
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

DLOS: Effective Static Detection
of Deadlocks in OS Kernels

Jia-Ju Bai, Tuo Li, and Shi-Min Hu, Tsinghua University

https://www.usenix.org/conference/atc22/presentation/bai

DLOS: Effective Static Detection of Deadlocks in OS Kernels

Jia-Ju Bai
Tsinghua University

Tuo Li
Tsinghua University

Shi-Min Hu
Tsinghua University

Abstract
Deadlocks in OS kernels can cause critical problems like per-
formance degradation and system hangs. However, detecting
deadlocks in OS kernels is quite challenging, due to high
complexity of concurrent execution and large code bases of
OS kernels. In this paper, we design a practical static anal-
ysis approach named DLOS, to effectively detect deadlocks
in OS kernels. DLOS consists of three key techniques: (1)
a summary-based lock-usage analysis to efficiently extract
the code paths containing distinct locking constraints from
kernel code; (2) a reachability-based comparison method to
efficiently detect locking cycles from locking constraints; (3)
a two-dimensional filtering strategy to effectively drop false
positives by validating code-path feasibility and concurrency.
We have evaluated DLOS on Linux 5.10, and find 54 real
deadlocks, with a false positive rate of 17%. We have re-
ported these deadlocks to Linux kernel developers, and 31 of
them have been confirmed.

1 Introduction

Concurrent execution improves the performance of OS ker-
nels, but can inevitably introduce concurrency bugs. Some
studies [37, 38, 51] have shown that a large part of reported
OS bugs are related to kernel concurrency. Deadlock is a com-
mon kind of concurrency bugs, caused by a locking cycle in
different threads. For example, one thread acquires the locks
A and then B, while the other concurrent thread acquires the
locks B and then A, and thus a deadlock caused by the ABBA
locking cycle occurs. Deadlocks in OS kernels are dangerous,
because they can infinitely block the involved threads, causing
performance degradation and even system hangs.

To find deadlocks, many existing approaches [5, 9–11, 15,
21, 27, 28, 31, 33, 44, 45, 55] dynamically monitor thread ex-
ecution and lock-related operations to detect locking cycles.
These approaches have shown promising results in both user-
level applications and OS kernels. For example, Lockdep [33]
is a widely-used lock-usage validator integrated in the Linux

kernel. It detects deadlocks, double locks and other lock-
ing issues, by dynamically tracking the state of each lock
class and checking the dependencies between different lock
classes. However, dynamic analysis approaches require well-
constructed workloads or substantial test cases to cover the
code containing bugs, and thus their detection coverage is
often limited in runtime testing.

To improve detection coverage, some approaches [30, 41,
42, 46, 52] use static analysis to detect deadlocks in user-
level applications. However, these approaches are ineffective
in detecting deadlocks in OS kernels, for two main reasons.
First, these approaches requires a fixed entry point (such as
a main function) to start dataflow analysis; but an OS kernel
consists of many kernel modules, each of which has no such
a fixed entry point [4, 43]. Second, these approaches need
to identify concurrent code and perform concurrency alias
analysis according to thread-creation function calls (such as
the calls to pthread_create) and related arguments; but the
concurrency of OS kernel is often determined by the concur-
rent execution of specific interface functions in each kernel
module [2], not explicitly calling thread-creation functions.

To our knowledge, RacerX [19] is the sole existing static
analysis approach to systematically detect deadlocks in OS
kernels. It uses locking constraint to describe the locking situ-
ation when each lock is acquired, e.g., if a code path acquires
the locks A and then B, its locking constraint is A→B. Rac-
erX performs flow-sensitive and inter-procedural analysis to
identify the code paths containing locking constraints (such
code paths are referred to as target code paths subsequently)
from OS kernel code, and then recursively compares between
each two target code paths with their locking constraints to
detect locking cycles as deadlocks.

However, RacerX still has some limitations. First, though
using some heuristic techniques (like result ranking), RacerX
still has a high false positive rate of 46%, due to neglecting
the feasibility and concurrency of code paths. Second, RacerX
neglects alias relationships, causing both false positives and
negatives. Finally, RacerX simply compares between each two
target code paths with their locking constraints in a recursive

USENIX Association 2022 USENIX Annual Technical Conference 367

way to detect locking cycles. This method works well for old
OS kernels (like Linux 2.5.62 checked in its paper), but can be
inefficient for modern OS kernels (like Linux 5.10 checked in
our evaluation) that are much larger and more complex. Since
the RacerX paper published in 2003, no new static approach
has been proposed to systematically detect deadlocks in OS
kernels. Thus, it is important to design a new static approach
to perform effective deadlock detection in modern OS kernels.

In this paper, we design a practical static analysis approach
named DLOS, to effectively detect deadlocks in OS kernels.
DLOS consists of three key techniques:

(1) DLOS uses a summary-based lock-usage analysis to
efficiently extract the code paths containing distinct locking
constraints from kernel code. Our analysis uses function sum-
maries to avoid repeated code analysis in the same functions,
and it also drops the target code paths containing repeated
locking constraints. To improve accuracy, our analysis is flow-
sensitive and inter-procedural with the consideration of alias
relationships, and it also uses a light-weight method to vali-
date code-path feasibility with an SMT solver.

(2) DLOS uses a reachability-based comparison method to
efficiently detect locking cycles from locking constraints. We
observe that there are substantial target code paths containing
distinct locking constraints in modern OS kernels (like Linux
5.10). Thus, when detecting locking cycles, simply comparing
between each two target code paths with their locking con-
straints in a recursive way is quite time-consuming. To solve
this problem, for each target code path, our method maintains
a constraint reachability graph to store the locking constraints
that are reachable starting the comparison from this code path,
and the involved target code paths. By using constraint reach-
ability graphs, our method can reduce repeated comparison of
locking constraints, to improve the detection efficiency. If a
locking cycle is found, it is considered as a possible deadlock,
with the involved target code paths and locking constraints.

(3) DLOS uses a two-dimensional filtering strategy to ef-
fectively drop false positives, by validating the feasibilty and
concurrency of target code paths for each possible deadlock.
On the one hand, as using an SMT solver to completely vali-
date the feasibility of each code path is quite time-consuming,
our strategy validates code paths in a phased way. Specifically,
during locking-constraint extraction, as substantial code paths
are required to be validated, making the validation efficiency
more important, our strategy uses a simple and light-weight
path-condition checking method to drop obviously infeasi-
ble code paths containing locking constraints; and then after
locking-cycle detection, as the code paths of possible dead-
locks should occupy a very small proportion of all the code
paths, making the validation accuracy more important, our
strategy uses a complete and heavy-weight path-condition
checking method to drop false deadlocks. On the other hand,
for each possible deadlock, our strategy checks the concur-
rency of its code paths, by analyzing their call graphs and
looking for common locks acquired in these code paths.

Two-dimensional
filtering strategy

Deadlock reports

S1: Locking-constraint
extraction

OS kernel
source code

Summary-based
lock-usage analysis

Reachability-based
comparison method

Code paths containing
locking constraints

Possible deadlocks
due to locking cycles

S2: Locking-cycle
detection

S3: False-positive
filtering

Figure 1: DLOS workflow.

Overall, DLOS has three main stages shown in Figure 1.
In Stage 1, DLOS uses our summary-based lock-usage analy-
sis to extract the code paths containing distinct locking con-
straints. In Stage 2, according to the extracted code paths
and locking constraints, DLOS uses our reachability-based
comparison method to detect possible deadlocks. In Stage 3,
DLOS uses our two-dimensional filtering strategy to check
possible deadlocks and drop false positives. After these stages,
DLOS reports the final reports of the found deadlocks.

Compared to RacerX, DLOS has two main advantages.
First, DLOS can achieve better accuracy than RacerX, by val-
idating code-path feasibility with an SMT solver, considering
alias relationships and checking the concurrency of the in-
volved code paths for reported deadlocks. Second, DLOS can
spend less time than RacerX, by extracting and comparing
locking constraints more efficiently.

We have implemented DLOS with LLVM [32] and Z3 [54].
DLOS performs automated static analysis on the LLVM byte-
code of the checked OS kernel. Overall, we make three main
contributions in this paper:

• We analyze the challenges of static deadlock detection in
OS kernels, and propose three key challenges to address
these challenges: (1) a summary-based lock-usage analy-
sis to efficiently extract the code paths containing distinct
locking constraints from kernel code; (2) a reachability-
based comparison method to efficiently detect locking
cycles from locking constraints; (3) a two-dimensional
filtering strategy to effectively drop false positives by
validating code-path feasibility and concurrency.

• Based on these three key techniques, we design a practi-
cal static analysis approach named DLOS, to effectively
detect deadlocks in OS kernels.

• We evaluate DLOS on Linux 4.9 and 5.10, and find 46
and 65 deadlocks, respectively. We manually check these
deadlocks, and find that 39 and 54 deadlocks are real. 21
of the real deadlocks found in Linux 4.9 have been fixed
in Linux 5.10. We have reported the 54 real deadlocks
found in Linux 5.10 to Linux kernel developers, and 31
of them have been confirmed.

The rest of this paper is organized as follows. Section 2 in-
troduces the background and motivation. Section 3 introduces
the challenges of static deadlock detection in OS kernels and
our key techniques to address these challenges. Section 4
introduces DLOS. Section 5 shows our evaluation. Section 6

368 2022 USENIX Annual Technical Conference USENIX Association

makes a discussion about DLOS. Section 7 presents related
work, and Section 8 concludes this paper.

2 Background and Motivation

We first introduce deadlock and its detection, then explain the
concurrency model of OS kernels, and finally motivate our
work using a real deadlock in the Linux kernel.

2.1 Deadlock and Its Detection
To protect critical data from concurrent accesses, several kinds
of synchronization primitives are designed and used. Locks
are the most frequently-used synchronization primitives in
real-world programs, to guarantee atomicity and prevent data
races. However, if locks are incorrectly used, a deadlock can
occur when one thread holds a lock that other concurrent
threads want to acquire and vice versa.

