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ABSTRACT: For ten years researchers have been at-
tempting to construct programming language systems
that support orthogonal persistence above conven-
tional operating systems. This approach has proven to
be poor; researchers invariably construct a complete
abstract machine above the operating system with re-
sulting loss of efficiency. This paper describes a new
approach, the construction of an operating system de-
signed to support orthogonal persistence. The operating
system, Grasshopper, relies upon three powerful and
orthogonal abstractions: containers, loci, and capa-
bilities. Containers provide the only abstraction over
storage, loci are the agents of change, and capabilities
are the means of access and protection in the system.
This paper describes these three fundamental abstrac-
tions of Grasshopper, their rationale, and how they are

used.

@1994 The USENIX Association, Computing Systems, Vol.7 . No.3 . Summer 1994 289



1. Introduction

The aim of the Grasshopper project is to construct an operating system that sup-

ports orthogonal persistence [Atkinson et al. 1983]. This begs two questions, what

is orthogonal persistence, and why does it require support from an operating sys-

tem?

The two basic principles behind orthogonal persistence are that any object

may persist (exist) for as long, or as short, a period as the object is required, and

that objects may be manipulated in the same manner regardless of their longevity.

The requirements of a system that supports orthogonal persistence can be sum-

marjzed as follows.

. Uniform treatment of data structures: Conventional programming systems

require the programmer to translate data resident in virtual memory into a
format suitable for long-term storage. For example, graph structures must

be flattened when they are mapped onto flles or relations; this activity is

both complex and error prone. In persistent systems, the programmer is

not required to perform this mapping since data of any type with arbitrary

longevity is supported by the system.

. Location independence: To achieve location independence, data must be

accessed in a uniform manner, regardless of the location of that data. This

principle is the cornerstone of virtual memory-the programmer does not

have to be concerned whether the data is in RAM or on disk; the data is

accessed in a uniform manner. In distributed persistent systems, location in-

dependence is extended to the entire computing environment by permitting

data resident on other machines to be addressed in the same manner as lo-

cal data [Henskens 1992; Henskens et aI.1991'; Koch et al. 1990; Vaughan

et al. 1990; Vaughan et al. 1.9921. This approach is also followed in dis-

tributed shared memory systems [Tam et al. 1990].
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. Data resilience: All systems containing long-lived data must provide a de-
gree of resilience against failure. In conventional operating systems, tools
such as/sck in Unix permit the repair of long-lived data (the file system)
after a system crash. Persistent systems must also prevent the data stored in
them from becoming corrupt should a failure occur. However, the problem
of resilience is more acute with persistent systems. In a conventional flle
system each file is essentially an independent object, and the loss of a sin-
gle file following a system crash does not threaten the integrify of the over-
all system. In a persistent system, there may be arbitrary cross-references

between objects, and the loss of a single object can be catastrophic. In
addition, since one of the goals of persistence is to abstract over storage,

resilience mechanisms should not be visible at the user level. In this sense

the problem of recovery within a persistent system is more closely related

to recovery in database systems [Astrahan 1976].

. Protection of data: Persistent systems provide alarge persistent store in
which all data resides and against which all processes execute. A pro-
cess may only access data for which it holds access permission. Failure
by the operating system to provide a protection mechanism could result
in erroneous processes comrpting data owned by other users. Therefore, a
protection mechanism must be provided to protect data from accidental or
malicious misuse. In persistent systems this is typically provided via the
programming language type system [Morrison et al. 1990], through data en-

capsulation [Liskov and Zilles 1974], using capabilities [Fabry 19741, orby
a combination of these techniques.

To date, most persistent systems, with a few exceptions [Campbell et al. 1987;

Dasgupta et al. 1988; Rosenberg and Abramson 19851, have been constructed
above conventional operating systems. Implementors of persistent languages are

invariably forced to construct an abstract machine above the operating system,

since the components of a persistent system are different in nature from the com-
ponents of a conventional operating system. For example, Thnenbaum [1987] lists
the four major components of an operating system as being memory manage-

ment, file system, input-ouþut, and process management. In persistent systems,

the flle system and memory management components are unified. In many op-
erating systems, input-output is presented using the same abstractions as the file
system; clearly this is not appropriate in a persistent environment. Some persistent

systems require that the state of a process persist, which is not easily supported
using conventional operating systems in which all processes are transitory.

