Origin-sensitive CFI

Mustakimur R. Khandaker, Wenging Liu, Abu Naser, Zhi Wang, Jie Yang

Department of Computer Science
Florida State University

Control Flow Integrity

Control Flow Integrity (CFl) is a defense mechanism against control-flow hijacking, 1t
employs inline reference monitor to enforce the run-time control flow of a process
must follow the statically computed control-flow graph (CFG).

local variable

CFI consists of:

arguments

e CFl Policy caller
e Inline Reference Monitor return address

old frame pointers

void (*fnptr)() callee

char buf[10] 5

Context-sensitive CFI Policy

e Context-insensitive (Cl-) CFI: CFI policy without additional information.
e Context-sensitive (CS-) CFIl: CFl policy with past execution history.

o e.g.,pathsensitivity, call-site sensitivity

To quantify security guarantee of CFl:

QSCF[= AVGEC x LC

Some Context-Sensitive CFl systems cannot
break down largest ECs (limited number of
G contexts, i.e., incoming execution paths to ICTs)

Motivation

There is a C-style indirect call from execute().
o That function pointer, code_to_execis a member of an
object.

The context of the indirect call is a loop that
iterates over a list of objects.

o Indirect calls has indifferent context.
The function pointer receives the target when
the object is created.

o Theobjects are created from different locations.
The object creation location is more diverse

than the context of the indirect call.
o Object creation location aka origin.

#define EXECUTE_ON_STARTUP(NAME, CODE) \
static void __##NAME##_code() {CODE;} \
static EzecuteOnStartup __##NAME##_reg (__##NAME##_code);

#define Define_Network (NAME) \
EXECUTE_ON_STARTUP (NAME##__net, \
(new NAME (#NAME))->setOuner (énetworks) ;)

Define_Network(smallLAN);
Define_Network(largeLAN) ;

class ExecuteOnStartup{
private:
void (*code_to_exec)();
ExecuteOnStartup *next;
static ExecuteOnStartup *head;
public:
ExecuteOnStartup(void (*_code_to_exec) ()){
Icode_to_exec = _code_to_exec;l
aad to list
next = head;
head = this;
}
void execute(){
code_to_exec();
}

static void executeAll(){

ExecuteOnStartup *p = ExecuteOnStartup::head;
while (p){
p—>execute();
p = p—>next;
}
}
};
void cEnvir::setup(...){
try{
ExecuteOnStartup: :executeAll();
}

b Largest EC Size Case Study from
471.omnetpp benchmark 4

Origin Sensitivity: A New Type of Context

e Origin: code location where a code pointer originates.

o Virtual call: where the receiving object is created (class constructor is being called).
o C-style indirect call: the address-taken code location of the code pointer.

e Requires an efficient run-time tracing method.

o Map object’s virtual pointer to object construction location. YPedst void (Ffnptz) ()
) . void target () {
o Map code pointer to address-taken location. g

}
e Performanceis achallenge: void callee(fnptr arg) [(===

o Trackorigins as function addresses propagate fnptr tmp = arg; —
throughout the program tmp () ;

o Similar to how taint is tracked. }
void caller () {

callee (&target) ; _

Hybrid Definition

Need a more efficient definition for C-style ICT.
o Combines the origin with call-site sensitivity.
o Origin: latest code pointer assignment location.
o Use call-sites as the context for the origin.

Virtual function does not need change
o Constructors cannot be virtually called
o Ifanobjectis copied to another object, it essentially
create a new object using its class’ copy constructor or
copy assignment operator. This creates a new origin for
that object.

typedef void (*fnptr) ();
void target () {

}

void callee (fnptr arg) {
fnptr tmp = arg; _ origin
tmp () ;

}

void ecaller () {

callee (&¢target) ; — call-site

Origin Sensitivity Effectiveness

e Ascompared to call-site sensitivity

Benchmarks Context-insensitive 1-call-site 2-call-site origin-sensitive
e EC, EC, Reg ;ce EC, Retc)l;Jce EC, Reg ;Jce
445.gobmk C 427 427 0% 427 0% 427 0%
400.perlbench C 173 120 31% 113 35% 21 88%
403.gcc C 54 54 0% 54 0% 42 22%
471.omnetpp C++ 168 168 0% 168 0% 2 99%
483.xalancbmk | C++ 38 38 0% 38 0% 4 95%
453.povray C++ 11 11 0% 11 0% 10 10%

445.gobmk: because it contains a loop over a large static array of function pointers (the owl_defendpat
array).

