

U+266B BEAMED EIGHTH NOTES

U+266C BEAMED SIXTEENTH NOTES

 Most musical symbols can be thought of as simple spacing characters

when used inline within texts and examples, even though they behave in a more

complex manner in full musical layout. Some characters are meant only to be

combined with others to produce combined character sequences, representing

musical notes and their particular articulations. Musical symbols can be input,

processed, and displayed in a manner similar to mathematical symbols. When

embedded in text, most of the symbols are simple spacing characters with no special

properties. A few characters have format control functions, as described later in this

section.

 Musical symbols can be entered via standard alphanumeric

keyboard, via piano keyboard or other device, or by a graphical method. Keyboard

input of the musical symbols may make use of techniques similar to those used for

Chinese, Japanese, and Korean. In addition, input methods utilizing pointing devices

or piano keyboards could be developed similar to those in existing musical layout

systems. For example, within a graphical user interface, the user could choose

symbols from a palette-style menu.

 When combined with right-to-left texts—in Hebrew or Arabic, for

example—the musical notation is usually written from left to right in the normal

manner. The words are divided into syllables and placed under or above the notes in

the same fashion as for Latin and other left-to-right scripts. The individual words or

syllables corresponding to each note, however, are written in the dominant direction

of the script.

Symbols in Other Blocks.

Processing.

Input Methods.

Directionality.

Notational Systems 948 21.2 Western Musical Symbols

The opposite approach is also known: in some traditions, the musical notation is

actually written from right to left. In that case, some of the symbols, such as clef

signs, are mirrored; other symbols, such as notes, flags, and accidentals, are not

mirrored. All responsibility for such details of bidirectional layout lies with higher-

level protocols and is not reflected in any character properties. Figure 21-1 exemplifies

this principle with two musical passages. The first example shows Turkish lyrics in

Arabic script with ordinary left-to-right musical notation; the second shows right-to-

left musical notation. Note the partial mirroring.

 Extensive ligature-like beams are used frequently in musical

notation between groups of notes having short values. The practice is widespread and

very predictable, so it is therefore amenable to algorithmic handling. The format

characters U+1D173 MUSICAL SYMBOL BEGIN BEAM and U+1D174 MUSICAL SYMBOL

END BEAM can be used to indicate the extents of beam groupings. In some excep‐

tional cases, beams are left unclosed on one end. This status can be indicated with a

U+1D159 MUSICAL SYMBOL NULL NOTEHEAD character if no stem is to appear at the

end of the beam.

Similarly, format characters have been provided for other connecting structures. The

characters U+1D175 MUSICAL SYMBOL BEGIN TIE, U+1D176 MUSICAL SYMBOL END

TIE, U+1D177 MUSICAL SYMBOL BEGIN SLUR, U+1D178 MUSICAL SYMBOL END SLUR,

U+1D179 MUSICAL SYMBOL BEGIN PHRASE, and U+1D17A MUSICAL SYMBOL END

PHRASE indicate the extent of these features. Like beaming, these features are easily

handled in an algorithmic fashion.

These pairs of characters modify the layout and grouping of notes and phrases in full

musical notation. When musical examples are written or rendered in plain text

without special software, the start/end format characters may be rendered as brackets

or left uninterpreted. To the extent possible, more sophisticated software that renders

musical examples inline with natural-language text might interpret them in their

actual format control capacity, rendering slurs, beams, and so forth, as appropriate.

Figure 21-1. Examples of Specialized Music Layout

Format Characters.

Notational Systems 949 21.2 Western Musical Symbols

 For maximum flexibility, the character set includes

both precomposed note values and primitives from which complete notes may be

constructed. The precomposed versions are provided mainly for convenience.

However, if any normalization form is applied, including NFC, the characters will be

decomposed. For further information, see Section 3.11, Normalization Forms. The

canonical equivalents for these characters are given in the Unicode Character Data‐

base and are illustrated in Figure 21-2.

 More complex notes built up from alternative noteheads,

stems, flags, and articulation symbols are necessary for complete implementations

and complex scores. Examples of their use include American shape-note and modern

percussion notations, as shown in the first line of Figure 21-3.

U+1D159 MUSICAL SYMBOL NULL NOTEHEAD is a special notehead that has no

distinct visual appearance of its own. It can be used as an anchor for a combining

flag in complicated musical scoring. For example, in a beamed sequence of notes, the

beam might be extended beyond visible notes, as shown in the second line of

Figure 21-3. Even though the null notehead has no visual appearance of its own, it is

not a default ignorable code point; some indication of its presence, as for instance a

dotted box glyph, should be shown if displayed outside of a context that supports full

musical rendering.

Precomposed Note Characters.

Figure 21-2. Precomposed Note Characters

Alternative Noteheads.

Figure 21-3. Alternative Noteheads

Notational Systems 950 21.2 Western Musical Symbols

 Augmentation dots and articula‐

tion symbols may be appended to either the precomposed or built-up notes. In addi‐

tion, augmentation dots and articulation symbols may be repeated as necessary to

build a complete note symbol. Examples of the use of augmentation dots and articu‐

lation symbols are shown in Figure 21-4.

Table 21-1 lists common eighteenth-century ornaments and the

sequences of characters from which they can be generated.

1D19C STROKE-2 + 1D19D STROKE-3

1D19C STROKE-2 + 1D1A0 STROKE-6 + 1D19D STROKE-3

1D1A0 STROKE-6 + 1D19C STROKE-2 + 1D19C STROKE-2 + 1D19D STROKE-3

1D19C STROKE-2 + 1D19C STROKE-2 + 1D1A0 STROKE-6 + 1D19D STROKE-3

1D19C STROKE-2 + 1D19C STROKE-2 + 1D1A3 STROKE-9

1D1A1 STROKE-7 + 1D19C STROKE-2 + 1D19C STROKE-2 + 1D19D STROKE-3

1D1A2 STROKE-8 + 1D19C STROKE-2 + 1D19C STROKE-2 + 1D19D STROKE-3

1D19C STROKE-2 + 1D19C STROKE-2 + 1D19D STROKE-3 + 1D19F STROKE-5

1D1A1 STROKE-7 + 1D19C STROKE-2 + 1D19C STROKE-2 + 1D1A0 STROKE-6 + 1D19D
STROKE-3

1D1A1 STROKE-7 + 1D19C STROKE-2 + 1D19C STROKE-2 + 1D19D STROKE-3 + 1D19F
STROKE-5

1D1A2 STROKE-8 + 1D19C STROKE-2 + 1D19C STROKE-2 + 1D1A0 STROKE-6 + 1D19D
STROKE-3

1D19B STROKE-1 + 1D19C STROKE-2 + 1D19C STROKE-2 + 1D19D STROKE-3

1D19B STROKE-1 + 1D19C STROKE-2 + 1D19C STROKE-2 + 1D19D STROKE-3 + 1D19E
STROKE-4

1D19C STROKE-2 + 1D19D STROKE-3 + 1D19E STROKE-4

 The punctum, or Gregorian brevis, a square shape, is unified with

U+1D147 MUSICAL SYMBOL SQUARE NOTEHEAD BLACK. The Gregorian semibrevis, a

diamond or lozenge shape, is unified with U+1D1BA MUSICAL SYMBOL SEMIBREVIS

Augmentation Dots and Articulation Symbols.

Figure 21-4. Augmentation Dots and Articulation Symbols

Ornamentation.

Table 21-1. Examples of Ornamentation

Gregorian.

Notational Systems 951 21.2 Western Musical Symbols

BLACK. Thus Gregorian notation, medieval notation, and modern notation either

require separate fonts in practice or need font features to make subtle differentiations

between shapes where required.

 Kievan musical notation is a form of linear musical notation found in reli‐

gious chant books of the Russian Orthodox Church, among others. It is also referred

to as East Slavic musical notation. The notation originated in the 1500s, and the first

books using Kievan notation were published in 1772. The notation is still used today.

Unlike Western plainchant, Kievan is written on a five-line staff (encoded at

U+1D11A) with uniquely shaped notes, and several distinct symbols, including its

own C clef and flat signs. U+1D1DF MUSICAL SYMBOL KIEVAN END OF PIECE is anal‐

ogous to the Western U+1D102 MUSICAL SYMBOL FINAL BARLINE.

Beaming is used in Kievan notation occasionally, and the existing musical format

characters encoded between U+1D173 and U+1D17A may be used in implementa‐

tions of beaming in higher-level protocols.

 Persian traditional music uses intervals that are approximately equivalent to

a quarter-tone, but which are not equal-tempered. The 20th-century composer Ali-

Naqi Vaziri introduced two symbols, called sori and koron, to represent these inter‐

vals. They are encoded as U+1D1E9 MUSICAL SYMBOL SORI and U+1D1EA

MUSICAL SYMBOL KORON. The sori is analogous to U+1D132 MUSICAL SYMBOL

QUARTER TONE SHARP, while the koron is analogous to U+1D133 MUSICAL

SYMBOL QUARTER TONE FLAT.

Kievan.

Persian.

Notational Systems 952 21.2 Western Musical Symbols

Byzantine musical notation first appeared in the seventh or eighth century CE, devel‐

oping more fully by the tenth century. These musical symbols are chiefly used to

write the religious music and hymns of the Christian Orthodox Church, although

folk music manuscripts are also known. In 1881, the Orthodox Patriarchy Musical

Committee redefined some of the signs and established the New Analytical Byzan‐

tine Musical Notation System, which is in use today. About 95% of the more than

7,000 musical manuscripts using this system are in Greek. Other manuscripts are in

Russian, Bulgarian, Romanian, and Arabic.

 Computer representation of Byzantine musical symbols is quite recent,

although typographic publication of religious music books began in 1820. Two kinds

of applications have been developed: applications to enable musicians to write the

books they use, and applications that compare or convert this musical notation

system to the standard Western system. (See Section 21.2, Western Musical Symbols.)

Byzantine musical symbols are divided into 15 classes according to function. Charac‐

ters interact with one another in the horizontal and vertical dimension. There are

three horizontal “stripes” in which various classes generally appear and rules as to

how other characters interact within them. These rules, which are still being speci‐

fied, are the responsibilities of higher-level protocols.

21.3 Byzantine Musical Symbols

21.3.1 Byzantine Musical Symbols: U+1D000–U+1D0FF

Processing.

Notational Systems 953 21.3 Byzantine Musical Symbols

Znamenny musical notation is used to write Znamenny chant, a form of liturgical

singing that developed in Russia in the 11th century CE. Znamenny chant was the

predominant form of liturgical music used in Russia and Ukraine until the late 17th

century. After that time, Russian Old Ritualists, as well as some monasteries and

parishes within the mainline Russian Orthodox Church, continued to use Znamenny

musical notation.

While Znamenny chant has limited modern use within the Russian Orthodox

Church, musicologists and liturgists began academic research into Znamenny chant

in the 19th century, and this research continues today. Derived from an early form of

Byzantine musical notation, Znamenny notation developed over five centuries, and

came to form a unique notation system. Notably, Znamenny notation does not use a

lined staff. In Znamenny notation, neumes are a note or a group of notes to be sung

to a single syllable.

 Modern Znamemmy notation has three varieties: types A, B, and C.

The earliest is Type C notation, which occurs in musical manuscripts from the 15th

century onward and lacks any markings indicating pitch. Type B notation arose in the

first half of the 17th century, when special marks indicating pitch and dynamics were

introduced. Historically, these marks were made in red ink, so they were called

Cinnabar or Shaidur marks. This block in the Unicode Standard primarily encodes

the system of Cinnabar marks documented in the 1670 treatise Izveshchenie o soglas‐

neyshikh pometakh.

 In the late 17th century Znamenny notation needed to be typeset on the

newly developed printing press. Because the available type technology did not allow

simultaneous printing of neumes in black and red ink, a monochrome system of

alternate pitch marks was devised using small dashes, called priznaki, to indicate

pitch. This system came to be used alongside the Cinnabar marks in a unified writing

system. Notation bearing both the priznaki and Cinnabar marks is called Type A

notation.

21.4 Znamenny Musical Notation

21.4.1 Znamenny Musical Notation: U+1CF00–U+1CFCF

Classification.

Priznaki.

Notational Systems 954 21.4 Znamenny Musical Notation

Ancient Greeks developed their own distinct system of musical notation, which is

found in a large number of ancient texts ranging from a fragment of Euripides’

Orestes to Christian hymns. It is also used in the modern publication of these texts as

well as in modern studies of ancient music.

The system covers about three octaves, and symbols can be grouped by threes: one

symbol corresponds to a “natural” note on a diatonic scale, and the two others to

successive sharpenings of that first note. There is no distinction between enharmonic

and chromatic scales. The system uses two series of symbols: one for vocal melody

and one for instrumental melody.

The symbols are based on Greek letters, comparable to the modern usage of the Latin

letters A through G to refer to notes of the Western musical scale. However, rather

than using a sharp and flat notation to indicate semitones, or casing and other

diacritics to indicate distinct octaves, the Ancient Greek system extended the basic

Greek alphabet by rotating and flipping letterforms in various ways and by adding a

few more symbols not directly based on letters.

 In the Unicode Standard, the vocal and instrumental systems are

unified with each other and with the basic Greek alphabet, based on shape.

Table 21-2 gives the correspondence between modern notes, the numbering used by

modern scholars, and the Unicode characters or sequences of characters to use to

represent them.

Modern Note Modern Number Vocal Notation Instrumental Notation

g″ 70 2127, 0374 1D23C, 0374

69 0391, 0374 1D23B, 0374

68 0392, 0374 1D23A, 0374

f″ 67 0393, 0374 039D, 0374

66 0394, 0374 1D239, 0374

65 0395, 0374 1D208, 0374

e″ 64 0396, 0374 1D238, 0374

63 0397, 0374 1D237, 0374

62 0398, 0374 1D20D, 0374

d″ 61 0399, 0374 1D236, 0374

60 039A, 0374 1D235, 0374

59 039B, 0374 1D234, 0374

21.5 Ancient Greek Musical Notation

21.5.1 Ancient Greek Musical Notation: U+1D200–U+1D24F

Unification.

Table 21-2. Representation of Ancient Greek Vocal and Instrumental

Notational Systems 955 21.5 Ancient Greek Musical Notation

c″ 58 039C, 0374 1D233, 0374

57 039D, 0374 1D232, 0374

56 039E, 0374 1D20E, 0374

b′ 55 039F, 0374 039A, 0374

54 1D21C 1D241

53 1D21B 1D240

a′ 52 1D21A 1D23F

51 1D219 1D23E

50 1D218 1D23D

g′ 49 2127 1D23C

48 0391 1D23B

47 0392 1D23A

f′ 46 0393 039D

45 0394 1D239

44 0395 1D208

e′ 43 0396 1D238

42 0397 1D237

41 0398 1D20D

d′ 40 0399 1D236

39 039A 1D235

38 039B 1D234

c′ 37 039C 1D233

36 039D 1D232

35 039E 1D20E

b 34 039F 039A

33 03A0 03FD

32 03A1 1D231

a 31 03F9 03F9

30 03A4 1D230

29 03A5 1D22F

g 28 03A6 1D213

27 03A7 1D22E

26 03A8 1D22D

f 25 03A9 1D22C

24 1D217 1D22B

23 1D216 1D22A

e 22 1D215 0393

21 1D214 1D205

20 1D213 1D21C

Notational Systems 956 21.5 Ancient Greek Musical Notation

d 19 1D212 1D229

18 1D211 1D228

17 1D210 1D227

c 16 1D20F 0395

15 1D20E 1D211

14 1D20D 1D226

B 13 1D20C 1D225

12 1D20B 1D224

11 1D20A 1D223

A 10 1D209 0397

9 1D208 1D206

8 1D207 1D222

G 7 1D206 1D221

6 1D205 03A4

5 1D204 1D220

F 4 1D203 1D21F

3 1D202 1D202

2 1D201 1D21E

E 1 1D200 1D21D

 The character names are based on the standard names widely

used by modern scholars. There is no standardized ancient system for naming these

characters. Apparent gaps in the numbering sequence are due to the unification with

standard letters and between vocal and instrumental notations.

If a symbol is used in both the vocal notation system and the instrumental notation

system, its Unicode character name is based on the vocal notation system catalog

number. Thus U+1D20D GREEK VOCAL NOTATION SYMBOL-14 has a glyph based on

an inverted capital lambda. In the vocal notation system, it represents the first sharp

of B; in the instrumental notation system, it represents the first sharp of d’. Because it

is used in both systems, its name is based on its sequence in the vocal notation

system, rather than its sequence in the instrumental notation system. The character

names list in the Unicode Character Database is fully annotated with the functions of

the symbols for each system.

 Scholars usually typeset musical characters in sans-serif fonts to distinguish

them from standard letters, which are usually represented with a serifed font.

However, this is not required. The code charts use a font without serifs for reasons of

clarity.

Naming Conventions.

Font.

Notational Systems 957 21.5 Ancient Greek Musical Notation

 The combining marks encoded in the range U+1D242..U+1D244

are placed over the vocal or instrumental notation symbols. They are used to indicate

metrical qualities.

Combining Marks.

Notational Systems 958 21.5 Ancient Greek Musical Notation

The Duployan shorthands are used to write French, English, German, Spanish, and

Romanian. The original Duployan shorthand was invented by Emile Duployé, and

published in 1860 as a stenographic shorthand for French. It was one of the two most

commonly used French shorthands. There are three main English adaptations from

the late 19th and early 20th centuries based on Duployan: Pernin, Sloan, and Perrault.

None were as popular as the Gregg and Pitman shorthands.

An adaptation and augmentation of Duployan by Father Jean Marie Raphael

LeJeune was used as an alternate primary script for several First Nations’ languages

in interior British Columbia, including Chinook Jargon, Okanagan, Lilooet,

Shushwap, and North Thompson. Its original use and greatest surviving attestation is

from the Kamloops Wawa, a Chinook Jargon newsletter of the Catholic diocese of

Kamloops, British Columbia, published 1891–1923. Chinook Jargon was a trade

language widely spoken from southeast Alaska to northern California, from the

Pacific to the Rockies, and sporadically outside this area. The Chinook script uses the

basic Duployan inventory, with the addition of several derived letterforms and

compound letters.

 Duployan is an uncased, alphabetic stenographic writing system. The

model letterforms are generally based on circles and lines. It is a left-to-right script.

The basic inventory of consonant and vowel signs has been augmented over the years

to provide more efficient shorthands and has been adapted to the phonologies of

languages other than the original French. The Romanian Pernin, Perrault, and Sloan

stenographic orthographies add a few letters or letterforms, ideographs, and several

combined letters.

The core repertoire of Duployan contains several classes of letters, differentiated

primarily by visual form and stroke direction, and nominally by phonetic value.

Letter classes include the line consonants (P, T, F, K, and L-type), arc consonants (M,

N, J, and S-type), circle vowels (A and O vowels), nasal vowels, and orienting vowels

(U/EU, I/E). In addition, the Chinook writing contains spacing letters, compound

consonants, and a logograph.

The extended Duployan shorthand includes four other letter classes—the complex

letters (multisyllabic symbols with consonant forms), and high, low, and connecting

terminals for common word endings. The repertoire also includes U+1BC9D

DUPLOYAN THICK LETTER SELECTOR, which modifies a preceding Duployan char‐

acter by causing it to be rendered bold.

21.6 Duployan

21.6.1 Duployan: U+1BC00–U+1BC9F

Structure.

Notational Systems 959 21.6 Duployan

For further details and discussion of implementation of rendering for Duployan, see

Unicode Technical Note #37, “Duployan Shorthand Rendering Model.”

 The representative glyphs used in the Unicode code charts

for Duployan characters often include additional information about direction of

strokes and/or relative position for connecting terminals. In particular, for letters that

are differentiated by stroke direction, small arrows are placed next to the glyphs for

those letters in the code charts, to indicate that the stroke direction is upwards or

downwards, for example. These small arrows are intended to help identify and distin‐

guish such letter pairs, and would not be included as part of glyphs in fonts for

rendering connected Duployan text. In a similar manner, for some attached affixes,

the representative glyphs are shown together with dotted lines that indicate contrasts

in the relative position of their attachment, but which are not displayed in rendered

text.

Many systems of shorthand use overlapping letters to indicate abbreviations and

initialisms. (Initialisms are abbreviations that are pronounced one letter at a time,

such as IBM or HTML.) Such non-default text flow may be controlled with the short‐

hand format controls. U+1BCA0 SHORTHAND FORMAT LETTER OVERLAP indicates a

single letter overlap, with the text continuing to flow as if that overlapping character

did not exist. U+1BCA1 SHORTHAND FORMAT CONTINUING OVERLAP indicates a

continuing overlap where the text flow proceeds from the overlapping character. In

Duployan, the overlapping behavior is limited to consonants, circle vowels, and

orienting vowels overlapping consonants.

There are two other “step” format controls used with word endings and contractions

in specific contexts. U+1BCA2 SHORTHAND FORMAT DOWN STEP indicates down‐

step, which means that a following character should be rendered below the previous

character, with any subsequent joined characters proceeding relative to the lowered

glyph. U+1BCA3 SHORTHAND FORMAT UP STEP indicates upstep, which causes the

following word or stenographic full stop to be raised.

Representative Glyphs.

21.6.2 Shorthand Format Controls: U+1BCA0–U+1BCAF

Notational Systems 960 21.6 Duployan

Sutton SignWriting is a notational system developed in 1974 by Valerie Sutton and

used for the transcription of many sign languages. It is designed to represent physical

formations of sign language signs precisely, and is used in a number of publications.

More information about the notational system and catalogs of signs can be found on

the Sutton SignWriting websites http://www.signwriting.org/ and http://

www.signbank.org/.

 Sutton SignWriting is a featural writing system, in which visually iconic

basic symbols are arranged in two-dimensional layout to form snapshots of the indi‐

vidual signs of a sign language, which are roughly equivalent to words. The Unicode

Standard encodes the basic symbols as atomic characters or combining character

sequences. The spatial arrangement of the symbols is an essential part of the writing

system, but constitutes a higher-level protocol beyond the scope of the Unicode Stan‐

dard.

 The repertoire of Sutton SignWriting is comprised of characters for

handshapes, which are the configurations that the hands take in signing, as well as

characters for contact, movement, head and face, body, and location. The repertoire

also includes five punctuation marks and twenty characters that indicate fill and

rotation.

The head and face characters are used in combining character sequences to represent

facial expressions. The character sequences are formed with U+1D9FF SIGNWRITING

HEAD as base, followed by nonspacing marks from the ranges U+1DA00..U+1DA36

and U+1DA3B..U+1DA6C. These nonspacing marks represent expressions or move‐

ments of the eyes, cheeks, mouth, and so on, and include such characters as

U+1DA17 SIGNWRITING EYE BLINK SINGLE and U+1DA3E SIGNWRITING MOUTH

SMILE.

 The fill and rotation characters are nonspacing combining marks that

modify a base character to create various realizations of the base character. For

example, the handshape U+1D800 SIGNWRITING HAND-FIST INDEX can be modified

by a fill character, a rotation character, or both to represent different positions of that

handshape and to distinguish between the left and the right hand.

There are five fill modifiers, U+1DA9B SIGNWRITING FILL MODIFIER-2 through

U+1DA9F SIGNWRITING FILL MODIFIER-6, and fifteen rotation modifiers, U+1DAA1

SIGNWRITING ROTATION MODIFIER-2 through U+1DAAF SIGNWRITING ROTATION

MODIFIER-16. There are no explicit modifiers encoded for fill-1 or rotation-1, as those

values are considered inherent in the base character. When both a fill and a rotation

21.7 Sutton SignWriting

21.7.1 Sutton SignWriting: U+1D800–U+1DAAF

Structure.

Repertoire.

Modifiers.

Notational Systems 961 21.7 Sutton SignWriting

modifier are used in a combining character sequence, the fill modifier precedes the

rotation modifier in the sequence.

The effect of a fill modifier depends on the character sequence it appears in. For

example, when applied to a handshape character such as U+1D800 SIGNWRITING

HAND-FIST INDEX, a fill modifier selects one of six possible fills representing as many

palm orientations. When applied to a tempo symbol such as U+1D9F7 SIGNWRITING

DYNAMIC FAST, a fill modifier alters the shape of the base character. When used in a

character sequence such as <U+1D9FF SIGNWRITING HEAD, U+1DA16 SIGN‐

WRITING EYES CLOSED, fill>, the fill modifier selects between one eye and both eyes

closed.

The rotation modifiers turn a base character by 45 degree increments. In combina‐

tion with handshape characters, the rotation modifiers also distinguish between the

right and left hand characters. U+1DAA4 SIGNWRITING ROTATION MODIFIER-5 turns

a base character by 180 degrees. For a handshape that distinguishes between right

and left hand shapes, U+1DAAC SIGNWRITING ROTATION MODIFIER-13 turns the left

hand shape 180 degrees.

 Sutton SignWriting uses five script-specific punctuation marks. These

include U+1DA8B SIGNWRITING PARENTHESIS, which represents an opening paren‐

thesis. A closing parenthesis is represented with the sequence <U+1DA8B SIGN‐

WRITING PARENTHESIS, U+1DAA4 SIGNWRITING ROTATION MODIFIER-5>.

Punctuation.

Notational Systems 962 21.7 Sutton SignWriting

Chapter 22

Symbols

The universe of symbols is rich and open-ended.

Pictorial or graphic items for which there is no demonstrated need or strong desire to

exchange in plain text are not encoded in the standard.

Combining marks may be used with symbols, particularly the set encoded at

U+20D0..U+20FF (see Section 7.9, Combining Marks).

Letterlike and currency symbols, as well as numerals, superscripts, and subscripts,

are typically subject to the same font and style changes as the surrounding text.

Where square and enclosed symbols occur in East Asian contexts, they generally

follow the prevailing type styles.

Other symbols have an appearance that is independent of type style, or a more

limited or altogether different range of type style variation than the regular text

surrounding them. For example, mathematical alphanumeric symbols are typically

used for mathematical variables; those letterlike symbols that are part of this set

carry semantic information in their type style. This fact restricts—but does not

completely eliminate—possible style variations. However, symbols such as mathe‐

matical operators can be used with any script or independent of any script.

Special invisible operator characters can be used to explicitly encode some mathe‐

matical operations, such as multiplication, which are normally implied by juxtaposi‐

tion. This aids in automatic interpretation of mathematical notation.

In a bidirectional context (see Unicode Standard Annex #9, “Unicode Bidirectional

Algorithm”), most symbol characters have no inherent directionality but resolve their

directionality for display according to the Unicode Bidirectional Algorithm. For some

symbols, such as brackets and mathematical operators whose image is not bilaterally

symmetric, the mirror image is used when the character is part of the right-to-left

text stream (see Section 4.7, Bidi Mirrored).

Dingbats and optical character recognition characters are different from all other

characters in the standard, in that they are encoded based primarily on their precise

appearance.

963

Many symbols encoded in the Unicode Standard are intended to support legacy

implementations and obsolescent practices, such as terminal emulation or other

character mode user interfaces. Examples include box drawing components and

control pictures.

A number of symbols are also encoded for emoji (“picture character,” or pictograph).

Added initially for compatibility with the emoji sets encoded by several Japanese cell

phone carriers as extensions of the JIS X 0208 character set, these pictographs

continue to grow in usage and coverage. These symbols are interchanged as plain

text, and are encoded in the Unicode Standard to support interoperability and wide‐

spread usage on mobile devices.

Other symbols—many of which are also pictographic—are encoded for compatibility

with Webdings and Wingdings sets, or various e-mail systems, and to address other

interchange requirements.

Many of the symbols encoded in Unicode can be used as operators or given some

other syntactical function in a formal language syntax. For more information, see

Unicode Standard Annex #31, “Unicode Identifier and Pattern Syntax.”

Symbols 964

Currency symbols are intended to encode the customary symbolic signs used to indi‐

cate certain currencies in general text. These signs vary in shape and are often used

for more than one currency. Not all currencies are represented by a special currency

symbol; some use multiple-letter strings instead, such as “Sfr” for Swiss franc. More‐

over, the abbreviations for currencies can vary by language. The Unicode Common

Locale Data Repository (CLDR) provides further information; see https://

cldr.unicode.org. Therefore, implementations that are concerned with the exact iden‐

tity of a currency should not depend on an encoded currency sign character. Instead,

they should follow standards such as the ISO 4217 three-letter currency codes, which

are specific to currencies—for example, USD for U.S. dollar, CAD for Canadian dollar.

 The Unicode Standard does not duplicate encodings where more than

one currency is expressed with the same symbol. Many currency symbols are over‐

struck letters. There are therefore many minor variants, such as the U+0024 DOLLAR

SIGN $, with one or two vertical bars, or other graphical variation, as shown in

Figure 22-1.

Claims that glyph variants of a certain currency symbol are used consistently to indi‐

cate a particular currency could not be substantiated upon further research. There‐

fore, the Unicode Standard considers these variants to be typographical and provides

a single encoding for them. See ISO/IEC 10367, Annex B (informative), for an

example of multiple renderings for U+00A3 POUND SIGN.

 Currency symbols are commonly designed to display at the same width as a

digit (most often a European digit, U+0030..U+0039) to assist in alignment of mone‐

tary values in tabular displays. Like letters, they tend to follow the stylistic design

features of particular fonts because they are used often and need to harmonize with

body text. In particular, even though there may be more or less normative designs for

the currency sign per se, as for the euro sign, type designers freely adapt such designs

to make them fit the logic of the rest of their fonts. This partly explains why currency

signs show more glyph variation than other types of symbols.

This block contains currency symbols that are not encoded in other blocks. Contem‐

porary and historic currency symbols encoded in other blocks are listed in Table 22-1.

22.1 Currency Symbols

Unification.

Figure 22-1. Alternative Glyphs for Dollar Sign

Fonts.

22.1.1 Currency Symbols: U+20A0–U+20CF

Symbols 965 22.1 Currency Symbols

https://cldr.unicode.org
https://cldr.unicode.org

The table omits currency symbols known only from usage in ancient coinage, such as

U+1017A GREEK TALENT SIGN and U+10196 ROMAN DENARIUS SIGN.

Currency Unicode Code Point

Dollar, milreis, escudo, peso U+0024 DOLLAR SIGN

Cent U+00A2 CENT SIGN

Pound and lira U+00A3 POUND SIGN

General currency U+00A4 CURRENCY SIGN

Yen or yuan U+00A5 YEN SIGN

Dutch florin U+0192 LATIN SMALL LETTER F WITH HOOK

Dram U+058F ARMENIAN DRAM SIGN

Afghani U+060B AFGHANI SIGN

Rupee U+09F2 BENGALI RUPEE MARK

Rupee U+09F3 BENGALI RUPEE SIGN

Ana (historic) U+09F9 BENGALI CURRENCY DENOMINATOR SIXTEEN

Ganda (historic) U+09FB BENGALI GANDA MARK

Rupee U+0AF1 GUJARATI RUPEE SIGN

Rupee U+0BF9 TAMIL RUPEE SIGN

Baht U+0E3F THAI CURRENCY SYMBOL BAHT

Riel U+17DB KHMER CURRENCY SYMBOL RIEL

German mark (historic) U+2133 SCRIPT CAPITAL M

Yuan, yen, won, HKD U+5143 CJK UNIFIED IDEOGRAPH-5143

Yen U+5186 CJK UNIFIED IDEOGRAPH-5186

Yuan U+5706 CJK UNIFIED IDEOGRAPH-5706

Yuan, yen, won, HKD, NTD U+5713 CJK UNIFIED IDEOGRAPH-5713

Rupee U+A838 NORTH INDIC RUPEE MARK

Rial U+FDFC RIAL SIGN

 A separate currency sign U+20A4 LIRA SIGN is encoded for compatibility

with the HP Roman-8 character set, which is still widely implemented in printers. In

general, U+00A3 POUND SIGN may be used for both the various currencies known as

pound (or punt) and the currencies known as lira. Examples include the British

pound sterling, the historic Irish punt, and the former lira currency of Italy. Until

2012, the lira sign was also used for the Turkish lira, but for current Turkish usage,

see U+20BA TURKISH LIRA SIGN. As in the case of the dollar sign, the glyphic

distinction between single- and double-bar versions of the sign is not indicative of a

systematic difference in the currency.

 The dollar sign (U+0024) is used for many currencies in Latin

America and elsewhere. In particular, this use includes current and discontinued

Table 22-1. Currency Symbols Encoded in Other Blocks

Lira Sign.

Dollar and Peso.

Symbols 966 22.1 Currency Symbols

Latin American peso currencies, such as the Mexican, Chilean, Colombian and

Dominican pesos. However, the Philippine peso uses a different symbol found at

U+20B1.

 Like the dollar sign and the pound sign, U+00A5 YEN SIGN has been

used as the currency sign for more than one currency. The double-crossbar glyph is

the official form for both the yen currency of Japan (JPY) and for the yuan

(renminbi) currency of China (CNY). This is the case, despite the fact that some

glyph standards historically specified a single-crossbar form, notably the OCR-A

standard ISO 1073-1:1976, which influenced the representative glyph in various char‐

acter set standards from China. In the Unicode Standard, U+00A5 YEN SIGN is

intended to be the character for the currency sign for both the yen and the yuan,

independent of the details of glyphic presentation.

As listed in Table 22-1, there are also a number of CJK ideographs to represent the

words yen (or en) and yuan, as well as the Korean word won, and these also tend to

overlap in use as currency symbols.

 The single currency for member countries of the European Economic

and Monetary Union is the euro (EUR). The euro character is encoded in the

Unicode Standard as U+20AC EURO SIGN.

U+20B9 INDIAN RUPEE SIGN is the character encoded to

represent the Indian rupee currency symbol introduced by the Government of India

in 2010 as the official currency symbol for the Indian rupee (INR). It is distinguished

from U+20A8 RUPEE SIGN, which is an older symbol not formally tied to any partic‐

ular currency. There are also a number of script-specific rupee symbols encoded for

historic usage by various scripts of India. See Table 22-1 for a listing.

Rupee is also the common name for a number of currencies for other countries of

South Asia and of Indonesia, as well as several historic currencies. It is often abbrevi‐

ated using Latin letters, or may be spelled out or abbreviated in the Arabic script,

depending on local conventions.

 The Turkish lira sign, encoded as U+20BA TURKISH LIRA

SIGN, is a symbol representing the lira currency of Turkey. Prior to the introduction

of the new symbol in 2012, the currency was typically abbreviated with the letters

“TL”. The new symbol was selected by the Central Bank of Turkey from entries in a

public contest and is quickly gaining common use, but the old abbreviation is also

still in use.

 The ruble sign, encoded as U+20BD RUBLE SIGN, was adopted as the

official symbol for the currency of Russian Federation in 2013. Ruble is also used as

the name of various currencies in Eastern Europe. In English, both spellings “ruble”

and “rouble” are used.

Yen and Yuan.

Euro Sign.

Indian Rupee Sign.

Turkish Lira Sign.

Ruble Sign.

Symbols 967 22.1 Currency Symbols

 The lari sign, encoded as U+20BE LARI SIGN, was adopted as the official

symbol for the currency of Georgia in 2014. The name lari is an old Georgian word

denoting a hoard or property. The image for the lari sign is based on the letter

U+10DA GEORGIAN LETTER LAS. The lari currency was established on October 2,

1995.

U+20BF BITCOIN SIGN represents the bitcoin, a cryptocurrency and

payment system invented by programmers. A cryptocurrency such as the bitcoin

works as a medium of exchange that uses cryptography to secure transactions and to

control the creation of additional units of currency. It is categorized as a decentral‐

ized virtual or digital currency.

 U+20C0 SOM SIGN was adopted as the official currency symbol of the

Kyrgyz Republic on February 8, 2017. The som currency was introduced with bank

notes on May 10, 1993 to replace the Soviet ruble. Coins were added later in 2008.

 Additional forms of currency symbols are found in the

Small Form Variants (U+FE50..U+FE6F) and the Halfwidth and Fullwidth Forms

(U+FF00..U+FFEF) blocks. Those symbols have the General_Category property

value Currency_Symbol (gc = Sc).

Ancient Greek and Roman monetary symbols, for such coins and values as the Greek

obol or the Roman denarius and as, are encoded in the Ancient Greek Numbers

(U+10140..U+1018F) and Ancient Symbols (U+10190..U+101CF) blocks. Those

symbols denote values of weights and currencies, but are not used as regular

currency symbols. As such, their General_Category property value is Other_Symbol

(gc = So).

Lari Sign.

Bitcoin Sign.

Som Sign.

Other Currency Symbols.

Symbols 968 22.1 Currency Symbols

Letterlike symbols are symbols derived in some way from ordinary letters of an

alphabetic script. This block includes symbols based on Latin, Greek, and Hebrew

letters. Stylistic variations of single letters are used for semantics in mathematical

notation. See “Mathematical Alphanumeric Symbols” in this section for the use of

letterlike symbols in mathematical formulas. Some letterforms have given rise to

specialized symbols, such as U+211E PRESCRIPTION TAKE.

U+2116 NUMERO SIGN is provided both for Cyrillic use, where it looks

like , and for compatibility with Asian standards, where it looks like . Figure 22-2

illustrates a number of alternative glyphs for this sign. Instead of using a special

symbol, French practice is to use an “N” or an “n”, according to context, followed by a

superscript small letter “o” (No or no; plural Nos or nos). Legacy data encoded in ISO/

IEC 8859-1 (Latin-1) or other 8-bit character sets may also have represented the

numero sign by a sequence of “N” followed by the degree sign (U+00B0 DEGREE

SIGN). Implementations interworking with legacy data should be aware of such alter‐

native representations for the numero sign when converting data.

 Several letterlike symbols are used to indicate units. In most cases,

however, such as for SI units (Système International), the use of regular letters or

other symbols is preferred. U+2113 SCRIPT SMALL L is commonly used as a non-SI

symbol for the liter. Official SI usage prefers the regular lowercase letter l.

Three letterlike symbols have been given canonical equivalence to regular letters:

U+2126 OHM SIGN, U+212A KELVIN SIGN, and U+212B ANGSTROM SIGN. In all three

instances, the regular letter should be used. If text is normalized according to

Unicode Standard Annex #15, “Unicode Normalization Forms,” these three charac‐

ters will be replaced by their regular equivalents.

In normal use, it is better to represent degrees Celsius “°C” with a sequence of

U+00B0 DEGREE SIGN + U+0043 LATIN CAPITAL LETTER C, rather than U+2103

DEGREE CELSIUS. For searching, treat these two sequences as identical. Similarly, the

sequence U+00B0 DEGREE SIGN + U+0046 LATIN CAPITAL LETTER F is preferred

over U+2109 DEGREE FAHRENHEIT, and those two sequences should be treated as

identical for searching.

22.2 Letterlike Symbols

22.2.1 Letterlike Symbols: U+2100–U+214F

Numero Sign.

Figure 22-2. Alternative Glyphs for Numero Sign

Unit Symbols.

Symbols 969 22.2 Letterlike Symbols

 Some symbols are composites of several letters. Many of these

composite symbols are encoded for compatibility with Asian and other legacy encod‐

ings. (See also “CJK Compatibility Ideographs” in Section 18.1, Han.) The use of these

composite symbols is discouraged where their presence is not required by compati‐

bility. For example, in normal use, the symbols U+2121 TEL TELEPHONE SIGN and

U+213B FAX FACSIMILE SIGN are simply spelled out.

In the context of East Asian typography, many letterlike symbols, and in particular

composites, form part of a collection of compatibility symbols, the larger part of

which is located in the CJK Compatibility block (see Section 22.10, Enclosed and

Square). When used in this way, these symbols are rendered as “wide” characters

occupying a full cell. They remain upright in vertical layout, contrary to the rotated

rendering of their regular letter equivalents. See Unicode Standard Annex #11, “East

Asian Width,” for more information.

Where the letterlike symbols have alphabetic equivalents, they collate in alphabetic

sequence; otherwise, they should be treated as symbols. The letterlike symbols may

have different directional properties than normal letters. For example, the four trans‐

finite cardinal symbols (U+2135..U+2138) are used in ordinary mathematical text and

do not share the strong right-to-left directionality of the Hebrew letters from which

they are derived.

 The letterlike symbols include some of the few instances in which the

Unicode Standard encodes stylistic variants of letters as distinct characters. For

example, there are instances of blackletter (Fraktur), double-struck, italic, and script

styles for certain Latin letters used as mathematical symbols. The choice of these

stylistic variants for encoding reflects their common use as distinct symbols. They

form part of the larger set of mathematical alphanumeric symbols. For the complete

set and more information on its use, see “Mathematical Alphanumeric Symbols” in

this section. These symbols should not be used in ordinary, nonscientific texts.

Despite its name, U+2118 SCRIPT CAPITAL P is neither script nor capital—it is

uniquely the Weierstrass elliptic function symbol derived from a calligraphic lower‐

case p. U+2113 SCRIPT SMALL L is derived from a special italic form of the lowercase

letter l and, when it occurs in mathematical notation, is known as the symbol ell. Use

U+1D4C1 MATHEMATICAL SCRIPT SMALL L as the lowercase script l for mathematical

notation.

 The Unicode Standard encodes letterlike symbols from many different

national standards and corporate collections.

The Mathematical Alphanumeric Symbols block contains a large extension of letter‐

like symbols used in mathematical notation, typically for variables. The characters in

Compatibility.

Styles.

Standards.

22.2.2 Mathematical Alphanumeric Symbols: U+1D400–U+1D7FF

Symbols 970 22.2 Letterlike Symbols

this block are intended for use only in mathematical or technical notation, and not in

nontechnical text. When used with markup languages—for example, with Mathe‐

matical Markup Language (MathML)—the characters are expected to be used

directly, instead of indirectly via entity references or by composing them from base

letters and style markup.

 In some specialties, whole words are used as variables,

not just single letters. For these cases, style markup is preferred because in ordinary

mathematical notation the juxtaposition of variables generally implies multiplica‐

tion, not word formation as in ordinary text. Markup not only provides the necessary

scoping in these cases, but also allows the use of a more extended alphabet.

 Mathematical notation uses a basic set of

mathematical alphanumeric characters, which consists of the following:

The set of basic Latin digits (0–9) (U+0030..U+0039)

The set of basic uppercase and lowercase Latin letters (a–z, A–Z)

The uppercase Greek letters Α–Ω (U+0391..U+03A9), plus the nabla (U+2207)

and the variant of theta ϴ given by U+03F4

The lowercase Greek letters α–ω (U+03B1..U+03C9), plus the partial differential

sign (U+2202), and the six glyph variants ϵ, ϑ, ϰ, ϕ, ϱ, and ϖ, given by U+03F5,

U+03D1, U+03F0, U+03D5, U+03F1, and U+03D6, respectively

Only unaccented forms of the letters are used for mathematical notation, because

general accents such as the acute accent would interfere with common mathematical

diacritics. Examples of common mathematical diacritics that can interfere with

general accents are the circumflex, macron, or the single or double dot above, the

latter two of which are used in physics to denote derivatives with respect to the time

variable. Mathematical symbols with diacritics are always represented by combining

character sequences.

For some characters in the basic set of Greek characters, two variants of the same

character are included. This is because they can appear in the same mathematical

document with different meanings, even though they would have the same meaning

in Greek text. (See “Variant Letterforms” in Section 7.2, Greek.)

 In addition to this basic set, mathematical notation uses the

uppercase and lowercase digamma, in regular (U+03DC and U+03DD) and bold

(U+1D7CA and U+1D7CB), and the four Hebrew-derived characters

(U+2135..U+2138). Occasional uses of other alphabetic and numeric characters are

known. Examples include U+0428 CYRILLIC CAPITAL LETTER SHA, U+306E HIRA‐

GANA LETTER NO, and Eastern Arabic-Indic digits (U+06F0..U+06F9). However,

Words Used as Variables.

22.2.3 Mathematical Alphabets

Basic Set of Alphanumeric Characters.

•

•

•

•

Additional Characters.

Symbols 971 22.2 Letterlike Symbols

these characters are used only in their basic forms, rather than in multiple mathe‐

matical styles.

 In the Unicode Standard, the characters “i” and “j”, including

their variations in the mathematical alphabets, have the Soft_Dotted property. Any

conformant renderer will remove the dot when the character is followed by a

nonspacing combining mark above. Therefore, using an individual mathematical

italic i or j with math accents would result in the intended display. However, in math‐

ematical equations an entire sub-expression can be placed underneath a math accent

—for example, when a “wide hat” is placed on top of i+j, as shown in Figure 22-3.

In such a situation, a renderer can no longer rely simply on the presence of an adja‐

cent combining character to substitute for the un-dotted glyph, and whether the dots

should be removed in such a situation is no longer predictable. Authors differ in

whether they expect the dotted or dotless forms in that case.

In some documentsmathematical italic dotless i or j is used explicitly without any

combining marks, or even in contrast to the dotted versions. Therefore, the Unicode

Standard provides the explicitly dotless characters U+1D6A4 MATHEMATICAL ITALIC

SMALL DOTLESS I and U+1D6A5 MATHEMATICAL ITALIC SMALL DOTLESS J. These

two characters map to the ISOAMSO entities imath and jmath or the T
E

X macros

\imath and \jmath. These entities are, by default, always italic. The appearance of

these two characters in the code charts is similar to the shapes of the entities docu‐

mented in the ISO 9573-13 entity sets and used by T
E

X. The mathematical dotless

characters do not have case mappings.

 Mathematical notation requires a number of Latin and

Greek alphabets that initially appear to be mere font variations of one another. The

letter H can appear as plain or upright (H), bold (H), italic (H), as well as script,

Fraktur, and other styles. However, in any given document, these characters have

distinct, and usually unrelated, mathematical semantics. For example, a normal H

represents a different variable from a bold H, and so on. If these attributes are

dropped in plain text, the distinctions are lost and the meaning of the text is altered.

Without the distinctions, the well-known Hamiltonian formula turns into the inte‐

gral equation in the variable H as shown in Figure 22-4.

Dotless Characters.

Figure 22-3. Wide Mathematical Accents

Semantic Distinctions.

Symbols 972 22.2 Letterlike Symbols

Mathematicians will object that a properly formatted integral equation requires all

the letters in this example (except for the “d”) to be in italics. However, because the

distinction between and H has been lost, they would recognize it as a fallback

representation of an integral equation, and not as a fallback representation of the

Hamiltonian. By encoding a separate set of alphabets, it is possible to preserve such

distinctions in plain text.

 The sets of distinctly styled mathematical alphanumeric

symbols are listed in Table 22-2.

Math Style Characters from Basic Set Location

plain (upright, serifed) Latin, Greek, and digits BMP

bold Latin, Greek, and digits Plane 1

italic Latin and Greek Plane 1

bold italic Latin and Greek Plane 1

script (calligraphic) Latin Plane 1/BMP

bold script (calligraphic) Latin Plane 1

Fraktur Latin Plane 1

bold Fraktur Latin Plane 1

double-struck Latin and digits Plane 1

sans-serif Latin and digits Plane 1

sans-serif bold Latin, Greek, and digits Plane 1

sans-serif italic Latin Plane 1

sans-serif bold italic Latin and Greek Plane 1

monospace Latin and digits Plane 1

The styles in Table 22-2 represent those encountered in mathematical use. The plain

letters have been unified with the existing characters in the Basic Latin and Greek

blocks. There are 24 double-struck, italic, Fraktur, and script characters that already

exist in the Letterlike Symbols block (U+2100..U+214F). These are explicitly unified

with the characters in this block, and corresponding holes have been left in the math‐

ematical alphabets.

Figure 22-4. Style Variants and Semantic Distinctions in Mathematics

Mathematical Alphabets.

Table 22-2. Mathematical Alphanumeric Symbols

Symbols 973 22.2 Letterlike Symbols

The alphabets encoded in the Mathematical Alphanumeric Symbols block on Plane 1

represent the distinctions between different mathematically styled semantic alpha‐

bets, but the exact glyphs shown in the code charts are not intended to be prescriptive

for actual mathematical font design. In particular, the script and double-struck styles

show considerable variation across mathematical fonts.

Characters from the Mathematical Alphanumeric symbols block should not be used

to represent styling of nonmathematical text.

 The mathematical script style, also referred

to as the calligraphic style, has two widely recognized, specific variant styles:

chancery, as exemplified by the glyph , and roundhand, as exemplified by the glyph

. In most mathematical documents, the chancery calligraphic style and the round‐

hand calligraphic style are considered interchangeable. Accordingly, when the math‐

ematical alphanumeric symbols were added to the Unicode Standard in Version 3.1,

those two styles were unified. However, documentation subsequently emerged

demonstrating that the regular (non-bold) uppercase Latin script characters occa‐

sionally show semantic contrasts between chancery style and roundhand style. To

accommodate this usage, variation sequences have been defined, starting with

Version 14.0, to distinguish chancery and roundhand variants. These variation

sequences work as follows:

An uppercase mathematical script style letter followed by U+FE00 displays in

chancery style.

An uppercase mathematical script style letter followed by U+FE01 displays in

roundhand style.

Otherwise, an uppercase mathematical script style letter will display with the default

for the font in use. The exact list of defined variation sequences can be found in the

StandardizedVariants.txt file in the Unicode Character Database. Note that variation

sequences are not defined for the bold script alphabet, nor for lowercase letters of the

regular script alphabet, as there is no evidence of systematic distinctive use of variant

styles for those ranges.

The Unicode code charts use the roundhand calligraphic style to display mathemat‐

ical script letters, including the various script symbols encoded in the Letterlike

Symbols block on the BMP. That choice is less disruptive for legacy fonts, and is more

consistent with the expected display for the occasional use of such letterlike symbols

in nonmathematical contexts such as the use of U+2133 SCRIPT CAPITAL M for the

pre-1949 symbol for the German currency unit Mark. By contrast, widely deployed

specialty mathematical fonts such as Cambria Math and STIX Two Math default to

the chancery calligraphic style, which is the specific script variant currently favored

by mathematicians.

Script Style and Calligraphic Variants.

Symbols 974 22.2 Letterlike Symbols

 All mathematical alphanumeric symbols have

compatibility decompositions to the base Latin and Greek letters. This does not imply

that the use of these characters is discouraged for mathematical use. Folding away

such distinctions by applying the compatibility mappings is usually not desirable, as

it loses the semantic distinctions for which these characters were encoded. See

Unicode Standard Annex #15, “Unicode Normalization Forms.”

Mathematicians place strict requirements on the specific fonts used to represent

mathematical variables. Readers of a mathematical text need to be able to distinguish

single-letter variables from each other, even when they do not appear in close prox‐

imity. They must be able to recognize the letter itself, whether it is part of the text or

is a mathematical variable, and lastly which mathematical alphabet it is from.

 The blackletter style is often referred to as Fraktur or Gothic in various

sources. Technically, Fraktur and Gothic typefaces are distinct designs from black‐

letter, but any of several font styles similar in appearance to the forms shown in the

charts can be used. In East Asian typography, the term Gothic is commonly used to

indicate a sans-serif type style.

 Mathematical variables are most commonly set in a form of italics, but

not all italic fonts can be used successfully. For example, a math italic font should

avoid a “tail” on the lowercaseitalic letter z because it clashes with subscripts. In

common text fonts, the italic letter v and Greek letter nu are not very distinct. A

rounded italic letter v is therefore preferred in a mathematical font. There are other

characters that sometimes have similar shapes and require special attention to avoid

ambiguity. Examples are shown in Figure 22-5.

 Not all sans-serif fonts allow an easy distinction

between lowercase l and uppercase I, and not all monospaced (monowidth) fonts

allow a distinction between the letter l and the digit one. Such fonts are not usable for

mathematics. In Fraktur, the letters and , in particular, must be made distinguish‐

able. Overburdened blackletter forms are inappropriate for mathematical notation.

Compatibility Decompositions.

22.2.4 Fonts Used for Mathematical Alphabets

Fraktur.

Math Italics.

Figure 22-5. Easily Confused Shapes for Mathematical Glyphs

Hard-to-Distinguish Letters.

Symbols 975 22.2 Letterlike Symbols

Similarly, the digit zero must be distinct from the uppercase letter O for all mathemat‐

ical alphanumeric sets. Some characters are so similar that even mathematical fonts

do not attempt to provide distinct glyphs for them. Their use is normally avoided in

mathematical notation unless no confusion is possible in a given context—for

example, uppercase A and uppercase Alpha.

 Mathematical equations require that char‐

acters be combined with diacritics (dots, tilde, circumflex, or arrows above are

common), as well as followed or preceded by superscripted or subscripted letters or

numbers. This requirement leads to designs for italic styles that are less inclined and

script styles that have smaller overhangs and less slant than equivalent styles

commonly used for text such as wedding invitations.

 The double-struck glyphs shown in earlier editions of

the standard attempted to match the design used for all the other Latin characters in

the standard, which is based on Times. The current set of fonts was prepared in

consultation with the American Mathematical Society and leading mathematical

publishers; it shows much simpler forms that are derived from the forms written on a

blackboard. However, both serifed and non-serifed forms can be used in mathemat‐

ical texts, and inline fonts are found in works published by certain publishers.

The Arabic Mathematical Alphabetic Symbols block contains a set of characters used

to write Arabic mathematical expressions. These symbols derive from a version of the

Arabic alphabet which was widely used for many centuries and in a variety of

contexts, such as in manuscripts and traditional print editions. The characters in this

block follow the older, generic Semitic order (a, b, j, d…), differing from the order

typically found in dictionaries (a, b, t, th…). These symbols are used by Arabic

alphabet-based scripts, such as Arabic and Persian, and appear in the majority of

mathematical handbooks published in the Middle East, Libya, and Algeria today.