The principal requirements of an operating system that supports orthogonal
persistence may be summarized as follows [Dearle et al. 1992]:
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1 support for persistent objects as the basic abstraction: Persistent objects

consist of data and relationships with other persistent objects. The system

must therefore provide a mechanism for supporting the creation and mainte-

nance of these objects and relationships.

2. The system must reliably and transparently manage the transition between

long- and short-term memory.

3. Processes should be persistent.

4. Some protection mechanism to provide control over access to objects must

be provided.

2. Grasshopper

Grasshopper is an operating system that provides support for orthogonal persis-

tence. It is intended to run on a conventional hardware base, which has con-

strained the design of the system. A conventional hardware platform implies the

lack of sophisticated features for the control of memory other than page-based vir-
tual memory. Hence, all notions of access control and structuring in Grasshopper

are based on page-oriented virtual memory.

Grasshopper relies upon three powerful and orthogonal abstractions: contain-

ers, loci, and capabilities. Containers provide the only abstraction over storage,

loci are the agents of change (processes/threads), and capabilities are the means of
access and protection in the system.

Conceptually, loci execute within a single container, Their host container. Con-

tainers are not virtual address spaces. They may be of any size, including larger

than the virtual address range supported by the hardware. The data stored in a
container is supplied by a manager. Managers are responsible for maintaining a

consistent and recoverable stable copy of the data represented by the container.

As such, they are vital to the removal of the distinction between persistent and

volatile storage, and thus a cornerstone of the persistent architecture.

This paper describes the three fundamental abstractions of Grasshopper, their

rationale, and how they are used. Section 3 describes the memory model (con-

tainers); Section 4 describes the process model (loci). Data sharing is described

in Section 5. Section 6 describes managers and how they operate. Section 7 deals

with protection and the capability system. How the abstractions are combined to

provide resilient persistent storage is described in Section 8. The paper concludes

with some examples of how the abstractions provided by Grasshopper may be

used.
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3. Containers

In systems that support orthogonal persistence the programmer does not perceive

any difference between data held in RAM and that on backing store. This idea

leads naturally to a model in which there is a single abstraction over all storage.

A major issue that arises is the addressing model supported by the system for this
abstraction. There appear to be three basic models:

1. the single flat address-space model

2. the single partitioned address-space model

3. the fully partitioned address-space model

Models 1 and 3 represent opposite ends of the design spectrum, while model 2

is a hybrid architecture. These models are described in the following sections.

3.1. Single FlatAddress Space

In the first model all data resides in a single flat address space with no structure

imposed on it. This provides an addressing environment similar to that provided

to a conventional Unix process. This model is used to implement the NapierS8

persistent programming system [Morrison 1989].

The construction of very large stores using this technique was, until recently,

not feasible on conventional architectures due to address-size limitations. How-
ever, the advent of machines such as the DEC Alpha [Sites 1992] and the MIPS
R4000 [Kane and Heinrich 1992], which (logically) support a 64bit address cre-

ated renewed interest in this approach. A number of research groups have sug-

gested that this direction is appropriate for modern operating systems [Kolinger
et al. 19921. Such an approach is tempting since it flts in well with the goals

of orthogonal persistence, that is, to abstract over all physical attributes of data.

However, there are some difficulties:

1. Most persistent systems rely upon a checkpointing mechanism to establish

a consistent state on stable storage such as disk. If the operating system

supports a single massive address space, the stabilization mechanism must

either capture the entire state of this store at a checkpoint, or record the

dependencies between processes and data in the store and checkpoint de-

pendent entities together. Even using incremental techniques, the first option
could take a considerable amount of time due to VO bandwidth limitations.
The second option requires system knowledge of the logical entities stored

in the system so that dependency information can be maintained.
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2. If multiple processes share a single address space the ability to protect sepa-

rate areas of the address space must be provided. Whilst protection systems

have been designed for single address spaces [Kolinger et al. 1992], they do

not provide any support for distribution.

3. The resulting store would be huge and the management of large stores is
difficult. In particular allocation of free space, garbage collection, unique

naming of new objects and the construction of appropriate navigation tools

are all more difficult in large flat stores. These and other difficulties are

discussed in Moss t19891.

