
Enter the Hydra:
Toward Principled Bug Bounties and
Exploit-Resistant Smart Contracts
USENIX Security '18
17 August 2018

Florian Tramèr
Stanford

Phil Daian ,

Cornell Tech, Jacobs, IC3

Lorenz Breidenbach
Cornell Tech, ETH, IC3

Ari Juels

!

Crypto Tokens

• Sold in Initial Coin Offerings
(ICOs); ERC20
• a.k.a. Token Launch, Token

Generation Events (TGEs), etc.

• Like unregulated VC

• Token like a share (kind of…)

•Since mid-2017, ICO
funding outstripping early-
stage Internet VC (!)

Side effects of the token mania

•Token smart contracts
are compact

•Lots of money per
contract

•Astonishing value per
line of code

•Which makes for juicy
targets…

Token Lines of

Code

Value per

line

OmiseGo

(OMG)

396 ∼$1.4M

Tether

(USDT)

423 ∼$6.14M

EOS

(EOS)

584 ∼$15.8M*

Sources: coinmarketcap.com, 17 August 2018., and published contract

source code

Some (in)famous smart contracts

•The DAO (June 2016)
• Reentrancy bug ⇒ $50+ million stolen

•Parity multisig hack (July 2017)
• Parity 1.5 client’s multisig wallet contract

• Problem with library contract use ⇒ $30 million stolen

…from 3 ICO wallets (Edgeless Casino, Swarm City, and æternity)

•Parity multisig hack—Redux! (Nov. 2017)
• Problem with library contract ⇒ >$150 million frozen

• …much from ICO wallets (Polkadot, $98 million)

N-Version programming
(Chen & Avizienis ’78, Knight-Leveson ‘86)

Version 1

Input X Version 2

Version 3

Majority

Vote

Agreed

output

N software versions / heads

If something goes wrong…

Version 1

Version 2

Version 3

Majority

Vote

Agreed

output

N software versions / heads

Input X

What is N-version programming doing?

A program transformation T takes N ≥ 1 programs and creates
new program f*:= T (f1, f2, . . . , fN).

f*
Version 1

Input X
Version 2

Version 3

Majority

Vote

output Y

•Let be an ideal program specification
• Conceptual! Doesn’t actually exist… (on paper or code)

•Let f be an implemented program

•An exploit is an input X such that (X) ≠ f(X)

• Intuition: Any deviation from intended behavior is a
potentially serious bug

•Exploit set E(f,): set of exploits X for f and

Some more definitions

Mind the gap

• Let D be a distribution over inputs X

• Definition of exploit gap:

• Affirmative gap (> 1) means T reduces exploits

• Bigger gap ⇒ fewer relative bugs in f*

• gap captures dependencies among heads

Exploits against f*

Exploits against

f1, f2, f3…

gap

Houston… we have a gap

Version 1

Version 2

Version 3

Majority

Vote

Agreed

output

N software versions / heads

Input X

f* f1

f2

f3

gap

N-version-programming criticism

• Strong gap requires independence
among heads

• Correlations hurt!

• Knight-Leveson (1986):

• “We reject the null hypothesis of full
independence at a p-level of 5%”

• Eckhardt et al. (1991):
• “We tried it at NASA and it wasn’t cost

effective”

• Worst case: 3 versions ⇒ 4x fewer errors

Version 1

Input X
Version 2

Version 3

Majority

Vote
Agreed

output

N software versions / heads

But not everything is a space shuttle…

• Not all software needs to be
available at all times!

• E.g., Smart contracts: How bad if
it’s down for a while?

• In fact, often better no answer
than the wrong one

• Bugs are often harmful

• N-of-N-Version Programming
(NNVP)

NNVP a.k.a. Hydra Framework

Version 1

Input X
Version 2

Version 3
Fault

manager

Agreed

output

N software versions /

heads

Majority

vote

Idea: Strengthen majority vote of N-Version Programming

NNVP a.k.a. Hydra Framework

Unless all versions agree, abort!

Version 1

Input X
Version 2

Version 3

=?
Fault

manager

Agreed

output

N software versions /

heads

NNVP a.k.a. Hydra

• Aborting in NNVP:

Correctness ←Availability

• NASA numbers much better for
NNVP

• Some availability loss, but…

• gap = 4,409 for N = 3 heads

• gap = 34,546 for N = 4 heads

• Probably even better!

Head 2
Head 3

Head 1

Hydra creates a (strong) gap…

Program

Head 1

Input X
Head 2

Head 3

=?
Fault

manager

Agreed

output

Serious bug in one head now rarely fatal…

✗

Smart contracts are Hydra-friendly!