Locking cycles in concurrent threads can cause deadlocks.
The most common case is the ABBA lock in two threads, as
shown in Figure 2(a). Namely, one thread acquires the locks A
and then B (A→B), while the other concurrent thread acquires
the locks B and then A (B→A), causing a locking cycle (A→B,
B→A). In three or more threads, deadlocks can also occur due
to such locking cycles, as shown in Figure 2(b).

spin_lock(A);
......
spin_lock(B);

spin_lock(B);
......
spin_lock(A);

Thread T1 Thread T2

spin_lock(A);
......
spin_lock(B);

spin_lock(B);
......
spin_lock(C);

Thread T1 Thread T2

spin_lock(C);
......
spin_lock(A);

Thread T3

Locking constraint: T1{A→B}, T2{B→A}
Locking cycle: A→B, B→A Deadlock!

(a) Deadlock in two threads

Locking constraint: T1{A→B}, T2{B→C}, T3{C→A}
Locking cycle: A→B, B→C, C→A Deadlock!

(b) Deadlock in three threads

Figure 2: Deadlock examples.

For dynamic analysis, deadlock detection has two basic
steps, namely extracting locking constraints in concurrent
threads and then comparing these locking constraints to de-
tect locking cycles. For static analysis, deadlock detection is
similar but more complex. On the one hand, without exact
runtime information about thread execution, static analysis
has to identify locking constraints from each code path and
validate the concurrency of code paths. On the other hand,
without exact values of accessed variables, static analysis has
to validate the feasibility of code paths using an SMT solver.

2.2 Concurrency Model of the OS Kernel
A modern OS kernel consists of many kernel modules, includ-
ing filesystems, network modules, device drivers, etc. Each
kernel module has some specific interface functions that are
called by upper-level programs, including other kernel mod-
ules via function-pointer calls and user-level applications via
system calls. Figure 3 shows some examples of interface
functions that are assigned to function-pointer fields. These
interface functions form the entry points of the kernel module,

FILE: linux-5.10/fs/gfs/file.c

1108. file_operations gfs2_file_fops = {
1109. .llseek = gfs2_llseek,
1110. .read_iter = generic_file_read_iter,
1111. .write_iter = gfs2_file_write_iter,
1112. .unlocked_ioctl = gfs2_ioctl,

1123. }

FILE: linux-5.10/drivers/net/wan/lmc_main.c

808. struct net_device_ops lmc_ops = {
809. .ndo_open = lmc_open,
810. .ndo_stop = lmc_close,
811. .ndo_change_mtu = hdlc_change_mtu,
812. .ndo_start_xmit = hdlc_start_xmit,

816. }

Figure 3: Examples of interface functions in kernel modules.

and all other functions defined in the kernel module are called
by them [4,43]. Due to this execution model, the concurrency
of OS kernel is often determined by the concurrent execution
of specific interface functions in each kernel module [2]. In
fact, a kernel module can also explicitly call thread-creation
functions (such as kthread_create in the Linux kernel), but
such operations are not common in kernel module code.

Different from the OS kernel, each user-level application
has a fixed entry point (like a main function) and explic-
itly calls thread-creation functions (like pthread_create) to
start concurrent execution. Accordingly, to detect deadlocks
in user-level applications, existing static approaches [30, 41,
42, 46, 52] start dataflow analysis from this fixed entry point,
and identify concurrent code for concurrency alias analysis
according to thread-creation function calls and related argu-
ments. Due to the difference between the concurrency models
of OS kernels and user-level applications, these approaches
are ineffective in detecting deadlocks in OS kernels.

2.3 Motivating Example
Figure 4 presents a real and already fixed deadlock in the
btrfs filesystem, and this bug is found by our approach DLOS
in the evaluation of checking Linux 4.9. When the func-
tion btrfs_read_chunk_tree is executed on the code path
P1, it acquires the locks root->fs_info->chunk_mutex
and then orig->device_list_mutex; when the function
btrfs_remove_chunk is executed on the code path P2,
it acquires the locks fs_devices->device_list_mutex
and then root->fs_info->chunk_mutex. During filesys-
tem execution, the functions btrfs_read_chunk_tree and
btrfs_remove_chunk are able to be concurrently executed
at runtime, and the locks orig->device_list_mutex and
fs_devices->device_list_mutex can be identical, and
thus an ABBA deadlock can occur. This deadlock was in-
troduced by the commit 57ba4cb85bff [16] in Linux 4.7,
and it was found by Lockdep [33] and fixed by the commit
01d01caf19ff [17] in Linux 5.9, after over 4 years later. In
fact, Lockdep is integrated in the Linux kernel for dynamic
deadlock detection, but it took Lockdep such a long time to
find this deadlock, because the interleaving of the code paths
P1 and P2 are infrequent in real execution.

This example illustrates why deadlocks occur in OS ker-
nels. First, determining concurrent code paths and identi-
fying the same locks in these code paths require substan-
tial knowledge of OS kernels. In the example, without deep
understanding of filesystems and extensive testing, it may

USENIX Association 2022 USENIX Annual Technical Conference 369

Code Path P1:
// FILE: linux-4.9/fs/btrfs/volumes.c
btrfs_read_chunk_tree

 -> lock_chunks [Line 6803]
 -> mutex_lock(&root->fs_info->chunk_mutex) [Line 517]
 -> read_one_dev [Line 6833]

 -> open_seed_devices [Line 6601]
 -> clone_fs_devices [Line 6558]

 -> mutex_lock(&orig->device_list_mutex) [Line 734]

Code Path P2:
// FILE: linux-4.9/fs/btrfs/volumes.c
btrfs_remove_chunk

 -> mutex_lock(&fs_devices->device_list_mutex) [Line 2844]
 -> lock_chunks [Line 2857]

 -> mutex_lock(&root->fs_info->chunk_mutex) [Line 517]

A→B

B→A

Figure 4: A real deadlock in Linux 4.9 btrfs filesystem.

be difficult to know code paths P1 and P2 can be concur-
rently executed, and the locks orig->device_list_mutex
and fs_devices->device_list_mutex can be identical.
Second, incorrect fixing of known bugs can introduce new
and hard-to-find concurrency bugs. In the example, the com-
mit 57ba4cb85bff introducing the deadlock aimed to fix a
harmful data race in the functions btrfs_remove_chunk
and btrfs_dev_replace_finishing, but this commit in-
cautiously introduces a locking cycle in the functions
btrfs_remove_chunk and btrfs_read_chunk_tree. Fi-
nally, multiple functions (including concurrent functions and
the functions called by them) and variables in these functions
need to be considered.

By scanning the reported deadlocks in the Linux kernel, we
find that most of them are found in stress testing and kernel
fuzzing. But the detection coverage of runtime testing heavily
relies on the provided workloads, causing many real dead-
locks to be missed. Static analysis can conveniently achieve
high detection coverage without actual execution of the OS
kernel. However, as the sole existing static approach of sys-
tematically detecting deadlocks in OS kernels, RacerX [19]
still has many false positives, and its concurrency analysis can
be inefficient to modern OS kernels (like Linux 5.10 checked
in our evaluation) that are much larger and more complex
than old OS kernels (like Linux 2.5.62 checked in the RacerX
paper). Thus, it is important to design a new static approach to
perform effective deadlock detection in modern OS kernels.

3 Challenges and Key Techniques

To detect deadlocks, static analysis needs to first extract the
code paths containing distinct locking constraints (such code
paths are referred to as target code paths subsequently) from
kernel code, and then compare these code paths with their
locking constraints to detect locking cycles as deadlocks.
However, performing these steps for checking OS kernel code
has three main challenges:
C1: Extracting locking constraints. A modern OS kernel
is very large and complex, because it has many kernel mod-
ules and lots of functions with complicated call graphs. Thus,
extracting locking contraints in OS kernel code can be quite
time-consuming and inaccurate.

C2: Detecting locking cycles. Due to the large and complex
code base of the OS kernel, there are substantial target code
paths containing distinct locking constraints. Thus, when de-
tecting locking cycles, simply comparing between each two
target code paths with their locking constraints in a recursive
way is quite inefficient.
C3: Dropping false bugs. On the one hand, without validat-
ing the feasibility of code paths, static analysis can extract
many infeasible target code paths and thus report many false
bugs. On the other hand, each deadlock involves two or more
target code paths that should be able to concurrently executed.
Thus, without validating the concurrency of these target code
paths, static analysis can report many false bugs whose target
code paths cannot be concurrently executed.

To solve the above challenges, we propose three key tech-
niques. For C1, we propose a summary-based lock-usage
analysis to efficiently extract the code paths containing dis-
tinct locking constraints from kernel code. For C2, we propose
a reachability-based comparison method to efficiently detect
locking cycles from locking constraints. For C3, we propose
a two-dimensional filtering strategy to effectively drop false
positives by validating code-path feasibility and concurrency.
We will introduce these techniques as follows.

3.1 Summary-Based Lock-Usage Analysis
Our summary-based lock-usage analysis has two basic stages:
(S1) performing a dataflow analysis to collect target code
paths containing distinct lock-acquire/release operations; and
then (S2) performing a static lockset analysis to compute
locking constraints for each target code path.
S1: Collecting target code paths. In this stage, the dataflow
analysis has some properties: 1) this analysis is flow-sensitive
and inter-procedural with the consideration of alias relation-
ships, which can improve the accuracy; 2) this analysis uses
function summaries to reduce repeated analysis, which can
improve the efficiency; 3) this analysis drops the target code
paths containing repeated lock-acquire/release operations,
which can reduce repeated comparison in locking-cycle de-
tection; 4) this analysis uses a light-weight method to validate
the feasibility of each analyzed code path, which can reduce
false positives of deadlock detection. This dataflow analysis
traverses the code paths in the analyzed function func.

