
Origin-sensitive CFI

Mustakimur R. Khandaker, Wenqing Liu, Abu Naser, Zhi Wang, Jie Yang

Department of Computer Science
Florida State University

1

Control Flow Integrity
Control Flow Integrity (CFI) is a defense mechanism against control-flow hijacking, It
employs inline reference monitor to enforce the run-time control flow of a process
must follow the statically computed control-flow graph (CFG).

CFI consists of:

● CFI Policy

● Inline Reference Monitor
● CFG

local variable

arguments
...

return address

canary

old frame pointers

void (*fnptr)()

char buf[10]

caller

callee

2

Context-sensitive CFI Policy
● Context-insensitive (CI-) CFI: CFI policy without additional information.
● Context-sensitive (CS-) CFI: CFI policy with past execution history.

○ e.g., path sensitivity, call-site sensitivity

3

To quantify security guarantee of CFI:

Some Context-Sensitive CFI systems cannot
break down largest ECs (limited number of
contexts, i.e., incoming execution paths to ICTs)

Motivation

4
Largest EC Size Case Study from

471.omnetpp benchmark

● There is a C-style indirect call from execute().
○ That function pointer, code_to_exec is a member of an

object.

● The context of the indirect call is a loop that
iterates over a list of objects.

○ Indirect calls has indifferent context.

● The function pointer receives the target when
the object is created.

○ The objects are created from different locations.

● The object creation location is more diverse
than the context of the indirect call.

○ Object creation location aka origin.

Origin Sensitivity: A New Type of Context
● Origin: code location where a code pointer originates.

○ Virtual call: where the receiving object is created (class constructor is being called).

○ C-style indirect call: the address-taken code location of the code pointer.

● Requires an efficient run-time tracing method.
○ Map object’s virtual pointer to object construction location.

○ Map code pointer to address-taken location.

● Performance is a challenge:
○ Track origins as function addresses propagate

throughout the program

○ Similar to how taint is tracked.

5

typedef void (*fnptr)();

void target(){

}

void callee(fnptr arg){

 fnptr tmp = arg;

 tmp();

}

void caller(){

 callee(&target);

}

Hybrid Definition
● Need a more efficient definition for C-style ICT.

○ Combines the origin with call-site sensitivity.

○ Origin: latest code pointer assignment location.
○ Use call-sites as the context for the origin.

● Virtual function does not need change
○ Constructors cannot be virtually called

○ If an object is copied to another object, it essentially

create a new object using its class’ copy constructor or

copy assignment operator. This creates a new origin for

that object.

6

typedef void (*fnptr)();

void target(){

}

void callee(fnptr arg){

 fnptr tmp = arg;

 tmp();

}

void caller(){

 callee(&target);

}

origin

call-site

Origin Sensitivity Effectiveness
● As compared to call-site sensitivity

7

Benchmarks

Lang

Context-insensitive 1-call-site 2-call-site origin-sensitive

ECL ECL
Reduce

by ECL
Reduce

by ECL
Reduce

by

445.gobmk C 427 427 0% 427 0% 427 0%

400.perlbench C 173 120 31% 113 35% 21 88%

403.gcc C 54 54 0% 54 0% 42 22%

471.omnetpp C++ 168 168 0% 168 0% 2 99%

483.xalancbmk C++ 38 38 0% 38 0% 4 95%

453.povray C++ 11 11 0% 11 0% 10 10%

445.gobmk: because it contains a loop over a large static array of function pointers (the owl_defendpat
array).

OS-CFI
● LLVM-based prototype OS-CFI system.
● Focus on:

○ Precision: OS-CFI must improve the security by reducing the average and largest EC sizes.

○ Security: OS-CFI must protect both the contextual data and the (temporary) data used by

reference monitors.

○ Performance: OS-CFI must have strong performance relative to the native system.

○ Compatibility: OS-CFI must support both C and C++ programs.

8

OS-CFI Policy
● Adaptive CFI policy:

○ Use call-site sensitivity if it is sufficiently precise.

○ Use origin sensitivity to break down large ECs.

9

Instrumentation

10

● To track origin of the object creation location.
○ store_metadata(vptr_addr, vtable, origin_loc)

● To track origin of the function pointer assignment location.
○ store_metadata(ptr_addr, ptr_val, origin_loc, origin_context)

● To monitor the virtual function call.
○ ccall_ref_monitor(ptr_addr, target)

● To monitor the C-style indirect call.
○ vcall_ref_monitor(vptr_addr, vtable, target)

CFG Generation
● Based on SUPA, an on-demand context-, flow-, and field-sensitive points-to

analysis.
○ Constructs a whole-program sparse value-flow graph (SVFG) that conservatively captures the

program’s (imprecise) def-use chains.

○ Improves the precision by refining away imprecise value-flows in the SVFG with strong updates.

● OS-CFI CFGs are constructed on top of the refined SVFG of SUPA.
○ Piggybacks on SUPA while traversing the program’s SVFG reversely to compute points-to sets.