OS-CFI

e | LVM-based prototype OS-CFl system.

e Focuson:

o Precision: OS-CFIl must improve the security by reducing the average and largest EC sizes.

o Security: OS-CFI must protect both the contextual data and the (temporary) data used by
reference monitors.

o Performance: OS-CFl must have strong performance relative to the native system.

o Compatibility: OS-CFl must support both C and C++ programs.

OS-CFIl Policy

e Adaptive CFl policy:
o Use call-site sensitivity if it is sufficiently precise.
o Useorigin sensitivity to break down large ECs.

Instrumentation

typedef void (*Format)();

cl

ass Base {

protected:

Format fmt;

public:

};

(/* Base o.wPtr, origin */) {
// store_metadata(Base_o.vPtr, Base::vTavle,
/i

V4 origin);

3

“Base() {}

virtual void set(Format fp) {
fmt = fp;

// store_metadata(fmt.addr, fp.value,

Vs Base:set_locl, Base::set_ctz);

}
void print() {
LC/ ccall_ref_monitor(fmt.addr, fmt.value); l
fmt () ;
}

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

¥

class Child : public Base {
public:

Child(/* Child_o.vPtr, origin */) {

se(Child o.vPtr, origin):
// store_metadata(Child_o.vPtr, Child::vTable,
//

origin);

}

“Child() {}

void set(Format fp) {
fmt = fp;

/ store_metadata(fmt.addr, fp.value,

'/ Child::set_locl, Child::set_ctz);

}

void print() {
I// ccall_ref_monitor(fmt.addr, fmt.value);l
fmt O ;

e Totrackorigin of the object creation location.
o store_metadata(vptr_addr, vtable, origin_loc)
e Totrackorigin of the function pointer assignment location.
o store_metadata(ptr_addr, ptr_val, origin_loc, origin_context)

e To monitor the virtual function call.

o ccall_ref_monitor(ptr_addr, target)

e To monitor the C-style indirect call.

o vcall_ref_monitor(vptr_addr, vtable, target)

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

void exec () {

Base *bp = new Base(); // call constructor

/ vcall_ref_monitor(Base_o.vPtr,

// Base::vTable, Base::set())

bp->set (&targeth);
bp->print() ;

Child ci; // call constructor
ci.set(&targetB);

ci.print();

bp = &cij;

// vcall_ref_monitor(Child_o.vPtr,

// Child::vTable, Child::set())

bp->set (4targetB) ;
bp—>print() ;

10

CFG Generation

e Based on SUPA, an on-demand context-, flow-, and field-sensitive points-to

analysis.
o Constructs a whole-program sparse value-flow graph (SVFG) that conservatively captures the
program’s (imprecise) def-use chains.
o Improves the precision by refining away imprecise value-flows in the SVFG with strong updates.

e OS-CFICFGs are constructed on top of the refined SVFG of SUPA.

o Piggybacks on SUPA while traversing the program’s SVFG reversely to compute points-to sets.
o Reverse: from sink (ICT) to source (origin).

11

Pitfalls (Static Points-to Analysis)

SUPA is Scalable, precise, and publicly available.

o Relatively powerful machine (16-core Xeon server with
64GB of memory).
Issues
o Out of budget
m Generous budget (-maxcxt=10 -flowbg=10000
-cxtbg=100000).
m Returns set of address-taken functions (refined by
including type-matched).
o Empty points-to sets

Mostly because of missing implementations e.g.
pointer to member function.
Refined by address-taken and type-matched set.

