
HEADER SPACE ANALYSIS:
STATIC CHECKING FOR

NETWORKS

Peyman Kazemian (Stanford University)

George Varghese (UCSD, Yahoo Labs)

Nick McKeown (Stanford University)

April 25th, 2012

NSDI 2012
1

TODAY…

¢ A typical network is a complex mix of
protocols:

¢ Interact in complex ways.
¢ Cause unforeseen behavior.
¢ Hard to manage, understand and predict

the behavior of networks.

2

VLAN
MPLS Spanning tree

IPv4

IPv6
NAT

ARP GRE
TCP

UDP
ICMP

IGMP

IPsec RSVP

OSPF

BGP

TODAY…

¢ Even simple questions are hard to
answer…

�  Can host A talk to host B?
�  What are all the packet headers from A that

can reach B?
�  Are there any loops in the network?
�  Is Slice X isolated totally from Slice Y?
�  What will happen if I remove an entry from

a router? 3

HEADER SPACE ANALYSIS

¢ A Powerful General Foundation that
gives us

¢  A unified view of almost all type of boxes.
¢  A powerful interface for answering
different questions about the network.

4

HEADER SPACE FRAMEWORK

SIMPLE OBSERVATION: A PACKET IS A POINT IN THE
SPACE OF POSSIBLE HEADERS AND A BOX IS A
TRANSFORMER ON THAT SPACE.

5

HEADER SPACE FRAMEWORK

¢ Step 1 - Model packet header as a point in {0,1}L
space – The Header Space

6

01110011…1

L

Header Data

HEADER SPACE FRAMEWORK

¢  Step 2 – Model all networking boxes as transformer of
header space

7

Packet
Forwarding

1

2

3

0xx1..x1
Match

+ Send to port 3
Rewrite with 1xx011..x1

Action
11xx..0x + Send to port 2

Rewrite with 1x01xx..x1

1110..00

1101..00

Transfer Function:
 T : (hin, pin) �! {(h1, p1), (h2, p2), . . . , (hn, pn)}

HEADER SPACE FRAMEWORK

¢ Example: Transfer Function of an IPv4 Router

�  172.24.74.0 255.255.255.0 Port1
�  172.24.128.0 255.255.255.0 Port2
�  171.67.0.0 255.255.0.0 Port3

8

1

3

2

(h,1) if dst_ip(h) = 172.24.74.x

(h,2) if dst_ip(h) = 172.24.128.x

(h,3) if dst_ip(h) = 171.67.x.x

T(h, p) =

HEADER SPACE FRAMEWORK

¢ Example: Transfer Function of an IPv4 Router

�  172.24.74.0 255.255.255.0 Port1
�  172.24.128.0 255.255.255.0 Port2
�  171.67.0.0 255.255.0.0 Port3

9

1

3

2

(dec_ttl(h),1) if dst_ip(h) = 172.24.74.x

(dec_ttl(h),2) if dst_ip(h) = 172.24.128.x

(dec_ttl(h),3) if dst_ip(h) = 171.67.x.x

T(h, p) =

HEADER SPACE FRAMEWORK

¢ Example: Transfer Function of an IPv4 Router

�  172.24.74.0 255.255.255.0 Port1
�  172.24.128.0 255.255.255.0 Port2
�  171.67.0.0 255.255.0.0 Port3

10

1

3

2

(rw_mac(dec_ttl(h),next_mac) , 1) if dst_ip(h) = 172.24.74.x

(rw_mac(dec_ttl(h),next_mac) , 2) if dst_ip(h) = 172.24.128.x

(rw_mac(dec_ttl(h),next_mac) , 3) if dst_ip(h) = 171.67.x.x

T(h, p) =

HEADER SPACE FRAMEWORK

¢ Properties of transfer functions

�  Composable:

�  Invertible:

11

T1(h, p)

R1 R2 R3

T2(h, p)
T3(h, p)

T3(T2(T1(h, p)))

Domain (input) Range (output)

TT�1

T2(T1(h, p))

T3(T2(T1(h, p)))

HEADER SPACE FRAMEWORK

¢ Step 3 - Develop an algebra to work on these
spaces.

¢ Every object in Header Space, can be described
by union of Wildcard Expressions.

