
Mathematisch Instituut

Universiteit Leiden

Bachelor thesis

Continued fractions with
restricted digits and their

Hausdorff dimension

Author:
M.H. Kolkhuis Tanke

Supervisors:
C.C.C.J. Kalle

E.A. Verbitskiy

July 22, 2016

Abstract

In 2001 Jenkinson and Pollicott developed an algorithm to compute the Haus-
dorff dimension of fractal sets constructed by the Gauss map. This thesis
presents the theory required to establish correctness of Jenkinson-Pollicott’s
algorithm. Jenkinson and Pollicott proved that the convergence rate of their
algorithm is super-exponential. This thesis improves this rate to

O

 2|A|

√
4 + 2p

5 + 2p

n2
 (0.1)

where A ⊂ N≥1 is a finite set with |A| ≥ 2, p = maxA and n+ 1 ∈ N≥1 is the
number of terms used in the Taylor approximation of equation (3.3). The thesis
concludes with a practical use of the algorithm, namely the attempt to prove
Zaremba’s conjecture done by Bourgain and Kontorovich.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Gauss map . 5
2.2 Hausdorff dimension . 6

2.2.1 Definition . 6
2.2.2 Computational techniques for Hausdorff dimension 8
2.2.3 Pressure . 11

3 Jenkinson-Pollicott’s algorithm 13
3.1 Ruelle operator . 13
3.2 Jenkinson-Pollicott’s algorithm 19

3.2.1 Correctness . 20
3.2.2 Complexity of Jenkinson-Pollicott’s algorithm 22
3.2.3 Convergence . 23

3.3 Computations . 26

4 Zaremba’s conjecture 27
4.1 Overview . 27
4.2 Use of Hausdorff dimension . 28

A Jenkinson-Pollicott’s algorithm code 32

2

Chapter 1

Introduction

In 1972 Zaremba [Zar72] conjectured the following statement:

Zaremba’s conjecture. Let A ∈ N≥1 be an integer and let A = {1, . . . , A} be
a finite alphabet. Let

RA =

x ∈ [0, 1]

∣∣∣∣∣∣∣∣∣∣∣∣∣
∃ {ai}ki=1 ⊂ A : x =

1

a1 +
1

. . . +
1

ak

(1.1)

be the set of finite continued fractions with coefficients in A. Let

DA =

{
d ∈ N≥1

∣∣∣∣ ∃b ∈ N :
b

d
∈ RA ∧ gcd(b, d) = 1

}
(1.2)

be the set of the denominators of the elements in RA. Then there is a Z ∈ N
such that DZ = N≥1.

This conjecture is the motivation for this thesis. Many have tried to prove it,
but no one has yet succeeded. The closest result to proving Zaremba’s conjecture
is by Bourgain and Kontorovich [BK14] and Huang [Hua15] where in the last
article Huang proved

lim
N→∞

1

N
|D5 ∩ [1, N]| = 1. (1.3)

To develop the proof of this conjecture further we need efficient tools to compute
the Hausdorff dimension of certain fractal sets.

In this thesis we let A ⊂ N≥1 be a finite set with |A| ≥ 2 and we consider
the set

EA =

x ∈ [0, 1]

∣∣∣∣∣∣∣∣∣∣
∃ {ai}∞i=1 ⊂ A : x =

1

a1 +
1

. . .

 . (1.4)

The set EA is a fractal set with a certain Hausdorff dimension. Bourgain and
Kontorovich [BK14] used the Hausdorff dimension of E{1,2} to prove their main

3

result, here Theorem 4.1.2 on page 28. The problem of computing dimH

(
E{1,2}

)
traces back to Jarńık [Jar29] who proved dimH

(
E{1,2}

)
> 1

4 . Good [Goo41] im-

proved this estimation to 0.5194 ≤ dimH

(
E{1,2}

)
≤ 0.5433. Bumby [Bum82]

proved 41 years later 0.5312 ≤ dimH

(
E{1,2}

)
≤ 0.5314. Hensley [Hen89] im-

proved this bound further in 1989 and in 1996 he derived a polynomial time
algorithm for computing dimH

(
E{1,2}

)
[Hen96]. With this algorithm the esti-

mate was improved to dimH

(
E{1,2}

)
≈ 0.53128 . . . which is accurate up to 19

decimal places. Jenkinson and Pollicott [JP01] constructed an algorithm that
computes dimH

(
E{1,2}

)
with super-exponential convergence rate and in [Jen04]

Jenkinson computes dimH

(
E{1,2}

)
accurately up to 54 decimal places.

Bourgain and Kontorovich [BK14] used Jenkinson-Pollicott’s algorithm de-
rived in [JP01, Jen04], here algorithm 1 on page 20, to compute dimH (EA) for
several finite non-empty A ⊂ N≥1. This algorithm draws heavily on the work of
Ruelle [Rue76] and Bowen [Bow79] who first used thermodynamical formalisms
to compute the Hausdorff dimension of certain sets. In [JP01] they proved that
their algorithm is correct for A = {1, 2}. In [Jen04] Jenkinson generalizes his
algorithm for all finite non-empty A, but he does not prove the correctness of
his generalized algorithm. Moreover, if n is the number of terms in the Taylor
approximation of equation (3.3) around z = 0, then in [JP01] they proved that
the convergence rate of their algorithm for dimH

(
E{1,2}

)
is

O

 4

√
8

9

n2
 , (1.5)

but in [Jen04] Jenkinson states that the convergence rate when computing

dimH (EA) with finite non-empty A ⊂ N≥1 is O
(
θn

2
)

with θ ∈ (0, 1) un-

specified.
This thesis considers the correctness of Jenkinson-Pollicott’s algorithm and

its convergence rate. Theorem 3.2.2 proves that Jenkinson-Pollicott’s algorithm
is correct for all finiteA ⊂ N≥1 with |A| ≥ 2. For |A| = 1 the set EA consists of a
single point which has zero Hausdorff dimension [Fal90, JP01]. Thus dimH (EA)
can now be computed for all finite non-empty A ⊂ N≥1. Theorem 3.2.8 proves
that the convergence rate of Jenkinson-Pollicott’s algorithm is

O

 2|A|

√
4 + 2p

5 + 2p

n2
 (1.6)

where A ⊂ N≥1 is finite, |A| ≥ 2 and p = maxA and n + 1 is the number
of terms of the Taylor approximation of equation (3.28) used in algorithm 1,
specifying the earlier mentioned θ.

In chapter 2 we will develop theory on the Hausdorff dimension of general
sets and EA following [Bed91, Bow79, Fal90]. In chapter 3 we first consider
the Ruelle operator [Rue76] in the context of continued fractions [JP01]. Then
we use the Ruelle operator to prove the main result of this thesis, namely The-
orem 3.2.2 and 3.2.8. Chapter 4 considers Bourgain’s and Kontorovich’s arti-
cle [BK14] and how they used dimH

(
E{1,2}

)
in the proof of Theorem 4.1.1 from

where their main result Theorem 4.1.2 follows.

4

Chapter 2

Preliminaries

This chapter concerns all the necessary information and background knowledge
needed for the thesis. The thesis is based around the Gauss map with restricted
digits, which is the first topic we will discuss. Then the main definition of the
thesis will be given, namely the definition of Hausdorff dimension. Lastly some
techniques for computing Hausdorff dimension and the notion of pressure will
be introduced.

2.1 Gauss map

The whole thesis is centered around the following transformation:

Definition 2.1.1 (Gauss map). Let A ⊂ N≥1 be finite and non-empty. The
Gauss map with restricted digits is given by

TA :
⋃
a∈A

[
1

a+ 1
,

1

a

]
→ [0, 1] , x 7→ 1

x
mod 1. (2.1)

Let a ∈ A and define Ta : [0, 1] →
[

1
a+1 ,

1
a

]
by x 7→ 1

x+a as the a-th inverse

branch of the Gauss map. The set A is called an alphabet.

In the rest of the thesis A ⊂ N≥1 will be a finite and non-empty alphabet.
In figure 2.1 an example of the Gauss-map with digits in A = {1, 2, 4, 6} is given
to clarify the definition.

The real Gauss map, made by Gauss, is x 7→ 1
x mod 1 with x ∈ [0, 1]. In

Jenkinson’s article [Jen04] the map of Definition 2.1.1 is called Gauss map and
in this thesis we continue to do so. The Gauss map with A = {1, 2} is researched
in many articles such as [Jar29, Goo41, Bum82, Hen89, Hen96, JP01, Jen04].
This thesis draws mainly on the work from [JP01, Jen04]. It is not known in
which article Gauss himself defined the Gauss map.

Consider the set EA :=
⋂∞
n=0 T

−n
A ([0, 1]) ⊂ [0, 1]. This set is called the

repeller of map TA. In [JP01, Jen04] it is stated that the set EA is the set of

5

0

1

1
1
2

1
3

1
4

1
7

x

TA(x)

Figure 2.1: Example of the Gauss map for A = {1, 2, 4, 6}.

all continued fractions with coefficients in A:

EA =

x ∈ [0, 1]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∃ {ai}∞i=1 ∈ A : x =

1

a1 +
1

a2 +
1

. . .

. (2.2)

This can be verified. Let {ai}∞i=1 ∈ A be an arbitrary sequence and let

x = [a1, a2, . . .] :=
1

a1 +
1

a2 +
1

. . .

∈ [0, 1]. (2.3)

Then TA(x) = [a1, a2, . . .]
−1

mod 1 = a1 + [a2, a3, . . .] mod 1 = [a2, a3, . . .]
holds, thus TA(x) is also an element of EA. Writing out EA =

⋂∞
n=0 T

−n
A ([0, 1])

gives EA from (2.2). Note that EA can be generated from the maps Ta for all
a ∈ A [JP01].

2.2 Hausdorff dimension

2.2.1 Definition

This thesis discusses the computation of the Hausdorff dimension of EA for many
alphabets A. Therefore we first need to define Hausdorff dimension, which will

6

be done in Definition 2.2.4. The definitions and notation used are mostly from
the book [Fal90] written by Falconer.

Definition 2.2.1 (δ-cover). Let E ⊂ Rn be a Borel-measurable set. Denote
the diameter of E as diam(E) = supx,y∈E |x − y|. Let {Ui}∞i=1 ⊂ P (Rn) be a
countable family of open Borel-measurable sets. Let δ ∈ R>0, then {Ui}∞i=1 is a
δ-cover of E if E ⊂

⋃∞
i=1 Ui and diam(Ui) ∈ (0, δ) for all i ∈ N≥1 hold.

A special measure called s-dimensional Hausdorff measure is needed to define
the Hausdorff dimension. The s-dimensional Hausdorff measure measures the
size of δ-covers of dimension s needed to cover a set E. This will be made precise
in the following definition.