○ Reverse: from sink (ICT) to source (origin).

11

Pitfalls (Static Points-to Analysis)
● SUPA is Scalable, precise, and publicly available.

○ Relatively powerful machine (16-core Xeon server with

64GB of memory).

● Issues
○ Out of budget

■ Generous budget (-maxcxt=10 -flowbg=10000

-cxtbg=100000).

■ Returns set of address-taken functions (refined by

including type-matched).

○ Empty points-to sets

■ Mostly because of missing implementations e.g.

pointer to member function.

■ Refined by address-taken and type-matched set.

12

Metadata Storage
● Intel MPX is a Hardware-based bound check system.

○ Operates like a two-level page table.

● Repurpose MPX as a generic (key, value) store
○ Indexed by the address of a pointer (code pointer address).

○ Every bound table entry consists of

■ content of the pointer (code pointer target).

■ the upper bound (origin location).

■ the lower bound (origin context).

○ Map (ptr_addr, ptr_target) = <origin, origin_context>.

○ If inline reference monitor

■ Provide wrong ptr_target, load will fail.

■ Provide correct ptr_target, origin and origin context will be verified.

13

Protection of Metadata, Context, IRM

● Intel MPX (Runtime Metadata)
○ Protected by ASLR.

○ Bound directory (user-space), Bound Table (kernel space).

○ Base of the bounds directory is stored in a special register, BNDCFGx, inaccessible to the user space.
○ With additional overhead, MPX’s bound check can be used to protect itself.

● Context (Call Stack)
○ Intel CET shadow stack (recent update is on May 2019.

○ SafeStack (published in OSDI’14 and adopted by LLVM in 2015 (clang-9.0)).

○ ShadowCallStack (available for aarch64 in LLVM (from clang-7.0)).

● Reference Monitor protected by Intel TSX
○ keeps tracks of the memory accessed by a transaction and aborts the transaction if any of that

memory is changed by others.

14

CFG Address Mapping
● CFGs are accordingly encoded as the LLVM IR locations.

○ But runtime Requires the low-level addresses of the CFG nodes.

● Traditional approach
○ Use the debug information

■ works for function addresses.

■ but not as well for call sites because they are not in the symbol table.

○ Use heuristics

■ such as the code structure are used to infer the locations of call sites.

■ may not be reliable when the compiler optimization is turned on.

● OS-CFI uses Label-As-Value to obtain the runtime addresses of the CFG nodes
○ Create a label at every required call-sites

○ Create an array of label in required functions and located it into a custom section

○ Assembler will automatically convert the label with actual code address

○ Supports ASLR

15

Evaluation
We separate our evaluation into three parts:

● Improvements in security
○ Security guarantee

○ Case study

● Experiments with vulnerabilities
● Performance

16

Security Guarantee (1)
● Excluded SUPA failed cases.
● Comparing to CI-CFI

○ Average Avg. EC Size reduction 59.8%.

○ Average Largest EC Size reduction

60.2%.

17

Security Guarantee (2)

18

Case Study

19

Pitfalls (CFI Policy)
● This single ICT can target to 8

functions.
○ The target is decided by the index piecet(i).

● SUPA fails to provide the context for
the ICT.

○ Because evalRoutines is initialized
statically, SUPA will not generate any

context for this ICT.

● This case requires to protect the
integrity of index data throughout
its context.

20

Synthesized Exploit
● Background

○ Two virtual function calls.

○ Two vulnerable functions

■ getPerson() may return a malicious object

by overwriting the vPtr with wrong vTable.

■ isEmployee() may always return true by

overwriting boolean return.

● Security guarantee
○ First ICT is protected by Object Type Integrity.

○ Second ICT is protected by CFI.

21

Performance

● Intel Xeon E3-1275 processor and 64 GB of memory.

● SafeStack for secure call stack and Intel TSX to protect the reference monitors.

● OS-CFI incurred an overhead of 7.1% without Intel TSX and 7.6% with it.

● CFG generation has no longer than 5.3% overhead. 22

Related Work

23
● CPI is another closely related work, it protected the integrity of all the code pointers

Conclusion
● Origin sensitivity is an effective context for CFI to reduce the LC size.
● OS-CFI supports both virtual calls and C-style ICTs.
● Repurposing Intel MPX as generic (key, value) store.
● Static points-to analysis for CFG generation requires special attention to

ensure the security guarantee.
● Source code available: https://github.com/mustakcsecuet/OS-CFI

24

https://github.com/mustakcsecuet/OS-CFI

Q&A
http://ww2.cs.fsu.edu/~khandake/

25

http://ww2.cs.fsu.edu/~khandake/

 Performance of CFG Generator

26

Real-world Exploit

27

● Based on CVE-2015-8668
○ Heap-based buffer overflow caused by

an integer overflow.

● Overwrite TIFF object out using the
overflow vulnerability.

