Western Digital.

INS: Avoiding the Block Interface Tax for Flash-based SSDs

Matias Bjerling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh,
Damien Le Moal, Gregory R. Ganger, George Amvrosiadis
July 14-16

USENIX ATC 2021 :
Carnegie

Western Digital. Mellon

University
PennState

The Block Interface Tax

For several decades storage software has been built atop the block interface
= Storage represented as an array of fixed-size blocks

= Each block can be read, written, and overwritten atomically

= Adopted for HDDs as well as SSDs

Block Interface Block Interface
M [| |--J M [| |--J
I o [| | |

O

9 O/ \o o/

Hard Disk Drive (HDD) Solid-State Drive (SSD)

The Block Interface Tax

The inherent properties of flash-based SSDs have made the block interface a poor fit
= SSDs “append” pages to erase blocks, need 1o erase whole block before rewriting

Data placement overhnead: media over-provisioning (7-28%), higher Scost and lower
performance

Block Interface

E===-

/ Translation Layer

Block interface
compatibility increases
$cost, hurts
performance

©) ©)
G /

Solid-State Drive (SSD)

Zoned Namespace SSDs

What if the host could write data onto the flash-based SSD through append-only
regions (zones)e — ZNS exposes them!

= No fine-grained data placement in SSDs: +7-28% capacity, lower Scost, predictable
high performance

/one Interface

=

Overwriting a block
IN A zone requires
erasing/rewriting

entire zone

©) ©)
o J

/oned Namespace
Solid-State Drive (ZNS SSD)

Zoned Namespace SSDs

Getiing rid of the block interface tax

1000 S i SRR TR

800 —
<
m
3
. 600 —
2
Q
<
)
3
= 400 —
'_

200 || === ZNssSD (0% OP)
=== Block SSD (7% OP)
=== Block SSD (28% OP)

Data Written (TB)

Zoned Namespace SSDs

Getting rid of the block interface tax

The Catch: No overwrites/out-of-order writes allowed under ZNS.
Only works if software layers above are modified to support this limitation.

Research opportunity*: Which applications can evolve to use the ZNS interface? How?

N /

=== Block SSD (7% OP)
=== Block SSD (28% OP)

0 | | |
0 2 4 6 8

Data Written (TB)

*Stavrinos et. al., Don't be a Blockhead: Zoned Namespaces Make Work on Conventional SSDs Obsolete, HotOS, 2021 6

© 2021 Western Digital Corporation or its affiliates. All rights reserved.

Evolving towards ZNS SSDs

Host

Fine-grained
Data Placement
i e

= ZNS SSDs relinquish GC responsibilities
traditionally carried out by the FTL

= The ZNS interface enables the SSD to 0 ‘ ‘ ‘ ‘ 0
translate sequential zone writes onto

) 4)

distinct erase blocks
Data Placement

= Since by the

inferface, and zones must be

, the
O O O O

= GC of zones becomes the responsibility of \ S .

the host Block Interface Zone Interface

Conventional SSD /NS SSD

= Media reliability continues to be the full
responsibility of the SSD

© 2021 Western Digital Corporation or its affiliates. All rights reserved.

Adoption

= Host-side FTL

— Implement a host-side FTL
that exposes the ZNS SSD as
a block interface SSD.

— High system overhead wrt to
DRAM and CPU.

- Enable workloads that
specifically require random
write characteristics.

= File Systems (f2fs /w zones)

— Place data onto zones using

the file system
characteristics

— Efficient use of resources, as
the file system simply places
data more efficiently

— Layer of indirection away
from the application, and
therefore some inefficient
data placement causes
host GC.

= End-to-end Data Placement
(RocksDB /w ZenFS)

Places data onto zones
using the application
characteristics

No indirection overhead
cause by FIL data
placement nor file system.