Definition 2.2.2 (Hausdorff measure). Let s ∈ R≥0 and δ ∈ R>0. Let E ⊂ Rn
be a Borel-measurable set. Define the map Hsδ : B (Rn)→ [0,∞] by

Hsδ(E) = inf

{ ∞∑
i=1

diam (Ui)
s

∣∣∣∣∣ {Ui}∞i=1 ⊂ B (Rn) is a δ-cover of E

}
. (2.4)

The s-dimensional Hausdorff measure Hs is defined as

Hs := lim
δ→0
Hsδ. (2.5)

It is proven in [Fal90] that Hs really is a measure for all s ∈ R≥0. The
following proposition proven in [Fal90] is of utmost importance for the definition
of Hausdorff dimension.

Proposition 2.2.3. Let s ∈ R≥0 with t > s and δ ∈ R>0. Let E ⊂ Rn≥0 be

Borel-measurable. If Hs(E) is finite, then Ht(E) is zero for all t > s.

The Hausdorff dimension of a Borel-measurable set E ⊂ Rn is the s ∈ R≥0

where the map t 7→ Ht(E) jumps from ∞ to 0.

Definition 2.2.4 (Hausdorff dimension). Let E ⊂ Rn be Borel-measurable.
The Hausdorff dimension of E is defined as

dimH (E) := inf {s ∈ R≥0 |Hs(E) = 0} . (2.6)

Most of the times after such a definition an example would be given. How-
ever, computing the Hausdorff dimension directly by definition is extremely hard
for even the simplest fractals. Therefore we first discuss some computational
techniques and then in Examples 2.2.11 on page 9 and 2.2.15 on page 12 the
Hausdorff dimension of the middle-third Cantor set will be efficiently computed.

Suppose we know the Hausdorff dimension of some fractals in Rn and we
want to compute the Hausdorff dimension of their union, then we can use the
following property proven by [Fal90].

Property 2.2.5. Let {Ei}∞i=1 ⊂ Rn be a family of Borel-measurable sets. Then

dimH

(∞⋃
i=1

Ei

)
= sup

i∈N
dimH (Ei) . (2.7)

7

2.2.2 Computational techniques for Hausdorff dimension

There are a few computational techniques we can use for the Hausdorff dimen-
sion. In this subsection the mass-distribution principle, box-counting dimension
and pressure will be introduced which provide ease in the computation of the
Hausdorff dimension.

Mass-distribution principle

Finding a lower bound requires proving that every δ-cover for every arbitrary
small δ ∈ R>0 rises above the required infimum in the definition of Hausdorff
dimension. The mass-distribution principle, which is proven in [Fal90], enables
us to compute a lower bound for the Hausdorff dimension with less effort.

Proposition 2.2.6 (Mass-distribution principle). Let E ⊂ Rn be a Borel-
measurable set. Let µ be a probability measure on E and suppose that for some
s ∈ R≥0 there exist c, δ ∈ R>0 such that µ (U) ≤ c·diam (U)

s
holds for all Borel-

measurable U ⊂ E with diam (U) ≤ δ. Then Hs (E) ≥ 1
c and dimH E ≥ s.

The mass-distribution principle can in our case be specified to the pointwise
Hausdorff dimension of a probability measure. In section 2 of article [BW06]
the following result is proven:

Proposition 2.2.7 (Pointwise Hausdorff dimension). Let E ⊂ Rn be a Borel-
measurable set and let µ be a probability measure on E. The lower and upper
pointwise Hausdorff dimension of µ in x are respectively for every x ∈ E defined
as

dµ(x) = lim inf
s→0

logµ (B (x, s))

log s
, dµ(x) = lim sup

s→0

logµ (B (x, s))

log s
(2.8)

where B(x, s) is a ball in E with center x and radius s.
If dµ(x) = dµ(x) holds for an x ∈ E, then the pointwise Hausdorff dimension
in x is defined as dµ(x) = dµ(x). If there is an s ∈ R≥0 such that dµ(x) = s
holds for µ-almost every x ∈ E, then dimH (E) = s. If dµ(x) ≥ s holds for an
s ∈ R≥0 and µ-almost every x ∈ E, then dimH(E) ≥ s.

Proposition 2.2.7 is useful in computing a lower bound for the Hausdorff
dimension of fractals. This will be demonstrated in Example 2.2.11.

Box-counting dimension

Finding an upper bound for the Hausdorff dimension by definition can be chal-
lenging, as the definition is not easy to work with. Therefore another dimension
called box-counting dimension that is easier to compute will be introduced. The
box-counting dimension is an upper bound for the Hausdorff dimension.

To find an upper bound for the Hausdorff dimension one can cover the fractal
with boxes of a specific length. Then one can count the number of boxes and
investigate the ratio of the number of boxes needed and the length of a box.
This gives rise to the box-counting dimension, which is given by Falconer in
[Fal90].

Definition 2.2.8 (Box-counting dimension). Let E ⊂ Rn be Borel-measurable.
Let Nδ(E) be any of the following:

8

1. The smallest number of closed balls of radius δ that cover E;

2. The smallest number of cubes of side δ that cover E;

3. The smallest number of sets of diameter at most δ that cover E;

4. The largest number of disjoint balls of radius δ with center in E.

The lower box-counting dimension of E is given by

dimB (E) = lim inf
δ→0

logNδ (E)

− log δ
. (2.9)

The upper box-counting dimension of E is given by

dimB (E) = lim sup
δ→0

logNδ (E)

− log δ
. (2.10)

When the lower- and upper box-counting dimension of E exists, the box-counting
dimension is given by dimB (E) = dimB (E) = dimB (E).

The box-counting dimension is not the same as the Hausdorff dimension.
This can be proven by the following proposition from [Fal90]:

Proposition 2.2.9. Let E ⊂ Rn be Borel-measurable. Denote E as the closure
of E. Then dimB

(
E
)

= dimB (E) and dimB

(
E
)

= dimB (E) hold.

Consider Q and its Hausdorff and box-counting dimension. The set Q is
countable and dimH ({x}) is zero for every x ∈ Q. Therefore according to
Property 2.2.5 the Hausdorff dimension of Q equals

dimH(Q) = dimH

⋃
x∈Q
{x}

 = sup
x∈Q

dimH({x}) = 0. (2.11)

Note that Q = R holds and it can easily be proven that dimB(R) = 1. Thus
dimB(Q) = dimB(R) = 1 holds. Thus the box-counting dimension of Q is
larger than the Hausdorff dimension of Q. This will be made precise by the
next proposition from [Fal90].

Proposition 2.2.10. Let E ⊂ Rn be Lebesgue-measurable. Suppose that for
all k ∈ N≥1 the set E can be covered by nk sets of diameter at most δk with
limk→∞ δk = 0. Then

dimH (E) ≤ dimB (E) ≤ lim inf
k→∞

log nδk (E)

− log δk
. (2.12)

Now follows an example where the Hausdorff dimension of the middle-third
Cantor set will be computated. This example demonstrates all the theory that
is developed in section 2.2.

Example 2.2.11 (Middle-third Cantor set). Let {En}∞n=0 ⊂ [0, 1] be a family
of sets where E0 = [0, 1] and En+1 can be obtained from En for all n ∈ N by
splitting every interval in En in 3 equal-sized intervals and removing the middle
interval. Define the middle-third Cantor set as F :=

⋂∞
n=0En. An illustration

of this process can be found in figure 2.2.

9

E0

E1

E2

E3

E4

0
1
3

2
3 1

Figure 2.2: Construction of the middle-third Cantor set up to n = 4.

First we will compute an upper bound and then a lower bound for dimH(F).
Let n ∈ N be arbitrary and consider En. Then there are exactly 2n intervals of
size 3−n needed to cover En where the intersection is empty. Now we can use
Proposition 2.2.10 to provide an upper bound for dimH(F). Let {δk}∞k=0 ⊂ R>0

be a sequence with δk = 3−k for all k ∈ N. Then the sequence {nk}∞n=0 ⊂ N
must have nk = 2k for all k ∈ N according to Proposition 2.2.10. Since the
intervals needed to cover En also cover F for all n ∈ N, Proposition 2.2.10 gives

dimH(F) ≤ lim inf
k→∞

logNδk(F)

− log δk
= lim inf

k→∞

log 2k

− log 3−k
= log3 2. (2.13)

For the lower bound Proposition 2.2.7 will be used. Let n ∈ N be arbitrary
and consider En. Let x ∈ En \ ∂En be arbitrary. Let s′ ∈ R>0 be such that
B(x, s′) ⊂ En. Then B(x, s) ⊂ En holds for all s ∈ [0, s′]. Let µn be the

uniform Borel-probability measure on En, thus µn(X) = λ1(X)
λ1(En) for all Borel-

measurable X ⊆ En where λ1 is the 1-dimensional Lebesgue measure. Now
Proposition 2.2.7 can be applied. Note that s′ ≤ 1

23−n must hold. Thus

dµn
(x) = lim inf

s→0

logµn (B (x, s))

log s
= lim inf

s→0

logµn ((x− s, x+ s))

log s
(2.14)

= lim inf
s→0

log 2s
2n3−n

log s
= lim inf

s→0

(
log s+ log 2

log s
+
n log 3− n log 2

log s

)
(2.15)

≥ 1 + lim inf
s→0

n log 3− n log 2

log 1
23−n

= 1− n log 3− n log 2

n log 3 + log 2
. (2.16)

Let now x ∈ F . Taking n→∞ gives

lim
n→∞

dµn
(x) ≥ 1− lim

n→∞

n log 3− n log 2

n log 3 + log 2
(2.17)

= 1− log 3− log 2

log 3
= 1− 1 + log3 2. (2.18)

Therefore d lim
n→∞

µn
(x) ≥ log3 2 holds for lim

n→∞
µn-almost every x ∈ F . Thus

dimH(F) ≥ log3 2 holds.

Now we have proven that dimH(F) is bounded from below and above by
log3 2. Thus the Hausdorff dimension of the middle-third Cantor set is log3 2.

10

2.2.3 Pressure

The middle-third Cantor set is constructed with equally sized disjoint intervals
which enables an easy covering. This is not the case for EA, thus we need more
techniques to compute the Hausdorff dimension of EA in addition to the ones
developed in section 2.2.

Bowen [Bow79] first introduced pressure to analyze the dimension of quasi-
circles. Mathematicians as Ruelle [Rue76, Rue78], McCluskey, Manning [MM83]
and Bedford [Bed91] applied the approach of pressure to other cases. Here we
will use the approach in Bedford’s article [Bed91] as described in [JP01] by Jenk-
inson and Pollicott. Using the notion of pressure Bowen proved Theorem 2.2.14
also known as Bowen’s formula [Bow79]. Jenkinson and Pollicott then use this
formula in [JP01, Jen04] to find an efficient algorithm to approximate the Haus-
dorff dimension of EA. Therefore, the rest of the thesis is centered around
Theorem 2.2.14.