Solutions to these and other management issues effectively partition the

flat-address space. It would seem that the implementation of a single partition-
ing scheme would be more efficient than the use of separate schemes to support
each management requirement.

3.2. Single Partitioned Address Space

In the second model the notion of a large address space in which all objects re-
side is retained. This address space is, however, partitioned into semi-independent
regions. Each of these regions contains a logically related set of data, and the

model is optimized on the assumption that there will be few inter-region refer-
ences. Such an approach is the basis of the Monads architecture [Rosenberg 1992].

Provided that control can be retained over the inter-region references it is possible

to garbage-collect and checkpoint regions (or at least limited sets of regions) in-
dependently, alleviating problems (1) and (3) in Section 3.1 [Brown 1988; Rosen-

berg 19901. In addition, the partitioning provides a convenient mechanism for the
generation of unique object names [Henskens 1992].

The major problem that remains with this approach is the issue of protec-
tion. It is necessary to restrict the set of addresses that a process can generate.

One possibility is to provide special-purpose hardware to support protection in a

partitioned store; an implementation of such an architecture has been described
previously [Rosenberg and Abramson 1985]. However, conventional architectures
provide only page-based protection, and therefore, protection mechanisms similar
to those proposed for flat stores must be employed.

3.3. Fully Partítioned Address Space

In the third model the store is fully partitioned. Each partition is logically equiva-
lent to an instance ofthe flat address space described in Section 3.1 and defines an

independent addressing environment; there is no global address space. As we shall
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see, however, there is no reason for the size of a partition to be restricted by the
address size of the host architecture.

In this model, processes execute within a single partition and may only ac-
cess the data visible in that partition. The use of multiple independent partitions
has several advantages. First, partitions may be of arbitrary size, not restricted
(individually and collectively) by the size of a global address space. Second, parti-
tions are truly independent and not part of some larger structure, allowing different
management techniques to be implemented for each region. Last, partitions may
have names, and operators may be provided to operate over them.

Grasshopper adopts this third approach by implementing regions called con-
tainers. Containers are the only storage abstraction provided by Grasshopper; thèy
are persistent entities that replace both address spaces and file systems. In most
operating systems, the notion of a virtual address space is associated with an
ephemeral entity, a process that accesses data within that address space. In con-
trast, containers and loci are orthogonal concepts. A Grasshopper system con-
sists of a number of containers that may have loci executing within them. At
any time a locus can address only the data visible in the container in which it is
executing.

Facilities must be provided which allow the transfer of data between contain-
ers. The mechanisms provided in Grasshopper are mapping and invocation, which
are described in the following sections.

4. Loci

In Grasshopper, loci are the abstraction over execution (processes). In its simplest
form, a locus is simply the contents of the registers of the machine on which it
is executing. Like containers, a locus is maintained by the Grasshopper kernel
and is inherently persistent. Making the locus persistent is a departure from other
operating system designs and frees the programmer from much complexity.

Throughout its life, a locus may execute in many different containers. At any
instant in time, a locus executes within a distinguished container, its host con-
tainer. The locus perceives the host container's contents within its own address
space. Virtual addresses generated by the locus map directly onto addresses

within the host container. A container comprising program code, mutable data,
and a locus forms a basic running program. Loci are an orthogonal abstraction to
containers. Any number of loci may execute within a given container, allowing
Grasshopper to support multithreaded programming paradigms.

An operating system is largely responsible for the control and management
of two entities: objects, which contain data (containers), and processes (loci), the

Grasshopper: An Orthogonally Persistent Operating System 295



active elements that manipulate these objects. One of the most important consid-

erations in the design of an operating system is the model of interaction between

these entities. There are two principal models of computation, called message

oriented and procedure oriented [Lauer and Needham I979l.In the message-

oriented model, processes are statically associated with objects, and communica-

tion is achieved through the use of messages. By contrast, the procedure-oriented

model provides processes that move between objects. Processes access objects by

invoking them; the invoke operation causes a (possibly remote) procedure call to
code within the object. By executing this code the process may access data stored

within the object. The message-oriented model cannot be used to efficiently simu-

late any other computational models. The procedure-oriented model is more flexi-
ble; for instance, it can easily simulate the message-oriented model by associating

a message passing process with every object. For this reason, Grasshopper uses

the procedure-oriented model in which a locus may invoke a container, thereby

changing its host container.

