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Abstract
Rowhammer attacks that corrupt level-1 page tables to gain
kernel privilege are the most detrimental to system security
and hard to mitigate. However, recently proposed software-
only mitigations are not effective against such kernel privilege
escalation attacks.

In this paper, we propose an effective and practical
software-only defense, called SoftTRR, to protect page tables
from all existing rowhammer attacks on x86. The key idea of
SoftTRR is to refresh the rows occupied by page tables when
a suspicious rowhammer activity is detected. SoftTRR is mo-
tivated by DRAM-chip-based target row refresh (ChipTRR)
but eliminates its main security limitation (i.e., ChipTRR
tracks a limited number of rows and thus can be bypassed by
many-sided hammer [17]). Specifically, SoftTRR protects an
unlimited number of page tables by tracking memory accesses
to the rows that are in close proximity to page-table rows and
refreshing the page-table rows once the tracked access count
exceeds a pre-defined threshold. We implement a prototype
of SoftTRR as a loadable kernel module, and evaluate its
security effectiveness, performance overhead, and memory
consumption. The experimental results show that SoftTRR
protects page tables from real-world rowhammer attacks and
incurs small performance overhead as well as memory cost.

1 Introduction

Rowhammer is a software-induced dynamic random-access
memory (DRAM) vulnerability that frequently accessing (i.e.,
hammering) DRAM aggressor rows can induce bit flips in
neighboring victim rows. An attacker can hammer aggressor
rows to corrupt different types of sensitive objects on victim

rows without access to them, breaking memory management
unit (MMU)-based memory protection, achieving privilege
escalation [13,46,62] or leaking sensitive information [11,37].
Of the many sensitive objects that have been corrupted by
the rowhammer attacks, page table corruption is the most
detrimental to system security, making kernel privilege esca-
lation attacks the mainstream [57]. To date, kernel privilege
escalation attacks [13, 22, 46, 53, 59, 62] focus on corrupting
level-1 page table entry (L1PTE) and some of them have been
demonstrated to gain kernel privilege from unprivileged appli-
cations [13,46,62], or even from JavaScript in webpages [22].

Multiple software-only mitigation schemes [12, 34, 57] can
be used to mitigate the kernel privilege escalation attacks.
Compared to hardware defenses [30, 38, 40, 49], software-
only schemes have the appeal of compatibility with existing
hardware, allowing better deployability. However, existing
software-only mitigations require modifications to memory
allocator and they are not effective against all the kernel privi-
lege escalation attacks. Specifically, CATT [12] and CTA [57]
are vulnerable to a recent privilege escalation attack (PTham-
mer [62]) that targets L1PTE. ZebRAM [34] assumes that bit
flips occur in a victim row that is one-row from hammered
aggressor row(s), making itself unable to defend against (ker-
nel privilege escalation) rowhammer attacks where a victim
row is no less than 2-row from the hammered rows [32,62].
To this end, we ask:

Is there an effective and practical software-only defense that
protects page tables against rowhammer attacks?

Our Contributions. In this paper, we provide a positive an-
swer to the question. We propose a new software-only defense
that defends against all existing kernel privilege escalation
attacks on x86, called SoftTRR. SoftTRR is motivated by
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a hardware defense, i.e., ChipTRR (known as TRR in the
DRAM standards [30, 40]). ChipTRR is designed to count
rows’ activations and refreshing adjacent rows to suppress
bit flips if the activation counts reach a pre-defined threshold.
ChipTRR was believed to eliminate the rowhammer effect
in present-day DDR4-based systems, until it was completely
circumvented by [17].

We observe that the root cause of failure of ChipTRR is that
it tracks a limited number of rows. Thus, bit flips are still pos-
sible when multiple rows are being hammered and the number
of hammered rows is larger than the tracked rows (i.e., many-
sided hammer [17]). SoftTRR addresses this limitation by
monitoring and tracking all rows neighboring (victim) rows
containing page tables. SoftTRR leverages MMU-enforced
virtual memory subsystem to frequently track memory ac-
cesses to any rows adjacent to page-table rows, and refreshes
page-table rows when necessary, making SoftTRR effective
in preventing rowhammer from breaking page table integrity.

