
Speculative Recovery: 
Cheap, Highly Available Fault Tolerance 

with Disaggregated Storage
Nanqinqin Li, Anja Kalaba, 

Michael J. Freedman, Wyatt Lloyd, and Amit Levy
Princeton University

1



Storage pool

Disk “disaggregated:” highly durable and available

network-attached

Compute instance

Data is replicated

2

Highly-available

Highly-durable



Highly-available

Highly-durable

Storage pool

Disk “disaggregated:” highly durable and available

network-attached

Compute instance

Data is replicated

3

High disk availability = High application availability?



A nascent fault-tolerance technique

2. Spin up a 

new backup

3. Detach the disk 4. Attach the disk 

to the backup

5. Restart the application Fail, then recover

4

1. The primary failed

REcovery from Disaggregated Storage (REDS)



REDS has low cost, and low availability as well

5

Low cost

Low availability

Generally applicable to 
crash-consistent 

applications

Must persist writes 
before externalization

Can recover from 
crashed state



Why low availability #1: failover must be sequential

6

Step (I) first, then step (II)
(I). Failure detection

on the primary

Timeout unresponsiveness

(II). Recovery
on the backup

Move over the disk and 
restart the application

How long should step one (timeout) be?



Why low availability #2: the future is unknown

7

The primary stopped 
responding

When to start the recovery?
● The primary truly failed?
● Can it self-heal quickly?

How long does the recovery take?
● How much “crash” to fix?



Why low availability #2: the future is unknown

8

Short timeout

Long timeout

Long recovery when 
failure is only transient

Slow reaction to 
true failures

Always an 
opportunity cost!



Suppose an Oracle knew the future

9

The primary stopped 
responding

Oracle



Suppose an Oracle knew the future

10

But I can finish recovery in 20 seconds!

Oracle Okay, I pick you

The primary stopped 
responding

Please wait, BRB in 30 seconds!



Speculative Recovery: similarly optimal decision!

11

Clone

The primary stopped 
responding



Speculative Recovery: similarly optimal decision!

12

Clone

The primary stopped 
respondingHang tight, be right back! Recovery completes in 10…9…8… 

Two racing paths:
Whoever finishes first wins!



Outline
❏ Introduction
❏ Speculative recovery and disk superposition
❏ Two new primitives super and collapse
❏ Evaluation

13



Speculative Recovery creates a “superposition”

14

Clone

The primary stopped 
respondingHang tight, be right back! Recovery completes in 10…9…8… 

Two independent versions 
of the application?



Speculative Recovery creates a “superposition”

15

Clone

The primary stopped 
respondingHang tight, be right back!

Superposition: two versions, 
but only one observed

Recovery completes in 10…9…8… 



Speculative Recovery creates a “superposition”

16

Clone

The primary stopped 
respondingHang tight, be right back!

Superposition: two versions, 
but only one observed

Recovery completes in 10…9…8… 

Schrödinger's Box

(Photo credit: https://www.sciencefocus.com/science/what-is-schrodingers-cat/)

https://www.sciencefocus.com/science/what-is-schrodingers-cat/


Speculative Recovery creates a “superposition”

17

Hey, I’ve been here the 
whole time!

Primary



Speculative Recovery creates a “superposition”

18

Hey, I will be your new 
long-time friend!

Backup



Speculative Recovery creates a “superposition”

● Creating a superposition by creating a disk clone 

19

● Collapsing a superposition when one disk version is observed

○ The disk clone must be fast-to-create and performant

■ Copy-on-write has bad I/O performance after creation, especially under highly 

parallel write workload 

○ If the primary’s disk is updated, then the primary has been observed

■ Deallocating the backup

○ Otherwise if no write until the recovery completes

■ Promoting the backup and deallocating the primary



Outline
❏ Introduction
❏ Speculative recovery and disk superposition
❏ Two new primitives super and collapse
❏ Evaluation

20



A set of primitives: super and collapse

21

● super: creating a superposition by creating a disk clone 

● collapse: collapsing the superposition by tracking writes to the primary’s 

disk



super uses copy-on-write

22

Copy-on-write

The average write 
latency could be 

30x higher!!!

Fast to create

Bad I/O 
performance

Serialized concurrent 
COW operations

Data copying 
over the network



super uses copy-on-write

23

Copy-on-write

The average write 
latency could be 

30x higher!!!

Fast to create

Bad I/O 
performance

Serialized concurrent 
COW operations

Data copying 
over the network

Collocated-clone

More details 
in the paper!

I/O performance 

close to a regular disk!



● A dirty bit for the primary’s disk: any write sets it dirty

collapse uses a dirty bit to monitor writes

24

A call to 
collapse()

Checks the 
dirty bit

Proceed with 
promotion

Abort 
recovery

More details 
in the paper!



Three components of a speculative recovery system

25

The instance pool

primary

The storage cluster

The failure monitor

I/O requests

Tracking primary 
writes

backup

Creating a 
superposition!



Three components of a speculative recovery system

26

The instance pool

primary

The storage cluster

The failure monitor

I/O requests

Tracking primary 
writes

backup

Collapsing a superposition: 
which version to keep?



Outline
❏ Introduction
❏ Speculative recovery and disk superposition
❏ Two new primitives super and collapse
❏ Evaluation

27



The experiment setup

● We implemented a prototype speculative recovery system: SpecREDS
○ Based on Ceph’s block device interface rbd. 

● The instance pool: docker containers

● The storage cluster: high-end NVMe SSD drives 

28



The experiment setup

● We compare three disk types
○ rbd (a regular disk)

○ rbd-clone (with Ceph’s existing clone implementation)

○ super (with collocated-clone)

● We compare three systems
○ REDS (using rbd)

○ SpecREDS (using super)

○ Oracle (using rbd)

● Three database applications running TPC-C workload with oltpbench:
○ MySQL with InnoDB

○ PostgreSQL

○ MariaDB with RocksDB

29



Application recovery latency from various disk states

Failure type:

S - docker stop

P - kernel panic

Size of the 

write-ahead-log 

in GB

Time it takes to 

complete recovery

30

A regular disk collocated-clone Ceph’s existing clone



Application recovery latency from various disk states

31

Failure type:

S - docker stop

P - kernel panic

Size of the 

write-ahead-log 

in GB



Application recovery latency from various disk states

32

Failure type:

S - docker stop

P - kernel panic

Size of the 

write-ahead-log 

in GB



Application recovery latency from various disk states

33

Close-to-normal recovery latency

Failure type:

S - docker stop

P - kernel panic

Size of the 

write-ahead-log 

in GB



End-to-end failover latency with varying timeout/recovery
Long timeout – 1 minute

Short timeout- 5 seconds

Long recovery - around 1 minute

Short recovery - around 5 seconds

Simulation: adds 

latencies together

34



End-to-end failover latency with varying timeout/recovery

35

No waiting for a timeout!



End-to-end failover latency with varying timeout/recovery

36

Similar latency when 
timeout is short



End-to-end failover latency with varying timeout/recovery

37

Simulated false positive:

The primary self-heals after 10 seconds



End-to-end failover latency with varying timeout/recovery

38

Avoids unnecessary 
failovers



End-to-end failover latency with varying timeout/recovery

39

SpecREDS avoids long timeout 
and unnecessary failovers



Speculation once again improves performance!

40

Speculative recovery safely and efficiently parallelizes 
self-heal on the primary and recovery on the backup
to push failover latency to the lower bound of REDS

Thank you!