Figure 5 shows the main procedure of this dataflow anal-
ysis, which is represented as DataFlowAnalysis. It creates a
function summary func_sum, which stores basic information
about func (like function name and function-definition loca-
tion) and the target code paths in func. This function summary
is initialized with no target code path (line 1). This analysis
handles each code path code_path in func with three steps
(lines 2-30). First, it creates a data structure tar_path to col-
lect the lock-acquire/release function calls and analyzed basic
blocks in code_path (line 3), and then checks each function
call call in code_path (lines 4-26). If call is used to acquire

370 2022 USENIX Annual Technical Conference USENIX Association

1

DataFlowAnalysis(func)
Input: func – the analyzed function
Output: func_sum – function summary storing basic information about func

and the target code paths in func

1: func_sum->tar_path_set := ø;
2: foreach code_path in GetCodePathSet(func) do
3: tar_path := CreateTargetCodePath(code_path);
4: foreach call in GetCallSetInPath(code_path) do
5: called_func := GetCalledFunction(call);
6: if CheckLockFunction(called_func) then
7: AddLockVector(call, tar_path->lock_vec);
8: else
9: // Use function summary to reduce repeated analysis

10: called_func_sum := FindFuncSummary(called_func);
11: if called_func_sum == NULL then
12: called_func_sum := DataFlowAnalysis(called_func);
13: end if
14: // Top-down analysis of all target code paths in the callee
15: called_tar_path_set := called_func_sum->tar_path_set;
16: foreach called_tar_path in called_tar_path_set do
17: tar_path_tmp := SplicePathInfo(tar_path, called_tar_path);
18: if LightPathCheck(tar_path_tmp) == TRUE then
19: AddPathSet(tar_path_tmp, func_sum->tar_path_set);
20: end if
21: end foreach
22: // Bottom-up analysis of one target code path selected in the callee
23: rand_tar_path := RandomSelect(called_tar_path_set);
24: tar_path := SplicePathInfo(tar_path, rand_tar_path);
25: end if
26: end foreach
27: if LightPathCheck(tar_path) == TRUE then
28: AddPathSet(tar_path, func_sum->tar_path_set);
29: end if
30: end foreach
31: DropRepeatTargetCodePath(func_sum->tar_path_set);
32: return func_sum;

Figure 5: Dataflow analysis of collecting target code paths.

or release a lock, it is added into the lock-operation vector
lock_vec of tar_path (line 7); otherwise this analysis handles
its called function called_func. If called_func has been al-
ready analyzed, its function summary is gotten and stored
as called_func_sum (line 10); otherwise, DataFlowAnaly-
sis is recursively used to compute its function summary as
called_func_sum (line 12). Then, from called_func_sum, this
analysis gets and handles the target code paths in called_func
(lines 15-21) in a top-down manner. For each such target code
path called_tar_path, this analysis splices it with tar_path to
form a new and possible target code path tar_path_tmp. This
analysis uses a light-weight method (will be explained in Sec-
tion 3.3) to validate the code-path feasibility of tar_path_tmp;
if the code path is feasible, tar_path_tmp is considered as
a possibly real target code path in func and added into the
function summary func_sum->tar_path_set (lines 18-20). To
avoid the explosion of bottom-up code paths from the callee
function called_func, this analysis randomly selects one of the
target code paths in this function and splices it into tar_path
(lines 23-24). Before the code path ends, this analysis uses the
light-weight method again to validate the code-path feasibility
of tar_path; if the code path is feasible, tar_path is consid-
ered as a possibly real target code path in func and added
into the function summary func_sum->tar_path_set (lines
27-29). After handling each code path, this analysis checks
func_sum->tar_path_set to drop the target code paths con-
taining identical lock-operation vectors (line 31), which can

reduce repeated comparison of target code paths in locking-
cycle detection. Finally, this analysis returns the function
summary func_sum (line 32), which can be used to analyze
other functions that call func.

Besides the procedure shown in Figure 5, this dataflow
analysis also performs an intra-procedural, flow-insensitive
and Andersen-style alias analysis [1] to identify all variables
aliased with the lock argument of each lock-acquire/release
function call. The alias analysis can help to improve the accu-
racy of computing locking constraints in S2. Moreover, each
function summary stores the information about arguments
and global variables, and drops the information about local
variables, which are never used outside the function.

// This function is first analyzed
void affs_free_block(struct super_block *sb, ...) {

 struct affs_sb_info *sbi = sb->s_fs_info; // Alias

 mutex_lock(&sbi->s_bmlock);

 // Create and use function summary
 affs_mark_sb_dirty(sb);
 mutex_unlock(&sbi->s_bmlock);

} // Create function summary at function return

void affs_mark_sb_dirty(struct super_block *sb) {
 struct affs_sb_info *sbi = sb->s_fs_info; // Alias

 spin_lock(&sbi->work_lock);

 spin_unlock(&sbi->work_lock);
} // Create function summary at function return

// This function is then analyzed
void affs_alloc_block(struct super_block *sb, ...) {

 struct affs_sb_info *sbi = sb->s_fs_info; // Alias

 mutex_lock(&sbi->s_bmlock);

 // Reuse function summary
 affs_mark_sb_dirty(sb);
 mutex_unlock(&sbi->s_bmlock);

} // Create function summary at function return

4

5

6

1

2

3

10

11

12
13

8

7

14

9

FuncSummary(affs_free_block):
 Target code path1:

 (1) Basic blocks in the code path
 (2) Lock-operation vector:

 mutex_lock(sb->s_fs_info->s_bmlock)
 spin_lock(sb->s_fs_info->work_lock)
 spin_unlock(sb->s_fs_info->work_lock)
 mutex_lock(sb->s_fs_info->s_bmlock)

FuncSummary(affs_mark_sb_dirty):
 Target code path1:

 (1) Basic blocks in the code path
 (2) Lock-operation vector:

 spin_lock(sb->s_fs_info->work_lock)
 spin_unlock(sb->s_fs_info->work_lock)

FuncSummary(affs_alloc_block):
 Target code path1:

 (1) Basic blocks in the code path
 (2) Lock-operation vector:

 mutex_lock(sb->s_fs_info->s_bmlock)
 spin_lock(sb->s_fs_info->work_lock)
 spin_unlock(sb->s_fs_info->work_lock)
 mutex_lock(sb->s_fs_info->s_bmlock)

Code path Function summary

Steps

Splice

Splice

Figure 6: Example of summary-based dataflow analysis.

Example. We illustrate this dataflow analysis using the
simplified code of the Linux affs filesystem in Figure 6.
This figure shows three functions and partial code paths of
them. According to the function position order, this analy-
sis first analyzes the function affs_free_block and then
affs_alloc_block, the analysis steps are represented as
n©. This dataflow analysis also considers the alias relation-

ships at 1©, 4© and 10©. At 3©, there is a function call to
affs_mark_sb_dirty, so this dataflow analysis first han-
dles this function, then creates its function summary, and
finally splices the target code path of this function summary
into the analyzed target code path of affs_free_block. At
12©, the function affs_mark_sb_dirty is called again, so its
function summary is reused, and the target code path of this
function summary is spliced into the analyzed target code
path of affs_alloc_block. By using the function summary,
the analysis efficiency can be effectively improved.

Note that to avoid path explosion caused by bottom-up
code paths of each callee function, this dataflow analysis uses
a partial bottom-up analysis. Specifically, it randomly selects
one of the target code paths in its function summary, and
splices this path into the analyzed target code in the caller
function, as shown at lines 23-24 in Figure 5. However, this
method can miss other target code paths of the callee function,
which can cause false negatives of deadlock detection. Even

USENIX Association 2022 USENIX Annual Technical Conference 371

TP1 TP2 TP3
A→B D→A B→C

TP4
B→E

Start from TP1{A→B}:
TP1{A→B} and TP2{D→A}: STOP
TP1{A→B} and TP3{B→C}: CONTINUE!

 TP3{B→C} and TP2{D→A}: STOP
 TP3{B→C} and TP4{B→E}: STOP
TP1{A→B} and TP4{B→E}: CONTINUE!

 TP4{B→E} and TP2{D→A}: STOP
 TP4{B→E} and TP3{B→C}: STOP

Start from TP2{D→A}:
TP2{D→A} and TP1{A→B}: CONTINUE!

 TP1{A→B} and TP3{B→C}: CONTINUE!
 TP3{B→C} and TP4{B→E}: STOP

 TP1{A→B} and TP4{B→E}: CONTINUE!
 TP4{B→E} and TP3{B→C}: STOP

TP2{D→A} and TP3{B→C}: STOP
TP2{D→A} and TP4{B→E}: STOP

Figure 7: Example of the traditional comparison.

so, compared to RacerX [19] that only has top-down analysis
without bottom-up analysis, this dataflow analysis is more
accurate by using partial bottom-up analysis. In the future, we
will implement a more complete and low-complexity bottom-
up analysis, by referring to some existing approaches [39,40].
S2: Computing locking constraints. This step uses a static
lockset analysis to compute locking constraints in the target
code paths collected in S1. This lockset analysis is similar
to dynamic lockset analysis proposed in Eraser [47] for race
detection, but in a static way. For each target code path, this
lockset analysis maintains a lockset storing the held locks,
and it handles lock-acquire and -release function calls.

When encountering a lock-acquire function call, this anal-
ysis first creates and adds related locking constraints in the
analyzed target code path, according to the locks in the lockset
and the acquired lock of this call; and then it adds this ac-
quired lock into the lockset. For example, when this analysis
handles the function call acquiring the lock X, if the lockset LS
stores the held locks A and B, it first creates two locking con-
straints A→X and B→X, then adds these locking constraints
into the analyzed target code path, and finally adds X into LS.
When encountering a lock-release function call, this analysis
looks for and drops the involved lock in the lockset.