Any container may include as one of its attributes a single entry point known

as an invocation point. When a locus invokes a container, it begins executing code

at the invocation point. The single invocation point is important for security; it is
the invoked container that controls the execution of the invoking locus by provid-

ing the code that will be executed.

The invoking locus provides a parameter block to the kernel-mediated in-
voke operation. This parameter block is made available to the code in the invoked

container. Larger amounts of data may be passed via an intermediate container.

Appropriate and arbitrarily sophisticated communication protocols may be built on

top of this simple facility. Since a minimal parameter block is the only context that

is transferred to the invoked container, invocation is inherently low cost. In this

respect, the invoke primitive is very similar to the message passing system used in
the V-kernel [Cheriton 1984].

A locus may invoke and return through many containers in a manner similar

to conventional procedure calls. The Grasshopper kernel maintains a call chain of
invocations between containers. Implicitly each locus is rooted in the container

representing the kernel: When a locus returns to this point it is deleted. How-

ever, some loci may never need to return to the container from which they were

invoked. Such a locus may meander from container to container. In such circum-

stances, an invoke parameter allows the locus to inform the kernel that no return

chain need be kept.
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5. Container Mappings

The purpose of container mapping is to allow data to be shared between contain-
ers. This is achieved by allowing data in a region of onb container to appear in
another container. In its simplest form, this mechanism provides shared memory
and shared libraries similar to that provided by conventional operating systems.
However, conventional operating systems restrict the mapping of memory to a
single level. Both VMS [Levy and Lipman 1982] and variants of Unix (such as

SunOS) provide the ability to share memory segments between process address
spaces, and a separate ability to map from disk storage into a process address

space. Several other systems [Cheriton 1984; Chorus Systemes 1990] provide
the notion of a memory object, which provides an abstraction of data. In these
systems, memory objects can be mapped into a process address space; however,
memory objects and processes are separate abstractions. It is therefore impossible
to directly address a memory object or to compose a memory object from other
memory objects.

By contrast, the single abstraction over data provided by Grasshopper may be
arbitrarily recursively composed. Since any container can have another mapped
onto it, it is possible to construct a hierarchy of container mappings as shown
in Figure l. The hierarchy of container mappings form a directed acyclic graph
maintained by the kernel. The restriction that mappings cannot contain circular

Figure 1. A container mapping hierarchy.

..ffi
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dependencies is imposed to ensure that one container is always ultimately re-

sponsible for the data. In Figure 1, container C2 is mapped into container Cl at

location ¿1. In turn,C2 has regions of containers C3 and C4mapped into it. The

data from C3 is visible in Cl. at address ¿3, which is equal to al' I a2.

Loci perceive the address space of their host container. Therefore, all loci ex-

ecuting within a container share the same address space. However, a locus may

require private data, which is visible to it, yet invisible to other loci that inhabit

the same container. To satisfy this need, Grasshopper provides a viewing mecha-

nism known as locus private mapping.

Locus private mappings are similar to container mappings in that they make

data from one container appear in another. However, instead of being globally vis-

ible, locus private mappings are only visible to the locus in which they are created

and take precedence over host container mappings. This facility allows, for exam-

ple, each locus to have its own stack space with the stacks of all loci occupying

the same address range within their host containers, as shown in Figure 2. The

effect of locus private mappings remain visible at all times until they are removed.

Consequently, if locus 1 in Figure 2 were to invoke some other container C4

and map in container Cl it would see the data from C2 from the mapping instan-

tiated while running in container CI, as shown in Figure 3. This technique both

simplifies multithreaded programming and provides a useful security mechanism

that is unavailable using conventional addressing mechanisms.

Cor¡tainer C1

Locus 1 perceivæ

Container Cl

Locus 2 percdves

Container Cl

Figure 2. Loci with private stack space.
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Container C'4

Container C1

Locus 1 whilst in C4 perceives:

Figure 3. Multilevel mappings.