In Arabic mathematical notation, much as in Latin-based mathematical text, style

variation plays an important semantic role and must be retained in plain text. Hence

Arabic styles for these mathematical symbols, which include tailed, stretched,

looped, or double-struck forms, are encoded separately, and should not be handled at

the font level. These mathematically styled symbols, which also include some

isolated and initial-form Arabic letters, are to be distinguished from the Arabic

compatibility characters encoded in the Arabic Presentation Forms-B block.

 The Arabic Mathematical Symbols are not subject to shaping, unlike the

Arabic letters in the Arabic block (U+0600..U+06FF).

Font Support for Combining Diacritics.

Double-Struck Characters.

22.2.5 Arabic Mathematical Alphabetic Symbols: U+1EE00–

U+1EEFF

Shaping.

Symbols 976 22.2 Letterlike Symbols

 Two operators are separately encoded: U+1EEF0 ARABIC MATHE‐

MATICAL OPERATOR MEEM WITH HAH WITH TATWEEL, which denotes summation

in Arabic mathematics, and U+1EEF1 ARABIC MATHEMATICAL OPERATOR HAH

WITH DAL, which denotes limits in Persian mathematics. The glyphs for both of these

characters stretch, based on the width of the text above or below them.

 The characters in this block, although used as mathematical symbols,

have the General_Category value Lo. This property assignment for these letterlike

symbols reflects the similar treatment for the alphanumeric mathematical symbols

based on Latin and Greek letterforms.

Large Operators.

Properties.

Symbols 977 22.2 Letterlike Symbols

Many characters in the Unicode Standard are used to represent numbers or numeric

expressions. Some characters are used exclusively in a numeric context; other charac‐

ters can be used both as letters and numerically, depending on context. The nota‐

tional systems for numbers are equally varied. They range from the familiar decimal

notation to non-decimal systems, such as Roman numerals.

 The Unicode Standard encodes sets of digit characters (or non-

digit characters, as appropriate) for each script which has significantly distinct forms

for numerals. As in the case of encoding of letters (and other units) for writing

systems, the emphasis is on encoding the units of the written forms for numeric

systems.

Sets of digits which differ by mathematical style are separately encoded, for use in

mathematics. Such mathematically styled digits may carry distinct semantics which

is maintained as a plain text distinction in the representation of mathematical

expressions. This treatment of styled digits for mathematics parallels the treatment of

styled alphabets for mathematics. See “Mathematical Alphabets” in Section 22.2,

Letterlike Symbols.

Other font face distinctions for digits which do not have mathematical significance,

such as the use of old style digits in running text, are not separately encoded. Other

glyphic variations in digits and numeric characters are likewise not separately

encoded. There are a few documented exceptions to this general rule. See “Glyph

Variants of Decimal Digits” later in this section.

A decimal digit is a digit that is used in decimal (radix 10) place value notation. The

most widely used decimal digits are the European digits, encoded in the range from

U+0030 DIGIT ZERO to U+0039 DIGIT NINE. Because of their early encoding history,

these digits are also commonly known as ASCII digits. They are also known as

Western digits or Latin digits. The European digits are used with a large variety of

writing systems, including those whose own number systems are not decimal radix

systems.

Many scripts also have their own decimal digits, which are separately encoded.

Examples are the digits used with the Arabic script or those of the Indic scripts.

Table 22-3 lists scripts for which separate decimal digits are encoded, together with

the section in the Unicode Standard which describes that script. The scripts marked

with an asterisk (Arabic, Myanmar, and Tai Tham) have two or more sets of digits.

22.3 Numerals

Encoding Principles.

22.3.1 Decimal Digits

Symbols 978 22.3 Numerals

Script Section Script Section

Adlam Section 19.9 Modi Section 15.12

Ahom Section 15.16 Mongolian Section 13.5

Arabic* Section 9.2 Mro Section 13.8

Balinese Section 17.3 Myanmar* Section 16.3

Bengali & Assamese Section 12.2 Nag Mundari Section 13.12

Bhaiksuki Section 14.3 New Tai Lue Section 16.6

Brahmi Section 14.1 Newa Section 13.3

Chakma Section 13.13 N’Ko Section 19.4

Cham Section 16.10 Nyiakeng Puachue Hmong Section 16.12

Devanagari Section 12.1 Ol Chiki Section 13.10

Dives Akuru Section 15.15 Oriya Section 12.5

Garay Section 19.11 Osmanya Section 19.2

Gujarati Section 12.4 Pahawh Hmong Section 16.11

Gunjala Gondi Section 13.17 Saurashtra Section 13.15

Gurmukhi Section 12.3 Sharada Section 15.3

Gurung Khema Section 13.22 Sinhala Section 13.2

Hanifi Rohingya Section 16.14 Sora Sompeng Section 15.17

Javanese Section 17.4 Sundanese Section 17.7

Kannada Section 12.8 Sunuwar Section 13.21

Kawi Section 17.9 Tai Tham* Section 16.7

Kayah Li Section 16.9 Takri Section 15.4

Khmer Section 16.4 Tamil Section 12.6

Khudawadi Section 15.9 Tangsa Section 13.20

Kirat Rai Section 13.23 Telugu Section 12.7

Lao Section 16.2 Thai Section 16.1

Lepcha Section 13.14 Tibetan Section 13.4

Limbu Section 13.6 Tirhuta Section 15.11

Malayalam Section 12.9 Vai Section 19.5

Masaram Gondi Section 13.16 Wancho Section 13.18

Meetei Mayek Section 13.7 Warang Citi Section 13.9

In the Unicode Standard, a character is formally classified as a decimal digit if it

meets the conditions set out in “Decimal Digits” in Section 4.6, Numeric Value and

has been assigned the property Numeric_Type = Decimal. The Numeric_Type prop‐

erty can be used to get the complete list of all decimal digits for any version of the

Unicode Standard. (See DerivedNumericType.txt in the Unicode Character Data‐

base.)

Table 22-3. Script-Specific Decimal Digits

Symbols 979 22.3 Numerals

When characters classified as decimal digits are used in sequences to represent

decimal radix numerals, they are always stored most significant digit first. This

convention includes decimal digits associated with scripts whose predominant layout

direction is right-to-left. The visual layout of decimal radix numerals in bidirectional

contexts depends on the interaction of their Bidi_Class values with the Unicode Bidi‐

rectional Algorithm (UBA). In many cases, decimal digits share the same strong

Bidi_Class values with the letters of their script (“L” or “R”). A few common-use

decimal digits, such as the ASCII digits and the Arabic script digits have special

Bidi_Class values that interact with dedicated rules for resolving the direction of

numbers in the UBA. (See Unicode Standard Annex #9, “Unicode Bidirectional Algo‐

rithm.”)

The Unicode Standard does not specify which sets of decimal digits can or should be

used with any particular writing system, language, or locale. However, the informa‐

tion provided in the Unicode Common Locale Data Repository (CLDR) contains

information about which set or sets of digits are used with particular locales defined

in CLDR. Numeral systems for a given locale require additional information, such as

the appropriate decimal and grouping separators, the type of digit grouping used, and

so on; that information is also supplied in CLDR.

 There are several scripts with exceptional encodings for characters that

are used as decimal digits. For the Arabic script, there are two sets of decimal digits

encoded which have somewhat different glyphs and different directional properties.

See “Arabic-Indic Digits” in Section 9.2, Arabic for a discussion of these two sets and

their use in Arabic text. For the Myanmar script a second set of digits is encoded for

the Shan language, and a third set of digits is encoded for the Tai Laing language.

The Tai Tham script also has two sets of digits, which are used in different contexts.

 The CJK ideographs listed in Table 4-5,

with numeric values in the range one through nine, can be used in decimal notations

(with 0 represented by U+3007 IDEOGRAPHIC NUMBER ZERO). These ideographic

digits are not coded in a contiguous sequence, nor do they occur in numeric order.

Unlike other script-specific digits, they are not uniquely used as decimal digits. The

same characters may be used in the traditional Chinese system for writing numbers,

which is not a decimal radix system, but which instead uses numeric symbols for

tens, hundreds, thousands, ten thousands, and so forth. See Figure 22-6, which illus‐

trates two different ways the number 1,234 can be written with CJK ideographs.

Exceptions.

CJK Ideographs Used as Decimal Digits.

Figure 22-6. CJK Ideographic Numbers

Symbols 980 22.3 Numerals

CJK numeric ideographs are also used in word compounds which are not interpreted

as numbers. Parsing CJK ideographs as decimal numbers therefore requires informa‐

tion about the context of their use.

 Conventionally, the letters “A” through “F”, or their lowercase

equivalents are used with the ASCII decimal digits to form a set of hexadecimal

digits. These characters have been assigned the Hex_Digit property. Although over‐

lapping the letters and digits this way is not ideal from the point of view of numerical

parsing, the practice is long standing; nothing would be gained by encoding a new,

parallel, separate set of hexadecimal digits.

 There are a several sets of compatibility digits in the Unicode

Standard. Table 22-4 provides a full list of compatibility digits.

Description Code Range(s)
Numeric
Type

Decomp
Type

Section

Fullwidth digits FF10..FF19 Decimal Wide Section 18.5

Bold digits 1D7CE..1D7D7 Decimal Font Section 22.2

Double struck 1D7D8..1D7E1 Decimal Font Section 22.2

Monospace digits 1D7F6..1D7FF Decimal Font Section 22.2

Sans-serif digits 1D7E2..1D7EB Decimal Font Section 22.2

Sans-serif bold digits 1D7EC..1D7F5 Decimal Font Section 22.2

Segmented digits 1FBF0..1FBF9 Decimal Font Section 22.7

Superscript digits
2070, 00B9, 00B2, 00B3,
2074..2079

Digit Super Section 22.4

Subscript digits 2080..2089 Digit Sub Section 22.4

Circled digits 24EA, 2460..2468 Digit Circle

Parenthesized digits 2474..247C Digit Compat

Digits plus full stop 1F100, 2488..2490 Digit Compat

Digits plus comma 1F101..1F10A Digit Compat

Double circled digits 24F5..24FD Digit None

Dingbat negative circled
digits

2776..277E Digit None

Dingbat circled sans-serif
digits

1F10B, 2780..2788
Numeric or
Digit

None

Dingbat negative circled
sans-serif digits

1F10C, 278A..2792
Numeric or
Digit

None

Segmented Digits 1FBF0..1FBF9 Decimal Font Section 22.7

22.3.2 Other Digits

Hexadecimal Digits.

Compatibility Digits.

Table 22-4. Compatibility Digits

Symbols 981 22.3 Numerals

The fullwidth digits are simply wide presentation forms of ASCII digits, occurring in

East Asian typographical contexts. They have compatibility decompositions to ASCII

digits, have Numeric_Type = Decimal, and should be processed as regular decimal

digits.

The various mathematically styled digits in the range U+1D7CE..U+1D7F5 are

specifically intended for mathematical use. They also have compatibility decomposi‐

tions to ASCII digits and meet the criteria for Numeric_Type = Decimal. Although

they may have particular mathematical meanings attached to them, in most cases it

would be safe for generic parsers to simply treat them as additional sets of decimal

digits.

The segmented digits encoded in the range U+1FBF0..U+1FBF9 are used in legacy

terminal applications, and are essentially just another styled set of ASCII digits. It is

also safe for generic parsers to treat them as an additional set of decimal digits.

 In the Unicode Character Database,

superscript and subscript digits have not been given the General_Category property

value Decimal_Number (gc = Nd); correspondingly, they have the Numeric_Type

property value Digit, rather than Decimal. This is to prevent superscripted expres‐

sions like 23 from being interpreted as 23 by simplistic parsers. More sophisticated

numeric parsers, such as general mathematical expression parsers, should correctly

identify these compatibility superscript and subscript characters as digits and inter‐

pret them appropriately. Note that the compatibility superscript digits are not

encoded in a single, contiguous range.

For mathematical notation, the use of superscript or subscript styling of ASCII digits

is preferred over the use of compatibility superscript or subscript digits. See Unicode

Technical Report #25, “Unicode Support for Mathematics,” for more discussion of

this topic.

 The other sets of compatibility digits listed in Table 22-4 are typi‐

cally derived from East Asian legacy character sets, where their most common use is

as numbered text bullets. Most occur as part of sets which extend beyond the value 9

up to 10, 12, or even 50. Most are also defective as sets of digits because they lack a

value for 0. None is given the Numeric_Type of Decimal. Only the basic set of simple

circled digits is given compatibility decompositions to ASCII digits. The rest either

have compatibility decompositions to digits plus punctuation marks or have no

decompositions at all. Effectively, all of these numeric bullets should be treated as

dingbat symbols with numbers printed on them; they should not be parsed as repre‐

sentations of numerals.

 Some variations of decimal digits are considered

glyph variants and are not separately encoded. These include the old style variants of

digits, as shown in Figure 22-7. Glyph variants of the digit zero with a centered dot or

Parsing of Superscript and Subscript Digits.

Numeric Bullets.

Glyph Variants of Decimal Digits.

Symbols 982 22.3 Numerals

a diagonal slash to distinguish it from the uppercase letter “O”, or of the digit seven

with a horizontal bar to distinguish it from handwritten forms for the digit one, are

likewise not separately encoded.

Regular Digits: 0 1 2 3 4 5 6 7 8 9

Old Style Digits: 0 1 2 3 4 5 6 7 8 9

In a few cases, such as for a small number of mathematical symbols, there may be a

strong rationale for the unambiguous representation of a certain glyph variant of a

decimal digit. In particular, the glyph variant of the digit zero with a short diagonal

stroke “ ” can be unambiguously represented with the standardized variation

sequence <U+0030, U+FE00>.

Significant regional glyph variants for the Eastern-Arabic Digits U+06F0..U+06F9

also occur, but are not separately encoded. See Table 9-2 for illustrations of those vari‐

ants.

 Accounting numbers are variant forms of digits or other

numbers designed to deter fraud. They are used in accounting systems or on various

financial instruments such as checks. These numbers often take shapes which cannot

be confused with other digits or letters, and which are difficult to convert into

another digit or number by adding on to the written form. When such numbers are

clearly distinct characters, as opposed to merely glyph variants, they are separately

encoded in the standard. The use of accounting numbers is particularly widespread

in Chinese and Japanese, because the Han ideographs for one, two, and three have

simple shapes that are easy to convert into other numbers by forgery. See Table 4-6,

for a list of the most common alternate ideographs used as accounting numbers for

the traditional Chinese numbering system.

Characters for accounting numbers are occasionally encoded separately for other

scripts as well. For example, U+19DA NEW TAI LUE THAM DIGIT ONE is an

accounting form for the digit one which cannot be confused with the vowel sign -aa

and which cannot easily be converted into the digit for three.

A number of scripts have number systems that are not decimal place-value notations.

Such systems are fairly common among traditional writing systems of South Asia.

The following provides descriptions or references to descriptions of non-decimal

radix systems elsewhere in the Standard.

Figure 22-7. Regular and Old Style Digits

Accounting Numbers.

22.3.3 Non-Decimal Radix Systems

Symbols 983 22.3 Numerals

 The Ethiopic script contains digits and other numbers for a

traditional number system which is not a decimal place-value notation. This tradi‐

tional system does not use a zero. It is further described in Section 19.1, Ethiopic.

 The Mende Kikakui script has a unique set of numerals,

constituting a set of digits one through nine, used with a set of multiplier subscripts

for powers of ten from 10 through 1,000,000. For more details on the structure of this

numeral system, including examples, see Section 19.8, Mende Kikakui.

 The numerals used with the Medefaidrin script (see

Section 19.10, Medefaidrin) constitute a novel, vigesimal radix system, with “digits” in

the range 0 to 19. The Medefaidrin script is used only by a small community for reli‐

gious purposes, so little is known about the practical use of these numerals.

 Mayan writing used a set of vigesimal numerals, including a sign

for zero. These signs are very well-known from Mayan calendrical inscriptions. They

are striking in form, consisting of a series of horizontal bars with varying numbers of

large dots above the bars, and so are easy to spot in inscriptions, amidst all the other

hieroglyphic signs based on heads, animals, and so forth. The Mayan numerals are so

well known, in fact, that they have gained a degree of modern re-use, appearing, for

example, in page numbering of small documents published in Guatemala or the

Yucatan. To accommodate such modern use of Mayan numerals, the full set has been

encoded in the range U+1D2E0..U+1D2F3 in a dedicated Mayan Numerals block.

Until the analysis and encoding of the complex Mayan hieroglyphic script can be

completed, these Mayan numerals stand by themselves. They are not given a Mayan

Script property value, but are instead just treated as numeric symbols with the Script

property Common.

 Kaktovik numerals are vigesimal numerals including a sign for

zero. These signs were devised by speakers of Iñupiaq in Kaktovik, Alaska for the

counting systems of Inuit and Yupik languages. The top part of each numeral

consists of up to three horizontal strokes, marking the fives, while the bottom part

consists of up to four vertical strokes, marking the ones. The strokes are joined into a

single continuous line.

Because the system is positional, for example U+1D2C1 KAKTOVIK NUMERAL ONE

can indicate 1, 20, 400, 8,000, and so on, and U+1D2C5 KAKTOVIK NUMERAL FIVE

indicates five times those amounts. Each Kaktovik numeral from 0 through 19 is

encoded atomically.

 Sumero-Akkadian numerals were used for sexagesimal

systems. There was no symbol for zero, but by Babylonian times, a place value system

was in use. Thus the exact value of a digit depended on its position in a number.

There was also ambiguity in numerical representation, because a symbol such as

U+12079 CUNEIFORM SIGN DISH could represent either 1 or 1 × 60 or 1 × (60 × 60),

Ethiopic Numerals.

Mende Kikakui Numerals.

Medefaidrin Numerals.

Mayan Numerals.

Kaktovik Numerals.

Cuneiform Numerals.

Symbols 984 22.3 Numerals

depending on the context. A numerical expression might also be interpreted as a

sexagesimal fraction. So the sequence <1, 10, 5> might be evaluated as 1 × 60 + 10 + 5

= 75 or 1 × 60 × 60 + 10 + 5 = 3615 or 1 + (10 + 5)/60 = 1.25. Many other complica‐

tions arise in Cuneiform numeral systems, and they clearly require special processing

distinct from that used for modern decimal radix systems. For more information, see

Section 11.1, Sumero-Akkadian.

 A number of other ancient numeral systems have

characters encoded for them. Many of these ancient systems are variations on

tallying systems. In numerous cases, the data regarding ancient systems and their use

is incomplete, because of the fragmentary nature of the ancient text corpuses. Char‐

acters for numbers are encoded, however, to enable complete representation of the

text which does exist.

Ancient Aegean numbers were used with the Linear A and Linear B scripts, as well

as the Cypriot syllabary. They are described in Section 8.2, Linear B.

Many of the ancient Semitic scripts had very similar numeral systems which used

tally-shaped numbers for one, two, and three, and which then grouped those, along

with some signs for tens and hundreds, to form larger numbers. See the discussion of

these systems in Section 10.3, Phoenician and, in particular, the discussion with exam‐

ples of number formation in Section 10.4, Imperial Aramaic.

There are many instances of numeral systems, particularly historic ones, which use

letters to stand for numbers. In some cases these systems may coexist with numeral

systems using separate digits or other numbers. Two important sub-types are acro‐

phonic systems, which assign numeric values based on the letters used for the initial

sounds of number words, and alphabetic numerals, which assign numeric values

based roughly on alphabetic order. A well-known example of a partially acrophonic

system is the Roman numerals, which include c(entum) and m(ille) for 100 and 1000,

respectively. The Greek Milesian numerals are an example of an alphabetic system,

with alpha = 1, beta = 2, gamma = 3, and so forth.

In the Unicode Standard, although many letters in common scripts are known to be

used for such letter-based numbers, they are not given numeric properties unless

their only use is as an extension of an alphabet specifically for numbering. In most

cases, the interpretation of letters or strings of letters as having numeric values is

outside the scope of the standard.

 For most purposes, it is preferable to compose the Roman

numerals from sequences of the appropriate Latin letters. However, the uppercase

and lowercase variants of the Roman numerals through 12, plus L, C, D, and M, have

been encoded in the Number Forms block (U+2150..U+218F) for compatibility with

Other Ancient Numeral Systems.

22.3.4 Acrophonic Systems and Other Letter-based Numbers

Roman Numerals.

Symbols 985 22.3 Numerals

East Asian standards. Unlike sequences of Latin letters, these symbols remain

upright in vertical layout. Additionally, in certain locales, compact date formats use

Roman numerals for the month, but may expect the use of a single character.

In identifiers, the use of Roman numeral symbols—particularly those based on a

single letter of the Latin alphabet—can lead to spoofing. For more information, see

Unicode Technical Report #36, “Unicode Security Considerations.”

U+2180 ROMAN NUMERAL ONE THOUSAND C D and U+216F ROMAN NUMERAL ONE

THOUSAND can be considered to be glyphic variants of the same Roman numeral, but

are distinguished because they are not generally interchangeable and because

U+2180 cannot be considered to be a compatibility equivalent to the Latin letter M.

U+2181 ROMAN NUMERAL FIVE THOUSAND and U+2182 ROMAN NUMERAL TEN

THOUSAND are distinct characters used in Roman numerals; they do not have

compatibility decompositions in the Unicode Standard. U+2183 ROMAN NUMERAL

REVERSED ONE HUNDRED is a form used in combinations with C and/or I to form

large numbers—some of which vary with single character number forms such as D,

M, U+2181, or others. U+2183 is also used for the Claudian letter antisigma.

 The ancient Greeks used a set of acrophonic numerals, also

known as Attic numerals. These are represented in the Unicode Standard using

capital Greek letters. A number of extensions for the Greek acrophonic numerals,

which combine letterforms in odd ways, or which represent local regional variants,

are separately encoded in the Ancient Greek Numbers block, U+10140..U+1018A.

Greek also has an alphabetic numeral system, called Milesian or Alexandrian

numerals. These use the first third of the Greek alphabet to represent 1 through 9, the

middle third for 10 through 90, and the last third for 100 through 900. U+0374 GREEK

NUMERAL SIGN (the dexia keraia) marks letters as having numeric values in modern

typography. U+0375 GREEK LOWER NUMERAL SIGN (the aristeri keraia) is placed on

the left side of a letter to indicate a value in the thousands.

In Byzantine and other Greek manuscript traditions, numbers were often indicated

by a horizontal line drawn above the letters being used as numbers. The Coptic script

uses similar conventions. See Section 7.3, Coptic.

The Coptic epact numbers are elements of a decimal sign-value notation system used

in some Coptic manuscripts. These numbers are referred to as “epact,” based on the

Greek word ἐπακτός “imported.” They differ from the usual representation of

numbers in Coptic texts, which consists of a system assigning numeric values directly

to letters of the Coptic alphabet.

Greek Numerals.

22.3.5 Coptic Epact Numbers: U+102E0–U+102FF

Symbols 986 22.3 Numerals

The Coptic epact numbers are considered to be historically derived from cursive

forms of ordinary Coptic letters. They were developed in the 10th century CE by the

Coptic community for administrative purposes. They are primarily attested in Coptic

manuscripts written in Arabic, such as astronomical texts. They also appear in some

accounting documents.

The numerical system for Coptic epact numbers is additive. The value of a numeric

sequence consists of the sum of each number in the sequence. There is no character

for zero. Instead, there are three sets of signs for the values 1 through 9, representing

three orders: the digits, the tens, and the hundreds.

Numeric sequences are written from left to right, starting with the largest number at

the left. For example, 25 is written <U+102EB twenty, U+102E5 five>; 205 is

written <U+102F4 two hundred, U+102E5 five>; 250 is written <U+102F4

two hundred, U+102EE fifty>. This order is followed even when Coptic epact

numbers are embedded in right-to-left Arabic text.

Larger numbers are represented by applying a sublinear diacritical mark, U+102E0

COPTIC EPACT THOUSANDS MARK. Essentially, this mark multiplies the value of its

base character by one thousand. Thus, when applied to symbols from the digits order,

it represents thousands; when applied to symbols from the tens order, it represents

ten thousands, and so on. A second application of the sublinear diacritic multiplies

the base value by another factor of one thousand.

Ordinary Coptic numbers are often distinguished from Coptic letters by marking

them with a line above. (See Section 7.3, Coptic.) A visually similar convention is also

seen for Coptic epact numbers, where an entire numeric sequence may be marked

with a wavy line above. This mark is represented by U+0605 ARABIC NUMBER MARK

ABOVE. As when used with Arabic digits, ARABIC NUMBER MARK ABOVE precedes

the sequence of Coptic epact numbers in the underlying representation, and is

rendered across the top of the entire sequence for display.

Rumi, also known today as Fasi, is an numeric system used from the 10th to 17th

centuries CE in a wide area, spanning from Egypt, across the Maghreb, to al-Andalus

on the Iberian Peninsula. The Rumi numerals originate from the Coptic or Greek-

Coptic tradition, but are not a positionally-based numbering system.

The numbers appear in foliation, chapter, and quire notations in manuscripts of reli‐

gious, scientific, accounting and mathematical works. They also were used on astro‐

nomical instruments.

There is considerable variety in the Rumi glyph shapes over time: the digit “nine,” for

example, appears in a theta shape in the early period. The glyphs in the code charts

22.3.6 Rumi Numeral Symbols: U+10E60–U+10E7F

Symbols 987 22.3 Numerals

derive from a copy of a manuscript by Ibn Al-Banna (1256–1321), with glyphs that are

similar to those found in 16th century manuscripts from the Maghreb.

There are a number of regional traditions for numerical notation systems known as

Siyaq, derived from the Arabic word siyāq, meaning “order.” These traditions consist

of specialized subsets of the Arabic script, formerly used in accounting and for

general recording of numbers. A notable feature of Siyaq traditions is the use of styl‐

ized monograms of the Arabic names for numbers, rather than the ordinary Arabic-

Indic digits.

Siyaq numbers represent units of a decimal positional system. The systems are addi‐

tive—that is, the numeric value of a complete Siyaq number sequence consists of the

sum of all the characters. There is no character for zero; instead, zero is represented

inherently in the distinct numbers for the various decimal orders. Typically, there are

distinctive numbers for the primary units, tens, hundreds, thousands, and ten thou‐

sands. The hundred thousands, millions, and higher orders are represented using

unit marks and numbers from the smaller orders.

Siyaq numbers are written from right to left in the regular manner of the Arabic

script. This orientation differs from the Arabic-Indic digits, which are written from

left to right. In a Siyaq sequence, the largest number occurs first, and smaller units

follow, laid out in visual order toward the left. An exception occurs for compound

numbers of the tens and primary units; these are written transposed, with a

“prefixed” form of the primary unit placed before the larger number.

 The Ottoman, or Turkish, Siyaq numbers are encoded in the

Ottoman Siyaq Numbers block (U+1ED00..U+1ED4F). These are also known as

Siyakat numbers. The system contains several alternate forms for numbers, which

may be historical retentions. These alternate forms are encoded as distinct characters

for the numbers two through ten and for a few other numbers of higher orders.

The Ottoman Siyaq system includes a specialized multiplier character, U+1ED2E

OTTOMAN SIYAQ MARRATAN (from the Arabic word marratan, “multiplier”). The

multiplier is used in combination with one hundred and one thousand for expressing

the millions and larger orders.

Ottoman Siyaq also uses a number of fractions. These fractions may be written in

sequence after the number, or may be rendered beneath the number. Because of their

distinctive shapes, two of the fractions are encoded as separate numeric symbols:

U+1ED3C OTTOMAN SIYAQ FRACTION ONE HALF and U+1ED3D OTTOMAN SIYAQ

FRACTION ONE SIXTH.

22.3.7 Siyaq Numerical Notation Systems

Ottoman Siyaq.

Symbols 988 22.3 Numerals

In some Ottoman Siyaq sources, a baseline dot indicates the end of a numerical

sequence, and is placed after the last number. The dot can be represented either by

U+002E FULL STOP or U+06D4 ARABIC FULL STOP, depending on the desired shape

of the numerical terminator.

 The Indic Siyaq tradition is known in India and other parts of South

Asia as raqm or rakam, from the Arabic word raqm, meaning “account.” Indic Siyaq

is encoded in the Indic Siyaq Numbers block (U+1EC70..U+1ECBF). Like other Siyaq

traditions, Indic Siyaq uses stylized monograms of the Arabic names for numbers,

but the numbers for large decimal orders are derived from words of Indic languages.

The period during which Siyaq was introduced in India is difficult to determine. The

system was in common use under the Mughals by the 17th century, and remained in

use into the middle of the 20th century.

There are two major styles of Siyaq used in India: the northern style and the

“Deccani” or southern style. In general, the number forms and notation system of the

two are identical. Minor points of difference lie in the orthography for the thousands,

ten thousands, and lakhs.

There are also some minor style variations in writing tens of lakhs (millions) and tens

of crores (hundred millions). For example, when writing the number ten lakh, one

style may use a looped form of ten, looking like U+1EC7A INDIC SIYAQ NUMBER

TEN, but another may use a straight form, looking like U+1EC95 INDIC SIYAQ

NUMBER TEN THOUSAND. Such differences in style should be considered ortho‐

graphic differences. The visual form seen in the documents being represented should

be used to represent Indic Siyaq text. Thus, in one style the number ten lakh (one

million) would be represented as <U+1EC7A, U+1ECA0>, but in another style as

<U+1EC95, U+1ECA0>. Processes that interpret Indic Siyaq numbers should be

aware of this irregular use of tens of thousands (U+1EC95..U+1EC9D) for tens when

they appear before lakhs and crores.

The Indic Siyaq numbers are generally used within an Arabic script environment and

within Urdu and Persian linguistic contexts. They may also occur in multilingual

environments alongside other scripts. Arabic-Indic digits occasionally occur within

Siyaq sequences, particularly for the representation of small currency units.

 The traditional Chinese system for

writing numerals is not a decimal radix system. It is decimal-based, but uses a series

of decimal counter symbols that function somewhat like tallies. So for example, the

representation of the number 12,346 in the traditional system would be by a sequence

of CJK ideographs with numeric values as follows: . See Table 4-5 for a list of all the

CJK ideographs for digits and decimal counters used in this system. The traditional

system is still in widespread use, not only in China and other countries where

Indic Siyaq.

22.3.8 CJK Numerals

CJK Ideographic Traditional Numerals.

Symbols 989 22.3 Numerals

Chinese is used, but also in countries whose writing adopted Chinese characters—

most notably, in Japan. In both China and Japan the traditional system now coexists

with very common use of the European digits.

 Counting-rod numerals were used in pre-

modern East Asian mathematical texts in conjunction with counting rods used to

represent and manipulate numbers. The counting rods were a set of small sticks,

several centimeters long that were arranged in patterns on a gridded counting board.

Counting rods and the counting board provided a flexible system for mathematicians

to manipulate numbers, allowing for considerable sophistication in mathematics.

The specifics of the patterns used to represent various numbers using counting rods

varied, but there are two main constants: Two sets of numbers were used for alter‐

nate columns; one set was used for the ones, hundreds, and ten-thousands columns

in the grid, while the other set was used for the tens and thousands. The shapes used

for the counting-rod numerals in the Unicode Standard follow conventions from the

Song dynasty in China, when traditional Chinese mathematics had reached its peak.

Fragmentary material from many early Han dynasty texts shows different orientation

conventions for the numerals, with horizontal and vertical marks swapped for the

digits and tens places.

Zero was indicated by a blank square on the counting board and was either avoided

in written texts or was represented with U+3007 IDEOGRAPHIC NUMBER ZERO.

(Historically, U+3007 IDEOGRAPHIC NUMBER ZERO originated as a dot; as time

passed, it increased in size until it became the same size as an ideograph. The actual

size of U+3007 IDEOGRAPHIC NUMBER ZERO in mathematical texts varies, but this

variation should be considered a font difference.) Written texts could also take advan‐

tage of the alternating shapes for the numerals to avoid having to explicitly represent

zero. Thus 6,708 can be distinguished from 678, because the former would be ,

whereas the latter would be .

Negative numbers were originally indicated on the counting board by using rods of a

different color. In written texts, a diagonal slash from lower right to upper left is over‐

laid upon the rightmost digit. On occasion, the slash might not be actually overlaid.

U+20E5 COMBINING REVERSE SOLIDUS OVERLAY should be used for this negative

sign.

The predominant use of counting-rod numerals in texts was as part of diagrams of

counting boards. They are, however, occasionally used in other contexts, and they

may even occur within the body of modern texts.

 The Suzhou-style numerals are CJK ideographic number

forms encoded in the CJK Symbols and Punctuation block in the ranges

U+3021..U+3029 and U+3038..U+303A.

Chinese Counting-Rod Numerals.

Suzhou-Style Numerals.

Symbols 990 22.3 Numerals

The Suzhou-style numerals are modified forms of CJK ideographic numerals that are

used by shopkeepers in China to mark prices. They are also known as “commercial

forms,” “shop units,” or “grass numbers.” They are encoded for compatibility with the

CNS 11643-1992 and Big Five standards. The forms for ten, twenty, and thirty, encoded

at U+3038..U+303A, are also encoded as CJK unified ideographs: U+5341, U+5344,

and U+5345, respectively. (For twenty, see also U+5EFE and U+5EFF.)

These commercial forms of Chinese numerals should be distinguished from the use

of other CJK unified ideographs as accounting numbers to deter fraud. See Table 4-6

in Section 4.6, Numeric Value, for a list of ideographs used as accounting numbers.

Why are the Suzhou numbers called Hangzhou numerals in the Unicode names? No

one has been able to trace this back. Hangzhou is a district in China that is near the

Suzhou district, but the name “Hangzhou” does not occur in other sources that

discuss these number forms.

The Number Forms block (U+2150..U+218F) contains a series of vulgar fraction

characters, encoded for compatibility with legacy character encoding standards.

These characters are intended to represent both of the common forms of vulgar frac‐

tions: forms with a right-slanted division slash, such as , as shown in the code

charts, and forms with a horizontal division line, such as , which are considered to

be alternative glyphs for the same fractions, as shown in Figure 22-8. A few other

vulgar fraction characters are located in the Latin-1 block in the range

U+00BC..U+00BE.

The unusual fraction character, U+2189 VULGAR FRACTION ZERO THIRDS, is in

origin a baseball scoring symbol from the Japanese television standard, ARIB STD

B24. For baseball scoring, this character and the related fractions, U+2153 VULGAR

FRACTION ONE THIRD and U+2154 VULGAR FRACTION TWO THIRDS, use the glyph

form with the slanted division slash, and do not use the alternate stacked glyph form.

The vulgar fraction characters are given compatibility decompositions using U+2044

“ ” FRACTION SLASH. Use of the fraction slash is the more generic way to represent

fractions in text; it can be used to construct fractional number forms that are not

included in the collections of vulgar fraction characters. For more information on the

fraction slash, see “Other Punctuation” in Section 6.2, General Punctuation.

22.3.9 Fractions

Figure 22-8. Alternate Forms of Vulgar Fractions

Symbols 991 22.3 Numerals

The Common Indic Number Forms block contains characters widely used in tradi‐

tional representations of fractional values in numerous scripts of North India,

Pakistan and in some areas of Nepal. They are also regularly used in several scripts of

South India, including Kannada. The fraction signs were used to write currency,

weight, measure, time, and other units. Their use in written documents is attested

from at least the 16th century CE and in texts printed as late as 1970. They are occa‐

sionally still used in a limited capacity.

The North Indic fraction signs represent fraction values of a base-16 notation system.

There are atomic symbols for 1/16, 2/16, 3/16 and for 1/4, 2/4, and 3/4. Intermediate

values such as 5/16 are written additively by using two of the atomic symbols: 5/16 =

1/4 + 1/16, and so on. Some regional variation is found in the exact shape of the frac‐

tion signs used. For example, in Kannada, the fraction signs in the U+A833..U+A835

range are displayed with horizontal bars, instead of bars slanting upward to the right.

The signs for the fractions 1/4, 1/2, and 3/4 sometimes take different forms when they

are written independently, without a currency or quantity mark. These independent

forms were used more generally in Maharashtra and Gujarat, and they appear in

materials written and printed in the Devanagari and Gujarati scripts. The indepen‐

dent fraction signs are represented by using middle dots to the left and right of the

regular fraction signs.

U+A836 NORTH INDIC QUARTER MARK is used in some regional orthographies to

explicitly indicate fraction signs for 1/4, 1/2, and 3/4 in cases where sequences of

other marks could be ambiguous in reading.

This block also contains several other symbols that are not strictly number forms.

They are used in traditional representation of numeric amounts for currency,

weights, and other measures in the North Indic orthographies which use the fraction

signs. U+A837 NORTH INDIC PLACEHOLDER MARK is a symbol used in currency

representations to indicate the absence of an intermediate value. U+A839 NORTH

INDIC QUANTITY MARK is a unit mark for various weights and measures.

The North Indic fraction signs are related to fraction signs that have specific forms

and are separately encoded in some North Indic scripts. See, for example, U+09F4

BENGALI CURRENCY NUMERATOR ONE. Similar forms are attested for the Oriya

script.

22.3.10 Common Indic Number Forms: U+A830–U+A83F

Symbols 992 22.3 Numerals

In general, the Unicode Standard does not attempt to describe the positioning of a

character above or below the baseline in typographical layout. Therefore, the

preferred means to encode superscripted letters or digits, such as “1st” or “DC00
16

”, is

by style or markup in rich text. However, in some instances superscript or subscript

letters are used as part of the plain text content of specialized phonetic alphabets,

such as the Uralic Phonetic Alphabet. These superscript and subscript letters are

mostly from the Latin or Greek scripts. These characters are encoded in other char‐

acter blocks, along with other modifier letters or phonetic letters. In addition, super‐

script digits are used to indicate tone in transliteration of many languages. The use of

superscript two and superscript three is common legacy practice when referring to

units of area and volume in general texts.

A certain number of additional superscript and subscript characters are needed for

round-trip conversions to other standards and legacy code pages. Most such charac‐

ters are encoded in this block and are considered compatibility characters.

 In the Unicode Character Database,

superscript and subscript digits have not been given the General_Category property

value Decimal_Number (gc = Nd), so as to prevent expressions like 23 from being

interpreted like 23 by simplistic parsers. This should not be construed as preventing

more sophisticated numeric parsers, such as general mathematical expression

parsers, from correctly identifying these compatibility superscript and subscript char‐

acters as digits and interpreting them appropriately. See also the discussion of digits

in Section 22.3, Numerals.

 Many of the characters in the Superscripts and Subscripts block are from

character sets registered in the ISO International Register of Coded Character Sets to

be Used With Escape Sequences, under the registration standard ISO/IEC 2375, for

use with ISO/IEC 2022. Two MARC 21 character sets used by libraries include the

digits, plus signs, minus signs, and parentheses.

 The superscript digits one, two, and

three are coded in the Latin-1 Supplement block to provide code point compatibility

with ISO/IEC 8859-1. For a discussion of U+00AA FEMININE ORDINAL INDICATOR

and U+00BA MASCULINE ORDINAL INDICATOR, see “Letters of the Latin-1 Supple‐

ment” in Section 7.1, Latin. U+2120 SERVICE MARK and U+2122 TRADE MARK SIGN

are commonly used symbols that are encoded in the Letterlike Symbols block

(U+2100..U+214F); they consist of sequences of two superscripted letters each.

22.4 Superscript and Subscript Symbols

22.4.1 Superscripts and Subscripts: U+2070–U+209F

Parsing of Superscript and Subscript Digits.

Standards.

Superscripts and Subscripts in Other Blocks.

Symbols 993 22.4 Superscript and Subscript Symbols

For phonetic usage, there are a small number of superscript letters located in the

Spacing Modifier Letters block (U+02B0..U+02FF) and a large number of super‐

script and subscript letters in the Phonetic Extensions block (U+1D00..U+1D7F) and

in the Phonetic Extensions Supplement block (U+1D80..U+1DBF). Those superscript

and subscript letters function as modifier letters. The subset of those characters that

are superscripted contain the words “modifier letter” in their names, instead of

“superscript.” The two superscript Latin letters in the Superscripts and Subscripts

block, U+2071 SUPERSCRIPT LATIN SMALL LETTER I and U+207F SUPERSCRIPT

LATIN SMALL LETTER N are considered part of that set of modifier letters; the differ‐

ence in the naming conventions for them is an historical artifact, and is not intended

to convey a functional distinction in the use of those characters in the Unicode Stan‐

dard.

There are also a number of superscript or subscript symbols encoded in the Spacing

Modifier Letters block (U+02B0..U+02FF). These symbols also often have the words

“modifier letter” in their names, but are distinguished from most modifier letters by

having the General_Category property value Sk. Like most modifier letters, the usual

function of these superscript or subscript symbols is to indicate particular modifica‐

tions of sound values in phonetic transcriptional systems. Characters such as

U+02C2 MODIFIER LETTER LEFT ARROWHEAD or U+02F1 MODIFIER LETTER LOW

LEFT ARROWHEAD should not be used to represent normal mathematical relational

symbols such as U+003C “ ” LESS-THAN SIGN in superscripted or subscripted

expressions.

Finally, a small set of superscripted CJK ideographs, used for the Japanese system of

syntactic markup of Classical Chinese text for reading, is located in the Kanbun

block (U+3190..U+319F).

Symbols 994 22.4 Superscript and Subscript Symbols

The Unicode Standard provides a large set of standard mathematical characters to

support publications of scientific, technical, and mathematical texts on and off the

Web. In addition to the mathematical symbols and arrows contained in the blocks

described in this section, mathematical operators are found in the Basic Latin

(ASCII) and Latin-1 Supplement blocks. These include U+002B PLUS SIGN, U+00D7

MULTIPLICATION SIGN and U+00F7 DIVISION SIGN, as well as U+003C LESS-THAN

SIGN, U+003D EQUALS SIGN and U+003E GREATER-THAN SIGN. The factorial oper‐

ator is unified with U+0021 EXCLAMATION MARK.

A few of the symbols from the Miscellaneous Technical, Miscellaneous Symbols, and

Dingbats blocks, as well as characters from General Punctuation, are also used in

mathematical notation. For Latin and Greek letters in special font styles that are used

as mathematical variables, such as U+210B SCRIPT CAPITAL H, as well as the

Hebrew letter alef used as the first transfinite cardinal symbol encoded by U+2135

ALEF SYMBOL, see “Letterlike Symbols” and “Mathematical Alphanumeric Symbols”

in Section 22.2, Letterlike Symbols.

The repertoire of mathematical symbols in Unicode enables the display of virtually

all standard mathematical symbols. Nevertheless, no collection of mathematical

symbols can ever be considered complete; mathematicians and other scientists are

continually inventing new mathematical symbols. More symbols will be added as

they become widely accepted in the scientific communities.

 The same mathematical symbol may have different meanings in different

subdisciplines or different contexts. The Unicode Standard encodes only a single

character for a single symbolic form. For example, the “+” symbol normally denotes

addition in a mathematical context, but it might refer to concatenation in a computer

science context dealing with strings, indicate incrementation, or have any number of

other functions in given contexts. It is up to the application to distinguish such mean‐

ings according to the appropriate context. For some common mathematical symbols

there are also local variations in usage. For example, in addition to its long history of

use as punctuation mark, U+00F7 DIVISION SIGN is also used in certain cases to indi‐

cate negative numbers in several European countries. Where information is available

about the usage (or usages) of particular symbols, it has been indicated in the char‐

acter annotations in the code charts.

 The mathematical (math) property is an informative prop‐

erty of characters that are used as operators in mathematical formulas. The mathe‐

matical property may be useful in identifying characters commonly used in mathe‐

matical text and formulas. However, a number of these characters have multiple

usages and may occur with nonmathematical semantics. For example, U+002D

HYPHEN-MINUS may also be used as a hyphen—and not as a mathematical minus

22.5 Mathematical Symbols

Semantics.

Mathematical Property.

Symbols 995 22.5 Mathematical Symbols

sign. Other characters, including some alphabetic, numeric, punctuation, spaces,

arrows, and geometric shapes, are used in mathematical expressions as well, but are

even more dependent on the context for their identification. A list of characters with

the mathematical property is provided in the Unicode Character Database.

For a classification of mathematical characters by typographical behavior and

mapping to ISO 9573-13 entity sets, see Unicode Technical Report #25, “Unicode

Support for Mathematics.”

The Mathematical Operators block includes character encodings for operators, rela‐

tions, geometric symbols, and a few other symbols with special usages confined

largely to mathematical contexts.

 Many national standards’ mathematical operators are covered by the

characters encoded in this block. These standards include such special collections as

ANSI Y10.20, ISO 6862, ISO 8879, and portions of the collection of the American

Mathematical Society, as well as the original repertoire of T
E

X.

 Mathematical operators often have more than one meaning.

Therefore the encoding of this block is intentionally rather shape-based, with

numerous instances in which several semantic values can be attributed to the same

Unicode code point. For example, U+2205 EMPTY SET may denote the mathemat‐

ical concept of empty set or the linguistic concept of null morpheme or phonological

“zero.” Similarly, U+2218 RING OPERATOR may be the equivalent of white small circle

or composite function or apl jot. The Unicode Standard does not attempt to distin‐

guish all possible semantic values that may be applied to mathematical operators or

relation symbols.

The Unicode Standard does include many characters that appear to be quite similar

to one another, but that may well convey different meanings in a given context.

Conversely, mathematical operators, and especially relation symbols, may appear in

various standards, handbooks, and fonts with a large number of purely graphical

variants. Where variants were recognizable as such from the sources, they were not

encoded separately.

Sometimes, specific glyph forms are chosen by notational style or are needed for

contrast with other notation in the same document. For example, the symbol U+2205

EMPTY SET can be found in its slashed zero-shaped glyph form “ ” in documents

typeset in TeX, using the command \emptyset, or in contexts where it is contrasted

with the semantically distinct digit zero.

For this and certain other well-established glyph variants of mathematical symbols,

standardized variation sequences were added to the Unicode Standard. Thus, for

22.5.1 Mathematical Operators: U+2200–U+22FF

Standards.

Encoding Principles.

Symbols 996 22.5 Mathematical Symbols

example, the standardized variation sequence <U+2205, U+FE00> can be used to

represent the variant “ ” of the empty set symbol. To avoid the misuse of that

sequence for the glyph variant of the digit zero with a short diagonal stroke “ ”, the

standardized variation sequence <U+0030, U+FE00> was separately specified for

that digit glyph variant.

For relation symbols, the choice of a vertical or forward-slanting stroke typically indi‐

cating negation often seems to be an aesthetic one, but either slant might appear in a

given context. However, a back-slanted stroke almost always has a distinct meaning

compared to the forward-slanted stroke. See Section 23.4, Variation Selectors, for more

information on some particular variants.

 Mathematical operators such as implies and if and only if have

been unified with the corresponding arrows (U+21D2 RIGHTWARDS DOUBLE ARROW

and U+2194 LEFT RIGHT ARROW, respectively) in the Arrows block.

The operator U+2208 ELEMENT OF is occasionally rendered with a taller shape than

shown in the code charts. Mathematical handbooks and standards consulted treat

these characters as variants of the same glyph. U+220A SMALL ELEMENT OF is a

distinctively small version of the element of that originates in mathematical pi fonts.

The operators U+226B MUCH GREATER-THAN and U+226A MUCH LESS-THAN are

sometimes rendered in a nested shape. The nested shapes are encoded separately as

U+2AA2 DOUBLE NESTED GREATER-THAN and U+2AA1 DOUBLE NESTED LESS-

THAN.

A large class of unifications applies to variants of relation symbols involving nega‐

tion. Variants involving vertical or slanted negation slashes and negation slashes of

different lengths are not separately encoded. For example, U+2288 NEITHER A

SUBSET OF NOR EQUAL TO is the archetype for several different glyph variants noted

in various collections.

In two instances in this block, essentially stylistic variants are separately encoded:

U+2265 GREATER-THAN OR EQUAL TO is distinguished from U+2267 GREATER-THAN

OVER EQUAL TO; the same distinction applies to U+2264 LESS-THAN OR EQUAL TO

and U+2266 LESS-THAN OVER EQUAL TO. Further instances of the encoding of such

stylistic variants can be found in the supplemental blocks of mathematical operators.

The primary reason for such duplication is for compatibility with existing standards.

 A number of mathematical operators have been disunified from

related or similar punctuation characters, as shown in Table 22-5.

Punctuation Mathematical Operator

002D HYPHEN-MINUS 2212 MINUS SIGN

Unifications.

Disunifications.

Table 22-5. Mathematical Operators Disunified from Punctuation

Symbols 997 22.5 Mathematical Symbols

002F SOLIDUS or slash 2215 DIVISION SLASH

005C REVERSE SOLIDUS or backslash 2216 SET MINUS

002A ASTERISK 2217 ASTERISK OPERATOR

25E6 WHITE BULLET 2218 RING OPERATOR

2022 BULLET 2219 BULLET OPERATOR

007C VERTICAL LINE 2223 DIVIDES

2016 DOUBLE VERTICAL LINE 2225 PARALLEL TO

003A COLON 2236 RATIO

007E TILDE 223C TILDE OPERATOR

00B7 MIDDLE DOT 22C5 DOT OPERATOR

These disunifications support specific mathematical semantics, as well as some

significant display differences between the punctuation marks and the operators.

Mathematical operators render on the math centerline, rather than the text baseline.

Additionally, the angle or length of the operator counterparts of certain slashes or

bars may differ from the corresponding punctuation marks. For certain pairs, such as

COLON and RATIO, there are distinctions in the behavior of inter-character spacing;

RATIO is rendered as a relational operator which takes visible space on both sides,

whereas the punctuation mark COLON does not require such additional space in

rendering.

The distinction between MIDDLE DOT and DOT OPERATOR deserves special consider‐

ation. DOT OPERATOR is preferred for mathematical use, where it signifies multiplica‐

tion. This allows for rendering consistent with other mathematical operators, with

unambiguous character properties and mathematical semantics. MIDDLE DOT is a

legacy punctuation mark, with multiple uses, and with quite variable layout in

different fonts. For the typographical convention of a raised decimal point, in contexts

where simple layout is the priority and where automated parsing of decimal expres‐

sions is not required, MIDDLE DOT is the preferred representation.

In cases where there ordinarily is no rendering distinction between a punctuation

mark and its use in mathematics, such as for U+0021 EXCLAMATION MARK used for

factorial or for U+002E FULL STOP used for a baseline decimal point, there is no

disunification, and only a single character has been encoded.

 Several mathematical operators derived from Greek char‐

acters have been given separate encodings because they are used differently from the

corresponding letters. These operators may occasionally occur in context with Greek-

letter variables. They include U+2206 INCREMENT, U+220F N-ARY PRODUCT,

and U+2211 N-ARY SUMMATION. The latter two are large operators that take limits.

Other duplicated Greek characters are those for U+00B5 MICRO SIGN in the Latin-1

Supplement block, U+2126 OHM SIGN in Letterlike Symbols, and several characters

among the APL functional symbols in the Miscellaneous Technical block. Most other

Greek-Derived Symbols.

Symbols 998 22.5 Mathematical Symbols

Greek characters with special mathematical semantics are found in the Greek block

because duplicates were not required for compatibility. Additional sets of mathemat‐

ical-style Greek alphabets are found in the Mathematical Alphanumeric Symbols

block.

 N-ary operators are distinguished from binary operators by their

larger size and by the fact that in mathematical layout, they take limit expressions.

 In mathematics, some operators or punctuation are often

implied but not displayed. For a set of invisible operators that can be used to mark

these implied operators in the text, see Section 22.6, Invisible Mathematical Operators.

U+2212 “ ” MINUS SIGN is a mathematical operator, to be distinguished

from the ASCII-derived U+002D “ ” HYPHEN-MINUS, which may look the same as a

minus sign or be shorter in length. (For a complete list of dashes in the Unicode Stan‐

dard, see Table 6-3.) U+22EE..U+22F1 are a set of ellipses used in matrix notation.

U+2052 “ ” COMMERCIAL MINUS SIGN is a specialized form of the minus sign. Its

use is described in Section 6.2, General Punctuation.

 Many mathematical delimiters are unified with punctuation characters.

See Section 6.2, General Punctuation, for more information. Some of the set of orna‐

mental brackets in the range U+2768..U+2775 are also used as mathematical delim‐

iters. See Section 22.9, Miscellaneous Symbols. See also Section 22.7, Technical

Symbols, for specialized characters used for large vertical or horizontal delimiters.

 In a bidirectional context, with the exception of arrows, the

glyphs for mathematical operators and delimiters are adjusted as described in

Unicode Standard Annex #9, “Unicode Bidirectional Algorithm.” See Section 4.7, Bidi

Mirrored, and “Paired Punctuation” in Section 6.2, General Punctuation.

 In addition to the symbols in these

blocks, mathematical and scientific notation makes frequent use of arrows, punctua‐

tion characters, letterlike symbols, geometrical shapes, and miscellaneous and tech‐

nical symbols.

For an extensive discussion of mathematical alphanumeric symbols, see Section 22.2,

Letterlike Symbols. For additional information on all the mathematical operators and

other symbols, see Unicode Technical Report #25, “Unicode Support for Mathe‐

matics.”

The Unicode Standard defines a number of additional blocks to supplement the

repertoire of mathematical operators and arrows. These additions are intended to

extend the Unicode repertoire sufficiently to cover the needs of such applications as

N-ary Operators.