Out of budget Empty points-to sets
Bench k

enChmarks I ¥oficTs | SUPA | Type | #ofiCTs | Type
400.perlbench 54 639 349 2 7
403.gcc 46 544 218 20 107
445.gobmk 22 1645 1637 1 4
447 .dealll 0 - - 23 37
450.soplex 0 - - 157 11
453.porvray 47 317 79 22 24
471.omnetpp 37 143 44 67 21
483.xalancbmk 0 - - 349 29

| NGINX | 141 1066 | 102 4] 34]

Table 2: Failed cases of SUPA and the improvements of our
type-based matching. Column 3, 4, and 6 show the largest EC
sizes for SUPA and the type-based matching. SUPA works for
all other benchmarks.

12

Metadata Storage

Intel MPX is a Hardware-based bound check system.
Operates like a two-level page table.

Repurpose MPX as a generic (key, value) store

@)

@)

@)

@)

@)

Indexed by the address of a pointer (code pointer address).
Every bound table entry consists of

content of the pointer (code pointer target).
the upper bound (origin location).
the lower bound (origin context).

Map (ptr_addr, ptr_target) = <origin, origin_context>.
If inline reference monitor

Provide wrong ptr_target, load will fail.
Provide correct ptr_target, origin and origin context will be

»®

Reserved |-

UBound | LBound

Pointer '....127 64 63 0
UBound Bounds Table

LBound | |

o idd @ Load
® shift by 3 Bounds Directory
shift by 5
h
| baseofBT [*]
BNDCFGx
| baseofBD | @ add

peo| ®

_A3:19 * START
bointer address | » Shiftby 3 gre
v T
20-47

13

Protection of Metadata, Context, IRM

e Intel MPX (Runtime Metadata)
o Protected by ASLR.
Bound directory (user-space), Bound Table (kernel space).

O
o Base of the bounds directory is stored in a special register, BNDCFGx, inaccessible to the user space.
(@]

With additional overhead, MPX’s bound check can be used to protect itself.

e Context (Call Stack)

o Intel CET shadow stack (recent update is on May 2019.
o SafeStack (published in OSDI’14 and adopted by LLVM in 2015 (clang-9.0)).
o ShadowCallStack (available for aarch64 in LLVM (from clang-7.0)).

e Reference Monitor protected by Intel TSX

o keeps tracks of the memory accessed by a transaction and aborts the transaction if any of that
memory is changed by others.

14

CFG Address Mapping

e CFGsareaccordingly encoded as the LLVM IR locations.

o Butruntime Requires the low-level addresses of the CFG nodes.

e Traditional approach
o Usethedebuginformation
m works for function addresses.
m but not as well for call sites because they are not in the symbol table.
o Use heuristics
m such as the code structure are used to infer the locations of call sites.
m may not be reliable when the compiler optimization is turned on.

e (OS-CFl uses Label-As-Value to obtain the runtime addresses of the CFG nodes

Create alabel at every required call-sites

Create an array of label in required functions and located it into a custom section
Assembler will automatically convert the label with actual code address
Supports ASLR

o O O O

15

Evaluation

We separate our evaluation into three parts:

e |Improvements in security
o Security guarantee
o Case study

e Experiments with vulnerabilities
e Performance

16

Security Guarantee (1)

. No Context OS-CFI Reduce by

e Excluded SUPA failed cases. Benchmark | #1CTs |0 15T Avg | Lg | Avg | Lg
. 400.perlbench 79 238 | 30 | 28 | 10 | 8% | 74%
o Comparlng to CI-CFlI 401.bzip2 20 2.0 2 10 | 1 | 50% | 50%
. . o 403.gcc 347 | 30.7 | 169 | 1.3 | 27 | 96% | 84%
o Average Avg. EC Size reduction 59.8%. e 7 T T T o o
0 Average Largest EC Size reduction 445.gobmk 36 8.1 107 1.5 12 82% 89%
456.hmmer 9 28 | 10 | 10 | 1 | 64% | 90%
60.2%. 464 h264ref 367 | 20 | 12 | 1.0 | 2 | 50% | 83%
444 namd 12 25 3 10 | 1 | 60% | 67%