Definition 2.2.12 (Pressure). Let f : EA → R be a continuous function and
let TA be the restricted Gauss map from Definition 2.1.1. The pressure of f
with respect to TA is given by

P (f) = lim
n→∞

1

n
log

∑
Tn
A(x)=x

exp

(
n−1∑
k=0

f
(
T kA (x)

))
. (2.19)

Two properties of pressure can be derived from the definition.

Property 2.2.13. Let f, g : EA → R be continuous functions. Pressure has the
following two properties:

1. If f < g holds, then P (f) ≤ P (g) holds.

2. The map f 7→ P (f) is convex with respect to f .

The connection between pressure and Hausdorff dimension is given in the
following theorem.

Theorem 2.2.14 (Bowen’s formula). Let A ⊂ N≥1 be finite and non-empty.
Consider the function s 7→ P (−s log |T ′A|) with s ∈ [0, 1]. Then the unique
solution s′ to

P (−s log |T ′A|) = lim
n→∞

1

n
log

∑
Tn
A(x)=x
x∈EA

n−1∏
k=0

(
T kA (x)

)2s
= 0 (2.20)

is equal to s′ = dimH (EA).

Proof. The proof is given in [Bed91]. Even a scheme of the proof is out of the
scope of this thesis as it involves entropy. The unique zero can be proven in the
following way. Writing out P (−s log |T ′A|) and using Property 2.2.13 shows that
s 7→ P (−s log |T ′A|) is a continuous map and strictly decreasing in s. Using the

theory of entropy, one can prove that P (0) > 0 and P
(

log |T ′A|
−1
)
< 0 holds,

thus the Intermediate Value Theorem gives us a unique zero.

To show the power of Theorem 2.2.14 we will compute the Hausdorff dimen-
sion of the middle-third Cantor set once again in Example 2.2.15.

11

Example 2.2.15 (Middle-third Cantor set). Let I1, I2 ⊂ [0, 1] be arbitrary
closed disjoint intervals. Let S : I1 ∪ I2 → [0, 1] be a map such that there are
a1, a2 ∈ R>1 and c1, c2 ∈ R such that

S|I1(x) = a1x+ c1, S|I2(x) = a2x+ c2, (2.21)

S(I1) = [0, 1], S(I2) = [0, 1]. (2.22)

Let Λ be the repeller for S, thus Λ =
⋂∞
n=0 S

−n ([0, 1]). In [Bed91] it is proven
that Theorem 2.2.14 also holds for the above defined map S. Now the Hausdorff
dimension of Λ can be computed using Bowen’s formula.

Let s ∈ R≥0 be such that P (−s log |S′|) = 0. Let n ∈ N and x ∈ I1 ∪ I2
be arbitrary and consider S′(Snx). If Snx ∈ I1, then its derivative is a1. If
Snx ∈ I2, its derivative is a2. For all y ∈ I1 ∪ I2 with Sny = y there must be a
sequence ω = {ωi}ni=1 ∈ {1, 2}n such that

y = Sω(y) :=
(
S|Iωn

◦ . . . ◦ S|Iω1

)
(y). (2.23)

There are
(
n
k

)
sequences in {1, 2}n where 1 appears k times. Furthermore, Sω

has a unique fixed point and Sω and Sω′ have different fixed points for all
ω, ω′ ∈ {1, 2}n with ω 6= ω′. Thus

P (−t log |S′|) = lim
n→∞

1

n
log

 ∑
Snx=x
x∈I1∪I2

(
n−1∏
i=0

∣∣S′ (Six)∣∣)−t
 (2.24)

= lim
n→∞

1

n
log

 ∑
ω∈{1,2}n

n∏
i=1

a−tωi

 (2.25)

= lim
n→∞

1

n
log

(
n∑
k=0

(
n

k

)
a−kt1 a

−t(n−k)
2

)
. (2.26)

Now remember that
∑n
k=0

(
n
k

)
a−kt1 a

−t(n−k)
2 =

(
a−t1 + a−t2

)n
holds for all n ∈ N

according to Newton’s Binomial Theorem. Thus

P (−t log |S′|) = lim
n→∞

1

n
log

(
n∑
k=0

(
n

k

)
a−kt1 a

−t(n−k)
2

)
(2.27)

= lim
n→∞

1

n
log
(
a−t1 + a−t2

)n
(2.28)

= lim
n→∞

n

n
log
(
a−t1 + a−t2

)
. (2.29)

Therefore the Hausdorff dimension of Λ is the root of the equation a−t1 +a−t2 = 1.
The set Λ =

⋂∞
n=0 T

−n ([0, 1]) is the middle-third Cantor set for the map
T :

[
0, 1

3

]
∪
[
0, 2

3

]
→ [0, 1] with

x 7→

{
3x , x ∈

[
0, 1

3

]
3x− 2 , x ∈

[
2
3 , 1
] . (2.30)

In this case a1 = a2 = 3. Therefore the root of 2 ·3−t = 1 is the dimension of the
middle-third Cantor set. Since 2·3− log3 2 = 1, the dimension of the middle-third
Cantor set is log3 2.

12

Chapter 3

Jenkinson-Pollicott’s
algorithm

Let A be an alphabet with |A| ≥ 2 and TA its corresponding Gauss map as
in Definition 2.1.1. In this chapter we will construct Jenkinson-Pollicott’s algo-
rithm 1 to compute the Hausdorff dimension of EA, since the methods presented
in section 2.2.2 are not sufficient for this task. The Ruelle operator [Rue76] from
Definition 3.1.1 in combination with Bowen’s formula 2.2.14 is. The biggest
eigenvalue of the Ruelle operator can be expressed in terms of pressure [Jen04].
Then dimH (EA) can be computed using Bowen’s formula and that eigenvalue.
The Ruelle operator is however too complex to compute dimH (EA), so Jenkin-
son and Pollicott [JP01, Jen04] constructed algorithm 1 on page 20 to compute
the Hausdorff dimension efficiently.

In this chapter the Ruelle operator will be introduced. Then Lemma 3.1.2
will connect the Ruelle operator and pressure. Jenkinson-Pollicott’s algorithm
will be constructed from the Ruelle operator in section 3.2 and we also will prove
that Jenkinson-Pollicott’s algorithm is correct for all finite non-empty A ⊂ N≥1

with |A| ≥ 2. At last we will discuss the convergence rate and complexity of
Jenkinson-Pollicott’s algorithm. The conclusions, which are new results, are
that the complexity is O

(
N |A|N

)
and the convergence rate is

O

 2|A|

√
4 + 2p

5 + 2p

n2
 (3.1)

where p = maxA and n+ 1 is the number of terms in the Taylor approximation
of equation (3.3) around z = 0.

3.1 Ruelle operator

The Ruelle operator is introduced by Ruelle in [Rue76] and more elaborately
explored in [Rue78]. Jenkinson and Pollicott studied the relation between the
Ruelle operator and the Gauss map in [JP01] and [Jen04]. Their results will
be heavily used in this chapter. Our definition of the Ruelle operator is taken
from [JP01].

13

Definition 3.1.1 (Ruelle operator). Let A ⊂ N≥1 be a finite and non-empty
alphabet. Let TA be the corresponding Gauss map and Ta be the a-th branch of
the Gauss map with a ∈ A. Let D ⊂ C be the disk D =

{
z ∈ C

∣∣ |z − 1| < 3
2

}
.

Let C(D) be the Banach space of analytic functions on D that have a continuous
extension to the boundary of D with the supremum norm. Let s ∈ [0, 1], then
the Ruelle operator Ls : C(D)→ C(D) is defined as

Lsv(z) =
∑
a∈A

(
1

z + a

)2s

v

(
1

z + a

)
(3.2)

for all v ∈ C(D) and z ∈ D.

The following lemma cited from [Jen04] explains the connection between the
Ruelle operator and pressure.

Lemma 3.1.2 (Ruelle (1978), Bowen (1979)). Let A ⊂ N≥1 be a finite and
non-empty alphabet and TA its corresponding Gauss map. Then the following
two statements hold:

1. The Ruelle operator Ls has a simple eigenvalue λ(s) of maximum modulus
and λ(s) = exp (P (−s log |T ′A|)).

2. The unique solution to the equation λ(s) = 1 is s = dim (EA).

Proof. The first statement is an important theorem proved by Ruelle in [Rue78]
and improved by Parry and Pollicott in [PP90]. The second statement is a
corollary of Theorem 2.2.14 and is proved in [Bow79]. In short, Bowen’s equation
P (−s log |T ′|) = 0 has a unique zero s = dim(EA), thus s = dim (EA) is the
unique solution to λ(s) = exp (P (−s log |T ′|)) = 1.

To compute dimH (EA) we thus need to find the s ∈ [0, 1] such that λ(s) = 1
with λ(s) from Lemma 3.1.2. This is the same as finding the s ∈ [0, 1] such
that det (I − Ls) = 0 where I is the identity map on C(D). The expression
det (I − Ls) can only be written in terms of infinite sums. Thus to find the zero
of s 7→ det (I − Ls) we will compute the Taylor expansion of det (I − zLs) with
z ∈ C around z = 0. This is possible since det (I − zLs) is analytic in z on D
for all s ∈ [0, 1]. Then we fill in z = 1 and find the zero of the remaining sum
in s.

The function z 7→ det (I − zLs) can be written as an exponential power,
but the technique necessary to do so is outside the scope of this thesis. Ru-
elle [Rue76] developed this technique for the Ruelle operator and in [JP01]
Jenkinson and Pollicott applied it to the case of the Gauss map. Here we will
define the Fredholm determinant of the Ruelle operator as an exponential func-
tion as done in [JP01], which followed the work of [Gro95, May76, Rue76].

Definition 3.1.3. Let s ∈ [0, 1] and z ∈ D. The Fredholm determinant of the
operator I − zLs on C(D) is equal to

det (I − zLs) = exp

(
−
∞∑
n=1

zn

n
tr (Lns)

)
. (3.3)

14

We need to compute the trace of Lns for all n ∈ N≥1 and s ∈ [0, 1]. This
will be done in Lemma 3.1.10, but before we can prove Lemma 3.1.10 we need
more theory on the Ruelle operator regarding its trace. In Theorem 3.1.8 we
will prove that the Ruelle operator is a nuclear operator which we will define in
Definition 3.1.6. This property enables us to explicitly compute the trace of the
Ruelle operator. Before nuclear operators can be introduced, we need to regard
trace-class operators first. The following definition is from [dG11].

Definition 3.1.4 (Trace-class operator). Let H be a Hilbert space and let T
be an operator on H. Let {ek}k∈N ⊂ H be an orthonormal basis of H. Then T
is a trace-class operator if the following sum is finite:

‖T‖1 = tr |T | :=
∑
k∈N

〈√
T ∗Tek, ek

〉
. (3.4)

The following proposition from [dG11] specifies the trace of a trace-class
operator.

