
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

MLEE: Effective Detection of Memory Leaks on
Early-Exit Paths in OS Kernels

Wenwen Wang, University of Georgia
https://www.usenix.org/conference/atc21/presentation/wang-wenwen

MLEE: Effective Detection of Memory Leaks on Early-Exit Paths in OS Kernels

Wenwen Wang
University of Georgia

Abstract
Memory leaks in operating system (OS) kernels can cause

critical performance and security issues. However, it is quite
challenging to detect memory leaks due to the inherent com-
plexity and large-scale code base of real-world OS kernels.
In this work, inspired by the observation that software bugs
are often hidden in rarely-tested program paths, we focus on
detecting memory leaks on early-exit (E-E) paths in OS ker-
nels. To this end, we conduct a systematic study of memory
management operations involved on E-E paths in OS kernels.
Based on the findings, we design a novel leak detector for
OS kernels: MLEE, which intelligently discovers memory
leaks on E-E paths by cross-checking the presence of memory
deallocations on different E-E paths and normal paths. MLEE
successfully reports 120 new memory leak bugs in the Linux
kernel. It is the first time these memory leaks are uncovered
by a leak detector for OS kernels.

1 Introduction

Memory leaks are a common class of memory management
bugs and wide spread in many critical software systems. The
accumulation of leaked memory objects can eventually ex-
haust the limited memory resource, leading to a significant in-
fluence on system response time and throughput [6,18,37], as
well as shortened battery life on mobile devices [43]. Besides,
memory leaks have been exploited to launch security attacks,
e.g., CVE-2019-12379 [39] and CVE-2019-8980 [40].

Over the past decades, significant efforts have been devoted
to detecting memory leaks [4, 7, 14, 16, 22, 27, 31, 32, 44–46].
However, most of them are designed based on the structures
and features of user-level applications and thus cannot be
applied directly to operating system (OS) kernels. Compared
to user applications, OS kernels are much more complicated
in terms of program logic and semantic [33], as they need
to handle various exceptional statuses, respond to arbitrary
interrupts from peripheral devices, perform security checks
on untrusted data sources, and etc. Besides, given the gigantic

1 /* mm/mempool.c */
2 int mempool_resize(mempool_t *pool, int new_min_nr) {
3 ...
4 spin_lock_irqsave(&pool->lock, flags);
5 if (new_min_nr <= pool->min_nr) {
6 spin_unlock_irqrestore(&pool->lock, flags);
7 kfree(new_elements); // A memory deallocation.
8 return 0;
9 }

10 ...
11 return 0;
12 }

Figure 1: An example of E-E path in the Linux kernel.

code base of a typical OS kernel, e.g., 25 million source code
lines of the Linux kernel with hundreds of new lines added
per hour, it is extremely challenging to complete the leak
detection for the entire kernel within an acceptable time.

In this paper, we focus on detecting memory leaks on early-
exit paths (or E-E paths for short) in OS kernels. This is
inspired by the observation that software bugs often lurk in
rarely-tested program paths [7, 44]. In general, an E-E path
is designed to exit from a kernel routine as early as possible.
But, before the routine is exited from the E-E path, some ex-
tra work usually needs to be completed, e.g., deallocating a
memory object, as shown by the example in Figure 1. Hence,
if a memory deallocation is required but missed on the E-E
path, it constitutes a memory leak. Though recent work also
attempts to find software bugs related to E-E paths [19,21,35],
their schemes are limited to a specific type of E-E paths, i.e.,
error handlers, and thus cannot cover a broad range of buggy
E-E paths. Our study reveals that, besides error handlers, E-E
paths in OS kernels are used in many previously-unknown
scenarios, which inherently render existing approaches inef-
fective to detect memory leaks on general E-E paths.

There are two typical reasons why memory leaks are par-
ticularly common on E-E paths. First, the major purpose of
an E-E path is to exit from a kernel routine as soon as possi-
ble when a special system status is encountered. With this in

USENIX Association 2021 USENIX Annual Technical Conference 177

mind, it is fairly easy for a developer to compose an E-E path
with some required work missed on the path, especially when
the developer does not have a comprehensive knowledge of
the required work. Second, in practice, many E-E paths are
added to the kernel code base not during the development but
after the deployment due to various reasons, e.g., correcting
the processing logic, achieving better performance/reliability,
or enhancing the security. This inevitably leads the E-E paths
to the lack of complete and thorough testing, which has been
demonstrated by previous work [17].

To understand how E-E paths are used in OS kernels and
how memory management operations are involved on E-E
paths, we systematically investigate a substantially large por-
tion, i.e., around 1 million lines, of the source code of two
popular OS kernels, Linux [2] and FreeBSD [1]. The study un-
covers some interesting findings on common usage scenarios
of E-E paths and general principles of memory deallocations
on E-E paths. In particular, we observe that the presence in-
consistencies of memory deallocations on different E-E paths
and normal paths usually indicate potential memory leaks.
Inspired by this observation, we design MLEE to intelligently
detect memory leaks on E-E paths through cross-checking the
presence of memory deallocations on different paths. MLEE
also employs several novel static analysis techniques to bal-
ance the analysis efficiency and detection accuracy.

We have implemented MLEE based on LLVM [24], which
is a popular compiler infrastructure. We evaluate MLEE by
applying it to the Linux kernel. MLEE is able to complete
the analysis for the entire Linux kernel in around half an
hour. This shows the analysis efficiency and scalability of
MLEE. By manually analyzing the report produced by MLEE,
we finally confirm 120 new leaks. It is the first time these
bugs are uncovered by a leak detector. Most of them have
been acknowledged by Linux developers and fixed using our
patches. For the others, we are working closely with the kernel
developers to finalize the patches.

In summary, this paper makes the following contributions:

• We conduct a comprehensive study of E-E paths in OS
kernels and involved memory management operations. The
study discovers some interesting and inspiring findings. To
the best of our knowledge, this is the first systematic study
of memory management operations on E-E paths.

• We design MLEE, which employs effective and scalable
static program analysis techniques to identify E-E paths
and analyze memory deallocations for memory leak detec-
tion. We believe the proposed analysis techniques will also
benefit similar bug-detection systems.

• We find 120 new memory leak bugs in the Linux kernel
with the help of MLEE. It is the first time that these bugs
are reported by a leak detector. Most of these bugs have
been acknowledged by Linux maintainers and fixed by our
patches. This demonstrates the capability of MLEE to de-
tect memory leaks in a real-world OS kernel.

 1: int kern_rtn(void *arg) {
 2: int *ptr = NULL;
 3:
 4: ptr = kmalloc();
 5: if (!ptr)
 6: return 1;
 7:
 8: if (kern_rtn1(ptr)) {
 9: kfree(ptr);
10: return 1;
11: }
12:
13: kern_rtn2(arg);
14: kfree(ptr);
15: return 0;
16: }

S0

S1
S2
S3

S4
S5
S6

S7
S8
S9

Program Orders

Normal Path

E-E Paths

S0 → S1 → S2 → S4 → S7 → S8

 → S9

S0 → S1 S1 → S2 S2 → S3

S2 → S4 S3 → S4 S4 → S5

S4 → S7 S5 → S6 S6 → S7

S7 → S8 S8 → S9

S0 → S1 → S2 → S3

S0 → S1 → S2 → S4 → S5 → S6

Figure 2: An example of the definition of E-E paths.

2 Background and Motivation

This section gives a formal definition of E-E paths and elabo-
rates common usage scenarios of E-E paths in OS kernels.

2.1 What is E-E Path?
Intuitively, an E-E path intends to exit from a kernel routine
earlier than normal program paths, by skipping some of the
program code in the routine without execution. Hence, an
E-E path generally has less program statements than a normal
program path. We next give a definition of E-E paths.

A Formal Definition. We use a two-tuple to denote a ker-
nel routine: R =< S,O >, where S is a set of statements:
S0, ...,Sn, and O is a set of program orders between two state-
ments: Si→ S j,0≤ i, j ≤ n. Each statement represents a ba-
sic and concrete operation, e.g., assigning a value to a kernel
variable or invoking a callee routine. The program orders
specify how the statements can be executed according to the
orders in which they show up in the source code. For example,
Si → S j means that S j can be executed after the execution
of Si because, for example, S j shows up in the source code
immediately after Si. In this paper, we call S j a successor
statement of Si. It is worth noting that a return statement may
also have a successor statement under O, as it may show up
in the middle of a routine. This is the key point of E-E paths.

Given R =< S,O >, a program path of R is an ordered list
of statements: P = S0→ S1→ ...→ Sm, where

(i) Si ∈ S,0≤ i≤ m;

(ii) Si→ Si+1 ∈ O,0≤ i≤ m−1;

(iii) Sm is a return statement.