447 dealll 79 2.1 3 12 | 3 | 43% | 0%

450.s0plex 317 1.0 1 10 [1 | 0% | 0%
453.porvray 45 9.3 17 1.6 5 83% 71%
471.omnetpp 331 57 | 109 | 1.0 | 2 | 83% | 98%

473 astar 1 1.0 1 10 | 1 | 0% | 0%
483xalancbmk | 1492 | 25 | 11 | 1.0 | 1 | 60% | 91%
| NGINX | 248 [94 [43 | 11 [19 [8% [56% |

Table 3: Improvement of precision by OS-CFI over context-
insensitive CFI, shown by the significant reduction in the
average (Avg) and largest (Lg) EC sizes.

Security Guarantee (2)

#ICTs OS-CFl / Adaptiveness
Benchmark Origin sensitive Call-site sensitive Context-insensitive Overall
#c-Call #vCall —
#ICTs | #Origins | Avg | Lg | #ICTs | Depth | Avg [Lg | #ICTs | Avg | Lg

400.perlbench 135 0 B 49 2.5 6 18 2 32 8 64 255 349 11.4 349
401.bzip2 20 0 20 4 1.0 1 0 0 0 0 0 0 0 1.0 1
403.gcc 413 0 249 139 1.0 1 88 2 1.0 1 76 29.8 218 3.4 218
433.milc 4 0 0 0 0 0 4 1 1.0 1 0 0 1 1.0 1
445.gobmk 59 0 29 12 1.4 3 7 3 1.0 1 23 661.7 || 1637 || 246.3 || 1637
456.hmmer 9 0 1 15 1.0 1 1 1 1.0 1 7 1.0 1 1.0 1
458.sjeng 1 0 0 0 0 0 0 0 0 0 1) 7 7.0 7
464.h264ref 367 0 318 52 1.0 1 7 1 1.5 2 42 1.7 2 1.1 2
444.namd 12 0 12 30 1.0 1 0 0 0 0 0 0 0 1.0 1
447 dealll 7 95 73 59 1.0 1 3 2 1.0 1 26 27.9 37 6.7 37
450.soplex 0 357 0 0 0 0 0 0 0 0 357 1.2 11 1.2 11
453.porvray 38 76 37 29 1.5 5 8 3 1.0 1 69 14.4 79 7.5 79
471.omnetpp 39 403 276 243 1.0 1 21 2 1.0 1 145 275 44 9.2 44
473.astar 0 1 0 0 0 0 0 0 0 0 1 1.0 1 1.0 1
483.xalancbmk 18 2073 1486 1544 1.0 1 6 3 1.0 1 599 72 29 25 29
NGINX | 393 | o [184 | 169 [10 | 1 37 | 3 [10 |1 172 [138 || 102 6.6 102

Table 4: Overall distribution of ICTs among origin sensitive, call-site sensitive, and context-insensitive ICTs. The second column
shows the total number of C-style indirect calls, while the third column shows the number of virtual calls. We omit the results of
mcf, 1ibquantum, and sphinx3 from this table because they do not have ICTs in their main programs.Columns marked with
Avg and Lg show the average and largest EC sizes, respectively.

18

Case Study

1 class cObject{
2 protected:
3 void discard(cObject *object){

4 if (object->storage() == 'D')
5 delete object;

6 else

7 object->set0Owner (NULL) ;
8 }

o public:

10 virtual “cObject();

11 }

12 class cModuleType:public cObject{
13 “cModule O {

14 delete [] fullname;

15 }

16 F

17 class cArray:public cObject{
18 private:

19 cObject **vect;

20 public :

21 clear (){

22 for (int i=0; i<=last; i++){

23 if (vect[i] && vect[i]->owner()==this)
24 discard(vect[i]);

25 }

26 }

27 }

Figure 5: Virtual call with the largest EC in 471.omnetpp

20

21

class XMLRegisterCleanup

{

private:
XMLCleanupFn m_cleanupFn;

public :

void registerCleanup(XMLCleanupFn cleanupFn) {
m_cleanupFn = cleanupFn;