Proposition 3.1.5. Let H be a Hilbert space and let T be a trace-class operator
on H. Let {ek}k∈N ⊂ H be an orthonormal basis of H. The trace of T is equal
to tr T :=

∑
k∈N 〈Tek, ek〉 and it is absolutely convergent and independent of

choice of basis.

Thus trace-class operators have a trace that is independent on the choice of
basis and Proposition 3.1.5 gives us an explicit formula for the trace of a trace-
class operator. It is not easy to prove by definition that the Ruelle operator is
a trace-class operator. Grothendieck [Gro95] introduced nuclear operators as a
special kind of trace-class operators.

Definition 3.1.6 (Nuclear). Let L : C(D) → C(D) be a linear operator with
C(D) as in Definition 3.1.1. The operator L is nuclear if there are a sequence of
functions {fn}∞n=1 ⊂ C(D) with ‖fn‖ = 1, a sequence of normalized functionals
{ln}∞n=1 ⊂ C(D)∗ where C(D)∗ is the dual space of C(D), and a sequence of
complex coefficients {λn}∞n=1 ∈ `1 (C) such that Lv =

∑∞
n=1 (λnln (v)) fn holds

for all v ∈ C(D).

Remark 3.1.7. Grothendieck [Gro95] proved that a nuclear operator is compact.

Theorem 3.1.8 proves that Lns is a nuclear operator for all s ∈ [0, 1] and
n ∈ N≥1. This proof draws heavily from [JP01] where Theorem 3.1.8 and
Lemma 3.1.10 are proven with A = {1, 2}.

Theorem 3.1.8. Let A ⊂ N≥1 be an alphabet with |A| ≥ 2, then the Ruelle
operator Ls is nuclear for all s ∈ [0, 1].

Proof. Consider the disk D =
{
z ∈ C

∣∣ |z − 1| < 3
2

}
as in Definition 3.1.1. First

we will compute Ta(D) for all a ∈ A where Ta from Definition 2.1.1 is extended
to Ta : D → C. The function Ta can for all a ∈ A be specified as a Möbius
transformation Ta(z) = 1

z+a for all z ∈ D. One property of Möbius transfor-
mation is that generalized circles are invariant, where a generalized circle is a
circle or a line [FB09]. In our case Ta(D) will either be a disk or a combination
of circles and lines. Since −a 6∈ D holds for all a ∈ A, there will be no lines to
infinity in Ta(D). Thus Ta(D) is a disk for all a ∈ A.

15

0 1 21
2

3
2

5
2− 1

2

DT1(D)T2(D)

Γ

Figure 3.1: Visualization of Ta(D) for a ∈ {0, 1, 2, 3, 4} with the curve Γ. Note
that the disks Ta(D) are smaller if a increases.

Let a ∈ A be arbitrary and consider Ta
((
− 1

2 ,
5
2

))
. The map Ta is strictly de-

creasing and positive on
(
− 1

2 ,
5
2

)
. The end points of

(
− 1

2 ,
5
2

)
are mapped to

Ta
(
− 1

2

)
= 2

2a−1 and Ta
(

5
2

)
= 2

5+2a , which gives

Ta

((
−1

2
,

5

2

))
=

(
2

5 + 2a
,

2

2a− 1

)
. (3.5)

Since Ta is strictly decreasing, the points 2
5+2a and 2

2a−1 are two points in
Ta(D) with maximal distance. This gives us of the disk Ta(D) the center
1
2

(
2

5+2a + 2
2a−1

)
= 4a+4

(5+2a)(2a−1) and radius 4a+4
(5+2a)(2a−1) −

2
5+2a = 6

(5+2a)(2a−1) .

Thus

Ta(D) =

{
z ∈ C

∣∣∣∣ ∣∣∣∣z − 4a+ 4

(5 + 2a) (2a− 1)

∣∣∣∣ < 6

(5 + 2a) (2a− 1)

}
. (3.6)

In figure 3.1 a visualization of Ta(D) is given for some a ∈ N≥1. Note that
the visualization given in [JP01] may not be correct, as the written and drawn
T1(D) in figure 1 in [JP01] clearly are not the same.

Let p = maxA. We need to find a circle Γ ⊂ D of radius 1 that encloses
Ta(D) for all a ∈ A to apply Cauchy’s integral formula later. Note that

min
a∈A

min
z∈Ta(D)

Re(z) = min
z∈Tp(D)

Re(z) =
2

5 + 2p
. (3.7)

16

A circle that passes though 1
5+2p and 11+4p

5+2p will do, which is the curve

Γ =

{
z ∈ C

∣∣∣∣ ∣∣∣∣z − 6 + 2p

5 + 2p

∣∣∣∣ = 1

}
. (3.8)

Let Γ′ =
{
z ∈ C

∣∣∣ ∣∣∣z − 6+2p
5+2p

∣∣∣ < 1
}

be the interior disk of Γ. Let s ∈ [0, 1].

Let v : Γ′ → C be a holomorphic function. The function ξ 7→ ξ2s is well defined
and analytic on Γ′. Thus Cauchy’s integral formula can be used to write

(Taz)
2s
v (Taz) =

1

2πi

∫
Γ

ξ2sv(ξ)

ξ − Taz
dξ (3.9)

for all z ∈ Γ′ and a ∈ A. For all z ∈ Γ′ the following sum holds:

Lsv(z) =
∑
a∈A

(Taz)
2s
v (Taz) (3.10)

=
1

2πi

∫
Γ

ξ2sv(ξ)
∑
a∈A

1

ξ − Taz
dξ (3.11)

=
1

2πi

∫
Γ

ξ2sv(ξ)

ξ − 6+2p
5+2p

∑
a∈A

(
1−

Taz − 6+2p
5+2p

ξ − 6+2p
5+2p

)−1

dξ (3.12)

=

∞∑
n=0

1

2πi

∫
Γ

ξ2sv(ξ)(
ξ − 6+2p

5+2p

)n+1 dξ
∑
a∈A

(
Taz −

6 + 2p

5 + 2p

)n
(3.13)

Note that the expansion in infinite sum is true since Taz ∈ Γ′ for all a ∈ A and
z ∈ D gives ∣∣∣∣∣Taz −

6+2p
5+2p

ξ − 6+2p
5+2p

∣∣∣∣∣ < 1 (3.14)

for all z ∈ D, a ∈ A and ξ ∈ Γ. Now, following the notation of [JP01], define

ga,n(z) :=

(
Taz −

6 + 2p

5 + 2p

)n
, mn(v) :=

1

2πi

∫
Γ

ξ2sv(ξ)(
ξ − 6+2p

5+2p

)n+1 dξ, (3.15)

fa,n :=
ga,n
‖ga,n‖

, ln :=
mn

‖mn‖
. (3.16)

for all a ∈ A, n ∈ N, z ∈ D and holomorphic v : Γ′ → C. Lastly define for all
a ∈ A and n ∈ N the constants λa,n = ‖ga,n‖ ‖mn‖, then Ls can be expressed
as

Lsv(z) =

∞∑
n=0

∑
a∈A

(λa,nln (v)) fa,n(z). (3.17)

We now only need to prove
∑∞
n=0

∑
a∈A λa,n < ∞. For that we need to

estimate ‖ga,n‖ and ‖mn‖ for all a ∈ A and n ∈ N. Let n ∈ N be arbitrary and
consider ‖gp,n‖ first. Note that p = 1 cannot hold since |A| ≥ 2. The set Tp(D)
is a disk not containing 6+2p

5+2p and Tp(D) is located left of 6+2p
5+2p . This gives

‖gp,n‖ =

∣∣∣∣min
z∈D

Re Tp(z)−
6 + 2p

5 + 2p

∣∣∣∣n =

∣∣∣∣ 2

5 + 2p
− 6 + 2p

5 + 2p

∣∣∣∣n =

(
4 + 2p

5 + 2p

)n
.

(3.18)

17

As can be seen in figure 3.1 the regions Ta(D) are for all a ∈ A \ {p} closer to
6+2p
5+2p . Thus ‖ga,n‖ ≤

(
4+2p
5+2p

)n
holds for all a ∈ A and n ∈ N.

Let n ∈ N and consider ‖mn‖. Let v : Γ′ → C be holomorphic such that ‖v‖ = 1
holds. For all ξ ∈ Γ the equality ξ − 6+2p

5+2p = 1 is per definition of Γ true.

Furthermore, |ξ| ≤ 11+4p
5+2p gives |ξ|2s ≤ 5 for all s ∈ [0, 1]. The length of curve

Γ is 2π since Γ is a circle of radius 1. This gives for all n ∈ N the following
estimation of ‖mn‖:

‖mn‖ = sup
‖v‖≤1

∣∣∣∣∣∣∣
1

2πi

∫
Γ

ξ2sv(ξ)(
ξ − 6+2p

5+2p

)n+1 dξ

∣∣∣∣∣∣∣ ≤
2π

2π

5 · 1
1n+1

= 5. (3.19)

Now the following exponential upper bound λa,n = ‖ga,n‖ ‖mn‖ ≤ 5
(

4+2p
5+2p

)n
arises. This means that the sum

∑∞
n=0

∑
a∈A λa,n is finite, which proves that

Ls is nuclear.

The upper bound for the λa,n in the proof above will in section 3.2.3 be used
to compute the convergence of Jenkinson-Pollicott’s algorithm. Grothendieck’s
propostion [Gro95] applied in [JP01] provides the trace of Lns .

Proposition 3.1.9 (Grothendieck (1995)). The zeros of z 7→ det (I − zLs) are
the non-zero eigenvalues of Ls with both zeros counted with multiplicities.

There is now enough theory to explicitly compute the trace of the Ruelle
operator. The proof of Lemma 3.1.10 is in [JP01], but that proof is forA = {1, 2}
only. However, since for all finite A ⊂ N≥2 with |A| ≥ 2 the Ruelle operator
is nuclear and since Jenkinson and Pollicott did not explicitly use the equality
A = {1, 2}, their proof also applies for Lemma 3.1.10.

Lemma 3.1.10 (Jenkinson, Pollicott (2001)). Let A ⊂ N≥1 be a finite alphabet
with |A| ≥ 2. Let s ∈ [0, 1] and n ∈ N≥1. Let i ∈ An be a finite string. Let
|i| ∈ N be equal to the number of elements in i. Let xi ∈ EA be the periodic
continued fraction xi = [i1, . . . , in, i1, . . . , in, i1, . . .]. Let wi ∈ R≥0 be the weight

of xi defined as wi =
∏|i|−1
r=0 T rA

(
xi
)
. Then the trace of Lns is equal to

tr (Lns) =
∑
i∈An

|i|=n

w2s
i

1− (−1)
|i|
w2
i

. (3.20)

Take a look at the definition of the weight wi of xi for i ∈ An. Define for
all n ∈ N≥1 the concepts i, xi and wi for the rest of the thesis as defined in
Lemma 3.1.2. Let {Xi}ki=1 ⊂ [0, 1] be a family of closed disjoint intervals and

let X :=
⋃k
i=1Xi ⊂ [0, 1]. Let S : X → [0, 1] be such that for all i ∈ {1, . . . , k}

the map S|Xi is continuous and bijective. The Fixed Point Theorem states that
for all i ∈ {1, . . . , k} the map S|Xi

has a fixed point. Let n ∈ N and let x ∈ [0, 1]
be a fixed point of Sn. The weight w ∈ R≥0 of a fixed point x of Sn is defined

as w =
∏n
r=0 |S′ (Sr(x))|−1

. We will now derive that our definition of weight is
equal to the general definition.