3.2 Reachability-Based Comparison Method
After extracting target code paths, we need to compare them to
detect locking cycles as possible deadlocks. During compari-
son, we use a field-based analysis to identify the same locks
in different code paths, if the lock variables’ data structure
types and fields are identical, which is similar to RacerX [19]
and DCUAF [2]. Moreover, because a locking cycle can in-
volve multiple target code paths (like the example deadlock
in Figure 2(b)), the traditional method (used by existing static
approaches like RacerX [19]) starts the comparison from each
locking constraint in each target code path, and then recur-
sively compares between each two target code paths with their
locking constraints. Specifically, this method compares the
current locking constraint with each locking contraint of each
unhandled target code path. If they are matched, the current
locking constraint is replaced with the matched locking con-
traint, and the comparison continues; if they are not matched,
the comparison selects other target code paths. If all target
code paths have been handled, the comparison stops. Once a
locking cycle is found, this method reports a deadlock.

Start from TP1{A→B}:
TP1{A→B} and TP2{D→A}: STOP
TP1{A→B} and TP3{B→C}: CONTINUE!
 [Create a reachable node A→C]
 TP3{B→C} and TP2{D→A}: STOP
 TP3{B→C} and TP4{B→E}: STOP
TP1{A→B} and TP4{B→E}: CONTINUE!
 [Create a reachable node A→E]
 TP4{B→E} and TP2{D→A}: STOP
 TP4{B→E} and TP3{B→C}: STOP
[TP1 has complete reachability graph]

Start from TP2{D→A}:
TP2{D→A} and TP1{A→B}: STOP (no cycle)
TP2{D→A} and TP1{A→C}: STOP (no cycle)
TP2{D→A} and TP1{A→E}: STOP (no cycle)
TP2{D→A} and TP3{B→C}: STOP
TP2{D→A} and TP4{B→E}: STOP

TP1 TP2 TP3
A→B D→A B→C

TP4
B→E

A→C, [TP3]
A→E, [TP4]

Figure 8: Example of our reachability-based comparison.

Example with the traditional comparison. We illustrate this
traditional method using an example in Figure 7, containing
four target code paths (TP1, TP2, TP3 and TP4), each of which
contains one locking constraint. This method first starts the
comparison from the locking constraint A→B in TP1 (namely
TP1{A→B}), and then starts the comparison from the locking
constraint D→A in TP2 (namely TP2{D→A}). The detailed
comparison steps are also shown in the figure.

In Figure 7, we find that when starting the comparison
from TP2{D→A}, some steps (marked in blue and bold font)
perform repeated comparison that has been done when start-
ing from TP1{A→B}. In fact, such repeated comparison of
locking constraints are common in locking cycle detection,
because many code paths handle the same locks but have dif-
ferent locking orders, leading to different locking constraints.
Thus, if such repeated comparison can be reduced, the locking
cycle detection can be much more efficient.

Based on this idea, we propose a reachability-based method
to efficiently compare locking constraints for locking-cycle
detection. During comparison, this method maintains a con-
straint reachability graph for the target code path that the com-
parison starts from. This reachability graph contains some
reachable nodes, each of which indicates an indirect locking
constraint used for subsequent comparison:∧n

i=1(T Pi{Ai→ Ai+1})⇒ T Pindirect{A1→ An+1,T Pset}
T Pset = {T P1,T P2, ...,T Pn}

This indirect locking constraint is added in the handled
target code path. When our method finishes the comparison
starting from all the locking constraints in this target code
path, its reachability graph is completely built. The indirect
locking constraints in this reachability graph are used to re-
duce repeated comparison involving the handled target code
path. Specifically, if any locking constraint (direct or indirect)
in this target code path is matched, the comparison stops and
checks whether there is a locking cycle. Note that our method
assumes a target code path is never concurrently executed
with itself, because static analysis has insufficient information
to infer whether a code path can be concurrently executed
with itself. This assumption is also followed by existing static
approaches, such as RacerX [19] and DCUAF [2].

372 2022 USENIX Annual Technical Conference USENIX Association

Example with our reachability-based comparison. To illus-
trate our method, we still use the example in Figure 7. The
key steps performed by our method are marked in red and
bold font. Our method still first starts the comparison from the
locking constraint TP1{A→B}. Because TP1{A→B} matches
TP3{B→C} and TP4{B→E}, our method creates two indi-
rect locking constraints TP1{A→C, [TP3]} and TP1{A→E,
[TP4]} and adds them in the target code path TP1. After TP1
is handled, its reachability graph is completely built. When
our method starts the comparison from the locking constraint
TP2{D→A}, the three locking constraints (including two indi-
rect ones) in TP1 are matched. Because the reachability graph
of TP1 is complete, the comparison stops when these locking
constraints are handled, which can avoid the repeated steps
performed by the traditional comparison method in Figure 7.
In this way, our method can effectively reduce the time usage
of locking-cycle detection.

Besides, for each indirect locking constraint, our method
also stores the related original locking constaints and target
code paths. During comparison, if a locking cycle is found
as a possible deadlock, our method can conveniently recover
the information about the involved locks and their code paths,
which is used for false-positive filtering in Section 3.3.

3.3 Two-Dimensional Filtering Strategy
For a possible deadlock, our strategy checks whether it is
a false positive, in two dimensions, namely validating the
feasibility and concurrency of its target code paths.
D1: Validating code-path feasibility. For a given code path,
we can use an SMT solver to validate the satisfiability of all
the branch conditions and variable accesses (including read
and write operations) in this code path. For deadlock detection,
there are two possible stages where code-path validation can
be performed: (S1) during the dataflow analysis extracts target
code paths in Section 3.1, we can validate the feasibility
of each extracted target code path; (S2) after locking-cycle
detection in Section 3.2, we can validate the feasibility of the
target code paths for each possible deadlock.

In S1, because the dataflow analysis needs to handle sub-
stantial code paths, if we perform complete and accurate val-
idation of these code paths, the time cost will be quite high.
In S2, we believe that the code paths of possible deadlocks
should occupy a very small proportion of all the target code
paths extracted in the dataflow analysis, and thus it is accept-
able to perform complete and accurate validation of these
code paths. An alternative way is to just perform code-path
validation in S2. However, without the validation in S1, lots of
infeasible target code paths will be extracted for locking-cycle
detection, which can also introduce high time cost.

Based on the above consideration, our strategy uses a staged
and balanced way. In S1, our strategy uses a simple and light-
weight path-condition checking method to efficiently check
the extracted target code paths. This method checks only

if (val == 1)
 spin_lock(A);

......
if (val == 2)
 spin_lock(B);

TP1

(a) Branch condition

Locking constraint:
TP1{A→B} FALSE!

a = b + 5;
spin_lock(A);
......
if (a < b)
 spin_lock(B);

TP1

(b) Path conditions in one path

if (dev->data > 0)
 spin_lock(A);

......
if (dev->data > 0)

 spin_lock(B);

TP1

Locking constraint: TP1{A→B}, TP2{B→A}
Locking cycle: A→B, B→A FALSE!

(c) Path conditions in two paths

data = dev->data;
spin_lock(B);
......
if (data == 0)
 spin_lock(A);

TP2

if (dev)
 spin_lock(B);

......
if (dev)
 spin_lock(A);

TP2

Locking constraint: TP1{A→B}, TP2{B→A}
Locking cycle: A→B, B→A FALSE!

Figure 9: Examples of code-path feasibility validation.

spin_lock(X);
......
spin_lock(A);
......
spin_lock(B);

TP1

(a) Common lock

spin_lock(X);
......
spin_lock(B);
......
spin_lock(A);

TP2

Func X
 -> FuncP

 -> spin_lock(A);
 -> spin_lock(B);

TP1

(b) Common part in call graph

Func X
 -> FuncQ
 -> spin_lock(B);
 -> spin_lock(A);

TP2

Figure 10: Examples of code-path concurrency checking.

branch conditions in each code path, without handling vari-
able accesses outside branch conditions. Thus, this method
is fast but relatively inaccurate, and it can quickly drop many
target code paths that are obviously infeasible. Figure 9(a)
shows an example target code path that can be dropped by this
method. In S2, our strategy uses a complete and heavy-weight
path-condition checking method to accurately check the code
paths of possible deadlocks. This method checks both branch
conditions and variable accesses in each code path. Thus, this
method is relatively slow but accurate, and it can effectively
drop false deadlocks involving complex path conditions.

In fact, because a deadlock contains two or more code paths
that are interleaved in concurrent execution, these code paths
may access some shared variables that should have identical
values. Thus, for each possible deadlock, the heavy-weight
method in S2 performs code-path validation in two ways.
First, for each code path of this deadlock, the method validates
its feasibility; if any code path is identified to be infeasible
by an SMT solver, this deadlock is considered to be false
and dropped. Second, the method extracts shared variables
having identical data structure types and fields in each two
code paths, then identifies the variable accesess and branch
conditions that are related to these shared variables in the
code paths, and finally translates the identified operations into
SMT constraints of an SMT solver. If these SMT constraints
are computed to be unsatisfiable, this deadlock is considered
to be false and dropped. Figure 9(b) and Figure 9(c) show
two example false deadlocks that can be dropped in these two
ways, respectively.

D2: Checking code-path concurrency. For a deadlock, its
target code paths should be able to be concurrently executed;
otherwise, this deadlock is false. For each possible deadlock,
our strategy checks the concurrency of its target code paths in
two ways. First, our strategy checks whether there is a com-
mon lock acquired before the involved lock-acquire opera-
tions in any two of the target code paths. If so, these code paths
cannot be concurrently executed, so this possible deadlock
is considered to be false and dropped. Second, our strategy
extracts the call graph of each target code path, and checks
whether any two of these call graphs have common parts. If so,

USENIX Association 2022 USENIX Annual Technical Conference 373

DLOS

Lock-usage
analyzer

Clang
compiler

Locking-cycle
detector

LLVM
bytecode

Target
code paths

Information
collector

Function
information

Possible
deadlocks

OS kernel
source code

Deadlock
validator

Final
deadlocks

Figure 11: DLOS architecture.

it indicates that the related two code paths may be sequentially
executed at different time points of the same thread, so this
possible deadlock is considered to be false and dropped. Fig-
ure 10(a) and Figure 10(b) show two example false deadlocks
that can be dropped in these two ways, respectively.

