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Disk “disaggregated:” highly durable and available
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Disk “disaggregated:” highly durable and available

Compute instance
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A nascent fault-tolerance technique

5. Restart the application | Fail, then recover

1. The primary failed
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2. Spinup a
new backup

3. Detach the disk / Attach the disk
! 4 to the backup

REcovery from Disaggregated Storage (REDS)




REDS has low cost, and low availability as well
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Why low availability #1: failover must be sequential
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Why low availability #2: the future is unknown

The primary stopped
responding
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When to start the recovery?

The primary truly failed?

Can it self-heal quickly?

How long does the recovery take?
« How much "crash” to fix?




Why low availability #2: the future is unknown

[ Short timeout

[ Long timeout




Suppose an Oracle knew the future

The primary stopped
responding




Suppose an Oracle knew the future
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Speculative Recovery: similarly optimal decision!

The primary stopped

responding

Clone




Speculative Recovery: similarly optimal decision!

Hang tight, be right back!

Two racing paths:
k Whoever finishes first wins! ‘

Recovery completes in 10..9..8...

I Clone
=] =)
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Outline

1 Speculative recovery and disk superposition
1 Two new primitives super and collapse

=== ] Evaluation ——
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Speculative Recovery creates a “superposition”

Hang tight, be right back!

Two independent versions
of the application?

Recovery completes in 10..9..8...
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Speculative Recovery creates a “superposition”

Hang tight, be right back!
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/ Superposition: two versions,
\ but only one observed
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Speculative Recovery creates a “superposition”



https://www.sciencefocus.com/science/what-is-schrodingers-cat/

Speculative Recovery creates a “superposition”
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Speculative Recovery creates a “superposition”

Backup

MySQL

Hey, I will be your new
long-time friend!
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Speculative Recovery creates a “superposition”

e Creating a superposition by creating a disk clone

o The disk clone must be fast-to-create and performant
m Copy-on-write has bad I/0 performance after creation, especially under highly
parallel write workload

e Collapsing a superposition when one disk version is observed

o If the primary's disk is updated, then the primary has been observed
m Deallocating the backup

o Otherwise if no write until the recovery completes
m  Promoting the backup and deallocating the primary
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Outline

1 Two new primitives super and collapse
w1 Evaluation e
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A set of primitives: super and collapse

e super: creating a superposition by creating a disk clone
e collapse: collapsing the superposition by tracking writes to the primary’s
disk
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super uses copy-on-write

[ Copy-on-write




super uses copy-on-write
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More details
in the paper!
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collapse uses a dirty bit to monitor writes

e Adirty bit for the primary’'s disk: any write sets it dirty
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More details
in the paper!
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Three components of a speculative recovery system
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Three components of a speculative recovery system

The instance pool

primary backup

‘ MySQL i | MySQL i

sPa wn

I/0 requests

Tracking primary
writes

\ 4

The storage cluster

009'6

99

()

he\
Sat ()
‘x\)l The failure monitor

A\

N

Collapsing a superposition:
which version to keep?

26




Outline

=== [_] Evaluation
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The experiment setup

e We implemented a prototype speculative recovery system: SpecREDS
o Based on Ceph'’s block device interface rbd.

e The instance pool: docker containers
e The storage cluster: high-end NVMe SSD drives
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The experiment setup

e We compare three disk types
o rbd (aregular disk)
o rbd-clone (with Ceph's existing clone implementation)
o super (with collocated-clone)
o We compare three systems
o REDS (using rbd)
o SpecREDS (using super)
o Oracle (using rbd)
e Three database applications running TPC-C workload with oltpbench:
o MySQL with InnoDB
o PostgreSQL
o MariaDB with RocksDB
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Application recovery latency from various disk states
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Application recovery latency from various disk states
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Application recovery latency from various disk states
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Application recovery latency from various disk states

2723 rbd B super rbd-clone
1
160;Postgres NN NH 60

[y
()
<

Close -to-normal recovery latency

oo

Recovery latency (s)
e
<

l/////////

M }40

-0
S/.4G S/2G P/5G

Failure type: Size of the

S - docker stop write-ahead-log

P - kernel panic in GB

33




End-to-end failover latency with varying timeout/recovery
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End-to-end failover latency with varying timeout/recovery
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End-to-end failover latency with varying timeout/recovery
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End-to-end failover latency with varying timeout/recovery
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End-to-end failover latency with varying timeout/recovery
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End-to-end failover laten{ SpecREDS avoids long timeout
and unnecessary failovers
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Speculation once again improves performance!
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Speculative recovery safely and efficiently parallelizes
self-heal on the primary and recovery on the backup
to push failover latency to the lower bound of REDS
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Thank you!
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