Invisible Operators.

Minus Sign.

Delimiters.

Bidirectional Layout.

Other Elements of Mathematical Notation.

22.5.2 Supplements to Mathematical Symbols and Arrows

Symbols 999 22.5 Mathematical Symbols

MathML, modern mathematical formula editing and presentation software, and

symbolic algebra systems.

 MathML, an XML application, is intended to support the full legacy

collection of the ISO mathematical entity sets. Accordingly, the repertoire of mathe‐

matical symbols for the Unicode Standard has been supplemented by the full list of

mathematical entity sets in ISO TR 9573-13, Public entity sets for mathematics and

science. An additional repertoire was provided from the amalgamated collection of

the STIX Project (Scientific and Technical Information Exchange). That collection

includes, but is not limited to, symbols gleaned from mathematical publications by

experts of the American Mathematical Society and symbol sets provided by Elsevier

Publishing and by the American Physical Society.

The Supplemental Mathematical Operators block contains many additional symbols

to supplement the collection of mathematical operators.

The Miscellaneous Mathematical Symbols-A block contains symbols that are used

mostly as operators or delimiters in mathematical notation.

 The mathematical white square brackets, angle brackets,

double angle brackets, and tortoise shell brackets encoded at U+27E6..U+27ED are

intended for ordinary mathematical use of these particular bracket types. They are

unambiguously narrow, for use in mathematical and scientific notation, and should

be distinguished from the corresponding wide forms of white square brackets, angle

brackets, and double angle brackets used in CJK typography. (See the discussion of

the CJK Symbols and Punctuation block in Section 6.2, General Punctuation.) Note

especially that the “bra” and “ket” angle brackets (U+2329 LEFT-POINTING ANGLE

BRACKET and U+232A RIGHT-POINTING ANGLE BRACKET, respectively) are depre‐

cated. Their use is strongly discouraged, because of their canonical equivalence to

CJK angle brackets. This canonical equivalence is likely to result in unintended

spacing problems if these characters are used in mathematical formulae.

The flattened parentheses encoded at U+27EE..U+27EF are additional, specifically-

styled mathematical parentheses. Unlike the mathematical and CJK brackets just

discussed, the flattened parentheses do not have corresponding wide CJK versions

which they would need to be contrasted with.

U+27CC LONG DIVISION is an operator intended for the representa‐

tion of long division expressions, as may be seen in elementary and secondary school

mathematical textbooks, for example. In use and rendering it shares some character‐

istics with U+221A SQUARE ROOT; in rendering, the top bar may be stretched to

Standards.

22.5.3 Supplemental Mathematical Operators: U+2A00–U+2AFF

22.5.4 Miscellaneous Mathematical Symbols-A: U+27C0–U+27EF

Mathematical Brackets.

Long Division.

Symbols 1000 22.5 Mathematical Symbols

extend over the top of the denominator of the division expression. Full support of

such rendering may, however, require specialized mathematical software.

U+27CB MATHEMATICAL RISING DIAG‐

ONAL and U+27CD MATHEMATICAL FALLING DIAGONAL are limited-use mathemat‐

ical symbols, to be distinguished from the more widely used solidi and reverse solidi

operators encoded in the Basic Latin, Mathematical Operators, and Miscellaneous

Mathematical Symbols-B blocks. Their glyphs are invariably drawn at a 45 degree

angle, instead of the more upright slants typical for the solidi operators. The box

drawing characters U+2571 and U+2572, whose glyphs may also be found at a 45

degree angle in some fonts, are not intended to be used as mathematical symbols.

One usage recorded for U+27CB and U+27CD is in the notation for spaces of double

cosets. The former corresponds to the LaTeX entity \diagup and the latter to \diag‐

down.

The Miscellaneous Mathematical Symbols-B block contains miscellaneous symbols

used for mathematical notation, including fences and other delimiters. Some of the

symbols in this block may also be used as operators in some contexts.

U+29D8 LEFT WIGGLY FENCE has a superficial similarity to U+FE34

PRESENTATION FORM FOR VERTICAL WAVY LOW LINE. The latter is a wiggly sidebar

character, intended for legacy support as a style of underlining character in a vertical

text layout context; it has a compatibility mapping to U+005F LOW LINE. This repre‐

sents a very different usage from the standard use of fence characters in mathemat‐

ical notation.

U+29FE TINY and U+29FF MINY are unary mathematical operators

used in combinatorial game theory. TINY yields an infinitesimal positive value, while

MINY yields an infinitesimal negative value. The glyphs for TINY and MINY resemble

the plus sign and minus sign, respectively, but should be shown distinctly, with thick‐

ened ends to their bars.

The Miscellaneous Symbols and Arrows block contains more mathematical symbols

and arrows. The arrows in this block extend and complete sets of arrows in other

blocks. The other mathematical symbols complement various sets of geometric

shapes. For a discussion of the use of such shape symbols in mathematical contexts,

see “Geometric Shapes: U+25A0–U+25FF” and “Geometric Shapes Extended:

U+1F780–U+1F7FF” in Section 22.8, Geometrical Symbols.

This block also contains various types of generic symbols. These complement the set

of symbols in the Miscellaneous Symbols block, U+2600..U+26FF.

Fractional Slash and Other Diagonals.

22.5.5 Miscellaneous Mathematical Symbols-B: U+2980–U+29FF

Wiggly Fence.

Tiny and Miny.

22.5.6 Miscellaneous Symbols and Arrows: U+2B00–U+2BFF

Symbols 1001 22.5 Mathematical Symbols

Arrows are used for a variety of purposes: to imply directional relation, to show

logical derivation or implication, and to represent the cursor control keys.

Accordingly, the Unicode Standard includes a fairly extensive set of generic arrow

shapes, especially those for which there are established usages with well-defined

semantics. It does not attempt to encode every possible stylistic variant of arrows

separately, especially where their use is mainly decorative. For most arrow variants,

the Unicode Standard provides encodings in the two horizontal directions, often in

the four cardinal directions. For the single and double arrows, the Unicode Standard

provides encodings in eight directions.

 In bidirectional layout, arrows are not automatically

mirrored, because the direction of the arrow could be relative to the text direction or

relative to an absolute direction. Therefore, if text is copied from a left-to-right to a

right-to-left context, or vice versa, the character code for the desired arrow direction

in the new context must be used. For example, it might be necessary to change

U+21D2 RIGHTWARDS DOUBLE ARROW to U+21D0 LEFTWARDS DOUBLE ARROW to

maintain the semantics of “implies” in a right-to-left context. For more information

on bidirectional layout, see Unicode Standard Annex #9, “Unicode Bidirectional

Algorithm.”

 The Unicode Standard encodes arrows from many different international

and national standards as well as corporate collections.

 Arrows expressing mathematical relations have been encoded in the

Arrows block as well as in the supplemental arrows blocks. An example is

U+21D2 RIGHTWARDS DOUBLE ARROW, which may be used to denote implies.

Where available, such usage information is indicated in the annotations to individual

characters in the code charts. However, because the arrows have such a wide variety

of applications, there may be several semantic values for the same Unicode character

value.

The Supplemental Arrows-A (U+27F0..U+27FF), Supplemental Arrows-B (U+2900..

U+297F), Miscellaneous Symbols and Arrows (U+2B00..U+2BFF), and Supple‐

mental Arrows-C (U+1F800..U+1F8FF) blocks contain a large repertoire of arrows to

supplement the main set in the Arrows block. Many of the supplemental arrows in

the Miscellaneous Symbols and Arrows block, particularly in the range

U+2B30..U+2B4C, are encoded to ensure the availability of left-right symmetric pairs

of less common arrows, for use in bidirectional layout of mathematical text. The two

arrows U+1F8C0 and U+1F8C1 are used in modern Egyptian hieroglyphic text mate‐

rials to indicate the direction the glyphs are facing when the text is laid out in vertical

22.5.7 Arrows: U+2190–U+21FF

Bidirectional Layout.

Standards.

Unifications.

22.5.8 Supplemental Arrows

Symbols 1002 22.5 Mathematical Symbols

columns. Some of the arrows encoded in the Supplemental Arrows-C block are

encoded to fill out sets of arrows for mapping to legacy computing character sets and

the Smalltalk programming language.

 The long arrows encoded in the range U+27F5..U+27FF map to stan‐

dard SGML entity sets supported by MathML. Long arrows represent distinct seman‐

tics from their short counterparts, rather than mere stylistic glyph differences. For

example, the shorter forms of arrows are often used in connection with limits,

whereas the longer ones are associated with mappings. The use of the long arrows is

so common that they were assigned entity names in the ISOAMSA entity set, one of

the suite of mathematical symbol entity sets covered by the Unicode Standard.

These mathematical variants are all produced with the addition of U+FE00 VARIA‐

TION SELECTOR-1 (VS1) to mathematical operator base characters. The valid combi‐

nations are listed in the file StandardizedVariants.txt in the Unicode Character Data‐

base. All combinations not listed there are unspecified and are reserved for future

standardization; no conformant process may interpret them as standardized variants.

 In Version 3.2 of the

Unicode Standard, the representative glyphs for U+2278 NEITHER LESS-THAN NOR

GREATER-THAN and U+2279 NEITHER GREATER-THAN NOR LESS-THAN were

changed from using a vertical cancellation to using a slanted cancellation. This

change was made to match the long-standing canonical decompositions for these

characters, which use U+0338 COMBINING LONG SOLIDUS OVERLAY. The symmetric

forms using the vertical stroke continue to be acceptable glyph variants. Using

U+2276 LESS-THAN OR GREATER-THAN or U+2277 GREATER-THAN OR LESS-THAN

with U+20D2 COMBINING LONG VERTICAL LINE OVERLAY will display these variants

explicitly. Unless fonts are created with the intention to add support for both forms,

there is no need to revise the glyphs in existing fonts; the glyphic range implied by

using the base character code alone encompasses both shapes. For more information,

see Section 23.4, Variation Selectors.

Long Arrows.

22.5.9 Standardized Variants of Mathematical Symbols

Change in Representative Glyphs for U+2278 and U+2279.

Symbols 1003 22.5 Mathematical Symbols

In mathematics, some operators and punctuation are often implied but not displayed.

The General Punctuation block contains several special format control characters

known as invisible operators, which can be used to make such operators explicit for

use in machine interpretation of mathematical expressions. Use of invisible operators

is optional and is intended for interchange with math-aware programs.

A more complete discussion of mathematical notation can be found in Unicode

Technical Report #25, “Unicode Support for Mathematics.”

U+2063 INVISIBLE SEPARATOR (also known as invisible

comma) is intended for use in index expressions and other mathematical notation

where two adjacent variables form a list and are not implicitly multiplied. In mathe‐

matical notation, commas are not always explicitly present, but they need to be indi‐

cated for symbolic calculation software to help it disambiguate a sequence from a

multiplication. For example, the double
ij

 subscript in the variable a
ij

 means a
i, j

—

that is, the i and j are separate indices and not a single variable with the name ij or

even the product of i and j. To represent the implied list separation in the subscript
ij

,

one can insert a nondisplaying invisible separator between the i and the j. In addition,

use of the invisible comma would hint to a math layout program that it should

typeset a small space between the variables.

 Similarly, an expression like mc2 implies that the mass m

multiplies the square of the speed c. To represent the implied multiplication in mc2,

one inserts a nondisplaying U+2062 INVISIBLE TIMES between the m and the c.

Another example can be seen in the expression f ij(cos(ab)), which has the same

meaning as f ij(cos(a×b)), where × represents multiplication, not the cross product.

Note that the spacing between characters may also depend on whether the adjacent

variables are part of a list or are to be concatenated (that is, multiplied).

 The invisible plus operator, U+2064 INVISIBLE PLUS, is used to

unambiguously represent expressions like 3¼ which occur frequently in school and

engineering texts. To ensure that 3¼ means 3 plus ¼—in uses where it is not possible

to rely on a human reader to disambiguate the implied intent of juxtaposition—the

invisible plus operator is used. In such uses, not having an operator at all would

imply multiplication.

U+2061 FUNCTION APPLICATION is used for an

implied function dependence, as inf(x + y). To indicate that this is the function f of

the quantity x + y and not the expression fx + fy, one can insert the nondisplaying

function application symbol between the f and the left parenthesis.

22.6 Invisible Mathematical Operators

Invisible Separator.

Invisible Multiplication.

Invisible Plus.

Invisible Function Application.

Symbols 1004 22.6 Invisible Mathematical Operators

The need to show the presence of the C0 control codes unequivocally when data are

displayed has led to conventional representations for these nongraphic characters.

 By definition, control codes themselves

are manifested only by their action. However, it is sometimes necessary to show the

position of a control code within a data stream. Conventional illustrations for the

ASCII C0 control codes have been developed—but the characters U+2400..U+241F

and U+2424 are intended for use as unspecified graphics for the corresponding

control codes. This choice allows a particular application to use any desired pictorial

representation of the given control code. It assumes that the particular pictures used

to represent control codes are often specific to different systems and are rarely the

subject of text interchange between systems.

 By definition, the SPACE is a blank graphic. Conventions

have also been established for the visible representation of the space. Three specific

characters are provided that may be used to visually represent the ASCII space char‐

acter, U+2420 SYMBOL FOR SPACE, U+2422 BLANK SYMBOL, and U+2423 OPEN BOX.

 The control code for delete is sometimes depicted with a visible

graphic representation. U+2421 SYMBOL FOR DELETE can be used to select a visible

depiction for delete, with the exact graphical form left unspecified. In contrast,

U+2425 SYMBOL FOR DELETE FORM TWO represents a specific form for a keyboard

symbol from ISO 9995-7 associated with an undoable delete function. Several specific

checkerboard or shade forms for delete in the range U+2427..U+2429, are encoded for

compatibility mapping to sets of symbols for legacy computing, specifically for the

Apple II, TRS-80, and Amstrad CPC legacy computer character sets.

 The CNS 11643 standard encodes characters for pictures of control codes.

Standard representations for control characters have been defined—for example, in

ANSI X3.32 and ISO 2047. If desired, the characters U+2400..U+241F may be used

for these representations.

This block encodes technical symbols, including keytop labels such as U+232B

ERASE TO THE LEFT. Excluded from consideration were symbols that are not

normally used in one-dimensional text but are intended for two-dimensional

diagrammatic use, such as most symbols for electronic circuits.

22.7 Technical Symbols

22.7.1 Control Pictures: U+2400–U+243F

Code Points for Pictures for Control Codes.

Pictures for ASCII Space.

Pictures for Delete.

Standards.

22.7.2 Miscellaneous Technical: U+2300–U+23FF

Symbols 1005 22.7 Technical Symbols

 Where possible, keytop labels have been unified with other symbols

of like appearance—for example, U+21E7 UPWARDS WHITE ARROW to indicate the

Shift key. While symbols such as U+2318 PLACE OF INTEREST SIGN and U+2388

HELM SYMBOL are generic symbols that have been adapted to use on keytops, other

symbols specifically follow ISO/IEC 9995-7.

 The floor and ceiling symbols encoded at U+2308..U+230B are

tall, narrow mathematical delimiters. These symbols should not be confused with the

CJK corner brackets at U+300C and U+300D, which are wide characters used as

quotation marks in East Asian text. They should also be distinguished from the half

brackets at U+2E22..U+2E25, which are the most generally used editorial marks

shaped like corner brackets. Additional types of editorial marks, including further

corner bracket forms, can be found in the Supplemental Punctuation block

(U+2E00..U+2E7F).

 Crops and quine corners are most properly used in two-

dimensional layout but may be referred to in plain text. This usage is shown in

Figure 22-9.

Crops Quine corners

U+2329 LEFT-POINTING ANGLE BRACKET and U+232A RIGHT-

POINTING ANGLE BRACKET have long been canonically equivalent to the CJK punc‐

tuation characters U+3008 LEFT ANGLE BRACKET and U+3009 RIGHT ANGLE

BRACKET, respectively. This canonical equivalence implies that the use of the latter

(CJK) code points is preferred and that U+2329 and U+232A are also “wide” charac‐

ters. (See Unicode Standard Annex #11, “East Asian Width,” for the definition of the

East Asian wide property.) For this reason, the use of U+2329 and U+232A is depre‐

cated for mathematics and for technical publication, where the wide property of the

characters has the potential to interfere with the proper formatting of mathematical

formulae. The angle brackets specifically provided for mathematics, U+27E8 MATHE‐

MATICAL LEFT ANGLE BRACKET and U+27E9 MATHEMATICAL RIGHT ANGLE

BRACKET, should be used instead. See Section 22.5, Mathematical Symbols.

 APL (A Programming Language) makes extensive use of

functional symbols constructed by composition with other, more primitive functional

symbols. It used backspace and overstrike mechanisms in early computer implemen‐

tations. In principle, functional composition is productive in APL; in practice, a rela‐

Keytop Labels.

Floor and Ceiling.

Crops and Quine Corners.

Figure 22-9. Usage of Crops and Quine Corners

Angle Brackets.

APL Functional Symbols.

Symbols 1006 22.7 Technical Symbols

tively small number of composed functional symbols have become standard opera‐

tors in APL. This relatively small set is encoded in its entirety in this block. All other

APL extensions can be encoded by composition of other Unicode characters. For

example, the APL symbol a underbar can be represented by U+0061 LATIN SMALL

LETTER A + U+0332 COMBINING LOW LINE.

 The characters in the range U+239B..U+23B3, plus U+23B7, consti‐

tute a set of bracket and other symbol fragments for use in mathematical typesetting.

These pieces originated in older font standards but have been used in past mathemat‐

ical processing as characters in their own right to make up extra-tall glyphs for

enclosing multiline mathematical formulae. Mathematical fences are ordinarily sized

to the content that they enclose. However, in creating a large fence, the glyph is not

scaled proportionally; in particular, the displayed stem weights must remain compat‐

ible with the accompanying smaller characters. Thus simple scaling of font outlines

cannot be used to create tall brackets. Instead, a common technique is to build up the

symbol from pieces. In particular, the characters U+239B LEFT PARENTHESIS UPPER

HOOK through U+23B3 SUMMATION BOTTOM represent a set of glyph pieces for

building up large versions of the fences (), [], and { }, and of the large operators

and . These brace and operator pieces are compatibility characters. They should not

be used in stored mathematical text, although they are often used in the data stream

created by display and print drivers.

Table 22-6 shows which pieces are intended to be used together to create specific

symbols. For example, an instance of U+239B can be positioned relative to instances

of U+239C and U+239D to form an extra-tall (three or more line) left parenthesis.

The center sections encoded here are meant to be used only with the top and bottom

pieces encoded adjacent to them because the segments are usually graphically

constructed within the fonts so that they match perfectly when positioned at the

same x coordinates.

Two-Row Three-Row Five-Row

Summation 23B2, 23B3

Integral 2320, 2321 2320, 23AE, 2321 2320, 3×23AE, 2321

Left parenthesis 239B, 239D 239B, 239C, 239D 239B, 3×239C, 239D

Right parenthesis 239E, 23A0 239E, 239F, 23A0 239E, 3×239F, 23A0

Left bracket 23A1, 23A3 23A1, 23A2, 23A3 23A1, 3×23A2, 23A3

Right bracket 23A4, 23A6 23A4, 23A5, 23A6 23A4, 3×23A5, 23A6

Left brace 23B0, 23B1 23A7, 23A8, 23A9 23A7, 23AA, 23A8, 23AA, 23A9

Right brace 23B1, 23B0 23AB, 23AC, 23AD 23AB, 23AA, 23AC, 23AA, 23AD

 In mathematical equations, delimiters are often used horizon‐

tally, where they expand to the width of the expression they encompass. The six

Symbol Pieces.

Table 22-6. Use of Mathematical Symbol Pieces

Horizontal Brackets.

Symbols 1007 22.7 Technical Symbols

bracket characters in the range U+23DC..U+23E1 can be used for this purpose. In the

context of mathematical layout, U+23B4 TOP SQUARE BRACKET and U+23B5

BOTTOM SQUARE BRACKET are also used that way. For more information, see

Unicode Technical Report #25, “Unicode Support for Mathematics.”

The set of horizontal square brackets, U+23B4 TOP SQUARE BRACKET and U+23B5

BOTTOM SQUARE BRACKET, together with U+23B6 BOTTOM SQUARE BRACKET OVER

TOP SQUARE BRACKET, are used by certain legacy applications to delimit vertical

runs of text in non-CJK terminal emulation. U+23B6 is used where a single character

cell is both the end of one such run and the start of another. The use of these charac‐

ters in terminal emulation should not be confused with the use of rotated forms of

brackets for vertically rendered CJK text. See the further discussion of this issue in

Section 6.2, General Punctuation.

U+23E8 DECIMAL EXPONENT SYMBOL is for compati‐

bility with the Russian standard GOST 10859-64, as well as the paper tape and punch

card standard, Alcor (DIN 66006). It represents a fixed token introducing the expo‐

nent of a real number in scientific notation, comparable to the more common usage

of “e” in similar notations: 1.621e5. It was used in the early computer language

ALGOL-60, and appeared in some Soviet-manufactured computers, such as the

BESM-6 and its emulators. In the Unicode Standard it is treated simply as an atomic

symbol; it is not considered to be equivalent to a generic subscripted form of the

numeral “10” and is not given a decomposition. The vertical alignment of this symbol

is slightly lower than the baseline, as shown in Figure 22-10.

 The set of symbols from U+23BE to U+23CC form a set of symbols

from JIS X 0213 for use in dental notation.

 The symbols in the range U+23D1..U+23D9 are a set of spacing

symbols used in the metrical analysis of poetry and lyrics.

 The Miscellaneous Technical block also contains a smat‐

tering of electrotechnical symbols. These characters are not intended to constitute a

complete encoding of all symbols used in electrical diagrams, but rather are compati‐

bility characters encoded primarily for mapping to other standards. The symbols in

the range U+238D..U+2394 are from the character set with the International Registry

number 181. U+23DA EARTH GROUND and U+23DB FUSE are from HKSCS-2001.

Decimal Exponent Symbol.

Figure 22-10. Usage of the Decimal Exponent Symbol

Dental Symbols.

Metrical Symbols.

Electrotechnical Symbols.

Symbols 1008 22.7 Technical Symbols

 The characters U+231A, U+231B, and U+23E9 through

U+23FA are often found in user interfaces for media players, clocks, alarms, and

timers, as well as in text discussing those user interfaces. The black medium triangles

(U+23F4..U+23F7) are the preferred shapes for User Interface purposes, rather than

the similar geometric shapes located in the Geometric Shapes block:

U+25A0..U+25FF. The Miscellaneous Symbols and Pictographs block also contains

many user interface symbols in the ranges U+1F500..U+1F518, U+1F53A..U+1F53D

and U+1F5BF..U+1F5DD, as well as clock face symbols in the range

U+1F550..U+1F567.

 This block contains a large number of symbols from ISO/IEC

9995-7:1994, Information technology—Keyboard layouts for text and office systems—

Part 7: Symbols used to represent functions.

ISO/IEC 9995-7 contains many symbols that have been unified with existing and

closely related symbols in Unicode. These symbols are shown with their ordinary

shapes in the code charts, not with the particular glyph variation required by confor‐

mance to ISO/IEC 9995-7. Implementations wishing to be conformant to ISO/IEC

9995-7 in the depiction of these symbols should make use of a suitable font.

This block includes those symbolic characters of the OCR-A character set that do not

correspond to ASCII characters, as well as magnetic ink character recognition

(MICR) symbols used in check processing.

 Both sets of symbols are specified in ISO 2033.

The Unicode Standard encodes an extensive set of symbols to support legacy

computing graphic characters, primarily located in these blocks.

Support for these legacy computing symbols includes 212 characters added to the

Symbols for Legacy Computing block in Version 13.0 to provide compatibility with a

wide range of early home computers, or “microcomputers,” manufactured from the

mid-1970s to the mid-1980s. These symbols also cover the teletext broadcasting stan‐

dard originally developed in the early 1970s, and the Minitel standard developed in

the 1980s. This collection of early microcomputer symbols includes support for the

character sets of Amstrad CPC, Apple 8-bit, Atari 8 and 16-bit, Commodore 8 and 16-

bit, MSX, Yamaha, RISC OS, and Tandy. Version 16.0 added 37 characters

(U+1FBCB..U+1FBEF) that were employed on lesser-known legacy computer plat‐

forms, including Mattel Aquarius and the Sharp MX series.

User Interface Symbols.

Standards.

22.7.3 Optical Character Recognition: U+2440–U+245F

Standards.

22.7.4 Symbols for Legacy Computing: U+1FB00-U+1FBFF

Symbols for Legacy Computing Supplement: U+1CC00–U+1CEBF

Symbols 1009 22.7 Technical Symbols

The Symbols for Legacy Computing Supplement block contains 680 symbols from

the lesser-known platforms and four characters from the Smalltalk programming

language (U+1CEB0..U+1CEB3).

Most of the symbols in these blocks are semi-graphics: block-style symbols which can

be combined to simulate an all-points-addressable graphic display. Many platforms

used these semi-graphic characters to support a graphics mode: small blocks that

would be plotted at various coordinates, resulting in the appropriate full-sized block

character consisting of the necessary “on” and “off” blocks. Other symbols in these

blocks include box drawing and shading characters, miscellaneous arrows, game

sprites, and stick figures. In the teletext specification, symbols in this group can be

displayed either with cells joined together or with a narrow space between cells.

A set of ASCII digits 0 through 9 (U+1FBF0..U+1FBF9) are styled as upright seven-

segment digits to match the ones that were often used in Atari 16-bit applications for

game scores. Outlined uppercase Latin letters and ASCII digits from the European

character set for the Sharp MZ-series machines are encoded in the range

U+1CCD6..U+1CCF9.

Terminal graphics legacy symbols are also encoded in the Miscellaneous Technical

block. They include block-style semi-graphics, border-colored characters, and box

drawing characters. Other box drawing symbols are encoded in the Box Drawing

block and several characters are unified with characters in the Block Elements block.

In particular, the Miscellaneous Technical block includes the horizontal scan line

characters, U+23BA HORIZONTAL SCAN LINE-1 through U+23BD HORIZONTAL SCAN

LINE-9, which represent characters that were encoded in character ROM for use with

nine-line character graphic cells. Horizontal scan line characters are encoded for

scan lines 1, 3, 7, and 9. The horizontal scan line character for scan line 5 is unified

with U+2500 BOX DRAWINGS LIGHT HORIZONTAL.

The symbols in these blocks combined with the vertical and horizontal line charac‐

ters encoded in the Miscellaneous Technical block provide the compatibility charac‐

ters needed for applications to emulate various early computer terminal support.

Symbols 1010 22.7 Technical Symbols

Geometrical symbols are a collection of geometric shapes and their derivatives plus

block elements and characters used for box drawing in legacy environments. In addi‐

tion to the blocks described in this section, the Miscellaneous Technical

(U+2300..U+23FF), Miscellaneous Symbols (U+2600..U+26FF), and Miscellaneous

Symbols and Arrows (U+2B00.. U+2BFF) blocks contain geometrical symbols that

complete the set of shapes in the Geometric Shapes block.

Box drawing and block element characters are graphic compatibility characters in the

Unicode Standard. A number of existing national and vendor standards, including

IBM PC Code Page 437, contain sets of characters intended to enable a simple kind of

display cell graphics, assuming terminal-type screen displays of fixed-pitch character

cells. The Unicode Standard does not encourage this kind of character-cell-based

graphics model, but does include sets of such characters for backward compatibility

with the existing standards.

 The Box Drawing block (U+2500..U+257F) contains a collection of

graphic compatibility characters that originate in legacy standards in use prior to

1990 and that are intended for drawing boxes of various shapes and line widths for

user interface components in character-cell-based graphic systems.

The “light,” “heavy,” and “double” attributes for some of these characters reflect the

fact that the original sets often had a two-way distinction, between a light versus

heavy line or a single versus double line, and included sufficient pieces to enable

construction of graphic boxes with distinct styles that abutted each other in display.

In particular, the mappings to some Videotex mosaic drawing characters noted in the

code charts refer to the concept of “heavy” as specified in early Videotex character

registrations and Recommendations, which made a two-way distinction between

light and heavy. See, for example, ITU-T Recommendation T.101, International Inter‐

working for Videotex Services (November, 1988). The mappings do not reflect later

Videotex registrations and modifications to the relevant Recommendations which

specified three levels of weight distinction in lines for box drawing characters.

The lines in the box drawing characters typically extend to the middle of the top,

bottom, left, and/or right of the bounding box for the character cell. They are

designed to connect together into continuous lines, with no gaps between them.

When emulating terminal applications, fonts that implement the box drawing char‐

acters should do likewise.

22.8 Geometrical Symbols

22.8.1 Box Drawing and Block Elements

Box Drawing.

Symbols 1011 22.8 Geometrical Symbols

 The Block Elements block (U+2580..U+259F) contains another

collection of graphic compatibility characters. Unlike the box drawing characters, the

legacy block elements are designed to fill some defined fraction of each display cell or

to fill each display cell with some defined degree of shading. These elements were

used to create crude graphic displays in terminals or in terminal modes on displays

where bit-mapped graphics were unavailable.

Half-block fill characters are included for each half of a display cell, plus a graduated

series of vertical and horizontal fractional fills based on one-eighth parts. The frac‐

tional fills do not form a logically complete set but are intended only for backward

compatibility. There is also a set of quadrant fill characters, U+2596..U+259F, which

are designed to complement the half-block fill characters and U+2588 FULL BLOCK.

When emulating terminal applications, fonts that implement the block element char‐

acters should be designed so that adjacent glyphs for characters such as U+2588 FULL

BLOCK create solid patterns with no gaps between them.

 The box drawing and block element characters were derived from GB

2312, KS X 1001, a variety of industry standards, and several terminal graphics sets.

The Videotex Mosaic characters, which have similar appearances and functions, are

unified against these sets.

The Geometric Shapes are a collection of characters intended to encode prototypes

for various commonly used geometrical shapes—mostly squares, triangles, and

circles. The collection is somewhat arbitrary in scope; it is a compendium of shapes

from various character and glyph standards. The typical distinctions more systemati‐

cally encoded include black versus white, large versus small, basic shape (square

versus triangle versus circle), orientation, and top versus bottom or left versus right

part.

 The hatched and cross-hatched squares at U+25A4..U+25A9 are

derived from the Korean national standard (KS X 1001), in which they were probably

intended as representations of fill patterns. Because the semantics of those characters

are insufficiently defined in that standard, the Unicode character encoding simply

carries the glyphs themselves as geometric shapes to provide a mapping for the

Korean standard.

U+25CA LOZENGE is a typographical symbol seen in PostScript and in the

Macintosh character set. It should be distinguished from both the generic U+25C7

WHITE DIAMOND and the U+2662 WHITE DIAMOND SUIT, as well as from another

character sometimes called a lozenge, U+2311 SQUARE LOZENGE.

 Many geometric shapes are used in mathematics. When used

for this purpose, the center points of the glyphs representing geometrical shapes

Block Elements.

Standards.

22.8.2 Geometric Shapes: U+25A0–U+25FF

Hatched Squares.

Lozenge.

Use in Mathematics.

Symbols 1012 22.8 Geometrical Symbols

should line up at the center line of the mathematical font. This differs from the align‐

ment used for some of the representative glyphs in the code charts.

For several simple geometrical shapes—circle, square, triangle, diamond, and

lozenge—differences in size carry semantic distinctions in mathematical notation,

such as the difference between use of the symbol as a variable or as one of a variety of

operator types. The Miscellaneous Symbols and Arrows block contains numerous

characters representing other sizes of these geometrical symbols. Several other

blocks, such as General Punctuation, Mathematical Operators, Block Elements,

Miscellaneous Symbols, and Geometric Shapes Extended, contain a few other charac‐

ters which are members of the size-graded sets of such symbols.

For more details on the use of geometrical shapes in mathematics, see Unicode Tech‐

nical Report #25, “Unicode Support for Mathematics.”

 The Geometric Shapes are derived from a large range of national and

vendor character standards. The squares and triangles at U+25E7..U+25EE are

derived from the Linotype font collection. U+25EF LARGE CIRCLE is included for

compatibility with the JIS X 0208-1990 Japanese standard.

The repertoire for the Geometric Shapes Extended block mostly originates from the

set of Wingdings. It is intended primarily to complement existing sets of geometric

shape symbols in other blocks. The choice of sizes for this extension is done with the

goal that font designers will be able to scale uniformly among the various sizes for

each class of geometric shapes. Table 22-7 provides a list of the sets that have charac‐

ters spanning multiple blocks, including the Geometric Shapes Extended block.

Differences in size may carry semantic distinction in mathematical notation.

Description Code Points

Black circles
22C5, 2219, 1F784, 2022, 2981, 26AB, 25CF,
2B24

White circles 25CB, 2B58, 1F785..1F789

Colored circles 26AA, 26AB, 1F534, 1F535, 1F7E0..1F7E4

Black squares
1F78C, 2B1D, 1F78D, 25AA, 25FE, 25FC, 25A0,
2B1B

White squares 25A1, 1F78E..1F792

Colored squares 2B1C, 2B1B, 1F7E5..1F7EB

White squares containing another black
square

1F794, 25A3, 1F795

Black diamonds 1F797, 1F798, 2B29, 1F799, 2B25, 25C6

Standards.

22.8.3 Geometric Shapes Extended: U+1F780–U+1F7FF

Table 22-7. Geometric Shape Collections

Symbols 1013 22.8 Geometrical Symbols

White diamonds containing another black
diamond

1F79A, 25C8, 1F79B

Black lozenges 1F79D, 1F79E, 2B2A, 1F79F, 2B27, 29EB

Five pointed stars 1F7C9, 2605, 1F7CA, 272F

Six pointed stars 2736, 1F7CB..1F7CD

Eight pointed stars 2735, 1F7CE..1F7D1

Twelve pointed stars 1F7D2, 2739, 1F7D3, 1F7D4

This block also contains a set of colored circles and squares in the range

U+1F7E0..U+1F7EB. Those colored circles and squares are intended for use with

emoji, to augment the colored circles and other colored sets for emoji. Table 22-7

shows these sets, including white and black circles and squares, and red and blue

circles from other blocks. Those sets are listed in the order: white, black, red, blue,

orange, yellow, green, purple, brown. Unlike emoji modifiers for skin tone (see

Unicode Technical Standard #51, “Unicode Emoji”), the symbols for colored circles

and squares are simply graphical symbols which may convey the concepts of colors,

but with no immediate implications for rendering of glyphs with those particular

colors. For example, a user could specify a yellow circle symbol together with a

ribbon emoji symbol to convey the notion of a “yellow ribbon,” but there would be no

expectation that the font would combine the two characters and draw an actual

yellow ribbon. These colored circles and squares are often used decoratively in emoji

text, with no other semantic intent.

Symbols 1014 22.8 Geometrical Symbols

There are numerous blocks defined in the Unicode Standard which contain miscella‐

neous symbols that do not fit well into any of the categories of symbols already

discussed. These include various small sets of special-use symbols such as zodiacal

symbols, map symbols, symbols used in transportation and accommodation guides,

dictionary symbols, gender symbols, and so forth. There are additional larger sets,

such as sets of symbols for game pieces or playing cards, and divination symbols

associated with the Yijing or other texts, as well as sets of medieval or ancient

symbols used only in historical contexts.

Of particular note are the large number of pictographic symbols, called emoji

(“picture character”), in common use on mobile devices. Many emoji originated from

character sets, called carrier sets, in early widespread use in cell phones in Japan. A

number of other symbols are commonly shown with an emoji-like presentation. The

majority of such symbols are encoded in the blocks listed in Table 22-8, but many

emoji characters are encoded in other blocks. For a complete listing of the historic

carrier emoji sets, including information about which of those emoji characters have

been unified with other symbol characters in the Unicode Standard, see the data file

EmojiSources.txt in the Unicode Character Database. The list of all Unicode charac‐

ters that normally may be candidates for emoji presentation can be found in the data

file emoji-data.txt in the Unicode Character Database.

Range Block Name

2600..26FF Miscellaneous Symbols

1F300..1F5FF Miscellaneous Symbols and Pictographs

1F600..1F64F Emoticons

1F680..1F6FF Transport and Map Symbols

1F900..1F9FF Supplemental Symbols and Pictographs

1FA70..1FAFF Symbols and Pictographs Extended-A

An additional category of miscellaneous symbols are the so-called dingbat characters.

These are essentially compatibility characters representing very specific glyph shapes

associated with common “symbol” fonts in widespread legacy use. Symbols identified

as “dingbats” are encoded in various blocks. The well-known “Zapf Dingbats” set is

encoded comprehensively in the Dingbats block, U+2700..U+27BF. Other sets of

dingbats, such as the Wingdings and Webdings sets, are encoded in various symbol

blocks, but the majority are found in the Miscellaneous Symbols and Pictographs

block, U+1F300..U+1F5FF.

22.9 Miscellaneous Symbols

Table 22-8. Blocks with Characters Often Shown as Emoji

Symbols 1015 22.9 Miscellaneous Symbols

Corporate logos and collections of graphical elements or pictures are not included in

the Unicode Standard, because they tend either to be very specific in usage (logos,

political party symbols, and so on) or are nonconventional in appearance and

semantic interpretation (clip art collections), and hence are inappropriate for

encoding as characters. The Unicode Standard recommends that such items be incor‐

porated in text via higher-level protocols that allow intermixing of graphic images

with text, rather than by indefinite extension of the number of miscellaneous

symbols encoded as characters. Newer emoji-like symbols using embedded graphics

are already in widespread use on mobile phones and other devices.

 Many of the characters in the blocks listed in Table 22-8 are

often presented in an emoji style. There may be a great deal of variability in presenta‐

tion, along three axes:

Glyph shape: Emoji may have a great deal of flexibility in the choice of glyph

shape used to render them.

Color: Many characters in an emoji context (such as cell phone e-mail or text

messages) are displayed in color, sometimes as a multicolor image. While this is

particularly true of emoji, there are other cases where non-emoji symbols, such

as game symbols, may be displayed in color.

Animation: Some characters in an emoji context are presented in animated

form, usually as a repeating sequence of two to four images.

Emoji may be presented using color or animation, but need not be. Because many

characters in the carrier emoji sets or other sources are unified with Unicode charac‐

ters that originally came from other sources, it may not always be clear whether a

character should be presented using an emoji style. However, for most such charac‐

ters, variation sequences have been defined which can specify text or emoji presenta‐

tion. Unicode Technical Standard #51, “Unicode Emoji,” provides some guidance

about which characters should have which presentation style in various environ‐

ments.

 The representative glyph shown in the

code charts for a character is always monochrome. The character name may include

a term such as BLACK or WHITE, or in the case of characters for emoji pictographs,

other color terms such as BLUE or ORANGE. The use of BLACK or WHITE in names

such as BLACK MEDIUM SQUARE or WHITE MEDIUM SQUARE is generally intended to

contrast filled versus outline shapes, or a darker color fill versus a lighter color fill; it

is not intended to suggest that the character must be presented in black or white,

respectively. Similarly, the color terms in names such as BLUE HEART or ORANGE

BOOK are intended to help identify the characters; the characters may be presented

using color, or in monochrome using different styles of shading or crosshatching, for

example.

Rendering of Emoji.

•

•

•

Color Words in Unicode Character Names.

Symbols 1016 22.9 Miscellaneous Symbols

In Version 12.0 of the Unicode Standard, seven large, colored square emoji were

added in the range U+1F7E5..U+1F7EB. Along with the earlier encoded U+2B1B

BLACK LARGE SQUARE and U+2B1C WHITE LARGE SQUARE, these colored square

emoji may be used in emoji ZWJ sequences to indicate that a base emoji should be

displayed with the color of the square, if possible. The color of the square emoji is a

general hint, and the color of the resulting image for the emoji ZWJ sequence need

not be exactly the same as the colored square displayed by itself. Only a small

number of such sequences are in the set of emoji sequences recommended for

general interchange (RGI). See emoji-zwj-sequences.txt, documented in Annex A of

Unicode Technical Standard #51, “Unicode Emoji.”

The Miscellaneous Symbols (U+2600..U+26FF), Miscellaneous Symbols and

Pictographs (U+1F300..U+1F5FF), Supplemental Symbols and Pictographs

(U+1F900..U+1F9FF), and Symbols and Pictographs Extended-A

(U+1FA70..U+1FAFF) blocks contain very heterogeneous collections of symbols that

do not fit in any other Unicode character block and that tend to be pictographic in

nature. These symbols are typically used for text decorations, but they may also be

treated as normal text characters in applications such as typesetting chess books, card

game manuals, and horoscopes.

The order of symbols in these blocks is arbitrary, but an attempt has been made to

keep like symbols together and to group subsets of them into meaningful orders.

Some of these subsets include weather and astronomical symbols, pointing hands,

religious and ideological symbols, the Yijing (I Ching) trigrams, planet and zodiacal

symbols, game symbols, musical dingbats, and recycling symbols. (For other moon

phases, see the circle-based shapes in the Geometric Shapes block.)

 The symbols in these blocks are derived from a large range of national

and vendor character standards. Among them, characters from the Japanese Associa‐

tion of Radio Industries and Business (ARIB) standard STD-B24 are widely repre‐

sented in the Miscellaneous Symbols block. The symbols from ARIB were initially

used in the context of digital broadcasting, but in many cases their usage has evolved

to more generic purposes. The Miscellaneous Symbols and Pictographs block

includes many characters from the carrier emoji sets and the Wingdings/Webdings

collections.

 The characters in the ranges U+2600..U+2603,

U+26C4..U+26CB, and U+1F321..U+1F32C, as well as U+2614 UMBRELLA WITH

RAIN DROPS are weather symbols. These commonly occur as map symbols or in other

contexts related to weather forecasting in digital broadcasting or on websites.

 There are a variety of moon and sun symbols encoded in

the Miscellaneous Symbols block (U+2609, U+263C..U+263E) and in the Miscella‐

22.9.1 Miscellaneous Symbols and Pictographs

Standards.

Weather Symbols.

Moon and Sun Symbols.

Symbols 1017 22.9 Miscellaneous Symbols

neous Symbols and Pictographs block (U+1F311..U+1F31E). Some of these are used

in astrological charts, while others are merely playful symbols showing faces. Various

crescent signs for the moon do not necessarily represent particular phases of the

moon.

The moon symbols in the range U+1F311..U+1F318, in particular, represent a system‐

atic set of eight symbols for the phases of the moon. These symbols appear, for

example, in moon charts, almanacs, tide tables, and similar documents to represent

particular phases of the moon. There is a notable difference in interpretation of

symbols for phases of the moon between Northern Hemisphere users and Southern

Hemisphere users, with the graphical orientation of waxing and waning phases

reversed. So, for example, in the Southern Hemisphere, U+1F312 WAXING CRESCENT

MOON SYMBOL would usually be interpreted as representing the waning crescent

moon, instead.

The use of these moon symbols (U+1F311..U+1F318) should follow the shape of the

graphic symbols, as shown in the code charts. Users should not simply assume from

the character names that the symbols are intended to represent astronomical posi‐

tions of the moon.

 In general, traffic signs are quite diverse, tend to be elaborate in form

and differ significantly between countries and locales. For the most part they are

inappropriate for encoding as characters. However, there are a small number of

conventional symbols which have been used as characters in contexts such as digital

broadcasting or mobile phones. The characters in the ranges U+26CC..U+26CD and

U+26CF..U+26E1 are traffic sign symbols of this sort, encoded for use in digital

broadcasting. Additional traffic signs are in included in the Transport and Map

Symbols block.

 The characters in the range U+26E8..U+26FF are

dictionary and map symbols used in the context of digital broadcasting. Numerous

other symbols in this block and scattered in other blocks also have conventional uses

as dictionary or map symbols. For example, these may indicate special uses for

words, or indicate types of buildings, points of interest, particular activities or sports,

and so on.

 The seven numbered logos encoded from

U+2673 to U+2679, , are from “The Plastic Bottle Material Code

System,” which was introduced in 1988 by the Society of the Plastics Industry (SPI).

This set consistently uses thin, two-dimensional curved arrows suitable for use in

plastics molding. In actual use, the symbols often are combined with an abbreviation

of the material class below the triangle. Such abbreviations are not universal; there‐

fore, they are not present in the representative glyphs in the code charts.

Traffic Signs.

Dictionary and Map Symbols.

Plastic Bottle Material Code System.

Symbols 1018 22.9 Miscellaneous Symbols

 An unnumbered plastic resin code

symbol U+267A RECYCLING SYMBOL FOR GENERIC MATERIALS is not formally

part of the SPI system but is found in many fonts. Occasional use of this symbol as a

generic materials code symbol can be found in the field, usually with a text legend

below, but sometimes also surrounding or overlaid by other text or symbols. Some‐

times the UNIVERSAL RECYCLING SYMBOL is substituted for the generic symbol in

this context.

 The Unicode Standard encodes two common glyph

variants of this symbol: U+2672 UNIVERSAL RECYCLING SYMBOL and U+267B

BLACK UNIVERSAL RECYCLING SYMBOL. Both are used to indicate that the material is

recyclable. The white form is the traditional version of the symbol, but the black

form is sometimes substituted, presumably because the thin outlines of the white

form do not always reproduce well.

 The two paper recycling symbols, U+267C RECYCLED

PAPER SYMBOL and U+267D PARTIALLY-RECYCLED PAPER SYMBOL, can be used to

distinguish between fully and partially recycled fiber content in paper products or

packaging. They are usually accompanied by additional text.

 The characters in the range U+26A2..U+26A9 are gender symbols.

These are part of a set with U+2640 FEMALE SIGN, U+2642 MALE SIGN, U+26AA

MEDIUM WHITE CIRCLE, and U+26B2 NEUTER. They are used in sexual studies and

biology, for example. Some of these symbols have other uses as well, as astrological or

alchemical symbols.

 The characters in the range U+26AD..U+26B1 are some‐

times seen in genealogical tables, where they indicate marriage and burial status.

They may be augmented by other symbols, including the small circle indicating

betrothal.

 The Miscellaneous Symbols block also contains a variety of small

symbol sets intended for the representation of common game symbols or tokens in

text. These include symbols for playing card suits, often seen in manuals for bridge

and other card games, as well as a set of dice symbols. The chess symbols are often

seen in figurine algebraic notation. In addition, there are symbols for game pieces or

notation markers for go, shogi (Japanese chess), and draughts (checkers).

Larger sets of game symbols are encoded in their own blocks. See the discussion of

playing cards, chess symbols, mahjong tile symbols, and domino tile symbols later in

this section.

 The animal symbol characters in the range U+1F400..U+1F42C

are encoded primarily to cover the emoji sets used by Japanese cell phone carriers.

Animal symbols are widely used in Asia as signs of the zodiac, and that is part of the

reason for their inclusion in the cell phone sets. However, the particular animal

Recycling Symbol for Generic Materials.

Universal Recycling Symbol.

Paper Recycling Symbols.

Gender Symbols.

Genealogical Symbols.

Game Symbols.

Animal Symbols.

Symbols 1019 22.9 Miscellaneous Symbols

symbols seen in Japan and China are not the only animals used as zodiacal symbols

throughout Asia. The set of animal symbols encoded in this block includes other

animal symbols used as zodiacal symbols in Vietnam, Thailand, Persia, and other

Asian countries. These zodiacal uses are specifically annotated in the Unicode code

charts.

Other animal symbols have no zodiacal associations, and are included simply to

cover the carrier emoji sets. A few of the animal symbols have conventional uses to

designate types of meat on menus. Later additions of animal symbols fill perceived

gaps in the set, responding to the wide popularity of animal symbols in Unicode-

based emoji implementations.

 The five cultural symbols encoded in the range

U+1F5FB..U+1F5FF mostly designate cultural landmarks of particular importance to

Japan. They are encoded for compatibility with emoji sets used by Japanese cell

phone carriers, and are not intended to set a precedent for encoding additional sets of

cultural landmarks or other pictographic cultural symbols as characters.

 The pictographic symbols for hands encoded in the ranges

U+1F90F, U+1F918..U+1F91F, U+1F446..U+1F450, and U+1F58E..U+1F5A3, as well

as in the U+270A..U+270D range in the Dingbats block, represent various hand

gestures. The interpretations associated with such gestures vary significantly among

cultures.

 The emoji modifiers U+1F3FB..U+1F3FF designate five different

skin tones based on the Fitzpatrick scale. These may be displayed in isolation as color

or halftone swatches, or they may form a ligature with a preceding emoji character

representing a person or body part in order to specify a particular appearance for that

character.

 In addition to the blocks described in this

section, which are devoted entirely to sets of miscellaneous symbols, there are many

other blocks which contain small numbers of otherwise uncategorized symbols. See,

for example, the Miscellaneous Symbols and Arrows block U+2B00..U+2B7F, the

Enclosed Alphanumeric Supplement block U+1F100..U+1F1FF, the CJK Symbols

and Punctuation block U+3000..U+303F, and the Ideographic Symbols and Punctua‐

tion block 16FE0..16FFF. Some of these blocks contain symbols which extend or

complement sets of symbols contained in the Miscellaneous Symbols block.

Emoticons (from “emotion” plus “icon”) originated as a way to convey emotion or

attitude in e-mail messages, using ASCII character combinations such as :-) to indi‐

cate a smile—and by extension, a joke—and :-(to indicate a frown. In East Asia, a

Cultural Symbols.

Hand Symbols.

Emoji Modifiers.

Miscellaneous Symbols in Other Blocks.

22.9.2 Emoticons: U+1F600–U+1F64F

Symbols 1020 22.9 Miscellaneous Symbols

number of more elaborate sequences have been developed, such as (")(-_-)(")

showing an upset face with hands raised.

Over time, many systems began replacing such sequences with images, and also

began providing a way to input emoticon images directly, such as a menu or palette.

The carrier emoji sets used by Japanese cell phone providers contain a large number

of characters for emoticon images, and most of the characters in this block are from

those sets. They are divided into a set of humanlike faces, a smaller set of cat faces

that parallel some of the humanlike faces, and a set of gesture symbols that combine

a human or monkey face with arm and hand positions.

Several emoticons are also encoded in the Miscellaneous Symbols block at U+2639..

U+263B and in the Supplemental Symbols and Pictographs block at

U+1F910..U+1F917 and U+1F920..1F927.

This block is similar to the blocks Miscellaneous Symbols and Miscellaneous

Symbols and Pictographs, but is a more cohesive set of symbols. Many of these

symbols originated in the emoji sets used by Japanese cell phone carriers.

Various traffic signs and map symbols are also encoded in the Miscellaneous Symbols

block.

Most of the characters in the Dingbats block are derived from a well-established set

of glyphs, the ITC Zapf Dingbats series 100, which constitutes the industry standard

“Zapf Dingbat” font currently available in most laser printers. The order of the Ding‐

bats block basically follows the PostScript encoding. Dingbat characters derived from

the Wingdings and Webdings sets are encoded in other blocks, particularly in the

Miscellaneous Symbols and Pictographs block, U+1F300..U+1F5FF.

 Where a dingbat from the ITC Zapf Dingbats series 100

could be unified with a generic symbol widely used in other contexts, only the

generic symbol was encoded. Examples of such unifications include card suits,

BLACK STAR, BLACK TELEPHONE, and BLACK RIGHT POINTING INDEX (see the

Miscellaneous Symbols block); BLACK CIRCLE and BLACK SQUARE (see the

Geometric Shapes block); white encircled numbers 1 to 10 (see the Enclosed

Alphanumerics block); and several generic arrows (see the Arrows block). Those four

entries appear elsewhere in this chapter. Other dingbat-like characters, primarily

from the carrier emoji sets, are encoded in the gaps that resulted from this unifica‐

tion.

22.9.3 Transport and Map Symbols: U+1F680–U+1F6FF

22.9.4 Dingbats: U+2700–U+27BF

Unifications and Additions.

Symbols 1021 22.9 Miscellaneous Symbols

In other instances, other glyphs from the ITC Zapf Dingbats series 100 glyphs have

come to be recognized as having applicability as generic symbols, despite having orig‐

inally been encoded in the Dingbats block. For example, the series of negative (black)

circled numbers 1 to 10 are now treated as generic symbols for this sequence, the

continuation of which can be found in the Enclosed Alphanumerics block. Other

examples include U+2708 AIRPLANE and U+2709 ENVELOPE, which have definite

semantics independent of the specific glyph shape, and which therefore should be

considered generic symbols rather than symbols representing only the Zapf Dingbats

glyph shapes.

For many of the remaining characters in the Dingbats block, their semantic value is

primarily their shape; unlike characters that represent letters from a script, there is

no well-established range of typeface variations for a dingbat that will retain its iden‐

tity and therefore its semantics. It would be incorrect to arbitrarily replace U+279D

TRIANGLE-HEADED RIGHTWARDS ARROW with any other right arrow dingbat or with

any of the generic arrows from the Arrows block (U+2190..U+21FF). However, exact

shape retention for the glyphs is not always required to maintain the relevant distinc‐

tions. For example, ornamental characters such as U+2741 EIGHT PETALLED

OUTLINED BLACK FLORETTE have been successfully implemented in font faces other

than Zapf Dingbats with glyph shapes that are similar, but not identical to the ITC

Zapf Dingbats series 100.