We enforce a return statement at the end of a program path to
facilitate the following definition of E-E path. In case there

178 2021 USENIX Annual Technical Conference USENIX Association

1 /* ipc/mqueue.c */
2 static void mqueue_evict_inode(struct inode *inode)
3 {
4 ...
5 clear_inode(inode);
6 if (S_ISDIR(inode->i_mode))
7 return;
8 /* Evict the inode from the message queue. */
9 ...

10 }

Figure 3: An E-E path for irrelevant kernel state bypassing.

is no return statement in a kernel routine, we can append an
implicit return statement at the end of the routine source code.
P is an E-E path if the following condition satisfies:

∃Sn ∈ S,s.t. Sm→ Sn ∈ O (1)

The rationale behind this definition is that the return statement
of an E-E path P is not the last statement of the routine, i.e., it
has a successor statement under O. Hence, if the routine exits
from P, the successor statement and the following statements
will not be executed, leading to an early exit.

An Example. We next use the example in Figure 2 to explain
the above definition. The left side of the figure shows the
source code of the kernel routine, which has ten statements
with two if branches: S2 and S4, and three returns: S3, S6, and
S9. The top right side of the figure shows the program orders.
Note that the two return statements S3 and S6 have successor
statements, as highlighted in the figure. This routine has three
possible program paths and two of them are E-E paths. For
example, S0 → S1 → S2 → S3 is an E-E path, as S3 has a
successor statement under the program orders: S3→ S4.

2.2 Usage Scenarios of E-E Paths
Though E-E paths are often used to handle unexpected er-
rors, e.g., memory allocation failures and invalid function
arguments, our study on popular OS kernels, i.e., Linux and
FreeBSD, reveals that E-E paths are also composed in other
usage scenarios. We next describe each scenario in detail.

Error/Exception Handling. In general, an OS kernel needs
to deal with various exceptional system statuses and unex-
pected program errors. For example, when a permission check
fails, the kernel should not continue to perform the following
privileged and safety-critical operations. Otherwise, potential
security risks will be raised. Therefore, E-E paths are exten-
sively used in OS kernels to terminate unsafe and invalid
execution when an error/exception happens.

Typically, an E-E path in this usage scenario returns an
error code to indicate that an error is triggered. This is also
the reason why existing approaches leverage error codes to
detect error handlers [12, 19]. However, our study shows that
this is not always true. Specifically, we find that 52% (out of

1 /* fs/fat/misc.c */
2 void fat_time_unix2fat(struct msdos_sb_info *sbi, ...)
3 {
4 ...
5 if (tm.tm_year < 1980 - 1900) {
6 *time = 0;
7 *date = cpu_to_le16((0 << 9) | (1 << 5) | 1);
8 return;
9 }

10 if (tm.tm_year > 2107 - 1900) {
11 *time = cpu_to_le16((23 << 11) | (59 << 5) | 29);
12 *date = cpu_to_le16((127 << 9) | (12 << 5) | 31);
13 return;
14 }
15 ...
16 }

Figure 4: Two E-E paths for kernel functionality extension.

5910) and 25% (out of 1700) E-E paths in Linux and FreeBSD
respectively do not return any error code even if they handle
errors/exceptions. In fact, whether an E-E path returns an error
code primarily depends on what error/exception is handled
by the E-E path. Thus, it is insufficient to detect E-E paths
merely relying on whether an error code is returned.

Irrelevant Kernel State Bypassing. In this scenario, the E-E
paths are used to bypass specific kernel states, as it is not nec-
essary for the following program code to process these states.
The specific kernel states are often represented in the form of
flags, modes, sizes, capacities, properties, etc. Figure 3 shows
such an example. Here, if inode indicates not a regular file
but a directory, it is unnecessary to evict it from the message
queue. Thus, an E-E path is created to skip such inodes.

It is worth pointing out that this usage scenario is not same
as the previous scenario. The major difference is that the
E-E paths in this scenario handle legal and valid kernel states,
while the E-E paths in the previous scenario tackle unexpected
kernel errors/exceptions. That is, the E-E paths in this scenario
may show up in a routine even if no error/exception needs to
be handled. Besides, if an E-E path in this scenario returns a
value, it usually returns the same value as normal paths. In
contrast, an E-E path in the previous scenario typically returns
a value (if any) different from those of normal paths.

Kernel Functionality Extending. An E-E path in this usage
scenario extends existing program logic in a kernel routine
to incorporate additional functionalities. Figure 4 shows an
example. Here, the routine converts a UNIX date to a (time,
date) pair in the FAT file system. However, FAT only supports
years between 1980 and 2107. Hence, two E-E paths are cre-
ated for years outside of this range. E-E paths in this scenario
often contain extra statements to extend the functionalities. A
representative example of E-E paths in this scenario is fast
paths, which aim to accelerate the processing of some special
cases. Previous research shows that fast paths are very likely
to introduce bugs [17], which aligns with our observations.

USENIX Association 2021 USENIX Annual Technical Conference 179

2.3 Memory Management on E-E Paths

On the surface, memory management has no relationship
with E-E paths. However, our experience shows that more
than 60% kernel routines that have memory management
operations contain at least one E-E path. So a further study is
necessary to understand how memory management operations
are involved on E-E paths. We next report our observations.

Observation 1. If a memory object is allocated in a kernel
routine, it usually needs to be deallocated on the following
E-E paths in this routine. In principle, after a memory object
is allocated, it should be used in the following computations.
However, in reality, it is possible that an E-E path is reached
before the object is actually used. Hence, the object has to be
cleaned up on the E-E path, otherwise a memory leak may
be introduced. This observation implies that memory deal-
location is an important component of the cleanup work on
E-E paths. In fact, 58% and 41% E-E paths investigated by
our study in Linux and FreeBSD respectively contain at least
one memory deallocation. On the other side, if an allocated
memory object is used before an E-E path is taken, it is prob-
ably not required to deallocate this object on the E-E path.
But, we indeed witness some cases where memory objects
are deallocated on the following E-E paths even if they are
used before. This demonstrates the close correlation between
memory deallocations and E-E paths.

Observation 2. If a memory object is deallocated on the nor-
mal paths of a kernel routine, it usually also needs to be
deallocated on the E-E paths in this routine. This observation
shows the consistency between normal paths and E-E paths
on deallocating memory objects. If an object is deallocated
on normal paths, it implies that the live range of this memory
object is limited to the current kernel routine, so it should be
deallocated on E-E paths as well. We find that 50% and 48%
of kernel routines in Linux and FreeBSD respectively have
similar deallocations on E-E paths and normal paths. This pro-
vides a strong evidence for the analyses in MLEE, as we will
see in Section 4. In particular, MLEE pays special attention to
memory deallocations on normal paths and employs effective
and scalable static analyses to check whether these dealloca-
tions are also required on E-E paths. This allows MLEE to
detect required but missed deallocations on E-E paths.

Observation 3. If a memory object is deallocated on an E-E
path in a kernel routine, it usually needs to be deallocated
on the following E-E paths with same/similar return values
(if any) in the routine. If two E-E paths in a routine return
same/similar values, it usually indicates that these two paths
are constructed for same/similar purposes, e.g., in the same
usage scenario. Particularly, if a memory object is deallocated
on an E-E path, it means the caller routine is irresponsible to
deallocate this object under the return value of the E-E path,
and thus, this object should be deallocated on the following
E-E paths with same/similar return values. Therefore, MLEE

creates scalable and precise static analyses to detect memory
deallocations present on some E-E paths but missed on others.

Observation 4. If multiple memory objects are allocated in
a kernel routine, all objects allocated before an allocation
failure usually need to be deallocated on the E-E path cor-
responding to this allocation failure. One of the common
reasons for multiple memory allocations in the same routine
is to allocate semantically-correlated memory objects. For
example, the allocation of a memory object with a subfield
pointing to a child object is often realized by firstly allo-
cating the object itself and then allocating the child object.
Thus, if the allocation for the child object fails, the previously-
allocated object has to be deallocated. This observation drives
MLEE to thoroughly inspect kernel routines with multiple
memory allocations to detect memory leaks. If one of the
memory objects is deallocated on an E-E path but not on a
following E-E path, it probably indicates a memory leak.

3 Issues and Challenges of MLEE

The design of MLEE is inspired by the key insight that an
inconsistency between the presence of a memory deallocation
on an E-E path and its presence on a normal path or another
E-E path in the same kernel routine very likely indicates a po-
tential memory leak. Therefore, it is possible to detect memory
leaks by cross-checking memory deallocations on different
E-E paths and normal paths in the same routine. Though the
idea is intuitive, there are several technical challenges.

How to identify early-exit paths? Given the vast amount
and the complicated logic of the source code in an OS kernel,
e.g., more than 25 million lines in Linux, it is quite challeng-
ing to precisely identify E-E paths in a wide range of kernel
modules with significant semantic diversities. Besides, the var-
ious usage scenarios of E-E paths, as described in Section 2.2,
may lead E-E paths to exhibit different characteristics at the
source code level. A simple solution for this issue is to enu-
merate all possible program paths of a kernel routine and
exhaustively examine each of them to see whether it satis-
fies the definition of E-E paths in Section 2.1. However, this
solution is obviously impractical due to the poor scalability
caused by the well-known path explosion problem.