Specifically, MMU is an essential component of modern
processors that supports OS kernel to enforce memory isola-
tion. With the assistance from MMU, the kernel, configures
page tables, mediates every memory access from user space,
and captures any unauthorized access that triggers a hardware
exception. On top of that, the kernel can capture the memory
access where relevant page tables have an unused rsrv bit set
(see page fault handler in Section 4.3). With this observation,
SoftTRR uses the kernel as the root of trust and frequently
configures page tables with the rsrv bit set to track memory
accesses to rows that neighbor rows of page tables. When
the tracked memory-access counters reach a pre-determined
limit, corresponding page-table rows will be refreshed. By
SoftTRR’s design, an adjacent or neighboring row can be
multiple-row from a page-table row, thus voiding the above
assumption of one-row-distance between victim and aggres-
sor rows made by ZebRAM [34]. In our implementation, the
adjacent rows are up to 6-row away from the aggressor rows,
the largest row distance that has been observed so far [32].

Our prototype implementation of SoftTRR is a loadable
kernel module (LKM) without any modification to the kernel.
The LKM has about 1700 source lines of code and it has
been deployed into three Linux systems where underlying
hardware have either DDR3 or DDR4 modules. We evaluated
SoftTRR-deployed systems in terms of security effective-
ness, performance, memory consumption and robustness. The
experimental results show that SoftTRR is effective in miti-
gating kernel privilege escalation attacks. Besides, SoftTRR
incurs low overhead on the tested benchmarks and its memory
consumption is within hundreds of KiB in a real-world use
case of LAMP (i.e., Linux, Apache, Mysql and PHP). We also
validate the robustness of a SoftTRR-enabled system using
system-call stress tests, results of which show that the system
runs as stable as a vanilla system.

In summary, the main contributions are as follows:
• We introduce SoftTRR to defend against rowhammer at-

tacks on page tables. Compared to prior works, SoftTRR is
an effective and practical software-only mitigation scheme.
• We implement a lightweight SoftTRR prototype to collect
page tables, track memory access, and refresh target page
tables by leveraging MMU and OS kernel features.
• We evaluate SoftTRR’s effectiveness against 3 representa-
tive rowhammer attacks, its performance overhead and mem-
ory consumption. The experimental results show that Soft-
TRR successfully protects page tables against the attacks, and
incurs negligible overhead and memory cost.

2 Background and Related Work

In this section, we first describe DRAM and its address map-
ping. We then present the rowhammer vulnerability as well
as its hardware and software defenses. Please refer to [42, 63]
for rowhammer surveys.

2.1 DRAM

The main memory of most modern computers uses DRAM.
Memory modules are usually produced in the form of dual
inline memory module (DIMM), where both sides of the
memory module have separate electrical contacts for mem-
ory chips. Each memory module is directly connected to the
CPU’s memory controller through one of the two channels.
Logically, each memory module consists of two ranks, corre-
sponding to its two sides, and each rank consists of multiple
banks. A bank is structured as arrays of memory cells with
rows and columns.

Every cell of a bank stores one bit of data whose value
depends on whether the cell is electrically charged or not.
As the charge stored in the cell disperses over time, every
cell’s charge must be restored or refreshed periodically in a
specified time period (i.e., tREFW), a typical value of which is
64 milliseconds (ms).
DRAM Address Mapping. The memory controller decides
how physical-address bits are mapped to a DRAM address.
A DRAM address refers to a 3-tuple of bank, row, column
(DIMM, channel, and rank are included into the bank tuple
field). As this mapping is not publicly documented on the
Intel processor platform, it has been reverse-engineered by
multiple works [44, 45, 55, 59].

2.2 Rowhammer Vulnerability

Kim et al. [33] are the first to perform a large scale study of
rowhammer on DDR3 modules, results of which have shown
that the vulnerability can be triggered by software accesses,
that is, frequently accessing rows of i+1 and i−1 (i.e., ag-
gressor rows) cause bit flips (i.e., charge leakage) in row i
(i.e., victim row).
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There are four hammer patterns in existing works. First,
double-sided hammer refers to a case where two adjacent rows
of the victim row are hammered simultaneously, which is the
most effective hammer pattern in inducing bit flips on DDR3
modules [46]. Second, single-sided hammer randomly picks
two aggressor rows in the same bank and hammers them [46].
Third, one-location hammer selects a single aggressor row for
hammer. This hammer pattern only applies to certain systems
where the DRAM controller employs an advanced policy (i.e.,
the closed-page policy) to optimize performance [21]. Last,
many-sided hammer chooses more than two aggressor rows
within the same bank for hammer. The aggressor rows are
usually separated by one row and two out of them are adjacent
to the victim row [17, 29].