4 DLOS Approach

Based on the three key techniques in Section 3, we design a
practical static approach named DLOS, to detect deadlocks
in OS kernels. We have implemented DLOS with Clang [13]
and Z3 [54]. DLOS automatically performs static analysis on
the LLVM bytecode files of the OS kernel. Figure 11 shows
the architecture of DLOS, which has four phases:
P1: Source-code compilation. The Clang compiler com-
piles the kernel source files into LLVM bytecode files, and
then the information collector handles each function in LLVM
bytecode to collect the function’s information (including func-
tion name, function-definition position, etc.). The information
is used for inter-procedural analysis across source files.
P2: Locking-constraint extraction. The lock-usage ana-
lyzer uses our summary-based lock-usage analysis to handle
LLVM bytecode files. This analysis starts at the entry of each
function in the kernel code, to extract target code paths con-
taining distinct locking constraints.
P3: Locking-cycle detection. The locking-cycle detector
uses our reachability-based comparison method to check the
extracted target code paths with locking constraints, and de-
tects locking cycles as possible deadlocks. We observe that a
kernel module often acquires private locks that are not acces-
sible for other kernel modules, and thus the detector focuses
on checking target code paths in the same kernel module.
P4: False-positive filtering. The deadlock validator uses our
two-dimensional filtering strategy to check possible deadlocks
and drop false positives. Besides, two possible deadlocks may
have identical problematic locking operations but differ in
code paths. To drop such repeated bugs, for a new possi-
ble deadlock, the validator checks whether it has the same
problematic locking operations with any already detected
deadlock; if so, it is considered to be repeated and dropped.
Implementation details. DLOS performs lock-usage analysis
and path validation from the entry of each function in OS code,
so it can handle different execution contexts like interrupt han-
dling. However, DLOS does not handle function-pointer calls

at present, so it cannot detect deadlocks across kernel mod-
ules connected by function pointers. Besides, DLOS cannot
analyze RCU locks, as RCU lock-acquiring/release functions
(like rcu_read_lock and rcu_read_unlock) have no argu-
ment. Finally, to accelerate deadlock detection, DLOS can
support the parallelism of handling multiple kernel modules
using multi-thread execution.

5 Evaluation

To validate the effectiveness of DLOS, we evaluate it on the
Linux kernel. To cover different kernel versions, we select an
old version 4.9 and a recent version 5.10. Table 1 shows the
basic information about these kernel versions, and source code
lines are counted by CLOC [14]. We run the experiments on a
regular x86-64 PC with eight Intel i7-3770@3.40G CPUs and
16GB memory. We use the kernel configuration allyesconfig
to enable all kernel code for the x86-64 architecture.

Description Linux 4.9 Linux 5.10
Release time December 2016 December 2020
Source files (.c) 23.7K 29.4K
Source code lines (.c) 11.4M 14.7M

Table 1: Basic information about the checked OS kernels.

5.1 Bug Detection
We configure DLOS with common lock-acquiring/release
functions (like spin_lock and spin_unlock) according to
the Linux kernel documents [34], and then run DLOS to au-
tomatically check the kernel source code. We manually check
all the deadlocks found by DLOS to identify real bugs. Table 2
shows the results, and we have the following findings:
Code analysis. DLOS can scale to large code bases of OS
kernels. Specifically, it analyzes 8.5M and 11.7M source code
lines in 14.5K and 19.9K source files in Linux 4.9 and 5.10,
respectively, within 7 hours. The remaining 2.9M and 3.0M
source code lines in 9.2K and 9.5K source files are not ana-
lyzed, because they are not enabled by allyesconfig for the
x86-64 architecture.
Efficiency improvement. DLOS improves the analysis effi-
ciency from two aspects:

First, when extracting target code paths containing locking
constraints, our lock-usage analysis uses function summaries
to reduce repeated code analysis in the same functions. Specif-
ically, around 93% of the times DLOS handles a function call
is able to reuse an existing function summary, without the
need of analyzing the function’s definition again.

Second, when detecting locking cycles, our reachability-
based comparison method uses constraint reachability graphs
to reduce repeated comparison of locking constraints. Specifi-
cally, with 196K and 222K indirect locking constraints created
by our method, 851K and 946K times of repeated comparison
are reduced in Linux 4.9 and 5.10, respectively.

374 2022 USENIX Annual Technical Conference USENIX Association

Description Linux 4.9 Linux 5.10

Lock-usage
analysis

Source files (analyzed/all) 14.5K/23.7K 19.9K / 29.4K
Source code lines (analyzed/all) 8.5M/11.4M 11.7M/14.7M
Times of handling functions 4,102K 5,032K
Times of reusing function summaries 3,816K 4,682K
Extracted distinct target code paths 102K 117K
Extracted locking constraints 323K 439K

Locking-cycle
detection

Created indirect locking constraints 196K 222K
Times of reducing comparison 851K 946K
Possible deadlocks 465 539

False-positive
filtering

Dropped infeasible target code paths 464K 524K
False bugs due to infeasible paths 220 258
False bugs due to common locks 78 94
False bugs due to call graphs 101 122
Total false bugs 419 474

Deadlock Found bugs 46 65
Real bugs 39 54

Time usage

Lock-usage analysis 265m 294m
Locking-cycle detection 85m 96m
False-positive filtering 22m 28m
Total time 372m 418m

Table 2: Deadlock-detection results.

False-positive dropping. DLOS uses our two-dimensional
filtering strategy to drop false positives from three aspects:

First, when extracting target code paths containing lock-
ing constraints, our strategy uses a simple and light-weight
code-path validation method to drop 464K and 524K infea-
sible target code paths in Linux 4.9 and 5.10, respectively.
In addition, by dropping these target code paths, the related
unnecessary locking-constraint comparison can be avoided in
locking-cycle detection, which also improves the efficiency
of deadlock detection.

Second, after locking-cycle detection reports possible dead-
locks, our strategy uses a complete and heavy-weight code-
path validation method to drop 220 and 258 false bugs in
Linux 4.9 and 5.10, respectively. Indeed, these false bugs’
code paths are failed to be dropped in our lock-usage analysis,
because the light-weight code-path validation method used in
this analysis is efficient but relatively inaccurate. To improve
accuracy, the heavy-weight code-path validation method com-
pletely checks both branch conditions and variable accesses
in the code paths of each possible deadlock, and thus it suc-
cessfully drops these false bugs after locking cycle detection.

Finally, our strategy checks the concurrency of possible
deadlocks, and drops 179 and 216 false bugs in Linux 4.9 and
5.10, respectively, because their target code paths are consid-
ered to be non-concurrent. Specifically, 78 and 94 bugs are
dropped due to holding a common lock in target code paths;
101 and 122 bugs are dropped due to containing common
parts in the call graphs of target code paths.

Deadlock finding. DLOS reports 46 and 65 deadlocks in
Linux 4.9 and 5.10, respectively. We spent eight hours on
checking all these 111 reported deadlocks. We identify 39
and 54 deadlocks are real in Linux 4.9 and 5.10, respectively.
21 real deadlocks in Linux 4.9 have been fixed in Linux
5.10, including the deadlock in the btrfs filesystem shown in
Figure 4. Thus, DLOS can find known deadlocks. Moreover,
we have reported the 54 real deadlocks in Linux 5.10 to Linux

kernel developers, and 31 of them have been confirmed. We
are still waiting for the reply of the remaining ones. Thus,
DLOS can find new deadlocks.

We infer that these real deadlocks are missed by Lockdep
in extensive kernel testing, because their thread interleavings
are infrequent to occur, and constructing workloads to cover
these thread interleavings is difficult. Thus, DLOS can indeed
find many deadlocks that are hard to find in runtime testing.

Besides, we believe that DLOS is helpful to deadlock re-
production, because it produces the detailed code paths of the
found deadlocks. With these code paths, time delays can be
strategically injected and carefully controlled, to cover spe-
cific thread interleavings and reproduce the found deadlocks.
We have manually performed this way for several deadlocks
in kernel modules that we can run, including the two dead-
locks in Figure 4 and Figure 12(a), and these deadlocks can
be successfully reproduced at runtime.
Deadlock details. Among the 93 real deadlocks in Linux 4.9
and 5.10, 78 (33 in Linux 4.9 and 45 in Linux 5.10) occur in
device drivers, and 15 (6 in Linux 4.9 and 9 in Linux 5.10)
occur in filesystems. This result indicates that device drivers
remain a significant source of OS bugs [49]. Besides, for
86 deadlocks (35 in Linux 4.9 and 51 in Linux 5.10), DLOS
reports two code paths for each of them, indicating it is caused
by two locks in two threads; for the remaining 7 deadlocks,
DLOS reports three code paths for each of them, indicating it
is caused by three locks in three threads.

5.2 False Positives and Negatives

False positives. DLOS reports 7 and 11 false bugs in Linux
4.9 and 5.10, resulting the false positives rates of 15% and
17%, respectively. By manually checking these false bugs, we
find that they are reported for three main reasons:

First, the field-based analysis in locking-cycle detection can
make mistakes when identifying the same locks in different
code paths. This analysis identifies the same locks if the locks
variables have the same data structure types and fields; but two
different lock variables can also have the same data structure
types and fields, and their data structure variables are different.
This analysis cannot handle such cases at present. This reason
causes DLOS to report 3 and 5 false bugs in Linux 4.9 and
5.10, respectively.