To address this challenge, we further investigate the struc-
tures and semantics of numerous E-E paths, in particular,
with detecting memory leaks in mind. We find that the key for
MLEE to detect memory leaks on an E-E path is to find out
the crucial features of this E-E path that distinguish it from
normal paths and other E-E paths in the same routine. Further-
more, such features are often reflected in a specific portion of
the E-E path, i.e., the last several statements at the end of the
E-E path. Recall the example in Figure 2. Compared to S0,
S1, and S2, the statement S3 is more representative of the first
E-E path, because S3 is manifested uniquely on this E-E path.
In a similar way, S5 and S6 are more unique for the second

180 2021 USENIX Annual Technical Conference USENIX Association

S0 → ... → Si → Si + 1 → ... → Sn

Statements that also
show up on other paths

Statements that only show
up on this E-E path

E-E Branch E-E Target

Figure 5: E-E branch and E-E target of an E-E path.

E-E path, as they only show up on this E-E path and thus can
be used to distinguish this E-E path from other paths.

In addition, we find out that such statements often follow
a conditional branch statement, e.g., an if statement. In this
paper, we call such a conditional branch as an E-E branch,
which is essential to differentiate an E-E path from normal
paths and other E-E paths. Similarly, we call the target of the
E-E branch that is included by the E-E path as an E-E target,
which initiates the following statements after the E-E branch
on the E-E path. Figure 5 shows the basic structure of an E-E
path. It is worth noting that an E-E branch typically show up
on both E-E paths and normal paths. Also, it is possible that
an E-E path encompasses more than one E-E branch. Here,
we primarily consider the last E-E branch on the E-E path
because it is this one that leads to the unique statements.

In summary, to detect memory leaks on E-E paths, MLEE
first collects E-E branches in a kernel routine and then utilizes
them as anchor points of following analyses. This allows
MLEE to compose precise and scalable static analyses to
identify E-E paths and avoid the path explosion issue.

How to analyze memory deallocations? After the E-E
branches in a kernel routine are recognized, MLEE moves
forward to analyze memory deallocations in this routine to
identify the inconsistencies between their presence on differ-
ent E-E and normal paths. A simple analysis scheme is to
examine each deallocation in the routine and check whether it
shows up on an E-E path, in particular, after the E-E branch.
If not, MLEE then reports a memory leak on this E-E path.
Though this scheme sounds reasonable, it may produce plenty
of false positive cases and require significant manual efforts
to screen them. The major cause of false positives is that the
deallocation may not be required on a specific E-E path. For
instance, the memory object to be deallocated may be used,
e.g., as the return value, on the E-E path and thus should not
be deallocated.

To address this issue, MLEE firstly checks whether a
missed memory deallocation is required to show up on an E-E
path. This is realized in three steps. First, MLEE ensures that
the deallocated object is live on the E-E path via a classical
context-sensitive and flow-sensitive liveness analysis. Second,
MLEE guarantees the validity of the deallocated object on the
E-E path, i.e., the object is successfully allocated and remains
allocated. Finally, MLEE confirms that the deallocated object

LLVM
IR

Reported
Memory Leaks

Identifying
Early-Exit
Branches

Detecting
Missed

Deallocations

Analyzing
Missed

Deallocations

OS
Kernel

MLEE

Figure 6: The work flow of MLEE.

is not used on the E-E path, particularly after the E-E branch
(see Section 4 for more details). This way, MLEE can infer
whether the deallocation is required on the E-E path or not.

4 MLEE System Design

In this section, we firstly present an overview of how MLEE
works and then describe the technical details of MLEE.

Figure 6 illustrates the high-level work flow of MLEE. Es-
sentially, MLEE takes as the input the LLVM IR of the target
OS kernel and reports potential memory leaks on E-E paths
in each kernel routine. We choose to start from LLVM IR
because LLVM has plenty of static analysis passes in place,
such as control/data-flow and alias analysis. Besides, LLVM
IR has quite comprehensive debugging information (gener-
ated with the “-g” option), which can map the IR back to the
corresponding source code. This allows MLEE to report the
source code locations of the detected memory leaks to facili-
tate further manual inspection and bug fixing. Even though
the implementation of MLEE leverages the LLVM infrastruc-
ture to reduce engineering effort, it is worth pointing out that
the static analyses used by MLEE are not provided by LLVM.
These analyses are a primary contribution of our work.

For each kernel routine, MLEE firstly analyzes all condi-
tional branches in this routine to identify E-E branches. Next,
MLEE gathers memory deallocations in this routine. For each
pair of an E-E branch and a memory deallocation, MLEE then
checks whether the memory deallocation is missed on the E-E
paths associated with the E-E branch, i.e., the memory object
freed by the deallocation operation is not deallocated after
the E-E branch. MLEE focuses the analysis particularly on
the statements after the E-E branch, including the E-E target
and its following statements, because they are unique and
thus more representative of the E-E paths. This also allows
MLEE to delimit the analysis scope and scale up the analysis.
Besides, it is possible that a memory object is deallocated im-
plicitly after the E-E branch, e.g., in a callee routine. Hence,
MLEE creates an inter-procedural analysis to cover all state-
ments in callee routines invoked after the E-E branch.

If the result of the above step is yes, it means the mem-
ory deallocation is not present on the associated E-E paths.
MLEE then further infers whether the missed deallocation
should show up on the E-E path, i.e., whether the correspond-

USENIX Association 2021 USENIX Annual Technical Conference 181

ing memory object should be deallocated after the E-E branch.
To this end, MLEE gathers the liveness, validity, and usage in-
formation of the memory object after the E-E branch to guide
the analysis. Also, MLEE leverages additional information,
e.g., the relative locations of the memory deallocation and
the E-E branch in the source code of the kernel routine, to
assist the necessity inference, according to the observations in
Section 2.3. If the analysis concludes that the memory object
needs to be deallocated after the E-E branch, MLEE will re-
port a memory leak bug along with the source code locations
of the E-E branch and the missed memory deallocation.

4.1 Identifying E-E Branches
Typically, a conditional branch comes with two branch tar-
gets, which are taken when the specified condition is satisfied
or not, respectively. The major difference of an E-E branch,
compared to a regular conditional branch, is that one of the
branch targets is an E-E target, which only shows up on E-E
paths, and thus leads to the last several statements on an E-E
path, Hence, MLEE determines whether a conditional branch
is an E-E branch based on the following two conditions:

• Condition-1: The program paths starting from one target
always reach to a return statement that has a successor
statement under the program orders of the routine.

• Condition-2: The program paths starting from another tar-
get always have a possibility to reach to a return statement
that has no successor statement under the program orders
of the routine.

A conditional branch is identified as an E-E branch if its two
branch targets satisfy the above two conditions. Here, it is not
hard to understand Condition-1, because one branch target
of an E-E branch should always lead to E-E paths. In fact, the
branch target that satisfies Condition-1 is the E-E target of
the E-E branch. The purpose of Condition-2 is to emphasize
the possibility of an E-E branch to show up on normal paths.
In essence, an E-E branch divides the following execution
space of the current routine into two disjoint sets. One of the
sets comprises executions only ending with early exits, while
another set includes at least one execution ending with normal
exit. Therefore, Condition-2 is crucial to distinguish an E-E
branch from a conditional branch both of whose branch targets
merely lead to E-E paths.

According to these two conditions, MLEE creates an ef-
fective static analysis to identify E-E branches by carefully
checking branch targets of each conditional branch. Algo-
rithm 1 shows the details of the static analysis. Overall, for
each conditional branch in the kernel routine, MLEE firstly
collects its two branch targets, i.e., the two first statements
executed immediately after the conditional branch is taken
and not taken, respectively, and then checks whether they
satisfy the two conditions. If yes, MLEE then identifies this
conditional branch as an E-E branch and places it into the set

Algorithm 1: Identification of Early-Exit Branches
Input: R - a kernel routine
Output: EEBSet - the set of early-exit branches in R

1 EEBSet←∅;
2 CBSet← Collect_Conditional_Branches (R);
3 for CB ∈CBSet do
4 BT Set← Collect_Branch_Targets (CB);
5 for T1 ∈ BT Set do
6 RetSet1← Collect_Reachable_Returns (T1);
7 Flag← T RUE;
8 for Ret ∈ RetSet1 do
9 if Ret has no successor statement then

10 Flag← FALSE;
11 break;
12 end
13 end
14 if Flag 6= T RUE then
15 continue;
16 end
17 for T2 ∈ BT Set \{T1} do
18 RetSet2← Collect_Reachable_Returns (T2);
19 for Ret ∈ RetSet2 do
20 if Ret has no successor statement then
21 EEBSet← EEBSet ∪{CB};
22 break;
23 end
24 end
25 end
26 end
27 end
28 return EEBSet;

of identified E-E branches. Otherwise, MLEE continues to
check next conditional branch.