+

void doCleanup() {

if (m_cleanupFn)
m_cleanupFn() ;

J
}
XMLTransService: : XMLTransService () {

static XMLRegisterCleanup mappingsCleanup;

static XMLRegisterCleanup mappingsRecognizerCleanup;

mappingsCleanup.registerCleanup(reinitMappings) ;
mappingsRecognizerCleanup.registerCleanup
(reinitMappingsRecognizer) ;

Figure 6: The ICT with the largest EC in 483 .xalancbmk

19

Pitfalls (CFI Policy)

This single ICT can target to 8
functions.

o Thetargetis decided by the index piecet(i)
SUPA fails to provide the context for
the ICT.

o Because evalRoutinesis initialized
statically, SUPA will not generate any
context for this ICT.

This case requires to protect the
integrity of index data throughout
its context.

© o N [=} ot = w [V -

typedef int (*EVALFUNC) (int sq,int c);
static EVALFUNC evalRoutines[7] = {
ErrorIt|,
Pawn,
Knight,
King,
Rook,
Queen,
Bishop [};

int std_eval (int alpha, int beta) {
for (j = 1, a = 1; (a <= piece_count); j++) {
score += (*(evalRoutine))
(i,pieceside(i));
}
}

Figure 4: An example in sjeng where the ICT at Line 15 has
no context in SUPA.

20

Synthesized Exploit

e Background
o Two virtual function calls.
o Two vulnerable functions
m getPerson()may return a malicious object
by overwriting the v®tr with wrong vTable.
m isEmployee()may always return true by
overwriting boolean return.

e Security guarantee

o First ICT is protected by Object Type Integrity.
o Second ICT is protected by CFI.

class Person{
protected:
SalaryAccount *salary = nullptr;
public:
virtual void seeEvaluation()=0;
virtual void seeSalary(){/#null derefernce*/}

class Employee : public Person{
public:
void seeEvaluation(){/* show employee evaluation*/}
void seeSalary(){/#*employee has salary account*/}
¥;
class Employer : public Person{
public:
void seeEvaluation(void){/*list of employee evaluation*/}
X
Person *getPerson(int id){
char*)malloc(10);

erson *p;

if (isEmployer(id)) {
p = new Employer();

} else {

p = new Employee();

1

gets(name) ; vulnerable gets()

return p;
¥
bool isEmployee(Person *member) {
bool res = false;
char name[10];
// vulnerable strcpy()
strcpy (name, member->getName()) ;

if (Employee *emp = dyn_cast<Employee*>(member)){
if (emp != NULL)
res = true;

1

return res; // attacker overwrite res

int main() {

Person #*member;
member = getPerson(id);

// if employee, can only see his/her evaluation
// if employer, can see list of employee evaluation
member->seeEvaluation(); // OTI protected

'/ only employee has salary account
if (isEmployee(member))
member->seeSalary(); // CFI protected

¥

Figure 10: A program vulnerable to COOP attack.

21

Performance

16% | [| [[I I I I I |
3 B woTsx
g Al R N EEEEE EEEETEEE B w Tsx
g werul- N B e
S s MEERE EEREETEEEREL N AEEE] EELEETEELERE
: SN
k3 Ul WeRhE ARARRIRRLESS N EAAA] KRR EREERLE
2% Bl B
0% ‘Qoo /bo; ’/),/O /)% 5, % s, %, P,
o % 7 TR R T,
e [ntel Xeon E3-1275 processor and 64 GB of memory.
e SafeStack for secure call stack and Intel TSX to protect the reference monitors.
e OS-CFlincurred an overhead of 7.1% without Intel TSX and 7.6% with it.
e CFGgeneration has no longer than 5.3% overhead.