Second, although DLOS uses Z3 to validate path feasibility,
it can still make mistakes when handling some complex cases,
such as complicated arithmetic conditions and data depen-
dence across multiple functions. This reason causes DLOS to
report 2 and 3 false bugs in Linux 4.9 and 5.10, respectively.

Finally, the alias analysis in our lock-usage analysis is intra-
procedural and flow-insensitive, and thus can identify wrong
alias relationships across function calls, causing mistakes in
locking-constraint extraction. This reason causes DLOS to
report 2 and 3 false bugs in Linux 4.9 and 5.10, respectively.

USENIX Association 2022 USENIX Annual Technical Conference 375

False negatives. DLOS may still miss some real deadlocks
for three main reasons:

First, our lock-usage analysis performs incomplete bottom-
up analysis of each callee function, to avoid path explosion of
inter-procedural analysis. Specifically, it randomly selects one
of the target code paths in the callee function, and splices it
into the analyzed target code in the caller function. Although
the other target code paths in the callee function are handled in
top-down analysis, they are neglected in bottom-up analysis,
causing some locking constraints in the target code paths of
the caller function to be missed.

Second, DLOS does not analyze function-pointer calls, and
thus it cannot build complete call graphs for inter-procedural
analysis. As a result, DLOS may miss real deadlocks involv-
ing the code that is reached through function-pointer calls.

Finally, DLOS considers that a target code path is never
concurrently executed with itself. Indeed, to reduce false posi-
tives, DLOS validates two code paths’ concurrency by check-
ing their common locks and call graphs. However, this valida-
tion is infeasible for two identical code paths, and thus DLOS
does not detect deadlocks occuring in the same target code
path of different execution contexts.

5.3 Case Studies of the Found Deadlocks

Figure 12 shows two deadlocks found by DLOS in Linux 5.10,
and they have been confirmed by Linux kernel developers.
Deadlock in SysRq command handling for filesystems. In
Figure 12(a), when the function do_thaw_all_callback
is executed on the code path P1, it first acquires the
read-write semaphore sb->s_umount and then the mu-
tex lock bdev->bd_fsfreeze_mutex; when the function
freeze_bdev is executed on the code path P2, it first ac-
quires the mutex lock bdev->bd_fsfreeze_mutex and then
the read-write semaphore sb->s_umount. During SysRq
commands [50] are handled for filesystems, the functions
do_thaw_all_callback and freeze_bdev can be concur-
rently executed, and thus an ABBA deadlock can occur.
Deadlock in the LPFC SCSI driver. In Figure 12(b),
when the function lpfc_nvmet_unsol_fcp_issue_abort
is executed on the code path P1, it acquires the spinlocks
ctxp->ctxlock and then phba->sli4_hba.abts_nvmet_-
buf_list_lock; when the function lpfc_sli4_nvmet_-
xri_aborted is executed on the code path P2, it acquires
the spinlocks phba->sli4_hba.abts_nvmet_buf_list_-
lock and then ctxp->ctxlock. During driver execution,
the functions lpfc_nvmet_unsol_fcp_issue_abort and
lpfc_sli4_nvmet_xri_aborted can be concurrently exe-
cuted, and thus an ABBA deadlock can occur.

From the feedback of kernel developers, the confirmed
deadlocks found by DLOS require infrequent and special test
cases to find at runtime, which indicates that DLOS is useful
to detecting hard-to-trigger deadlocks via static analysis.

Code Path P1:
// FILE: linux-5.10/fs/super.c
do_thaw_all_callback

 -> down_write(&sb->s_umount) [Line 1028]
 -> emergency_thaw_bdev [Line 1030]

 -> thaw_bdev [526]
 -> mutex_lock(&bdev->bd_fsfreeze_mutex) [Line 734]

Code Path P2:
// FILE: linux-5.10/fs/block_dev.c
freeze_bdev

 -> mutex_lock(&bdev->bd_fsfreeze_mutex) [Line 556]
 -> freeze_super [Line 576]

 -> down_write(&sb->s_umount) [Line 517]

(a) Deadlock in SysRq command handling for filesystems

Code Path P1:
// FILE: linux-5.10/drivers/scsi/lpfc/lpfc_nvmet.c
lpfc_nvmet_unsol_fcp_issue_abort

 -> spin_lock_irqsave(&ctxp->ctxlock, flags) [Line 3502]
 -> spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock) [Line 3504]

Code Path P2:
// FILE: linux-5.10/drivers/scsi/lpfc/lpfc_nvmet.c
lpfc_sli4_nvmet_xri_aborted

 -> spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock) [Line 1787]
 -> spin_lock(&ctxp->ctxlock) [1794]

(b) Deadlock in the LPFC SCSI driver

Figure 12: Two real deadlocks found by DLOS in Linux 5.10.

5.4 Comparison Experiment

We aim to experimentally compare to RacerX [19], which
is the sole existing static approach to systematically detect
deadlocks in OS kernels. However, RacerX is not open-source,
and Linux kernel 2.5.62 checked in its paper is too old to be
normally compiled by Clang. Thus, we have to try our best to
implement a RacerX-like tool according to its paper.

RacerX [19] performs code analysis with summary caches,
which seems similar to function summaries used in our lock-
usage analysis. However, RacerX lacks the other two key
techniques used in DLOS, namely the reachability-based com-
parison method to improve the efficiency of locking-cycle
detection, and the two-dimensional filtering strategy to drop
false positives. To validate the value of these two techniques
in comparison, we implement three tools by modifying DLOS:
(1) DLOS!reach that uses the traditional comparison method in
RacerX for locking-cycle detection to replace the reachability-
based comparison method in DLOS; (2) DLOS! f ilter that re-
moves the two-dimensional filtering strategy in DLOS; (3)
RacerX-like that both uses the traditional comparison method
for locking-cycle detection and removes the two-dimensional
filtering strategy in DLOS.

We run these three tools to check the whole Linux 5.10
code, but the DLOS!reach and RacerX-like tools run for over
60 hours, without finishing their detection. Thus, for more
clear comparison, we select six kernel modules in Linux 5.10,
and run these tools and DLOS to check the source code of
these kernel modules. These six kernel modules include: two
ones (sb and lpfc) that has real deadlocks found by DLOS,
two ones (fpga and ocfs2) that has false deadlocks found by
DLOS, and two ones (jfs and bcache) that has no deadlock
found by DLOS. Table 3 shows the results, and we find that:

376 2022 USENIX Annual Technical Conference USENIX Association

Description DLOS!reach DLOS! f ilter RacerX-like DLOS

sb Found bugs (real/all) 6/6 6/14 6/14 6/6
Time usage 30s 14s 27s 16s

lpfc Found bugs (real/all) 7/7 7/25 7/25 7/7
Time usage 524s 162s 501s 181s

fpga Found bugs (real/all) 0/2 0/5 0/5 0/2
Time usage 21s 9s 18s 11s

ocfs2 Found bugs (real/all) 0/2 0/10 0/10 0/2
Time usage 936s 214s 892s 253s

jfs Found bugs (real/all) 0/0 0/0 0/0 0/0
Time usage 305s 101s 280s 122s

bcache Found bugs (real/all) 0/0 0/3 0/3 0/0
Time usage 78s 28s 71s 33s

Table 3: Comparison results of six Linux kernel modules.

First, the DLOS!reach tool achieves the same accuracy with
DLOS, but it spends more time on locking-cycle detection.
Thus, our reachability-based comparison method is more effi-
cient than the traditional comparison method in RacerX, when
performing locking-cycle detection.

Second, the DLOS! f ilter tool reports many more false bugs
than DLOS, though it finds the real deadlocks found by DLOS.
Thus, our two-dimensional filtering strategy is useful to drop-
ping false positives in deadlock detection. Moreover, we ob-
serve that the DLOS! f ilter tool spends less time than DLOS.
Indeed, without validating the feasibility or concurrency of
target code paths, the DLOS! f ilter tool can decrease time us-
age; but this tool extracts many infeasible target code paths
for locking-constraint comparison, which also increases the
time usage of locking-cycle detection. As a whole, the de-
creased time usage is more than the increased time usage in
the experiment, and thus the DLOS! f ilter tool has less time
usage than DLOS.

Finally, the RacerX-like tool spends less time than the
DLOS!reach tool, because it does not validate the feasibility or
concurrency of target code paths, but causing more false bugs
to be reported. The RacerX-like tool spends more time than
the DLOS! f ilter tool, because it detects locking cycles with
the traditional comparison method, which is less efficient than
our reachability-based comparison method; but it achieves
the same accuracy with the DLOS! f ilter tool, because neither
of them drops false positives. Compared to the RacerX-like
tool, DLOS achieves better accuracy in deadlock detection
with less time usage.

6 Discussion

Interleaving model. DLOS identifies each target code path
from the entry of each function in OS code, and then it con-
siders that two different target code paths identified by our
lock-usage analysis can be concurrently executed. To reduce
false positives, DLOS validates their concurrency by check-
ing common locks and call graphs using our two-dimensional
filtering strategy. As this strategy is infeasible in handling
the case that a target code path is concurrently executed with
itself, DLOS cannot detect deadlocks occurring in this case.

Detecting deadlocks in other OS kernels. Besides the
Linux kernel, DLOS can also check other OS kernels to detect
their deadlocks. However, doing so has some practical diffi-
culties. For example, some APIs used in DLOS have different
usages between these OSes and Linux, and these OSes have
different processes of kernel-code compilation from Linux.
At present, we have preliminarily run DLOS in NetBSD to
check its kernel source code, and found one real deadlock in
the sysmon kernel module without false positive. This dead-
lock has been confirmed by NetBSD kernel developers.