To determine if a branch target satisfies one of the two
conditions, MLEE traverses the control-flow graph (CFG)
of the kernel routine to gather all return statements that are
reachable from the branch target. A potential issue in this
traversing process is how to handle loop structures. Since
MLEE mainly intends to visit all reachable nodes starting
from the branch target on the CFG, MLEE iterates a loop as
many times as necessary until all of its nodes are visited. This
allows MLEE to exhaustively capture all return statements in
a loop, which actually are quite common in OS kernels. Once
the reachable return statements are collected for the branch
target, MLEE next checks each of them to confirm whether
it has a successor statement under the program orders of the
routine. Given that the static analysis works at the LLVM
IR level, MLEE needs to resolve the source location of a
return statement. To this end, MLEE leverages the debugging
information embedded into the LLVM IR to establish the
mapping between the LLVM IR and the corresponding source
code [41]. This way, MLEE can determine whether the branch
target satisfies one of the two conditions mentioned above.

182 2021 USENIX Annual Technical Conference USENIX Association

 1: if (cond-1)
 2: return;
 3: if (cond-2) {
 4: if (cond-3)
 5: return;
 6: if (cond-4)
 7: A;
 8: return;
 9: }
10: if (cond-5)
11: B;
12: return;

cond-1

return

(a) Sample code (b) The CFG of the code in (a)

cond-2

①
② ③

④

⑤ ⑥

⑦

cond-3

returncond-4

cond-5

A

return

B

⑧
⑨

⑩

return

⑪

Figure 7: Conditional branch analysis for E-E path detection.

Now, let us use the example in Figure 7 to understand how
MLEE identifies E-E branches. The left side of the figure
presents the source code and the right side shows the corre-
sponding CFG. From the figure, we can see that there are five
conditional branches and four return statements in this exam-
ple. Besides, each return statement has a successor statement
under the program orders except the one at line 12.

MLEE consecutively analyzes each conditional branch to
determine whether it is an E-E branch. Take the conditional
branch of cond-1 at line 1 as an example. The true target of
this conditional branch can only reach to the return statement
at line 2, i.e., 1 → 3 in the CFG. On the other hand, the false
target of this conditional branch may reach to the return state-
ment at line 12, e.g., through the program path 1 → 2 →
9 → 11 in the CFG. As a result, MLEE identifies this con-

ditional branch as an E-E branch. In a similar way, the condi-
tional branch of cond-2 is also identified as an E-E branch by
MLEE. However, the conditional branches of cond-3, cond-4,
and cond-5 are not recognized as E-E branches. This is be-
cause MLEE figures out that their branch targets do not satisfy
the above two conditions after the analysis. For example, the
branch targets of the conditional branch of cond-3 reach to two
different return statements at line 5 and line 8, respectively.
But both of these two return statements have a successor state-
ment under the program orders. Hence, the conditional branch
of cond-3 is not considered as an E-E branch by MLEE.

4.2 Detecting Missed Memory Deallocations

Given an identified E-E branch EEB, the next task of MLEE
is to detect memory deallocations that are potentially missed
on E-E paths associated with EEB.

To this end, MLEE first collects memory deallocations in
the same kernel routine as EEB. Next, for each deallocation

D, which is suppose to deallocate a memory object M, MLEE
checks whether M is always deallocated before EEB. MLEE
achieves this by traversing the CFG to search for another
deallocation D′ that also deallocates M. More importantly,
D′ dominates EEB in the CFG, which means D′ is on all
program paths from the entry of the routine to EEB and
executed before EEB. In other words, if there exists such
a D′, it implies that M has already been deallocated before
EEB and therefore, D should not be considered as a missed
deallocation on the E-E paths of EEB. Otherwise, MLEE
continues to check whether M is deallocated by the program
statements after the E-E target on the E-E paths. If not, MLEE
treats D as a missed deallocation of EEB and further checks
whether it is necessary on the E-E paths of EEB.

It is possible that M is deallocated in a callee routine of the
current kernel routine. Thus, MLEE devises a path-sensitive
and context-sensitive inter-procedural analysis to achieve the
above goal. Specifically, MLEE analyzes every backward
reachable statement starting from the return statement on the
E-E paths corresponding to EEB. In case the statement is a
call statement, MLEE further includes the statements in the
callee routine into the analysis.

MLEE pays special attention to each memory deallocation
statement during the analysis, because MLEE needs to val-
idate whether it is used to deallocate M. A memory object
is often accessed through pointers, which hold the address
of the object. Given that an object can be accessed through
different pointers, it is incomplete to determine whether two
objects freed by two memory deallocations are same or not
by simply checking whether the two deallocations use the
same pointer. To solve this issue, MLEE leverages the alias
analysis in LLVM to discover the potential alias relationship
between two pointers. This allows MLEE to differentiate
memory deallocations for different objects.

4.3 Analyzing Missed Memory Deallocations

Once a missed memory deallocation DM is identified for an
E-E branch EEB, the final step of MLEE is to check whether
DM is necessary on the E-E paths corresponding to EEB,
i.e., the memory object M deallocated by DM should also be
deallocated on the E-E paths.

MLEE firstly composes an effective static analysis to vali-
date the liveness and validity of M at the point of EEB, as it
may cause unexpected program errors to deallocate an out-
of-scope memory object. Specifically, MLEE relies on the
analyses in LLVM to determine whether EEB is covered by
the liveness range of M. Regarding the validity, MLEE needs
to verify the possibility for M to be in an “allocated” state
when EEB is reached. This is because EEB may be on a
program path that does not allocate M. Hence, MLEE firstly
conducts a backward slicing on M starting from DM to find
out the statement that successfully allocates M. Then MLEE
performs a reachability analysis from the allocation statement

USENIX Association 2021 USENIX Annual Technical Conference 183

to EEB by traversing the CFG.
MLEE needs to take care of two special cases during the

above analysis process: 1) No allocation statement is found
for M because, for example, M is allocated in another kernel
routine. To solve this issue, MLEE treats the entry point of the
current routine as a nominal allocation point of M. 2) Multiple
allocations are found for M, due to, for example, different
allocation mechanisms adopted by the kernel to allocate M.
MLEE deals with this case soundly by collecting all allocation
statements that can reach EEB.

In addition to checking the liveness and validity of M,
MLEE also needs to ensure that M is not used by the state-
ments after EEB on the related E-E paths. To this end, MLEE
employs a forward slicing on M starting from the E-E target
of the E-E branch to confirm that M is not used by the follow-
ing statements. The analysis stops when the return statement
on the E-E paths of EEB is reached. Some common usage
examples include but not limited to passing M to a callee
routine as an argument, accessing a memory location inside
of M, calculating effective memory addresses based on the
start address of M, and etc. If M is indeed used, MLEE will
skip the following analysis on DM and EEB.

Finally, MLEE infers the necessity of DM for EEB. To
achieve this, MLEE creates a set of checking rules mainly
based on the observations described in Section 2.3. The rules
check various factors of EEB and DM to heuristically deter-
mine whether DM is required on E-E paths corresponding to
EEB. To give an example, one of the rules checks the order
of DM and EEB in which they appear in the source code. This
is inspired by the observation that if DM shows up earlier
than EEB in the source code, it typically implies that DM is
executed before EEB and therefore, it is very likely that DM

is not necessary on the corresponding E-E paths. In contrast,
if the order is reversed, it is probably essential for the corre-
sponding E-E paths to deallocate M. The output of each rule
is either 1 or 0, meaning the deallocation is required or not
on the E-E paths, respectively. MLEE assigns an empirical
weight in (0, 1) for each rule and calculates the final result
using the following formula:

f (EEB,DM) = ∑
i

wiRi(EEB,DM) (2)

where wi is the weight of the ith rule: ∑i wi = 1, and
Ri(EEB,DM) is the output of the ith rule for EEB ad DM .
If the final result exceeds a predefined threshold 0.5, MLEE
determines that DM is required for EEB and reports a memory
leak with the detailed information of EEB and DM .

5 Implementation

We have implemented MLEE as an LLVM (version 8.0.0)
tool composing of multiple analysis passes. This section re-
ports the issues we encountered during the implementation of
MLEE as well as the solutions we adopted to address them.

Compiling Linux to LLVM IR. Currently, LLVM is not
fully compatible with the Linux kernel. To solve this issue, we
compose a Python script to automatically extract and adapt
the compilation commands to compile the kernel source code
to LLVM IR. We simply skip a source file if LLVM cannot
compile it. To include as many kernel modules as possible,
we use the “allyes” option to configure the kernel. At last, our
compilation covers around 11K kernel modules.