2.3 Rowhammer Defenses

Hardware Solutions. Existing hardware solutions employed
by the industry can be summarized into three main categories.
The first is to decrease the DRAM refresh period [33] to re-
fresh all DRAM rows more frequently. For instance, three
computer manufacturers (HP [25], Lenovo [39] and Apple [3])
deployed firmware updates to decrease the refresh period from
64 ms to 32 ms. However, clflush-free rowhammer attacks [5]
still induce bit flips in the reduced refresh period. Decreasing
the refresh period by more than 7x can make the rowhammer
impossible but it will impose unacceptable overhead to the sys-
tems [33]. The second one is proposed by Intel [28] that lever-
ages Error Correcting Code (ECC) memory to correct single-
bit errors and detect double-bit errors. However, ECC has
been reverse engineered and is vulnerable to rowhammer [15].
The last is to track row’s activation count and various ap-
proaches have been proposed [30, 33, 38, 40, 43, 47–49, 60].
Among them, ChipTRR [30,40] was adopted by recent DDR4
manufacturers but it has been reverse-engineered and de-
feated [17, 23, 29]. None of other approaches are widely de-
ployed due to their limitations (e.g., significant area cost or
performance downsides) [7].
Software Defenses. Software defenses include both mit-
igation and detection techniques. As sensitive data is re-
quired to be within victim rows for exploitation, existing
mitigation techniques modify memory allocator and en-
force DRAM-aware memory isolation at different granular-
ity [9, 12, 34, 52, 54, 57]. CATT [12] implements DRAM
isolation between user and kernel memory. CTA [57] pro-
vides a dedicated DRAM region for level-1 page tables. Ze-
bRAM [34] isolates rows of sensitive data in a zebra pattern.
These defenses can prevent page tables from being hammered.
Albeit on different hardware, SoftTRR has an averaged over-
head of 0.75% on SPECint 2006 (see Appendix A), similar
to that of CATT [12] and CTA [57]. However, ZebRAM has
a much higher overhead of 4%–5%. ALIS [52] isolates DMA
memory to prevent the remote rowhammer attack [52] target-
ing a memcached application. RIP-RH [9] provides DRAM

isolation for local user processes.
Anvil [5] utilizes CPU performance counters to monitor

cache miss rate and detects a rowhammer attack, as typical
rowhammer attacks incur frequent cache misses. However,
Anvil is prone to false positives [12, 57]. Besides, its current
implementation cannot detect the PThammer attack [62]. The
other detection technique is RADAR [61]. As rowhammer
attacks exhibit recognizable rowhammer-correlated sideband
patterns in the spectrum of the DRAM clock signal, RADAR
leverages peripheral customized devices to capture and ana-
lyze the electromagnetic signals emitted by a DRAM-based
system.

3 SoftTRR: Software-only Target Row Refresh

We discuss threat model and assumptions in Section 3.1, de-
sign principles in Section 3.2 and design overview in Sec-
tion 3.3. Section 4 describes implementation details.

3.1 Threat Model and Assumptions

Our primary goal is to protect page tables and guarantee that
an adversary cannot corrupt them to gain kernel privilege
through rowhammer on x86 architectures. In our implementa-
tion of SoftTRR, we focus on protecting level-1 page tables
(L1PTs), the same goal as in CTA [57], because all exist-
ing page-table-oriented rowhammer attacks aim at corrupting
L1PTs. Even when higher levels of PTs are corrupted, they
are hard to be exploited (see details in CTA [57]). In spite of
that, SoftTRR can be extended to protect other levels of page
tables and we discuss it in Section 7.

We assume the kernel as the root of trust, and the kernel
module implementing SoftTRR is well protected. We con-
sider threats coming from both local adversaries and remote
adversaries. A local adversary resides in a low privilege user
process and thus can execute arbitrary code within her privi-
lege boundary. A remote adversary stays outside by launching
an attack, e.g., through a website with JavaScript.

