

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage

Nanqinqin Li, Anja Kalaba,
Michael J. Freedman, Wyatt Lloyd, and Amit Levy

Princeton University

Disk "disaggregated:" highly durable and available

Disk "disaggregated:" highly durable and available

A nascent fault-tolerance technique

REDS has low cost, and low availability as well

Why low availability #1: failover must be sequential

Why low availability #2: the future is unknown

Why low availability #2: the future is unknown

Suppose an Oracle knew the future

Suppose an Oracle knew the future

Speculative Recovery: similarly optimal decision!

Speculative Recovery: similarly optimal decision!

Outline

- Introduction
- ☐ Speculative recovery and disk superposition
- ☐ Two new primitives super and collapse
- Evaluation

Schrödinger's Box

(Photo credit: https://www.sciencefocus.com/science/what-is-schrodingers-cat/)

- Creating a superposition by creating a disk clone
 - The disk clone must be fast-to-create and performant
 - Copy-on-write has bad I/O performance after creation, especially under highly parallel write workload

- Collapsing a superposition when one disk version is observed
 - o If the primary's disk is **updated**, then the primary has been observed
 - Deallocating the backup
 - Otherwise if **no write** until the recovery completes
 - Promoting the backup and deallocating the primary

Outline

- Introduction
- ☐ Speculative recovery and disk superposition
- ☐ Two new primitives super and collapse
- Evaluation

A set of primitives: super and collapse

- super: creating a superposition by creating a disk clone
- **collapse**: collapsing the superposition by tracking writes to the primary's disk

super uses copy-on-write

super uses copy-on-write More details in the paper! Fast to create Copy-on-write Bad I/O Collocated-clone performance The average write I/O performance latency could be close to a regular disk! 30x higher!!!

collapse uses a dirty bit to monitor writes

A dirty bit for the primary's disk: any write sets it dirty

Three components of a speculative recovery system

Three components of a speculative recovery system

Outline

- Introduction
- ☐ Speculative recovery and disk superposition
- ☐ Two new primitives super and collapse
- **U** Evaluation

The experiment setup

- We implemented a prototype speculative recovery system: SpecREDS
 - Based on Ceph's block device interface *rbd*.
- The instance pool: docker containers
- The storage cluster: high-end NVMe SSD drives

The experiment setup

- We compare three disk types
 - o **rbd** (a regular disk)
 - rbd-clone (with Ceph's existing clone implementation)
 - super (with collocated-clone)
- We compare three systems
 - o **REDS** (using rbd)
 - SpecREDS (using super)
 - o *Oracle* (using rbd)
- Three database applications running **TPC-C** workload with **oltpbench**:
 - o **MySQL** with InnoDB
 - PostgreSQL
 - MariaDB with RocksDB

End-to-end failover laten

SpecREDS avoids long timeout and unnecessary failovers

Speculation once again improves performance!

Speculative recovery safely and efficiently parallelizes self-heal on the primary and recovery on the backup to push failover latency to the lower bound of REDS

Thank you!