Global Call Graph. MLEE conducts the path-sensitive and
context-sensitive inter-procedural analyses on a global call
graph. To build the graph, MLEE incrementally compose a
child call graph for each kernel module when it is loaded
and parsed by LLVM [42], and eventually combines them
together to obtain the global call graph. Note that MLEE does
not need to link all kernel modules together to produce a
single LLVM IR file and thus avoids potential linking errors
in this process. MLEE also employs a type-based analysis to
identify all possible call targets for an indirect call [29, 36].

Alias Analysis. MLEE relies on the alias analysis in LLVM
to analyze the alias relationship between two memory point-
ers. This is achieved by querying the LLVM alias analysis
framework with the two memory pointers along with the size
of the memory locations. There are four possible relation-
ship outcomes for such a query: MustAlias, PartialAlias,
MayAlias, and NoAlias. For accuracy consideration, MLEE
considers two pointers are alias pointers only when MustAlias

or PartialAlias is returned by the alias analysis framework.

1 i f (. . .)
2 goto o u t ;
3 . . .
4 re turn 0 ;
5 o u t :
6 re turn 1 ;

Handling Goto Statements. Some
Linux routines use goto statements to
realize sophisticated control logic. This
entails difficulties for MLEE to detect
E-E paths, as the return statement of
an E-E path implemented using a goto
statement may be placed at the end of a kernel routine. To deal
with this issue, MLEE creates a source transformation tool
to remove goto statements by replacing them with the target
statements they jump to. Note that MLEE only replaces for-
ward goto statements because backward goto statements are
mostly used to implement loops. Fortunately, the Linux kernel
does not use indirect goto statements [11], which take as input
label variables and can complicate the transformation.

6 Experimental Study

This section evaluates MLEE by applying it to the Linux ker-
nel (version 5.0, which was the most recent version when
we finished the implementation of MLEE). Due to time lim-
itations, MLEE is not evaluated with other OS kernels, e.g.,
FreeBSD, and non-kernel applications. This is a direction for
future work. The evaluation presented in this section would
like to answer two research questions about MLEE: i) Effec-
tiveness: can MLEE discover new memory leaks in a real-

184 2021 USENIX Annual Technical Conference USENIX Association

Table 1: Detection statistics of MLEE. “KEE”: kernel routines
that have E-E paths. “KMD”: kernel routines that have mem-
ory deallocations. “KEM”: kernel routines that have both E-E
paths and memory deallocations. “MMD”: E-E branches that
are reported by MLEE to have missed memory deallocations.

Kernel Routine Mem E-E Branch
Total KEE KMD KEM Dealloc Total MMD

887877 121829 14540 7685 20751 297451 126
13.7% 1.6% 0.9% 0.04%

world OS kernel? ii) Efficiency: can MLEE complete the
analysis of an entire OS kernel in an acceptable time?

Table 1 shows the detection statistics. As shown in the
table, MLEE finds out that 0.9% kernel routines comprise of
both E-E paths and memory deallocation operations. After
the analysis, MLEE reports that 126 suspicious E-E branches
have missed memory deallocations. These E-E branches span
across various kernel modules and account for 0.04% of the
total E-E branches identified by MLEE. With further manual
analysis and investigation, we can finally confirm memory
leak bugs on the corresponding E-E paths.

Finding New Bugs. It takes around 3∼5 minutes for a re-
searcher to manually investigate one suspicious E-E branch.
Finally, we confirm 120 memory leaks related to 103 buggy
E-E branches. Note that one buggy E-E branch may corre-
spond to multiple missed deallocations. All of these memory
leaks are new bugs. This demonstrates the capability of MLEE
to discover unknown memory leaks in a real-world OS kernel.

Table 2 shows the details of the found memory leaks. We
have reported these bugs along with the patches to Linux
developers. During the communication with the developers,
we were surprised that the developers responded to our bug
reports promptly, e.g., in half an hour or even less, and actively
worked with us to revise and update the patches. Given the
developers’ heavy maintenance workload, this once again
shows the high priority and severity of fixing memory leaks in
OS kernels. In summary, at the time of the paper submission,

• 89 bugs (74.2%) have been fixed in the latest version of the
Linux kernel using our patches;

• 16 bugs (13.3%) have been fixed in the latest version of the
Linux kernel using others’ patches;

• 15 bugs (12.5%) have been confirmed and we are working
with the kernel developers to finalize the patches.

Table 2 also shows that a vast majority of memory leaks
are detected in the driver (60%), sound (17.5%), and file sys-
tem (16.7%) directories. This means memory leaks are a
general type of software bugs across various kernel modules.
We find that 74% missed deallocations are also found on other
E-E paths. This shows that E-E paths in the same kernel rou-
tine often exhibit similar behaviors in memory management

4.2%

Figure 8: The usage-scenario distribution of the E-E paths on
which the memory leaks are detected by MLEE.

1 /* drivers/net/ethernet/mellanox/mlx4/en_rx.c */
2 int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv)
3 {
4 ...
5 err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, ...);
6 if (err) {
7 en_err(priv, "Failed to allocate RSS ...\n");
8 goto rss_err; // rss_map->indir_qp is leaked
9 } // on this early-exit path.

10 ...
11 kfree(rss_map->indir_qp);
12 rss_map->indir_qp = NULL;
13 rss_err:
14 ...
15 return err;
16 }

Figure 9: A real memory leak in Linux detected by MLEE.

operations. On the other side, this implies memory dealloca-
tions on normal paths may also be required on E-E paths.

An interesting observation on the E-E paths of the E-E
branches in Table 2 is that these buggy E-E paths are used
in not only the scenario of error/exception handling, but also
two other scenarios described in Section 2.2. Figure 8 shows
the detailed distribution of the scenarios. This demonstrates
that MLEE can detect buggy E-E paths in different usage sce-
narios. However, existing bug-detection schemes that focus
only on error handlers may fail to detect these memory leaks.

To understand when and how the found memory leaks are
introduced into the kernel code base, we further investigate
the code revision histories of the kernel routines in which the
memory leaks are found. We find that many memory leaks
were actually brought in at the first time when the correspond-
ing E-E paths were added into the kernel source code. This
was also acknowledged by some Linux maintainers. Taking
the Bug#100 in Table 2 as an example, when we submitted
it to the Linux patch mailing list, a kernel maintainer quickly
commented our bug report and said that “this bug exists till
its first commit for v2.6.39.” One possible reason behind this
phenomenon is that the author of an E-E path may have a
partial and incomplete understanding of the work that are
necessary on the E-E path. In addition, this also reveals that
many E-E paths in OS kernels are error-prone due to the lack
of extensive testing when they are committed to the kernels.

USENIX Association 2021 USENIX Annual Technical Conference 185

Table 2: New memory leaks in the Linux kernel discovered by MLEE. “O”: the bug has been fixed in the latest version using
our patch. “L”: the bug has been fixed in the latest version using others’ patch. “C”: the bug has been confirmed.

Kernel Routine E-E Missed Kernel Routine E-E Missed
Branch Deallocation Branch Deallocation

1 block/...:bio...prep if (ret...) kfree(buf) O 61 drivers/...:i24...it if (res...) kfree(opt...) O
2 drivers/...:cm... if (*ppos...) kfree(buf) O 62 drivers/...:e...am if (e1...) kfree(tx_old) O
3 drivers/...:acpi...ble if (!ac...) kfree(entry) O 63 drivers/...:e...am if (e1...) kfree(rx_old) O
4 drivers/...:fs_open if (!to) kfree(vcc) O 64 drivers/...:ath...te if (!sta...) kfree(arsta...) O
5 drivers/...:f...en if (DO...) kfree(vcc) O 65 drivers/...:pr...en if (ai->...) kfree(file...) O
6 drivers/...:f...en if (!tc) kfree(vcc) O 66 drivers/...:pr...en if (down...) kfree(file...) O
7 drivers/...:read...refs if (xen...) kfree(req) O 67 drivers/...:lbs...ate if (lbs...) kfree(cmd) C
8 drivers/...:read...refs if (xen...) kfree(ind...) O 68 drivers/...:mw...d if (mwi...) kfree(hos...) L
9 drivers/...:read...refs if (xen...) kfree(seg...) O 69 drivers/...:mw...d if (!skb) kfree(hos...) L