Let n ∈ N, let i ∈ An and let xi ∈ [0, 1] be a fixed point of T
|i|−1
A where TA is

the Gauss map with restricted digits. Denote xi = [a0, a1, . . .] with {ai}i∈N ⊂ A

18

and recall that for the Gauss map TA ([a0, a1, . . .]) = [a1, a2, . . .] holds. The
weight of xi is equal to

w =

|i|−1∏
r=0

∣∣T ′A (T rA(xi)
)∣∣−1

=

|i|−1∏
r=0

|T ′A ([ar, ar+1, . . .])|
−1

(3.21)

=

|i|−1∏
r=0

∣∣∣∣∣− 1

[ar, ar+1, . . .]
2

∣∣∣∣∣
−1

=

|i|−1∏
r=0

[ar, ar+1, . . .]
2

(3.22)

=

|i|−1∏
r=0

(
T rA
(
xi
))2

= w2
i . (3.23)

Thus in our case the weight wi of a fixed point xi is well defined for all i ∈ An
with |i| = n.

This section concludes to the now fully established definition of det(I−zLs):

det(I − zLs) = exp

− ∞∑
n=1

∑
i∈An

|i|=n

1

n

w2s
i

1− (−1)
|i|
w2
i

 . (3.24)

3.2 Jenkinson-Pollicott’s algorithm

Lemma 3.1.2 states that we need to compute the zero of s 7→ det(I − Ls) with
s ∈ [0, 1]. Jenkinson and Pollicott [JP01, Jen04] constructed an algorithm, here
algorithm 1, for finding this zero. The construction of algorithm 1 relies heavily
on equation (3.24). In this section we first construct algorithm 1 ourselves
and prove that algorithm 1 is correct for all finite A ⊂ N≥1 with |A| ≥ 2.
In sections 3.2.2 and 3.2.3 we will consider respectively the complexity and
convergence rate of algorithm 1.

Remark 3.2.1. Equation (3.24) is an exponential power, which can never be 0.
However, equation (3.24) is not defined everywhere. There is another definition
from [Rue76] for Fredholm determinant which is more complicated but is defined
on a larger domain than equation (3.24). Let ΛkC(D) be the k-th exterior
power for the complex Hilbert space C(D) for all k ∈ N with C(D) as in
Definition 3.1.1. Define for all linear maps A : C(D) → C(D) and k ∈ N the
bounded operator Λk(A) on ΛkC(D) by

Λk(A) (v1 ∧ . . . ∧ vk) = Av1 ∧ . . . ∧Avk (3.25)

with vi ∈ C(D) for all i ∈ {1, . . . , k}. The Fredholm determinant for the
operator I − zLs can for all z ∈ C and s ∈ [0, 1] also be defined as

det(I − zLs) =

∞∑
k=0

(−1)ktr
(
Λk (Ls)

)
. (3.26)

This definition is equal to equation (3.24) on the intersection of their domains.
For algorithm 1 we keep using equation 3.24 because algorithm 1 returns the
desired zero and it is easier to manipulate since an explicit formula is known.

The computations used to compute the zero of s 7→ det (I − Ls) are shown
in algorithm 1, also called Jenkinson-Pollicott’s algorithm.

19

Algorithm 1 Jenkinson-Pollicott’s algorithm.

1: Choose a N ∈ N.
2: for all n ∈ {1, . . . , N} do
3: Compute all strings i ∈ An with |i| = n.
4: for all i ∈ An do
5: Compute xi = [i1, . . . , in, i1, . . . , in, i1, . . .].

6: Compute wi =
∏n−1
r=0 T

r
(
xi
)
.

7: Define Fi (s) =
w2s

i

1−(−1)nw2
i
.

8: end for
9: Define cn (s) = 1

n

∑
i∈An

|i|=n
Fi (s).

10: Define dn (s) =
∑n
j=1

∑
m∈Nj

≥1

j∑
l=1

ml=n

(−1)j

j!

∏j
l=1 cml

(s).

11: end for
12: Define ∆N (s) = 1 +

∑N
n=1 dn (s).

13: . This ∆N (s) is a Taylor polynomial of order N of s 7→ det (I − Ls).
14: Compute the largest zero s = sN of s 7→ ∆N (s).
15: . In this thesis algorithm 2 is used.
16: return sN .

3.2.1 Correctness

We will now construct algorithm 1. Let s0 ∈ [0, 1] be the zero of the function
s 7→ det (I − Ls). In order to find s0 we need to solve equation (3.24). Solving
equation (3.24) analytically is nearly impossible. The solution of equation (3.24)
can be approximated by the analytic continuation of z 7→ det(I − zLs) on D
as stated in [JP01]. We can compute det(I − Ls) by constructing the Taylor
polynomial of det(I − zLs) around z = 0 and fill in z = 1.

The Taylor polynomial of ez around z = 0 is given by ez =
∑∞
k=0

zk

k! . This gives
the following Taylor polynomial of det(I − zLs):

det(I − zLs) =

∞∑
k=0

(−z)k

k!

 ∞∑
n=1

∑
i∈An

|i|=n

1

n

w2s
i

1− (−1)
|i|
w2
i

k

. (3.27)

Define cn(s) =
∑
i∈An

|i|=n

1
n

w2s
i

1−(−1)|i|w2
i

for all n ∈ N≥1. This simplifies equa-

tion (3.27) to det(I − zLs) =
∑∞
k=0

(−z)k
k! (

∑∞
n=1 cn (s))

k
. First we will analyze

(
∑∞
n=1 cn (s))

k
. In that expression the cnj (s)’s are chosen with nj ∈ N≥1 for all

j ∈ {1, . . . , k}. All those terms are then multiplied, which gives us

det(I − zLs) = 1 +

∞∑
k=1

(−z)k

k!

∑
m∈Nk

≥1

k∏
l=1

cml
(s). (3.28)

Now we must choose between two options. The first option is to truncate the
first sum of equation (3.28) to N terms with N ∈ N≥1. However, the sum

20

∑
m∈Nk

≥1

∏j
l=1 cml

(s) will still be an infinite sum, so for the approximation we

must truncate N other infinite sums. This will lead to estimation errors that in
this case are not easy to estimate and control.
The second option is to set N ∈ N≥1 and consider for all k ∈ N≥1 only the
m ∈ Nk≥1 where the terms of m sum up to an n ∈ {1, . . . , N}. In this way

the sum
∑
m∈Nk

≥1

∏k
l=1 cml

(s) will be truncated for all k ∈ N≥1. Then we can

truncate the sum the first sum of equation (3.28) to N terms to get our desired
approximation since term N + 1 and above do not exist anymore due to the
earlier truncation. This thesis chose the second option.

Let N ∈ N≥1 be arbitrary. Then the approximation will be as following:

det(I − zLs) = 1 +

∞∑
k=1

∑
m∈Nk

≥1

(−z)k

k!

k∏
l=1

cml
(s) (3.29)

≈ 1 +

N∑
n=1

n∑
j=1

∑
m∈Nj

≥1

j∑
k=1

mk=n

(−z)j

j!

j∏
l=1

cml
(s) (3.30)

This gives us the ∆N (s) of algorithm 1. We also proved that ∆N (s) is an approx-
imation of equation (3.27). The error of this approximation will be considered
in section 3.2.3.

When ∆N (s) is constructed in algorithm 1 one must compute the largest
zero s = sN of s 7→ ∆N (s). Various methods can be used to compute the
largest zero. Note that s 7→ det (I − Ls) is a strictly increasing function on
[0, 1], thus s 7→ ∆N (s) must be strictly increasing on [0, 1] as well since it is a
Taylor approximation. Thus the bisection algorithm, here algorithm 2, can be
used to compute this zero.

Algorithm 2 Bisection algorithm for s 7→ ∆N (s)

1: Define a← 0 and b← 1.
2: Define s′ ← a+b

2 = 1
2 .

3: while |a− b| > 10−8 do
4: Compute ∆N (s′).
5: if ∆N (s′) < 0 then
6: Define a← s′.
7: Define s′ ← a+b

2 .
8: else
9: Define b← s′.

10: Define s′ ← a+b
2 .

11: end if
12: end while
13: return s′ . This s′ is an approximation for dimH (EA).

Algorithm 2 is constructed in the following way. Let s0 ∈ [0, 1] be the zero
of s 7→ ∆N (s). Let a = 0 and b = 1. Since s 7→ ∆N (s) is strictly increasing
and since we must find s0, ∆N (a) ≤ 0 and ∆N (b) ≥ 0 must hold. Let s′ = 1

2
and compute ∆N

(
1
2

)
. If ∆N

(
1
2

)
< 0 is negative, then s0 ∈ (s′, b]. Define then

21

a := s′ and s′ := s′+b
2 and compute ∆N (s′) again. If ∆N

(
1
2

)
> 0 is positive,

then s0 ∈ [a, s′) holds. Define then b := s′ and s′ := a+s′

2 and compute ∆N (s′)
again. This will almost never lead to the exact s′, however |a− b| will decrease
in every step by factor 1

2 . One can set a required upper bound for |a− b| when
the algorithm needs to terminate. In this thesis the upper bound 10−8 is chosen.

We have now proven the following theorem:

Theorem 3.2.2. Algorithm 1 is correct for finite A ⊂ N≥1 with |A| ≥ 2.

Proof. From section 3.2 onward, we have found the approximation

det(I−zLs) ≈ 1+

N∑
n=1

n∑
j=1

∑
m∈Nj

≥1

j∑
l=1

ml=n

(−z)j

j!

j∏
l=1

∑
i∈Aml

|i|=ml

1

ml

|i|−1∏
r=0

(
T r
(
xi
))2s

1− (−1)
|i|
|i|−1∏
r=0

(
T r
(
xi
))2

(3.31)
with N ∈ N≥1. Lemma 3.1.2 states that the largest zero of s 7→ det (I − Ls)
needs to be computed. This zero can be approximated by filling in z = 1 in
the approximation, which gives ∆N (s) of algorithm 1, and then computing the
largest zero of s 7→ ∆N (s). This proves the correctness of algorithm 1.