The following guidelines are provided for font developers wishing to support this

block of characters. Characters showing large sets of contrastive glyph shapes in the

Dingbats block, and in particular the various arrow shapes at U+2794..U+27BE,

should have glyphs that are closely modeled on the ITC Zapf Dingbats series 100,

which are shown as representative glyphs in the code charts. The same applies to the

various stars, asterisks, snowflakes, drop-shadowed squares, check marks, and x’s,

many of which are ornamental and have elaborate names describing their glyphs.

Where the preceding guidelines do not apply, or where dingbats have more generic

applicability as symbols, their glyphs do not need to match the representative glyphs

in the code charts in every detail.

 The 14 ornamental brackets encoded at U+2768..U+2775 are

part of the set of Zapf Dingbats. Although they have always been included in Zapf

Dingbats fonts, they were unencoded in PostScript versions of the fonts on some plat‐

forms. The Unicode Standard treats these brackets as punctuation characters.

The block contains a variety of text ornaments and ornamental punctuation marks

similar to characters encoded in the main Dingbats block. Most of these symbols are

encoded for compatibility with Wingdings or Wingdings 2 font usage; a few derive

from Webdings.

Ornamental Brackets.

22.9.5 Ornamental Dingbats: U+1F650–U+1F67F

Symbols 1022 22.9 Miscellaneous Symbols

Many of these dingbats can be classified as fleurons. These constitute variations on

the theme represented by the classic hedera or ivy leaf shape encoded as U+2767

ROTATED FLORAL HEART BULLET.

The block also contains stylistic variants of punctuation marks, including numerous

styles of ampersands and et-ligatures, quotation marks, and question marks. These

characters extend similar sets of stylized punctuation marks in the Dingbats block.

All of these stylized ornamental variants are treated as symbols rather than as true

punctuation in the standard.

Alchemical symbols were first used by Greek, Syriac, and Egyptian writers around

the fifth or sixth century CE and were adopted and proliferated by medieval Arabic

and European writers. European alchemists, natural philosophers, chemists, and

apothecaries developed and used several parallel systems of symbols while retaining

many symbols created by Greek, Syriac, and medieval Arabic writers. Alchemical

works published in what is best described as a textbook tradition in the seventeenth

and eighteenth centuries routinely included tables of symbols that probably served to

spread their use. They became obsolete as alchemy gave way to chemistry. Neverthe‐

less, alchemical symbols continue to be used extensively today in scholarly literature,

creative works, New Age texts, and in the gaming and graphics industries.

This block contains a core repertoire of symbols recognized and organized into tables

by European writers working in the alchemical textbook tradition approximately

1620–1720. This core repertoire includes all symbols found in the vast majority of the

alchemical works of major figures such as Newton, Boyle, and Paracelsus. Some of

the most common alchemical symbols have multiple meanings, and are encoded in

the Miscellaneous Symbols block, where their usage as alchemical symbols is anno‐

tated. For example, U+2609 SUN is also an alchemical symbol for gold.

The character names for the alchemical symbols are in English. Their equivalent

Latin names, which often were in greater currency during the period of greatest use

of these symbols, are provided as aliases in the code charts. Some alchemical names

in English directly derive from the Latin name, such as aquafortis and aqua regia, so

in a number of cases the English and Latin names are identical.

The characters in this block are game symbols representing the set of tiles used to

play the popular Chinese game of mahjong. The exact origin of mahjong is unknown,

but it has been around since at least the mid-19th century, and its popularity spread

to Japan, Britain, and the United States during the early 20th century.

22.9.6 Alchemical Symbols: U+1F700–U+1F77F

22.9.7 Mahjong Tiles: U+1F000–U+1F02F

Symbols 1023 22.9 Miscellaneous Symbols

Like other game symbols in the Unicode Standard, the mahjong tile symbols are

intended as abstractions of graphical symbols for game pieces used in text. Simpli‐

fied, iconic representation of mahjong pieces are printed in game manuals and

appear in discussion about the game. There is some variation in the exact set of tiles

used in different countries, so the Unicode Standard encodes a superset of the graph‐

ical symbols for the tiles used in the various local traditions. The main set of tiles

consists of three suits with nine numerical tiles each: the Bamboos, the Circles, and

the Characters.

Additional tiles include the Dragons, the Winds, the Flowers, and the Seasons. The

blank tile symbol is the so-called white dragon. Also included is a black tile symbol,

which does not represent an actual game tile, but rather indicates a facedown tile,

occasionally seen as a symbol in text about playing mahjong.

This block contains a set of graphical symbols for domino tiles. Dominoes is a game

which derives from Chinese tile games dating back to the twelfth century.

Domino tile symbols are used for the “double-six” set of tiles, which is the most

common set of dominoes and the only one widely attested in manuals and textual

discussion using graphical tile symbols.

The domino tile symbols do not represent the domino pieces per se, but instead

constitute graphical symbols for particular orientations of the dominoes, because

orientation of the tiles is significant in discussion of dominoes play. Each visually

distinct rotation of a domino tile is separately encoded. Thus, for example, both

U+1F081 DOMINO TILE VERTICAL-04-02 and U+1F04F DOMINO TILE HORI‐

ZONTAL-04-02 are encoded, as well as U+1F075 DOMINO TILE VERTICAL-02-04 and

U+1F043 DOMINO TILE HORIZONTAL-02-04. All four of those symbols represent the

same game tile, but each orientation of the tile is visually distinct and requires its

own symbol for text. The digits in the character names for the domino tile symbols

reflect the dot patterns on the tiles.

Two symbols do not represent particular tiles of the double-six set of dominoes, but

instead are graphical symbols for a domino tile turned facedown.

The symbols in this block are used to represent the 52-card deck most commonly

used today, and the 56-card deck used in some European games; the latter includes a

Knight in addition to Jack, Queen, and King. These cards map completely to the

Minor Arcana of the Western Tarot from which they derive, and are unified with the

latter. The symbols for trumps in the range U+1F0E0..U+1F0F5 occur as playing

cards in some traditional German, Italian, and French decks. These trumps are

22.9.8 Domino Tiles: U+1F030–U+1F09F

22.9.9 Playing Cards: U+1F0A0–U+1F0FF

Symbols 1024 22.9 Miscellaneous Symbols

historically derived from the 22 Major Arcana of the esoteric Western Tarot sets. The

combined set can be used to represent the 78 cards of the common tarot decks.

Also included in this block are a generic card back and three jokers. U+1F0CF

PLAYING CARD BLACK JOKER is used in one of the Japanese cell phone carrier emoji

sets; its presentation may be in color and need not be black. U+1F0BF PLAYING CARD

RED JOKER occurs in some card decks as a third joker.

These characters most commonly appear as the Anglo-French-style playing cards

used with international bridge or poker. However, playing card characters may have a

variety of different appearances depending on language and usage. In different coun‐

tries, the suits, colors and numbers may be substantially different, to the point of

being unrecognizable. For example, the letters on face cards may vary (English cards

use “K” for “king,” while French cards use “R” for “roi”); the digits on the numbered

cards may appear as a Western “10” or as “ ” in Hindi, and the appearance of the

suits may differ (Swiss playing cards depict acorns rather than clubs, while tradi‐

tional tarot cards use swords rather than spades). The background decoration of

cards may also vary radically. When used to represent the cards of divination tarot

decks, the visual appearance is usually very different and much more complex.

No one should expect reliable interchange of a particular appearance of the playing

card characters without additional information (such as a font) or agreement

between sender and receiver. Without such information or agreement, someone

viewing an online document may see substantially different glyphs from what the

writer intended.

Basic playing card suit symbols are encoded in the Miscellaneous Symbols block in

the range U+2660..U+2667.

The Chess Symbols block contains extensions for chess notations beyond the basic

Western chess symbols found in the Miscellaneous Symbols block. The chess symbols

in the range U+1FA00..U+1FA53 are used in a variety of heterodox Western chess

notations, also widely referred to as “fairy chess.” These notations include the intro‐

duction of new or hybrid chess pieces, such as grasshoppers, nightriders, equihop‐

pers, or various blends of knights with other pieces. There are also a number of

neutral pieces, which conceptually belong neither to the white side nor the black

side, often displayed with one side of the piece black and the other side of the piece

shown with an outlined glyph. Many of these symbols simply consist of existing

Western chess symbols for orthodox pieces, inverted or turned sideways. This prac‐

tice dates from the time when printers would often take existing cast metal sorts and

physically invert or turn them before locking them into the forme, to create new

symbols for printing heterodox chess problems and commentary.

22.9.10 Chess Symbols: U+1FA00–U+1FA6F

Symbols 1025 22.9 Miscellaneous Symbols

This block also contains a set of circled CJK ideographic symbols used in Chinese

chess (Xiangqi) notation, in the range U+1FA60..U+1FA6D. These symbols come in

separate “red” and “black” sets, abstractly representing the two sets of seven pieces in

that game. In actual practice, both for the symbols printed on the pieces in Chinese

chess sets and in notation, there is considerable variation in the color of the pieces,

and in the particular CJK ideograph within the circle. For example, both traditional

and simplified characters occur, and there is some other variation in the choice of the

CJK ideograph, as well. Because of this variability in the CJK ideograph used, these

symbols are treated differently than most regular circled CJK ideographic symbols in

the standard. No compatibility decompositions to CJK unified ideographs are given

in the UCD or shown in the code charts.

Usage of the Yijing Hexagram Symbols in China begins with a text called 《周易》
Zhou Yi, (“the Zhou Dynasty classic of change”), said to have originated circa 1000

BCE. This text is now popularly known as the Yijing, I Ching, or Book of Changes.

These symbols represent a primary level of notation in this ancient philosophical

text, which is traditionally considered the first and most important of the Chinese

classics. Today, these symbols appear in many print and electronic publications,

produced in Asia and all over the world. The important Chinese character lexicon

Hanyu Da Zidian, for example, makes use of these symbols in running text. These

symbols are semantically distinct written signs associated with specific words. Each

of the 64 hexagrams has a unique one- or two-syllable name. Each hexagram name is

intimately connected with interpretation of the six lines. Related characters are

Monogram and Digram Symbols (U+268A..U+268F), Yijing Trigram Symbols

(U+2630..U+2637), and Tai Xuan Jing Symbols (U+1D300..U+1D356).

Usage of these symbols in China begins with a text called 《太玄經》 Tai Xuan Jing

(literally, “the exceedingly arcane classic”). Composed by a man named 楊雄 Yang

Xiong (53 BCE–18 CE), the first draft of this work was completed in 2 BCE, in the

decade before the fall of the Western Han Dynasty. This text is popularly known in

the West under several titles, including The Alternative I Ching and The Elemental

Changes. A number of annotated editions of Tai Xuan Jing have been published and

reprinted in the 2,000 years since the original work appeared.

These symbols represent a primary level of notation in the original ancient text,

following and expanding upon the traditions of the Chinese classic Yijing. The tetra‐

gram signs are less well known and less widely used than the hexagram signs. For

this reason they were encoded on Plane 1 rather than the BMP.

22.9.11 Yijing Hexagram Symbols: U+4DC0–U+4DFF

22.9.12 Tai Xuan Jing Symbols: U+1D300–U+1D35F

Symbols 1026 22.9 Miscellaneous Symbols

U+1D300 MONOGRAM FOR EARTH is an extension of the traditional

Yijing monogram symbols, U+268A MONOGRAM FOR YANG and U+268B MONO‐

GRAM FOR YIN. Because yang is typically associated with heaven (Chinese tian) and

yin is typically associated with earth (Chinese di), the character U+1D300 has an

unfortunate name. Tai Xuan Jing studies typically associate it with human (Chinese

ren), as midway between heaven and earth.

 The range of characters U+1D301..U+1D302 constitutes an extension of

the Yijing digram symbols encoded in the range U+268C..U+268F. They consist of

the combinations of the human (ren) monogram with either the yang or the yin

monogram. Because of the naming problem for U+1D300, these digrams also have

infelicitous character names. Users are advised to identify the digram symbols by

their representative glyphs or by the Chinese aliases provided for them in the code

charts.

 The bulk of the symbols in the Tai Xuan Jing Symbols block are the

tetragram signs. These tetragram symbols are semantically distinct written signs

associated with specific words. Each of the 81 tetragrams has a unique monosyllabic

name, and each tetragram name is intimately connected with interpretation of the

four lines.

The 81 tetragram symbols (U+1D306..U+1D356) encoded on Plane 1 constitute a

complete set. Within this set of 81 signs, a subset of 16 signs known as the Yijing

tetragrams is of importance to Yijing scholarship. These are used in the study of the

“nuclear trigrams.” Related characters are the Yijing Trigram symbols

(U+2630..U+2637) and the Yijing Hexagram symbols (U+4DC0..U+4DFF).

This block contains ancient symbols, none of which are in modern use. Typically,

they derive from ancient epigraphic, papyrological, or manuscript traditions, and

represent miscellaneous symbols not specifically included in blocks dedicated to

particular ancient scripts. The first set of these consists of ancient Roman symbols for

weights and measures, and symbols used in Roman coinage.

Similar symbols can be found in the Ancient Greek Numbers block,

U+10140..U+1018F.

The Phaistos disc was found during an archaeological dig in Phaistos, Crete about a

century ago. The small fired clay disc is imprinted on both sides with a series of

symbols, arranged in a spiral pattern. The disc probably dates from the mid-18th to

the mid-14th century BCE.

Monograms.

Digrams.

Tetragrams.

22.9.13 Ancient Symbols: U+10190–U+101CF

22.9.14 Phaistos Disc: U+101D0–U+101FF

Symbols 1027 22.9 Miscellaneous Symbols

The symbols have not been deciphered, and the disc remains the only known

example of these symbols. Because there is nothing to compare them to, and the

corpus is so limited, it is not even clear whether the symbols constitute a writing

system for a language or are something else entirely. Nonetheless, the disc has engen‐

dered great interest, and numerous scholars and amateurs spend time discussing the

symbols.

The repertoire of symbols is noncontroversial, as they were incised in the disc by

stamping preformed seals into the clay. Most of the symbols are clearly pictographic

in form. The entire set is encoded in the Phaistos Disc Symbols block as a set of

symbols, with no assumptions about their possible meaning and functions. One

combining mark is encoded. It represents a hand-carved mark on the disc, which

occurs attached to the final sign of groups of other symbols.

 Scholarly consensus is that the text of the Phaistos disc was inscribed

starting from the outer rim of the disc and going inward toward the center. Because

of that layout order and the orientation of the spiral, the disc text can be said to have

right-to-left directionality. However, the Phaistos disc symbols have been given a

default directionality of strong left-to-right in the Unicode Standard. This choice

simplifies text layout of the symbols for researchers and would-be decipherers, who

wish to display the symbols in the same order as the surrounding left-to-right text

(for example, in the Latin script) used to discuss them. The additional complexity of

bidirectional layout and editing would be unwelcome in such contexts.

This choice of directionality properties for the Phaistos disc symbols matches the

precedent of the Old Italic script. (See Section 8.6, Old Italic.) Early Old Italic inscrip‐

tions were often laid out from right to left, but the directionality of the Old Italic

script in the Unicode Standard is strong left-to-right, to simplify layout using the

modern scholarly conventions for discussion of Old Italic texts.

The glyphs for letters of ancient Mediterranean scripts often show mirroring based

on line direction. This behavior is well-known, for example, for archaic Greek when

written in boustrophedon. Etruscan also displays glyph mirroring of letters. The

choice of representative glyphs for the Phaistos disc symbols is based on this

mirroring convention, as well. The symbols on the disc are in a right-to-left line

context. However, the symbols are given left-to-right directionality in the Unicode

Standard, so the representative glyphs in the code charts are reversed (mirrored)

from their appearance on the disc.

Directionality.

Symbols 1028 22.9 Miscellaneous Symbols

There are a large number of compatibility symbols in the Unicode Standard which

consist either of letters or numbers enclosed in some graphic element, or which

consist of letters or numbers in a square arrangement. Many of these symbols are

derived from legacy East Asian character sets, in which such symbols are commonly

encoded as elements.

 Enclosed symbols typically consist of a letter, digit, Katakana

syllable, Hangul jamo, or CJK ideograph enclosed in a circle or a square. In some

cases the enclosure may consist of a pair of parentheses or tortoise-shell brackets,

and the enclosed element may also consist of more than a single letter or digit, as for

circled numbers 10 through 50. Occasionally the symbol is shown as white on a black

encircling background, in which case the character name typically includes the word

NEGATIVE.

Many of the enclosed symbols that come in small, ordered sets—the Latin alphabet,

kana, jamo, digits, and Han ideographs one through ten—were originally intended

for use in text as numbered bullets for lists. Parenthetical enclosures were in turn

developed to mimic typewriter conventions for representing circled letters and digits

used as list bullets. This functionality has now largely been supplanted by styles and

other markup in rich text contexts, but the enclosed symbols in the Unicode Standard

are encoded for interoperability with the legacy East Asian character sets and for the

occasional text context where such symbols otherwise occur.

A few of the enclosed symbols have conventional meanings unrelated to the usage of

encircled letters and digits as list bullets. In some instances these are distinguished in

the standard—often because legacy standards separately encoded them. Thus, for

example, U+24B8 CIRCLED LATIN CAPITAL LETTER C is distinct from U+00A9

COPYRIGHT SIGN, even though the two symbols are similar in appearance. In cases

where otherwise generic enclosed symbols have specific conventional meanings,

those meanings are called out in the code charts with aliases or other annotations.

For example, U+1F157 NEGATIVE CIRCLED LATIN CAPITAL LETTER H is also a

commonly occurring map symbol for “hotel.”

 Another convention commonly seen in East Asian character sets is

the creation of compound symbols by arranging two, three, four, or even more small-

sized letters or syllables into a square shape consistent with the typical rendering

footprint of a CJK ideograph. One subset of these consists of square symbols for

Latin abbreviations, often for SI and other technical units, such as “km” or “km/h”;

these square symbols are mostly derived from Korean legacy standards. Another

subset consists of Katakana words for units of measurement, classified ad symbols,

and many other similar word elements arranged into a square array; these symbols

are derived from Japanese legacy standards. A third major subset consists of Chinese

22.10 Enclosed and Square

Enclosed Symbols.

Square Symbols.

Symbols 1029 22.10 Enclosed and Square

telegraphic symbols for hours, days, and months, consisting of a digit or sequence of

digits next to the CJK ideograph for “hour,” “day” or “month.”

 Major sources for the repertoire of enclosed and square symbols

in the Unicode Standard include the Korean national standard, KS X 1001:1998; the

Chinese national standard, GB 2312:1980; the Japanese national standards JIS X

0208-1997 and JIS X 0213:2000; and CNS 11643. Others derive from the Japanese tele‐

vision standard, ARIB STD B24, and from various East Asian industry standards,

such as the Japanese cell phone carrier emoji sets, or corporate glyph registries.

 The Unicode Standard includes five blocks allocated for the encoding of

various enclosed and square symbols. Each of those blocks is described briefly in the

text that follows, to indicate which subsets of these symbols it contains and to high‐

light any other special considerations that may apply to each block. In addition, there

are a number of circled digit and number symbols encoded in the Dingbats block

(U+2700..U+27BF). Those circled symbols occur in the ITC Zapf dingbats series 100,

and most of them were encoded with other Zapf dingbat symbols, rather than being

allocated in the separate blocks for enclosed and square symbols. Finally, a small

number of circled symbols from ISO/IEC 8859-1 or other sources can be found in the

Latin-1 Supplement block (U+0080..U+00FF) or the Letterlike Symbols block

(U+2100..U+214F).

 Nearly all of the enclosed and square symbols in the Unicode Stan‐

dard are considered compatibility characters, encoded for interoperability with other

character sets. A significant majority of those are also compatibility decomposable

characters, given explicit compatibility decompositions in the Unicode Character

Database. The general patterns for these decompositions are described here. For full

details for any particular one of these symbols, see the code charts or consult the data

files in the UCD.

Parenthesized symbols are decomposed to sequences of opening and closing paren‐

theses surrounding the letter or digit(s) of the symbol. Square symbols consisting of

digit(s) followed by a full stop or a comma are decomposed into the digit sequence

and the full stop or comma. Square symbols consisting of several Katakana syllables

are decomposed into the corresponding sequence of Katakana characters and are

given the decomposition tag “<square>”. Similar principles apply to square symbols

consisting of sequences of Latin letters and symbols. Chinese telegraphic symbols,

consisting of sequences of digits and CJK ideographs, are given compatibility decom‐

positions, but do not have the decomposition tag “<square>”.

Circled symbols consisting of a single letter or digit surrounded by a simple circular

graphic element are given compatibility decompositions with the decomposition tag

“<circle>”. Circled symbols with more complex graphic styles, including double

circled and negative circled symbols, are simply treated as atomic symbols, and are

not decomposed. The same pattern is applied to enclosed symbols where the enclo‐

Source Standards.

Allocation.

Decomposition.

Symbols 1030 22.10 Enclosed and Square

sure is a square graphic element instead of a circle, except that the decomposition tag

in those cases is “<square>”. Occasionally a “circled” symbol that involves a

sequence of Latin letters is preferentially represented with an ellipse surrounding the

letters, as for U+1F12E CIRCLED WZ, the German Warenzeichen. Such elliptic

shape is considered to be a typographical adaptation of the circle, and does not

constitute a distinct decomposition type in the Unicode Standard.

It is important to realize that the decomposition of enclosed symbols in the Unicode

Standard does not make them canonical equivalents to letters or digits in sequence

with combining enclosing marks such as U+20DD COMBINING ENCLOSING

CIRCLE. The combining enclosing marks are provided in the Unicode Standard to

enable the representation of occasional enclosed symbols not otherwise encoded as

characters. There is also no defined way of indicating the application of a combining

enclosing mark to more than a single base character. Furthermore, full rendering

support of the application of enclosing combining marks, even to single base charac‐

ters, is not widely available. Hence, in most instances, if an enclosed symbol is avail‐

able in the Unicode Standard as a single encoded character, it is recommended to

simply make use of that composed symbol.

 There are special considerations for the casing relationships of enclosed or

square symbols involving letters of the Latin alphabet. The circled letters of the Latin

alphabet come in an uppercase set (U+24B6..U+24CF) and a lowercase set

(U+24D0..U+24EA). Largely because the compatibility decompositions for those

symbols are to a single letter each, these two sets are given the derived properties,

Uppercase and Lowercase, respectively, and case map to each other. The superficially

similar parenthesized letters of the Latin alphabet also come in an uppercase set

(U+1F110..U+1F129) and a lowercase set (U+24BC..U+24B5), but are not case

mapped to each other and are not given derived casing properties. This difference is

in part because the compatibility decompositions for these parenthesized symbols are

to sequences involving parentheses, instead of single letters, and in part because the

uppercase set was encoded many years later than the lowercase set. Square symbols

consisting of arbitrary sequences of Latin letters, which themselves may be of mixed

case, are simply treated as caseless symbols in the Unicode Standard.

The enclosed symbols in this block consist of single Latin letters, digits, or numbers

—most enclosed by a circle. The block also contains letters, digits, or numbers

enclosed in parentheses, and a series of numbers followed by full stop. All of these

symbols are intended to function as numbered (or lettered) bullets in ordered lists,

and most are encoded for compatibility with major East Asian character sets.

The circled numbers one through ten (U+2461..U+2469) are also considered to be

unified with the comparable set of circled black numbers with serifs on a white back‐

Casing.

22.10.1 Enclosed Alphanumerics: U+2460–U+24FF

Symbols 1031 22.10 Enclosed and Square

ground from the ITC Zapf Dingbats series 100. Those ten symbols are encoded in this

block, instead of in the Dingbats block.

The negative circled numbers eleven through twenty (U+24EB..U+24F4) are a

continuation of the set of circled white numbers with serifs on a black background,

encoded at U+2776..U+277F in the Dingbats block.

This block contains large sets of circled or parenthesized Japanese Katakana, Hangul

jamo, or CJK ideographs, from East Asian character sets. It also contains circled

numbers twenty-one through fifty, which constitute a continuation of the series of

circled numbers from the Enclosed Alphanumerics block. There are also a small

number of Chinese telegraph symbols and square Latin abbreviations, which are

continuations of the larger sets primarily encoded in the CJK Compatibility block.

The enclosed symbols in the range U+3248..U+324F, which consist of circled

numbers ten through eighty on white circles centered on black squares, are encoded

for compatibility with the Japanese television standard, ARIB STD B24. In that stan‐

dard, they are intended to represent symbols for speed limit signs, expressed in kilo‐

meters per hour.

The Japanese era name, Reiwa (Japanese:), is encoded at U+32FF SQUARE ERA

NAME REIWA. The Reiwa era began on May 1, 2019. The prior era, Heisei (Japanese:

), began on January 8, 1989 and ended on April 30, 2019. The SQUARE ERA NAME

HEISEI and three additional era names are encoded in the range U+337B..U+337E.

The CJK Compatibility block consists entirely of square symbols encoded for compat‐

ibility with various East Asian character sets. These come in four sets: square Latin

abbreviations, Chinese telegraph symbols for hours and days, squared Katakana

words, and a small set of Japanese era names.

Squared Katakana words are Katakana-spelled words that fill a single display cell

(em-square) when intermixed with CJK ideographs. Likewise, the square Latin

abbreviation symbols are designed to fill a single character position when mixed with

CJK ideographs. Note that modern software for the East Asian market can often

support the comparable functionality via styles that allow typesetting of arbitrary

Katakana words or Latin abbreviations in an em-square. Such solutions are preferred

when available, as they are not limited to specific lists of encoded symbols such as

those in this block.

 The Japanese era name symbols refer to the dates given in

Table 22-9.

22.10.2 Enclosed CJK Letters and Months: U+3200–U+32FF

22.10.3 CJK Compatibility: U+3300–U+33FF

Japanese Era Names.

Symbols 1032 22.10 Enclosed and Square

Code Point Name Dates

U+32FF SQUARE ERA NAME REIWA 2019-05-01 to present day

U+337B SQUARE ERA NAME HEISEI 1989-01-08 to 2019-04-30

U+337C SQUARE ERA NAME SYOUWA 1926-12-25 to 1989-01-07

U+337D SQUARE ERA NAME TAISYOU 1912-07-30 to 1926-12-24

U+337E SQUARE ERA NAME MEIZI 1868-10-23 to 1912-07-29

This block contains more enclosed and square symbols based on Latin letters or

digits. Many are encoded for compatibility with the Japanese television standard,

ARIB STD B24; others are encoded for compatibility with the Japanese cell phone

carrier emoji sets.

 A set of 26 regional indicator symbols is encoded in

the range U+1F1E6..U+1F1FF. These 26 symbols correspond to a set of Latin letters A

through Z, but they do not have letter properties and are not cased. They are intended

for use in pairs to represent ISO 3166 region codes. This mechanism does not

supplant actual ISO 3166 region codes, which simply use Latin letters from the ASCII

range. Pairs of regional indicator symbols should not be construed as being region

codes (or “country codes”); rather, they constitute convenient indexes into a 26 x 26

array whose elements can be associated with region codes for the purposes of identi‐

fication, processing, and rendering.

The representative glyph for a single regional indicator symbol is just a dotted box

containing a capital Latin letter. The Unicode Standard does not prescribe how the

pairs of regional indicator symbols should be rendered. However, current industry

practice widely interprets pairs of regional indicator symbols as representing a flag

associated with the corresponding ISO 3166 region code. This practice is detailed in

the separate Unicode Technical Standard #51, “Unicode Emoji.” That specification

includes data tables that list precisely which pairs are interpreted for any given

version of UTS #51. Charts are also available showing representative flag glyphs for

these interpreted pairs, displayed as part of the emoji symbol sets for many mobile

platforms.

Conformance to the Unicode Standard does not require conformance to UTS #51.

However, the interpretation and display of pairs of regional indicator symbols as

specified in UTS #51 is now widely deployed, so in practice it is not advisable to

attempt to interpret pairs of regional indicator symbols as representing anything

other than an emoji flag.

Table 22-9. Japanese Era Names

22.10.4 Enclosed Alphanumeric Supplement: U+1F100–U+1F1FF

Regional Indicator Symbols.

Symbols 1033 22.10 Enclosed and Square

Regional indicator symbols have specialized properties and behavior related to

segmentation, which help to keep interpreted pairs together for line breaking, word

segmentation, and so forth.

The file EmojiSources.txt in the Unicode Character Database provides more informa‐

tion about source mappings from pairs of regional indicator symbols to flag emoji in

older carrier emoji sets. Provision of roundtrip mappings to those flag emoji was the

original impetus to include regional indicator symbols in the Unicode Standard.

 Creative Commons license symbols are

widely used across web platforms, content creation tools, and search engines to

describe a variety of functions, permissions, and concepts related to intellectual prop‐

erty. The set of seven symbols was designed to work efficiently on printed pages, web

pages, and signage while following the pattern of a graphic form within a circle.

Six of the seven symbols are encoded in two ranges (U+1F10D..U+1F10F and

U+1F16D..U+1F16F). One Creative Commons symbol, the circled equals sign, is

represented by U+229C CIRCLED EQUALS.

This block consists mostly of enclosed ideographic symbols. It also contains some

additional squared Katakana word symbols. Most of the symbols in this block are

either encoded for compatibility with the Japanese television standard ARIB STD

B24, and intended primarily for use in closed captioning, or are encoded for compati‐

bility with the Japanese cell phone carrier emoji sets.

The enclosed ideographic symbols in the range U+1F210..U+1F23B are enclosed in a

square, instead of a circle. One subset of these are symbols referring to broadcast

terminology, and the other subset are symbols used in baseball in Japan.

The enclosed ideographic symbols in the range U+1F240..U+1F248 are enclosed in

tortoise shell brackets, and are also used in baseball scoring in Japan.

The circled ideographic symbols in the range U+1F260..U+1F265 are felicitous

symbols commonly associated with Chinese folk religion. Five of these are collec‐

tively referred to as the “five-fold happiness,” representing luck, prosperity, longevity,

happiness, and wealth. The sixth, U+1F264, represents “double-happiness,” a

doubled variant of the happiness symbol, associated with love and marriage. Each of

these symbols is paired with a respective deity in traditional folk religion.

Creative Commons License Symbols.

22.10.5 Enclosed Ideographic Supplement: U+1F200–U+1F2FF

Symbols 1034 22.10 Enclosed and Square

Chapter 23

Special Areas and Format

Characters

This chapter describes several kinds of characters that have special properties as well

as areas of the codespace that are set aside for special purposes.

The Unicode Standard contains code positions for the 64 control characters and the

DEL character found in ISO standards and many vendor character sets. The choice of

control function associated with a given character code is outside the scope of the

Unicode Standard, with the exception of those control characters specified in this

chapter.

Layout controls are not themselves rendered visibly, but influence the behavior of

algorithms for line breaking, word breaking, glyph selection, and bidirectional

ordering.

Surrogate code points are restricted use. The numeric values for surrogates are used

in pairs in UTF-16 to access 1,048,576 supplementary code points in the range

U+10000..U+10FFFF.

Variation selectors allow the specification of standardized variants of characters. This

ability is particularly useful where the majority of implementations would treat the

two variants as two forms of the same character, but where some implementations

need to differentiate between the two. By using a variation selector, such differentia‐

tion can be made explicit.

Private-use characters are reserved for private use. Their meaning is defined by

private agreement.

Noncharacters are code points that are permanently reserved and will never have

characters assigned to them.

The Specials block contains characters that are neither graphic characters nor tradi‐

tional controls.

Tag characters were intended to support a general scheme for the internal tagging of

text streams in the absence of other mechanisms, such as markup languages. The use

of tag characters for language tagging is deprecated.

1035

There are 65 code points set aside in the Unicode Standard for compatibility with the

C0 and C1 control codes defined in the ISO/IEC 2022 framework. The ranges of these

code points are U+0000..U+001F, U+007F, and U+0080..U+009F, which corre‐

spond to the 8-bit controls 00
16

 to 1F
16

 (C0 controls), 7F
16

 (delete), and 80
16

 to 9F
16

(C1 controls), respectively. For example, the 8-bit legacy control code character tabu‐

lation (or tab) is the byte value 09
16

; the Unicode Standard encodes the corre‐

sponding control code at U+0009.

The Unicode Standard provides for the intact interchange of these code points,

neither adding to nor subtracting from their semantics. The semantics of the control

codes are generally determined by the application with which they are used.

However, in the absence of specific application uses, they may be interpreted

according to the control function semantics specified in ISO/IEC 6429:1992.

In general, the use of control codes constitutes a higher-level protocol and is beyond

the scope of the Unicode Standard. For example, the use of ISO/IEC 6429 control

sequences for controlling bidirectional formatting would be a legitimate higher-level

protocol layered on top of the plain text of the Unicode Standard. Higher-level proto‐

cols are not specified by the Unicode Standard; their existence cannot be assumed

without a separate agreement between the parties interchanging such data.

There is a simple, one-to-one mapping between 7-bit (and 8-bit) control codes and

the Unicode control codes: every 7-bit (or 8-bit) control code is numerically equal to

its corresponding Unicode code point. For example, if the ASCII line feed control

code (0A
16

) is to be used for line break control, then the text “WX<LF>YZ” would be

transmitted in Unicode plain text as the following coded character sequence: <0057,

0058, 000A, 0059, 005A>.

Control sequences that are part of Unicode text must be represented in terms of the

Unicode encoding forms. For example, suppose that an application allows embedded

font information to be transmitted by means of markup using plain text and control

codes. A font tag specified as “^ATimes^B”, where ^A refers to the C0 control code

01
16

 and ^B refers to the C0 control code 02
16

, would then be expressed by the

following coded character sequence: <0001, 0054, 0069, 006D, 0065, 0073, 0002>.

The representation of the control codes in the three Unicode encoding forms simply

follows the rules for any other code points in the standard:

UTF-8: <01 54 69 6D 65 73 02>

23.1 Control Codes

23.1.1 Representing Control Sequences

Special Areas and Format Characters 1036 23.1 Control Codes

UTF-16: <0001 0054 0069 006D 0065 0073 0002>

UTF-32: <00000001 00000054 00000069 0000006D

00000065 00000073 00000002>

 Escape sequences are a particular type of protocol that consists

of the use of some set of ASCII characters introduced by the escape control code,

1B
16

, to convey extra-textual information. When converting escape sequences into

and out of Unicode text, they should be converted on a character-by-character basis.

For instance, “ESC-A” <1B 41> would be converted into the Unicode coded character

sequence <001B, 0041>. Interpretation of U+0041 as part of the escape sequence,

rather than as latin capital letter a, is the responsibility of the higher-level protocol

that makes use of such escape sequences. This approach allows for low-level conver‐

sion processes to conformantly convert escape sequences into and out of the Unicode

Standard without needing to actually recognize the escape sequences as such.

If a process uses escape sequences or other configurations of control code sequences

to embed additional information about text (such as formatting attributes or struc‐

ture), then such sequences constitute a higher-level protocol that is outside the scope

of the Unicode Standard.

Several control codes are commonly used in plain text, particularly those involved in

line and paragraph formatting. The use of these control codes is widespread and

important to interoperability. Therefore, the Unicode Standard specifies semantics for

their use with the rest of the encoded characters in the standard. Table 23-1 lists those

control codes.

Code Point Abbreviation ISO/IEC 6429 Name

U+0009 HT character tabulation (tab)

U+000A LF line feed

U+000B VT line tabulation (vertical tab)

U+000C FF form feed

U+000D CR carriage return

U+001C FS information separator four

U+001D GS information separator three

U+001E RS information separator two

U+001F US information separator one

U+0085 NEL next line

Escape Sequences.

23.1.2 Specification of Control Code Semantics

Table 23-1. Control Codes Specified in the Unicode Standard

Special Areas and Format Characters 1037 23.1 Control Codes

The control codes in Table 23-1 have the Bidi_Class property values of S, B, or WS,

rather than the default of BN used for other control codes. (See Unicode Standard

Annex #9, “Unicode Bidirectional Algorithm.”) In particular, U+001C..U+001E and

U+001F have the Bidi_Class property values B and S, respectively, so that the Bidirec‐

tional Algorithm recognizes their separator semantics.

The control codes U+0009..U+000D and U+0085 have the White_Space property.

They also have line breaking property values that differ from the default CM value for

other control codes. (See Unicode Standard Annex #14, “Unicode Line Breaking

Algorithm.”)

U+0000 null may be used as a Unicode string terminator, as in the C language. Such

usage is outside the scope of the Unicode Standard, which does not require any

particular formal language representation of a string or any particular usage of null.

 In particular, one or more of the control codes U+000A line feed,

U+000D carriage return, and the Unicode equivalent of the EBCDIC next line can

encode a newline function. A newline function can act like a line separator or a para‐

graph separator, depending on the application. See Section 23.2, Layout Controls, for

information on how to interpret a line or paragraph separator. The exact encoding of

a newline function depends on the application domain. For information on how to

identify a newline function, see Section 5.8, Newline Guidelines.

Newline Function.

Special Areas and Format Characters 1038 23.1 Control Codes

The effect of layout controls is specific to particular text processes. As much as

possible, layout controls are transparent to those text processes for which they were

not intended. In other words, their effects are mutually orthogonal.

This subsection summarizes the intended behavior of certain layout controls which

affect line and word breaking. Line breaking and word breaking are distinct text

processes. Although a candidate position for a line break in text often coincides with

a candidate position for a word break, there are also many situations where candidate

break positions of different types do not coincide. The implications for the interac‐

tion of layout controls with text segmentation processes are complex. For a full

description of line breaking, see Unicode Standard Annex #14, “Unicode Line

Breaking Algorithm.” For a full description of other text segmentation processes,

including word breaking, see Unicode Standard Annex #29, “Unicode Text Segmen‐

tation.”

U+00A0 NO-BREAK SPACE has the same width as U+0020 SPACE,

but the NO-BREAK SPACE indicates that, under normal circumstances, no line breaks

are permitted between it and surrounding characters, unless the preceding or

following character is a line or paragraph separator or space or zero width space. For

a complete list of space characters in the Unicode Standard, see Table 6-2.

U+2060 WORD JOINER behaves like U+00A0 NO-BREAK SPACE in that

it indicates the absence of line breaks; however, the word joiner has no width. The

function of the character is to indicate that line breaks are not allowed between the

adjoining characters, except next to hard line breaks. For example, the word joiner

can be inserted after the fourth character in the text “base+delta” to indicate that

there should be no line break between the “e” and the “+”. The word joiner can be

used to prevent line breaking with other characters that do not have nonbreaking

variants, such as U+2009 THIN SPACE or U+2015 HORIZONTAL BAR, by bracketing

the character.

The word joiner must not be confused with the zero width joiner or the combining

grapheme joiner, which have very different functions. In particular, inserting a word

joiner between two characters has no effect on their ligating and cursive joining

behavior. The word joiner should be ignored in contexts other than line breaking.

Note in particular that the word joiner is ignored for word segmentation. (See

Unicode Standard Annex #29, “Unicode Text Segmentation.”)

 In addition to its primary meaning of byte order mark

(see “Byte Order Mark” in Section 23.8, Specials), the code point U+FEFF possesses

23.2 Layout Controls

23.2.1 Line and Word Breaking

No-Break Space.

Word Joiner.

Zero Width No-Break Space.

Special Areas and Format Characters 1039 23.2 Layout Controls

the semantics of ZERO WIDTH NO-BREAK SPACE, which matches that of word joiner.

Until Unicode 3.2, U+FEFF was the only code point with word joining semantics,

but because it is more commonly used as byte order mark, the use of U+2060 WORD

JOINER to indicate word joining is strongly preferred for any new text. Implementa‐

tions should continue to support the word joining semantics of U+FEFF for back‐

ward compatibility.

 The U+200B ZERO WIDTH SPACE indicates a word break or line

break opportunity, even though there is no intrinsic width associated with this char‐

acter. Zero-width space characters are intended to be used in languages that have no

visible word spacing to represent word break or line break opportunities, such as

Thai, Myanmar, Khmer, and Japanese.

The “zero width” in the character name for ZWSP should not be understood too liter‐

ally. While this character ordinarily does not result in a visible space between charac‐

ters, text justification algorithms may add inter-character spacing (letter spacing)

between characters separated by a ZWSP. For example, in Table 23-2, the row labeled

“Display 4” illustrates incorrect suppression of inter-character spacing in the context

of a ZWSP.

This behavior for ZWSP contrasts with that for fixed-width space characters, such as

U+2002 EN SPACE. Such spaces have a specified width that is typically unaffected by

justification and which should not be increased (or reduced) by inter-character

spacing (see Section 6.2, General Punctuation).

In some languages such as German and Russian, increased letter spacing is used to

indicate emphasis. Implementers should be aware of this issue.

 The zero-width spaces are not to be

confused with the zero-width joiner characters. U+200C ZERO WIDTH NON-JOINER

and U+200D ZERO WIDTH JOINER have no effect on word or line break boundaries,

and ZERO WIDTH NO-BREAK SPACE and ZERO WIDTH SPACE have no effect on joining

Zero Width Space.

Table 23-2. Letter Spacing

Zero-Width Spaces and Joiner Characters.

Special Areas and Format Characters 1040 23.2 Layout Controls

or linking behavior. The zero-width joiner characters should be ignored when deter‐

mining word or line break boundaries. See “Cursive Connection” later in this section.

U+00AD SOFT HYPHEN (SHY) indicates an intraword break point,

where a line break is preferred if a word must be hyphenated or otherwise broken

across lines. Such break points are generally determined by an automatic hyphenator.

SHY can be used with any script, but its use is generally limited to situations where

users need to override the behavior of such a hyphenator. The visible rendering of a

line break at an intraword break point, whether automatically determined or indi‐

cated by a SHY, depends on the surrounding characters, the rules governing the

script and language used, and, at times, the meaning of the word. The precise rules

are outside the scope of this standard, but see Unicode Standard Annex #14,

“Unicode Line Breaking Algorithm,” for additional information. A common default

rendering is to insert a hyphen before the line break, but this is insufficient or even

incorrect in many situations.

Contrast this usage with U+2027 HYPHENATION POINT, which is used for a visible

indication of the place of hyphenation in dictionaries. For a complete list of dash

characters in the Unicode Standard, including all the hyphens, see Table 6-3.

The Unicode Standard includes two nonbreaking hyphen characters: U+2011 NON-

BREAKING HYPHEN and U+0F0C TIBETAN MARK DELIMITER TSHEG BSTAR. See

Section 13.4, Tibetan, for more discussion of the Tibetan-specific line breaking

behavior.

 The Unicode Standard provides two unambiguous

characters, U+2028 LINE SEPARATOR and U+2029 PARAGRAPH SEPARATOR, to sepa‐

rate lines and paragraphs. They are considered the default form of denoting line and

paragraph boundaries in Unicode plain text. A new line is begun after each LINE

SEPARATOR. A new paragraph is begun after each PARAGRAPH SEPARATOR. As these

characters are separator codes, it is not necessary either to start the first line or para‐

graph or to end the last line or paragraph with them. Doing so would indicate that

there was an empty paragraph or line following. The PARAGRAPH SEPARATOR can be

inserted between paragraphs of text. Its use allows the creation of plain text files,

which can be laid out on a different line width at the receiving end. The LINE SEPA‐

RATOR can be used to indicate an unconditional end of line.

A paragraph separator indicates where a new paragraph should start. Any interpara‐

graph formatting would be applied. This formatting could cause, for example, the

line to be broken, any interparagraph line spacing to be applied, and the first line to

be indented. A line separator indicates that a line break should occur at this point;

although the text continues on the next line, it does not start a new paragraph—no

interparagraph line spacing or paragraphic indentation is applied. For more informa‐

tion on line separators, see Section 5.8, Newline Guidelines.

Hyphenation.

Line and Paragraph Separator.

Special Areas and Format Characters 1041 23.2 Layout Controls

In some fonts for some scripts, consecutive characters in a text stream may be

rendered via adjacent glyphs that cursively join to each other, so as to emulate

connected handwriting. For example, cursive joining is implemented in nearly all

fonts for the Arabic scripts and in a few handwriting-like fonts for the Latin script.

Cursive rendering is implemented by joining glyphs in the font and by using a

process that selects the particular joining glyph to represent each individual char‐

acter occurrence, based on the joining nature of its neighboring characters. This

glyph selection is implemented in the rendering engine, typically using information

in the font.

In many cases there is an even closer binding, where a sequence of characters is

represented by a single glyph, called a ligature. Ligatures can occur in both cursive

and noncursive fonts. Where ligatures are available, it is the task of the rendering

system to select a ligature to create the most appropriate line layout. However, the

rendering system cannot define the locations where ligatures are possible because

there are many languages in which ligature formation requires more information.

For example, in some languages, ligatures are never formed across syllable bound‐

aries.

On occasion, an author may wish to override the normal automatic selection of

connecting glyphs or ligatures. Typically, this choice is made to achieve one of the

following effects:

Cause nondefault joining appearance (for example, as is sometimes required in

writing Persian using the Arabic script)

Exhibit the joining-variant glyphs themselves in isolation

Request a ligature to be formed where it normally would not be

Request a ligature not to be formed where it normally would be

The Unicode Standard provides two characters that influence joining and ligature

glyph selection: U+200C ZERO WIDTH NON-JOINER and U+200D ZERO WIDTH

JOINER. The zero width joiner and non-joiner request a rendering system to have

more or less of a connection between characters than they would otherwise have.

Such a connection may be a simple cursive link, or it may include control of liga‐

tures.

The zero width joiner and non-joiner characters are designed for use in plain text;

they should not be used where higher-level ligation and cursive control is available.

(See the W3C specification, “Unicode in XML and Other Markup Languages,” for

more information.) Moreover, they are essentially requests for the rendering system

23.2.2 Cursive Connection and Ligatures

•

•

•

•

Special Areas and Format Characters 1042 23.2 Layout Controls

to take into account when laying out the text; while a rendering system should

consider them, it is perfectly acceptable for the system to disregard these requests.

The ZWJ and ZWNJ are designed for marking the unusual cases where ligatures or

cursive connections are required or prohibited. These characters are not to be used in

all cases where ligatures or cursive connections are desired; instead, they are meant

only for overriding the normal behavior of the text.

U+200D ZERO WIDTH JOINER requests a more connected rendering of adja‐

cent characters. In particular:

If the two characters could form a ligature but do not normally, ZWJ requests

that the ligature be used.

Otherwise, if either of the characters could cursively connect but do not

normally, ZWJ requests that each of the characters take a cursive-connection

form where possible.

A typical use of ZWJ is to show the connected form of a character without a

visible neighbor, as shown in Figure 23-2.

In a sequence like <X, ZWJ, Y>, where a cursive form exists for X but not for Y, the

presence of ZWJ requests a cursive form for X. Otherwise, where neither a ligature

nor a cursive connection is available, the ZWJ has no effect. In other words, given the

three broad categories below, ZWJ requests that glyphs in the highest available cate‐

gory (for the given font) be used:

Ligated

Cursively connected

Unconnected

U+200C ZERO WIDTH NON-JOINER is intended to break both cursive

connections and ligatures in rendering.

ZWNJ requests that glyphs in the lowest available category (for the given font) be

used.

For those unusual circumstances where someone wants to forbid ligatures in a

sequence XY but promote cursive connection, the sequence <X, ZWJ, ZWNJ, ZWJ,

Y> can be used. The ZWNJ breaks ligatures, while the two adjacent joiners cause the

X and Y to take adjacent cursive forms (where they exist). Similarly, if someone

wanted to have X take a cursive form but Y be isolated, then the sequence <X, ZWJ,

ZWNJ, Y> could be used (as in previous versions of the Unicode Standard). Exam‐

ples are shown in Figure 23-3.

Joiner.

•

•

•

1.

2.

3.

Non-joiner.

Special Areas and Format Characters 1043 23.2 Layout Controls

 For cursive connection, the joiner and non-joiner characters

typically do not modify the contextual selection process itself, but instead change the

context of a particular character occurrence. By providing a non-joining adjacent

character where the adjacent character otherwise would be joining, or vice versa,

they indicate that the rendering process should select a different joining glyph. This

process can be used in two ways: to prevent a cursive joining or to exhibit joining

glyphs in isolation.

In Figure 23-1, the insertion of the ZWNJ overrides the normal cursive joining of sad

and lam.

In Figure 23-2, the normal display of ghain without ZWJ before or after it uses the

nominal (isolated) glyph form. When preceded and followed by ZWJ characters,

however, the ghain is rendered with its medial form glyph in isolation.

The examples in Figure 23-1 and Figure 23-2 are adapted from the Iranian national

coded character set standard, ISIRI 3342, which defines ZWNJ and ZWJ as “pseudo

space” and “pseudo connection,” respectively.

Figure 23-3 provides samples of desired renderings when the joiner or

non-joiner is inserted between two characters. The examples presume that all of the

glyphs are available in the font. If, for example, the ligatures are not available, the

display would fall back to the unligated forms. Each of the entries in the first column

of Figure 23-3 shows two characters in visual display order. The column headings

show characters to be inserted between those two characters. The cells below show

the respective display when the joiners in the heading row are inserted between the

original two characters.

Cursive Connection.

Figure 23-1. Prevention of Joining

Figure 23-2. Exhibition of Joining Glyphs in Isolation

Examples.

Special Areas and Format Characters 1044 23.2 Layout Controls

For backward compatibility, between Arabic characters a ZWJ acts just like the

sequence <ZWJ, ZWNJ, ZWJ>, preventing a ligature from forming instead of

requesting the use of a ligature that would not normally be used. As a result, there is

no plain text mechanism for requesting the use of a ligature in Arabic text.

 The property value of Joining_Type = Transparent applies to charac‐

ters that should not interfere with cursive connection, even when they occur in

sequence between two characters that are connected cursively. These include all

nonspacing marks and most format control characters, except for ZWJ and ZWNJ

themselves. Note, in particular, that enclosing combining marks are also transparent

as regards cursive connection. For example, using U+20DD COMBINING ENCLOSING

CIRCLE to circle an Arabic letter in a sequence should not cause that Arabic letter to

change its cursive connections to neighboring letters. See Section 9.2, Arabic, for

more on joining classes and the details regarding Arabic cursive joining.

 In Indic text, the ZWJ and ZWNJ are used

to request particular display forms. A ZWJ after a sequence of consonant plus virama

requests what is called a “half-form” of that consonant. A ZWNJ after a sequence of

consonant plus virama requests that conjunct formation be interrupted, usually

resulting in an explicit virama on that consonant. There are a few more specialized

uses as well. For more information, see the discussions in Chapter 12, South and

Central Asia-I.

 For modern font technologies, such as OpenType or AAT,

font vendors should add ZWJ to their ligature mapping tables as appropriate. Thus,

where a font had a mapping from “ ” + “ ” to , the font designer should add the

mapping from “ ” + ZWJ + “ ” to . In contrast, ZWNJ will normally have the desired

effect naturally for most fonts without any change, as it simply obstructs the normal

ligature/cursive connection behavior. As with all other alternate format characters,

fonts should use an invisible zero-width glyph for representation of both ZWJ and

ZWNJ.

Figure 23-3. Effect of Intervening Joiners

Transparency.

Joiner and Non-joiner in Indic Scripts.

Implementation Notes.

Special Areas and Format Characters 1045 23.2 Layout Controls

ZERO WIDTH JOINER and ZERO WIDTH NON-

JOINER are format control characters. As such, and in common with other format

control characters, they are ordinarily ignored by processes that analyze text content.

For example, a spell-checker or a search operation should filter them out when

checking for matches. There are exceptions, however. In particular scripts—most

notably the Indic scripts—ZWJ and ZWNJ have specialized usages that may be of

orthographic significance. In those contexts, blind filtering of all instances of ZWJ or

ZWNJ may result in ignoring distinctions relevant to the user’s notion of text content.

Implementers should be aware of these exceptional circumstances, so that searching

and matching operations behave as expected for those scripts.

The Unicode Standard includes a number of format characters that combine with a

sequence of one or more characters of a specific category, where the entire sequence

is then rendered as a single, ligated display unit. These prepended concatenation

marks always have a visible display, despite their status as format characters. An

example is U+0601 ARABIC SIGN SANAH, the Arabic year sign, which is followed by a

sequence of Arabic-Indic digits to format a year. See “Signs Spanning Numbers” in

Section 9.2, Arabic for more discussion of the use and display of these signs in the

Arabic script.

A sequence anchored by a prepended concatenation mark behaves somewhat analo‐

gously to a combining character sequence, with the prepended concatenation mark

standing in as the “base character” of the sequence. The entire sequence is a tightly

defined syntactic element and ends with the first character that is not in the specified

category (often a digit) required for that particular mark. Inserting any other char‐

acter, even a default ignorable code point, will disrupt the unit. The entire sequence

constitutes a single unit for display; however, unlike a combining character sequence,

the sequence introduced by a prepended concatenation mark does not form a

grapheme cluster for the purposes of cursor movement and similar editing processes.

The overall behavior more closely resembles that of normal ligatures in text.

Many of the prepended concatenation marks occur in the Arabic script, and require

an unbroken sequence of decimal digits in the Arabic script. In other instances, as for

U+070F SYRIAC ABBREVIATION MARK, the expectation is that they will be followed

by an unbroken sequence of Syriac letters.

U+2044 FRACTION SLASH behaves somewhat similarly to prepended concatenation

marks. Although it is categorized as an ordinary math symbol and not as a format

character, it is intended to result in a ligated unit fraction (such as ¾ instead of 3/4)

when positioned between two unbroken sequences of decimal digits (gc=Nd). As for

the character sequence following a prepended concatenation mark, the digit

sequences for a fraction slash are interrupted even by a default ignorable code point

such as U+2060 WORD JOINER.

