Speculative Recovery:
Cheap, Highly Available Fault Tolerance
with Disaggregated Storage

Nanginqin Li, Anja Kalaba,
WSS Michael). Freedman, Wyatt Lloyd, and Amit Levy
Princeton University

Disk “disaggregated:” highly durable and available

MySQL

{ Em
Highly-available

L
network-attached

Storage pool H

Data is replicated
\

Highly-durable

Compute instance

Disk “disaggregated:” highly durable and available

Compute instance

High disk availability = High application availability?

Storage pool

Data is replicated
\

Highly-durable

A nascent fault-tolerance technique

5. Restart the application | Fail, then recover

1. The primary failed
P y — —

2. Spinup a
new backup

3. Detach the disk / Attach the disk
! 4 to the backup

REcovery from Disaggregated Storage (REDS)

REDS has low cost, and low availability as well

~

[Low cost \J/

(

Generally applicable to
crash-consistent
applications

X X

-

r

Must persist writes
before externalization

~

_ Y,

e p
Can recover from
crashed state

_ Y,

Why low availability #1: failover must be sequential

(

\

(I). Failure detection
on the primary

\
>

\.

Z
\

Timeout unresponsiveness

/

How long should step one (timeout) be?

e ™
(IT). Recovery

on the backup

\, y,

e N
Move over the disk and
restart the application

y,

Why low availability #2: the future is unknown

The primary stopped
responding

_—7

When to start the recovery?

The primary truly failed?

Can it self-heal quickly?

How long does the recovery take?
« How much "crash” to fix?

Why low availability #2: the future is unknown

[Short timeout

[Long timeout

Suppose an Oracle knew the future

The primary stopped
responding

Suppose an Oracle knew the future

— 1

Please wait, BRB in 30 seconds!

Oracle

®

B J Okay, T pick you

10

Speculative Recovery: similarly optimal decision!

The primary stopped

responding

Clone

Speculative Recovery: similarly optimal decision!

Hang tight, be right back!

Two racing paths:
k Whoever finishes first wins! ‘

Recovery completes in 10..9..8...

I Clone
=] =)

12

Outline

1 Speculative recovery and disk superposition
1 Two new primitives super and collapse

===] Evaluation ——

13

Speculative Recovery creates a “superposition”

Hang tight, be right back!

Two independent versions
of the application?

Recovery completes in 10..9..8...

I Clone
=] =)

14

Speculative Recovery creates a “superposition”

Hang tight, be right back!

-\

/ Superposition: two versions,
\ but only one observed

I Clone
=] =)

15

Speculative Recovery creates a “superposition”

https://www.sciencefocus.com/science/what-is-schrodingers-cat/

Speculative Recovery creates a “superposition”

Primary

MySQL

— ="

Hey, I've been here the
whole timel

Bl

17

Speculative Recovery creates a “superposition”

Backup

MySQL

Hey, I will be your new
long-time friend!

==

18

Speculative Recovery creates a “superposition”

e Creating a superposition by creating a disk clone

o The disk clone must be fast-to-create and performant
m Copy-on-write has bad I/0 performance after creation, especially under highly
parallel write workload

e Collapsing a superposition when one disk version is observed

o If the primary's disk is updated, then the primary has been observed
m Deallocating the backup

o Otherwise if no write until the recovery completes
m Promoting the backup and deallocating the primary

19

Outline

1 Two new primitives super and collapse
w1 Evaluation e

20

A set of primitives: super and collapse

e super: creating a superposition by creating a disk clone
e collapse: collapsing the superposition by tracking writes to the primary’s
disk

21

super uses copy-on-write

[Copy-on-write

super uses copy-on-write

~ S

A

Fast to create J

[Copy-on-write

More details
in the paper!

I

Collocated-clone

\/‘
I/0 performance
close to a regular disk!

23

collapse uses a dirty bit to monitor writes

e Adirty bit for the primary’'s disk: any write sets it dirty

Proceed with

romotion
cleal £

|

A call to Checks the
collapse() dirty bit

Abort
recovery

|

More details
in the paper!

24

Three components of a speculative recovery system

The instance pool

primary backup

‘ MySQL i | MySQL i

“Pawn ()

I/0 requests

Tracking primary
writes

\ 4

The storage cluster

m
()
‘x\)l The failure monitor

096$(‘-<:::i
g

Creating a
superposition!

25

Three components of a speculative recovery system

The instance pool

primary backup

‘ MySQL i | MySQL i

sPa wn

I/0 requests

Tracking primary
writes

\ 4

The storage cluster

009'6

99

()

he\
Sat ()
‘x\)l The failure monitor

A\

N

Collapsing a superposition:
which version to keep?