The DRAM address mappings and in-DRAM address
remappings can be reverse-engineered using prior works [14,
44, 55, 59] and they are assumed to be available. Besides,
previous software-only rowhammer defenses [9, 12, 34, 57]
consider that hammering rowi only affects rowi+1 and rowi−1,
which however is not consistent with a recent work by Kim et
al. [32]. Particularly, they performed a comprehensive study
of 1580 DRAM chips (300 DRAM modules in total) from
three major DRAM manufacturers and found that bit flips can
occur in rows that are up to 6-row away from the hammered
rowi. SoftTRR by design protects rows of page tables from
being flipped by rows that are N-row away and its current
implementation allows that the distance between an adjacent
row and an L1PT row ranges from 1-row to 6-row, the largest
row distance observed by Kim et al. [32].
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Figure 1: SoftTRR Overview. SoftTRR is a kernel module and has three main components. Page Table collector maintains
information about page-table pages and their adjacent pages in close proximity. Adjacent Page Tracer traces access to the
maintained adjacent pages and updates charge-leak counters for relevant rows of page-table pages. When the counters reach a
pre-determined limit, Row Refresher is triggered to refresh desired rows hosting page-table pages. In comparison, non-page-table
rows (highlighted in green) are vulnerable to bit flips.

3.2 Design Principles

SoftTRR follows the security and practicality design princi-
ples described below. The security principle is to guarantee
SoftTRR can defend against all existing rowhammer attacks
targeting page tables. The practicality principles aim to make
SoftTRR applicable to real-world systems.
• DP1: SoftTRR should be effective in protecting ALL page
tables. Without this completeness guarantee, an attacker can
gain kernel privilege by compromising the integrity of page
tables that are not protected by SoftTRR.
• DP2: SoftTRR should be compatible with OS kernels. It
neither modifies/adds kernel source code nor breaks kernel
code integrity through binary instrumentation, which hinders
its adoption in practice.
• DP3: SoftTRR should have small performance overhead to
a protected system.

3.3 Design Overview

SoftTRR, residing in the kernel space, collects all page ta-
bles, and monitors their entire life cycle from page-table cre-
ation to page-table release. For each collected page-table
page, SoftTRR identifies all its adjacent pages in DRAM and
traces memory accesses to the adjacent pages. Thus, Soft-
TRR is aware of which adjacent page is accessed. When the
traced access count reaches a pre-determined limit, SoftTRR
knows which page-table page is at the risk of being flipped
and promptly refreshes the page (satisfying DP1).

All existing software-only mitigation techniques (see Sec-
tion 2) deeply hack into the memory allocator to become

DRAM-aware and add extra allocation/deallocation con-
straints. Unlike them, SoftTRR only acquires offline domain
knowledge (e.g., DRAM address (re)mappings of physical ad-
dresses), without requiring a new memory allocator or chang-
ing legacy allocator logic (satisfying DP2).

When paging is enabled, memory accesses are performed
through page tables or relevant TLB entries, and SoftTRR
flushes TLB and configures page tables to trace memory ac-
cesses to those adjacent pages. Thus, the access to an adjacent
page raises a hardware exception, which is captured by Soft-
TRR for the tracing purpose. If no such access occurs, no
overhead is introduced. Thus, the accesses to non-adjacent
pages are at full speed, isolating the performance overhead
caused by the accesses to adjacent pages (satisfying DP3).

As shown in Figure 1, SoftTRR has three critical compo-
nents. Page Table Collector actively collects all page tables
and maintains their page and DRAM information. It also col-
lects and maintains adjacent pages. Besides being accessible
to unprivileged users, a page is considered as adjacent when it-
self or its corresponding page-table page is adjacent to (N-row
from) another page-table page. This is based on an observa-
tion from Zhang et al. [62]. In particular, rowhammer attacks
corrupting page tables are classified into two categories. For
explicit attacks [13,46], they require attacker-accessible mem-
ory adjacent to L1PT pages. For implicit attacks [62], they
only need mutual adjacency among L1PT pages.

Adjacent Page Tracer keeps a close watch over memory
accesses to collected adjacent pages, and maintains a charge-
leak counter for a row where a page-table page resides. If any
one row of adjacent pages has been accessed, the charge-leak
counters of nearby page-table rows are updated accordingly,
indicating that the page-table rows leak charge once.
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Row Refresher remains dormant if charge-leak counters do
not reach a pre-determined limit. If yes, a rowhammer attempt
is believed to be taking place and the above tracer triggers row
refresher, which will promptly refreshes desired rows whose
charge-leak counters reach the limit.