Filtering Joiner and Non-joiner.

23.2.3 Prepended Concatenation Marks

Special Areas and Format Characters 1046 23.2 Layout Controls

U+034F COMBINING GRAPHEME JOINER (CGJ) is used to affect the collation of adja‐

cent characters for purposes of language-sensitive collation and searching. It is also

used to distinguish sequences that would otherwise be canonically equivalent.

Formally, the combining grapheme joiner is not a format control character, but rather

a combining mark. It has the General_Category value gc = Mn and the canonical

combining class value ccc = 0.

As a result of these properties, the presence of a combining grapheme joiner in the

midst of a combining character sequence does not interrupt the combining character

sequence; any process that is accumulating and processing all the characters of a

combining character sequence would include a combining grapheme joiner as part of

that sequence. This differs from the behavior of most format control characters,

whose presence would interrupt a combining character sequence.

In addition, because the combining grapheme joiner has the canonical combining

class of 0, canonical reordering will not reorder any adjacent combining marks

around a combining grapheme joiner. (See the discussion of canonical ordering in

Section 3.11, Normalization Forms.) In turn, this means that insertion of a combining

grapheme joiner between two combining marks will prevent normalization from

switching the positions of those two combining marks, regardless of their own

combining classes.

 The CGJ has no visible glyph and no other format effect on

neighboring characters but simply blocks reordering of combining marks. It can

therefore be used as a tool to distinguish two alternative orderings of a sequence of

combining marks for some exceptional processing or rendering purpose, whenever

normalization would otherwise eliminate the distinction between the two sequences.

For example, using CGJ to block reordering is one way to maintain distinction

between differently ordered sequences of certain Hebrew accents and marks. These

distinctions are necessary for analytic and text representational purposes. However,

these characters were assigned fixed-position combining classes despite the fact that

they interact typographically. As a result, normalization treats differently ordered

sequences as equivalent. In particular, the sequence

<lamed, patah, hiriq, finalmem>

is canonically equivalent to

<lamed, hiriq, patah, finalmem>

because the canonical combining classes of U+05B4 HEBREW POINT HIRIQ and

U+05B7 HEBREW POINT PATAH are distinct. However, the sequence

23.2.4 Combining Grapheme Joiner

Blocking Reordering.

Special Areas and Format Characters 1047 23.2 Layout Controls

<lamed, patah, CGJ, hiriq, finalmem>

is not canonically equivalent to the other two. The presence of the combining

grapheme joiner, which has ccc = 0, blocks the reordering of hiriq before patah by

canonical reordering and thus allows a patah following a hiriq and a patah preceding

a hiriq to be reliably distinguished, whether for display or for other processing.

The use of CGJ with double diacritics is discussed in Section 7.9, Combining Marks;

see Figure 7-11.

 The Unicode Collation Algorithm normalizes Unicode text

strings before applying collation weighting. The combining grapheme joiner is ordi‐

narily ignored in collation key weighting in the UCA. However, whenever it blocks

the reordering of combining marks in a string, it affects the order of secondary key

weights associated with those combining marks, giving the two strings distinct keys.

That makes it possible to treat them distinctly in searching and sorting without

having to tailor the weights for either the combining grapheme joiner or the

combining marks.

The CGJ can also be used to prevent the formation of contractions in the Unicode

Collation Algorithm. For example, while “ch” is sorted as a single unit in a tailored

Slovak collation, the sequence <c, CGJ, h> will sort as a “c” followed by an “h”. The

CGJ can also be used in German, for example, to distinguish in sorting between “ü”

in the meaning of u-umlaut, which is the more common case and often sorted like

<u,e>, and “ü” in the meaning u-diaeresis, which is comparatively rare and sorted

like “u” with a secondary key weight. This also requires no tailoring of either the

combining grapheme joiner or the sequence. Because CGJ is invisible and has the

Default_Ignorable_Code_Point property, data that are marked up with a CGJ should

not cause problems for other processes.

It is possible to give sequences of characters that include the combining grapheme

joiner special tailored weights. Thus the sequence <c, CGJ, h> could be weighted

completely differently from the contraction “ch” or from the way “c” and “h” would

have sorted without the contraction. However, such an application of CGJ is not

recommended. For more information on the use of CGJ with sorting, matching, and

searching, see Unicode Technical Report #10, “Unicode Collation Algorithm.”

 For rendering, the combining grapheme joiner is invisible. However,

some older implementations may treat a sequence of grapheme clusters linked by

combining grapheme joiners as a single unit for the application of enclosing

combining marks. For more information on grapheme clusters, see Unicode Tech‐

nical Report #29, “Unicode Text Segmentation.” For more information on enclosing

combining marks, see Section 3.11, Normalization Forms.

 The combining grapheme joiner must not be confused

with the zero width joiner or the word joiner, which have very different functions. In

CGJ and Collation.

Rendering.

CGJ and Joiner Characters.

Special Areas and Format Characters 1048 23.2 Layout Controls

particular, inserting a combining grapheme joiner between two characters should

have no effect on their ligation or cursive joining behavior. Where the prevention of

line breaking is the desired effect, the word joiner should be used. For more informa‐

tion on the behavior of these characters in line breaking, see Unicode Standard

Annex #14, “Unicode Line Breaking Algorithm.”

Bidirectional ordering controls are used in the Bidirectional Algorithm, described in

Unicode Standard Annex #9, “Unicode Bidirectional Algorithm.” Systems that

handle right-to-left scripts such as Arabic, Syriac, and Hebrew, for example, should

interpret these format control characters. The bidirectional ordering controls are

shown in Table 23-3.

Code Name Abbreviation

U+061C ARABIC LETTER MARK ALM

U+200E LEFT-TO-RIGHT MARK LRM

U+200F RIGHT-TO-LEFT MARK RLM

U+202A LEFT-TO-RIGHT EMBEDDING LRE

U+202B RIGHT-TO-LEFT EMBEDDING RLE

U+202C POP DIRECTIONAL FORMATTING PDF

U+202D LEFT-TO-RIGHT OVERRIDE LRO

U+202E RIGHT-TO-LEFT OVERRIDE RLO

U+2066 LEFT-TO-RIGHT ISOLATE LRI

U+2067 RIGHT-TO-LEFT ISOLATE RLI

U+2068 FIRST STRONG ISOLATE FSI

U+2069 POP DIRECTIONAL ISOLATE PDI

As with other format control characters, bidirectional ordering controls affect the

layout of the text in which they are contained but should be ignored for other text

processes, such as sorting or searching. However, text processes that modify text

content must maintain these characters correctly, because matching pairs of bidirec‐

tional ordering controls must be coordinated, so as not to disrupt the layout and

interpretation of bidirectional text. Each instance of a LRE, RLE, LRO, or RLO is

normally paired with a corresponding PDF. Likewise, each instance of an LRI, RLI, or

FSI is normally paired with a corresponding PDI.

U+200E LEFT-TO-RIGHT MARK, U+200F RIGHT-TO-LEFT MARK, and U+061C

ARABIC LETTER MARK have the semantics of an invisible character of zero width,

except that these characters have strong directionality. They are intended to be used

to resolve cases of ambiguous directionality in the context of bidirectional texts; they

23.2.5 Bidirectional Ordering Controls

Table 23-3. Bidirectional Ordering Controls

Special Areas and Format Characters 1049 23.2 Layout Controls

are not paired. Unlike U+200B ZERO WIDTH SPACE, these characters carry no word

breaking semantics. (See Unicode Standard Annex #9, “Unicode Bidirectional Algo‐

rithm,” for more information.)

The Unicode Standard contains a small number of paired stateful controls. These

characters are used in pairs, with an initiating character (or sequence) and a termi‐

nating character. Even when these characters are not supported by a particular

implementation, complications can arise due to their paired nature. Whenever text is

cut, copied, pasted, or deleted, these characters can become unpaired. To avoid this

problem, ideally both any copied text and its context (site of a deletion, or target of an

insertion) would be modified so as to maintain all pairings that were in effect for

each piece of text. This process can be quite complicated, however, and is not often

done—or is done incorrectly if attempted.

The paired stateful controls recommended for use are listed in Table 23-4.

Characters Documentation

Bidi Overrides, Embeddings, and Isolates Section 23.2, Layout Controls; UAX #9

Annotation Characters Section 23.8, Specials

Musical Beams and Slurs Section 21.2, Western Musical Symbols

The bidirectional overrides, embeddings, and isolates, as well as the annotation char‐

acters are reasonably robust, because their behavior terminates at paragraph bound‐

aries. Paired format controls for representation of beams and slurs in music are

recommended only for specialized musical layout software, and also have limited

scope.

Bidirectional overrides, embeddings, and isolates are default ignorable (that is,

Default_Ignorable_Code_Point = True); if they are not supported by an implementa‐

tion, they should not be rendered with a visible glyph. The paired stateful controls for

musical beams and slurs are likewise default ignorable.

The annotation characters, however, are different. When they are used and correctly

interpreted by an implementation, they separate annotation text from the annotated

text, and the fully rendered text will typically distinguish the two parts quite clearly.

Simply omitting any display of the annotation characters by an implementation

which does not interpret them would have the potential to cause significant miscon‐

strual of text content. Hence, the annotation characters are not default ignorable; an

implementation which does not interpret them should render them with visible

glyphs, using one of the techniques discussed in Section 5.3, Unknown and Missing

Characters. See “Annotation Characters” in Section 23.8, Specials for more discussion.

23.2.6 Stateful Format Controls

Table 23-4. Paired Stateful Controls

Special Areas and Format Characters 1050 23.2 Layout Controls

Other paired stateful controls in the standard are deprecated, and their use should be

avoided. They are listed in Table 23-5.

Characters Documentation

Deprecated Format Characters Section 23.3, Deprecated Format Characters

U+E0001 LANGUAGE TAG Section 23.9, Tag Characters

The tag characters, originally intended for the representation of language tags, are

particularly fragile under editorial operations that move spans of text around. See

Section 5.10, Language Information in Plain Text, for more information about

language tagging.

Table 23-5. Paired Stateful Controls (Deprecated)

Special Areas and Format Characters 1051 23.2 Layout Controls

Three pairs of deprecated format characters are encoded in this block:

Symmetric swapping format characters used to control the glyphs that depict

characters such as “(” (The default state is activated.)

Character shaping selectors used to control the shaping behavior of the Arabic

compatibility characters (The default state is inhibited.)

Numeric shape selectors used to override the normal shapes of the Western

digits (The default state is nominal.)

The use of these character shaping selectors and codes for digit shapes is strongly

discouraged in the Unicode Standard. Instead, the appropriate character codes

should be used with the default state. For example, if contextual forms for Arabic

characters are desired, then the nominal characters should be used, not the presenta‐

tion forms with the shaping selectors. Similarly, if the Arabic digit forms are desired,

then the explicit characters should be used, such as U+0660 ARABIC-INDIC DIGIT

ZERO.

 The symmetric swapping format characters are used in

conjunction with the class of left- and right-handed pairs of characters (symmetric

characters), such as parentheses. The characters thus affected are listed in Section 4.7,

Bidi Mirrored. They indicate whether the interpretation of the term LEFT or RIGHT in

the character names should be interpreted as meaning opening or closing, respec‐

tively. They do not nest. The default state of symmetric swapping may be set by a

higher-level protocol or standard, such as ISO 6429. In the absence of such a protocol,

the default state is activated.

From the point of encountering U+206A INHIBIT SYMMETRIC SWAPPING format

character up to a subsequent U+206B ACTIVATE SYMMETRIC SWAPPING (if any), the

symmetric characters will be interpreted and rendered as left and right.

From the point of encountering U+206B ACTIVATE SYMMETRIC SWAPPING format

character up to a subsequent U+206A INHIBIT SYMMETRIC SWAPPING (if any), the

symmetric characters will be interpreted and rendered as opening and closing. This

state (activated) is the default state in the absence of any symmetric swapping code or

a higher-level protocol.

 The character shaping selector format characters are

used in conjunction with Arabic presentation forms. During the presentation

process, certain letterforms may be joined together in cursive connection or ligatures.

The shaping selector codes indicate that the character shape determination (glyph

23.3 Deprecated Format Characters

23.3.1 Deprecated Format Characters: U+206A–U+206F

•

•

•

Symmetric Swapping.

Character Shaping Selectors.

Special Areas and Format Characters 1052 23.3 Deprecated Format Characters

selection) process used to achieve this presentation effect is to be either activated or

inhibited. The shaping selector codes do not nest.

From the point of encountering a U+206C INHIBIT ARABIC FORM SHAPING format

character up to a subsequent U+206D ACTIVATE ARABIC FORM SHAPING (if any), the

character shaping determination process should be inhibited. If the backing store

contains Arabic presentation forms (for example, U+FE80..U+FEFC), then these

forms should be presented without shape modification. This state (inhibited) is the

default state in the absence of any character shaping selector or a higher-level

protocol.

From the point of encountering a U+206D ACTIVATE ARABIC FORM SHAPING format

character up to a subsequent U+206C INHIBIT ARABIC FORM SHAPING (if any), any

Arabic presentation forms that appear in the backing store should be presented with

shape modification by means of the character shaping (glyph selection) process.

The shaping selectors have no effect on nominal Arabic characters

(U+0660..U+06FF), which are always subject to character shaping (glyph selection).

 The numeric shape selector format characters allow the

selection of the shapes in which the digits U+0030..U+0039 are to be rendered.

These format characters do not nest.

From the point of encountering a U+206E NATIONAL DIGIT SHAPES format character

up to a subsequent U+206F NOMINAL DIGIT SHAPES (if any), the European digits

(U+0030..U+0039) should be depicted using the appropriate national digit shapes as

specified by means of appropriate agreements. For example, they could be displayed

with shapes such as the Arabic-Indic digits (U+0660..U+0669). The actual character

shapes (glyphs) used to display national digit shapes are not specified by the Unicode

Standard.

From the point of encountering a U+206F NOMINAL DIGIT SHAPES format character

up to a subsequent U+206E NATIONAL DIGIT SHAPES (if any), the European digits

(U+0030..U+0039) should be depicted using glyphs that represent the nominal digit

shapes shown in the code tables for these digits. This state (nominal) is the default

state in the absence of any numeric shape selector or a higher-level protocol.

Numeric Shape Selectors.

Special Areas and Format Characters 1053 23.3 Deprecated Format Characters

Characters in the Unicode Standard can be represented by a wide variety of glyphs,

as discussed in Chapter 2, General Structure. Occasionally the need arises in text

processing to restrict or change the set of glyphs that are to be used to represent a

character. Normally such changes are indicated by choice of font or style in rich text

documents. In special circumstances, such a variation from the normal range of

appearance needs to be expressed side-by-side in the same document in plain text

contexts, where it is impossible or inconvenient to exchange formatted text. For

example, in languages employing the Mongolian script, sometimes a specific variant

range of glyphs is needed for a specific textual purpose for which the range of

“generic” glyphs is considered inappropriate.

Variation selectors provide a mechanism for specifying a restriction on the set of

glyphs that are used to represent a particular character. They also provide a mecha‐

nism for specifying variants, such as for CJK ideographs and Mongolian letters, that

have essentially the same semantics but substantially different ranges of glyphs.

 A variation sequence is a two-character sequence in which a

variation selector follows an initial character. Each variation sequence defines a

variant of the initial character. The initial character must have the following proper‐

ties:

D50: Graphic character (gc=L, M, N, P, S, Zs)

Not a Variation_Selector

ccc=0 (does not reorder)

NFD_QC=Yes (does not decompose)

NFC_QC=Yes (does not get consumed in composition)

For the definition of NFD_QC and NFC_QC, see Section 5.7.5, “Decompositions and

Normalization,” in Unicode Standard Annex #44, “Unicode Character Database.”

For example, the following types of characters cannot be the initial character of a

variation sequence: Control codes, format control characters, most diacritics, some

Indic dependent vowels, most viramas, Hangul Jamo medial vowels, and canonical

composite characters.

These constraints are required because it is important that variation sequences

remain stable under normalization, and that the effect of a variation selector can

always be characterized as unambiguously applying to a single character. Versions of

the Unicode Standard prior to Version 16.0 had a more limited statement of

constraints on variation sequences.

23.4 Variation Selectors

Variation Sequence.

•

•

•

•

•

Special Areas and Format Characters 1054 23.4 Variation Selectors

In a variation sequence the variation selector affects the appearance of the initial

character. Such changes in appearance may, in turn, have a visual impact on subse‐

quent characters, particularly combining characters applied to that initial character.

For example, if the initial character changes shape, that should result in a corre‐

sponding change in shape or position of applied combining marks. If the initial char‐

acter changes color, as can be the case for emoji variation sequences, the color may

also change for applied combining marks. If the initial character changes in advance

width, that would also change the positioning of subsequent spacing characters.

In particular, the emoji variation sequences for digits, U+0023 “ ” NUMBER SIGN,

and U+002A “ ” ASTERISK are intended to affect the color, size, and positioning of

U+20E3 COMBINING ENCLOSING KEYCAP when applied to those initial charac‐

ters. For example, the variation sequence <0023, FE0F> selects the emoji presenta‐

tion variant for “#”. The sequence <0023, FE0F, 20E3> should show the enclosing

keycap with an appropriate emoji style, matching the “#” in color, shape, and posi‐

tioning. Shape changes for variation sequences, with or without additional

combining marks, may also result in an increase of advance width; thus, each of the

sequences <0023, FE0F>, <0023, 20E3>, and <0023, FE0F, 20E3> may have a

distinct advance width, differing from U+0023 alone.

The use of variation selectors is not intended as a general extension mechanism for

the character encoding. Combinations of particular initial characters plus particular

variation selectors have no effect on display unless they occur in pre-defined lists

maintained by the Unicode Consortium. The three sanctioned lists are as follows:

Standardized variation sequences are defined in the file StandardizedVariants.txt

in the Unicode Character Database.

Emoji variation sequences are defined in the file emoji-variation-sequences.txt,

associated with Unicode Technical Standard #51, “Unicode Emoji.”

Ideographic variation sequences are defined by the registration process defined in

Unicode Technical Standard #37, “Unicode Ideographic Variation Database,”

and are listed in the Ideographic Variation Database.

Only those three types of variation sequences are sanctioned for use by conformant

implementations. In all other cases, use of a variation selector character does not

change the visual appearance of the preceding initial character from what it would

have had in the absence of the variation selector.

The variation selectors themselves are combining marks of combining class 0 and are

default ignorable. Thus, if the variation sequence is not supported, the variation

selector should be invisible and ignored. This does not preclude modes or environ‐

ments where the variation selectors should be given visible appearance. For example,

a “Show Hidden” mode could reveal the presence of such characters with specialized

glyphs, or a particular environment could use or require a visual indication of an

Special Areas and Format Characters 1055 23.4 Variation Selectors

initial character (such as a wavy underline) to show that it is part of a standardized

variation sequence that cannot be supported by the current font.

The standardization or support of a particular variation sequence does not limit the

set of glyphs that can be used to represent the initial character alone. If a user

requires a visual distinction between a character and a particular variant of that char‐

acter, then fonts must be used to make that distinction. The existence of a variation

sequence does not preclude the later encoding of a new character with distinct

semantics and a similar or overlapping range of glyphs.

 There are 1,002 standardized variation sequences

for CJK compatibility ideographs. One sequence is defined for each CJK compati‐

bility ideograph in the Unicode Standard. These sequences are defined to address a

normalization issue for these ideographs.

Implementations or users sometimes need a CJK compatibility ideograph to be

distinct from its corresponding CJK unified ideograph. For example, a distinct

glyphic form may be expected for a particular text. However, CJK compatibility ideo‐

graphs have canonical equivalence mappings to their corresponding CJK unified

ideograph, which means that such distinctions are lost whenever Unicode normal‐

ization is applied. Using the variation sequence preserves the distinction found in the

original, non-normalized text, even when normalization is later applied.

Because variation sequences are not affected by Unicode normalization, an imple‐

mentation which uses the corresponding standardized variation sequence can safely

maintain the intended distinction for that CJK compatibility ideograph, even in plain

text.

It is important to distinguish standardized variation sequences for CJK compatibility

ideographs from the variation sequences that are registered in the Ideographic Varia‐

tion Database (IVD). The former are normalization-stable representations of the CJK

compatibility ideographs; they are defined in StandardizedVariants.txt, and there is

precisely one variation sequence for each CJK compatibility ideograph. The latter are

also stable under normalization, but correspond to implementation-specific glyphs in

a registry entry.

 Representative glyphs for most of the stan‐

dardized variation sequences are included directly in the code charts. See “Standard‐

ized Variation Sequences” in Section 24.1, Character Names List for an explanation of

the conventions used to identify such sequences in the code charts. Emoji variation

sequences, which often require large, colorful glyphs for their representation, can be

found instead in the emoji charts. See Appendix B.3, Other Unicode Online Resources.

Representative glyphs for ideographic variation sequences are located in the perti‐

nent registrations associated with the Ideographic Variation Database.

CJK Compatibility Ideographs.

Representative Glyphs for Variants.

Special Areas and Format Characters 1056 23.4 Variation Selectors

 For the behavior of older implementations of Mongolian using variation

selectors, see the discussion of Mongolian free variation selectors in Section 13.5,

Mongolian.

Mongolian.

Special Areas and Format Characters 1057 23.4 Variation Selectors

Private-use characters are assigned Unicode code points whose interpretation is not

specified by this standard and whose use may be determined by private agreement

among cooperating users. These characters are designated for private use and do not

have defined, interpretable semantics except by private agreement.

Private-use characters are often used to implement end-user defined characters

(EUDC), which are common in East Asian computing environments.

No charts are provided for private-use characters, as any such characters are, by their

very nature, defined only outside the context of this standard.

Three distinct blocks of private-use characters are provided in the Unicode Standard:

the primary Private Use Area (PUA) in the BMP and two supplementary Private Use

Areas in the supplemental planes.

All code points in the blocks of private-use characters in the Unicode Standard are

permanently designated for private use. No assignment to a particular standard set of

characters will ever be endorsed or documented by the Unicode Consortium for any

of these code points.

Any prior use of a character as a private-use character has no direct bearing on any

eventual encoding decisions regarding whether and how to encode that character.

Standardization of characters must always follow the normal process for encoding of

new characters or scripts.

 No private agreement can change which character codes are reserved for

private use. However, many Unicode algorithms use the General_Category property

or properties which are derived by reference to the General_Category property.

Private agreements may override the General_Category or derivations based on it,

except where overriding is expressly disallowed in the conformance statement for a

specific algorithm. In other words, private agreements may define which private-use

characters should be treated like spaces, digits, letters, punctuation, and so on, by all

parties to those private agreements. In particular, when a private agreement overrides

the General_Category of a private-use character from the default value of gc = Co to

some other value such as gc = Lu or gc = Nd, such a change does not change its

inherent identity as a private-use character, but merely specifies its intended behavior

according to the private agreement.

For all other properties the Unicode Character Database also provides default values

for private-use characters. Except for normalization-related properties, these default

property values should be considered informative. They are intended to allow imple‐

mentations to treat private-use characters in a consistent way, even in the absence of

a particular private agreement, and to simplify the use of common types of private-

23.5 Private-Use Characters

Properties.

Special Areas and Format Characters 1058 23.5 Private-Use Characters

use characters. Those default values are based on typical use-cases for private-use

characters. Implementations may freely change or override the default values

according to their requirements for private use. For example, a private agreement

might specify that two private-use characters are to be treated as a case mapping pair,

or a private agreement could specify that a private-use character is to be rendered and

otherwise treated as a combining mark.

To exchange private-use characters in a semantically consistent way, users may also

exchange privately defined data which describes how each private-use character is to

be interpreted. The Unicode Standard provides no predefined format for such a data

exchange.

 The canonical and compatibility decompositions of any private-use

character are equal to the character itself (for example, U+E000 decomposes to

U+E000). The Canonical_Combining_Class of private-use characters is defined as 0

(Not_Reordered). These values are normatively defined by the Unicode Standard and

cannot be changed by private agreement. The treatment of all private-use characters

for normalization forms NFC, NFD, NFKD, and NFKC is also normatively defined by

the Unicode Standard on the basis of these decompositions. (See Unicode Standard

Annex #15, “Unicode Normalization Forms.”) No private agreement may change

these forms—for example, by changing the standard canonical or compatibility

decompositions for private-use characters. The implication is that all private-use

characters, no matter what private agreements they are subject to, always normalize

to themselves and are never reordered in any Unicode normalization form.

This does not preclude private agreements on other transformations. Thus one could

define a transformation “MyCompanyComposition” that was identical to NFC except

that it mapped U+E000 to “a”. The forms NFC, NFD, NFKD, and NFKC themselves,

however, cannot be changed by such agreements.

The primary Private Use Area consists of code points in the range U+E000 to

U+F8FF, for a total of 6,400 private-use characters.

 By convention, the primary Private Use Area is divided into a

corporate use subarea for platform writers, starting at U+F8FF and extending down‐

ward in values, and an end-user subarea, starting at U+E000 and extending upward.

By following this convention, the likelihood of collision between private-use charac‐

ters defined by platform writers with private-use characters defined by end users can

be reduced. However, it should be noted that this is only a convention, not a norma‐

tive specification. In principle, any user can define any interpretation of any private-

use character.

Normalization.

23.5.1 Private Use Area: U+E000–U+F8FF

Encoding Structure.

Special Areas and Format Characters 1059 23.5 Private-Use Characters

 Systems vendors and/or software developers may need to

reserve some private-use characters for internal use by their software. The corporate

use subarea is the preferred area for such reservations. Assignments of character

semantics in this subarea may be completely internal, hidden from end users, and

used only for vendor-specific application support, or they may be published as

vendor-specific character assignments available to applications and end users. An

example of the former case would be the assignment of a character code to a system

support operation such as <MOVE> or <COPY>; an example of the latter case

would be the assignment of a character code to a vendor-specific logo character such

as Apple’s apple character.

Note, however, that systems vendors may need to support full end-user definability

for all private-use characters, for such purposes as gaiji support or for transient cross-

mapping tables. The use of noncharacters (see Section 23.7, Noncharacters, and Defi‐

nition D14 in Section 3.4, Characters and Encoding) is the preferred way to make use

of non-interchangeable internal system sentinels of various sorts.

 The end-user subarea is intended for private-use character defi‐

nitions by end users or for scratch allocations of character space by end-user applica‐

tions.

 Vendors may choose to reserve ranges of private-use char‐

acters in the corporate use subarea and make some defined portion of the end-user

subarea available for completely free end-user definition. The convention of sepa‐

rating the two subareas is merely a suggestion for the convenience of system vendors

and software developers. No firm dividing line between the two subareas is defined

in this standard, as different users may have different requirements. No provision is

made in the Unicode Standard for avoiding a “stack-heap collision” between the two

subareas; in other words, there is no guarantee that end users will not define a

private-use character at a code point that overlaps and conflicts with a particular

corporate private-use definition at the same code point. Avoiding such overlaps in

definition is up to implementations and users.

 The entire Plane 15, with the exception of the noncharacters

U+FFFFE and U+FFFFF, is defined to be the Supplementary Private Use Area-A.

The entire Plane 16, with the exception of the noncharacters U+10FFFE and

U+10FFFF, is defined to be the Supplementary Private Use Area-B. Together these

areas make an additional 131,068 code points available for private use.

The supplementary PUAs provide additional undifferentiated space for private-use

characters for implementations for which the 6,400 private-use characters in the

primary PUA prove to be insufficient.

Corporate Use Subarea.

End-User Subarea.

Allocation of Subareas.

23.5.2 Supplementary Private Use Areas

Encoding Structure.

Special Areas and Format Characters 1060 23.5 Private-Use Characters

When using UTF-16 to represent supplementary characters, pairs of 16-bit code units

are used for each character. These units are called surrogates. To distinguish them

from ordinary characters, they are allocated in a separate area. The Surrogates Area

consists of 1,024 low-half surrogate code points and 1,024 high-half surrogate code

points. For the formal definition of a surrogate pair and the role of surrogate pairs in

the Unicode Conformance Clause, see Section 3.8, Surrogates, and Section 5.4,

Handling Surrogate Pairs in UTF-16.

The use of surrogate pairs in the Unicode Standard is formally equivalent to the

Universal Transformation Format-16 (UTF-16) defined in ISO/IEC 10646. For more

information, see Appendix C, Relationship to ISO/IEC 10646. For a complete state‐

ment of UTF-16, see Section 3.9, Unicode Encoding Forms.

 The high-surrogate code points are assigned to the range U+D800..

U+DBFF. The high-surrogate code point is always the first element of a surrogate

pair.

 The low-surrogate code points are assigned to the range U+DC00..

U+DFFF. The low-surrogate code point is always the second element of a surrogate

pair.

 The high-surrogate code points from

U+DB80..U+DBFF are private-use high-surrogate code points (a total of 128 code

points). Characters represented by means of a surrogate pair, where the high-surro‐

gate code point is a private-use high-surrogate, are private-use characters from the

supplementary private use areas. For more information on private-use characters, see

Section 23.5, Private-Use Characters.

The code tables do not have charts or name list entries for the range

U+D800..U+DFFF because individual, unpaired surrogates merely have code points.

23.6 Surrogates Area

23.6.1 Surrogates Area: U+D800–U+DFFF

High-Surrogate.

Low-Surrogate.

Private-Use High-Surrogates.

Special Areas and Format Characters 1061 23.6 Surrogates Area

Noncharacters are code points that are permanently reserved in the Unicode Stan‐

dard for internal use. They are not recommended for use in open interchange of

Unicode text data. See Section 3.2, Conformance Requirements and Section 3.4, Char‐

acters and Encoding, for the formal definition of noncharacters and conformance

requirements related to their use.

The Unicode Standard sets aside 66 noncharacter code points. The last two code

points of each plane are noncharacters: U+FFFE and U+FFFF on the BMP,

U+1FFFE and U+1FFFF on Plane 1, and so on, up to U+10FFFE and U+10FFFF on

Plane 16, for a total of 34 code points. In addition, there is a contiguous range of

another 32 noncharacter code points in the BMP: U+FDD0..U+FDEF. For historical

reasons, the range U+FDD0..U+FDEF is contained within the Arabic Presentation

Forms-A block, but those noncharacters are not “Arabic noncharacters” or “right-to-

left noncharacters,” and are not distinguished in any other way from the other

noncharacters, except in their code point values.

Applications are free to use any of these noncharacter code points internally. They

have no standard interpretation when exchanged outside the context of internal use.

However, they are not illegal in interchange, nor does their presence cause Unicode

text to be ill-formed. The intent of noncharacters is that they are permanently prohib‐

ited from being assigned interchangeable meanings by the Unicode Standard. They

are not prohibited from occurring in valid Unicode strings which happen to be inter‐

changed. This distinction, which might be seen as too finely drawn, ensures that

noncharacters are correctly preserved when “interchanged” internally, as when used

in strings in APIs, in other interprocess protocols, or when stored.

If a noncharacter is received in open interchange, an application is not required to

interpret it in any way. It is good practice, however, to recognize it as a noncharacter

and to take appropriate action, such as replacing it with U+FFFD REPLACEMENT

CHARACTER, to indicate the problem in the text. It is not recommended to simply

delete noncharacter code points from such text, because of the potential security

issues caused by deleting uninterpreted characters. (See conformance clause C7 in

Section 3.2, Conformance Requirements, and Unicode Technical Report #36, “Unicode

Security Considerations.”)

In effect, noncharacters can be thought of as application-internal private-use code

points. Unlike the private-use characters discussed in Section 23.5, Private-Use Char‐

acters, which are assigned characters and which are intended for use in open inter‐

change, subject to interpretation by private agreement, noncharacters are perma‐

23.7 Noncharacters

23.7.1 Noncharacters: U+FFFE, U+FFFF, and Others

Special Areas and Format Characters 1062 23.7 Noncharacters

nently reserved (unassigned) and have no interpretation whatsoever outside of their

possible application-internal private uses.

 These two noncharacter code points have the attribute of

being associated with the largest code unit values for particular Unicode encoding

forms. In UTF-16, U+FFFF is associated with the largest 16-bit code unit value,

FFFF
16

. U+10FFFF is associated with the largest legal UTF-32 32-bit code unit value,

10FFFF
16

. This attribute renders these two noncharacter code points useful for

internal purposes as sentinels. For example, they might be used to indicate the end of

a list, to represent a value in an index guaranteed to be higher than any valid char‐

acter value, and so on.

 This noncharacter has the intended peculiarity that, when represented in

UTF-16 and then serialized, it has the opposite byte sequence of U+FEFF, the byte

order mark. This means that applications should reserve U+FFFE as an internal

signal that a UTF-16 text stream is in a reversed byte format. Detection of U+FFFE at

the start of an input stream should be taken as a strong indication that the input

stream should be byte-swapped before interpretation. For more on the use of the byte

order mark and its interaction with the noncharacter U+FFFE, see Section 23.8,

Specials.

U+FFFF and U+10FFFF.

U+FFFE.

Special Areas and Format Characters 1063 23.7 Noncharacters

The Specials block contains code points that are interpreted as neither control nor

graphic characters but that are provided to facilitate current software practices.

For information about the noncharacter code points U+FFFE and U+FFFF, see

Section 23.7, Noncharacters.

For historical reasons, the character U+FEFF used for the byte order mark is named

ZERO WIDTH NO-BREAK SPACE. Except for compatibility with versions of Unicode

prior to Version 3.2, U+FEFF is not used with the semantics of zero width no-break

space (see Section 23.2, Layout Controls). Instead, its most common and most impor‐

tant usage is in the following two circumstances:

Unmarked Byte Order. Some machine architectures use the so-called big-

endian byte order, while others use the little-endian byte order. When

Unicode text is serialized into bytes, the bytes can go in either order,

depending on the architecture. Sometimes this byte order is not externally

marked, which causes problems in interchange between different systems.

Unmarked Character Set. In some circumstances, the character set informa‐

tion for a stream of coded characters (such as a file) is not available. The only

information available is that the stream contains text, but the precise char‐

acter set is not known.

In these two cases, the character U+FEFF is used as a signature to indicate the byte

order and the character set by using the byte serializations described in Section 3.10,

Unicode Encoding Schemes. Because the byte-swapped version U+FFFE is a nonchar‐

acter, when an interpreting process finds U+FFFE as the first character, it signals

either that the process has encountered text that is of the incorrect byte order or that

the file is not valid Unicode text.

In the UTF-16 encoding scheme, U+FEFF at the very beginning of a file or stream

explicitly signals the byte order.

The byte sequences <FE
16

 FF
16

> or <FF
16

 FE
16

> may also serve as a signature to

identify a file as containing UTF-16 text. Either sequence is exceedingly rare at the

outset of text files using other character encodings, whether single- or multiple-byte,

and therefore not likely to be confused with real text data. For example, in systems

that employ ISO Latin-1 (ISO/IEC 8859-1) or the Microsoft Windows ANSI Code Page

1252, the byte sequence <FE
16

 FF
16

> constitutes the string <thorn, y diaeresis> “þÿ”;

in systems that employ the Apple Macintosh Roman character set or the Adobe Stan‐

23.8 Specials

23.8.1 Byte Order Mark (BOM): U+FEFF

1.

2.

Special Areas and Format Characters 1064 23.8 Specials

dard Encoding, this sequence represents the sequence <ogonek, hacek> “˛ˇ”; in

systems that employ other common IBM PC code pages (for example, CP 437, 850),

this sequence represents <black square, no-break space> “■ ”.

In UTF-8, the BOM corresponds to the byte sequence <EF
16

 BB
16

 BF
16

>. Although

there are never any questions of byte order with UTF-8 text, this sequence can serve

as signature for UTF-8 encoded text where the character set is unmarked. As with a

BOM in UTF-16, this sequence of bytes will be extremely rare at the beginning of text

files in other character encodings. For example, in systems that employ Microsoft

Windows ANSI Code Page 1252, <EF
16

 BB
16

 BF
16

> corresponds to the sequence <i

diaeresis, guillemet, inverted question mark> “ï » ¿”.

For compatibility with versions of the Unicode Standard prior to Version 3.2, the code

point U+FEFF has the word-joining semantics of zero width no-break space when it

is not used as a BOM. In new text, these semantics should be encoded by U+2060

WORD JOINER. See “Line and Word Breaking” in Section 23.2, Layout Controls, for

more information.

Where the byte order is explicitly specified, such as in UTF-16BE or UTF-16LE, then

all U+FEFF characters—even at the very beginning of the text—are to be interpreted

as zero width no-break spaces. Similarly, where Unicode text has known byte order,

initial U+FEFF characters are not required, but for backward compatibility are to be

interpreted as zero width no-break spaces. For example, for strings in an API, the

memory architecture of the processor provides the explicit byte order. For databases

and similar structures, it is much more efficient and robust to use a uniform byte

order for the same field (if not the entire database), thereby avoiding use of the byte

order mark.

Systems that use the byte order mark must recognize when an initial U+FEFF signals

the byte order. In those cases, it is not part of the textual content and should be

removed before processing, because otherwise it may be mistaken for a legitimate

zero width no-break space. To represent an initial U+FEFF ZERO WIDTH NO-BREAK

SPACE in a UTF-16 file, use U+FEFF twice in a row. The first one is a byte order mark;

the second one is the initial zero width no-break space. See Table 23-6 for a summary

of encoding scheme signatures.

Encoding Scheme Signature

UTF-8 EF BB BF

UTF-16 Big-endian FE FF

UTF-16 Little-endian FF FE

UTF-32 Big-endian 00 00 FE FF

UTF-32 Little-endian FF FE 00 00

Table 23-6. Unicode Encoding Scheme Signatures

Special Areas and Format Characters 1065 23.8 Specials

If U+FEFF had only the semantics of a signature code point, it could be freely

deleted from text without affecting the interpretation of the rest of the text. Care‐

lessly appending files together, for example, can result in a signature code point in

the middle of text. Unfortunately, U+FEFF also has significance as a character. As a

zero width no-break space, it indicates that line breaks are not allowed between the

adjoining characters. Thus U+FEFF affects the interpretation of text and cannot be

freely deleted. The overloading of semantics for this code point has caused problems

for programs and protocols. The new character U+2060 WORD JOINER has the same

semantics in all cases as U+FEFF, except that it cannot be used as a signature. Imple‐

menters are strongly encouraged to use word joiner in those circumstances whenever

word joining semantics are intended.

 An initial U+FEFF also takes a charac‐

teristic form in other charsets designed for Unicode text. (The term “charset” refers to

a wide range of text encodings, including encoding schemes as well as compression

schemes and text-specific transformation formats.) The characteristic sequences of

bytes associated with an initial U+FEFF can serve as signatures in those cases, as

shown in Table 23-7.

Charset Signature

SCSU 0E FE FF

BOCU-1 FB EE 28

UTF-7

2B 2F 76 38 or
2B 2F 76 39 or
2B 2F 76 2B or
2B 2F 76 2F

UTF-EBCDIC DD 73 66 73

Most signatures can be deleted either before or after conversion of an input stream

into a Unicode encoding form. However, in the case of BOCU-1 and UTF-7, the input

byte sequence must be converted before the initial U+FEFF can be deleted, because

stripping the signature byte sequence without conversion destroys context necessary

for the correct interpretation of subsequent bytes in the input sequence.

 The UTF-8 encoding scheme permits, but

does not require, a BOM to be present. This raises the question of when a BOM

should or should not be generated or expected when producing or consuming UTF-8

encoded text.

The utility of a BOM in UTF-8 is limited to scenarios in which a byte sequence

contains text that may or may not be encoded as UTF-8. In such scenarios, a BOM

U+FEFF as Signature in Other Charsets.

Table 23-7. U+FEFF Signature in Other Charsets

Guidelines for Use of a BOM in UTF-8.

Special Areas and Format Characters 1066 23.8 Specials

may be useful to differentiate text encoded in one of a few possible character encod‐

ings. However, the presence of a BOM may also complicate text processing.

Some text processing tools fail to handle BOMs correctly. This is especially true

for programs that were historically encoding agnostic and for ad hoc programs

written for one-time use purposes.

A text processing tool must maintain additional state in order to recognize if an

observed U+FEFF character is a BOM or whether it should be treated as a zero

width no-break space. Such state may or may not be intrinsic to the structure of

the program.

A text generating tool may be required to generate a BOM if the first character to

be encoded is U+FEFF and that character is not intended to be used as a BOM.

This is only required for compatibility with Unicode versions prior to 3.2;

U+2060 WORD JOINER should be used in place of U+FEFF for such purposes

with more recent Unicode versions.

Concatenation of text containing a BOM requires care. When concatenating to

an empty text, preservation of a BOM may be warranted, but otherwise, failure

to elide the BOM will result in the insertion of a U+FEFF character that

becomes part of the concatenated textual content.

In situations where text is known to be encoded as UTF-8, a BOM consumes

storage space unnecessarily. While this is unlikely to be a concern for a single

document, it may be a significant concern in situations involving thousands or

millions of small text sources.

The following guidelines advise alternative approaches tailored for a few distinct

audiences. Except where otherwise noted, these approaches preclude the possibility

of a text starting with a U+FEFF character that is not intended as a BOM under the

expectation that such text is exceedingly rare and most likely due to a failure to elide

a BOM. Text authored for Unicode 3.2 or later should use U+2060 WORD JOINER

instead.

Software developers:

If consuming UTF-8, recognize and discard a BOM.

If producing UTF-8, include a BOM only if explicitly directed to do so, or if a

BOM is known to be required by a protocol.

Text authors:

Do not use U+FEFF to function as a zero width no-break space character; use

U+2060 WORD JOINER instead.

Include a BOM if one is known to be required by a targeted protocol.

•

•

•

•

•

•

•

•

•

Special Areas and Format Characters 1067 23.8 Specials

Otherwise, include a BOM when authoring a UTF-8 text file that contains non-

ASCII characters, is not targeting a specific protocol, but which may be opened

by applications that will not assume UTF-8 by default. (This is useful on systems

like Microsoft Windows where some applications assume text files to be encoded

with the Active Code Page.)

Otherwise, do not include a BOM.

The nine unassigned Unicode code points in the range U+FFF0..U+FFF8 are

reserved for special character definitions.

An interlinear annotation consists of annotating text that is related to a sequence of

annotated characters. For all regular editing and text-processing algorithms, the

annotated characters are treated as part of the text stream. The annotating text is also

part of the content, but for all or some text processing, it does not form part of the

main text stream. However, within the annotating text, characters are accessible to

the same kind of layout, text-processing, and editing algorithms as the base text. The

annotation characters delimit the annotating and the annotated text, and identify

them as part of an annotation. See Figure 23-4.

The annotation characters are used in internal processing when out-of-band informa‐

tion is associated with a character stream, very similarly to the usage of U+FFFC

OBJECT REPLACEMENT CHARACTER. However, unlike the opaque objects hidden by

the latter character, the annotation itself is textual.

 A conformant implementation that supports annotation characters

interprets the base text as if it were part of an unannotated text stream. Within the

annotating text, it interprets the annotating characters with their regular Unicode

semantics.

•

•

23.8.2 Specials: U+FFF0–U+FFFF

23.8.3 Annotation Characters: U+FFF9–U+FFFB

Figure 23-4. Annotation Characters

Conformance.

Special Areas and Format Characters 1068 23.8 Specials

U+FFF9 INTERLINEAR ANNOTATION ANCHOR is an anchor character, preceding the

interlinear annotation. The exact nature and formatting of the annotation depend on

additional information that is not part of the plain text stream. This situation is anal‐

ogous to that for U+FFFC OBJECT REPLACEMENT CHARACTER.

U+FFFA INTERLINEAR ANNOTATION SEPARATOR separates the base characters in

the text stream from the annotation characters that follow. The exact interpretation of

this character depends on the nature of the annotation. More than one separator may

be present. Additional separators delimit parts of a multipart annotating text.

U+FFFB INTERLINEAR ANNOTATION TERMINATOR terminates the annotation object

(and returns to the regular text stream).

 Usage of the annotation characters in plain text interchange is

strongly discouraged without prior agreement between the sender and the receiver,

because the content may be misinterpreted otherwise. Simply filtering out the anno‐

tation characters on input will produce an unreadable result or, even worse, an oppo‐

site meaning. On input, a plain text receiver should either preserve all characters or

remove the interlinear annotation characters as well as the annotating text included

between the INTERLINEAR ANNOTATION SEPARATOR and the INTERLINEAR ANNO‐

TATION TERMINATOR.

When an output for plain text usage is desired but the receiver is unknown to the

sender, these interlinear annotation characters should be removed as well as the

annotating text included between the INTERLINEAR ANNOTATION SEPARATOR and

the INTERLINEAR ANNOTATION TERMINATOR.

This restriction does not preclude the use of annotation characters in plain text inter‐

change, but it requires a prior agreement between the sender and the receiver for

correct interpretation of the annotations.

 If an implementation encounters a paragraph break between

an anchor and its corresponding terminator, it shall terminate any open annotations

at this point. Anchorcharacters must precede their corresponding terminator charac‐

ters. Unpaired anchors or terminators shall be ignored. A separator occurring outside

a pair of delimiters, shall be ignored. Annotations may be nested.

 All formatting information for an annotation is provided by higher-level

protocols. The details of the layout of the annotation are implementation-defined.

Correct formatting may require additional information that is not present in the char‐

acter stream, but rather is maintained out-of-band. Therefore, annotation markers

serve as placeholders for an implementation that has access to that information from

another source. The formatting of annotations and other special line layout features

of Japanese is discussed in JIS X 4051.

Use in Plain Text.

Lexical Restrictions.

Formatting.

Special Areas and Format Characters 1069 23.8 Specials

 Annotation characters are not normally input or edited directly by end users.

Their insertion and management in text are typically handled by an application,

which will present a user interface for selecting and annotating text.

 With the exception of the special case where the annotation is intended to

be used as a sort key, annotations are typically ignored for collation or optionally

preprocessed to act as tie breakers only. Importantly, annotation base characters are

not ignored, but rather are treated like regular text.

 Bidirectional processing of text containing interlinear annota‐

tions requires special care. This follows from the fact that interlinear annotations are

fundamentally nonlinear—the annotations are not part of the main text flow,

whereas bidirectional text processing assumes that it is applied to a single, linear text

flow. For best results, the Bidirectional Algorithm should be applied to the main text,

in which any interlinear annotations are replaced by their annotated text, in each

case bracketed by bidirectional format control characters to ensure that the anno‐

tated text remains visually contiguous, and then should be separately applied to each

extracted segment of annotating text. (See Unicode Standard Annex #9, “Unicode

Bidirectional Algorithm,” for more information.)

 The U+FFFC OBJECT REPLACEMENT CHARACTER is used as an insertion

point for objects located within a stream of text. All other information about the

object is kept outside the character data stream. Internally it is a dummy character

that acts as an anchor point for the object’s formatting information. In addition to

assuring correct placement of an object in a data stream, the object replacement char‐

acter allows the use of general stream-based algorithms for any textual aspects of

embedded objects.

 The U+FFFD REPLACEMENT CHARACTER is the general substitute char‐

acter in the Unicode Standard. It can be substituted for any “unknown” character in

another encoding that cannot be mapped in terms of known Unicode characters. It

can also be used as one means of indicating a conversion error, when encountering

an ill-formed sequence in a conversion between Unicode encoding forms. See

Section 3.9, Unicode Encoding Forms for detailed recommendations on the use of

U+FFFD as replacement for ill-formed sequences. See also Section 5.3, Unknown and

Missing Characters for related topics.

Input.

Collation.

Bidirectional Text.

23.8.4 Replacement Characters: U+FFFC–U+FFFD

U+FFFC.

U+FFFD.

Special Areas and Format Characters 1070 23.8 Specials

This block encodes a set of 97 special-use tag characters to enable the construction of

tags using characters that can be strictly separated from ordinary text content charac‐

ters in Unicode, but that correspond to ASCII-based strings. They can be identified

and/or ignored by implementations with trivial algorithms because there is no over‐

loading of usage for these tag characters—they can express only tag values and never

textual content itself. One of these 97 characters is the deprecated language tag iden‐

tification character, U+E0001 LANGUAGE TAG.

The current conformant use of the undeprecated 96 tag characters is specified in

Unicode Technical Standard #51, “Unicode Emoji.” See ED-14a. emoji tag sequence

(ETS) and Annex C, Valid Emoji Tag Sequences in that specification. UTS #51 does not

use nested tag sequences, and the tag sequences it does use are not stateful.

The tag characters were originally intended for language tagging of plain text, as an

alternative to using malformed UTF-8 for language tagging. When it became clear

that language tagging using these characters was complicated and unnecessary, the

tag characters were deprecated as of Version 5.1. In Version 8.0, all but U+E0001

LANGUAGE TAG and U+E007F CANCEL TAG were un-deprecated, in anticipation of

other use for the tag characters. In Version 9.0, U+E007F CANCEL TAG was also un-

deprecated, and the tag characters were repurposed for use in emoji tag sequences.

For the full specification of the original use of tag characters, see Section 16.9, Tag

Characters in Version 5.0 of The Unicode Standard:

https://www.unicode.org/versions/Unicode5.0.0/ch16.pdf#G17521

23.9 Tag Characters

23.9.1 Tag Characters: U+E0000–U+E007F

23.9.2 Deprecated Use for Language Tagging

Special Areas and Format Characters 1071 23.9 Tag Characters

https://www.unicode.org/versions/Unicode5.0.0/ch16.pdf#G17521

Chapter 24

About the Code Charts

Disclaimer

Character images shown in the code charts are not prescriptive. In actual fonts,

considerable variations are to be expected.

The Unicode code charts present the characters of the Unicode Standard. This

chapter explains the conventions used in the code charts and provides other useful

information about the accompanying names lists.

Characters are organized into related groups called blocks (see D10b in Section 3.4,

Characters and Encoding). Many scripts are fully contained within a single block, but

other scripts, including some of the most widely used scripts, have characters divided

across several blocks. Separate blocks contain common punctuation characters and

different types of symbols.

A character names list follows the code chart for each block. The character names list

itemizes every character in that block and provides supplementary information in

many cases. A full list of the character names and associated annotations, formatted

as a text file, NamesList.txt, is available in the Unicode Character Database. That text

file contains syntax conventions which are used by the tooling that formats the PDF

versions of the code charts and character names lists. For the full specification of

those conventions, see NamesList.html in the Unicode Character Database.

An index to distinctive character names can also be found on the Unicode website.

For information about access to the code charts, the character name index, and the

roadmap for future allocations, see Appendix B.3, Other Unicode Online Resources.

1072

The following illustration exemplifies common components found in entries in the

character names list. These and other components are described in more detail in the

remainder of this section.

(code) (image) (entry)

00AE REGISTERED SIGN
= registered trade mark sign (1.0) (Version 1.0 name)

00AF MACRON (Unicode name)

= overline, APL overbar (alternative names)

• this is a spacing character (informative note)

→ 02C9 modifier letter macron
→ 0304 combining macron
→ 0305 combining overline

(cross reference)

≈ 0020 0304 (compatibility decomposition)

00E5 LATIN SMALL LETTER A WITH RING ABOVE
• Danish, Norwegian, Swedish, Walloon (sample of language use)

≡ 0061 030A (canonical decomposition)

228A SUBSET OF WITH NOT EQUAL TO
~ 228A FE00 with stroke through bottom members (standardized variation sequence)

Each character in these code charts is shown with a representative glyph. A represen‐

tative glyph is not a prescriptive form of the character, but rather one that enables

recognition of the intended character to a knowledgeable user and facilitates lookup

of the character in the code charts. In many cases, there are more or less well-estab‐

lished alternative glyphic representations for the same character.

Designers of high-quality fonts will do their own research into the preferred glyphic

appearance of Unicode characters. In addition, many scripts require context-depen‐

dent glyph shaping, glyph positioning, or ligatures, none of which is shown in the

code charts. The Unicode Standard contains many characters that are used in writing

minority languages or that are historical characters, often used primarily in

manuscripts or inscriptions. Where there is no strong tradition of printed materials,

the typography of a character may not be settled. Because of these factors, the glyph

image chosen as the representative glyph in these code charts should not be consid‐

ered a definitive guide to best practice for typographical design.

 The representative glyphs for the Latin, Greek, and Cyrillic scripts in the code

charts are based on a serifed, Times-like font. For non-European scripts, typical type‐

faces were selected that allow as much distinction as possible among the different

characters.

24.1 Character Names List

24.1.1 Images in the Code Charts and Character Lists

Fonts.

About the Code Charts 1073 24.1 Character Names List

The fonts used for other scripts are similar to Times in that each represents a

common, widely used design, with variable stroke width and serifs or similar devices,

where applicable, to show each character as distinctly as possible. Sans-serif fonts

with uniform stroke width tend to have less visibly distinct characters. In the code

charts, sans-serif fonts are used for archaic scripts that predate the invention of serifs,

for example.

 Some characters have alternative forms. For example, even the

ASCII character U+0061 LATIN SMALL LETTER A has two common alternative forms:

the “a” used in Times and the “ ” that occurs in many other font styles. In a Times-

like font, the character U+03A5 GREEK CAPITAL LETTER UPSILON looks like “Y”; the

form is common in other font styles.

A different case is U+010F LATIN SMALL LETTER D WITH CARON, which is

commonly typeset as instead of . In such cases, the code charts show the more

common variant in preference to a more didactic archetypical shape.

