HEADER SPACE ANALYSIS:
STATIC CHECKING FOR
NETWORKS

Peyman Kazemian (Stanford University)
George Varghese (UCSD, Yahoo Labs)

Nick McKeown (Stanford University)

April 25t 2012
NSDI 2012

TODAY...

A typical network 1s a complex mix of
protocols:

- IPv4 ;OSPF UDP
MPITS ICMP nning trel-r

RSVP T NAT ‘ IPsec
RSVP 7,7 ARP | GRE
IPv6

TCE_BGP IGMP

Interact 1n complex ways.
Cause unforeseen behavior.

Hard to manage, understand and predict
the behavior of networks.

TODAY...

Even simple questions are hard to
answer...

Can host A talk to host B?

What are all the packet headers from A that
can reach B?

Are there any loops in the network?
Is Slice X 1solated totally from Slice Y?

What will happen if I remove an entry from
a router?

HEADER SPACE ANALYSIS

A Powerftul General Foundation that
glves Us

A unified view of almost all type of boxes.

A powerful interface for answering
different questions about the network.

HEADER SPACE FRAMEWORK

SIMPLE OBSERVATION: A PACKET IS A POINT IN THE
SPACE OF POSSIBLE HEADERS AND A BOX IS A
TRANSFORMER ON THAT SPACE.

HEADER SPACE FRAMEWORK

Step 1 - Model packet header as a point in {0,1}-
space — The Header Space

Header Data
01110011...1

«— L —

'

HEADER SPACE FRAMEWORK

Step 2 — Model all networking boxes as transformer of
header space
1 >

T T 1101..00 d

1110.

Transfer Function:

T : (Rin, Din) — {(h1,01), (h2,p2), .., (A D)}

___________ —
’ Rewrite with 1x01xx..x1 } /

HEADER SPACE FRAMEWORK

Example: Transfer Function of an IPv4 Router

172.24.74.0 255.255.255.0 Portl 1 2

172.24.128.0 255.255.255.0 Port2
171.67.0.0 255.255.0.0 Port3 3
(h,1) if dst_ip(h) = 172.24.74.x
T(h, p) = 4 0,2) if dst_ip(h) = 172.24.128.x

(h,3) if dst ip(h) = 171.67.x.x

HEADER SPACE FRAMEWORK

Example: Transfer Function of an IPv4 Router

172.24.74.0

171.67.0.0

255.255.0.0

255.255.255.0 Portl 1 2

172.24.128.0 255.255.255.0 Port2
Port3 3

T'(h, p) = -

(dec ttl(h),1)
(dec ttl(h),2)
(dec ttl(h),3)

if dst ip(h) = 172.24.74.x
if dst_ip(h) = 172.24.128 x

if dst ip(h) = 171.67.x.x

HEADER SPACE FRAMEWORK

Example: Transfer Function of an IPv4 Router

172.24.74.0 255.255.255.0 Portl 1 2
172.24.128.0 255.255.255.0 Port2
171.67.0.0 255.255.0.0 Port3 3
(rw_mac(dec ttl(h),next mac), 1) if dst ip(h) = 172.24.74.x
T(h, p) = { (w_mac(dec_ttl(h),next mac) , 2) if dst ip(h) =172.24.128.x

(rw_mac(dec_ttl(h),next mac), 3) if dst ip(h) =171.67.x.x

HEADER SPACE FRAMEWORK

Properties of transfer functions

Composable: T3 15 (Tl (h p)))

- i@ o T|
T, (h, p) « L p) 4 o

T(h. p) ()

Invertible: T—ji

e

Domain (input) Range (output)

HEADER SPACE FRAMEWORK

Step 3 - Develop an algebra to work on these
spaces.

Every object in Header Space, can be described
by union of Wildcard Expressions.