6. Managers

Thus far we have described how all data storage in Grasshopper is provided by
containers. However, we have not described how containers are populated with
data. when data in a container is first accessed, the kernel is required to pro-
vide the concrete data that the container represents. A locus executing within
a container accesses the data stored in it using container addresses. The con-
tainer address of a word of data is its offset relative to the start of the con-
tainer in which it is accessed. Managers are responsible for providing the re-
quired data to the kernel and are also responsible for maintaining the data
when it is not RAM resident. Rather than being part of the kernel, managers
are ordinary programs that reside and execute within their own containers;
their state is therefore resilient. The concept of a manager is similar to the
Mach external pager lRashid et al. 1987; Young 1989] which has been suc-
cessfully used to implement a coherent distributed persistent-address space

[Koch et al. 1990]. In common with Mach and more recent systems [Harty and
cheriton 1992; Khalidi and Nelson 19921, managers are responsible for pro-
vision of the pages of data stored in the container, responding to access faults,
and receiving data removed from physical memory by the kernel. In addition,
Grasshopper managers have the following responsibilities: implementation
of a stability algorithm for the container lBrown 1988; Lampson 1981; Lo-
ne 1977; Rosenberg et al. 1990; Vaughan et al. 19921(that is, they maintain
the integrity and resilience of data) and maintenance of coherence in the case
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of distributed access to the container [Henskens et al.l99l; Li 1986; Philipson

et al. 19831.

A manager is invoked whenever the kernel detects a memory-access fault

to data stored in the container it manages. Making data accessible in a container

takes place in two stePs:

1. The manager associated with a particular address range must be identiûed.

2. The appropriate manager is requested to supply the data'

The kernel is responsible for identifying which manager should be requested

to supply data. This is achieved by traversing the container-mapping hierarchy.

Once the correct manager has been identified, the kernel requests this manager to

supply the data. The manager must deliver the requested data to the kernel, which

then arranges the hardware-translation tables in such a way that the data is visible

at an appropriate address in the container.

In Grasshopper, the manager is the only mechanism by which data migrates

from stable to volatile storage. This is in contrast to conventional operating sys-

tems in which the usual abstraction of stable storage is the file system. Grasshop-

per has no file system in the conventional sense.

Managers are responsible for maintaining a resilient copy of the data in a con-

tainer on stable media. It is only within a manageÍ that the distinction between

persistent and ephemeral data is apparent. Managers can provide resilient persis-

tent storage using whatever mechanism is appropriate to the type of data contained

in the managed container. Since managers are responsible for the storage of data

on both stable media and in RAM, they are free to store that data in any way they

see fit. An important class of managers are those that store data on stable media in

some form other than that viewed by a locus in a container; we term these manip-

ulative managers. Some examples of manipulative managers are

1. swizzling managers

2. encrypting managers

3. compressing managers.

Swizzling managers are particularly interesting in that they permit the use of

containers that are larger than the address space supported by the host hardware- A

locus executing within alarge container will generate addresses constrained by the

machine architecture. Access faults will be delivered by the kernel to the manager

associated with a container. A swizzling manager will provide a page of data in

which addresses that refer to objects anywhere within the container are replaced

with shorter addresses (ones within the machine's address range), which, when
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dereferenced will be used by the swizzling manager to provide the correct data

[Atkinson et al. 1,984; Vaughan and Dearle 1992; Wilson 1991].
It is possible for a locus to execute in a container whose manager provides a

one-to-one mapping between data in virtual memory and data on disk. This is the
abstraction delivered by demand-paged virtual memory and memory-mapped files
in conventional operating systems. Most managers will not operate in this manner
because it does not adequately support orthogonal persistence.

7. Capabilities

Capabilities provide an access control mechanism over containers and loci. For
containers, access control is required over:

. container maps

. the containers that may be invoked

. the ability to set an invocation point

' the containers that may be mapped and the access type available to mapped
regions (read/write)

. deletion of containers.

For loci, access control is required over:

. creation of locus private mappings

. blocking and unblocking loci

. management of exceptions

. deletion of loci.

In conventional operating systems these access controls are usually provided
by the file system interface, which is clearly inappropriate for Grasshopper. In

\ several existing persistent systems, protection is provided via the programming-
\ language type system [Morrison et al. 1990] or through data encapsulation [Liskov

and Zilles 19741. Grasshopper is intended to support multiple languages and there-
fore cannot rely solely on a type system.