Hydra could probably have addressed cases in green and yellow vulnerabilities

Application:
Bug Bounties

Some problems with bug bounties:

1. Bounties often fail to incentivize disclosure
•Apple: ≤ $200k bounty

•Zerodium: $1.5 million for certain iPhone jailbreaks

2. Time lag between reporting and action
•Weaponization can happen after disclosure

3. Bounty administrator doesn’t always pay!

Some problems with bug bounties:

1. Bounties often fail to incentivize disclosure
•Apple: ≤ $200k bounty

•Zerodium: $1.5 million for certain iPhone jailbreaks

2. Time lag between reporting and action
•Weaponization can happen after disclosure

3. Bounty administrator doesn’t doesn’t
always pay!

The perfect bug bounty

1. High leverage: Small bounty incentivizes
disclosure for valuable program

2. Automatic payout: Bounty hunter need
not trust bounty administrator to pay
• Censorship-resistant, verifiable

3. Automatic remediation: Immediate
intervention in affected software

Bug bounties: The Rational Attacker’s Game

Program

Value: $A

Bug bounties: The Rational Attacker’s Game

Find
Exploit

Attack

$A

Disclose

$B

Classic bounty: $B

Bug bounties: The Rational Attacker’s Game

Find
Exploit

DiscloseAttack

BA

Disclose if

$B > $A!

Classic bounty: $B

The Hydra Framework for Bug Bounties

Input X

Head 1

Head 2

Head 3

=
?

Fault

manager

✗
Abort

Pay

$bounty

$bounty

The Hydra Hacker’s Dilemma

Head 1

Input X
Head 2

Head 3

Claim bounty ($B) now?

$$$
Head 1

Input X
Head 2

Head 3

Try to break all heads ($A)?

The Hydra Hacker’s Dilemma

Head 1

Input X
Head 2

Head 3

Claim bounty ($B) now?

$$$
Head 1

Input X
Head 2

Head 3

Try to break all heads ($A)?

Our goal: High leverage

Find
Exploit

Attack

$A /gap

Disclose

$B

Our goal: High leverage

Find
Exploit

Attack

$A /gap

Disclose

$B

For gap ≫ 1

Our goal: High leverage
Find

Exploit

DiscloseAttack

BA/gap*

Exploit

gap

Disclose if
$B > $A / gap!

Our goal: High leverage
Find

Exploit

DiscloseAttack

BA/gap*

Exploit

gap

Disclose if
$B > $A / gap!(gap+1)

Wait a minute…

Program

Value: $A

Disclose, i.e.,

don’t attack

even though

$B < $A ?!

Example

•Recall: NASA experiments imply:
•gap = 4,409 for N = 3 heads

•gap = 34,546 for N = 4 heads

•So…
•Approx $1 billion contract (e.g., OmiseGo)

•N = 4

•$30k $bounty incentivizes adversary to disclose!

The perfect bug bounty

1. “Strong exploit gap”: Small bounty
incentivizes disclosure for valuable program

2. Automatic payout: Bounty hunter need
not trust bounty administrator to pay
• Censorship-resistant, verifiable

3. Automatic remediation: Immediate
intervention in affected software

✓

✓
✓

Implementation

•ERC20
• Standard token-management contract
•N = 3
•$bounty = 3ETH ~= $1k
•Deployed @ 0xf4ee935a3879ff07362514da69c64df80fa28622

•Generalized Monty-Hall game
•Extension of Monty Hall game to K out of M doors
• In progress

https://etherscan.io/address/0xf4ee935a3879ff07362514da69c64df80fa28622

MC

Metacontract:

EVM/Solidity

governor, fault manager

Instrumenter: EVM -> EVM transpiler

Automatic Deployment

Scripts

Test Scripts

Community

contributions –

Canonical Vyper ERC20,

First 100% coverage

ERC20 test suite

Is it practical?

Blocks 4690101 to 5049100

(Dec-07-2017 -- Feb-07-2018)

Does it scale?

Is it fair? Submarine Commitments

•Prevent frontrunning
• Adversary sits on exploit
• Reveals when it detects

pre-emption

• Security analysis involved:
• New, strong adversarial

model introduced for
blockchains, see paper

Smart Contracts - Innovate, Don't Apply

•Rich, new adversarial setting for security

•Novel properties over classical system
• Known program value - dynamic bounties

• Rigorous/programmatic/"Cartesian" security

• Can derive known, precise economic security level

• New challenges in underlying environment/modeling

• (find me offline! :))

www.thehydra.io

Initiative for CryptoCurrencies and Contracts (IC3)

www.initc3.org

Thanks!
We thank Paul Grubbs and Rahul Chatterjee for com-
ments and feedback. This research was supported by
NSF CNS-1330599, CNS-1514163, CNS-1564102, and
CNS-1704615, ARL W911NF-16-1-0145, and IC3 In-
dustry Partners. Philip Daian is supported by the Na-
tional Science Foundation Graduate Research Fellow-
ship DGE-1650441. Lorenz Breidenbach was supported
by the ETH Studio New York scholarship.

IC3 Industry Partners -

thehydra.io