Related Work

Categories | CFIXX PathArmor PittyPat MCFI OS-CFlI

Protected Object type Control flow Control flow Control flow Control flow & Object type

Context vPtr to vTable | last branches taken Processor execution paths Execution paths and constraint | Origins of function point-

binding data ers and objects

CFG None On-demand, constraint | Abstract-interpretation based | Run-time points-to analysis CFGs based on context-
driven context- | online points-to analysis , flow- and field-sensitive
sensitive CFG static points-to analysis

Coverage Virtual calls Selected syscalls Whole program, enforced at | Whole program, enforced at | Whole program, enforced

selected syscalls selected syscalls at every ICT
Required Intel MPX for meta- | Intel LBR for taken | Intel PT for execution history | Intel PT for execution history | Intel MPX for metadata
hardware data storage branches and control data storage and Intel TSX to
protect reference monitors

Kernel No, built-in MPX | Yes, enforce CFlonthe | Yes, redirect traces and en- | Yes, redirect traces and en- | No,built-in MPX and TSX

changes support syscall boundary force CFI on syscall boundary | force CFI on syscall boundary | support

Runtime Library to track the | Per-thread control | Additional threads to parse | Additional threads to parse | Hash based verification

support type of each object | transfer monitoring trace and verify control flow trace and verify control flow protected by TSX

Table 6: Comparison between OS-CFI and recent (context-sensitive) CFI systems

e CPlisanother closely related work, it protected the integrity of all the code pointers

23

Conclusion

Origin sensitivity is an effective context for CFl to reduce the LC size.
OS-CFI supports both virtual calls and C-style ICTs.

Repurposing Intel MPX as generic (key, value) store.

Static points-to analysis for CFG generation requires special attention to
ensure the security guarantee.

e Source code available: https://github.com/mustakcsecuet/OS-CFl

24

https://github.com/mustakcsecuet/OS-CFI

Q&A

http://ww2.cs.fsu.edu/~khandake/

25

http://ww2.cs.fsu.edu/~khandake/

Performance of CFG Generator

| Benchmark | SUPA (s) | 0S-CFl(s) | Overhead |

400.perlbench | 6083.2 6350.7 4.4%
401.bzip2 445.8 457.2 2.6%
403.gcc 53029.1 56231.7 6.0%
433.milc 3.9 4.0 2.6%
445.gobmk 4071.5 4246.4 4.3%
456.hmmer 10.9 11.8 8.3%
458.sjeng 2.6 2.6 0.0%
464 .h264ref 372.1 382.0 2.7%
444 namd 15.6 16.7 7.1%
447 .dealll 651.5 673.8 3.5%
450.soplex 1280.7 1340.2 4.6%
453.povray 4633.9 5304.0 14.5%
471.omnetpp 43929.0 | 45351.5 3.2%
473.astar 1.4 1.5 7.1%
483.xalancbmk | 9703.7 10792.6 11.2%
NGINX 39860.2 | 41630.7 4.4%
Average 10255.9 10799.8 5.3%

Table 5: The analysis time of OS-CFI as compared to the
vanilla SUPA algorithm. The unit of the analysis time in the
table is seconds.

Real-world Exploit

Based on CVE-2015-8668

o Heap-based buffer overflow caused by
an integer overflow.

Overwrite TIFF object out using the
overflow vulnerability.

int TIFFWriteScanline(TIFFx* tif, ...){

status = (*tif->tif_encoderow) (tif, (uint8*) buf,
tif->tif_scanlinesize, sample); // <= exploit call-point

b

+

void _TIFFSetDefaultCompressionState(TIFF* tif){

tif->tif_encoderow = _TIFFNoRowEncode; // <= origin

TIFF* TIFFOpen(...){

}

_TIFFSetDefaultCompressionState (tif);

int main(int argc, char* argv[]){

TIFF *out = NULL;
out = TIFFOpen(outfilename, "w"); // <= exploited object

uint32 uncompr_size;
unsigned char *uncomprbuf;

uncompr_size = width * length; // non-sanitized code and
// following memory allocation

uncomprbuf = (unsigned char *)_TIFFmalloc(uncompr_size);

if (TIFFWriteScanline(out, ...) < 0) {}

Figure 8: Sketch of the vulnerable code in libtiff v4.0.6.

27