10 drivers/...:devfreq... if (err...) kfree(dev...) L 70 drivers/...:mw...d if (err) kfree(hos...) L
11 drivers/...:ti_... if (of_...) kfree(rsv..) O 71 drivers/...:fr...pvc if (*get...) kfree(pvc) C
12 drivers/...:omap... if (de...) kfree(c) O 72 drivers/...:ya...tl if (ym...) kfree(ym) C
13 drivers/...:dr... if (WA...) kfree(pl...) C 73 fs/...:btrfs...mod if (IS...) kfree(ref) O
14 drivers/...:md... if (p_v...) kfree(dsi...) C 74 fs/...:btrfs...mod if (be...) kfree(ref) O
15 drivers/...:md... if (!dsi...) kfree(dsi...) C 75 fs/...:btrfs...mod if (be...) kfree(ra) O
16 drivers/...:md... if (md...) kfree(dsi...) C 76 fs/...:btrfs...mod if (exi...) kfree(ref) O
17 drivers/...:c...it if (pl...) kfree(pk...) O 77 fs/...:btrfs...mod if (act...) kfree(ref) O
18 drivers/...:i...ed if (de...) kfree(de...) O 78 fs/...:parse...ket if (*new...) kmem...(...) O
19 drivers/...:fault...te if (co...) kfree(data) O 79 fs/...:ecryp...ging if (!ecr...) kfree(ecr...) O
20 drivers/...:fault...te if (un...) kfree(data) O 80 fs/...:ker...file if (byt...) vfree(*buf) L
21 drivers/...:fault...d if (un...) kfree(data) O 81 fs/...:jffs2...block if (jffs2...) kfree(su...) O
22 drivers/...:mlx4...fs if (!tu...) kfree(tun...) O 82 fs/...:__br...se if (!ctx) kmem...(...) O
23 drivers/...:mlx4...fs if (ib_...) kfree(tun...) O 83 fs/...:_nfs...copy if (hand...) kfree(res...) O
24 drivers/...:srp...in if (!po...) kfree(addr) L 84 fs/...:_nfs42...py if (pro...) kfree(res...) O
25 drivers/...:led...set if (trig...) kfree(event) O 85 fs/...:nfs4...tion if (nfs4...) __free...(...) O
26 drivers/...:led...set if (dev...) kfree(event) O 86 fs/...:nfs4...tion if (nfs4...) kfree(loc...) O
27 drivers/...:ra...r if (rs...) kfree(rs) O 87 fs/...:om...map if (blo...) kfree(sbi...) C
28 drivers/...:dvb...ty if (!dv...) kfree(dv...) O 88 fs/...:re...mount if (sb_...) kfree(new...) C
29 drivers/...:su...bs if (!us...) kfree(ca...) O 89 fs/...:re...mount if (sb_u...) kfree(new...) C
30 drivers/...:cx...re if (ret...) vfree(p_...) O 90 fs/...:re...mount if (!sb...) kfree(new...) C
31 drivers/...:cx...re if (ret...) vfree(p_...) O 91 fs/...:__ub...ac if (err) kfree(hmac) O
32 drivers/...:cx...re if (i2c...) kfree(buf) O 92 fs/...:read_znode if (ubifs...) kfree(idx) O
33 drivers/...:dib...on if (rx0...) kfree(rx) O 93 kernel/...:p...t if (ret...) kfree(path) L
34 drivers/...:dib...on if (rx0...) kfree(tx) O 94 kernel/...:tr...te if (!p...) kfree(par...) O
35 drivers/...:dib...on if (rx1...) kfree(rx) O 95 kernel/...:tr...te if (!pid...) kfree(par...) O
36 drivers/...:dib...on if (rx1...) kfree(tx) O 96 lib/...:test...init if (__te...) kfree(test...) O
37 drivers/...:h...ch if (saa...) kfree(he...) O 97 net/...:com...ace if (WA...) vfree(ent...) O
38 drivers/...:f...n if (ctx...) kfree(ctx) O 98 net/...:eth...stats if (ret < 0) vfree(data) L
39 drivers/...:vp...up if (ma...) kfree(buf...) O 99 net/...:bpf...filter if (!new...) kfree(addrs) C
40 drivers/...:vp...up if (sub...) kfree(buf...) O 100 sound/...:iso...it if (WA...) kfree(b->...) O
41 drivers/...:vp...up if (ti...) kfree(buf...) O 101 sound/...:sn...dec if (snd_...) kfree(cod...) O
42 drivers/...:sm...ne if (sm...) kfree(zo...) O 102 sound/...:snd...ed if (w->r...) kfree(w) O
43 drivers/...:na...t if (ch...) vfree(buf) O 103 sound/...:snd...ed if (w->p...) kfree(w) O
44 drivers/...:spi...it if (spi...) kfree(dw...) O 104 sound/...:snd...ed if (w->clk) kfree(w) O
45 drivers/...:o...q if (oct...) vfree(oct...) O 105 sound/...:soc...te if (se==...) kfree(priv..) L
46 drivers/...:bl...te if (bit...) kvfree(t) O 106 sound/...:soc...te if (se==...) kfree(name) L
47 drivers/...:ix...32 if (ix...) kfree(mask) O 107 sound/...:soc...te if (se==...) kfree(dval...) L

186 2021 USENIX Annual Technical Conference USENIX Association

Table 2: (Continued)

48 drivers/...:ix...32 if (ix...) kfree(input) O 108 sound/...:soc...te if (se==...) kfree(dtex...) L
49 drivers/...:ix...32 if (ix...) kfree(jump) O 109 sound/...:soc...te if (strnle...) kfree(priv...) L
50 drivers/...:ml...er if (ml...) kfree(rss...) O 110 sound/...:soc...te if (strnle...) kfree(name) L
51 drivers/...:m...be if (st...) kfree(mg...) O 111 sound/...:soc...te if (strnle...) kfree(dval...) L
52 drivers/...:q...start if (qe...) kfree(p_...) O 112 sound/...:soc...te if (strnle...) kfree(dtex...) L
53 drivers/...:q...start if (qe...) vfree(p_...) O 113 sound/...:sou...it if (index...) kfree(s) O
54 drivers/...:q...info if (rc) kfree(cd...) C 114 sound/...:hif...init if (hif...) kfree(rt) O
55 drivers/...:cx...nd if (!time) kfree(voi...) O 115 sound/...:hif...init if (hif...) kfree(buffer) O
56 drivers/...:k...dr if (kal...) kfree(us...) O 116 sound/...:hif...init if (snd_...) kfree(buffer) O
57 drivers/...:k...dr if (kal...) kfree(us...) O 117 sound/...:par...unit if (!kctl) kfree(nam...) O
58 drivers/...:l...be if (reg...) kfree(buf) O 118 sound/...:add...ctl if (err < 0) kfree(elem) C
59 drivers/...:l...be if (lan...) kfree(buf) O 119 sound/...:add...ctl if (err < 0) kfree(elem) C
60 drivers/...:i24...init if (ss...) kfree(op...) O 120 sound/...:snd...c3 if (!pd) kfree(fp->...) O

Comparing with Existing Leak Detectors. A further study
of the memory leaks reported by MLEE shows that many of
the leaks actually cannot be detected using existing static de-
tection approaches due to their fundamental limitation. We use
the Bug#50 in Table 2 as an example to explain this limitation.
Figure 9 shows the source code of this bug. Here, the memory
object rss_map->indir_qp is not deallocated when mlx4_-
qp_alloc() fails. MLEE successfully reports this memory
leak by figuring out that the memory deallocation at line 11
is missed on the E-E path of the E-E branch at line 6.

However, most of existing static detectors are established
based on a basic assumption that a memory object should be
deallocated at the end of the kernel routine, in which it is allo-
cated, if it does not escape from this routine. This assumption
itself has no problem, but it cannot cover memory leaks involv-
ing escaped objects, which are fairly common in OS kernels.
Obviously, in this example, rss_map->indir_qp is still alive
after the routine is returned. Hence, it is extremely hard for ex-
isting detectors to reason about whether rss_map->indir_qp
should be deallocated or not for the buggy E-E path.

False Negatives. For a bug detection tool like MLEE, it is
important to study false negatives of the detection results.
However, given the large code base of the Linux kernel, it
is hard to study false negatives of the detection results of
MLEE at the scale of the entire kernel, because of the lack
of the ground truth. Nevertheless, during the implementation
and evaluation of MLEE, we conducted several false nega-
tive experiments to understand the completeness of the static
analysis techniques developed in MLEE. For example, we
manually examined many kernel routines to verify whether
MLEE can identify all E-E paths in these routines, especially
when the E-E paths are used in different usage scenarios.
In addition, we intentionally modified several randomly se-
lected source files in the kernel to introduce some known
memory leak bugs by commenting out memory deallocations

on related E-E paths and checked whether MLEE is able to
detect them. Our experimental results showed that MLEE can
successfully identify all E-E paths and report the injected
memory leaks without any false negative. This demonstrates,
to some extent, the completeness of the analysis techniques
in MLEE on detecting memory leaks on E-E paths in Linux.

False Positives. As a static leak detector, MLEE inevitably
suffers from false positives. Among the reported 126 suspi-
cious E-E branches, 23 (18%) are confirmed having no mem-
ory leaks. Generally, a false positive is reported by MLEE
due to two categories of reasons. First, the missed memory
deallocation is required but invoked after the E-E path is com-
pleted, i.e., the current kernel routine is returned. Second, the
missed memory deallocation is not required on the E-E path
due to various corner cases not handled by MLEE.