The protection abstraction provided by Grasshopper is the capability
[Fabry L974]. Capabilities were first proposed by Dennis and Van Horn [1966]
and have been used in a variety of contexts as an access control mechanism

[Hurst and Sajeev 1992; Rosenberg and Abramson 1985; Tanenbaum 1990; V/ulf
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et al. 19811. A capability consists of a unique name for an entity, a set of access

rights related to that entity, and rights pertaining to the capability itself, in partic-

ular whether the capability can be copied. An operation can only be performed if
a valid capability for that operation is presented. There are two important points

about capabilities from which they derive their power: The name of the entity is

unique, and capabilities cannot be forged or arbitrarily modified. Capabilities can

only be created and modified by the system in a controlled manner.

There are well-known techniques for achieving the above requirements.

Unique names may be generated by using a structured naming technique in which

each machine is given a unique name and each entity created on that machine has

a unique name. Such a technique is described in Henskens et al. [1991]. Protection

of capabilities can be achieved in one of three ways:

tagging in which extra bits are used by the hardware to indicate memory re-

gions representing capabilities and to restrict access to these regions

segregation in which capabilities are stored in a protected area of memory

passwords in which a key embedded in a sparse address space is stored with the

entity and a matching key must be presented to gain access to that

entitY.

The merits of each of these techniques have been well discussed in the lit-
erature [Anderson et al 1986; Gehringer and Keedy 1985; Keedy 1984; Tanen-

baum 19901. Given that Grasshopper is to be implemented on conventional hard-

ware, tagging is not an option. Segregation is used in Grasshopper since it avoids

the problems associated with knowing when to garbage-collect unreferenced en-

tities. This occurs with password capabilities, since a user may keep a copy of
the capability somewhere outside of the kernel's control. Since the kernel cannot

know how many (if any) of these externally recorded capabilities may be in ex-

istence, it cannot perform garbage collection except on entities it is specifically

told to destroy. Using segregated capabilities allows garbage collection to be per-

formed in association with explicit destruction of entities by a locus. When the

reference count on a capability falls to zero, that is, when there are no more extant

references to the corresponding entity, the entity may be deleted.

One of the criticisms of capabilities as a protection technique is that they are

expensive to implement without hardware support. This would be of some concern

if capabilities were to be used to control access to all objects (e.9., records and

integers). This is not the case in Grasshopper; capabilities are only used to control

operations on containers and loci, that is, coarse grain objects. In fact we expect

that protection system in Grasshopper to be considerably more efficient than the

equivalent in a conventional system, namely, the file and directory system.
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In Grasshopper, every container and locus can have an associated list ofca-
pabilities. A capability list is constructed out of tuples containing a unique fixed
length key and a capability. operations are provided for copying capabilities and
for adding and removing them to and from lists. At any time, a locus has access to
all the capabilities in its own list and all capabilities in its host container's list.

Programs can refer to capabilities by specifying a capability list (locus or host
container) and a key. Grasshopper checks that an entry with the given key exists in
the specif,ed list. An appropriate capability must be presented for most operations
involving the manipulation of entities, such as invocation and mapping.

A number of advantages arise from the use of capabilities for access and pro-
tection:

1. Distribution is completely transparent. A locus wishing to invoke a con-
tainer simply presents the capability. The capability uniquely identifies the
container, and its physical location is irrelevant.

2- The system does not force any particular protection structure on users. It is
possible to construct hierarchical protection or more general policies, using
arbitrary naming mechanisms, which map some representation of a name
onto a key and thereby onto a capability.

3. It is possible to create restricted views of objects. For example, two differ-
ent capabilities for a container could be created, one of which allows the
container to be mapped, while the other only allows it to be invoked.

4. It is possible to revoke access. A holder of a capability with appropriate
access rights can invalidate other capabilities for the same entity.

8. Persistence

Containers and their associated managers provide the abstraction of persistent
data. Managers are responsible for maintaining a consistent and recoverable sta-
ble copy of the data represented by the container. As part of its interface, each
manager must provide a stabilize operation [Brown 19gg; Rosenberg et al. 1990].
Stabilization involves creating a consistent copy of the data on a stable medium.