¢ We want to perform the following set operations
on wildcard expressions:
�  Intersection
�  Complementation
�  Difference

12

HEADER SPACE FRAMEWORK

¢ Finding Intersection:
�  Bit by bit intersect using intersection table:

¢  Example:
¢  If result has any ‘z’, then intersection is empty:
¢  Example:

¢ See the paper for how to find complement and
difference.

13

10xx \ 1xx0 = 10x0

10xx \ 0xx1 = z0x1 = �

USE CASES OF HEADER SPACE
FRAMEWORK

THESE ARE ONLY SOME EXAMPLE USE CASES THAT
WE DEVELOPED SO FAR…

14

USE CASES

¢ Can host A talk to B?

15

Box 1
Box 2

Box 3 Box 4

A

B

T1(X,A)

T2(T1(X,A))

T4(T1(X,A))

T3(T2(T1(X,A)) U T3(T4(T1(X,A))

T-1
3

T-1
3

T-1
4

T-1
2 T-1

1

T-1
1

All Packets that A can use to communicate with B

USE CASES

¢  Is there a loop in the network?
�  Inject an all-x text packet from every switch-port
�  Follow the packet until it comes back to injection port

16

Box 1

Box 2

Box 3

Box 4

T1(X,P)
T2(T1(X,P))

T3(T2(T1(X,P)))
T4(T3(T2(T1(X,P))))

Original HS

Returned HS

T-1
4

T-1
3

T-1
2

T-1
1

USE CASES

¢  Is the loop infinite?

17

Finite Loop Infinite Loop ?

USE CASES

¢ Are two slices isolated?

¢ What do we mean by slice?
�  Fixed Slices: VLAN slices
�  Programmable Slices: slices created by FlowVisor

¢ Why do we care about isolation?
�  Banks: for added security.
�  Healthcare: to comply with HIPAA.
�  GENI: to isolate different experiments running on the

same network.
18

USE CASES

¢ Are two slices isolated?
�  1) slice definitions don’t intersect.
�  2) packets do not leak.

19

Box 1

Box 2

Box 3

Box 4

Solution: Apply header space
reservation of each slice to the slice’s
transfer function and check
intersection of the result with other
slices’ reservations

COMPLEXITY

20

¢  Run time
Reachability: O(dR2)

Loop Detection: O(dPR2)
�  R: maximum number of rules per box.
�  d: diameter of network.
�  P: number of ports to be tested

Slice Isolation Test: O(NW2)
�  W: number of wildcard expressions in definition of a slice.
�  N: number of slices in the network.

See paper for more details.

HEADER SPACE FRAMEWORK

¢ A Powerful General Foundation that
gives us

¢  A unified view of almost all type of boxes.
Ø Transfer Function.

¢  A powerful interface for answering
different questions about the network.

Ø T(h,p) and T-1(h,p)
Ø Set operations on Header Space

 21

IMPLEMENTATION AND
EVALUATION

22

IMPLEMENTATION

¢ Header Space Library (Hassel)
¢  Written in Python
¢  Implements Header Space Class

¢  Set operations
¢  Implements Transfer Function Class

¢  T and T-1

¢  Implements Reachability, Loop Detection and Slice Isolation
checks.
¢  < 50 lines of code

¢  Includes a Cisco IOS parser
¢  Generates transfer function from output of IOS commands

and config file.
¢  Keeps the mapping from Transfer function rule to line

number in config file.
¢  Publicly available: git clone https://bitbucket.org/peymank/hassel-public.git

23

STANFORD BACKBONE NETWORK

24

~750K IP fwd rule.
~1.5K ACL rules.

~100 Vlans.
Vlan forwarding.

STANFORD BACKBONE NETWORK

¢ Loop detection test – run time < 10 minutes on a
single laptop.

25

Vlan RED
Spanning

Tree

Vlan BLUE
Spanning

Tree

PERFORMANCE

26

Generating TF Rules ~150 sec

Loop Detection Test (30 ports) ~560 sec

Average Per Port ~18 sec

Min Per Port ~ 8 sec

Max Per Port ~ 135 sec

Reachability Test (Avg) ~13 sec

Performance result for Stanford Backbone Network on a
single machine: 4 core, 4GB RAM.

SUMMARY

¢ We Introduced Header Space Analysis:

A Powerful General Foundation that gives us

¢  A unified view of almost all type of boxes.
¢  A powerful interface for answering
different questions about the network.

¢ We showed that our initial Python-based
implementation can scale to enterprise-size
networks on a single laptop.

27

Thank You!

Questions?

28