3.2.2 Complexity of Jenkinson-Pollicott’s algorithm

Now we know that Jenkinson-Pollicott’s algorithm is correct, we ask ourselves
two questions: how long will it take for Jenkinson-Pollicott’s algorithm to ter-
minate and how fast does the returned value of Jenkinson-Pollicott’s algorithm
converge to dimH (EA)? The first question will be treated in this section, the
second one in section 3.2.3.
To answer the first question we will treat algorithm 1 line by line and count
the number of steps in every line to find a complexity of O (n|A|n) where n+ 1
is the number of terms used in the Taylor approximation of det (I − Ls). This
will give us an upper bound for the number of steps needed.

Theorem 3.2.3. The complexity of algorithm 1 is O
(
N |A|N

)
where N is the

number of terms in the Taylor approximation of det (I − Ls).

Proof. Let N ∈ N≥1 be arbitrary. Consider algorithm 1. We will now estimate
the complexity of every line in algorithm 1 and combine all the complexities to
deduct the complexity of the whole algorithm.

We start with line 3. Let n ∈ {1, . . . , N} and i ∈ An with |i| = n be
arbitrary. Then i is a sequence of n components with |A| possible letters for
every element in the sequence. There are |A|n different i ∈ An with |i| = n. In

total line 3 computes
∑N
n=1 |A|n sequences. Thus the complexity of line 3 as

O
(
|A|N

)
.

Consider now lines 4 to 8. Let n ∈ {1, . . . , N} be arbitrary and i ∈ An with
|i| = n be arbitrary. To compute xi we start with the continued fraction [in].
Then

(
Ti1 ◦ · · · ◦ Tin−1

)
([in]) = [i1, . . . , in] is computed. For better numerical

approximation we compute (Ti1 ◦ · · · ◦ Tin)
k−1

([i1, . . . , in]) with k ∈ N≥1. In
total we need kn steps to compute xi where k ∈ N≥1 is the number of sequences

22

i1, . . . , in in the partial continued fraction. There are |A|n different i ∈ An with
|i| = n, thus kn|A|n steps will be taken to compute all xi with |i| = n. This

concludes that line 5 takes
∑N
n=1 kn|A|n = O

(
N |A|N

)
steps.

If we want to compute wi, we need to apply the Gauss map n times on xi. There

are n different xi with |i| = n, thus line 6 needs
∑N
n=1 n|A|n = O

(
N |A|N

)
steps

to be executed. In line 7 there are in total
∑N
n=1 |A|n = O

(
|A|N

)
functions

defined. Thus the complexity of lines 4 to 8 is O
(
N |A|N

)
due to lines 5 and 6.

Consider now line 9. Let n ∈ {1, . . . , N} be arbitrary. For every cn(s) we
need |A|n functions Fi(s) and 1 step extra for the 1

n . Thus to execute line 9 one

time we need |A|n + 1 steps, thus
∑N
n=1 |A|n +N = O

(
|A|N

)
steps in total.

Line 10 is more complicated. Let n ∈ {1, . . . , N} and j ∈ {1, . . . , n} be

arbitrary. For every m = (m1, . . . ,mj) ∈ Nj≥1 with
∑j
l=1ml = n we need

j + 1 multiplications to compute (−1)j

j!

∏j
l=1 cml

(s). Now we need to count the

number of m ∈ Nj≥1 with
∑j
l=1ml = n.

The number of m ∈ Nj≥1 with
∑j
l=1ml = n is the same as the coefficient of xn

in
(∑∞

i=1 x
i
)j

= xj

(1−x)j
. Recall the standard sum (1− x)

−j
=
∑∞
i=0

(
j+i−1
j−1

)
xi.

This gives us the expression
(∑∞

i=1 x
i
)j

=
∑∞
i=0

(
j+i−1
j−1

)
xi+j . Filling in index

i = n− j gives
(
n−1
j−1

)
as the coefficient of xn.

Thus there are
(
n−1
j−1

)
different m ∈ Nj≥1 with

∑j
l=1ml = n. We need (j+1)

(
n−1
j−1

)
steps to compute ∑

m∈Nj
≥1

j∑
l=1

ml=n

(−1)
j

j!

j∏
l=1

cml
(s) . (3.32)

To execute line 10 we need
∑n
j=1(j + 1)

(
n−1
j−1

)
steps for every n ∈ {1, . . . , N},

thus for the whole execution we need
∑N
n=1

∑n
j=1(j + 1)

(
n−1
j−1

)
steps in total.

This concludes that line 10 has complexity O
(
N ·

(
N − 1⌊
N−1

2

⌋)).

Suppose |A| = 2 holds and compare O
(
N ·

(
N − 1⌊
N−1

2

⌋)) and O
(
N2N

)
. The

sum 2N =
∑N
k=0

(
N
k

)
gives us the estimation N ·

(
N − 1⌊
N−1

2

⌋) = O
(
N2N−1

)
.

Thus the complexity of line 10 is less than O
(
N2N

)
. This is less than the

bound O
(
N |A|N

)
where A ⊂ N≥1 is a general finite alphabet with |A| ≥ 2.

Line 12 needs N + 1 steps, thus has complexity O (N + 1). For line 14 one
can choose his own algorithm to compute the zero of s 7→ ∆N (s). The bisection
algorithm 2 chosen here has complexity smaller than O

(
N |A|N

)
.

To conclude, lines 5 and 6 have the largest complexity, namely O
(
N |A|N

)
.

Thus the complexity of algorithm 1 is O
(
N |A|N

)
.

3.2.3 Convergence

In section 3.2.2 we found that the complexity of the algorithm is O (n|A|n)
where n+1 is the number of terms in the Taylor approximation of det (I − zLs)

23

around z = 0. This means that adding a term to the Taylor approximation
rapidly increases the computation time. We want to find the rate of convergence
of sN , the output of algorithm 1, to dimH (EA). Jenkinson [Jen04] stated that

this rate is O
(
θn

2
)

with θ ∈ (0, 1) and in [JP01] they proved that for A = {1, 2}
the rate is

O

 4

√
8

9

n2
 . (3.33)

In this section we will prove that the rate of convergence is

O

 2|A|

√
4 + 2p

5 + 2p

N2
 (3.34)

with p = maxA and N the chosen constant in algorithm 1 for all finite alphabets
A ⊂ N≥1 with |A| ≥ 2.

The computation of θ strongly follows [JP01]. We start with the fact that Ls
is a nuclear operator. Using the notation in equation (3.16) the Ruelle operator
can according to Theorem 3.1.8 be written as

Lsv(z) =

∞∑
n=0

∑
a∈A

(λa,nln (v)) fa,n(v). (3.35)

We are interested in λa,n for all a ∈ A and n ∈ N. First we need to change
indices such that λa,n depends only on n.

Lemma 3.2.4. Let k = |A|. Let {ai}ki=1 = A be an ordering of A such that
a1 < a2 < . . . < ak. The Ruelle operator can be written as

Lsv(z) =

∞∑
n=1

(
λ̃nln (v)

)
f̃n(v) (3.36)

with λ̃|A|n+i = λai,n and f̃|A|n+i = fai,n for all n ∈ N and i ∈ {1, . . . , k}.

Furthermore, λ̃n has the upper bound 25+10ak
4+2ak

k

√(
4+2ak
5+2ak

)n
for all n ∈ N.

Proof. The first statement is a simple change of indices. Thus we will only prove
the second part.

Let i ∈ {1, . . . , k} and n ∈ N be arbitrary. In Theorem 3.1.8 we have proven

that λai,n ≤ 5
(

4+2ak
5+2ak

)n
holds. This gives us

λ̃|A|n+i ≤ 5

(
4 + 2ak
5 + 2ak

)n
=

25 + 10ak
4 + 2ak

k

√(
4 + 2ak
5 + 2ak

)|A|(n+1)

. (3.37)

From here the proof follows easily after a change of indices.

In algorithm 1 we approximate det (I − zLs) by a Taylor series of N + 1
terms. We then compute the zero is this Taylor series. The rate of convergence
of algorithm 1 is the rate of decay of the coefficients in the Taylor series. To
compute this rate we need another representation of the Taylor series which is
mentioned in [JP01] and proven by Grothendieck [Gro95] and Fried [Fri86].

24

Lemma 3.2.5. We can write det (I − zLs) = 1+
∑∞
n=1 dn(s)zn for all s ∈ [0, 1]

and z ∈ D with

dn(s) = (−1)n
∑

i1<...<in

(
n∏

m=1

λ̃im

)
det
(
lij

(
f̃ik

))n
j,k=1

(3.38)

where lij are the functionals, f̃ik are the functions and λ̃im are the constants
defined in Lemma 3.2.4.

We can compute the decay of the coefficients of the Taylor series of the
Ruelle operator with more ease now. To estimate the determinant we will use
Hadamard’s theorem [Had93].

Theorem 3.2.6 (Hadamard (1893)). Let A be an n×n-matrix with ‖ai,j‖ ≤ 1
for all i, j ∈ {1, . . . , n}. Then |det(A)| ≤

√
nn.

Hadamard’s theorem can be applied here since the functionals lij and func-
tions fak,ik are normalized. We need one more lemma called equation (3.7) in
[JP01] to estimate the upper bound for θ.

Lemma 3.2.7 (Jenkinson, Pollicott (2001)). Let γ ∈ (0, 1) and n ∈ N. Then
the following equation is true:∑

k1<...<kn

γ
∑n

i=1 ki =

√
γn(n+1)∏n

r=1 (1− γr)
. (3.39)

Now we can generalize theorem 1(b) in [JP01].

Theorem 3.2.8. Let N ∈ N≥1 be an number of terms of the Taylor approxi-
mation of det (I − Ls). Let sN be the returned value of algorithm 1. Then sN
converges to dimH (EA) as N grows to infinity with rate

O

 2|A|

√
4 + 2p

5 + 2p

N2

with p = maxA.

Proof. Let n ∈ {1, . . . , N} and s ∈ [0, 1] be arbitrary. Let p = maxA. Consider
dn(s) as defined in Lemma 3.2.5. Let {im}nm=1 ⊂ N be a strictly increasing
sequence and let {am}nm=1 ⊂ N be an increasing sequence. The proof of The-

orem 3.1.8 gives us λam,im ≤ 5
(

4+2p
5+2p

)im
for all m ∈ {1, . . . , n}. Now we can

estimate |dn(s)| for all s ∈ (0, 1):

|dn(s)| =

∣∣∣∣∣(−1)n
∑

i1<...<in

(
n∏

m=1

λ̃im

)
det
(
lij

(
f̃ik

))n
j,k=1

∣∣∣∣∣ (3.40)

≤
(

25 + 10p

4 + 2p

)n ∣∣∣∣∣∣
∑

i1<...<in

|A|

√(
4 + 2p

5 + 2p

)∑n
m=1 im

∣∣∣∣∣∣√nn (3.41)

=

(
25 + 10p

4 + 2p

)n√
nn
(

4 + 2p

5 + 2p

)n(n+1)
2|A| n∏

r=1

(
1−

(
4 + 2p

5 + 2p

) r
|A|
)−1

(3.42)

25

A dimH (EA)
{1, 2} 0,5312805
{1, 2, 3} 0,7056579
{1, . . . , 4} 0,7889709
{1, . . . , 5} 0,8368225
{1, . . . , 6} 0,8676452
{1, . . . , 7} 0,8889465
{1, . . . , 8} 0,9045715
{1, . . . , 9} 0,9164123
{1, . . . , 10} 0,9257507

Table 3.1: Table with alphabet A and the found approximation dimH (EA) with
N = 10, where the digits that are proven to be correct by [Jen04] are made bold.