26

Outline

=== [_] Evaluation

27

The experiment setup

e We implemented a prototype speculative recovery system: SpecREDS
o Based on Ceph'’s block device interface rbd.

e The instance pool: docker containers
e The storage cluster: high-end NVMe SSD drives

28

The experiment setup

e We compare three disk types
o rbd (aregular disk)
o rbd-clone (with Ceph's existing clone implementation)
o super (with collocated-clone)
o We compare three systems
o REDS (using rbd)
o SpecREDS (using super)
o Oracle (using rbd)
e Three database applications running TPC-C workload with oltpbench:
o MySQL with InnoDB
o PostgreSQL
o MariaDB with RocksDB

29

Application recovery latency from various disk states

\

160

Time it takes to
complete recovery

Recovery latency (s)
e
<

A regular disk collocated-clone

Ceph’s existing clone

2731 rbd Bl super

rbd-clone

[y
()
<

o+
<

1 Postgres

80

40

S/.4G S12G

7 P\

Failure type: Size of the
S - docker stop write-ahead-log
P - kernel panic in GB

P/5G

-160

120

30

Application recovery latency from various disk states

80

40

2731 rbd Bl super rbd-clone
160

o 1 Postgres

2120

: i

2

<

= 80

g

§ 40

= Vza . : :
S/.4G S/2G P/5G

Failure type: Size of the

S - docker stop write-ahead-log
P - kernel panic in GB

-160

120

31

Application recovery latency from various disk states

2731 rbd Bl super rbd-clone

@160;P0stgres S N :160
g 120 \ \ \ 120
E 801 § § § f—so
§ 40 N N I NBZL
= 0: Vza § . : & : § :0
§/.il£}_ S12G P/5G
7 I\
Failure type: Size of the

S - docker stop write-ahead-log
P - kernel panic in GB

32

Application recovery latency from various disk states

2723 rbd B super rbd-clone
1
160;Postgres NN NH 60

[y
()
<

Close -to-normal recovery latency

oo

Recovery latency (s)
e
<

l/////////

M }40

-0
S/.4G S/2G P/5G

Failure type: Size of the

S - docker stop write-ahead-log

P - kernel panic in GB

33

End-to-end failover latency with varying timeout/recovery

EZZ1 REDS HEl SpecREDS B Oracle Long timeout — 1 minute

< 160 . ,
e Timeout=Imin | Timeout=5s - Short timeout- 5 seconds
= ! '
. . < 1201 | -120
Simulation: adds | = i :
latencies together | z i
0 = 80 i -80
= . L
\ = I I
2 I
g 40 - i 40
= | :
g0 | 0
long short
Recovery length

A

Long recovery - around 1 minute
Short recovery - around 5 seconds

34

End-to-end failover latency with varying timeout/recovery

EZZ1 REDS HEE SpecREDS [E&E Oracle

[
[=a)
[—

- 160
Timeout=1min | Timeout=5s [

i i
i 120

—
o
[—]

No waiting for a timeout!

' - - - 0
long short

Recovery length

Application unavailability (s)
& %
S S

]

End-to-end failover latency with varying timeout/recovery

EZZ1 REDS HEE SpecREDS [E&E Oracle

[
[=a)
[—

-160

Timeout=Imin | Timeout=5s

120 Similar latency when

timeout is short

=
[—]

Application unavailability (s)
%
[—]

]

long short long ' short
Recovery length

36

End-to-end failover latency with varying timeout/recovery

EZZ1 REDS HEE SpecREDS [E&E Oracle

Z 160 , — . 160
z Timeout=1min | Timeout=5s [
= i
E 120 - : 120
a |
s 80 I -80
E i
= 401 i 40
i i
e !

0 - T
< long short long long (FP) short

Recovery length

Simulated false positive:
The primary self-heals after 10 seconds

End-to-end failover latency with varying timeout/recovery

[a—y
(=2
=

120 -

Application unavailability (s)
& %
S S

EZZ7] REDS

HEl SpecREDS [0 Oracle

]

1
l60

Timeout=Imin | Timeout=5s

long

short

long long (FP)
Recovery length

Avoids unnecessary
failovers

40

short

38

End-to-end failover laten{ SpecREDS avoids long timeout
and unnecessary failovers

EZZ]1 REDS

—
[=a)
=

- 120

.
(o]
—]

80

- 40

Application unavailability (s)
& %
= —]

]

39

Speculation once again improves performance!

-

o

Speculative recovery safely and efficiently parallelizes
self-heal on the primary and recovery on the backup
to push failover latency to the lower bound of REDS

~

J

Thank you!

40