4 Implementation

As stated in Section 3.1, SoftTRR implements L1PT protec-
tion and a row of adjacent pages can be up to 6-row away
from a row of L1PT pages. Our prototype implementation is
a loadable kernel module (LKM) without modifications to the
kernel. The LKM consists of around 1700 source lines of code
and works with Ubuntu installation running a default Linux
kernel 4.4.211. Before we talk about the three aforementioned
components of SoftTRR, we first introduce important data
structures as below.

4.1 Data Structures
We reuse the kernel’s red-black tree structure [16], an effi-
cient self-balancing binary search tree that guarantees search-
ing in Θ(logn) time (n is the number of tree nodes). As
shown in Table 1, we have three red-black trees and a ring
buffer, i.e., pt_rbtree, adj_rbtree, pt_row_rbtree and
pte_ringbuf, respectively.

Specifically, pt_rbtree stores L1PT page information
while adj_rbtree stores information of pages that are ad-
jacent to L1PT pages. For the two trees, a physical page
number (PPN) is used as the node key and thus a new node
will be allocated when information of a new L1PT page or
adjacent page needs to be stored. Besides, pt_row_rbtree
stores DRAM information about L1PT pages. For this tree
node, row_index works as the node key and a node can have
one or more bank structures (i.e., bank_struct). One bank
structure stores bank_index that one or more L1PT pages
own (e.g., multiple L1PT pages share the same row of the
same bank). Also note that a page can span across multi-
ple banks [55] and thus an L1PT page can have multiple
bank_struct. pt_count records the number of L1PT PPNs
that are in the same row of the same bank. leak_count, short
for the charge-leak counter in Section 3.3, stores the number
of accesses to rows that are adjacent to a row of row_index in
the same bank. For a given DRAM module, we leverage a pub-
licly available alogrithm [55] to reverse-engineer its DRAM
address mapping, and embed the mapping into the kernel
before acquiring a physical page’s DRAM information. We
allocate each node of each tree using the slab allocator [10],
which is an efficient memory management mechanism in-
tended for the kernel’s small object allocation compared to
the buddy allocator.
pte_ringbuf stores information of leaf page table entries

(PTEs) that are collected by adjacent page tracer (see Sec-
tion 4.3). These PTEs point to either adjacent pages them-

selves or huge pages containing adjacent pages. If the adjacent
page is a 4 KiB page, the PTE is an L1PT entry. If the adja-
cent page is part of a huge page (i.e., 2 MiB or 1 GiB), the
PTE is either an L2PT entry or an L3PT entry. Each node
of pte_ringbuf is a structure that has three main fields also
shown in Table 1. Particularly, pte is a pointer to the leaf
PTE. vaddr is a virtual address referring to an adjacent page
or its corresponding huge page. mm is a pointer to a kernel
structure (i.e., mm_struct) about a process’s address space
where vaddr belongs. The adjacent page tracer combines
vaddr and mm to flush the TLB entry that stores the adjacent
page’s virtual-to-physical address mapping.

4.2 Page Table Collector

For user processes/threads that are already in the main
memory before our module is loaded, page table collec-
tor enumerates the list of task_struct to find every ex-
isting process/thread, as Linux kernel uses task_struct
for existing user processes/threads. It then performs page-
table walk for every virtual page in each valid virtual mem-
ory area (VMA) of each user process to collect informa-
tion of L1PT pages and their adjacent pages. Specifically,
pt_rbtree and pt_row_rbtree store distinct L1PT pages,
and their DRAM bank and row indexes, respectively. To build
adj_rbtree, the collector finds out all user pages that are
adjacent to L1PT pages in DRAM. It also selects all L1PT
pages from pt_rbtree that are adjacent to each other and
puts all PPNs pointed by selected L1PT pages’ valid entries
into adj_rbtree. For free pages that are adjacent to L1PT
pages and allocated for use later (e.g., a free page is allocated
and mapped to the user space right after the collector finishes
collecting all adjacent pages), the adjacent page tracer handles
them appropriately (see Section 4.3).