Many characters have been unified and have different appearances in different

language contexts. The shape shown for U+2116 NUMERO SIGN is a fullwidth

shape as it would be used in East Asian fonts. In Cyrillic usage, is the universally

recognized glyph. See Figure 22-2.

In certain cases, characters need to be represented by more or less condensed,

shifted, or distorted glyphs to make them fit the format of the code charts. For

example, U+0D10 MALAYALAM LETTER AI is shown in a reduced size to fit the

character cell.

When characters are used in context, the surrounding text gives important clues as to

identity, size, and positioning. In the code charts, these clues are absent. For example,

U+2075 SUPERSCRIPT FIVE is shown much smaller than it would be in a Times-like

text font.

Whenever a more obvious choice for representative glyph may be insufficient to aid

in the proper identification of the encoded character, a more distinct variant has been

selected as representative glyph instead.

 Representative glyphs for character in the code charts are oriented as

they would normally appear in text with the exception of scripts which are predomi‐

nantly laid out in vertical lines, as for Mongolian and Phags-pa. Commercial produc‐

tion fonts show Mongolian glyphs with their images turned 90 degrees counterclock‐

wise, which is the appropriate orientation for Mongolian text that is laid out horizon‐

tally, such as for embedding in horizontally formatted, left-to-right Chinese text. For

normal vertical display of Mongolian text, layout engines typically lay out horizon‐

tally, and then rotate the formatted text 90 degrees clockwise. Starting with Unicode

7.0, the code charts display Mongolian glyphs in their horizontal orientation,

Alternative Forms.

Orientation.

About the Code Charts 1074 24.1 Character Names List

following the conventions of commercial Mongolian fonts. Glyphs in the Phags-pa

code chart are treated similarly.

The code charts and character lists use a number of notational conventions for the

representation of special characters and code points. Some of these conventions indi‐

cate those code points which are not assigned to encoded characters, or are perma‐

nently reserved. Other conventions convey information about the type of character

encoded, or provide a possible fallback rendering for non-printing characters.

 Combining characters are shown with a dotted circle. This

dotted circle is not part of the representative glyph and it would not ordinarily be

included as part of any actual glyph for that character in a font. Instead, the relative

position of the dotted circle indicates an approximate location of the base character

in relation to the combining mark.

093F DEVANAGARI VOWEL SIGN I
• stands to the left of the consonant

0940 DEVANAGARI VOWEL SIGN II
0941 DEVANAGARI VOWEL SIGN U

The detailed rules for placement of combining characters with respect to various base

characters are implemented by the selected font in conjunction with the rendering

system.

During rendering, additional adjustments are necessary. Accents such as U+0302

COMBINING CIRCUMFLEX ACCENT are adjusted vertically and horizontally based on

the height and width of the base character, as in “ ” versus “ ”.

If the display of a combining mark with a dotted circle is desired, U+25CC DOTTED

CIRCLE is often chosen as the base character for the mark.

 There are a number of characters in the Unicode Standard

which in normal text rendering have no visible display, or whose only effect is to

modify the display of other characters in proximity to them. Examples include space

characters, control characters, and format characters.

To make such characters easily recognizable and distinguishable in the code charts

and in any discussion about the characters, they are represented by a square dashed

box. This box surrounds a short mnemonic abbreviation of the character’s name. For

control codes which do not have a listed abbreviation to serve as a mnemonic, the

representative glyph shows XXX inside the dashed box as a placeholder.

0020 SPACE

24.1.2 Special Characters and Code Points

Combining Characters.

Dashed Box Convention.

About the Code Charts 1075 24.1 Character Names List

• sometimes considered a control code
• other space characters: 2000 – 200A

Where such characters have a typical visual appearance in some contexts, an addi‐

tional representative image may be used, either alone or with a mnemonic abbrevia‐

tion.

00AD SOFT HYPHEN
= discretionary hyphen
• commonly abbreviated as SHY

In a few cases of very wide punctuation characters that do not naturally fit into a

code chart cell, the representative glyph may be shown with an artificially narrow

shape, displayed inside the dashed box, with or without additional annotation, to

indicate this adjustment of shape.

2E3A TWO-EM DASH
= omission dash
• may be used in Chinese for abrupt change of thought, inserting new
content, or continuation of tone or sound
→ 2014 em dash

This convention is also used for some graphic characters which are only distin‐

guished by special behavior from another character of the same appearance, or

which are subject to unusual rendering requirements.

2011 NON-BREAKING HYPHEN
→ 002D hyphen-minus
→ 00AD soft hyphen
≈ <noBreak> 2010 non-breaking hyphen

0D4E MALAYALAM LETTER DOT REPH
• not used in reformed modern Malayalam orthography

The dashed box convention also applies to the glyphs of combining characters which

have no visible display of their own, such as variation selectors (see Section 23.4, Vari‐

ation Selectors).

FE00 VARIATION SELECTOR-1
• these are abbreviated VS1, and so on

Sometimes, the combining status of the character is indicated by including a dotted

circle inside the dashed box, for example for viramas that are intended to be invisible

themselves, but which create the conjunct forms of adjacent consonants.

17D2 KHMER SIGN COENG

About the Code Charts 1076 24.1 Character Names List

• functions to indicate that the following Khmer letter is to be rendered
subscripted
• shape shown is arbitrary and is not visibly rendered

Even though the presence of the dashed box in the code charts indicates that a char‐

acter is likely to be a space character, a control character, a format character, or a

combining character, it cannot be used to infer the actual General_Category value of

that character.

 Character codes that are marked “<reserved>” are unas‐

signed and reserved for future encoding. Reserved codes are indicated by a glyph.

To ensure readability, many instances of reserved characters have been suppressed

from the names list. Reserved codes may also have cross references to assigned char‐

acters located elsewhere.

2073 <reserved>
→ 00B3 superscript three

 Character codes that are marked “<not a character>” refer to

noncharacters. They are designated code points that will never be assigned to a char‐

acter. These codes are indicated by a glyph. Noncharacters are shown in the code

charts only where they occur together with other characters in the same block. For a

complete list of noncharacters, see Section 23.7, Noncharacters.

FFFF <not a character>

 Deprecated characters are characters whose use is strongly

discouraged, but which are retained in the standard indefinitely so that existing data

remain well defined and can be correctly interpreted. (See D13 in Section 3.4, Charac‐

ters and Encoding.) Deprecated characters are explicitly indicated in the Unicode

code charts using annotations or subheads.

The character names in the code charts precisely match the normative character

names in the Unicode Character Database. Character names are unique and stable.

By convention, they are in uppercase. For more information on character names, see

Section 4.8, Name.

An informative alias is an informal, alternate name for a character. Aliases are

provided to assist in the correct identification of characters, in some cases providing

more commonly known names than the normative character name used in the stan‐

dard. For example:

Reserved Characters.

Noncharacters.

Deprecated Characters.

24.1.3 Character Names

24.1.4 Informative Aliases

About the Code Charts 1077 24.1 Character Names List

002E FULL STOP
= period, dot, decimal point

Informative aliases are indicated with a “=” in the names list, and by convention are

shown in lowercase, except when they include a proper name. (Note that a “=” in the

names list may also introduce a normative alias, which is distinguished from an infor‐

mative alias by being shown in uppercase. See the following discussion of normative

aliases.)

Multiple aliases for a character may be given in a single informative alias line, in

which case each alias is separated by a comma. In other cases, multiple informative

alias lines may appear in a single entry. Informative aliases can be used to indicate

distinct functions that a character may have; this is particularly common for symbols.

For example:

2206 INCREMENT
= Laplace operator
= forward difference
= symmetric difference of sets

In some complex cases involving many informative aliases, rather than introduce a

separate line for each set of related aliases, an informative alias line may also sepa‐

rate groups of aliases with semicolons:

1F70A ALCHEMICAL SYMBOL FOR VINEGAR
= crucible; acid; distill; atrament; vitriol; red sulfur; borax; wine; alkali salt;
mercurius vivus, quick silver

Informative aliases for different characters are not guaranteed to be unique. They are

maintained editorially, and may be changed, added to, or even be deleted in future

versions of the standard, as information accumulates about particular characters and

their uses.

Informative aliases may serve as useful alternate choices for identifying characters in

user interfaces. The formal character names in the standard may differ in unexpected

ways from the more commonly used names for the characters. For example:

00B6 PILCROW SIGN
= paragraph sign

 Some character names from The Unicode Standard, Version 1.0

are indicated in the names list. These are provided only for their historical interest.

Where they occur, they also are introduced with a “=” and are shown in lowercase.

In addition they are explicitly annotated with a following “1.0” in parentheses. For

example:

Unicode 1.0 Names.

About the Code Charts 1078 24.1 Character Names List

01C3 LATIN LETTER RETROFLEX CLICK
= latin letter exclamation mark (1.0)

If a Unicode 1.0 name and one or more other informative aliases occurs in a single

entry, the Unicode 1.0 name will be given first. For example:

00A6 BROKEN BAR
= broken vertical bar (1.0)
= parted rule (in typography)

Note that informative aliases other than Unicode 1.0 names may also contain clari‐

fying annotations in parentheses.

 In the Hangul Jamo block, U+1100..U+11FF, the normative

jamo short names from Jamo.txt in the UCD are displayed for convenience of refer‐

ence. These are also indicated with a “=” in the names list and are shown in upper‐

case to imply their normative status. For example:

1101 HANGUL CHOSEONG SSANGKIYEOK
= GG

The Jamo short names do not actually have the status of alternate names; instead

they are simply string values associated with the jamo characters, for use by the

Unicode Hangul Syllable Name Generation algorithm. See Section 3.12, Conjoining

Jamo Behavior.

A normative character name alias is a formal, unique, and stable alternate name for a

character. In limited circumstances, characters are given normative character name

aliases where there is a defect in the character name. These normative aliases do not

replace the character name, but rather allow users to refer formally to the character

without requiring the use of a defective name. For more information, see Section 4.8,

Name.

Normative aliases which provide information about corrections to defective character

names or which provide alternate names in wide use for a Unicode format character

are printed in the character names list, preceded by a special symbol .

FE18 PRESENTATION FORM FOR VERTICAL RIGHT WHITE LENTICULAR
BRAKCET
※ PRESENTATION FORM FOR VERTICAL RIGHT WHITE LENTICULAR
BRACKET
• misspelling of “BRACKET” in character name is a known defect
≈ <vertical> 3017 presentation form for vertical right white lenticular
brakcet

Jamo Short Names.

24.1.5 Normative Aliases

About the Code Charts 1079 24.1 Character Names List

Normative aliases serving other purposes, if listed, are shown by convention in all

caps, following an “=”. In contrast, informative aliases are shown in lowercase.

Normative aliases of type “control” typically represent names of control functions as

listed in the latest edition of ISO 6429. Normative aliases of type “figment” for control

codes are not listed. Normative aliases which represent commonly used abbreviations

for control codes or format characters are shown in all caps, enclosed in parentheses.

For editorial presentation in the names list, those parenthetical listings may occur on

the same lines as informative aliases. See NameAliases.txt in the UCD for the defini‐

tive listing of all normative aliases, also including their types, suitable for machine

parsing.

Cross references (preceded by →) are used to indicate a related character of interest,

but without indicating the exact nature of the relation. Cross references are most

commonly used to indicate a different character of similar or occasionally identical

appearance, which might be confused with the character in question. Cross refer‐

ences are also used to indicate characters with similar names or functions, but with

distinct appearances. Cross references may also be used to show linguistic relation‐

ships, such as letters used for transliteration in a different script. Some blocks start

with a list of cross references that simply point to related characters of interest in

other blocks. Examples of various types of cross references follow.

 The cross reference indicates that two (or more) characters are

not identical, although the representative glyphs that depict them are identical or

very close in appearance.

003A COLON
• also used to denote division or scale; for that mathematical use 2236 is
preferred
→ 0589 armenian full stop
→ 05C3 hebrew punctuation sof pasuq
→ 2236 ratio
→ A789 modifier letter colon

 The cross reference indicates that two (or more) characters have

similar functions, although the representative glyphs are distinct. See, for example,

the cross references to DIVISION SLASH, DIVIDES, and RATIO in the names list entry

for U+00F7 DIVISION SIGN:

00F7 DIVISION SIGN

24.1.6 Cross References

Explicit Inequality.

Related Functions.

About the Code Charts 1080 24.1 Character Names List

= obelus
• occasionally used as an alternate, more visually distinct version of 2212
or 2011 in some contexts
• historically used as a punctuation mark to denote questionable passages
in manuscripts
→ 070B syriac harklean obelus
→ 2052 commercial minus sign
→ 2212 minus sign
→ 2215 division slash
→ 2223 divides
→ 2236 ratio
→ 2797 heavy division sign

In addition to related mathematical functions, cross references may show other

related functions, such as use of distinct symbols in different phonetic transcription

systems to represent the same sounds. For example, the cross reference to U+0296 in

the following entry shows the IPA equivalent for U+01C1:

01C1 LATIN LETTER LATERAL CLICK
= double pipe
• Khoisan tradition
• “x” in Zulu orthography
→ 0296 latin letter inverted glottal stop
→ 2225 parallel to

 The cross reference indicates that two (or more) characters have

similar and possibly confusable names, although their appearance is distinct.

1F32B FOG
→ 1F301 foggy

 The cross reference indicates a character from another script

commonly used for transliteration of the character in question. Note that this use of

cross references is deliberately limited to a few special cases such as Mongolian:

182E MONGOLIAN LETTER MA
→ 043C cyrillic small letter em

This use of cross references is also seen for compatibility digraph letters for Serbo-

Croatian:

01C9 LATIN SMALL LETTER LJ
→ 0459 cyrillic small letter lje

 The cross reference notation is also used to point to related

characters in other blocks. In these cases, the cross reference is not from any partic‐

ular code point. For example, the list of cross references at the top of the Currency

Related Names.

Transliteration.

Blind Cross References.

About the Code Charts 1081 24.1 Character Names List

Symbols block points to many other currency signs scattered throughout the stan‐

dard.

In a few instances, a cross reference points from a reserved, unassigned code point.

These cross references occur in cases where the structure of a chart might lead a user

to expect a particular character at a code point, but the character to use is actually

encoded elsewhere. This occurs, for example, in several Indic blocks to point to the

shared danda characters:

For viram punctuation, use the generic Indic 0964 and 0965.
0A64 <reserved>

→ 0964 devanagari danda
0A65 <reserved>

→ 0965 devanagari double danda

Cross references are neither exhaustive nor symmetric. Typically a general character

would have cross references to more specialized characters, but not the other way

around.

An informative note may include a list of one or more of the languages using that

character where this information is considered useful. For case pairs, the annotation

is given only for the lowercase form to avoid needless repetition. An ellipsis “...” indi‐

cates that the listed languages cited are merely the principal ones among many.

When a case mapping corresponds solely to a difference based on SMALL versus

CAPITAL in the names of the characters, the case mapping is not given in the names

list but only in the Unicode Character Database.

0041 LATIN CAPITAL LETTER A
01F2 LATIN CAPITAL LETTER D WITH SMALL LETTER Z

≈ 0044 007A

When the case mapping cannot be predicted from the name, the casing information

is sometimes given in a note.

00DF LATIN SMALL LETTER SHARP S

24.1.7 Information About Languages

24.1.8 Case Mappings

About the Code Charts 1082 24.1 Character Names List

= Eszett
• German
• not used in Swiss High German
• uppercase is “SS” or 1E9E
• typographically the glyph for this character can be based on a ligature of
017F with either 0073 or with an old-style glyph for 007A (the latter
similar in appearance to 0292). Both forms exist interchangeably today.
→ 03B2 greek small letter beta

For more information about case and case mappings, see Section 4.2, Case.

The decomposition sequence (one or more letters) given for a character is either its

canonical mapping or its compatibility mapping. The canonical mapping is marked

with an identical to symbol .

00E5 LATIN SMALL LETTER A WITH RING ABOVE
• Danish, Norwegian, Swedish, Walloon
≡ 0061 030A

212B ANGSTROM SIGN
≡ 00C5 angstrom sign

Compatibility mappings are marked with an almost equal to symbol . Formatting

information may be indicated with a formatting tag, shown inside angle brackets.

01F2 LATIN CAPITAL LETTER D WITH SMALL LETTER Z
≈ 0044 007A

FF21 FULLWIDTH LATIN CAPITAL LETTER A
≈ <wide> 0041 fullwidth latin capital letter a

The following compatibility formatting tags are used in the Unicode Character Data‐

base:

 A font variant (for example, a blackletter form)

<noBreak> A no-break version of a space, hyphen, or other punctuation

<initial> An initial presentation form (Arabic)

<medial> A medial presentation form (Arabic)

<final> A final presentation form (Arabic)

<isolated> An isolated presentation form (Arabic)

<circle> An encircled form

<super> A superscript form

<sub> A subscript form

24.1.9 Decompositions

About the Code Charts 1083 24.1 Character Names List

<vertical> A vertical layout presentation form

<wide> A fullwidth (or zenkaku) compatibility character

<narrow> A halfwidth (or hankaku) compatibility character

<small> A small variant form (CNS compatibility)

<square> A CJK squared font variant

<fraction> A vulgar fraction form

<compat> Otherwise unspecified compatibility character

In the character names list accompanying the code charts, the “<compat>” label is

suppressed, but all other compatibility formatting tags are explicitly listed in the

compatibility mapping.

Decomposition mappings are not necessarily full decompositions. For example, the

decomposition for U+212B ANGSTROM SIGN can be further decomposed using the

canonical mapping for U+00C5 LATIN CAPITAL LETTER A WITH RING ABOVE. (For

more information on decomposition, see Section 3.7, Decomposition.)

Compatibility decompositions do not attempt to retain or emulate the formatting of

the original character. For example, compatibility decompositions with the

<noBreak> formatting tag do not use U+2060 WORD JOINER to emulate

nonbreaking behavior; compatibility decompositions with the <circle> formatting

tag do not use U+20DD COMBINING ENCLOSING CIRCLE; and compatibility decom‐

positions with formatting tags <initial>, <medial>, <final>, or <isolate> for explicit

positional forms do not use ZWJor ZWNJ. The one exception is the use of U+2044

FRACTION SLASH to express the <fraction> semantics of compatibility decomposi‐

tions for vulgar fractions.

The Unicode Standard defines a number of standardized variation sequences. These

consist of a single base character followed by a variation selector. Use of a standard‐

ized variation sequence allows a user to indicate their preference for a display with a

particular glyph or subset of glyphs for the given character.

In the character names list, each variation sequence for standardized variants is listed

in the entry for the base character for that sequence. In some cases a character may

be associated with multiple variation sequences. A standardized variation sequence is

identified in the character names list with an initial swung dash “~”.

228A SUBSET OF WITH NOT EQUAL TO
~ 228A FE00 with stroke through bottom members

24.1.10 Standardized Variation Sequences

About the Code Charts 1084 24.1 Character Names List

Characters for which one or more standardized variants have been defined are

displayed in the code charts with a special convention: the code chart cell for such

characters has a small black triangle in its upper-right corner.

Characters which have one or more positional glyph variants, but no standardized

variants have a small white triangle in the upper-right corner of their code chart cell.

Emoji characters participate in additional emoji-specific variation sequences which

are not indicated in the code charts. Those sequences are defined in the emoji-varia‐

tion-sequences.txt data file.

Blocks containing characters for which standardized variation sequences and/or

positional glyph variants are shown in the names list also have a separate summary

listing at the end of the block, displaying the variants in a large font size. Each entry

in these summary listings is shown as follows:

The list of standardized variation sequences in the character names list matches the

list defined in the data file StandardizedVariants.txt in the Unicode Character Data‐

base. Emoji variation sequences are not included in these summary listings at the

ends of blocks, because of the limitations in font technology used for the code chart

display. Ideographic variation sequences defined in the Ideographic Variation Data‐

base are also not included. See Section 23.4, Variation Selectors for more information.

Standardized Variation Sequences to select glyphs appropriate for display of CJK

compatibility ideographs are shown not with the corresponding CJK unified ideo‐

graph, but rather with the CJK compatibility ideograph defining the glyph to be

selected. All CJK compatibility ideographs have a canonical decomposition to a CJK

unified ideograph for historical reasons. This means that direct use of CJK compati‐

bility ideographs is problematical, because they are not stable under normalization.

To indicate that one of the compatibility glyph shapes is desired, the indicated varia‐

tion selector can be used with the CJK unified ideograph. In the CJK Compatibility

Ideographs and CJK Compatibility Supplement blocks, the canonical decomposition

and the relevant standardized variation sequence are shown together with respective

About the Code Charts 1085 24.1 Character Names List

representative glyphs for the sources defined for the CJK compatibility ideograph; see

Figure 24-5.

Note that there are no indications of variation sequences in the charts for CJK

unified ideographs. See the Ideographic Variation Database (IVD) for information on

registered variation sequences for CJK unified ideographs.

Many characters with the Emoji property have two associated variation sequences

defined in the data file emoji-variation-sequences.txt, one requesting the glyph for

text presentation and the other requesting the glyph for emoji presentation. The vari‐

ation sequences are not listed explicitly in the names list. The glyphs for emoji

presentation variation sequences cannot be displayed by the font technology used to

produce the code charts. Instead, a representative text presentation is shown

throughout. In the code charts, emoji characters that do not have the

Emoji_Presentation property and that therefore default to text presentation are indi‐

cated with a small black triangle in the top left corner:

Emoji characters that also have the Emoji_Presentation property and that therefore

would default to that presentation are indicated with a small white triangle in the top

left corner:

Some characters with the Emoji property also have other variation sequences

defined, and so additionally have a small black triangle in the top right corner, as

shown in the following example.

Representative glyphs for both the colorful emoji presentation style and the text style

of all emoji variation sequences for this version can be found in the emoji charts

section of the Unicode website.

24.1.11 Emoji Variation Sequences

About the Code Charts 1086 24.1 Character Names List

https://www.unicode.org/emoji/charts-16.0/

In cursive scripts which have contextually defined positional forms for letters, such

as Arabic or Mongolian, the basic positional forms may appear in the code charts.

Such forms, when they occur, appear in the charts in the summary listings, together

with any standardized variation sequences. In Versions 9.0 through 12.1, such posi‐

tional forms were included in the code chart for Mongolian, but have been removed

from the code charts starting with Version 13.0, with the intent that they be shown

instead in a publication dedicated to the details of the Mongolian text model.

The code charts are segmented by the format tooling into blocks. (See Definition

D10b in Section 3.4, Characters and Encoding.) The page headers for the code charts

are based on the normative values of the Block property defined in Blocks.txt in the

Unicode Character Database, with a few exceptions. For example, the ASCII and

Latin-1 ranges have their block headers adjusted editorially to reflect the presence of

C0 and C1 control characters in those ranges. This means that the Block property

value for the block associated with the range U+0080..U+00FF is “Latin-1 Supple‐

ment”, but the block header used in the code charts is “C1 Controls and Latin-1

Supplement”.

The start and end code points printed in the block headers in the code charts and

character names list reflect the ranges that are printed on that page, and thus should

not be confused with the normative ranges listed in Blocks.txt.

On occasion, the code chart format tooling also introduces artificial block headers to

enable the display of code charts for noncharacters that are outside the range of any

normative block range. For example, the two noncharacters U+3FFFE..U+3FFFF are

artificially displayed in a code chart with a block header “Unassigned”, showing a

range U+3FF80..U+3FFFF.

As a result of these and other editorial considerations, implementers are cautioned

not to attempt to pull block range values from the code charts, nor to attempt to parse

them from the NamesList.txt file in the Unicode Character Database. Instead, norma‐

tive values for block ranges and names should always depend on Blocks.txt.

The character names list contains a number of informative subheads that help divide

up the list into smaller sublists of similar characters. For example, in the Miscella‐

neous Symbols block, U+2600..U+26FF, there are subheads for “Astrological

symbols,” “Chess symbols,” and so on. Such subheads are editorial and informative;

they should not be taken as providing any definitive, normative status information

about characters in the sublists they mark or about any constraints on what charac‐

24.1.12 Positional Forms

24.1.13 Block Headers

24.1.14 Subheads

About the Code Charts 1087 24.1 Character Names List

ters could be encoded in the future at reserved code points within their ranges. The

subheads are subject to change.

About the Code Charts 1088 24.1 Character Names List

The code charts for CJK and Tangut ideographs differ significantly from those for

other characters in the standard.

Character names are not provided for any of the code charts of CJK Unified Ideo‐

graph character blocks, because the name of a unified ideograph simply consists of

its Unicode code point preceded by CJK UNIFIED IDEOGRAPH-.

In other code charts, each character is shown with a single representative glyph, but

in the code charts for CJK Unified and Compatibility Ideographs, each character may

have multiple representative glyphs. Each character is shown with as many represen‐

tative glyphs as there are Ideographic Research Group (IRG) sources defined for that

character. The representative glyph for each IRG source is not necessarily the only

preferred glyph for the corresponding region, and developers are therefore encour‐

aged to refer to regional standards or typographical conventions to determine the

appropriate glyph. Each representative glyph is accompanied with its source refer‐

ence provided in alphanumeric form. Altogether, there are eleven IRG sources, as

shown in Table 24-1. Data for these IRG sources are documented in Unicode Standard

Annex #38, “Unicode Han Database (Unihan).”

Name Source Identity

G source China PRC and Singapore

H source Hong Kong SAR

J source Japan

KP source North Korea

K source South Korea

M source Macao SAR

S source SAT

T source TCA

UK source UK

U source Unicode

V source Vietnam

To assist in reference and lookup, each CJK Unified Ideograph is accompanied by a

representative glyph of its Unicode radical and by its Unicode radical-stroke counts.

These are printed directly underneath the Unicode code point for the character. A

24.2 CJK and Other Ideographs

24.2.1 CJK Unified Ideographs

Table 24-1. IRG Sources

About the Code Charts 1089 24.2 CJK and Other Ideographs

radical-stroke index to all of the CJK ideographs is also provided separately on the

Unicode website.

 The format for the CJK Unified Ideographs block

(U+4E00..U+9FFF) is illustrated in Figure 24-1. The representative glyphs are

arranged under the headers C, J, K, and V. Sources G, H, and T are grouped under the

header C. Sources K and KP are grouped under the header K. The J and V sources are

listed under their respective headers. Each row contains positions for all seven

sources, and if a particular source is undefined for CJK Unified Ideographs, that posi‐

tion is left blank in the row. The gray vertical lines in Figure 24-1 are used here to

show how the sources are grouped under the C, J, K, and V headers.

If any of the M, U, UK or S sources are present, they are shown on a line by them‐

selves below the G, H, T or J source position, respectively, as illustrated in

Figure 24-2. Note that this block does not currently contain any characters with UK

or S sources.

If there are no other sources, the M, U, UK or S sources are shown in the G, H, T or J

source position, respectively, as illustrated in Figure 24-3.

Chart for the Main CJK Block.

Figure 24-1. CJK Chart Format for the Main CJK Block

Figure 24-2. CJK Chart Format for M or U Source

Figure 24-3. CJK Chart Format for Lone M or U Source

About the Code Charts 1090 24.2 CJK and Other Ideographs

 The code charts for all of the extension blocks for CJK

Unified Ideographs use a more condensed format for character entries. That format

dispenses with the C, J, K, and V headers and leaves no holes for undefined sources.

For those blocks, sources are always shown in the following order: G, T, J, K, KP, V, H,

M, U, UK, and S. The first letters of the source reference serve as a source tag.

The multicolumn code charts for CJK Extension A use the condensed format with

three source columns per entry, and with entries arranged in three columns per page.

An entry may have additional rows, if required, as illustrated in Figure 24-4 for CJK

Extension A.

The multicolumn code charts for all of the other extension blocks for CJK Unified

Ideographs currently use the condensed format with two source columns per entry,

and with entries arranged in four columns per page. An entry may have additional

rows if required.

The multicolumn code charts for the CJK Unified Ideographs Extension B block

(U+20000..U+2A6DF) were introduced in Version 5.2 of the standard. From Version

6.1 through 13.0 of the standard, those multicolumn code charts had the additional

idiosyncrasy that the first source shown always corresponded to the “UCS2003”

representative glyph. Those representative glyphs were the only ones used up

through Version 5.1 of the standard for that block, and have since been archived as a

separate, archival code chart with a single representative glyph for each character.

The format of the code charts for the CJK Compatibility Ideograph blocks is largely

similar to the CJK chart format for Extension A, as illustrated in Figure 24-5.

However, several additional notational elements described in Section 24.1, Character

Names List are used. In particular, for each CJK compatibility ideograph other than

the small list of unified ideographs included in these charts, a canonical decomposi‐

tion is shown. The ideographic variation sequence for each compatibility CJK ideo‐

graph is listed below the canonical decomposition, introduced with a tilde sign.

Charts for CJK Extensions.

Figure 24-4. CJK Chart Format for CJK Extension A

24.2.2 Compatibility Ideographs

About the Code Charts 1091 24.2 CJK and Other Ideographs

The twelve CJK unified ideographs in the CJK Compatibility Ideographs block have

no canonical decompositions or corresponding ideographic variation sequences;

instead, each is clearly labeled with an annotation identifying it as a CJK unified

ideograph.

Character names are not provided for any CJK Compatibility Ideograph blocks

because the name of a compatibility ideograph simply consists of its Unicode code

point preceded by CJK COMPATIBILITY IDEOGRAPH-.

Code charts for Tangut ideographs use the same condensed format as the code charts

for CJK Extension A, but with a single source column per entry, and with entries

arranged in five columns per page.

Character names are not provided for any of the code charts of Tangut character

blocks; the name of each Tangut ideograph simply consists of its Unicode code point

preceded by TANGUT IDEOGRAPH-.

Figure 24-5. CJK Chart Format for Compatibility Ideographs

Figure 24-6. Annotations Identifying CJK Unified Ideographs

24.2.3 Tangut Ideographs

About the Code Charts 1092 24.2 CJK and Other Ideographs

As in the case of CJK Unified Ideographs, a character names list is not provided for

the online chart of characters in the Hangul Syllables block, U+AC00..U+D7AF,

because the name of a Hangul syllable can be determined by algorithm as described

in Section 3.12, Conjoining Jamo Behavior. The short names used in that algorithm are

listed in the code charts as aliases in the Hangul Jamo block, U+1100..U+11FF, as

well as in Jamo.txt in the Unicode Character Database.

24.3 Hangul Syllables

About the Code Charts 1093 24.3 Hangul Syllables

Appendix A

Notational Conventions

This appendix describes the typographic conventions, the extended BNF, and the

conventions for describing rendering rules that are used throughout this core specifi‐

cation.

1094

In running text, an individual Unicode code point is expressed as U+n, where n is

four to six hexadecimal digits, using the digits 0–9 and uppercase letters A–F (for 10

through 15, respectively). Leading zeros are omitted, unless the code point would

have fewer than four hexadecimal digits—for example, U+0001, U+0012, U+0123,

U+1234, U+12345, U+102345.

U+0416 is the Unicode code point for the character named CYRILLIC CAPITAL

LETTER ZHE.

The U+ may be omitted for brevity in tables or when denoting ranges. The U+ is

obligatorily omitted when this code point convention is used in rule NR2, for cases

where characters have names algorithmically derived from their code points. See

“Unicode Name Property” in Section 4.8, Name.

A range of Unicode code points is expressed as U+xxxx–U+yyyy or U+xxxx..U+yyyy,

where xxxx and yyyy are the first and last Unicode values in the range, and the en

dash or two dots indicate a contiguous range inclusive of the endpoints. For ranges

involving supplementary characters, the code points in the ranges are expressed with

five or six hexadecimal digits.

The range U+0900–U+097F contains 128 Unicode code points.

The Plane 16 private-use characters are in the range U+100000..U+10FFFD.

In running text, a formal Unicode name is shown in small capitals (for example,

GREEK SMALL LETTER MU), and alternative names (aliases) appear in italics (for

example, umlaut). Italics are also used to refer to a text element that is not explicitly

encoded (for example, pasekh alef) or to set off a non-English word (for example, the

Welsh word ynghyd).

For more information on Unicode character names, see Section 4.8, Name.

For notational conventions used in the code charts, see Section 24.1, Character Names

List.

A.1 Typographic Conventions

A.1.1 Code Points

•

•

•

A.1.2 Character Names

Notational Conventions 1095 A.1 Typographic Conventions

When referring to the normative names of character blocks in the text of the stan‐

dard, the character block name is titlecased and is used with the term “block.” For

example:

the Latin Extended-B block

Optionally, an exact range for the character block may also be cited:

the Alphabetic Presentation Forms block (U+FB00..U+FB4F)

These references to normative character block names should not be confused with

the headers used throughout the text of the standard, particularly in the block

description chapters, to refer to particular ranges of characters. Such headers may be

abbreviated in various ways and may refer to subranges within character blocks or

ranges that cross character block boundaries. For example:

Latin Ligatures: U+FB00–U+FB06

The definitive list of normative character block names is Blocks.txt in the Unicode

Character Database.

A sequence of two or more code points may be represented by a comma-delimited

list, set off by angle brackets. For this purpose, angle brackets consist of U+003C

LESS-THAN SIGN and U+003E GREATER-THAN SIGN. Spaces are optional after the

comma, and U+ notation for the code point is also optional—for example,

“<U+0061, U+0300>”.

When the usage is clear from the context, a sequence of characters may be repre‐

sented with generic short names, as in “<a, grave>”, or the angle brackets may be

omitted.

In contrast to sequences of code points, a sequence of one or more code units may be

represented by a list set off by angle brackets, but without comma delimitation or U+

notation. For example, the notation “<nn nn nn nn>” represents a sequence of bytes,

as for the UTF-8 encoding form of a Unicode character. The notation “<nnnn

nnnn>” represents a sequence of 16-bit code units, as for the UTF-16 encoding form

of a Unicode character.

A.1.3 Character Blocks

A.1.4 Sequences

Notational Conventions 1096 A.1 Typographic Conventions

The names of properties and property values appear in titlecase, with words

connected by an underscore—for example, General_Category or Uppercase_Letter.

In some instances, short names are used, such as gc = Lu, which is equivalent to

General_Category = Uppercase_Letter. Long and short names for all properties and

property values are defined in the Unicode Character Database; see also Section 3.5,

Properties.

Occasionally, and especially when discussing character properties that have single

words as names, such as age and block, the names appear in lowercase italics.

Phonemic transcriptions are shown between slashes, as in Khmer /khnyom/.

Phonetic transcriptions are shown between square brackets, using the International

Phonetic Alphabet. (Full details on the IPA can be found on the International

Phonetic Association’s website, https://www.internationalphoneticassociation.org/.)

A leading asterisk is used to represent an incorrect or nonoccurring linguistic form.

In this specification, the word “Unicode” when used alone as a noun refers to the

Unicode Standard.

Unambiguous dates of the current common era, such as 1999, are unlabeled. In cases

of ambiguity, CE is used. Dates before the common era are labeled with BCE.

The term byte, as used in this standard, always refers to a unit of eight bits. This

corresponds to the use of the term octet in some other standards.

Operators used in this standard are listed in Table A-1.

Symbol Meaning

is transformed to, or behaves like

is not transformed to

logical not

A.1.5 Properties and Property Values

A.1.6 Miscellaneous

A.1.7 Operators

Table A-1. Operators

Notational Conventions 1097 A.1 Typographic Conventions

The Unicode Standard and technical reports use an extended BNF format for

describing syntax. This format uses elements from the regular expression syntax

specified in Unicode Technical Standard #18, “Unicode Regular Expressions”;

however, a BNF is not a regular expression, and may be interpreted differently even

when looking like one. As different conventions are used for BNF, Table A-2 lists the

notation used here.

Symbols Meaning

x := ... production rule

x y the sequence consisting of x then y

x* zero or more occurrences of x

x? zero or one occurrence of x

x+ one or more occurrences of x

x | y either x or y

(x) for grouping

{ x } equivalent to (x)?

"abc" string literals (“_” is sometimes used to denote space for clarity)

'abc' string literals (alternative form)

sot start of text

eot end of text

\u{HHHHHH} Unicode code points within string literals or character classes. Between one
and six hexadecimal digits; maximum \u{10FFFF}.

\uHHHH Unicode BMP code points within string literals or character classes. Exactly
four hexadecimal digits.

	U+HHHHHH Unicode code point literal: equivalent to “\u{HHHHHH}”. Between four and six
hexadecimal digits; maximum U+10FFFF.

	U-00HHHHHH
Unicode code point literal: equivalent to “\u{HHHHHH}”. Exactly six
hexadecimal digits after the initial two zeroes; maximum U+10FFFF. This
format was used in ISO 10646 but is now obsolete.

H Hexadecimal digit, 0-9 or A-F

[…], \p{…} code point or character class (syntax below)

In other environments, such as programming languages or markup, alternative nota‐

tion for sequences of code points or code units may be used.

A.2 Extended BNF

Table A-2. Extended BNF

Notational Conventions 1098 A.2 Extended BNF

A code point class is a set of code points. When the code points are all assigned char‐

acters, it can also be referred to as a character class. Its specification can be based on

any of the following:

A literal code point or a range of literal code points.

A set of code points having a given value for a given Unicode character property,

as defined in the Unicode Character Database (see PropertyAliases.txt and

PropertyValueAliases.txt).

Set operations on character classes.

Further extensions to this specification of character classes are used in some Unicode

Standard Annexes and Unicode Technical Reports. Such extensions are described in

those documents, as appropriate.

A partial formal BNF syntax for character classes as used in this standard is given by

the following:

CHARAC	TER_C	LA	S	S := '[' COMP	LEME	N	T? 	SE	T ']' | '\p{' PROP_	SPEC
'}'

COMP	LEME	N	T := '^'

	SE	T := I	TEM (SE	T_EX	TE	ND)*

I	TEM := 	LI	TERA	L (RA	NGE_OPERA	TOR 	LI	TERA	L)? | CHARAC	TER_C	LA	S	S

RA	NGE_OPERA	TOR := '-' | '..'

	SE	T_EX	TE	ND := 	SE	T_OPERA	TOR CHARAC	TER_C	LA	S	S | ','? I	TEM

	SE	T_OPERA	TOR := '--'

PROP_	SPEC := PROP_	NAME (RE	LA	TIO	N PROP_	VA	L	UE)?

RE	LA	TIO	N := '=' | '≠'

If COMP	LEME	N	T is specified, the resulting code point set is the set of all Unicode code

points (U+0000..U+10FFFF) except the code points given by 	SE	T. A 	LI	TERA	L can be

a Unicode code point escape sequence, a Unicode code point literal, or a character

itself. The operator “--” indicates set difference (older documents may use “-”). A

PROP_	NAME must be a valid Unicode property name or alias. A PROP_	VA	L	UE must be

a valid property value for the PROP_	NAME it is used with. If a PROP_	NAME is used by

itself, without a RE	LA	TIO	N and PROP_	VA	L	UE, the property must be a Boolean prop‐

erty, the relation is assumed to be “=” and the value to be 	True.

A.2.1 Character Classes

•

•

•

Notational Conventions 1099 A.2 Extended BNF

In prose where the context makes clear that a property-based character class is being

discussed, \p{PROP_	NAME=PROP_	VA	L	UE} may be simplified to

PROP_	NAME=PROP_	VA	L	UE.

Whenever any character could be interpreted as a syntax character, it must be

escaped. If a space character is used as a literal, it is escaped. The interpretation of

spaces differs from that in regular expressions, so that in the examples below spaces

have to be removed in order to obtain equivalent regular expressions. Examples are

found in Table A-3.

Syntax Matches

[a-z] English lowercase letters

[a-z -- c] English lowercase letters except for c

[0-9] European decimal digits

[\u0030-\u0039] (same as above, using Unicode escapes)

[0-9 A-F a-f] hexadecimal digits

[\p{gc=	Letter}
\p{gc=	Nonspacing_Mark}] all letters and nonspacing marks

[\p{gc=	L} \p{gc=Mn}] (same as above, using abbreviated notation)

[^\p{gc=	Unassigned}] all assigned Unicode characters

[\u{A980}-\u{A9DF} --
\p{gc=	Unassigned}]

all assigned characters in the main Javanese
range

[\p{Alphabetic}] all alphabetic characters

[^\p{	Line_Break=Infix_	Numeric}] all code points that do not have the line break
property of Infix_Numeric

For more information about character classes, see Unicode Technical Standard #18,

“Unicode Regular Expressions.”

Table A-3. Character Class Examples

Notational Conventions 1100 A.2 Extended BNF

A figure such as Figure A-1 depicts how a sequence of characters is typically

rendered.

The sequence under discussion is depicted on the left of the arrow, using representa‐

tive glyphs and code points below them. A possible rendering of that sequence is

depicted on the right side of the arrow.

A.3 Rendering

Figure A-1. Example of Rendering

Notational Conventions 1101 A.3 Rendering

Appendix B

Unicode Publications and

Resources

This appendix provides information about the Unicode Consortium and its activities,

particularly regarding publications other than the Unicode Standard. The Unicode

Consortium publishes a number of technical standards and technical reports.

Appendix B.2, Unicode Publications describes the kinds of reports in more detail.

The Unicode website also has many useful online resources. Appendix B.3, Other

Unicode Online Resources, provides a guide to the kinds of information available.

1102

The Unicode Consortium was incorporated in January 1991, under the name

Unicode, Inc., to promote the Unicode Standard as an international encoding system

for information interchange, to aid in its implementation, and to maintain quality

control over future revisions.

To further these goals, the Unicode Consortium cooperates with the Joint Technical

Committee 1 of the International Organization for Standardization and the Interna‐

tional Electrotechnical Commission (ISO/IEC JTC1). It holds a Class C liaison

membership with ISO/IEC JTC1/SC2; it participates in the work of both JTC1/SC2/

WG2 (the technical working group for the subcommittee within JTC1 responsible for

character set encoding) and the Ideographic Research Group (IRG) of WG2. The

Consortium is a member company of the InterNational Committee for Information

Technology Standards, Technical Committee L2 (INCITS/L2), an accredited U.S.

standards organization. Many members of the Unicode Consortium have representa‐

tives in many countries who also work with other national standards bodies. In addi‐

tion, a number of organizations are Liaison Members of the Consortium. For a list,

see the Unicode website.

Membership in the Unicode Consortium is open to organizations and individuals

anywhere in the world who support the Unicode Standard and who would like to

assist in its extension and widespread implementation. Full, Institutional,

Supporting, and Associate Members represent a broad spectrum of corporations and

organizations in the computer and information processing industry. For a list, see the

Unicode website. The Consortium is supported financially solely through member‐

ship dues and donations.

The Unicode Technical Committee (UTC) is the working group within the Consor‐

tium responsible for the creation, maintenance, and quality of the Unicode Standard.

The UTC follows an open process in developing the Unicode Standard and its other

technical publications. It coordinates and reviews all technical input to these docu‐

ments and decides their contents. For more information on the UTC and the process

by which the Unicode Standard and the other technical publications are developed,

see:

https://www.unicode.org/consortium/utc.html

Going beyond developing technical standards, the Unicode Consortium acts as regis‐

tration authority for the registration of script identifiers under ISO 15924, and it has a

B.1 The Unicode Consortium

B.1.1 The Unicode Technical Committee

B.1.2 Other Activities

Unicode Publications and Resources 1103 B.1 The Unicode Consortium

https://www.unicode.org/consortium/utc.html

technical committee dedicated to the maintenance of the Unicode Common Locale

Data Repository (CLDR). The repository contains a large and rapidly growing body of

data used in the locale definition for software internationalization. For further infor‐

mation about these and other activities of the Unicode Consortium, visit:

https://www.unicode.org

Unicode Publications and Resources 1104 B.1 The Unicode Consortium

https://www.unicode.org

In addition to the Unicode Standard, the Unicode Consortium publishes Unicode

Technical Standards and Unicode Technical Reports. These materials are published

as electronic documents only and, unlike Unicode Standard Annexes, do not form

part of the Unicode Standard.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode Standard,

but is published online as a separate document. The Unicode Standard may require

conformance to normative content in a Unicode Standard Annex, if so specified in

the Conformance chapter of that version of the Unicode Standard. The version

number of a UAX document is always the same as the version of the Unicode Stan‐

dard of which it forms a part.

A Unicode Technical Standard (UTS) is an independent specification. Conformance

to the Unicode Standard does not imply conformance to any UTS.

A Unicode Technical Report (UTR) contains informative material. Conformance to

the Unicode Standard does not imply conformance to any UTR. Other specifications,

however, are free to make normative references to a UTR.

In the past, some normative material was published as Unicode Technical Reports.

Currently, however, such material is published either as a Unicode Technical Stan‐

dard or a Unicode Standard Annex.

The Unicode website is the source for the most current version of all three categories

of technical reports:

https://www.unicode.org/reports/

B.2 Unicode Publications

Unicode Publications and Resources 1105 B.2 Unicode Publications

https://www.unicode.org/reports/

The Unicode Consortium provides a number of online resources for obtaining infor‐

mation and data about the Unicode Standard as well as updates and corrigenda.

https://www.unicode.org

 The charts section of the website provides code charts for all of the Unicode

characters, plus specialized charts for normalization, collation, case mapping, script

names, and CJK unified ideographs.

https://www.unicode.org/charts/

 Online index by character name, to look up Unicode code points.

This index also makes it easy to look up the location of scripts in the standard, and

indexes common alternative names for characters as well.

https://www.unicode.org/charts/charindex.html

 Access to tables containing raw character counts for every

version of the Unicode Standard. This page also provides access to counts of emoji

for various versions, and to the history of addition of scripts to the standard.

https://www.unicode.org/versions/stats/

 The Internationalization and Unicode Conferences are of particular

value to anyone implementing the Unicode Standard or working on internationaliza‐

tion. A variety of tutorials and conference sessions cover current topics related to the

Unicode Standard, the World Wide Web, software, internationalization, and localiza‐

tion.

https://www.unicode.org/conference/

 Subscription instructions for the public e-mail discussion

list are posted on the Unicode website.

 This page contains a collection of information about emoji resources and the

Unicode Emoji Subcommittee.

https://www.unicode.org/emoji/techindex.html

B.3 Other Unicode Online Resources

B.3.1 Unicode Online Resources

Unicode Website.

Charts.

Character Index.

Character Statistics.

Conferences.

E-mail Discussion List.

Emoji.

Unicode Publications and Resources 1106 B.3 Other Unicode Online Resources

https://www.unicode.org
https://www.unicode.org/charts/
https://www.unicode.org/charts/charindex.html
https://www.unicode.org/versions/stats/
https://www.unicode.org/conference/
https://www.unicode.org/emoji/techindex.html

 This section of the Unicode website collects together a number of

charts that illustrate various features of the emoji characters in the standard. Some of

these charts can be considered as adjuncts to the regular code charts. They show

emoji with colorful glyphs, as they are displayed on many platforms.

https://www.unicode.org/emoji/charts/

 The FAQ pages provide an invaluable resource

for understanding the Unicode Standard and its implications for users and imple‐

menters.

https://www.unicode.org/faq/

 Online listing of definitions for technical terms used in the Unicode Stan‐

dard and other publications of the Unicode Consortium.

https://www.unicode.org/glossary/

 This page supplies information about the

online Unicode Character Database (UCD), including links to documentation files

and the most up-to-date version of the data files, as well as instructions on how to

access any particular version of the UCD.

https://www.unicode.org/ucd/

 The online Unihan Database provides interactive access

to all of the property information associated with CJK ideographs in the Unicode

Standard.

https://www.unicode.org/charts/unihan.html

 This page lists characters, standardized variation sequences, and named

character sequences which have reached some level of approval and/or are in inter‐

national balloting, but which have not yet been published in a version of the Unicode

Standard. The pipeline provides some visibility about what characters will soon be in

the standard.

https://www.unicode.org/alloc/Pipeline.html

 These pages describe Unicode Consortium policies on technical stability.

The stability policies are particularly important for implementers, documenting

invariants for the Unicode Standard that allow implementations to be compatible

with future and past versions.

https://www.unicode.org/policies/stability.html

Emoji Charts.

FAQ (Frequently Asked Questions).

Glossary.

Online Unicode Character Database.

Online Unihan Database.

Pipeline.

Policies.

Unicode Publications and Resources 1107 B.3 Other Unicode Online Resources

https://www.unicode.org/emoji/charts/
https://www.unicode.org/faq/
https://www.unicode.org/glossary/
https://www.unicode.org/ucd/
https://www.unicode.org/charts/unihan.html
https://www.unicode.org/alloc/Pipeline.html
https://www.unicode.org/policies/stability.html

 This online page lists sources and up-to-date references for the Unicode

Standard, as well as resources by script.

https://www.unicode.org/references/

 This section of the Unicode website provides a roadmap for planning

future allocation of scripts and major blocks of symbols. The roadmap is organized

by plane, and provides information about the locations of published, approved, and

proposed blocks, often with links to current proposals. The roadmap provides the

long term perspective on future work by the encoding committees.

https://www.unicode.org/roadmaps/

 Machine-readable repository,

in XML format, of locale information for use in application and system development.

https://cldr.unicode.org/

 This page lists periodic updates with corrections of typo‐

graphic errors and new clarifications of the text.

https://www.unicode.org/errata/

 This page describes the version numbering used in the Unicode Standard,

the nature of the Unicode character repertoire, and ways to cite and reference the

Unicode Standard, the Unicode Character Database, and Unicode Technical Reports.

It also specifies the exact contents of each and every version of the Unicode Standard,

back to Unicode 1.0.0.

https://www.unicode.org/versions/

 This page provides basic guidance to finding Unicode

characters, especially those whose glyphs do not appear in the charts, or that are

represented by sequences of Unicode characters.

https://www.unicode.org/standard/where/

The best way to contact the Unicode Consortium to obtain membership information

is via the website:

https://home.unicode.org/membership/membership-levels/

To contact the Unicode Consortium regarding other issues:

https://home.unicode.org/connect/contact-unicode/

References.

Roadmap.

Unicode Common Locale Data Repository (CLDR).

Updates and Errata.

Versions.

Where Is My Character?.

B.3.2 How to Contact the Unicode Consortium

Unicode Publications and Resources 1108 B.3 Other Unicode Online Resources

https://www.unicode.org/references/
https://www.unicode.org/roadmaps/
https://cldr.unicode.org/
https://www.unicode.org/errata/
https://www.unicode.org/versions/
https://www.unicode.org/standard/where/
https://home.unicode.org/membership/membership-levels/
https://home.unicode.org/connect/contact-unicode/

The website also lists the current postal address and telephone number.

Unicode Publications and Resources 1109 B.3 Other Unicode Online Resources

Appendix C

Relationship to ISO/IEC 10646

The Unicode Consortium maintains a strong working relationship with ISO/IEC

JTC1/SC2/WG2, the working group developing International Standard 10646. Today

both organizations are firmly committed to maintaining the synchronization

between the Unicode Standard and ISO/IEC 10646. Each standard nevertheless uses

its own form of reference and, to some degree, separate terminology. This appendix

gives a brief history and explains how the standards are related.

1110

Having recognized the benefits of developing a single universal character code stan‐

dard, members of the Unicode Consortium worked with representatives from the

International Organization for Standardization (ISO) during the summer and fall of

1991 to pursue this goal. Meetings between the two bodies resulted in mutually

acceptable changes to both Unicode Version 1.0 and the first ISO/IEC Draft Interna‐

tional Standard DIS 10646.1, which merged their combined repertoire into a single

numerical character encoding. This work culminated in The Unicode Standard,

Version 1.1.

ISO/IEC 10646-1:1993, Information Technology—Universal Multiple-Octet Coded Char‐

acter Set (UCS)—Part 1: Architecture and Basic Multilingual Plane,was published in

May 1993 after final editorial changes were made to accommodate the comments of

voting members. The Unicode Standard, Version 1.1, reflected the additional charac‐

ters introduced from the DIS 10646.1 repertoire and incorporated minor editorial

changes.

Merging The Unicode Standard, Version 1.0,and DIS 10646.1 consisted of aligning the

numerical values of identical characters and then filling in some groups of characters

that were present in DIS 10646.1, but not in the Unicode Standard. As a result, the

encoded characters (code points and names) of ISO/IEC 10646-1:1993 and The

Unicode Standard, Version 1.1, are precisely the same.

Versions 2.0, 2.1, and 3.0 of the Unicode Standard successively added more charac‐

ters, matching a series of amendments to ISO/IEC 10646-1. The Unicode Standard,

Version 3.0, is precisely aligned with the second edition of ISO/IEC 10646-1, known as

ISO/IEC 10646-1:2000.

In 2001, Part 2 of ISO/IEC 10646 was published as ISO/IEC 10646-2:2001. Version 3.1

of the Unicode Standard was synchronized with that publication, which added

supplementary characters for the first time. Subsequently, Versions 3.2 and 4.0 of the

Unicode Standard added characters matching further amendments to both parts of

ISO/IEC 10646. The Unicode Standard, Version 4.0, is precisely aligned with the third

version of ISO/IEC 10646 (first edition), published as a single standard merging the

former two parts: ISO/IEC 10646:2003.

Versions 4.1 and 5.0 of the Unicode Standard added characters matching Amend‐

ments 1 and 2 to ISO/IEC 10646:2003. Version 5.0 also added four characters for

Sindhi support from Amendment 3 to ISO/IEC 10646:2003. Version 5.1 added the rest

of the characters from Amendment 3 and all of the characters from Amendment 4 to

ISO/IEC 10646:2003. Version 5.2 added all of the characters from Amendments 5 and

6 to ISO/IEC 10646:2003. Version 6.0 added all of the characters from Amendments 7

and 8 to ISO/IEC 10646:2003.