We want to perform the following set operations
on wildcard expressions:

Intersection A
Complementation -
Difference 2

< >

HEADER SPACE FRAMEWORK

Finding Intersection:

Bit by bit intersect using intersection table:

o Example: 10z N 1lxx0 = 1020
o If result has any ‘7', then intersection i1s empty:

o Example: 10zx N Ozzl = 2021 = ¢

by

1
@)
i
1

e O 4

0
0
L@
0

See the paper for how to find complement and
difference.

USE CASES OF HEADER SPACE
FRAMEWORK

THESE ARE ONLY SOME EXAMPLE USE CASES THAT
WE DEVELOPED SO FAR...

USE CASES

o Can host A talk to B?

>

All Packets that A can use to communicate with B

TH(T,(X,A))

¥,

Ty(T,(X,A))

T-13

TH(Ty(Ty(X,A)) U Ty(Ty(T(X,A))

USE CASES

o Is there a loop 1n the network?
» Inject an all-x text packet from every switch-port

» Follow the packet until it comes back to injection port
A

TI(X’P) ‘ Bo Tz(EI(XﬂP))
|
/% T, : —>

Bo T, A T

-1
Original HS V | 1y 7

Returned HS 7 > - T3(T2(T1(X,P)))\

T4(T5(T,(T,(X,P)))) e

USE CASES

Is the loop infinite?

A A

9, | Z

Finite Loop Infinite Loop

USE CASES

Are two slices 1solated?

What do we mean by slice?
Fixed Slices: VLAN slices
Programmable Slices: slices created by FlowVisor

Why do we care about 1solation?
Banks: for added security.
Healthcare: to comply with HIPAA.

GENI: to isolate different experiments running on the
same network.

USE CASES

o Are two slices 1solated? Solution: Apply header space
reservation of each slice to the slice’ s

®]_) Slice definitiOnS dOl’l,t inteI'SQCt. transfer function and Check
intersection of the result with other
slices’ reservations

» 2) packets do not leak.

COMPLEXITY

Run time
Reachability: O(dR?)
Loop Detection: O(dPR?)

R: maximum number of rules per box.
d: diameter of network.
P: number of ports to be tested

Slice Isolation Test: O(NW?)

W: number of wildcard expressions in definition of a slice.
N: number of slices in the network.

See paper for more details.

HEADER SPACE FRAMEWORK

A Powerftul General Foundation that
glves Us

o A unified view of almost all type of boxes.

> Transfer Function.

o A powerful interface for answering
different questions about the network.

> T(h,p) and T-'(h,p)

» Set operations on Header Space

IMPLEMENTATION AND
® EVALUATION

IMPLEMENTATION

Header Space Library (Hassel)
o Written in Python
o Implements Header Space Class
Set operations
o Implements Transfer Function Class
T and T-!

o Implements Reachability, Loop Detection and Slice Isolation
checks.

< 50 lines of code
o Includes a Cisco IOS parser

Generates transfer function from output of IOS commands
and config file.

Keeps the mapping from Transfer function rule to line
number in config file.

o Publicly available: git clone https://bitbucket.org/peymank/hassel-public.git

STANFORD BACKBONE NETWORK

¢ ~750K IP fwd rule.
~1.5K ACL rules.
~100 Vlans.
Vlan forwarding.

STANFORD BACKBONE NETWORK

o Loop detection test — run time < 10 minutes on a

PERFORMANCE

Performance result for Stanford Backbone Network on a
single machine: 4 core, 4GB RAM.

Generating TF Rules ~150 sec
Loop Detection Test (30 ports) ~560 sec
Average Per Port ~18 sec
Min Per Port ~ 8 sec

Max Per Port ~ 135 sec
Reachability Test (Avg) ~13 sec

SUMMARY

We Introduced Header Space Analysis:

A Powerful General Foundation that gives us

A unified view of almost all type of boxes.

A powerful interface for answering
different questions about the network.

We showed that our initial Python-based

1mplementation can scale to enterprise-size
networks on a single laptop.

Thank You!

Questions?