N\A {1, 2} {1, 2, 3} {1, 2, 3, 4} {1, 2, 3, 4, 5}
1 0.332823034376 0.547484818846 0.648454617709 0.705879461020
2 0.549348313361 0.719505663961 0.801096122712 0.848104428500
3 0.532007087022 0.706163752824 0.789369124919 0.837214987725
4 0.531269412488 0.705653991550 0.788939978927 0.836824480444
5 0.531280446798 0.705660875887 0.788945529610 0.836829420179
6 0.531280506402 0.705660905689 0.788945559412 0.836829442531
7 0.531280506402 0.705660905689 0.788945559412 0.836829442531

Table 3.2: Table with various alphabets A on the top row and N from algo-
rithm 1 first column. The entries are the returned sN from algorithm 1.

In the last equality sign Lemma 3.2.7 is used. The above estimation can be
bounded to

dn(s) = O

 2|A|

√
4 + 2p

5 + 2p

n2
 . (3.43)

Theorem 3.2.2 proved that sN converges to dimH (EA) as N goes to infinity.
Thus the terms in the Taylor polynomial of det (I − zLs) decay with rate dN (s)
where N + 1 is the number of terms in the truncated Taylor polynomial, which
proves the theorem.

3.3 Computations

In the appendix chapter A there is a Python code for algorithms 1 and 2. Two
experiments have been run whose results can be seen in tables 3.1 and 3.2.
Table 3.1 shows dimH (EA) for various A with N = 10 used with correctness.
Table 3.2 showcases the convergence rate of sN to dimH (EA). All tested A
in table 3.2 have the first three decimals correct for N = 4 and higher. The
approximation of dimH

(
E{1,2}

)
is accurate up to six digits for N = 5. This

demonstrates that Jenkinson-Pollicott’s algorithm indeed is a very fast algo-
rithm for computing the Hausdorff dimension of EA.

26

Chapter 4

Zaremba’s conjecture

One application of Jenkinson-Pollicott’s algorithm is Bourgain-Kontorovich’s
attempt [BK14] to prove Zaremba’s conjecture [Zar72] as mentioned in the in-
troduction.

Conjecture 4.0.1 (Zaremba’s conjecture (1972)). Let A ∈ N≥1 be a positive
integer and let A = {1, . . . , A} be a finite alphabet. Let

RA =

x ∈ [0, 1]

∣∣∣∣∣∣∣∣∣∣∣∣∣
∃ {ai}ki=1 ⊂ A : x =

1

a1 +
1

. . . +
1

ak

(4.1)

be the set of finite continued fractions with coefficients in A. Let

DA =

{
d ∈ N

∣∣∣∣∃b ∈ N :
b

d
∈ RA ∧ gcd(b, d) = 1

}
(4.2)

be the set of the denominators of the elements in RA. Then there is an Z ∈ N
such that DZ = N holds.

Remark 4.0.2. Zaremba suggested that his conjecture is true for A = 5. Bour-
gain and Kontorovich [BK14] proved Theorem 4.1.1 which was a significant
progress. In 2015 Huang [Hua15] proves that Bourgain’s and Kontorovich’s
Theorem 4.1.2 is true for A = 5.

Kontorovich [Kon13] explained very well how Zaremba came up with his
conjecture and what the consequences of the conjecture are. In this chapter
we will take a look at the article on Zaremba’s conjecture by Bourgain and
Kontorovich [Zar72], in particular what their main results are. We will then
focus on how they used dimH (EA) ≥ c > 0 with c ∈ (0, 1) for a finite alphabet
A ⊂ N≥1 to prove limN→∞

1
N |DA ∩ [1, N]| = 1 for an A ∈ N>1.

4.1 Overview

We first start with some definitions. Let A ∈ N≥2 be an integer and consider for
this chapter the alphabet A = {1, . . . , A}. Define Dq

A := {d mod q | d ∈ DA}

27

for all q ∈ N. An integer d ∈ N is admissible for A if d ∈ Dq
A holds for all

q ∈ N≥2, thus d ∈ N is admissible is there are no q ∈ N≥2 with d+ kq 6∈ DA for
all k ∈ Z. Let

UA = {d ∈ Z | ∀q ∈ N≥2 : d ∈ Dq
A} (4.3)

be the set of all admissible numbers for A. Then Bourgain and Kontorovich
proved the following theorem in [BK14].

Theorem 4.1.1 (Bourgain, Kontorovich (2014)). Let A ∈ N≥1 be a positive
integer and A = {1, . . . , A} be an alphabet. If dim (EA) > 307

312 , then the set DA

contains almost every admissible integer. This means that there is a constant
c ∈ R>0, depending only on A, such that∣∣DA ∩

[
N
2 , N

]∣∣∣∣UA ∩
[
N
2 , N

]∣∣ = 1 +O
(

exp
(
−c
√

logN
))

(4.4)

holds as N →∞.

First take a look at UA. In [BK14] it is proven that UA = Z holds for all
A ∈ N≥2, thus every integer is admissible for A. Furthermore, Jenkinson [Jen04]
proved that dimH

(
EA∪{j}

)
> dimH (EA) holds for every j ∈ N≥1\A with upper

bound dimH

(
EN≥1

)
= dimH ([0, 1]) = 1. Thus there is an A ∈ N such that

dimH

(
E{1,...,A}

)
≥ 307

312 holds. These two statements give rise to the following
theorem, which is the main result of [BK14].

Theorem 4.1.2 (Bourgain, Kontorovich (2014)). There exists an A ∈ N≥2

such that

lim
N→∞

1

N
|DA ∩ [1, N]| = 1. (4.5)

Thus DA has almost every denominator of RA for a then unknown A ∈ N≥2.
Huang [Hua15] proved A = 5 suffices. Note that this is very close to proving
D5 = N which has Zaremba’s conjecture as corollary.

4.2 Use of Hausdorff dimension

In the last section of this thesis we will look at the use of Hausdorff dimension
in the proof of Theorem 4.1.1 given by [BK14]. First we need to reformulate

Conjecture 4.0.1. Let b, d ∈ N≥1 with gcd(b, d) = 1 and let {ai}ki=1 ⊂ A be a
sequence such that b

d = [a1, . . . , ak] holds. Then, according to [BK14, Kon13],(
0 1
1 a1

)
· · ·
(

0 1
1 ak

)
=

(
∗ b
∗ d

)
(4.6)

holds where the asterisks denote unimportant numbers. Let ΓA be the semi-

group generated by

{(
0 1
1 a

) ∣∣∣∣ a ∈ {1, . . . , A}}. Let

OA := ΓAe2 =

{(
b
d

)
∈ N2

≥1

∣∣∣∣∃a, c ∈ Z :

(
a b
c d

)
∈ ΓA

}
(4.7)

be the orbit that isolates b and d from ΓA for the quotients b
d ∈ RA with

gcd(b, d) = 1. Then DA equals DA = 〈e2, OA〉 = 〈e2,ΓAe2〉, thus Zaremba’s
conjecture is equivalent to the following conjecture:

28

Conjecture 4.2.1. There is an A ∈ N≥2 such that DA = 〈e2, OA〉 = N≥1

holds.

Let N ∈ R>1. Define

RA(N) :=

{
b

d
∈ RA

∣∣∣∣ gcd(b, d) = 1 ∧ 1 ≤ b < d < N

}
. (4.8)

Then Hensley [Hen89] proved that |RA(N)| = Θ
(
N2 dimH(EA)

)
where f = Θ(g)

means f = O(g) and g = O(f). Let ΩN be the set RA(N) but written in terms
of the reformulation:

ΩN ⊂ {γ ∈ Γ | |γ| < N} . (4.9)

Then in [Kon13] it is noted that |ΩN | = Θ
(
N2 dimH(EA)

)
holds as well. Now

we want to count how often an integer appears as denominator in the orbit of
Γe2. Define

RN (n) :=
∑
γ∈ΩN

1{n=〈e2,γe2〉}(γ). (4.10)

Now we want to see how much RN (n) grows as N tends to ∞. This can be
done by looking at the Fourier transform of RN (n):

SN (θ) :=
∑
n∈Z
RN (n)e2nθπi =

∑
γ∈ΩN

e2〈e2,γe2〉θπi. (4.11)

Then RN can be recovered by RN (n) =
∫
R\Z SN (θ)e−2nθπidθ. Hardy and Lit-

tlewood considered looking at a certain arc M ⊂ [0, 1) specified in [BK14] such
that RN (n) splits up in MN (n) and EN (n) where

MN (n) =

∫
M

SN (θ)e−2nθπidθ (4.12)

is the main term and

EN (n) =

∫
[0,1)\M

SN (θ)e−2nθπidθ (4.13)

is the error. We will from now consider EN (n). Bourgain and Kontorovich
proved the following theorem in [BK14].

Theorem 4.2.2 (Bourgain, Kontorovich (2014)). If dimH (EA) > 307
312 holds,

there is a c ∈ R>0 such that

∑
n∈Z
|EN (n)|2 = O

(
|ΩN |2

N
e−c
√

logN

)
. (4.14)

Bourgain and Kontorovich proved in [BK14] a similar bound for the main
term.

Theorem 4.2.3 (Bourgain, Kontorovich (2014)). Let n ∈
[

1
20N,

1
10N

)
∩ Z.

Then

MN (n) = O
(

N

|ΩN |
log logN

)
. (4.15)

Bourgain and Kontorovich used these theorems to prove their Theorem 4.1.1,
from which the main result of their paper, Theorem 4.1.2, followed.

29

Bibliography

[Bed91] Tim Bedford. Applications of dynamical systems theory to fractals -
a study of cookie-cutter Cantor sets. In Fractal geometry and analysis
(Montreal, PQ, 1989), volume 346 of NATO Adv. Sci. Inst. Ser. C
Math. Phys. Sci., pages 1–44. Kluwer Acad. Publ., Dordrecht, 1991.

[BK14] Jean Bourgain and Alex Kontorovich. On Zaremba’s conjecture. Ann.
of Math. (2), 180(1):137–196, 2014.

[Bow79] Rufus Bowen. Hausdorff dimension of quasicircles. Inst. Hautes Études
Sci. Publ. Math., (50):11–25, 1979.