Highest performance and
the lowest write
amplification

Enabling the Linux Ecosystem

= General Linux Support thru the Zoned Block Device (ZBD) Lines e -
subsystem Added ines Remove
= NVMe driver support for zone attributes (e.g., capacity) Linux Kernel 647 53
» APl support for exposing limit of active zones, which depends | s (kemel) 275 37
on device resources f2fs (tools) 189 15
= Linux file system support. extending f2fs to run on ZNS fio 342 58
ZenFS (RocksDB) 3276 2

Total 4729 169

ZenFS Architecture

= Extent-based block-aligned contiguous region of file data RocksDB
— Multiple file extents per zone (ho spanning) | Database Loge |

| File-System Wrapper APl (POSIX, Zoned, ...) |

= Journal data: appended to circular buffer of P ———

designated zones SSTs, WALs & Metadata | e one

. . om0 o . i | og & Loc
— Includes WAL data, file identifiers, in-memory allocation Maragement || Mg || Superblock || Journaiing | Fies

. . . . Direct 11O Zone Mgmt. Buffered I/O
— Buffered writes handled by buffering in memory until flush - ‘
inux Kemel Zoned Subsystem | | File-System |
event x :

Zoned Block Devices (ZNS SSDs & SMR HDDs)

= 7one management |

— User limit for internal fragmentation simplifies file size
uncertainty (due to compression, compaction)

— Write lifetime hints from RocksDB simplify Garbage
Collection

— Limits active zones based on device resources

Evaluation

Feature summary of the evaluated SSDs

= Production hardware platform that can expose —— s
itself as either a block-interface SSD or a ZNS SSD. — Block | Block | Zoned ____

Media Capacity 2TiB 2TiB 2TiB
Host Capacity 1.92TB 1.6TB 21B
. MeThOdObgy Over-provisioning 7% 28% 0%
— Raw |/O performcnce Placement Type None None Lones
Max Active Zones N/A N/A 14
— RocksDB Performance Zone Size N/A N/A 2048 MiB
. B
. XFS, F2FS (BlOCk) Zone Capacity N/A N/A 1077Mi

* F2FS /w zone support (ZNS)
« RocksDB /w ZenFS (ZNS)

Raw I/O Characteristics

s NS SSD (0% OP) e BloOCK SSD (7% OP) = BlOCK SSD (28% OP)
] i | ~ 250 | | | |
200
= 3
@ >
O 5> 150
[
o i)
S g
3 T 100
2 &
o .
O O
p z 50
0 | | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Write Target (GiB/s) Write Target (GiB/s)

RocksDB: Writes

Double the throughput over 28% OP SSDs

= XFS and F2FS overprovisioning at 28%

B F2FS (ZNS)

= Fillrandom begins at clean state. Bl ZenFs

Overhead visible when overwriting 10

- 80
= Write Amplification for ZNS is 1.0x §
S 40
— XFS at 2.0x and vanilla F2FS at 2.4x =
0
fllrandom overwrite
(repeatedly writes (overwrites random key-value

device capacity) pairs)

© 2021 Western Digital Corporation or its affiliates. All rights reserved.

RocksDB: Reads and Writes

B xS B rors B F2FS (ZNS) B ZenFs
= When writes are limited to 20MB/s 0y Tookups " 0By amd I0kups Ino] and lookups
— Only ZNS achieves write goadl, el
others 15% lower S w0
. . . 0
= When writes are not limited . ceas . e
— ZNS SSD write throughput 2x
higher < loops | [OwBslondlookups - (o imi) andiookups
2 8
. S
= RocksDB on ZNS achieves up to s 6
4x lower 99.99th-percentile read N
0

latency, 2x write throughput

P99 P99.99 P99 P99.99 P99 P99.99

Summary

= /NS SSDs enable higher performance and lower-cost-per-byte flash-based SSDs.

= By shifting responsibilities for managing data placement within erase blocks from FTLs to
host software, ZNS eliminates the need for fine-grained indirection table, garbage
collection, and media over-provisioning.

= We find that the 99.9"-percentile random-read latency for our RocksDB /v ZenFS is at
least 2-4x lower on a ZNS SSD compared to a block-interface SSD, and the write
throughput is 2x higher.

= All work is upstream and available through the appropriate open-source projects.

Western Digital.

Thank You

Carnegie

Western Digital. Mellon

University
PennState