Detecting deadlocks involving waiting queues. Besides
the deadlocks caused by locking cycles, incorrect operations
on waiting queues can also cause deadlocks in OS kernels. For
example, one thread waits for the event E1 and then triggers
the event E2, while the other concurrent thread waits for the
event E2 and then triggers the event E1, so a deadlock can
occur for these two threads. In kernel code, waiting queues
and locks can be used together to cause deadlocks, which
are more difficult to detect. At present, no static approach
(including RacerX) can detect such deadlocks, and thus we
plan to extend DLOS to detecting them.

Detecting other locking issues. We believe that DLOS can
be extended to detecting other locking issues, such as dou-
ble locks and using sleep-able locks while holding spinlocks.
Indeed, computing locksets and validating code-path feasibil-
ity are two important steps in detecting locking issues, and
our lock-usage analysis and filtering strategy can effectively
perform these steps, respectively.

Limitations and future works. DLOS can be strengthened
in some aspects. First, DLOS does not handle function-pointer
calls in its lock-usage analysis, and thus it may miss deadlocks
involving the code that is reached through function-pointer
calls, especially the deadlocks across kernel modules con-
nected by function pointers. To relieve this limitation, we plan
to apply existing function-pointer analysis [3, 36] in DLOS
to detect more deadlocks and reduce false negatives. Second,
to reduce the complexity of analyzing loops and recursive
calls, DLOS unrolls each loop and recursive call just once,
causing soundness loss in static analysis. Such soundness loss
can introduce both false positives and negatives, when DLOS
analyzes the code involving loops and recursive calls. To re-
lieve this limitation, we plan to adapt existing loop-oriented
analysis [35, 48] in DLOS to soundly handle loops and recur-
sive calls. Thirdly, DLOS does not handle some special cases
at present, such as RCU locks, memory barriers, assembly
instructions and concurrent execution of the same code path,
which may also cause false positives and negatives in dead-
lock detection. To relieve this limitation, we plan to consider
these special cases in our static analysis, to further improve
analysis accuracy. Finally, we plan to port DLOS to detect-
ing deadlocks in other OS kernels, and to extend DLOS to
detecting deadlocks involving waiting queues as well as other
locking issues.

USENIX Association 2022 USENIX Annual Technical Conference 377

7 Related Work

7.1 Dynamic Analysis of Deadlocks

Many approaches [5, 9–11, 15, 21, 27, 28, 31, 33, 44, 45, 55]
dynamically monitor thread execution and lock-related opera-
tions to detect locking cycles. Most of them are used for user-
level applications. For example, Pulse [31] is an operating
system mechanism to detect deadlocks in applications. It peri-
odically identifies long-sleeping application processes and the
events they are waiting for, then uses high-level speculative
execution to a general resource graph about each identified
application process, and finally detects cycles in the graph
as deadlocks. UnDead [55] is an efficient dynamic approach
for deadlock detection. It uses several techniques to reduce
runtime overhead, such as only recording unique lock depen-
dencies (identical to locking constraints in this paper) for
every thread during the execution and dropping unnecessary
information in runtime recording.

Lockdep [33] is a kernel lock-usage validator, which can
find different kinds of lock-related bugs, such as double locks
and deadlocks. Lockdep performs runtime monitoring and
checking based on the granularity of lock class, which de-
scribes a group of locks that are logically the same with
respect to locking rules. Specifically, Lockdep dynamically
tracks the state of each lock class and checks the dependencies
between different lock classes. If any state or dependency is
incorrect when lock-related operations are performed, Lock-
dep will report related bugs at runtime.

By using exact runtime information about thread execu-
tion and lock-related operations, dynamic analysis approaches
can effectively reduce false positives in deadlock detection.
However, dynamic analysis requires substantial test cases to
achieve high testing coverage and reduce false negatives, and
it also introduces runtime overhead for the tested programs.

7.2 Static Analysis of Deadlocks

Some approaches [30, 41, 42, 46, 52] use static analysis to
detect deadlocks in user-level applications, without actually
running the applications. Naik et al. [30] design a sound static
approach to check deadlocks in C programs. For the checked
program, this approach performs context-sensitive and thread-
sensitive analysis on its inter-procedural control flows, based
on abstract interpretation. During the analysis, this approach
checks lock-related operations to extract lock dependencies
and detect locking cycles as possible deadlocks. This ap-
proach also uses a non-concurrency analysis to drop false pos-
itives, by checking common locks and thread-creation/joining
operations. Santhiar et al. [46] design a static approach to de-
tect deadlocks in asynchronous C# programs. This approach
uses a new representation of the mixed synchronous and asyn-
chronous control flows, and constructs a deadlock detection
graph based on this representation. However, OS kernels and

user-level applications have different concurrency models
(described in Section 2.2), and thus these approaches are inef-
fective in detecting deadlocks in OS kernels.

To our knowledge, RacerX [19] is the sole existing static
analysis approach to systematically detect deadlocks in OS
kernels. However, it has a high false positive rate of 46%, due
to neglecting the feasibility and concurrency of code paths;
and its locking-cycle detection method is simple and ineffi-
cient. Compared to RacerX, DLOS checks the feasibility and
concurrency of code paths to achieve better accuracy, and uses
a reachability-based comparison method in locking-cycle de-
tection to achieve higher efficiency. Besides, we also note that
Breuer et al. [6–8] have several works that focus on detect-
ing deadlocks caused by sleeping whiling holding spinlocks.
As these works have no systematic technique of detecting
deadlocks caused by locking cycles, we do not particularly
introduce and compare to these works in this paper.

7.3 Detection of Kernel Concurrency Bugs
Besides deadlocks, OS kernels also suffer from other kinds
of concurrency bugs, such as data races and atomicity vio-
lations. To detect these kernel concurrency bugs, some ap-
proaches [2, 12, 18, 47] use static or dynamic lockset analy-
sis to track shared variables and lock-related operations, and
some approaches [20, 25, 29] perform sampling to monitor
concurrent memory accesses. Moreover, to actually cover
infrequent thread interleavings and detect hard-to-find concur-
rency bugs, some approaches [22–24,26,53] perform random
thread scheduling or coverage-guided thread-interleaving ex-
ploration in runtime testing. Though these approaches do
not target deadlocks, some of their techniques (like lockset
analysis) are useful for DLOS in deadlock detection.

8 Conclusion

Deadlocks in OS kernels are dangerous and hard-to-find. To
detect these bugs, we design a practical static analysis ap-
proach named DLOS. It has three key techniques, including a
summary-based lock-usage analysis to efficiently extract code
paths containing distinct locking constraints, a reachability-
based comparison method to efficiently detect locking cycles,
and a two-dimensional filtering strategy to effectively drop
false positives. In the evaluation, DLOS finds 54 real dead-
locks in Linux 5.10, and 31 of them have been confirmed.

Acknowledgment

We thank our shepherd and anonymous reviewers for their
helpful advice on the paper. We also thank Linux kernel devel-
opers, who gave useful feedback and advice to us. This work
was supported by the National Natural Science Foundation of
China under Project 62002195.

378 2022 USENIX Annual Technical Conference USENIX Association

References

[1] Lars Ole Andersen. Program analysis and specializa-
tion for the C programming language. PhD thesis, Uni-
versity of Cophenhagen, 1994.

[2] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min
Hu. Effective static analysis of concurrency use-after-
free bugs in Linux device drivers. In Proceedings of
the 2019 USENIX Annual Technical Conference (ATC),
pages 255–268, 2019.

[3] Jia-Ju Bai, Julia Lawall, and Shi-Min Hu. Effective de-
tection of sleep-in-atomic-context bugs in the Linux ker-
nel. ACM Transactions on Computer Systems (TOCS),
36(4):1–30, 2020.

[4] Jia-Ju Bai, Yu-Ping Wang, and Shi-Min Hu. AutoPA:
automatically generating active driver from original pas-
sive driver code. In Proceedings of the 2018 Interna-
tional Symposium on Code Generation and Optimiza-
tion (CGO), pages 288–299, 2018.

[5] Saddek Bensalem and Klaus Havelund. Dynamic dead-
lock analysis of multi-threaded programs. In Proceed-
ings of the 2005 Haifa Verification Conference, pages
208–223, 2005.

[6] Peter T Breuer and Simon Pickin. Checking for dead-
lock, double-free and other abuses in the Linux kernel
source code. In Proceedings of the 2006 International
Conference on Computational Science, pages 765–772,
2006.

[7] Peter T Breuer, Simon Pickin, and Maria Larrondo
Petrie. Detecting deadlock, double-free and other abuses
in a million lines of Linux kernel source. In Proceed-
ings of the 30th NASA Software Engineering Workshop,
pages 223–233, 2006.

[8] Peter T Breuer and Marisol Garciá Valls. Static deadlock
detection in the Linux kernel. In Proceedings of the
9th Ada-Europe International Conference on Reliable
Software Technologies, pages 52–64, 2004.

[9] Yan Cai and WK Chan. MagicFuzzer: scalable deadlock
detection for large-scale applications. In Proceedings
of the 34th International Conference on Software Engi-
neering (ICSE), pages 606–616, 2012.

[10] Yan Cai and Qiong Lu. Dynamic testing for deadlocks
via constraints. IEEE Transactions on Software Engi-
neering (TSE), 42(9):825–842, 2016.

[11] Yan Cai, Ruijie Meng, and Jens Palsberg. Low-overhead
deadlock prediction. In Proceedings of the 42nd Inter-
national Conference on Software Engineering (ICSE),
pages 1298–1309, 2020.

[12] Qiu-Liang Chen, Jia-Ju Bai, Zu-Ming Jiang, Julia
Lawall, and Shi-Min Hu. Detecting data races caused
by inconsistent lock protection in device drivers. In Pro-
ceedings of the 26th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER),
pages 366–376, 2019.

[13] Clang: a LLVM-based compiler for C/C++ program.
https://clang.llvm.org/.