C.1 History

Relationship to ISO/IEC 10646 1111 C.1 History

In 2010, ISO approved republication of ISO/IEC 10646 as a second edition, ISO/IEC

10646:2011, consolidating all of the contents of Amendments 1 through 8 to the 2003

first edition. The Unicode Standard, Version 6.0 is aligned with that second edition of

the International Standard, with the addition of U+20B9 INDIAN RUPEE SIGN, accel‐

erated into Version 6.0 based on approval for the third edition of ISO/IEC 10646.

The Unicode Standard, Version 6.1 is aligned with the third edition of the Interna‐

tional Standard: ISO/IEC 10646:2012. The third edition was approved for publication

without an intervening amendment to the second edition. The Unicode Standard,

Version 6.2 added a single character, U+20BA TURKISH LIRA SIGN. Version 6.3 added

five more characters, including new bidirectional format controls.

The Unicode Standard, Version 7.0 is aligned with Amendments 1 and 2 to ISO/IEC

10646:2012. Those amendments include the six characters which were added in

Version 6.2 and Version 6.3, as well as many others. Version 7.0 also includes

U+20BD RUBLE SIGN, accelerated into Version 7.0 based on approval for the fourth

edition of ISO/IEC 10646.

The Unicode Standard, Version 8.0 is aligned with Amendment 1 of ISO/IEC

10646:2014, the fourth edition of ISO/IEC 10646. Version 8.0 also includes U+20BE

LARI SIGN, nine additional CJK unified ideographs, and 41 emoji characters, based on

approval for Amendment 2 to the fourth edition of ISO/IEC 10646.

The Unicode Standard, Version 9.0 is aligned with Amendments 1 and 2 to ISO/IEC

10646:2014, the fourth edition of ISO/IEC 10646. Version 9.0 also includes the Adlam

script (87 characters), the Newa script (92 characters), 72 additional emoji characters,

19 television symbols, two other pictographic symbols, and one other punctuation

mark, based on approval for the fifth edition of ISO/IEC 10646.

The Unicode Standard, Version 10.0 is aligned with ISO/IEC 10646:2017, the fifth

edition of ISO/IEC 10646. Version 10.0 also includes three other Zanabazar Square

characters, 285 hentaigana, and 56 emoji characters, based on approval for Amend‐

ment 1 to the fifth edition of ISO/IEC 10646.

The Unicode Standard, Version 11.0 is aligned with Amendment 1 to ISO/IEC

10646:2017, the fifth edition of ISO/IEC 10646. Version 11.0 also includes 46 Mtavruli

Georgian capital letters, 5 urgently needed CJK unified ideographs, and 66 emoji

characters, based on approval for Amendment 2 to the fifth edition of ISO/IEC 10646.

The Unicode Standard, Version 12.0 is aligned with Amendments 1 and 2 to ISO/IEC

10646:2017, the fifth edition of ISO/IEC 10646. Version 12.0 also includes U+1E94B

ADLAM NASALIZATION MARK and 61 emoji characters, based on approval for the

sixth edition of ISO/IEC 10646.

The Unicode Standard, Version 13.0 is aligned with ISO/IEC 10646:2020, the sixth

edition of ISO/IEC 10646.

Relationship to ISO/IEC 10646 1112 C.1 History

The Unicode Standard, Version 15.0 is aligned with Amendment 1 to ISO/IEC

10646:2020, the sixth edition of ISO/IEC 10646.

The Unicode Standard, Version 16.0 is aligned with Amendment 2 to ISO/IEC

10646:2020, the sixth edition of ISO/IEC 10646.

Table C-1 gives the timeline for these efforts.

Year Version Summary

1989 DP 10646 Draft proposal, independent of Unicode

1990
Unicode
Prepublication

Prepublication review draft

1990 DIS-1 10646 First draft, independent of Unicode

1991 Unicode 1.0 Edition published by Addison-Wesley

1992 Unicode 1.0.1 Modified for merger compatibility

1992 DIS-2 10646 Second draft, merged with Unicode

1993 IS 10646-1:1993 Merged standard

1993 Unicode 1.1 Revised to match IS 10646-1:1993

1995 10646 amendments Korean realigned, plus additions

1996 Unicode 2.0 Synchronized with 10646 amendments

1998 Unicode 2.1 Added euro sign and corrigenda

1999 10646 amendments Additions

2000 Unicode 3.0 Synchronized with 10646 second edition

2000 IS 10646-1:2000
10646 part 1, second edition, publication with amendments to
date

2001 IS 10646-2:2001 10646 part 2 (supplementary planes)

2001 Unicode 3.1 Synchronized with 10646 part 2

2002 Unicode 3.2 Synchronized with Amd 1 to 10646 part 1

2003 Unicode 4.0 Synchronized with 10646 third version

2003 IS 10646:2003 10646 third version (first edition), merging the two parts

2005 Unicode 4.1 Synchronized with Amd 1 to 10646:2003

2006 Unicode 5.0 Synchronized with Amd 2 to 10646:2003, plus Sindhi additions

2008 Unicode 5.1 Synchronized with Amd 3 and Amd 4 to 10646:2003

2009 Unicode 5.2 Synchronized with Amd 5 and Amd 6 to 10646:2003

2010 Unicode 6.0
Synchronized with 10646 second edition of third version, plus
the Indian rupee sign

2011 IS 10646:2011 10646 second edition of third version

2012 Unicode 6.1 Synchronized with 10646 third edition of third version

2012 IS 10646:2012 10646 third edition of third version

2012 Unicode 6.2 Added Turkish lira sign

Table C-1. Timeline

Relationship to ISO/IEC 10646 1113 C.1 History

2013 Unicode 6.3 Added several bidirectional controls

2014 Unicode 7.0
Synchronized with Amd 1 and Amd 2 to 10646:2012, plus the
ruble sign

2014 IS 10646:2014 10646 fourth edition to third version

2015 Unicode 8.0
Synchronized with Amd 1 to 10646:2014, plus 51 additional
characters

2016 Unicode 9.0
Synchronized with Amd 1 and Amd 2 to 10646:2014, plus 273
additional characters

2017 Unicode 10.0
Synchronized with 10646 fifth edition of third version, plus 344
additional characters

2017 IS 10646:2017 10646 fifth edition to third version

2018 Unicode 11.0
Synchronized with Amd 1 to 10646:2017, plus 117 additional
characters

2019 Unicode 12.0
Synchronized with Amd 1 and Amd 2 to 10646:2017, plus 62
additional characters

2019 Unicode 12.1 Added Japanese era name reiwa

2020 Unicode 13.0 Synchronized with 10646 sixth edition of third version

2020 IS 10646:2020 10646 sixth edition to third version

2021 Unicode 14.0 Added 838 characters

2022 Unicode 15.0 Synchronized with Amd 1 to 10646:2020

2023 Unicode 15.1 Added 627 characters

2024 Unicode 16.0 Synchronized with Amd 2 to 10646:2020

The combined repertoire presented in ISO/IEC 10646 is a superset of The Unicode

Standard, Version 1.0, repertoire as amended by The Unicode Standard, Version 1.0.1.

The Unicode Standard, Version 1.0, was amended by the Unicode 1.0.1 Addendum to

make the Unicode Standard a proper subset of ISO/IEC 10646. This effort entailed

both moving and eliminating a small number of characters.

The Unicode Standard, Version 2.0, covered the repertoire of The Unicode Standard,

Version 1.1 (and IS 10646), plus the first seven amendments to IS 10646, as follows:

Amd. 1: UTF-16

Amd. 2: UTF-8

Amd. 3: Coding of C1 Controls

Amd. 4: Removal of Annex G: UTF-1

C.1.1 Unicode 1.0

C.1.2 Unicode 2.0

Relationship to ISO/IEC 10646 1114 C.1 History

Amd. 5: Korean Hangul Character Collection

Amd. 6: Tibetan Character Collection

Amd. 7: 33 Additional Characters (Hebrew, Long S, Dong)

In addition, The Unicode Standard, Version 2.0, covered Technical Corrigendum No. 1

(on renaming of AE LIGATURE to LETTER) and such Editorial Corrigenda to ISO/IEC

10646 as were applicable to the Unicode Standard. The euro sign and the object

replacement character were added in Version 2.1, per amendment 18 of ISO/IEC

10646-1.

The Unicode Standard, Version 3.0, is synchronized with the second edition of ISO/

IEC 10646-1. The latter contains all of the published amendments to 10646-1; the list

includes the first seven amendments, plus the following:

Amd. 8: Addition of Annex T: Procedure for the Unification and Arrangement of CJK

Ideographs

Amd. 9: Identifiers for Characters

Amd. 10: Ethiopic Character Collection

Amd. 11: Unified Canadian Aboriginal Syllabics Character Collection

Amd. 12: Cherokee Character Collection

Amd. 13: CJK Unified Ideographs with Supplementary Sources (Horizontal Exten‐

sion)

Amd. 14: Yi Syllables and Yi Radicals Character Collection

Amd. 15: Kangxi Radicals, Hangzhou Numerals Character Collection

Amd. 16: Braille Patterns Character Collection

Amd. 17: CJK Unified Ideographs Extension A (Vertical Extension)

Amd. 18: Miscellaneous Letters and Symbols Character Collection (which includes

the euro sign)

Amd. 19: Runic Character Collection

Amd. 20: Ogham Character Collection

Amd. 21: Sinhala Character Collection

C.1.3 Unicode 3.0

Relationship to ISO/IEC 10646 1115 C.1 History

Amd. 22: Keyboard Symbols Character Collection

Amd. 23: Bopomofo Extensions and Other Character Collection

Amd. 24: Thaana Character Collection

Amd. 25: Khmer Character Collection

Amd. 26: Myanmar Character Collection

Amd. 27: Syriac Character Collection

Amd. 28: Ideographic Description Characters

Amd. 29: Mongolian

Amd. 30: Additional Latin and Other Characters

Amd. 31: Tibetan Extension

The second edition of ISO/IEC 10646-1 also contains the contents of Technical Corri‐

gendum No. 2 and all the Editorial Corrigenda to the year 2000.

The Unicode Standard, Version 4.0, is synchronized with the third version of ISO/IEC

10646. The third version of ISO/IEC 10646 is the result of the merger of the second

edition of Part 1 (ISO/IEC 10646-1:2000) with the first edition of Part 2 (ISO/IEC

10646-2:2001) into a single publication. The third version incorporates the published

amendments to 10646-1 and 10646-2:

Amd. 1 (to part 1): Mathematical symbols and other characters

Amd. 2 (to part 1): Limbu, Tai Le, Yijing, and other characters

Amd. 1 (to part 2): Aegean, Ugaritic, and other characters

The third version of ISO/IEC 10646 also contains all the Editorial Corrigenda to date.

The Unicode Standard, Version 5.0, is synchronized with ISO/IEC 10646:2003 plus its

first two published amendments:

Amd. 1: Glagolitic, Coptic, Georgian and other characters

Amd. 2: N’Ko, Phags-Pa, Phoenician and Cuneiform

C.1.4 Unicode 4.0

C.1.5 Unicode 5.0

Relationship to ISO/IEC 10646 1116 C.1 History

Four Devanagari characters for the support of the Sindhi language (U+097B,

U+097C, U+097E, U+097F) were added in Version 5.0 per Amendment 3 of ISO/IEC

10646.

The Unicode Standard, Version 6.0, is synchronized with the second edition of ISO/

IEC 10646. The second edition of the third version of ISO/IEC 10646 consolidates all

of the repertoire additions from the published eight amendments of ISO/IEC

10646:2003. These include the first two amendments listed under Unicode 5.0, plus

the following:

Amd. 3: Lepcha, Ol Chiki, Saurashtra, Vai, and other characters

Amd. 4: Cham, Game Tiles, and other characters

Amd. 5: Tai Tham, Tai Viet, Avestan, Egyptian Hieroglyphs, CJK Unified Ideographs

Extension C, and other characters

Amd. 6: Javanese, Lisu, Meetei Mayek, Samaritan, and other characters

Amd. 7: Mandaic, Batak, Brahmi, and other characters

Amd. 8: Additional symbols, Bamum supplement, CJK Unified Ideographs Extension

D, and other characters

One additional character, for the support of the new Indian currency symbol

(U+20B9 INDIAN RUPEE SIGN), was accelerated into Version 6.0, based on its

approval for the third edition of ISO/IEC 10646.

The Unicode Standard, Version 7.0, is synchronized with the third edition of ISO/IEC

10646 plus its two published amendments:

Amd. 1: Linear A, Palmyrene, Manichaean, Khojki, Khudawadi, Bassa Vah,

Duployan, and other characters

Amd. 2: Caucasian Albanian, Psalter Pahlavi, Mahajani, Grantha, Modi, Pahawh

Hmong, Mende Kikakui, and other characters

One additional character, for the support of the new Russian currency symbol

(U+20BD RUBLE SIGN), was accelerated into Version 7.0, based on its approval for

the fourth edition of ISO/IEC 10646.

C.1.6 Unicode 6.0

C.1.7 Unicode 7.0

Relationship to ISO/IEC 10646 1117 C.1 History

The Unicode Standard, Version 8.0, is synchronized with the fourth edition of ISO/

IEC 10646, plus its first published amendment:

Amd. 1: Cherokee supplement and other characters

An additional 51 characters were accelerated into Version 8.0, based on their approval

for Amendment 2 to the fourth edition of ISO/IEC 10646. These include U+20BE

LARI SIGN, for the support of the new Georgian currency symbol, nine additional

CJK unified ideographs, and 41 emoji characters.

The Unicode Standard, Version 9.0, is synchronized with the fourth edition of ISO/

IEC 10646, plus its two published amendments:

Amd. 1: Cherokee supplement and other characters

Amd. 2: Bhaiksuki, Marchen, Tangut and other characters

An additional 273 characters were accelerated into Version 9.0, based on their

approval for the fifth edition of ISO/IEC 10646. These include characters for the

Adlam script and the Newa script, 72 emoji characters, 19 television symbols, and one

other punctuation mark.

The Unicode Standard, Version 10.0, is synchronized with the fifth edition of ISO/IEC

10646.

An additional 344 characters were accelerated into Version 10.0, based on their

approval for Amendment 1 to the fifth edition of ISO/IEC 10646. These include three

additional characters for the Zanabazar Square script, 285 hentaigana characters, and

56 emoji characters.

The Unicode Standard, Version 11.0, is synchronized with the fifth edition of ISO/IEC

10646, plus its first published amendment:

Amd. 1: Dogra, Gunjala Gondi, Makasar, Medefaidrin, Indic Siyaq Numbers, and

other characters

An additional 117 characters were accelerated into Version 11.0, based on their

approval for Amendment 2 to the fifth edition of ISO/IEC 10646. These include

C.1.8 Unicode 8.0

C.1.9 Unicode 9.0

C.1.10 Unicode 10.0

C.1.11 Unicode 11.0

Relationship to ISO/IEC 10646 1118 C.1 History

Mtavruli uppercase Georgian letters, five additional CJK unified ideographs, and 66

emoji characters.

The Unicode Standard, Version 12.0, is synchronized with the fifth edition of ISO/IEC

10646, plus its two published amendments:

Amd. 1: Dogra, Gunjala Gondi, Makasar, Medefaidrin, Indic Siyaq Numbers, and

other characters

Amd. 2: Nandinagari, Georgian extension, and other characters

An additional 62 characters were accelerated into Version 12.0, based on their

approval for the sixth edition of ISO/IEC 10646. These include U+1E94B ADLAM

NASALIZATION MARK and 61 emoji characters.

The Unicode Standard, Version 13.0 is synchronized with the sixth edition of ISO/IEC

10646.

The Unicode Standard, Version 14.0 adds 838 new characters, including nine unified

CJK ideographs.

The Unicode Standard, Version 15.0 adds 4,489 new characters, including 4,193

unified CJK ideographs. Version 15.1 adds 627 further characters, including 622

urgently needed unified CJK ideographs.

The Unicode Standard, Version 16.0 adds 5,185 new characters. Version 16.0 is the first

version for which the core specification has been published in interactive HTML. The

HTML version is authoritative. For archival purposes, a PDF version is produced

directly from the HTML.

The synchronization of The Unicode Standard, Version 16.0, with ISO/IEC 10646:2020

plus Amd 1 and Amd 2 means that the repertoire, encoding, and names of all charac‐

ters are identical between the two standards at those version levels. All other changes

to the text of 10646 that have a bearing on the Unicode Standard have been taken into

account in the revision of the Unicode Standard.

C.1.12 Unicode 12.0

C.1.13 Unicode 13.0

C.1.14 Unicode 14.0

C.1.15 Unicode 15.0

C.1.16 Unicode 16.0

Relationship to ISO/IEC 10646 1119 C.1 History

ISO/IEC 10646:2011 has significantly revised its discussion of encoding forms,

compared to earlier editions of that standard. The terminology for encoding forms

(and encoding schemes) in 10646 now matches exactly the terminology used in the

Unicode Standard. Furthermore, 10646 is now described in terms of a codespace

U+0000..U+10FFFF, instead of a 31-bit codespace, as in earlier editions. This conver‐

gence in codespace description has eliminated any discrepancies in possible interpre‐

tation of the numeric values greater than 0x10FFFF. As a result, this section now

merely notes a few items of mostly historic interest regarding encoding forms and

terminology.

 UCS-4 stands for “Universal Character Set coded in 4 octets.” It is now

treated simply as a synonym for UTF-32, and is considered the canonical form for

representation of characters in 10646.

 UCS-2 stands for “Universal Character Set coded in 2 octets” and is also

known as “the two-octet BMP form.” It was documented in earlier editions of 10646

as the two-octet (16-bit) encoding consisting only of code positions for plane zero, the

Basic Multilingual Plane. This documentation has been removed from ISO/IEC

10646:2011 and subsequent editions, and the term UCS-2 should now be considered

obsolete. It no longer refers to an encoding form in either 10646 or the Unicode Stan‐

dard.

The character “A”, U+0041 LATIN CAPITAL LETTER A, has the unchanging numerical

value 41 hexadecimal. This value may be extended by any quantity of leading zeros to

serve in the context of the following encoding standards and transformation formats

(see Table C-2).

Bits Standard Binary Hex Dec Char

7 ASCII 1000001 41 65 A

8 8859-1 01000001 41 65 A

16 UTF-16 00000000 01000001 41 65 A

32 UTF-32, UCS-4 00000000 00000000 00000000 01000001 41 65 A

This design eliminates the problem of disparate values in all systems that use either

of the standards and their transformation formats.

C.2 Encoding Forms in ISO/IEC 10646

UCS-4.

UCS-2.

C.2.1 Zero Extending

Table C-2. Zero Extending

Relationship to ISO/IEC 10646 1120 C.2 Encoding Forms in ISO/IEC 10646

The ISO/IEC 10646 definition of UTF-8 is identical to UTF-8 as described under Defi‐

nition D92 in Section 3.9, Unicode Encoding Forms.

UTF-8 can be used to transmit text data through communications systems that

assume that individual octets in the range of x00 to x7F have a definition according

to ISO/IEC 4873, including a C0 set of control functions according to the 8-bit struc‐

ture of ISO/IEC 2022. UTF-8 also avoids the use of octet values in this range that have

special significance during the parsing of file name character strings in widely used

file-handling systems.

The ISO/IEC 10646 definition of UTF-16 is identical to UTF-16 as described under

Definition D91 in Section 3.9, Unicode Encoding Forms.

C.3 UTF-8 and UTF-16

C.3.1 UTF-8

C.3.2 UTF-16

Relationship to ISO/IEC 10646 1121 C.3 UTF-8 and UTF-16

Programmers and system users should treat the encoded character values from the

Unicode Standard and ISO/IEC 10646 as identities, especially in the transmission of

raw character data across system boundaries. The Unicode Consortium and ISO/IEC

JTC1/SC2/WG2 are committed to maintaining the synchronization between the two

standards.

However, the Unicode Standard and ISO/IEC 10646 differ in the precise terms of

their conformance specifications. Any Unicode implementation will conform to ISO/

IEC 10646, but because the Unicode Standard imposes additional constraints on char‐

acter semantics and transmittability, not all implementations that are compliant with

ISO/IEC 10646 will be compliant with the Unicode Standard.

C.4 Synchronization of the Standards

Relationship to ISO/IEC 10646 1122 C.4 Synchronization of the Standards

ISO/IEC 10646 provides mechanisms for specifying a number of implementation

parameters. ISO/IEC 10646 contains no means of explicitly declaring the Unicode

Standard as such. As a whole, however, the Unicode Standard may be considered as

encompassing the entire repertoire of ISO/IEC 10646 and having the following

features (as well as additional semantics):

Encoding forms: UTF-8, UTF-16, or UTF-32

Encoding schemes: UTF-8, UTF-16BE, UTF-16LE, UTF-16, UTF-32BE,

UTF-32LE, or UTF-32

Few applications are expected to make use of all of the characters defined in ISO/IEC

10646. The conformance clauses of the two standards address this situation in very

different ways. ISO/IEC 10646 provides a mechanism for specifying included subsets

of the character repertoire, permitting implementations to ignore characters that are

not included (see normative Annex A of ISO/IEC 10646). A Unicode implementation

requires a minimal level of handling all character codes—namely, the ability to store

and retransmit them undamaged. Thus the Unicode Standard encompasses the

entire ISO/IEC 10646 repertoire without requiring that any particular subset be

implemented.

The Unicode Standard does not provide formal mechanisms for identifying a stream

of bytes as Unicode characters, although to some extent this function is served by use

of the byte order mark (U+FEFF) to indicate byte ordering. ISO/IEC 10646 defines an

ISO/IEC 2022 control sequence to introduce the use of 10646. ISO/IEC 10646 also

allows the use of U+FEFF as a “signature” as described in ISO/IEC 10646. This

optional “signature” convention for identification of UTF-8, UTF-16, and UTF-32 is

described in the informative Annex H of 10646. It is consistent with the description

of the byte order mark in Section 23.8, Specials.

C.5 Identification of Features for Unicode

•

•

Relationship to ISO/IEC 10646 1123
C.5 Identification of Features for

Unicode

Unicode character names follow the ISO/IEC character naming guidelines (summa‐

rized in informative Annex L of ISO/IEC 10646). In the first version of the Unicode

Standard, the naming convention followed the ISO/IEC naming convention, but with

some differences that were largely editorial. For example,

ISO/IEC 10646 name 029A LATIN SMALL LETTER CLOSED OPEN E

Unicode 1.0 name 029A LATIN SMALL LETTER CLOSED EPSILON

In the ISO/IEC framework, the unique character name is viewed as the major

resource for both character semantics and cross-mapping among standards. In the

framework of the Unicode Standard, character semantics are indicated via character

properties, functional specifications, usage annotations, and name aliases; cross-

mappings among standards are provided in the form of explicit tables available on

the Unicode website. The disparities between the Unicode 1.0 names and ISO/IEC

10646 names have been remedied by adoption of ISO/IEC 10646 names in the

Unicode Standard. The names adopted by the Unicode Standard are from the

English-language version of ISO/IEC 10646, even when other language versions are

published by ISO.

C.6 Character Names

Relationship to ISO/IEC 10646 1124 C.6 Character Names

The core of a character code standard is a mapping of code points to characters, but

in some cases the semantics or even the identity of the character may be unclear.

Certainly a character is not simply the representative glyph used to depict it in the

standard. For this reason, the Unicode Standard supplies the information necessary

to specify the semantics of the characters it encodes.

Thus the Unicode Standard encompasses far more than a chart of code points. It also

contains a set of extensive character functional specifications and data, as well as

substantial background material designed to help implementers better understand

how the characters interact. The Unicode Standard specifies properties and algo‐

rithms. Conformant implementations of the Unicode Standard will also be confor‐

mant with ISO/IEC 10646.

Compliant implementations of ISO/IEC 10646 can be conformant to the Unicode

Standard—as long as the implementations conform to all additional specifications

that apply to the characters of their adopted subsets, and as long as they support all

Unicode characters outside their adopted subsets in the manner referred to in

Appendix C.5, Identification of Features for Unicode.

C.7 Character Functional Specifications

Relationship to ISO/IEC 10646 1125
C.7 Character Functional

Specifications

Appendix D

Version History of the Standard

This appendix provides version history of the standard. Updates to data files are

documented in Unicode Standard Annex #44, “Unicode Character Database.”

The Unicode Technical Committee updates the Unicode Standard to respond to the

needs of implementers and users while maintaining consistency with ISO/IEC 10646.

The relationship between these versions of Unicode and ISO/IEC 10646 is shown in

Table D-1. For more detail on the relationship of Unicode and ISO/IEC 10646, see

Appendix C, Relationship to ISO/IEC 10646.

Year Version Published ISO/IEC 10646

1991 Unicode 1.0
Vol. 1, Addison-
Wesley

Basis for Committee Draft 2 of 10646-1

1992
Unicode
1.0.1

Vol. 1, 2,
Addison-Wesley

Interim merger version

1993 Unicode 1.1 UTR #4 Matches 10646-1

1996 Unicode 2.0 Addison-Wesley Matches 10646-1 plus amendments

1998 Unicode 2.1 UTR #8 Matches 10646-1 plus amendments

2000 Unicode 3.0 Addison-Wesley Matches 10646-1 second edition

2001 Unicode 3.1 UAX #27
Matches 10646-1 second edition plus two characters,
10646-2 first edition

2002 Unicode 3.2 UAX #28
Matches 10646-1 second edition plus amendment,
10646-2 first edition

2003 Unicode 4.0 Addison-Wesley Matches 10646:2003, third version

2005 Unicode 4.1 Web publication Matches 10646:2003, third version, plus Amd 1

2006 Unicode 5.0
Addison-Wesley
(2007)

Matches 10646:2003, third version, plus Amd 1, Amd
2, and four characters from Amd 3

2008 Unicode 5.1 Web publication
Matches 10646:2003, third version, plus Amd 1
through Amd 4

2009 Unicode 5.2 Web publication
Matches 10646:2003, third version, plus Amd 1
through Amd 6

2010 Unicode 6.0 Web publication Matches 10646:2011, second edition

2012 Unicode 6.1 Web publication Matches 10646:2012, third edition

2012 Unicode 6.2 Web publication Matches 10646:2012, third edition

Table D-1. Versions of Unicode and ISO/IEC 10646

1126

2013 Unicode 6.3 Web publication Matches 10646:2012, third edition

2014 Unicode 7.0 Web publication
Matches 10646:2012, third edition, plus Amd 1 and
Amd 2

2015 Unicode 8.0 Web publication
Matches 10646:2014, fourth edition, plus Amd 1, and
51 characters from Amd 2

2016 Unicode 9.0 Web publication
Matches 10646:2014, fourth edition, plus Amd 1 and
Amd 2, and 273 characters from 10646, fifth edition

2017 Unicode 10.0 Web publication
Matches 10646:2017, fifth edition, plus 344 characters
from Amd 1

2018 Unicode 11.0 Web publication
Matches 10646:2017, fifth edition, plus Amd 1, and 117
characters from Amd 2.

2019 Unicode 12.0 Web publication
Matches 10646:2017, fifth edition, plus Amd 1 and
Amd 2, and 62 characters from 10646, sixth edition

2020 Unicode 13.0 Web publication Matches 10646:2020, sixth edition

2021 Unicode 14.0 Web publication Adds 838 characters

2022 Unicode 15.0 Web publication Matches 10646:2020, sixth edition, plus Amd 1

2023 Unicode 15.1 Web publication Adds 627 characters

2024 Unicode 16.0 Web publication
Matches 10646:2020, sixth edition, plus Amd 1 and
Amd 2

Version History of the Standard 1127

Appendix E

Han Unification History

Efforts to standardize a comprehensive Han character repertoire go back at least as

far as the Eastern Han dynasty, when the important dictionary Shuowen Jiezi (121 CE)

codified a set of some 10,000 characters and variants, crystallizing earlier Qin

dynasty initiatives at orthographic reform. Subsequent dictionaries in China grew

larger as each generation re-combined the Shuowen script elements to create new

characters. By the time the Qing dynasty Kang Xi dictionary was completed in the

18th century, the character set had grown to include more than 40,000 characters and

variants. In relatively recent times many more characters and variants have been

created and catalogued, reflecting modern PRC simplification and standardization

initiatives, as well as ongoing inventories of legacy printed texts.

The effort to create a unified Han character encoding was guided by the developing

national standards, driven by offshoots of the dictionary traditions just mentioned,

and focused on modern bibliographic and pedagogical lists of characters in common

use in various genres. Much of the early work to create national and transnational

encoding standards was published in China and Japan in the late 1970s and early

1980s.

The Chinese Character Code for Information Interchange (CCCII), first published in

Taiwan in 1980, identified a set of some 5,000 characters in frequent use in China,

Taiwan, and Japan. (Subsequent revisions of CCCII considerably expanded the set.)

In somewhat modified form, CCCII was adopted for use in the United States as ANSI

Z39.64-1989, also known as EACC, the East Asian Character Code For Bibliographic

Use. EACC encoded some 16,000 characters and variants, organized using a twelve-

layer variant mapping mechanism.

In 1980, Takahashi Tokutaro of Japan’s National Diet Library proposed ISO standard‐

ization of a character set for common use among East Asian countries. This proposal

included a report on the first Japanese Industrial Standard for kanji coding (JIS C

6226-1978). Published in January 1978, JIS C 6226-1978 was growing in influence: it

encoded a total of 6,349 kanji arranged in two levels according to frequency of use,

and approximately 500 other characters, including Greek and Cyrillic.

1128

The Unicode Han character set began with a project to create a Han character cross-

reference database at Xerox in 1986. In 1988, a parallel effort began at Apple based on

the RLG’s CJK Thesaurus, which is used to maintain EACC. The merger of the Apple

and Xerox databases in 1989 led to the first draft of the Unicode Han character set. At

the September 1989 meeting of X3L2 (an accredited standards committee for codes

and character sets operating under the procedures of the American National Stan‐

dards Institute), the Unicode Working Group proposed this set for inclusion in ISO/

IEC 10646.

The primary difference between the Unicode Han character repertoire and earlier

efforts was that the Unicode Han character set extended the bibliographic sets to

guarantee complete coverage of industry and newer national standards. The unifica‐

tion criteria employed in this original Unicode Han character repertoire were based

on rules used by JIS and on a set of Han character identity principles (rentong

yuanze) being developed in China by experts working with the Association for a

Common Chinese Code (ACCC). An important principle was to preserve all char‐

acter distinctions within existing and proposed national and industry standards.

The Unicode Han proposal stimulated interest in a unified Han set for inclusion in

ISO/IEC 10646, which led to an ad hoc meeting to discuss the issue of unification.

Held in Beijing in October 1989, this meeting was the beginning of informal coopera‐

tion between the Unicode Working Group and the ACCC to exchange information on

each group’s proposals for Han unification.

A second ad hoc meeting on Han unification was held in Seoul in February 1990. At

this meeting, the Korean delegation proposed the establishment of a group composed

of the East Asian countries and other interested organizations to study a unified Han

encoding. From this informal meeting emerged the Chinese/Japanese/Korean Joint

Research Group (hereafter referred to as the CJK-JRG).

A second draft of the Unicode Han character repertoire was sent out for widespread

review in December 1990 to coincide with the announcement of the formation of the

Unicode Consortium. The December 1990 draft of the Unicode Han character set

differed from the first draft in that it used the principle of Kang Xi radical-stroke

ordering of the characters. To verify independently the soundness and accuracy of

the unification, the Consortium arranged to have this draft reviewed in detail by East

Asian scholars at the University of Toronto.

In the meantime, China announced that it was about to complete its own proposal

for a Han Character Set, GB 13000. Concluding that the two drafts were similar in

content and philosophy, the Unicode Consortium and the Center for Computer and

Information Development Research, Ministry of Machinery and Electronic Industry

E.1 Development of the URO

Han Unification History 1129 E.1 Development of the URO

(CCID, China’s computer standards body), agreed to merge the two efforts into a

single proposal. Each added missing characters from the other set and agreed upon a

method for ordering the characters using the four-dictionary ordering scheme

described in Section 18.1, Han. Both proposals benefited greatly from programmatic

comparisons of the two databases.

As a result of the agreement to merge the Unicode Standard and ISO/IEC 10646, the

Unicode Consortium agreed to adopt the unified Han character repertoire that was to

be developed by the CJK-JRG.

The first CJK-JRG meeting was held in Tokyo in July 1991. The group recognized that

there was a compelling requirement for unification of the existing CJK ideographic

characters into one coherent coding standard. Two basic decisions were made: to use

GB 13000 (previously merged with the Unicode Han repertoire) as the basis for what

would be termed “The Unified Repertoire and Ordering,” and to verify the unifica‐

tion results based on rules that had been developed by Professor Miyazawa Akira and

other members of the Japanese delegation.

The formal review of GB 13000 began immediately. Subsequent meetings were held

in Beijing and Hong Kong. On March 27, 1992, the CJK-JRG completed the Unified

Repertoire and Ordering (URO), Version 2.0. This repertoire was subsequently

published both by the Unicode Consortium in The Unicode Standard, Version 1.0,

Volume 2, and by ISO in ISO/IEC 10646-1:1993.

Han Unification History 1130 E.1 Development of the URO

In October 1993, the CJK-JRG became a formal subgroup of ISO/IEC JTC1/SC2/WG2

and was renamed the Ideographic Rapporteur Group (IRG). The IRG now has the

formal responsibility of developing extensions to the URO 2.0 to expand the encoded

repertoire of unified CJK ideographs. The Unicode Consortium participates in this

group as a liaison member of ISO.

In its second meeting held in Hà Nội in February 1994, the IRG agreed to include

Vietnamese Chữ Nôm ideographs in a future version of the URO and to add a fifth

reference dictionary to the ordering scheme.

In 1998, the IRG completed work on the first ideographic supplement to the URO,

CJK Unified Ideographs Extension A. This set of 6,582 characters was culled from

national and industrial standards and historical literature and was first encoded in

The Unicode Standard, Version 3.0. CJK Unified Ideographs Extension A represents

the final set of CJK unified ideographs to be encoded on the BMP.

In 2000, the IRG completed work on the second ideographic supplement to the URO,

a very large collection known as CJK Unified Ideographs Extension B. These 42,711

characters were derived from major classical dictionaries and literary sources, and

from many additional national standards, as documented in Appendix E.3, CJK

Sources. The Extension B block was first encoded in The Unicode Standard, Version

3.1, and is the first block of CJK unified ideographs to be encoded on Plane 2.

In 2005, the IRG identified a subset of the unified CJK ideographs, called the Interna‐

tional Ideograph Core (IICore). This subset is designed to serve as a relatively small

block of around 10,000 ideographs, mainly for use in devices with limited resources,

such as mobile phones. The IICore subset is meant to cover the vast majority of

modern texts in all regions where ideographs are used. The repertoire of the IICore

subset is identified with the kIICore property in the Unihan Database. A related but

much larger set, UnihanCore2020, was standardized by the Unicode Technical

Committee in 2020 (see “UnihanCore2020” in Section 18.1, Han).

Also in 2005, a small set of ideographs was encoded to support the complete reper‐

toire of the GB 18030-2000 and HKSCS-2004 standards. In addition, an initial set of

CJK strokes was encoded.

In 2008, the IRG completed work on the third ideographic supplement to the URO, a

block of 4,149 characters from various sources. The Extension C block was first

encoded in The Unicode Standard, Version 5.2.

E.2 Continuing Research on Ideographs

E.2.1 Ideographic Rapporteur Group

Han Unification History 1131
E.2 Continuing Research on

Ideographs

In 2009, the IRG completed work on the fourth ideographic supplement to the URO,

a block of 222 characters from various sources as documented in Appendix E.3, CJK

Sources. The Extension D block represents a small number of characters which IRG

member bodies felt were urgently needed. The extension D block was first encoded in

The Unicode Standard, Version 6.0.

In 2012, the IRG completed work on the fifth supplement to the URO, a block of 5,762

characters from various sources. The Extension E block was first encoded in The

Unicode Standard, Version 8.0.

In 2015, the IRG completed work on the sixth supplement to the URO, a block of

7,473 characters from various sources. The Extension F block was first encoded in

The Unicode Standard, Version 10.0.

In June 2019, the Ideographic Rapporteur Group was renamed to Ideographic

Research Group, preserving the same “IRG” acronym.

In 2019, the IRG completed work on the seventh supplement to the URO, a block of

4,939 characters from various sources. The Extension G block was first encoded in

The Unicode Standard, Version 13.0, and is the first collection of CJK unified ideo‐

graphs to be encoded on Plane 3.

In 2021, the IRG completed work on the eighth supplement to the URO, a block of

4,192 characters from various sources. The Extension H block was first encoded in

The Unicode Standard, Version 15.0, and is the second collection of CJK unified ideo‐

graphs to be encoded on Plane 3.

The IRG received submissions for what was originally intended to become the ninth

supplement from member bodies in mid-2021, which included submissions from

China, SAT, South Korea, TCA, the United Kingdom, the Unicode Consortium, and

Vietnam. This supplement is now expected to become the Extension J block.

In 2023, the UTC and several individual IRG experts, in response to a draft amend‐

ment of China’s GB 18030-2022 standard that included several hundred urgently

needed characters, worked with China to develop the ninth supplement to the URO,

a block of 622 urgently needed characters from China. The Extension I block was first

encoded in The Unicode Standard, Version 15.1, and immediately follows the Exten‐

sion F block in Plane 2.

E.2.2 Ideographic Research Group

Han Unification History 1132
E.2 Continuing Research on

Ideographs

The Unicode Standard draws its unified Han character repertoire from a number of

different character set standards. These standards, dictionaries and other documents

are grouped into 11 sources. The detailed listing of all of those sources, including

bibliographic references for the various standards and other documents involved, can

be found in Unicode Standard Annex #38, “Unicode Han Database (Unihan).” The

primary work of unifying and ordering the characters from these sources was done

by the Ideographic Research Group (IRG).

The G, T, H, M, J, K, KP, S, U, UK, and V sources represent the characters submitted

to the IRG by its member bodies. The G source consists of submissions from the

People’s Republic of China and Singapore. The other ten sources are the submissions

from TCA (Taipei Computer Association), Hong Kong SAR, Macao SAR, Japan,

South Korea, North Korea, SAT (Saṃgaṇikīkṛtaṃ Taiśotripiṭakaṃ) Daizōkyō Text

Database Committee, the Unicode Consortium, the United Kingdom, and Vietnam,

respectively.

 In some cases, the entire ideographic

repertoire of the original character set standards was not included in the corre‐

sponding source. Three reasons explain this decision:

Where the repertoires of two of the character set standards within a single

source have considerable overlap, the characters in the overlap might be

included only once in the source. This approach was used, for example, with

GB/T 2312-1980 and GB/T 12345-1990, which have many ideographs in

common. Characters in GB/T 12345-1990 that are duplicates of characters in

GB/T 2312-1980 were not included in the G source.

Where a character set standard is based on unification rules that differ

substantially from those used by the IRG, many variant characters found in

the character set standard will not be included in the source. This situation is

the case with CNS 11643-1992, EACC, and CCCII. It is the only case where full

round-trip compatibility with the Han ideograph repertoire of the relevant

character set standards is not guaranteed.

KS C 5601-1987 contains numerous duplicate ideographs included because

they have multiple pronunciations in Korean. They are encoded in the CJK

Compatibility Ideographs block to provide full round-trip compatibility with

KS C 5601-1987 (now known as KS X 1001:2004).

E.3 CJK Sources

Omission of Repertoire for Some Sources.

1.

2.

3.

Han Unification History 1133 E.3 CJK Sources

Appendix F

Documentation of CJK Strokes

This appendix provides additional documentation regarding each of the CJK stroke

characters encoded in the CJK Strokes block (U+31C0..U+31EF). For a general intro‐

duction to CJK characters and CJK strokes, see Section 18.1, Han.

The information in Table F-1 gives five types of identifying data for each CJK stroke.

Each stroke is also exemplified in a spanning lower row, with a varying number of

examples, as appropriate. The information contained in each of the five columns and

in the examples row is described more specifically below.

Stroke:A representative glyph for each CJK stroke character, with its Unicode

code point shown underneath.

Acronym: The abbreviation used in the Unicode character name for the CJK

stroke character.

Pīnyīn: The Hanyu Pinyin (Modern Standard Chinese) romanization of the

stroke name (as given in the next column).

Name: A traditional name for this stroke, as written in Han characters.

Variant: Alternative (context-specific) forms of the representative glyph for this

stroke, if any.

Examples: Representative glyphs and variant forms of CJK unified ideographs,

exemplifying typical usage of this stroke type in Han characters. The stroke or

strokes in question are highlighted in red to make it easier to spot them in the

example glyphs. Each example glyph (or variant) is followed by the Unicode

code point for the CJK unified ideograph character it represents, for easy

reference.

The CJK stroke characters in the table are ordered according to the traditional “Five

Types.”

•

•

•

•

•

•

Table F-1. CJK Strokes

1134

Documentation of CJK Strokes 1135

Documentation of CJK Strokes 1136

Documentation of CJK Strokes 1137

Documentation of CJK Strokes 1138

Documentation of CJK Strokes 1139

	Contents
	Preface
	Why Unicode?
	Organization of This Standard
	The Unicode Character Database
	Unicode Code Charts
	Unicode Standard Annexes
	Unicode Technical Standards and Unicode Technical Reports
	Updates and Errata
	Acknowledgements
	About This Publication

	1 Introduction
	Figure 1-1. Wide ASCII
	1.1 Coverage
	1.1.1 Standards Coverage
	1.1.2 New Characters

	1.2 Design Goals
	Figure 1-2. Unicode Compared to the 2022 Framework

	1.3 Text Handling
	1.3.1 Characters and Glyphs
	1.3.2 Text Elements

	2 General Structure
	2.1 Architectural Context
	2.1.1 Basic Text Processes
	2.1.2 Text Elements, Characters, and Text Processes
	Figure 2-1. Text Elements and Characters

	2.1.3 Text Processes and Encoding

	2.2 Unicode Design Principles
	Table 2-1. The 10 Unicode Design Principles
	2.2.1 Universality
	2.2.2 Efficiency
	2.2.3 Characters, Not Glyphs
	Figure 2-2. Characters Versus Glyphs
	Table 2-2. User-Perceived Characters with Multiple Code Points
	Figure 2-3. Unicode Character Code to Rendered Glyphs

	2.2.4 Semantics
	2.2.5 Plain Text
	2.2.6 Logical Order
	Figure 2-4. Bidirectional Ordering
	Figure 2-5. Writing Direction and Numbers

	2.2.7 Unification
	Figure 2-6. Typeface Variation for the Bone Character

	2.2.8 Dynamic Composition
	Figure 2-7. Dynamic Composition

	2.2.9 Stability
	2.2.10 Convertibility

	2.3 Compatibility Characters
	2.3.1 Compatibility Variants
	2.3.2 Compatibility Decomposable Characters

	2.4 Code Points and Characters
	Figure 2-8. Abstract and Encoded Characters
	2.4.1 Types of Code Points
	Table 2-3. Types of Code Points

	2.5 Encoding Forms
	Figure 2-9. Overlap in Legacy Mixed-Width Encodings
	Figure 2-10. Boundaries and Interpretation
	Figure 2-11. Unicode Encoding Forms
	2.5.1 UTF-32
	2.5.2 UTF-16
	2.5.3 UTF-8

	2.6 Encoding Schemes
	Table 2-4. The Seven Unicode Encoding Schemes
	Figure 2-12. Unicode Encoding Schemes

	2.7 Unicode Strings
	2.8 Unicode Allocation
	2.8.1 Planes
	2.8.2 Allocation Areas and Blocks
	2.8.3 Assignment of Code Points

	2.9 Details of Allocation
	Figure 2-13. Unicode Allocation
	2.9.1 Plane 0 (BMP)
	Figure 2-14. Allocation on the BMP

	2.9.2 Plane 1 (SMP)
	Figure 2-15. Allocation on Plane 1

	2.9.3 Plane 2 (SIP)
	2.9.4 Plane 3 (TIP)
	2.9.5 Other Planes

	2.10 Writing Direction
	Figure 2-16. Writing Directions

	2.11 Combining Characters
	Figure 2-17. Combining Enclosing Marks for Symbols
	2.11.1 Sequence of Base Characters and Combining Characters
	Figure 2-18. Sequence of Base Characters and Combining Characters
	Figure 2-19. Reordered Indic Vowel Signs
	Figure 2-20. Properties and Combining Character Sequences

	2.11.2 Multiple Combining Characters
	Figure 2-21. Multiple Combining Characters
	Table 2-5. Interaction of Combining Characters
	Table 2-6. Nondefault Stacking

	2.11.3 Ligated Multiple Base Characters
	Figure 2-22. Ligated Multiple Base Characters

	2.11.4 Exhibiting Nonspacing Marks in Isolation
	2.11.5 “Characters” and Grapheme Clusters

	2.12 Equivalent Sequences
	Figure 2-23. Equivalent Sequences
	2.12.1 Normalization
	Figure 2-24. Canonical Ordering

	2.12.2 Decompositions
	Figure 2-25. Types of Decomposables

	2.12.3 Non-decomposition of Certain Diacritics

	2.13 Special Characters
	2.13.1 Special Noncharacter Code Points
	2.13.2 Byte Order Mark (BOM)
	2.13.3 Layout and Format Control Characters
	2.13.4 The Replacement Character
	2.13.5 Control Codes

	2.14 Conforming to the Unicode Standard
	2.14.1 Characteristics of Conformant Implementations
	2.14.2 Unacceptable Behavior
	2.14.3 Acceptable Behavior
	2.14.4 Supported Subsets

	3 Conformance
	3.1 Versions of the Unicode Standard
	3.1.1 Stability
	3.1.2 Version Numbering
	3.1.3 Errata and Corrigenda
	3.1.4 References to the Unicode Standard
	3.1.5 Precision in Version Citation
	3.1.6 References to Unicode Character Properties
	3.1.7 References to Unicode Algorithms

	3.2 Conformance Requirements
	3.2.1 Code Points Unassigned to Abstract Characters
	3.2.2 Interpretation
	3.2.3 Modification
	3.2.4 Character Encoding Forms
	3.2.5 Character Encoding Schemes
	3.2.6 Bidirectional Text
	3.2.7 Normalization Forms
	3.2.8 Normative References
	3.2.9 Unicode Algorithms
	3.2.10 Default Casing Algorithms
	3.2.11 Unicode Standard Annexes

	3.3 Semantics
	3.3.1 Definitions
	3.3.2 Character Identity and Semantics

	3.4 Characters and Encoding
	Table 3-1. Named Unicode Algorithms

	3.5 Properties
	3.5.1 Types of Properties
	3.5.2 Property Values
	3.5.3 Default Property Values
	3.5.4 Classification of Properties by Their Values
	3.5.5 Property Status
	Table 3-2. Normative Character Properties
	Table 3-3. Informative Character Properties

	3.5.6 Context Dependence
	3.5.7 Stability of Properties
	3.5.8 Simple and Derived Properties
	3.5.9 Property Aliases
	3.5.10 Private Use

	3.6 Combination
	3.6.1 Combining Character Sequences
	3.6.2 Grapheme Clusters
	3.6.3 Application of Combining Marks
	Figure 3-1. Enclosing Marks

	3.7 Decomposition
	3.7.1 Compatibility Decomposition
	3.7.2 Canonical Decomposition

	3.8 Surrogates
	3.9 Unicode Encoding Forms
	Table 3-4. Examples of Unicode Encoding Forms
	3.9.1 UTF-32
	3.9.2 UTF-16
	Table 3-5. UTF-16 Bit Distribution

	3.9.3 UTF-8
	Table 3-6. UTF-8 Bit Distribution
	Table 3-7. Well-Formed UTF-8 Byte Sequences

	3.9.4 Encoding Form Conversion
	3.9.5 Constraints on Conversion Processes
	3.9.6 U+FFFD Substitution of Maximal Subparts
	Table 3-8. U+FFFD for Non-Shortest Form Sequences
	Table 3-9. U+FFFD for Ill-Formed Sequences for Surrogates
	Table 3-10. U+FFFD for Other Ill-Formed Sequences
	Table 3-11. U+FFFD for Truncated Sequences

	3.10 Unicode Encoding Schemes
	Table 3-12. Summary of UTF-16BE, UTF-16LE, and UTF-16
	Table 3-13. Summary of UTF-32BE, UTF-32LE, and UTF-32

	3.11 Normalization Forms
	3.11.1 Normalization Stability
	3.11.2 Combining Classes
	3.11.3 Specification of Unicode Normalization Forms
	3.11.4 Starters
	Table 3-14. Combining Marks and Starter Status

	3.11.5 Canonical Ordering Algorithm
	Table 3-15. Reorderable Pairs

	3.11.6 Canonical Composition Algorithm
	3.11.7 Definition of Normalization Forms

	3.12 Conjoining Jamo Behavior
	3.12.1 Definitions
	3.12.2 Hangul Syllable Decomposition
	Table 3-16. Hangul Characters Used in Examples

	3.12.3 Hangul Syllable Composition
	3.12.4 Hangul Syllable Name Generation
	3.12.5 Sample Code for Hangul Algorithms

	3.13 Default Case Algorithms
	3.13.1 Definitions
	Table 3-17. Context Specification for Casing

	3.13.2 Default Case Conversion
	3.13.3 Default Case Folding
	3.13.4 Default Case Detection
	Table 3-18. Case Detection Examples

	3.13.5 Default Caseless Matching

	4 Character Properties
	4.1 Unicode Character Database
	4.2 Case
	4.2.1 Definitions of Case and Casing
	Table 4-1. Relationship of Casing Definitions
	Table 4-2. Case Function Values for Strings

	4.2.2 Case Mapping
	Table 4-3. Sources for Case Mapping Information

	4.3 Combining Classes
	Figure 4-1. Positions of Common Combining Marks
	4.3.1 Reordrant, Split, and Subjoined Combining Marks

	4.4 Directionality
	4.5 General Category
	Table 4-4. General_Category Values

	4.6 Numeric Value
	4.6.1 Ideographic Numeric Values
	Table 4-5. Primary Numeric Ideographs
	Table 4-6. Ideographs Used as Accounting Numbers

	4.7 Bidi Mirrored
	4.8 Name
	Table 4-7. Types of Character Name Aliases
	4.8.1 Unicode Name Property
	Table 4-8. Name Derivation Rule Prefix Strings

	4.8.2 Code Point Labels
	Table 4-9. Construction of Code Point Labels

	4.8.3 Use of Character Names in APIs and User Interfaces

	4.9 Unicode 1.0 Names
	4.10 Letters, Alphabetic, and Ideographic
	4.11 Properties for Text Boundaries
	4.12 Characters with Unusual Properties
	Table 4-10. Unusual Properties

	4.13 Characters and Sequences That Should Not Be Emitted

	5 Implementation Guidelines
	5.1 Data Structures for Character Conversion
	5.1.1 Issues
	5.1.2 Multistage Tables
	Figure 5-1. Two-Stage Tables

	5.2 Programming Languages and Data Types
	5.2.1 Unicode Data Types for C

	5.3 Unknown and Missing Characters
	5.4 Handling Surrogate Pairs in UTF-16
	5.5 Handling Numbers
	5.6 Normalization
	Figure 5-2. Normalization

	5.7 Compression
	5.8 Newline Guidelines
	5.8.1 Definitions
	Table 5-1. Hex Values for Acronyms
	Table 5-2. NLF Platform Correlations

	5.8.2 Line Separator and Paragraph Separator
	5.8.3 Recommendations

	5.9 Regular Expressions
	5.10 Language Information in Plain Text
	5.10.1 Requirements for Language Tagging
	5.10.2 Language Tags and Han Unification

	5.11 Editing and Selection
	Figure 5-3. Consistent Character Boundaries

	5.12 Strategies for Handling Nonspacing Marks
	5.12.1 Keyboard Input
	Figure 5-4. Dead Keys Versus Handwriting Sequence

	5.12.2 Truncation
	Figure 5-5. Truncating Grapheme Clusters

	5.13 Rendering Nonspacing Marks
	Figure 5-6. Inside-Out Rule
	Figure 5-7. Fallback Rendering
	Figure 5-8. Bidirectional Placement
	Figure 5-9. Justification
	5.13.1 Canonical Equivalence
	Table 5-3. Typing Order Differing from Canonical Order
	Table 5-4. Permuting Combining Class Weights

	5.13.2 Positioning Methods
	Figure 5-10. Positioning with Ligatures
	Figure 5-11. Positioning with Contextual Forms
	Figure 5-12. Positioning with Enhanced Kerning

	5.14 Locating Text Element Boundaries
	5.15 Identifiers
	5.16 Sorting and Searching
	5.16.1 Culturally Expected Sorting and Searching
	5.16.2 Language-Insensitive Sorting
	5.16.3 Searching
	5.16.4 Sublinear Searching
	Figure 5-13. Sublinear Searching

	5.17 Binary Order
	5.17.1 UTF-8 in UTF-16 Order
	5.17.2 UTF-16 in UTF-8 Order

	5.18 Case Mappings
	5.18.1 Titlecasing
	5.18.2 Complications for Case Mapping
	Figure 5-14. Uppercase Mapping for Turkish I
	Figure 5-15. Lowercase Mapping for Turkish I
	Figure 5-16. Casing of German Sharp S