We summarize the detailed reasons in each category and
the associated percentages in Table 3. The most accountable
reason is #5, where the target E-E path is composed for a dif-
ferent semantic purpose compared to the path(s) on which the
missed deallocation is found. For example, a memory deallo-
cation may be necessary on E-E paths that handle exceptional
kernel statuses but unnecessary for E-E paths that handle ex-
pected statuses. To filter out these false positives, we can
extend MLEE to capture the semantic differences between
paths in the same routine. For other false positive reasons,
e.g., #2, we need to develop scalable techniques to continue
the tracking of the path after the E-E path is completed.

Analysis Efficiency. The evaluation platform is equipped
with an Quad-Core Intel Xeon E5-1620 v4 CPU at 3.50 GHz
and 32 GB main memory. The OS is Ubuntu 16.04 with
Linux-4.4. The platform was exclusively occupied by MLEE
during the analysis process. It took around half an hour for
MLEE to complete the analysis of the Linux kernel. Given
that the Linux kernel contains 25M lines of source code, we
believe this analysis performance is acceptable.

USENIX Association 2021 USENIX Annual Technical Conference 187

Table 3: Detailed reasons of false positives reported by MLEE and the percentage of each reason.

Required 1 The memory object is deallocated by another kernel thread after the E-E path. 8%
2 The memory object is deallocated by the same kernel thread in a callback routine after the E-E path. 18%

Not
Required

3 The missed deallocation itself is redundant as the allocated object can be reused. 8%
4 The E-E path does not satisfy a specific condition. 13%
5 The E-E path is not used for the same semantic purpose as the path(s) of the missed deallocation. 53%

7 Related Work

Static Leak Detection. Static detection approaches analyze
programs to discover memory leaks without running the pro-
grams. Clouseau [15] identifies program statements incon-
sistent with an ownership model as memory leaks. Hackett
and Rugina [13] propose a region-based shape analysis to
detect memory leaks. Xie et al. [44] represents computations
as boolean constraints for memory leak detection. Orlovich
et al. [31] disprove the presence of memory leaks through a
backward data-flow analysis. FastCheck [7] reduces memory
leak detection to a reachability problem over a guarded graph.
LeakChecker [46] identifies memory leaks through a com-
mon code pattern of memory leaks. SMOKE [9] develops the
use-flow graph to detect leaks in two stages.

MLEE is also a static memory leak detector. But, MLEE
is inspired by the observations and findings from our study
of memory management on E-E paths in OS kernels. This
enables MLEE to invent effective and scalable static analyses
to detect memory leaks on E-E paths. The detection results
show that MLEE is a practical leak detector. In contrast, it is
quite difficult to directly apply most of existing static mech-
anisms to OS kernels, due to the extreme complexity of the
kernel code base and the widespread use of E-E paths in vari-
ous scenarios. Although Xie et al. [44] applied the proposed
leak detector to the Linux kernel, it took around one day to
complete the analysis and, among the reported 123 leaks, only
2 were actually confirmed and fixed. Moreover, the code base
of the Linux kernel has expanded significantly since then.

Dynamic Leak Detection. Dynamic detectors identify mem-
ory leaks by running the programs. Purify [14] adapts garbage
collection techniques to detect memory leaks in C/C++ pro-
grams. SWAT [8] and Sleigh [4] identify a stale object as
a memory leak if it has not been accessed for a long time.
Cork [22] uses a dynamic heap-summarization technique to
detect memory leaks. Rayside et al. [32] leverage object own-
ership profiling to find instances of memory management anti-
patterns in object-oriented programs. Xu et al. [45] propose
a heap-tracking technique to detect leaks in Java programs.
Hound [30] organizes the heap layout to facilitate the staleness
tracking of heap objects for leak detection. Li et al. [26] de-
velop a dynamic technique to validate and categorize memory
leak warnings reported by static detectors. GC assertions [3]
allow developers to diagnose leaks through a system interface.
Maxwell et al. [28] apply a graph grammar mining approach

to detect leaks. Sniper [23] utilizes hardware performance
monitoring units to track object staleness for leak detection.
Lee et al. [25] train a machine learning model during the
software testing stage and apply the model to the production
stage for leak detection. MemInsight [20] performs a lifetime
analysis on objects to detect leaks in JavaScript programs.

Compared to static detectors, dynamic approaches suffer
from the coverage issue, i.e., only the exercised paths are
examined. How to generate sufficient test inputs to cover
rarely-executed paths, e.g., E-E paths, is an interesting but
hard problem. Also, dynamic detectors deployed in produc-
tion runs may incur performance overhead. MLEE may utilize
dynamic techniques to further enhance the detection accuracy.

Others. Some research work aims to automatically fix or tol-
erate memory leaks. LeakSurvivor [34] and Melt [5] swap out
leaked objects to disks to free up memory resources. Leak-
Fix [10] checks each allocation and inserts a deallocation if
necessary. BLeak [38] provides a leak debugging framework
for web applications. Generally, MLEE can collaborate with
them to provide integrated solutions for memory leaks.

8 Conclusion

Memory leaks can lead to critical performance and security
issues, especially in OS kernels. Inspired by the observation
that memory leaks often lurk in rarely-tested program paths,
e.g., E-E paths, we firstly conduct a comprehensive and in-
depth study on memory management operations involved on
E-E paths in OS kernels. With the findings derived from the
study, we then design MLEE, which aims to intelligently de-
tect memory leaks on E-E paths. MLEE employs novel static
analysis techniques to automatically identify E-E paths and
infer whether a missed memory deallocation is required on
an E-E path. The static analyses in MLEE are effective and
scalable. With the help of MLEE, we discover 120 new mem-
ory leaks in the Linux kernel and most of these memory leaks
have been fixed using our patches.

Acknowledgments

We are very grateful to our shepherd, Eric Schkufza, and the
anonymous reviewers for their valuable feedback and com-
ments. This work is supported in part by a faculty startup
funding of the University of Georgia.

188 2021 USENIX Annual Technical Conference USENIX Association

References

[1] The freebsd project. https://www.freebsd.org.

[2] The linux kernel archive. https://www.kernel.org.

[3] Edward E. Aftandilian and Samuel Z. Guyer. Gc asser-
tions: Using the garbage collector to check heap proper-
ties. In Proceedings of the 30th ACM SIGPLAN Confer-
ence on Programming Language Design and Implemen-
tation, PLDI ’09, pages 235–244, New York, NY, USA,
2009. ACM.

[4] Michael D. Bond and Kathryn S. McKinley. Bell: Bit-
encoding online memory leak detection. In Proceedings
of the 12th International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS XII, pages 61–72, New York, NY,
USA, 2006. ACM.

[5] Michael D. Bond and Kathryn S. McKinley. Tolerat-
ing memory leaks. In Proceedings of the 23rd ACM
SIGPLAN Conference on Object-oriented Programming
Systems Languages and Applications, OOPSLA ’08,
pages 109–126, New York, NY, USA, 2008. ACM.

[6] MySQL bug #83047. Memory usage gradually increases
and brings server to halt, 2016. https://bugs.mysql.
com/bug.php?id=83047.

[7] Sigmund Cherem, Lonnie Princehouse, and Radu Rug-
ina. Practical memory leak detection using guarded
value-flow analysis. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’07, pages 480–491,
New York, NY, USA, 2007. ACM.

[8] Trishul M. Chilimbi and Matthias Hauswirth. Low-
overhead memory leak detection using adaptive statisti-
cal profiling. In Proceedings of the 11th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XI, pages
156–164, New York, NY, USA, 2004. ACM.

[9] Gang Fan, Rongxin Wu, Qingkai Shi, Xiao Xiao, Jin-
guo Zhou, and Charles Zhang. Smoke: Scalable path-
sensitive memory leak detection for millions of lines of
code. In Proceedings of the 41st International Confer-
ence on Software Engineering, ICSE ’19, pages 72–82,
Piscataway, NJ, USA, 2019. IEEE Press.

[10] Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun
Yang, Zhaoping Zhou, Bing Xie, and Hong Mei. Safe
memory-leak fixing for c programs. In Proceedings of
the 37th International Conference on Software Engineer-
ing - Volume 1, ICSE ’15, pages 459–470, Piscataway,
NJ, USA, 2015. IEEE Press.

[11] GCC. Labels as values. https://gcc.gnu.org/
onlinedocs/gcc/Labels-as-Values.html.

[12] Haryadi S. Gunawi, Cindy Rubio-González, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dussea, and Ben Li-
blit. Eio: Error handling is occasionally correct. In
Proceedings of the 6th USENIX Conference on File and
Storage Technologies, FAST ’08, USA, 2008. USENIX
Association.

[13] Brian Hackett and Radu Rugina. Region-based shape
analysis with tracked locations. In Proceedings of the
32Nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’05, pages 310–
323, New York, NY, USA, 2005. ACM.