[14] CLOC: count lines of code. https://cloc.sourceforge.net.

[15] Tiago Cogumbreiro, Raymond Hu, Francisco Martins,
and Nobuko Yoshida. Dynamic deadlock verification
for general barrier synchronisation. In Proceedings of
the 20th International Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 150–
160, 2015.

[16] Linux commit 57ba4cb85bff. https://github.com/tor-
valds/linux/commit/57ba4cb85bff.

[17] Linux commit 01d01caf19ff. https://github.com/tor-
valds/linux/commit/01d01caf19ff.

[18] Pantazis Deligiannis, Alastair F Donaldson, and Zvon-
imir Rakamaric. Fast and precise symbolic analysis of
concurrency bugs in device drivers. In Proceedings of
the 30th International Conference on Automated Soft-
ware Engineering (ASE), pages 166–177, 2015.

[19] Dawson Engler and Ken Ashcraft. RacerX: effective,
static detection of race conditions and deadlocks. In
Proceedings of the 19th International Symposium on
Operating Systems Principles (SOSP), pages 237–252,
2003.

[20] John Erickson, Madanlal Musuvathi, Sebastian Burck-
hardt, and Kirk Olynyk. Effective data-race detection
for the kernel. In Proceedings of the 9th International
Conference on Operating Systems Design and Imple-
mentation (OSDI), pages 151–162, 2010.

[21] Mahdi Eslamimehr and Jens Palsberg. Sherlock: scal-
able deadlock detection for concurrent programs. In
Proceedings of the 22nd International Symposium on
Foundations of Software Engineering (FSE), pages 353–
365, 2014.

[22] Pedro Fonseca, Rodrigo Rodrigues, and Björn B Bran-
denburg. SKI: exposing kernel concurrency bugs
through systematic schedule exploration. In Proceed-
ings of the 11th International Conference on Operating
Systems Design and Implementation (OSDI), pages 415–
431, 2014.

USENIX Association 2022 USENIX Annual Technical Conference 379

[23] Sishuai Gong, Deniz Altinbüken, Pedro Fonseca, and
Petros Maniatis. Snowboard: finding kernel concur-
rency bugs through systematic inter-thread communica-
tion analysis. In Proceedings of the 28th International
Symposium on Operating Systems Principles (SOSP),
pages 66–83, 2021.

[24] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar,
Byoungyoung Lee, and Insik Shin. Razzer: finding
kernel race bugs through fuzzing. In Proceedings of the
2019 IEEE Symposium on Security and Privacy, pages
754–768, 2019.

[25] Yunyun Jiang, Yi Yang, Tian Xiao, Tianwei Sheng, and
Wenguang Chen. DRDDR: a lightweight method to
detect data races in Linux kernel. Journal of Supercom-
puting, 72(4):1645–1659, 2016.

[26] Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu.
Context-sensitive and directional concurrency fuzzing
for data-race detection. In Proceedings of the 29th
Network and Distributed System Security Symposium
(NDSS), 2022.

[27] Pallavi Joshi, Mayur Naik, Koushik Sen, and David Gay.
An effective dynamic analysis for detecting generalized
deadlocks. In Proceedings of the 18th International
Symposium on Foundations of Software Engineering
(FSE), pages 327–336, 2010.

[28] Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayur
Naik. A randomized dynamic program analysis tech-
nique for detecting real deadlocks. In Proceedings of
the 30th International Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 110–
120, 2009.

[29] KCSAN: concurrency sanitizer for the Linux kernel.
https://github.com/google/ktsan/wiki/KCSAN.

[30] Daniel Kroening, Daniel Poetzl, Peter Schrammel, and
Björn Wachter. Sound static deadlock analysis for
C/Pthreads. In Proceedings of the 31st International
Conference on Automated Software Engineering (ASE),
pages 379–390, 2016.

[31] Tong Li, Carla Schlatter Ellis, Alvin R Lebeck, and
Daniel J Sorin. Pulse: a dynamic deadlock detection
mechanism using speculative execution. In Proceed-
ings of the 2005 USENIX Annual Technical Conference
(ATC), pages 31–44, 2005.

[32] LLVM compiler infrastructure. https://llvm.org/.

[33] Lockdep: runtime locking correctness validator in the
Linux kernel. https://www.kernel.org/doc/html/latest/
locking/lockdep-design.html.

[34] Linux kernel locking documents. https://www.kernel.
org/doc/html/latest/locking/index.html.

[35] Paul Lokuciejewski, Daniel Cordes, Heiko Falk, and Pe-
ter Marwedel. A fast and precise static loop analysis
based on abstract interpretation, program slicing and
polytope models. In Proceedings of the 2009 Interna-
tional Symposium on Code Generation and Optimiza-
tion (CGO), pages 136–146, 2009.

[36] Kangjie Lu and Hong Hu. Where does it go? refining
indirect-call targets with multi-layer type analysis. In
Proceedings of the 26th International Conference on
Computer and Communications Security (CCS), pages
1867–1881, 2019.

[37] Lanyue Lu, Andrea C Arpaci-Dusseau, Remzi H Arpaci-
Dusseau, and Shan Lu. A study of Linux file system
evolution. In Proceedings of the 11th International
Conference on File and Storage Technologies (FAST)),
pages 31–44, 2013.

[38] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.
Learning from mistakes: a comprehensive study on real
world concurrency bug characteristics. In Proceedings
of the 13th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 329–339, 2008.

[39] Ivan Matosevic and Tarek S Abdelrahman. Efficient
bottom-up heap analysis for symbolic path-based data
access summaries. In Proceedings of the 2012 Interna-
tional Symposium on Code Generation and Optimiza-
tion (CGO), pages 252–263, 2012.

[40] Scott McPeak, Charles-Henri Gros, and Murali Krishna
Ramanathan. Scalable and incremental software bug
detection. In Proceedings of the 9th International Sym-
posium on Foundations of Software Engineering (FSE),
pages 554–564, 2013.

[41] Mayur Naik, Chang-Seo Park, Koushik Sen, and David
Gay. Effective static deadlock detection. In Proceed-
ings of the 31st International Conference on Software
Engineering (ICSE), pages 386–396, 2009.

[42] Nicholas Ng and Nobuko Yoshida. Static deadlock
detection for concurrent Go by global session graph
synthesis. In Proceedings of the 25th International
Conference on Compiler Construction (CC), pages 174–
184, 2016.

[43] Leonid Ryzhyk, Yanjin Zhu, and Gernot Heiser. The
case for active device drivers. In Proceedings of the
1st Asia-Pacific Workshop on Systems (APSys), pages
25–30, 2010.

380 2022 USENIX Annual Technical Conference USENIX Association

[44] Malavika Samak and Murali Krishna Ramanathan. Mul-
tithreaded test synthesis for deadlock detection. In Pro-
ceedings of the 2014 International Conference on Object
Oriented Programming Systems Languages and Appli-
cations (OOPSLA), pages 473–489, 2014.

[45] Malavika Samak and Murali Krishna Ramanathan.
Trace driven dynamic deadlock detection and reproduc-
tion. In Proceedings of the 19th International Sympo-
sium on Principles and Practice of Parallel Program-
ming (PPoPP), pages 29–42, 2014.

[46] Anirudh Santhiar and Aditya Kanade. Static deadlock
detection for asynchronous C# programs. In Proceed-
ings of the 38th International Conference on Program-
ming Language Design and Implementation (PLDI),
pages 292–305, 2017.

[47] Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson. Eraser: a dynamic
data race detector for multithreaded programs. ACM
Transactions on Computer Systems (TOCS), 15(4):391–
411, 1997.

[48] Yulei Sui, Xiaokang Fan, Hao Zhou, and Jingling Xue.
Loop-oriented pointer analysis for automatic simd vec-
torization. ACM Transactions on Embedded Computing
Systems (TECS), 17(2):1–31, 2018.

[49] Michael M. Swift, Brian N. Bershad, and Henry M.
Levy. Improving the reliability of commodity oper-

ating systems. In Proceedings of the 19th International
Symposium on Operating Systems Principles (SOSP),
pages 207–222, 2003.

[50] Linux kernel SysRq documents. https://www.kernel.org/
doc/html/latest/admin-guide/sysrq.html.

[51] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang,
Yuanyuan Zhou, and Chengxiang Zhai. Bug charac-
teristics in open source software. Empirical Software
Engineering, 19(6):1665–1705, 2014.

[52] Amy Williams, William Thies, and Michael D Ernst.
Static deadlock detection for Java libraries. In Pro-
ceedings of the 19th European Conference on Object-
Oriented Programming (ECOOP), pages 602–629,
2005.

[53] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Tae-
soo Kim. KRACE: data race fuzzing for kernel file
systems. In Proceedings of the 2020 IEEE Symposium
on Security and Privacy, pages 1643–1660, 2020.

[54] Z3: a theorem prover. https://github.com/Z3Prover/z3.

[55] Jinpeng Zhou, Sam Silvestro, Hongyu Liu, Yan Cai,
and Tongping Liu. Undead: detecting and preventing
deadlocks in production software. In Proceedings of the
32nd International Conference on Automated Software
Engineering (ASE), pages 729–740, 2017.

USENIX Association 2022 USENIX Annual Technical Conference 381

	Introduction
	Background and Motivation
	Deadlock and Its Detection
	Concurrency Model of the OS Kernel
	Motivating Example

	Challenges and Key Techniques
	Summary-Based Lock-Usage Analysis
	Reachability-Based Comparison Method
	Two-Dimensional Filtering Strategy

	DLOS Approach
	Evaluation
	Bug Detection
	False Positives and Negatives
	Case Studies of the Found Deadlocks
	Comparison Experiment

	Discussion
	Related Work
	Dynamic Analysis of Deadlocks
	Static Analysis of Deadlocks
	Detection of Kernel Concurrency Bugs

	Conclusion