For L1PT pages that are dynamically allocated or freed
after the above collection, we perform dynamic inline hooks
to multiple kernel functions. Inline hook is called trampoline
or detours hook, which is a method of receiving control when
a hooked function is called. Dynamic kernel hook only re-
quires loading a kernel module without kernel recompilation
or binary rewriting, making itself easy to deploy in practice
(e.g., Kprobes, Kpatch [19, 35, 36]).

We leverage a library1 to hook two kernel functions,
i.e., __pte_alloc and __free_pages. __pte_alloc traces
newly allocated L1PT pages. __free_pages monitors dy-
namically released pages. The collector hooks these two func-
tions to update the three red-black trees as follows:
• For a newly allocated L1PT page, its page, bank and row
indexes will be updated into pt_rbtree and pt_row_rbtree,
respectively. If there are new user pages that are adjacent to
the L1PT page, they are added into adj_rbtree.

1https://github.com/cppcoffee/inl_hook
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Data Structures Main Fields in A Node Descriptions
pt_rbtree PPN (key) A unique page frame number of an L1PT page.
adj_rbtree PPN (key) A unique page frame number of an adjacent page.

pt_row_rbtree

row_index (key) A row index of one or more L1PT pages.

bank_struct
bank_index A bank index of one or more L1PT pages.
pt_count The number of L1PT pages that have the same indexes of bank and row.
leak_count The number of accesses to rows adjacent to a row of row_index and bank_index.

pte_ringbuf
pte A pointer to a page table entry relevant to an adjacent page.

vaddr A virtual address relevant to an adjacent page.
mm A pointer to mm_struct relevant to a process where vaddr resides.

Table 1: Data structures used by SoftTRR.

• If an adjacent page is freed, it will be removed from
adj_rbtree.
• If an L1PT page is freed, it will be removed from
pt_rbtree. Also, the collector acquires a node in
pt_row_rbtree that has the freed page’s row index. Within
the node, pt_count in each bank_struct corresponding to
the freed page is decremented by one. If every pt_count
for the node becomes 0, then the node is deleted from
pt_row_rbtree. Besides, the freed page’s adjacent pages
in adj_rbtree are removed.

4.3 Adjacent Page Tracer
To trace memory accesses to adjacent pages at runtime, the
adjacent page tracer leverages page fault handler.
Page Fault Handler. A page fault is a type of hardware
exception. Whenever a user access to a virtual page violates
access permissions dictated by one PTE, a page fault arises
and will be captured by the MMU. As a response, the MMU
will switch the process context to the kernel, which invokes
the page fault handler to handle the fault based on an error
code. The error code is generated by hardware and there are
7 page-fault error codes [27]. For instance, when a memory
access to a virtual address that is marked as non-present in
the PTE (i.e., present bit is cleared), the access triggers a
non-present page fault with P bit in the error code set to 0.
To handle this page fault, the page fault handler can allocate
a new physical page for the virtual address and marks the
address as present in the PTE, the so-called demand paging.
Leverage Page Fault. The adjacent page tracer can trace the
memory access to a page by configuring flag bits in a PTE and
hooking the page fault handler (i.e., do_page_fault function
in the kernel space). As the memory access can be read,
write or instruction fetch, not every flag bit can be leveraged.
For instance, a physical page becomes read-only when its
corresponding PTE has RW bit cleared. Once write-access to
the page occurs, a page fault is generated with W/R bit of the
error code set to 1. Thus, we experimented with each flag bit,
results of which show that both present bit and rsrv bit in
a PTE can be used for the tracing purpose. Next, we discuss
why the tracer chooses rsrv bit rather than present bit.

Particularly, configuring present bit to trace the memory

access causes a kernel crash, as the kernel performs active
checks of present bit in a leaf PTE in multiple cases. For
instance, when a process is forking a new child process, the
kernel checks present bit in the process’s leaf PTEs. If one
of the PTEs points to a physical page that is traced, present
bit in the PTE is set to 0 by the tracer. When such a case
occurs to the kernel check, the kernel will abort, because the
tracer is unaware of when the forking occurs and it cannot
restore present bit to 1 to pass the kernel check.