[14] Reed Hastings and Bob Joyce. Purify: Fast detection
of memory leaks and access errors. In In Proc. of the
Winter 1992 USENIX Conference, pages 125–138, 1991.

[15] David L. Heine and Monica S. Lam. A practical flow-
sensitive and context-sensitive c and c++ memory leak
detector. In Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Im-
plementation, PLDI ’03, pages 168–181, New York, NY,
USA, 2003. ACM.

[16] David L. Heine and Monica S. Lam. Static detection of
leaks in polymorphic containers. In Proceedings of the
28th International Conference on Software Engineering,
ICSE ’06, pages 252–261, New York, NY, USA, 2006.
ACM.

[17] Jian Huang, Michael Allen-Bond, and Xuechen Zhang.
Pallas: Semantic-aware checking for finding deep bugs
in fast path. In Proceedings of the Twenty-Second Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
’17, pages 709–722, New York, NY, USA, 2017. ACM.

[18] Chromium issue 816002. High memory usage in
youtube, 2018. https://bugs.chromium.org/p/
chromium/issues/detail?id=816002.

[19] Suman Jana, Yuan Kang, Samuel Roth, and Baishakhi
Ray. Automatically detecting error handling bugs us-
ing error specifications. In Proceedings of the 25th
USENIX Conference on Security Symposium, SEC’16,
page 345–362, USA, 2016. USENIX Association.

[20] Simon Holm Jensen, Manu Sridharan, Koushik Sen, and
Satish Chandra. Meminsight: Platform-independent
memory debugging for javascript. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software En-
gineering, ESEC/FSE 2015, pages 345–356, New York,
NY, USA, 2015. ACM.

USENIX Association 2021 USENIX Annual Technical Conference 189

https://www.freebsd.org
https://www.kernel.org
https://bugs.mysql.com/bug.php?id=83047
https://bugs.mysql.com/bug.php?id=83047
https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
https://bugs.chromium.org/p/chromium/issues/detail?id=816002
https://bugs.chromium.org/p/chromium/issues/detail?id=816002

[21] Zhouyang Jia, Shanshan Li, Tingting Yu, Xiangke Liao,
Ji Wang, Xiaodong Liu, and Yunhuai Liu. Detecting
error-handling bugs without error specification input. In
Proceedings of the 34th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE ’19,
page 213–225. IEEE Press, 2019.

[22] Maria Jump and Kathryn S. McKinley. Cork: Dynamic
memory leak detection for garbage-collected languages.
In Proceedings of the 34th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’07, pages 31–38, New York, NY, USA,
2007. ACM.

[23] Changhee Jung, Sangho Lee, Easwaran Raman, and San-
tosh Pande. Automated memory leak detection for pro-
duction use. In Proceedings of the 36th International
Conference on Software Engineering, ICSE ’14, pages
825–836, New York, NY, USA, 2014. ACM.

[24] Chris Lattner. LLVM: An Infrastructure for Multi-Stage
Optimization. Master’s thesis, Computer Science Dept.,
University of Illinois at Urbana-Champaign, Urbana, IL,
Dec 2002. See http://llvm.cs.uiuc.edu.

[25] Sangho Lee, Changhee Jung, and Santosh Pande. De-
tecting memory leaks through introspective dynamic
behavior modelling using machine learning. In Proceed-
ings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 814–824, New York,
NY, USA, 2014. ACM.

[26] Mengchen Li, Yuanjun Chen, Linzhang Wang, and Guo-
qing Xu. Dynamically validating static memory leak
warnings. In Proceedings of the 2013 International Sym-
posium on Software Testing and Analysis, ISSTA 2013,
page 112–122, New York, NY, USA, 2013. Association
for Computing Machinery.

[27] Tongping Liu, Charlie Curtsinger, and Emery D. Berger.
Doubletake: Fast and precise error detection via
evidence-based dynamic analysis. In Proceedings of
the 38th International Conference on Software Engi-
neering, ICSE ’16, page 911–922, New York, NY, USA,
2016. Association for Computing Machinery.

[28] Evan K. Maxwell, Godmar Back, and Naren Ramakrish-
nan. Diagnosing memory leaks using graph mining on
heap dumps. In Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’10, pages 115–124, New York, NY,
USA, 2010. ACM.

[29] Ben Niu and Gang Tan. Modular control-flow integrity.
In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI ’14, pages 577–587, New York, NY, USA, 2014.
ACM.

[30] Gene Novark, Emery D. Berger, and Benjamin G. Zorn.
Efficiently and precisely locating memory leaks and
bloat. In Proceedings of the 30th ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, PLDI ’09, pages 397–407, New York, NY,
USA, 2009. ACM.

[31] Maksim Orlovich and Radu Rugina. Memory leak anal-
ysis by contradiction. In Proceedings of the 13th Inter-
national Conference on Static Analysis, SAS’06, pages
405–424. Springer-Verlag, 2006.

[32] Derek Rayside and Lucy Mendel. Object ownership
profiling: A technique for finding and fixing memory
leaks. In Proceedings of the Twenty-second IEEE/ACM
International Conference on Automated Software Engi-
neering, ASE ’07, pages 194–203, New York, NY, USA,
2007. ACM.

[33] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne.
Operating System Concepts. Wiley Publishing, 9th edi-
tion, 2012.

[34] Yan Tang, Qi Gao, and Feng Qin. Leaksurvivor:
Towards safely tolerating memory leaks for garbage-
collected languages. In USENIX 2008 Annual Techni-
cal Conference, ATC’08, pages 307–320, Berkeley, CA,
USA, 2008. USENIX Association.

[35] Yuchi Tian and Baishakhi Ray. Automatically diagnos-
ing and repairing error handling bugs in c. In Proceed-
ings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, page 752–762,
New York, NY, USA, 2017. Association for Computing
Machinery.

[36] Caroline Tice, Tom Roeder, Peter Collingbourne,
Stephen Checkoway, Úlfar Erlingsson, Luis Lozano, and
Geoff Pike. Enforcing forward-edge control-flow in-
tegrity in GCC & LLVM. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 941–955, San
Diego, CA, August 2014. USENIX Association.

[37] Nginx ticket #1482. Memory leak in error handling
block in ngx_stream_geo_block method, 2018. https:
//trac.nginx.org/nginx/ticket/1482.

[38] John Vilk and Emery D. Berger. Bleak: Automatically
debugging memory leaks in web applications. In Pro-
ceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI 2018, pages 15–29, New York, NY, USA, 2018.
ACM.

[39] Common Vulnerabilities and Exposures. Cve-2019-
12379, 2019. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2019-12379.

190 2021 USENIX Annual Technical Conference USENIX Association

https://trac.nginx.org/nginx/ticket/1482
https://trac.nginx.org/nginx/ticket/1482
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12379
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12379

[40] Common Vulnerabilities and Exposures. Cve-2019-
8980, 2019. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2019-8980.

[41] Wenwen Wang, Stephen McCamant, Antonia Zhai, and
Pen-Chung Yew. Enhancing cross-isa dbt through auto-
matically learned translation rules. In Proceedings of the
Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’18, pages 84–97, New York, NY,
USA, 2018. Association for Computing Machinery.

[42] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zel-
dovich, and M. Frans Kaashoek. Improving integer
security for systems with KINT. In Presented as part
of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), pages 163–177,
Hollywood, CA, 2012. USENIX.

[43] Mingyuan Xia, Wenbo He, Xue Liu, and Jie Liu. Why
application errors drain battery easily?: A study of mem-
ory leaks in smartphone apps. In Proceedings of the

Workshop on Power-Aware Computing and Systems, Hot-
Power ’13, pages 2:1–2:5, New York, NY, USA, 2013.
ACM.

[44] Yichen Xie and Alex Aiken. Context- and path-sensitive
memory leak detection. In Proceedings of the 10th Eu-
ropean Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ESEC/FSE ’05,
pages 115–125, New York, NY, USA, 2005. ACM.

[45] Guoqing Xu and Atanas Rountev. Precise memory leak
detection for java software using container profiling. In
Proceedings of the 30th International Conference on
Software Engineering, ICSE ’08, pages 151–160, New
York, NY, USA, 2008. ACM.

[46] Dacong Yan, Guoqing Xu, Shengqian Yang, and Atanas
Rountev. Leakchecker: Practical static memory leak
detection for managed languages. In Proceedings of
Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’14, pages 87:87–
87:97, New York, NY, USA, 2014. ACM.

USENIX Association 2021 USENIX Annual Technical Conference 191

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8980
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8980

	Introduction
	Background and Motivation
	What is E-E Path?
	Usage Scenarios of E-E Paths
	Memory Management on E-E Paths

	Issues and Challenges of MLEE
	MLEE System Design
	Identifying E-E Branches
	Detecting Missed Memory Deallocations
	Analyzing Missed Memory Deallocations

	Implementation
	Experimental Study
	Related Work
	Conclusion