[Bum82] Richard T. Bumby. Hausdorff dimensions of Cantor sets. J. Reine
Angew. Math., 331:192–206, 1982.

[BW06] Luis Barreira and Christian Wolf. Pointwise dimension and ergodic
decompositions. Ergodic Theory Dynam. Systems, 26(3):653–671, 2006.

[dG11] Maurice A. de Gosson. Symplectic methods in harmonic analysis and
in mathematical physics, volume 7 of Pseudo-Differential Operators.
Theory and Applications. Birkhäuser/Springer Basel AG, Basel, 2011.

[Fal90] Kenneth Falconer. Fractal geometry. John Wiley & Sons, Ltd., Chich-
ester, 1990. Mathematical foundations and applications.

[FB09] Eberhard Freitag and Rolf Busam. Complex analysis. Universitext.
Springer-Verlag, Berlin, second edition, 2009.

[Fri86] David Fried. The zeta functions of Ruelle and Selberg. I. Ann. Sci.
École Norm. Sup. (4), 19(4):491–517, 1986.

[Goo41] I. J. Good. The fractional dimensional theory of continued fractions.
Proc. Cambridge Philos. Soc., 37:199–228, 1941.

[Gro95] A. Grothendieck. Produits tensoriels topologiques et espaces nuclé-
aires. In Séminaire Bourbaki, Vol. 2, pages Exp. No. 69, 193–200. Soc.
Math. France, Paris, 1995.

[Had93] J. Hadamard. Résolution d’une question relative aux déterminants.
Bull. Sci. Math., II. Sér., 17:240–246, 1893.

[Hen89] Doug Hensley. The distribution of badly approximable numbers and
continuants with bounded digits. In Théorie des nombres (Quebec, PQ,
1987), pages 371–385. de Gruyter, Berlin, 1989.

30

[Hen96] Douglas Hensley. Erratum: “A polynomial time algorithm for the
Hausdorff dimension of continued fraction Cantor sets”. J. Number
Theory, 59(2):419, 1996.

[Hua15] ShinnYih Huang. An improvement to Zaremba’s conjecture. Geom.
Funct. Anal., 25(3):860–914, 2015.

[Jar29] V. Jarńık. Zur metrischen Theorie der diophantischen Approximatio-
nen. Przyczynek do metrycznej teorji przyblizeń diofantowych. Prace
Mat.-Fiz., 36:91–106, 1929.

[Jen04] Oliver Jenkinson. On the density of Hausdorff dimensions of bounded
type continued fraction sets: the Texan conjecture. Stoch. Dyn.,
4(1):63–76, 2004.

[JP01] Oliver Jenkinson and Mark Pollicott. Computing the dimension of
dynamically defined sets: E2 and bounded continued fractions. Ergodic
Theory Dynam. Systems, 21(5):1429–1445, 2001.

[Kon13] Alex Kontorovich. From Apollonius to Zaremba: local-global phenom-
ena in thin orbits. Bull. Amer. Math. Soc. (N.S.), 50(2):187–228, 2013.

[May76] Dieter H. Mayer. On a ζ function related to the continued fraction
transformation. Bull. Soc. Math. France, 104(2):195–203, 1976.

[MM83] Heather McCluskey and Anthony Manning. Hausdorff dimension for
horseshoes. Ergodic Theory Dynam. Systems, 3(2):251–260, 1983.

[PP90] William Parry and Mark Pollicott. Zeta functions and the periodic or-
bit structure of hyperbolic dynamics. Astérisque, (187-188):268, 1990.

[Rue76] David Ruelle. Zeta-functions for expanding maps and Anosov flows.
Invent. Math., 34(3):231–242, 1976.

[Rue78] David Ruelle. Thermodynamic formalism, volume 5 of Encyclopedia
of Mathematics and its Applications. Addison-Wesley Publishing Co.,
Reading, Mass., 1978. The mathematical structures of classical equi-
librium statistical mechanics, With a foreword by Giovanni Gallavotti
and Gian-Carlo Rota.

[Zar72] S. K. Zaremba. La méthode des “bons treillis” pour le calcul des
intégrales multiples. In Applications of number theory to numerical
analysis (Proc. Sympos., Univ. Montreal, Montreal, Que., 1971), pages
39–119. Academic Press, New York, 1972.

31

Appendix A

Jenkinson-Pollicott’s
algorithm code

1 import math
import numpy as np
import smtpl ib

def maak r i j en (A,N) :
6 #p r i n t (” Voer s tap 1 u i t ”)

stappen = 0
#output = open (’ r i j t j e s . t x t ’ , ’ r + ’)
#output . t r u n c a t e (0)

11 for i in range (1 ,N+1):
stappen += len (A) ∗∗ i

t e l l e r = 0 . #Houdt voortgang van s c r i p t b i j

r i j t j e s = []
16 for i in A: #Maak a l l e r i j t j e s van l e n g t e 1

r i j t j e s . append ([i])
#output . w r i t e (’% s\n ’ % (i))
t e l l e r += 1

21 a = 0 ; b = 0
for n in range (2 ,N+1):

a = b ; b += len (A) ∗∗ (n−1)
#I t e r e e r over de j u i s t e waarden
for i in A: #Nieuw r i j t j e l e n g t e n b e g i n t met i

26 for k in range (a , b) : #R i j t j e l e n g t e n−1 na i
hulp = [i]
r i j t j e = r i j t j e s [k]

#p r i n t (”%s ’%” % (t e l l e r / stappen ∗100))
for j in r i j t j e :

31 hulp . append (j)
r i j t j e s . append (hulp)

32

t e l l e r += 1
””” f o r j in range (l e n (hu lp)) :

output . w r i t e (’% s ’ % (hu lp [j]))
36 output . w r i t e (’\n ’)

output . c l o s e () ”””
return r i j t j e s

def ket t ingbreuk (r i j) :
41 #p r i n t (” Voer s tap 2 u i t ”)

breuk = 0 .
hulp = 1 . #Nodig om w h i l e t e s t a r t e n
while abs (hulp − breuk) > 10 ∗∗ −8:

hulp = breuk
46 for i in reversed (r i j) :

breuk = 1 . / (i+breuk)
return breuk

def gewicht (r i j) :
51 #p r i n t (” Voer s tap 3 u i t ”)

r e s u l t a a t = [] ;
breuk = [ket t ingbreuk (r i j)] ;
t o t a a l = 0
r e s u l t a a t . append (np . l og (breuk [0]))

56 i f len (r i j) > 1 :
for r in range (1 , len (r i j)) :

nieuw = 1 ./ breuk [r−1]
oud = math . f l o o r (1 . / breuk [r−1])
breuk . append (nieuw − oud)

61 r e s u l t a a t . append (math . l og (breuk [r]))
for i in range (0 , len (r i j)) : t o t a a l += r e s u l t a a t [i]
return math . exp (t o t a a l)

def f 4 (r i j , s) :
66 #p r i n t (” Voer s tap 4 u i t ”)

t e l l e r = gewicht (r i j) ∗∗ (2∗ s)
noemer = (1−(−1)∗∗ len (r i j)∗ gewicht (r i j) ∗∗ 2)
return t e l l e r / noemer

71 def c (n , s) :
#p r i n t (” Bekereken de c n (s) z o a l s in s ta p 5”)
b = 0 ; a = 0
for i in range (1 , n+1):

a = b ; b += len (A)∗∗ (i)
76 t o t a a l = 0 .

for r i j in range (a , b) :
t o t a a l += f 4 (r i j e n [r i j] , s)

t o t a a l /= n
return t o t a a l

81
def p a r t i t i e (number) :

33

answer = []
answer . append ([number])
for x in range (1 , number) :

86 for y in p a r t i t i e (number − x) :
answer . append ([x] + y)

return answer

def d(m, s) :
91 #p r i n t (” Voer s tap 6 u i t met d m(s)”)

r e s u l t a a t = 0
l i j s t = p a r t i t i e (m)
for r i j in l i j s t :

som = 0
96 for l in r i j :

som += np . l og (c (l , s))
t e l l e r = np . exp (som)∗(−1) ∗∗ len (r i j)
noemer = math . f a c t o r i a l (len (r i j))
r e s u l t a a t += t e l l e r / noemer

101 return r e s u l t a a t

def Delta (s) :
#p r i n t (” Voer s tap 7 u i t ”)
t o t a a l = 1

106 for m in range (1 ,N+1):
t o t a a l += d(m, s)

return t o t a a l

def D e l t a s o l v e r (s t a r t) :
111 #p r i n t (” Stap 8”)

a = 0 . ; b = 1 .
T e l l e r = 0
while abs (a−b) > 10 ∗∗ −8:

t e s t = np . f l o a t 6 4 (Delta (s t a r t))
116 i f t e s t < 0 :

a = s t a r t
s t a r t = np . f l o a t 6 4 (a + b)/2

e l i f t e s t > 0 :
b = s t a r t

121 s t a r t = np . f l o a t 6 4 (a + b)/2
else : return t e s t
T e l l e r += 1

#p r i n t (” Testwaarde i s %s ” % (s t a r t))
#p r i n t (” I t e r a t i e %s ” % (T e l l e r))

126 return s t a r t

A = [1]
#r i j e n = maak ri jen (A,N)
#p r i n t (D e l t a s o l v e r (0 . 5))

131 ””” Bereken dim H (E A) b i j v e r s c h i l l e n d e A en
nauwkeurigheid . ”””

34

output = open(” nauwkeurigheid . txt ” , ”w”)
output . t runcate (0)
for i in range (2 , 1 0) :

136 A. append (i)
for N in range (1 , 8) :

r i j e n = maak r i j en (A,N)
output . wr i t e (”%s , ” % (D e l t a s o l v e r (0 . 5)))
print (” Nauwkeurigheid %s van %s i s weggeschreven ”

141 % (N,A))
print (”\n”)

output . c l o s e ()

””” Uncomment b i j Hausdorf f−dimensie bereken ing
146 output = open (” dimensies . t x t ” ,”w”)

output . t r u n c a t e (0)
f o r i in range (2 , 1 1) :

A. append (i)
r i j e n = maak ri jen (A,N)

151 output . w r i t e (”%s\n” % (D e l t a s o l v e r (0 . 5)))
p r i n t (” Dimensie van %s i s weggeschreven ” % (A))

output . c l o s e ()
”””

35

	Introduction
	Preliminaries
	Gauss map
	Hausdorff dimension
	Definition
	Computational techniques for Hausdorff dimension
	Pressure

	Jenkinson-Pollicott's algorithm
	Ruelle operator
	Jenkinson-Pollicott's algorithm
	Correctness
	Complexity of Jenkinson-Pollicott's algorithm
	Convergence

	Computations

	Zaremba's conjecture
	Overview
	Use of Hausdorff dimension

	Jenkinson-Pollicott's algorithm code