On top of that, we observe that one PTE has multiple rsrv
bits in x86 which are unused and set to 0 by default. An access
to a page with one rsrv bit in the PTE set to 1 will trigger
a page fault and generate an error code with RSVD bit set to
1 (this RSVD error has been leveraged in prior works [2, 6,
8, 18, 56] for different purposes). In contrast to the present
bit check, the kernel does not check against leaf PTEs’ rsrv
bits. For instance, if an adjacent page is a part of a huge
page of 2 MiB, its leaf PTE is an L2PT entry and the kernel
does not inspect any rsrv bit in the entry. As the page table
management is a core component of the kernel, its code logic
remains relatively stable. Take a recent stable Linux kernel
version (i.e., 5.10.4) as an example, there is no check against
any rsrv bit, either. It is probably because that rsrv bits
remain unused in leaf PTEs. In our implementation, the tracer
chooses a rsrv bit, i.e., bit 51 in the PTE.

Trace Adjacent Page. Upon the tracer has configured rsrv
bits in relevant PTEs pointing to the adjacent pages or the
huge pages containing the adjacent pages, and flushed desired
TLB entries, subsequent access to an adjacent page or its huge
page will trigger a page fault. As do_page_fault is hooked,
the tracer captures a faulting (huge) page with an expected
error code of RSVD and collects complete DRAM informa-
tion from the faulting (huge) page. Thus, the tracer updates
leak_count of L1PT pages that are adjacent to either the
captured (huge) page or its leaf page-table page. As an L1PT
page may have multiple bank_struct, leak_count of each
bank_struct for the L1PT page should be updated accord-
ingly. If the leak_count reaches a pre-determined limit in
Figure 2, row refresher will be triggered (see Section 4.4).

We note that the tracer clears rsrv bit before transferring
control back to the user space to resume the memory access.
However, any subsequent access to the same adjacent page
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or its huge page is no longer traced as rsrv bit is cleared. To
address this issue, the tracer sets up a periodic timer to config-
ure rsrv bit in a fixed interval and thus traces the accesses as
frequently as possible. Specifically, when a timer comes, the
tracer leverages kernel’s reverse mapping feature to translate
a PPN in adj_rbtree to a set of virtual addresses, as a PPN
can be mapped to multiple virtual addresses. For each address,
the tracer performs page-table walk, sets rsrv bit in its leaf
PTE and flushes its cached TLB entry.

It is clearly inefficient to do the reverse-mapping and page-
table walk for every PPN in adj_rbtree in every timer event.
To improve the efficiency, the tracer sets rsrv bit in PTEs
relevant to the pages in adj_rbtree and then frees corre-
sponding nodes in adj_rbtree in the first timer. If page
faults with the error code of RSVD occur, the tracer captures
them and stores the faulting addresses’ PTE information into a
dedicated ring buffer (i.e., pte_ringbuf). When subsequent
timer events come, the tracer sets rsrv bits in PTEs stored in
pte_ringbuf, and handles remaining nodes in adj_rbtree
which are updated by the page table collector.

For any new page that is allocated for the user space in
the default page fault handler, the tracer checks if its PPN
or its L1PT page’s PPN (if exists) is adjacent to any PPN in
pt_rbtree. If so, its leaf PTE information is inserted into
pte_ringbuf.

Particularly, pte_ringbuf maintains two pointers for up-
dates, i.e., head and tail. If a new PTE is inserted to
pte_ringbuf, the head pointer is updated and points to the
empty node next to the node of latest inserted PTE. If one
PTE is removed from pte_ringbuf (i.e., its rsrv bit has
been configured), the tail pointer is updated and points to
the least recently inserted PTE. When the head and the tail
point to the same ring buffer node, the buffer becomes empty.
The ring buffer size is pre-determined empirically. When the
node number between the tail and the head pointers is no
less than 80% of the total node number of the ring buffer,
the tracer allocates a larger ring buffer (e.g., four times of the
old ring buffer size in our implementation), which will store
newly inserted PTE. The old ring buffer will be freed when
its stored PTEs are all consumed by the tracer.

As shown in Figure 2, the time interval between two con-
secutive timer events (denoted as timer_inr) should be small
enough to keep adjacent pages under close surveillance and
leak_count is updated promptly. On the other hand, our sys-
tem might experience unacceptable overhead if the timer is too
frequent and causes numerous context switches between user
and kernel. To this end, we discuss how to decide timer_inr
in Section 4.5 to keep SoftTRR’s security guarantee while
minimize its performance impacts.