Managers alone are not able to maintain a system-wide consistent state. For
example, consider the case where two containers, -4 and B, both provide data used
and modified by a single program. The manager for container A stabilizes the
state of A, and execution of the main program continues. At a later time, container
B is stabilized. This does not result in a consistent view of data from the point of
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view of the executing program, since after a system crash the recovered States of

the two containers are inconsistent relative to one another'

The simplest approach to global consistency is to enforce system-wide simul-

taneous stabilization in which the kernel blocks all executing loci and requests

each manager to stabilize. The disadvantage of this approach is that the entire sys-

tem freezes while the stabilization occurs.

An alternative approach is to stabilize parts of the store sepafately' In such

a system it is necessary to determine which containers and loci are causally de-

pendent on each other's state and only force these to stabilize together, leaving

the rest of the system to run. Such interdependent units are termed associates

[Vaughan et al. 1990]. The kernel may determine which containers and loci are

interdependent by annotating the container mapping graph with a history of invo-

cations and dependencies on kernel data. The intemal state of kernel data struc-

tures also forms part of the state of a user program. For example, the granting of

capabilities to loci must be recorded. The causal dependencies must therefore be

extended to include kernel data. Thus, a complete, consistent and recoverable rep-

resentation of a subsection of the system can be produced'

V/hen a consistent subset of the system has been determined, the kernel pro-

ceeds with a two-phase commit protocol, requesting the appropriate container

managers to stabilize the data in their charge. When all user data is stable, the ker-

nel will proceed to stabilize its own state and finally, as an atomic action, commit

a descriptor block that describes the new state to stable medium.

In this way, the kernel is part of the persistent environment, thereby extend-

ing the concept of an operating system instance. A Grasshopper kernel persists

even when the host machine is not operating. Conventional operating systems

rebuild the operating system from scratch each time they are bootstrapped' In

Grasshopper, the entire kernel, operating system, and user state persist. After an

initial bootstrap, an entire self-consistent state is loaded and continues execution.

9. Providing a Persistent Environment

A key concept behind orthogonal persistence is that the programmer is not re-

quired to manage the movement of data between primary and secondary storage'

Instead, application programs execute within a stable, resilient addressing envi-

ronment in which data locality is invisible. A number of persistent systems that

support particular programming languages on a variety of architectures have been

constructed.

304 Dearle et al.



In the first systems to be called persistent [Atkinson et al. 1983] all data was
stored in objects. Prior to every object dereference, a run time check was per-
formed to ensure that the object was resident in memory. If not, the object was
loaded from persistent storage by the Persistent object Management system
(POMS) [Atkinson et al. 1984]. This technique requires considerable complex-
ity to ensure that objects are not loaded more than once and that objects are copied
back to persistent storage atomically.

Recently a large number of object-oriented database implementations have
appeared both commercially and as research vehicles [Lamb et al. I99I; Richard-
son and carey 19891. Many of these have been based on the language c++ and
rely upon the implementor changing the c++ run-time system in some manner
to load and store persistent data. one popular technique used by these systems is
to overload the deference operator "---" to perform residency checking [Camp-
bell et al. 19871. Like the PS-algol systems, if the object is not resident in virtual
memory, it is first loaded from the persistent store and the dereference is allowed
to proceed. Another technique used by Moss [Moss and Sinofsky 19gg] to imple-
ment persistent Smalltalk-8O uses dummy methods to load nonresident objects in a
similar manner.

Rather than implement persistence with explicit object management, the per-
sistent address space may be embedded within the virtual address space. using
this technique, pages of persistent data may be incrementally loaded from a page-
based object store using conventional page faulting techniques. Dirty pages must
be written to a different site to guarantee that at least one self-consistent copy of
the store exists at any time. Systems using this technique have been implemented
above vMS [Mclellan and chisholm 1982], Mach [vaughan et ar. 1992] and
Unix systems [Wilson 1991].

All the above techniques require considerable implementation effort by the
provider of the persistence mechanism, who often expends significant effort
working around the inappropriate mechanisms provided by conventional operat-
ing systems. These work-arounds inherently compromise the efflciency of these
implementations. Secondly, the techniques are tied to a particular language sys-
tem; for example, the techniques used to implement pS-algol are not necessarily
appropriate for Smalltalk or C++.

By contrast, the abstractions described in this paper provide an ideal platform
for the construction of persistent systems. In the remainder of this section we will
demonstrate how different user-level systems may be constructed using the ab-
stractions provided by the Grasshopper kernel.