	5.18.3 Reversibility
	5.18.4 Caseless Matching
	5.18.5 Normalization and Casing
	Table 5-5. Casing and Normalization in Strings

	5.19 Mapping Compatibility Variants
	5.20 Unicode Security
	5.21 Ignoring Characters in Processing
	5.21.1 Characters Ignored in Text Segmentation
	5.21.2 Characters Ignored in Line Breaking
	5.21.3 Characters Ignored in Cursive Joining
	5.21.4 Characters Ignored in Identifiers
	5.21.5 Characters Ignored in Searching and Sorting
	5.21.6 Characters Ignored for Display

	5.22 U+FFFD Substitution in Conversion

	6 Writing Systems and Punctuation
	6.1 Writing Systems
	Figure 6-1. Overriding Inherent Vowels
	Table 6-1. Typology of Scripts in the Unicode Standard

	6.2 General Punctuation
	Figure 6-2. Forms of CJK Punctuation
	6.2.1 Blocks Devoted to Punctuation
	6.2.2 Format Control Characters
	6.2.3 Space Characters
	Table 6-2. Unicode Space Characters

	6.2.4 Dashes and Hyphens
	Table 6-3. Unicode Dash Characters

	6.2.5 Paired Punctuation
	6.2.6 Language-Based Usage of Quotation Marks
	Figure 6-3. European Quotation Marks
	Table 6-4. Models of Visual Relationship between Quote Glyphs
	Table 6-5. East Asian Quotation Marks
	Figure 6-4. Asian Quotation Marks
	Table 6-6. Opening and Closing Forms

	6.2.7 Apostrophes
	6.2.8 Hyphenation Point and Dictionary Syllabification
	Table 6-7. Dictionary Syllabification Conventions

	6.2.9 Other Punctuation
	Table 6-8. Horizontal Ellipsis
	Table 6-9. Names for the @

	6.2.10 Archaic Punctuation and Editorial Marks
	Figure 6-5. Examples of Ancient Greek Editorial Marks
	Figure 6-6. Use of Greek Paragraphos

	6.2.11 Indic Punctuation
	Table 6-10. Unicode Danda Characters

	6.2.12 CJK Punctuation
	Figure 6-7. CJK Parentheses

	6.2.13 Unknown or Unavailable Ideographs
	6.2.14 CJK Compatibility Forms

	7 Europe-I
	7.1 Latin
	Figure 7-1. Alternative Glyphs in Latin
	Table 7-1. Preferred Rendering of Cedilla versus Comma Below
	Figure 7-2. Diacritics on i and j
	Figure 7-3. Vietnamese Letters and Tone Marks
	7.1.1 Letters of Basic Latin: U+0041–U+007A
	7.1.2 Letters of the Latin-1 Supplement: U+00C0–U+00FE
	7.1.3 Latin Extended-A: U+0100–U+017F
	7.1.4 Latin Extended-B: U+0180–U+024F
	Table 7-2. Alternative Systems of Click Letters

	7.1.5 IPA Extensions: U+0250–U+02AF
	7.1.6 Phonetic Extensions: U+1D00–U+1D7F
	7.1.7 Latin Extended Additional: U+1E00–U+1EFF
	7.1.8 Latin Extended-C: U+2C60–U+2C7F
	7.1.9 Latin Extended-D: U+A720–U+A7FF
	7.1.10 Latin Extended-E: U+AB30–U+AB6F
	7.1.11 Latin Extended-F: U+10780–U+107BF
	7.1.12 Latin Extended-G: U+1DF00–U+1DFFF
	7.1.13 Latin Ligatures: U+FB00–U+FB06

	7.2 Greek
	7.2.1 Greek: U+0370–U+03FF
	Table 7-3. Nonspacing Marks Used with Greek
	Figure 7-4. Variations in Greek Capital Letter Upsilon

	7.2.2 Greek Extended: U+1F00–U+1FFF
	Table 7-4. Greek Spacing and Nonspacing Pairs

	7.2.3 Ancient Greek Numbers: U+10140–U+1018F

	7.3 Coptic
	7.3.1 Coptic: U+2C80–U+2CFF
	Figure 7-5. Coptic Numerals

	7.4 Cyrillic
	7.4.1 Cyrillic: U+0400–U+04FF
	7.4.2 Cyrillic Supplement: U+0500–U+052F
	7.4.3 Cyrillic Extended-A: U+2DE0–U+2DFF
	Figure 7-6. Combination of Titlo Letters

	7.4.4 Cyrillic Extended-B: U+A640–U+A69F
	7.4.5 Cyrillic Extended-C: U+1C80–U+1C8F
	7.4.6 Cyrillic Extended-D: U+1E030–U+1E08F

	7.5 Glagolitic
	7.5.1 Glagolitic: U+2C00–U+2C5F
	7.5.2 Glagolitic Supplement: U+1E000–U+1E02F

	7.6 Armenian
	7.6.1 Armenian: U+0530–U+058F

	7.7 Georgian
	7.7.1 Georgian: U+10A0–U+10FF
	Georgian Extended: U+1C90–U+1CBF
	Georgian Supplement: U+2D00–U+2D2F
	Figure 7-7. Georgian Scripts and Casing

	7.8 Modifier Letters
	7.8.1 Spacing Modifier Letters: U+02B0–U+02FF
	Figure 7-8. Tone Letters

	7.8.2 Modifier Tone Letters: U+A700–U+A71F

	7.9 Combining Marks
	Figure 7-9. Double Diacritics
	Figure 7-10. Positioning of Double Diacritics
	Figure 7-11. Use of CGJ with Double Diacritics
	Figure 7-12. Interaction of Combining Marks with Ligatures
	7.9.1 Combining Diacritical Marks: U+0300–U+036F
	7.9.2 Combining Diacritical Marks Extended: U+1AB0–U+1AFF
	Figure 7-13. Positioning of Combining Parentheses

	7.9.3 Combining Diacritical Marks Supplement: U+1DC0–U+1DFF
	Table 7-5. Typicon Kavyka Symbols

	7.9.4 Combining Diacritical Marks for Symbols: U+20D0–U+20FF
	Figure 7-14. Use of Vertical Line Overlay for Negation

	7.9.5 Combining Half Marks: U+FE20–U+FE2F
	Figure 7-15. Double Diacritics and Half Marks

	7.9.6 Combining Marks in Other Blocks

	8 Europe-II
	8.1 Linear A
	8.1.1 Linear A: U+10600–U+1077F

	8.2 Linear B
	8.2.1 Linear B Syllabary: U+10000–U+1007F
	8.2.2 Linear B Ideograms: U+10080–U+100FF
	8.2.3 Aegean Numbers: U+10100–U+1013F

	8.3 Cypriot Syllabary
	8.3.1 Cypriot Syllabary: U+10800–U+1083F
	Table 8-1. Similar Characters in Linear B and Cypriot

	8.4 Cypro-Minoan
	8.4.1 Cypro-Minoan: U+12F90–U+12FFF

	8.5 Ancient Anatolian Alphabets
	8.5.1 Lycian: U+10280–U+1029F
	Carian: U+102A0–U+102DF
	Lydian: U+10920–U+1093F

	8.6 Old Italic
	8.6.1 Old Italic: U+10300–U+1032F
	Figure 8-1. Distribution of Old Italic

	8.7 Runic
	8.7.1 Runic: U+16A0–U+16FF

	8.8 Old Hungarian
	8.8.1 Old Hungarian: U+10C80–U+10CFF

	8.9 Gothic
	8.9.1 Gothic: U+10330–U+1034F

	8.10 Elbasan
	8.10.1 Elbasan: U+10500–U+1052F

	8.11 Caucasian Albanian
	8.11.1 Caucasian Albanian: U+10530–U+1056F

	8.12 Vithkuqi
	8.12.1 Vithkuqi: U+10570–U+105BF

	8.13 Todhri
	8.13.1 Todhri: U+105C0–U+105FF
	Figure 8-2. Todhri Vowel Decomposition

	8.14 Old Permic
	8.14.1 Old Permic: U+10350–U+1037F
	Table 8-2. Combining Marks Used in Old Permic

	8.15 Ogham
	8.15.1 Ogham: U+1680–U+169F

	8.16 Shavian
	8.16.1 Shavian: U+10450–U+1047F

	9 Middle East-I
	9.1 Hebrew
	9.1.1 Hebrew: U+0590–U+05FF
	9.1.2 Alphabetic Presentation Forms: U+FB00–U+FB4F

	9.2 Arabic
	9.2.1 Arabic: U+0600–U+06FF
	Figure 9-1. Directionality and Cursive Connection
	Figure 9-2. Using a Joiner
	Figure 9-3. Using a Non-joiner
	Figure 9-4. Combinations of Joiners and Non-joiners
	Figure 9-5. Placement of Harakat
	Figure 9-6. Dammatan Styles
	Table 9-1. Arabic Digit Names
	Table 9-2. Glyph Variation in Eastern Arabic-Indic Digits
	Figure 9-7. Arabic Signs Spanning Numbers

	9.2.2 Arabic Cursive Joining
	Table 9-3. Primary Arabic Joining Types
	Table 9-4. Derived Arabic Joining Types
	Table 9-5. Arabic Glyph Types

	9.2.3 Arabic Ligatures
	Figure 9-8. Lam-alef with Marks
	Table 9-6. Arabic Ligature Notation

	9.2.4 Arabic Joining Groups
	Table 9-7. Dual-Joining Arabic Characters
	Table 9-8. Right-Joining Arabic Characters
	Table 9-9. Letter heh Shapes
	Table 9-10. Forms of the Arabic Letter yeh
	Table 9-11. Glyph Variation for U+0626 Yeh with Hamza Above

	9.2.5 Combining Hamza
	Table 9-12. Arabic Letters With Hamza Above

	9.2.6 Other Letters for Extended Arabic
	Table 9-13. Glyph Variation for U+0645 Meem

	9.2.7 Arabic Supplement: U+0750–U+077F
	9.2.8 Arabic Extended-A: U+08A0–U+08FF
	9.2.9 Arabic Extended-B: U+0870–U+089F
	9.2.10 Arabic Extended-C: U+10EC0–U+10EFF
	9.2.11 Arabic Presentation Forms-A: U+FB50–U+FDFF
	9.2.12 Arabic Presentation Forms-B: U+FE70–U+FEFF

	9.3 Syriac
	9.3.1 Syriac: U+0700–U+074F
	Figure 9-9. Syriac Abbreviation
	Figure 9-10. Use of SAM
	Table 9-14. Miscellaneous Syriac Diacritic Use

	9.3.2 Syriac Shaping
	Table 9-15. Syriac Final Alaph Glyph Types
	Table 9-16. Dual-Joining Syriac Characters
	Table 9-17. Right-Joining Syriac Characters
	Table 9-18. Syriac Alaph Glyph Forms
	Table 9-19. Syriac Ligatures

	9.3.3 Syriac Supplement: U+0860–U+086F

	9.4 Samaritan
	9.4.1 Samaritan: U+0800–U+083F
	Table 9-20. Samaritan Performative Punctuation Marks

	9.5 Mandaic
	9.5.1 Mandaic: U+0840–U+085F
	Table 9-21. Dual-Joining Mandaic Characters
	Table 9-22. Right-Joining Mandaic Characters

	9.6 Yezidi
	9.6.1 Yezidi: U+10E80–U+10EBF

	10 Middle East-II
	10.1 Old North Arabian
	10.1.1 Old North Arabian: U+10A80–U+10A9F

	10.2 Old South Arabian
	10.2.1 Old South Arabian: U+10A60–U+10A7F
	Table 10-1. Old South Arabian Numeric Characters
	Table 10-2. Number Formation in Old South Arabian

	10.3 Phoenician
	10.3.1 Phoenician: U+10900–U+1091F

	10.4 Imperial Aramaic
	10.4.1 Imperial Aramaic: U+10840–U+1085F
	Table 10-3. Number Formation in Aramaic

	10.5 Manichaean
	10.5.1 Manichaean: U+10AC0–U+10AFF
	Table 10-4. Dual-Joining Manichaean Letters
	Table 10-5. Right-Joining Manichaean Letters
	Table 10-6. Left-Joining Manichaean Letters
	Table 10-7. Non-Joining Manichaean Letters
	Table 10-8. Manichaean Ligatures

	10.6 Pahlavi and Parthian
	10.6.1 Inscriptional Parthian: U+10B40–U+10B5F
	Inscriptional Pahlavi: U+10B60–U+10B7F
	Table 10-9. Inscriptional Parthian Shaping Behavior

	10.6.2 Psalter Pahlavi: U+10B80–U+10BAF

	10.7 Avestan
	10.7.1 Avestan: U+10B00–U+10B3F
	Table 10-10. Avestan Shaping Behavior

	10.8 Chorasmian
	10.8.1 Chorasmian: U+10FB0–U+10FDF

	10.9 Elymaic
	10.9.1 Elymaic: U+10FE0–U+10FFF

	10.10 Nabataean
	10.10.1 Nabataean: U+10880–U+108AF

	10.11 Palmyrene
	10.11.1 Palmyrene: U+10860–U+1087F

	10.12 Hatran
	10.12.1 Hatran: U+108E0–U+108FF

	11 Cuneiform and Hieroglyphs
	11.1 Sumero-Akkadian
	Table 11-1. Cuneiform Script Usage
	11.1.1 Cuneiform: U+12000–U+123FF
	11.1.2 Cuneiform Numbers and Punctuation: U+12400–U+1247F
	11.1.3 Early Dynastic Cuneiform: U+12480–U+1254F

	11.2 Ugaritic
	11.2.1 Ugaritic: U+10380–U+1039F

	11.3 Old Persian
	11.3.1 Old Persian: U+103A0–U+103DF

	11.4 Egyptian Hieroglyphs
	11.4.1 Egyptian Hieroglyphs: U+13000–U+1342F
	11.4.2 Egyptian Hieroglyphs Extended-A: U+13460–U+143FF
	11.4.3 Egyptian Hieroglyph Format Controls: U+13430–U+1345F
	Figure 11-1. Vertical and Horizontal Formatting of Hieroglyphs
	Figure 11-2. Insertion and Overlay Formatting of Hieroglyphs
	Figure 11-3. Use of U+13439 to Insert at Middle
	Figure 11-4. Rendering Enclosures
	Figure 11-5. Complex Cluster Formatting of Hieroglyphs
	Figure 11-6. Rotation of Hieroglyphs

	11.4.4 Editorial Marks
	Figure 11-7. Use of Blanks
	Figure 11-8. Use of Lost Signs
	Figure 11-9. Damage Modifiers for Hieroglyphs
	Table 11-2. Brackets used with Egyptian Hieroglyphs
	Figure 11-10. Use of Square Brackets with Hieroglyphs

	11.5 Meroitic
	11.5.1 Meroitic Hieroglyphs: U+10980–U+1099F
	Meroitic Cursive: U+109A0–U+109FF

	11.6 Anatolian Hieroglyphs
	11.6.1 Anatolian Hieroglyphs: U+14400–U+1467F

	12 South and Central Asia-I
	12.1 Devanagari
	12.1.1 Devanagari: U+0900–U+097F
	12.1.2 Principles of the Devanagari Script
	Table 12-1. Devanagari Vowel Letters
	Figure 12-1. Dead Consonants in Devanagari
	Table 12-2. Devanagari Atomic Consonants
	Figure 12-2. Conjunct Formations in Devanagari
	Figure 12-3. Multi-Consonant Conjuncts in Devanagari
	Table 12-3. Devanagari Consonant Conjuncts
	Figure 12-4. Preventing Conjunct Forms in Devanagari
	Figure 12-5. Half-Consonants in Devanagari
	Figure 12-6. Independent Half-Forms in Devanagari
	Figure 12-7. Half-Consonants in Oriya
	Figure 12-8. Consonant Forms in Devanagari and Oriya

	12.1.3 Rendering Devanagari
	Figure 12-9. Rendering Order in Devanagari
	Table 12-4. Sample Devanagari Half-Forms
	Table 12-5. Sample Devanagari Ligatures
	Table 12-6. RA + Vocalic Letter Ligature Forms
	Table 12-7. Sample Devanagari Half-Ligature Forms
	Table 12-8. Marathi and Nepali Allographs

	12.1.4 Devanagari Digits, Punctuation, and Symbols
	12.1.5 Extensions in the Main Devanagari Block
	Figure 12-10. Use of Apostrophe in Bodo, Dogri and Maithili
	Figure 12-11. Use of Avagraha in Dogri
	Table 12-9. Devanagari Vowels Used in Bihari Languages
	Table 12-10. Prishthamatra Orthography

	12.1.6 Devanagari Extended: U+A8E0–U+A8FF
	12.1.7 Devanagari Extended-A: U+11B00–U+11B5F
	12.1.8 Vedic Extensions: U+1CD0–U+1CFF

	12.2 Bengali (Bangla)
	12.2.1 Bengali: U+0980–U+09FF
	Table 12-11. Bangla Vowel Letters
	Table 12-12. Diphthong Vowel Letters in Kokborok
	Table 12-13. Assamese Consonant-Vowel Combinations
	Table 12-14. Bangla Consonant-Vowel Combinations
	Figure 12-12. Requesting Bangla Consonant-Vowel Ligature
	Figure 12-13. Blocking Bangla Consonant-Vowel Ligature
	Figure 12-14. Bangla Syllable tta
	Table 12-15. Use of Apostrophe in Bangla

	12.3 Gurmukhi
	12.3.1 Gurmukhi: U+0A00–U+0A7F
	Table 12-16. Gurmukhi Vowel Letters
	Table 12-17. Gurmukhi Conjuncts
	Table 12-18. Additional Pairin and Addha Forms in Gurmukhi
	Table 12-19. Use of Joiners in Gurmukhi

	12.4 Gujarati
	12.4.1 Gujarati: U+0A80–U+0AFF
	Table 12-20. Gujarati Vowel Letters
	Table 12-21. Gujarati Conjuncts

	12.5 Oriya (Odia)
	12.5.1 Oriya: U+0B00–U+0B7F
	Table 12-22. Oriya Vowel Letters
	Table 12-23. Oriya Conjuncts
	Table 12-24. Oriya Vowel Placement
	Table 12-25. Ligation for the Syllable om

	12.6 Tamil
	12.6.1 Tamil: U+0B80–U+0BFF
	Figure 12-15. Kssa Ligature in Tamil

	12.6.2 Tamil Vowels
	Table 12-26. Tamil Vowel Letters
	Figure 12-16. Tamil Vowel Reordering
	Figure 12-17. Tamil Two-Part Vowels
	Figure 12-18. Tamil Vowel Splitting and Reordering
	Figure 12-19. Vowel Reordering Around a Tamil Conjunct
	Figure 12-20. Confusable Vowels in Tamil

	12.6.3 Tamil Ligatures
	Figure 12-21. Tamil Ligatures with i
	Table 12-27. Tamil Ligatures with u
	Figure 12-22. Spacing Forms of Tamil u
	Figure 12-23. Tamil Ligatures with ra
	Figure 12-24. Tamil Ligatures for shri
	Figure 12-25. Traditional Tamil Ligatures with aa
	Figure 12-26. Traditional Tamil Ligatures with o
	Figure 12-27. Traditional Tamil Ligatures with ai
	Figure 12-28. Vowel ai in Modern Tamil
	Table 12-28. Confusable Tamil Digits

	12.6.4 Tamil Supplement: U+11FC0–U+11FFF
	12.6.5 Tamil Named Character Sequences
	Table 12-29. Tamil Vowels, Consonants, and Syllables

	12.7 Telugu
	12.7.1 Telugu: U+0C00–U+0C7F
	Table 12-30. Telugu Vowels

	12.8 Kannada
	12.8.1 Kannada: U+0C80–U+0CFF
	12.8.2 Principles of the Kannada Script
	Table 12-31. Kannada Vowel Letters
	Figure 12-29. Indicating Retroflexion in Badaga Vowels

	12.8.3 Rendering Kannada

	12.9 Malayalam
	12.9.1 Malayalam: U+0D00–U+0D7F
	Table 12-32. Malayalam Vowel Letters

	12.9.2 Malayalam Orthographic Reform
	Table 12-33. Malayalam Orthographic Reform

	12.9.3 Rendering Malayalam
	Table 12-34. Malayalam Conjuncts
	Table 12-35. Candrakkala Examples
	Table 12-36. Use of Joiners in Malayalam
	Table 12-37. Malayalam Conjuncts Involving Chillus
	Table 12-38. Malayalam /ṟaṟa/ and /ṯṯa/
	Table 12-39. Malayalam /ṉṟa/ and /ṉṯa/
	Table 12-40. Legacy Encoding of Malayalam Chillus

	12.9.4 Malayalam Numbers and Punctuation

	13 South and Central Asia-II
	13.1 Thaana
	13.1.1 Thaana: U+0780–U+07BF
	Table 13-1. Thaana Glyph Placement

	13.2 Sinhala
	13.2.1 Sinhala: U+0D80–U+0DFF
	Table 13-2. Sinhala Vowel Letters
	Table 13-3. Sinhala Named Character Sequences
	Table 13-4. Sinhala Ligated Conjuncts
	Table 13-5. Irregular Vowel Sign Ligatures of Sinhala

	13.2.2 Sinhala Archaic Numbers: U+111E0–U+111FF

	13.3 Newa
	13.3.1 Newa: U+11400–U+1147F
	Table 13-6. Murmured Resonants in Nepal Bhasa

	13.4 Tibetan
	13.4.1 Tibetan: U+0F00–U+0FFF
	Figure 13-1. Tibetan Syllable Structure
	Figure 13-2. Justifying Tibetan Tseks

	13.5 Mongolian
	13.5.1 Mongolian: U+1800–U+18AF
	Table 13-7. Letter Usage in Mongolian Writing Systems
	Figure 13-3. Mongolian Glyph Convergence
	Figure 13-4. Mongolian Ligation
	Figure 13-5. Mongolian Positional Forms
	Figure 13-6. Mongolian Free Variation Selector
	Figure 13-7. Mongolian Gender Forms
	Figure 13-8. Mongolian Vowel Separator

	13.5.2 Mongolian Supplement: U+11660–U+1167F

	13.6 Limbu
	13.6.1 Limbu: U+1900–U+194F
	Table 13-8. Positions of Limbu Combining Characters

	13.7 Meetei Mayek
	13.7.1 Meetei Mayek: U+ABC0–U+ABFF
	13.7.2 Meetei Mayek Extensions: U+AAE0–U+AAFF

	13.8 Mro
	13.8.1 Mro: U+16A40–U+16A6F

	13.9 Warang Citi
	13.9.1 Warang Citi: U+118A0–U+118FF

	13.10 Ol Chiki
	13.10.1 Ol Chiki: U+1C50–U+1C7F

	13.11 Ol Onal
	13.11.1 Ol Onal: U+1E5D0–U+1E5FF

	13.12 Nag Mundari
	13.12.1 Nag Mundari: U+1E4D0–U+1E4FF

	13.13 Chakma
	13.13.1 Chakma: U+11100–U+1114F

	13.14 Lepcha
	13.14.1 Lepcha: U+1C00–U+1C4F
	Table 13-9. Lepcha Syllabic Structure

	13.15 Saurashtra
	13.15.1 Saurashtra: U+A880–U+A8DF

	13.16 Masaram Gondi
	13.16.1 Masaram Gondi: U+11D00–U+11D5F
	Figure 13-9. Masaram Gondi Consonant Clusters
	Figure 13-10. Rendering of ra in Masaram Gondi
	Table 13-10. Various Signs in Masaram Gondi

	13.17 Gunjala Gondi
	13.17.1 Gunjala Gondi: U+11D60–U+11DAF
	Figure 13-11. Gunjala Gondi Conjunct Formation

	13.18 Wancho
	13.18.1 Wancho: U+1E2C0–U+1E2FF

	13.19 Toto
	13.19.1 Toto: U+1E290–U+1E2BF

	13.20 Tangsa
	13.20.1 Tangsa: U+16A70–U+16ACF

	13.21 Sunuwar
	13.21.1 Sunuwar: U+11BC0–U+11BFF
	Figure 13-12. Glyph Variants in Sunuwar
	Figure 13-13. Sunuwar Nasalization in Nepal and Sikkim

	13.22 Gurung Khema
	13.22.1 Gurung Khema: U+16100–U+1613F
	Figure 13-14. Canonical Decomposition of Gurung Khema Vowel Signs
	Figure 13-15. Gurung Khema Vowel Signs with anusvara

	13.23 Kirat Rai
	13.23.1 Kirat Rai: U+16D40–U+16D7F
	Figure 13-16. Kirat Rai Multipart Vowels

	14 South and Central Asia-III
	14.1 Brahmi
	14.1.1 Brahmi: U+11000–U+1107F
	Table 14-1. Brahmi Vowel Letters
	Figure 14-1. Consonant Ligatures in Brahmi
	Table 14-2. Brahmi Positional Digits

	14.2 Kharoshthi
	14.2.1 Kharoshthi: U+10A00–U+10A5F
	Figure 14-2. Geographical Extent of the Kharoshthi Script
	Figure 14-3. Kharoshthi Number 1996

	14.2.2 Rendering Kharoshthi
	Figure 14-4. Kharoshthi Rendering Example
	Table 14-3. Kharoshthi Vowel Signs
	Table 14-4. Kharoshthi Vowel Modifiers
	Table 14-5. Kharoshthi Consonant Modifiers
	Table 14-6. Examples of Kharoshthi Virama
	Figure 14-5. Subjoined Forms of ya

	14.3 Bhaiksuki
	14.3.1 Bhaiksuki: U+11C00–U+11C6F

	14.4 Phags-pa
	14.4.1 Phags-pa: U+A840–U+A87F
	Figure 14-6. Phags-pa Syllable Om
	Table 14-7. Phags-pa Positional Forms of I, U, E, and O
	Table 14-8. Contextual Glyph Mirroring in Phags-pa
	Table 14-9. Phags-pa Standardized Variants
	Figure 14-7. Phags-pa Reversed Shaping

	14.5 Marchen
	14.5.1 Marchen: U+11C70–U+11CBF

	14.6 Zanabazar Square
	14.6.1 Zanabazar Square: U+11A00–U+11A4F
	Figure 14-8. Conjunct Stacking in Zanabazar Square

	14.7 Soyombo
	14.7.1 Soyombo: U+11A50–U+11AAF

	14.8 Old Turkic
	14.8.1 Old Turkic: U+10C00–U+10C4F

	14.9 Old Sogdian
	14.9.1 Old Sogdian: U+10F00–U+10F2F

	14.10 Sogdian
	14.10.1 Sogdian: U+10F30–U+10F6F

	14.11 Old Uyghur
	14.11.1 Old Uyghur: U+10F70–U+10FAF

	15 South and Central Asia-IV
	15.1 Syloti Nagri
	15.1.1 Syloti Nagri: U+A800–U+A82F

	15.2 Kaithi
	15.2.1 Kaithi: U+11080–U+110CF

	15.3 Sharada
	15.3.1 Sharada: U+11180–U+111DF
	Table 15-1. Sharada Vowel Letters and om

	15.4 Takri
	15.4.1 Takri: U+11680–U+116CF
	Table 15-2. Takri Vowel Letters

	15.5 Siddham
	15.5.1 Siddham: U+11580–U+115FF
	Figure 15-1. Siddham Consonant Cluster
	Table 15-3. Siddham Punctuation Characters

	15.6 Mahajani
	15.6.1 Mahajani: U+11150–U+1117F

	15.7 Khojki
	15.7.1 Khojki: U+11200–U+1124F
	Table 15-4. Khojki Vowels

	15.8 Dogra
	15.8.1 Dogra: U+11800–U+1184F

	15.9 Khudawadi
	15.9.1 Khudawadi: U+112B0–U+112FF
	Table 15-5. Khudawadi Vowel Letters
	Table 15-6. Representation of Arabic Sounds in Khudawadi

	15.10 Multani
	15.10.1 Multani: U+11280–U+112AF

	15.11 Tirhuta
	15.11.1 Tirhuta: U+11480–U+114DF
	Table 15-7. Tirhuta Vowel Letters

	15.12 Modi
	15.12.1 Modi: U+11600–U+1165F
	Table 15-8. Modi Vowel Letters
	Figure 15-2. Modi Shaping for ra

	15.13 Nandinagari
	15.13.1 Nandinagari: U+119A0–U+119FF

	15.14 Grantha
	15.14.1 Grantha: U+11300–U+1137F
	15.14.2 Rendering Grantha
	Figure 15-3. Splitting Large Conjunct Stacks in Grantha
	Table 15-9. Rendering of Explicit Virama Forms in Grantha
	Table 15-10. Additional Svara Marks used in Grantha

	15.15 Dives Akuru
	15.15.1 Dives Akuru: U+11900–U+1195F

	15.16 Ahom
	15.16.1 Ahom: U+11700–U+1174F

	15.17 Sora Sompeng
	15.17.1 Sora Sompeng: U+110D0–U+110FF

	15.18 Tulu-Tigalari
	15.18.1 Tulu-Tigalari: U+11380–U+113FF
	Figure 15-4. Rare Forms of Tulu-Tigalari Vowels
	Figure 15-5. Examples of Ligatures in Tulu-Tigalari
	Figure 15-6. Tulu-Tigalari Canonical Sequences
	Figure 15-7. Examples of Vowels ŭ and ŭ̄ in Tulu-Tigalari
	Figure 15-8. Conjuncts and Viramas in Tulu-Tigalari
	Figure 15-9. Repha Rendered as a Short Vertical Line
	Figure 15-10. Repha Ligating with ma, ya, or va
	Figure 15-11. Repha Ligating with Virama

	16 Southeast Asia-I
	16.1 Thai
	16.1.1 Thai: U+0E00–U+0E7F
	Table 16-1. Glyph Positions in Thai Syllables

	16.2 Lao
	16.2.1 Lao: U+0E80–U+0EFF
	Table 16-2. Glyph Positions in Lao Syllables
	Table 16-3. Additional Characters for Pali and Sanskrit

	16.3 Myanmar
	16.3.1 Myanmar: U+1000–U+109F
	Table 16-4. Modern Burmese Syllabic Structure

	16.3.2 Myanmar Extended-A: U+AA60–U+AA7F
	16.3.3 Khamti Shan
	Table 16-5. Khamti Shan Tone Marks

	16.3.4 Aiton and Phake
	16.3.5 Myanmar Extended-B: U+A9E0–U+A9FF
	16.3.6 Myanmar Extended-C: U+116D0–U+116FF

	16.4 Khmer
	16.4.1 Khmer: U+1780–U+17FF
	16.4.2 Principles of the Khmer Script
	Table 16-6. Independent Khmer Vowel Characters
	Table 16-7. Two Registers of Khmer Consonants
	Table 16-8. Khmer Subscript Consonant Signs
	Table 16-9. Khmer Composite Dependent Vowel Signs with Nikahit
	Table 16-10. Khmer Subscript Independent Vowel Signs
	Figure 16-1. Common Ligatures in Khmer
	Figure 16-2. Common Multiple Forms in Khmer
	Figure 16-3. Examples of Syllabic Order in Khmer
	Figure 16-4. Ligation in Muul Style in Khmer

	16.4.3 Khmer Symbols: U+19E0–U+19FF

	16.5 Tai Le
	16.5.1 Tai Le: U+1950–U+197F
	Table 16-11. Tai Le Tone Marks
	Table 16-12. Myanmar Digits in Tai Le

	16.6 New Tai Lue
	16.6.1 New Tai Lue: U+1980–U+19DF
	Table 16-13. New Tai Lue Vowel Placement
	Table 16-14. New Tai Lue Registers and Tones

	16.7 Tai Tham
	16.7.1 Tai Tham: U+1A20–U+1AAF

	16.8 Tai Viet
	16.8.1 Tai Viet: U+AA80–U+AADF
	Table 16-15. Tai Viet Symbols and Punctuation

	16.9 Kayah Li
	16.9.1 Kayah Li: U+A900–U+A92F

	16.10 Cham
	16.10.1 Cham: U+AA00–U+AA5F
	Table 16-16. Cham Syllabic Structure

	16.11 Pahawh Hmong
	16.11.1 Pahawh Hmong: U+16B00–U+16B8F
	Figure 16-5. Pahawh Hmong Syllable Structure

	16.12 Nyiakeng Puachue Hmong
	16.12.1 Nyiakeng Puachue Hmong: U+1E100–U+1E14F

	16.13 Pau Cin Hau
	16.13.1 Pau Cin Hau: U+11AC0–U+11AFF

	16.14 Hanifi Rohingya
	16.14.1 Hanifi Rohingya: U+10D00–U+10D3F

	17 Southeast Asia-II
	17.1 Philippine Scripts: Tagalog, Hanunóo, Buhid, and Tagbanwa
	17.1.1 Tagalog: U+1700–U+171F
	Hanunóo: U+1720–U+173F
	Buhid: U+1740–U+175F
	Tagbanwa: U+1760–U+177F
	17.1.2 Principles of the Philippine Scripts
	Table 17-1. Hanunóo and Buhid Vowel Sign Combinations

	17.2 Buginese
	17.2.1 Buginese: U+1A00–U+1A1F
	Figure 17-1. Buginese Ligature

	17.3 Balinese
	17.3.1 Balinese: U+1B00–U+1B7F
	Table 17-2. Balinese Base Consonants and Conjunct Forms
	Figure 17-2. Writing dharma in Balinese
	Table 17-3. Balinese Consonant Clusters with u and uu

	17.4 Javanese
	17.4.1 Javanese: U+A980–U+A9DF
	Figure 17-3. Representation of Javanese Two-Part Vowels

	17.5 Rejang
	17.5.1 Rejang: U+A930–U+A95F

	17.6 Batak
	17.6.1 Batak: U+1BC0–U+1BFF

	17.7 Sundanese
	17.7.1 Sundanese: U+1B80–U+1BBF
	Table 17-4. Modern Sundanese Syllabic Structure

	17.7.2 Sundanese Supplement: U+1CC0–U+1CCF

	17.8 Makasar
	17.8.1 Makasar: U+11EE0–U+11EFF

	17.9 Kawi
	17.9.1 Kawi: U+11F00–U+11F5F
	Table 17-5. Kawi Base Consonants and Conjunct Forms
	Table 17-6. Kawi Independent Vowels with Composite Representations
	Table 17-7. Kawi Vocalic Liquids with Conjunct Forms
	Table 17-8. Kawi Dependent Vowels with Composite Representations

	18 East Asia
	18.1 Han
	18.1.1 CJK Unified Ideographs
	18.1.2 Blocks Containing Han Ideographs
	Table 18-1. Blocks Containing Han Ideographs
	Table 18-2. Small Extensions to CJK Blocks

	18.1.3 General Characteristics of Han Ideographs
	Table 18-3. Common Han Characters
	Figure 18-1. Han Spelling
	Figure 18-2. Semantic Context for Han Characters

	18.1.4 Principles of Han Unification
	Figure 18-3. Three-Dimensional Conceptual Model

	18.1.5 Unification Rules
	Figure 18-4. CJK Source Separation
	Table 18-4. Source Encoding for Sword Variants
	Figure 18-5. Not Cognates, Not Unified

	18.1.6 Abstract Shape
	Figure 18-6. Ideographic Component Structure
	Figure 18-7. The Most Superior Node of an Ideographic Component
	Table 18-5. Ideographs Not Unified
	Table 18-6. Ideographs Unified

	18.1.7 Han Ideograph Arrangement
	Table 18-7. Han Ideograph Arrangement

	18.1.8 Radical-Stroke Indices
	18.1.9 Mappings for Han Ideographs
	18.1.10 CJK Compatibility Ideographs: U+F900–U+FAFF
	18.1.11 CJK Compatibility Supplement: U+2F800–U+2FA1D
	18.1.12 Kanbun: U+3190–U+319F
	18.1.13 Symbols Derived from Han Ideographs
	18.1.14 Kangxi Radicals and CJK Radicals Supplement: U+2F00–U+2FD5, U+2E80–U+2EF3
	Table 18-8. Chinese Simplified Versus Non-Chinese Simplified Radicals

	18.1.15 CJK Additions from HKSCS and GB 18030
	18.1.16 CJK Strokes: U+31C0–U+31EF
	18.1.17 Ideographic Symbols and Punctuation: U+16FE0–U+16FFF

	18.2 Ideographic Description Characters
	18.2.1 Ideographic Description Characters: U+2FF0–U+2FFF
	Figure 18-8. Examples of Ideographic Description Characters
	Figure 18-9. Using the Ideographic Description Characters

	18.3 Bopomofo
	18.3.1 Bopomofo: U+3100–U+312F, U+31A0–U+31BF
	Table 18-9. Mandarin Tone Marks
	Table 18-10. Minnan and Hakka Tone Marks

	18.4 Hiragana and Katakana
	18.4.1 Hiragana: U+3040–U+309F
	18.4.2 Katakana: U+30A0–U+30FF
	18.4.3 Katakana Phonetic Extensions: U+31F0–U+31FF
	18.4.4 Small Kana Extension: U+1B130-U+1B16F
	18.4.5 Kana Supplement: U+1B000–U+1B0FF
	Kana Extended-A: U+1B100–U+1B12F
	Figure 18-10. Japanese Historic Kana for e and ye
	Figure 18-11. Hentaigana Distinct Parent Ideographs
	Figure 18-12. Other Hentaigana Examples

	18.4.6 Kana Extended-B: U+1AFF0-U+1AFFF
	Figure 18-13. Vertical Layout with Interlineation
	Figure 18-14. Vertical Layout without Interlineation
	Figure 18-15. Horizontal Layout with Interlineation
	Figure 18-16. Horizontal Layout without Interlineation

	18.5 Halfwidth and Fullwidth Forms
	18.5.1 Halfwidth and Fullwidth Forms: U+FF00–U+FFEF

	18.6 Hangul
	18.6.1 Hangul Jamo: U+1100–U+11FF
	18.6.2 Hangul Jamo Extended-A: U+A960–U+A97F
	18.6.3 Hangul Jamo Extended-B: U+D7B0–U+D7FF
	18.6.4 Hangul Compatibility Jamo: U+3130–U+318F
	Table 18-11. Separating Jamo Characters

	18.6.5 Hangul Syllables: U+AC00–U+D7AF
	Table 18-12. Line-Based Placement of Jungseong

	18.7 Yi
	18.7.1 Yi: U+A000–U+A4CF

	18.8 Nüshu
	18.8.1 Nüshu: U+1B170–U+1B2FF

	18.9 Lisu
	18.9.1 Lisu: U+A4D0–U+A4FF
	Table 18-13. Lisu Tone Letters
	Table 18-14. Punctuation Adopted in Lisu Orthography

	18.10 Miao
	18.10.1 Miao: U+16F00–U+16F9F

	18.11 Tangut
	18.11.1 Tangut: U+17000–U+187FF
	Tangut Supplement: U+18D00–U+18D7F
	18.11.2 Tangut Components: U+18800–U+18AFF

	18.12 Khitan Small Script
	18.12.1 Khitan Small Script: U+18B00–U+18CFF
	Figure 18-17. Cluster Patterns in Khitan Small Script

	19 Africa
	19.1 Ethiopic
	19.1.1 Ethiopic: U+1200–U+137F
	Table 19-1. Labialized Forms in Ethiopic -WAA
	Table 19-2. Labialized Forms in Ethiopic -WE

	19.1.2 Ethiopic Extensions

	19.2 Osmanya
	19.2.1 Osmanya: U+10480–U+104AF

	19.3 Tifinagh
	19.3.1 Tifinagh: U+2D30–U+2D7F
	Figure 19-1. Tifinagh Contextual Shaping
	Figure 19-2. Tifinagh Consonant Joiner and Bi-consonants

	19.4 N’Ko
	19.4.1 N’Ko: U+07C0–U+07FF
	Table 19-3. N’Ko Diacritic Usage
	Table 19-4. N’Ko Tone Diacritics on Vowels
	Figure 19-3. Examples of N’Ko Ordinals
	Table 19-5. N’Ko Letter Shaping

	19.5 Vai
	19.5.1 Vai: U+A500–U+A63F

	19.6 Bamum
	19.6.1 Bamum: U+A6A0–U+A6FF
	19.6.2 Bamum Supplement: U+16800–U+16A3F

	19.7 Bassa Vah
	19.7.1 Bassa Vah: U+16AD0–U+16AFF

	19.8 Mende Kikakui
	19.8.1 Mende Kikakui: U+1E800–U+1E8DF
	Table 19-6. Number Formation in Mende Kikakui

	19.9 Adlam
	19.9.1 Adlam: U+1E900–U+1E95F

	19.10 Medefaidrin
	19.10.1 Medefaidrin: U+16E40–U+16E9F

	19.11 Garay
	19.11.1 Garay: U+10D40–U+10D8F
	Figure 19-4. Representing /ɛ/ and /e/ in Garay

	20 Americas
	20.1 Cherokee
	20.1.1 Cherokee: U+13A0–U+13FF
	Cherokee Supplement: U+AB70–U+ABBF

	20.2 Canadian Aboriginal Syllabics
	20.2.1 Unified Canadian Aboriginal Syllabics: U+1400–U+167F
	Figure 20-1. Position of Carrier Syllable Finals

	20.2.2 Unified Canadian Aboriginal Syllabics Extended: U+18B0–U+18FF
	20.2.3 Unified Canadian Aboriginal Syllabics Extended-A: U+11AB0–U+11ABF

	20.3 Osage
	20.3.1 Osage: U+104B0–U+104FF
	Table 20-1. Combining Marks used in Osage

	20.4 Deseret
	20.4.1 Deseret: U+10400–U+1044F
	Figure 20-2. Short Words Equivalent to Deseret Letter Names
	Table 20-2. IPA Transcription of Deseret

	21 Notational Systems
	21.1 Braille
	21.1.1 Braille Patterns: U+2800–U+28FF

	21.2 Western Musical Symbols
	21.2.1 Musical Symbols: U+1D100–U+1D1FF
	Figure 21-1. Examples of Specialized Music Layout
	Figure 21-2. Precomposed Note Characters
	Figure 21-3. Alternative Noteheads
	Figure 21-4. Augmentation Dots and Articulation Symbols
	Table 21-1. Examples of Ornamentation

	21.3 Byzantine Musical Symbols
	21.3.1 Byzantine Musical Symbols: U+1D000–U+1D0FF

	21.4 Znamenny Musical Notation
	21.4.1 Znamenny Musical Notation: U+1CF00–U+1CFCF

	21.5 Ancient Greek Musical Notation
	21.5.1 Ancient Greek Musical Notation: U+1D200–U+1D24F
	Table 21-2. Representation of Ancient Greek Vocal and Instrumental

	21.6 Duployan
	21.6.1 Duployan: U+1BC00–U+1BC9F
	21.6.2 Shorthand Format Controls: U+1BCA0–U+1BCAF

	21.7 Sutton SignWriting
	21.7.1 Sutton SignWriting: U+1D800–U+1DAAF

	22 Symbols
	22.1 Currency Symbols
	Figure 22-1. Alternative Glyphs for Dollar Sign
	22.1.1 Currency Symbols: U+20A0–U+20CF
	Table 22-1. Currency Symbols Encoded in Other Blocks

	22.2 Letterlike Symbols
	22.2.1 Letterlike Symbols: U+2100–U+214F
	Figure 22-2. Alternative Glyphs for Numero Sign

	22.2.2 Mathematical Alphanumeric Symbols: U+1D400–U+1D7FF
	22.2.3 Mathematical Alphabets
	Figure 22-3. Wide Mathematical Accents
	Figure 22-4. Style Variants and Semantic Distinctions in Mathematics
	Table 22-2. Mathematical Alphanumeric Symbols

	22.2.4 Fonts Used for Mathematical Alphabets
	Figure 22-5. Easily Confused Shapes for Mathematical Glyphs

	22.2.5 Arabic Mathematical Alphabetic Symbols: U+1EE00–U+1EEFF

	22.3 Numerals
	22.3.1 Decimal Digits
	Table 22-3. Script-Specific Decimal Digits
	Figure 22-6. CJK Ideographic Numbers

	22.3.2 Other Digits
	Table 22-4. Compatibility Digits
	Figure 22-7. Regular and Old Style Digits

	22.3.3 Non-Decimal Radix Systems
	22.3.4 Acrophonic Systems and Other Letter-based Numbers
	22.3.5 Coptic Epact Numbers: U+102E0–U+102FF
	22.3.6 Rumi Numeral Symbols: U+10E60–U+10E7F
	22.3.7 Siyaq Numerical Notation Systems
	22.3.8 CJK Numerals
	22.3.9 Fractions
	Figure 22-8. Alternate Forms of Vulgar Fractions

	22.3.10 Common Indic Number Forms: U+A830–U+A83F

	22.4 Superscript and Subscript Symbols
	22.4.1 Superscripts and Subscripts: U+2070–U+209F

	22.5 Mathematical Symbols
	22.5.1 Mathematical Operators: U+2200–U+22FF
	Table 22-5. Mathematical Operators Disunified from Punctuation

	22.5.2 Supplements to Mathematical Symbols and Arrows
	22.5.3 Supplemental Mathematical Operators: U+2A00–U+2AFF
	22.5.4 Miscellaneous Mathematical Symbols-A: U+27C0–U+27EF
	22.5.5 Miscellaneous Mathematical Symbols-B: U+2980–U+29FF
	22.5.6 Miscellaneous Symbols and Arrows: U+2B00–U+2BFF
	22.5.7 Arrows: U+2190–U+21FF
	22.5.8 Supplemental Arrows
	22.5.9 Standardized Variants of Mathematical Symbols

	22.6 Invisible Mathematical Operators
	22.7 Technical Symbols
	22.7.1 Control Pictures: U+2400–U+243F
	22.7.2 Miscellaneous Technical: U+2300–U+23FF
	Figure 22-9. Usage of Crops and Quine Corners
	Table 22-6. Use of Mathematical Symbol Pieces
	Figure 22-10. Usage of the Decimal Exponent Symbol

	22.7.3 Optical Character Recognition: U+2440–U+245F
	22.7.4 Symbols for Legacy Computing: U+1FB00-U+1FBFF
	Symbols for Legacy Computing Supplement: U+1CC00–U+1CEBF

	22.8 Geometrical Symbols
	22.8.1 Box Drawing and Block Elements
	22.8.2 Geometric Shapes: U+25A0–U+25FF
	22.8.3 Geometric Shapes Extended: U+1F780–U+1F7FF
	Table 22-7. Geometric Shape Collections

	22.9 Miscellaneous Symbols
	Table 22-8. Blocks with Characters Often Shown as Emoji
	22.9.1 Miscellaneous Symbols and Pictographs
	22.9.2 Emoticons: U+1F600–U+1F64F
	22.9.3 Transport and Map Symbols: U+1F680–U+1F6FF
	22.9.4 Dingbats: U+2700–U+27BF
	22.9.5 Ornamental Dingbats: U+1F650–U+1F67F
	22.9.6 Alchemical Symbols: U+1F700–U+1F77F
	22.9.7 Mahjong Tiles: U+1F000–U+1F02F
	22.9.8 Domino Tiles: U+1F030–U+1F09F
	22.9.9 Playing Cards: U+1F0A0–U+1F0FF
	22.9.10 Chess Symbols: U+1FA00–U+1FA6F
	22.9.11 Yijing Hexagram Symbols: U+4DC0–U+4DFF
	22.9.12 Tai Xuan Jing Symbols: U+1D300–U+1D35F
	22.9.13 Ancient Symbols: U+10190–U+101CF
	22.9.14 Phaistos Disc: U+101D0–U+101FF

	22.10 Enclosed and Square
	22.10.1 Enclosed Alphanumerics: U+2460–U+24FF
	22.10.2 Enclosed CJK Letters and Months: U+3200–U+32FF
	22.10.3 CJK Compatibility: U+3300–U+33FF
	Table 22-9. Japanese Era Names

	22.10.4 Enclosed Alphanumeric Supplement: U+1F100–U+1F1FF
	22.10.5 Enclosed Ideographic Supplement: U+1F200–U+1F2FF

	23 Special Areas and Format Characters
	23.1 Control Codes
	23.1.1 Representing Control Sequences
	23.1.2 Specification of Control Code Semantics
	Table 23-1. Control Codes Specified in the Unicode Standard

	23.2 Layout Controls
	23.2.1 Line and Word Breaking
	Table 23-2. Letter Spacing

	23.2.2 Cursive Connection and Ligatures
	Figure 23-1. Prevention of Joining
	Figure 23-2. Exhibition of Joining Glyphs in Isolation
	Figure 23-3. Effect of Intervening Joiners

	23.2.3 Prepended Concatenation Marks
	23.2.4 Combining Grapheme Joiner
	23.2.5 Bidirectional Ordering Controls
	Table 23-3. Bidirectional Ordering Controls

	23.2.6 Stateful Format Controls
	Table 23-4. Paired Stateful Controls
	Table 23-5. Paired Stateful Controls (Deprecated)

	23.3 Deprecated Format Characters
	23.3.1 Deprecated Format Characters: U+206A–U+206F

	23.4 Variation Selectors
	23.5 Private-Use Characters
	23.5.1 Private Use Area: U+E000–U+F8FF
	23.5.2 Supplementary Private Use Areas

	23.6 Surrogates Area
	23.6.1 Surrogates Area: U+D800–U+DFFF

	23.7 Noncharacters
	23.7.1 Noncharacters: U+FFFE, U+FFFF, and Others

	23.8 Specials
	23.8.1 Byte Order Mark (BOM): U+FEFF
	Table 23-6. Unicode Encoding Scheme Signatures
	Table 23-7. U+FEFF Signature in Other Charsets

	23.8.2 Specials: U+FFF0–U+FFFF
	23.8.3 Annotation Characters: U+FFF9–U+FFFB
	Figure 23-4. Annotation Characters

	23.8.4 Replacement Characters: U+FFFC–U+FFFD

	23.9 Tag Characters
	23.9.1 Tag Characters: U+E0000–U+E007F
	23.9.2 Deprecated Use for Language Tagging

	24 About the Code Charts
	24.1 Character Names List
	24.1.1 Images in the Code Charts and Character Lists
	24.1.2 Special Characters and Code Points
	24.1.3 Character Names
	24.1.4 Informative Aliases
	24.1.5 Normative Aliases
	24.1.6 Cross References
	24.1.7 Information About Languages
	24.1.8 Case Mappings
	24.1.9 Decompositions
	24.1.10 Standardized Variation Sequences
	24.1.11 Emoji Variation Sequences
	24.1.12 Positional Forms
	24.1.13 Block Headers
	24.1.14 Subheads

	24.2 CJK and Other Ideographs
	24.2.1 CJK Unified Ideographs
	Table 24-1. IRG Sources
	Figure 24-1. CJK Chart Format for the Main CJK Block
	Figure 24-2. CJK Chart Format for M or U Source
	Figure 24-3. CJK Chart Format for Lone M or U Source
	Figure 24-4. CJK Chart Format for CJK Extension A

	24.2.2 Compatibility Ideographs
	Figure 24-5. CJK Chart Format for Compatibility Ideographs
	Figure 24-6. Annotations Identifying CJK Unified Ideographs

	24.2.3 Tangut Ideographs

	24.3 Hangul Syllables

	A Notational Conventions
	A.1 Typographic Conventions
	A.1.1 Code Points
	A.1.2 Character Names
	A.1.3 Character Blocks
	A.1.4 Sequences
	A.1.5 Properties and Property Values
	A.1.6 Miscellaneous
	A.1.7 Operators
	Table A-1. Operators

	A.2 Extended BNF
	Table A-2. Extended BNF
	A.2.1 Character Classes
	Table A-3. Character Class Examples

	A.3 Rendering
	Figure A-1. Example of Rendering

	B Unicode Publications and Resources
	B.1 The Unicode Consortium
	B.1.1 The Unicode Technical Committee
	B.1.2 Other Activities

	B.2 Unicode Publications
	B.3 Other Unicode Online Resources
	B.3.1 Unicode Online Resources
	B.3.2 How to Contact the Unicode Consortium

	C Relationship to ISO/IEC 10646
	C.1 History
	Table C-1. Timeline
	C.1.1 Unicode 1.0
	C.1.2 Unicode 2.0
	C.1.3 Unicode 3.0
	C.1.4 Unicode 4.0
	C.1.5 Unicode 5.0
	C.1.6 Unicode 6.0
	C.1.7 Unicode 7.0
	C.1.8 Unicode 8.0
	C.1.9 Unicode 9.0
	C.1.10 Unicode 10.0
	C.1.11 Unicode 11.0
	C.1.12 Unicode 12.0
	C.1.13 Unicode 13.0
	C.1.14 Unicode 14.0
	C.1.15 Unicode 15.0
	C.1.16 Unicode 16.0

	C.2 Encoding Forms in ISO/IEC 10646
	C.2.1 Zero Extending
	Table C-2. Zero Extending

	C.3 UTF-8 and UTF-16
	C.3.1 UTF-8
	C.3.2 UTF-16

	C.4 Synchronization of the Standards
	C.5 Identification of Features for Unicode
	C.6 Character Names
	C.7 Character Functional Specifications

	D Version History of the Standard
	Table D-1. Versions of Unicode and ISO/IEC 10646

	E Han Unification History
	E.1 Development of the URO
	E.2 Continuing Research on Ideographs
	E.2.1 Ideographic Rapporteur Group
	E.2.2 Ideographic Research Group

	E.3 CJK Sources

	F Documentation of CJK Strokes
	Table F-1. CJK Strokes