In Grasshopper even the most primitive language, for example C, may be
provided with a resilient, persistent execution environment without modification
to the compiler or run-time system. This may be achieved in a variety of ways
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Figure 4. Running a C program under Grasshopper.

with varying amounts of sophistication. However, the simplest is to execute each

program in a Grasshopper container with its own manager, as shown in Figure 4.

In this scheme, a C program is organized in memory in the same manner as

under Unix, with code followed by static data, heap, and stack space. The man-

agers provide both the functionality of conventional demand-paged virtual mem-

ory plus resilience. The manager may save the entire state of the running process

on disk and restart it at any arbitrary point in its execution in a manner that is to-

tally transparent to the running process. Libraries may be provided by mapping

library code from other containers into the address space of the process. Libraries

provide both the usual Unix-style libraries and code for communicating with other

processes and for binding to persistent data. The last of these is crucial, since to be

useful, a process will require to bind to global data.

In Unix, binding to persistent data is achieved through the use of a ûle sys-

tem. Symbolic names (file names) are dynamically mapped to sequences of bytes

(f,les). All access to persistent data is via a set of predeûned system calls (open,

creat, write etc.). In Grasshopper, persistent data external to a process is accessed

via binding servers.

Binding servers are implemented as containers whose invocation interfaces

present functions that provide access to external persistent data. Access may be

provided either through further invocation, via container mapping, or both, as ap-

propriate. For example, consider a locus wanting to access a database service.

The locus must first call a binding server with the name of the database and ca-

pabilities as parameters. Assuming that the locus has appropriate capabilities, the
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server will install the capability for the database in the locus. The locus now has
the capability to directly call the database without further assistance by the binding
server. Whenever access is required to the database, its container is invoked with
an appropriate request. Access to the database will be affected by the database
code, which may map data from appropriate parts of the database into the address
space of the requesting locus.

The above scenario assumes that the locus requiring database access does not
already hold a capability for the database. Such an assumption is the norm in a
system such as Unix in which processes are typically created with no knowledge
of the environment in which they operate. In Grasshopper loci may be populated
with capabilities at any time in their lifetime. In particular, a locus may be popu-
lated with all the capabilities it requires at the time it is created. This facility has
two major benefits. First, it is more efficient, since loci do not have to perform
dynamic name binding in order to acquire resources. Second, it is more secure; a
locus may be loaded with exactly the resources it requires to perform some task. If
that locus is denied access to a binding server, it cannot access any system compo-
nents for which it does not already hold a capability.

As an example of how Grasshopper may be used at the user level, consider
a user logging into a Grasshopper system. In Grasshopper, user environments are
embodied in a distinguished container and a collection of loci and other contain-
ers that are persistent. When users log out, their environment continues to exist.
Therefore, rather than create a new environment on each login, login consists of
binding to the extant environment. This task is performed by a togin server which
maintains a mapping between (user name, password) pairs and capabilities for
the distinguished containers. Such a scheme is described in Keedy and vosse-
berg ll992l.

A user wishing to reconnect with an environment provides the authentication
server with a user name and a password. This request must be accompanied by
a capability for the devices on which the user wishes to interact. These may be
provided by the locus that mediates the connection with the Grasshopper system
(cf. getty in Unix). Once the authentication process is complete, the server invokes
the user's distinguished container with a locus carrying with it the capabilities for
the devices. Using these capabilities, the locus may reestablish conversation with
the user in whatever manner is appropriate.
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10. Conclusions

In this paper the initial design of The Grasshopper Persistent Operating System

has been described. Grasshopper satisfies the four principal requirements of or-

thogonal persistence, namel¡

1. support for persistent objects as the basic abstraction

2. the reliable and transparent transition of data between long- and short-term

memory

3. persistent processes

4. control over access to objects.

This is achieved through the provision of three powerful and orthogonal ab-

stractions, namely, containers, loci, and capabilities. Containers provide the only

abstraction over storage, loci are the agents of change, and capabilities are the

means of access and protection in the system. These abstractions are supported

by a fourth mechanism, the manager, which is responsible for data held in a con-

tainer.

Based on ouf experience of constructing persistent systems, we believe that

these abstractions provide an ideal base for persistent programming languages' At

the moment, we cannot prove this assertion since the Grasshopper system is still

under construction on a DEC Alpha platform.
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