4.4 Row Refresher

Direct-physical Map. Linux systems and paravirtualized hy-
pervisors (e.g., Xen) map the whole available physical mem-

t0

timer_inr
t1 t3t2 tn

memory access

threshold reaches count_limit

t

Figure 2: The adjacent page tracer sets up tracing to adja-
cent pages in each time point from t0, t1, t2, t3, ..., tn and
the interval between two adjacent time points is timer_inr.
The tracer captures the first memory access (highlighted in
green) and ignores subsequent memory accesses in each in-
terval of timer_inr and updates leak_count. Whenever
leak_count reaches count_limit, the row refresher starts.

ory directly into the kernel space [31, 58] in order for the
kernel to access any data or code in the physical memory.
Thus, every physical page allocated for the user space has
been mapped to at least two virtual pages, i.e., a user virtual
page and a kernel virtual page. While for a kernel’s physical
page, it is mapped to a single kernel virtual page.
Refresh Desired Rows. If leak_count in bank_struct
reaches a pre-determined limit (denoted as count_limit), the
row refresher refreshes desired rows specified by relevant
bank_struct. As each node in pt_row_rbtree provides
bank indexes and row indexes, the refresher leverages them to
reconstruct a physical address. Based on the direct-physical
map, the refresher finds out a kernel virtual address mapped
to the physical address. As a read-access to a row can auto-
matically re-charge the row and prevent potential bit flips, the
refresher flushes CPU caches of the kernel virtual address,
reads the virtual address, and resets leak_count to 0 at last.

If count_limit is set too small (e.g., 1), the refreshing cost
may become unacceptable as many unnecessary refreshes are
introduced by regular memory accesses to adjacent pages. If
count_limit is too large, the refresher is unable to promptly
refresh a row before it is flipped. Thus, count_limit should be
no less than 2 and we decide its value in the next section.

4.5 Offline Profile
SoftTRR decides realistic and reasonable timer_inr and
count_limit to keep its security and practicality design princi-
ples. As illustrated in Figure 2, the adjacent page tracer only
captures the first memory access to an adjacent page within
each timer_inr and updates leak_count. The subsequent
memory accesses within timer_inr to the same page will be ig-
nored by the tracer. Thus, the maximum time period (denoted
as threshold) for hammer before the page is refreshed has
such an equation: threshold = timer_inr× (count_limit −1).
This means that SoftTRR must carefully set threshold short
enough to ensure that no bit flip occurs within threshold.

We decide threshold based on the equation:
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Machine Model Hardware Configuration Attack SoftTRR
CPU Arch. CPU Model DRAM (Part No.) n Targeted Victim Pages Bit Flip Failed?

Dell Optiplex 390 KabyLake i7-7700k Kingston DDR4 Memory Spray [46] "(99P5701-005.A00G)

Dell Optiplex 990 SandyBridge i5-2400 Samsung DDR3 CATTmew [13] "(M378B5273DH0-CH9)

Thinkpad X230 IvyBridge i5-3230M Samsung DDR3 PThammer [62] "(M471B5273DH0-CH9)

Table 2: Each rowhammer attack targets n (e.g., 50 in our experiments) victim pages of L1PTEs. With SoftTRR enabled, each
attack fails to induce bit flips in these pages, indicating that those attacks have been mitigated.

threshold = tRC×#ACT , where tRC is the time inter-
val between two successive ACT commands and #ACT is
the number of activations for all the hammered rows that
is required to induce the first bit flip. Thus, we guarantee
that no bit flip occurs within the time interval of threshold.
We learn from Kim et al. [32] that tRC is around 50 ns and
#ACT per row is in the order of 20 K on DDR3 modules and
10 K on DDR4 modules. Compared to DDR3 modules that
require at least 1 aggressor row, no less than 2 aggressor
rows are required in DDR4 modules due to the ChipTRR. As
such, #ACT for triggering the first bit flip is around 20 K for
both DDR3 and DDR4 modules. To this end, threshold is
set to 1 ms, below which DRAM modules are believed to
be rowhammer-free. As both timer_inr and count_limit for
SoftTRR are unsigned integers, timer_inr is set to 1 ms and
count_limit is set to 2.

5 Security Evaluation

We now turn to evaluate the security effectiveness of SoftTRR
on three different hardware configurations, summarized in
Table 2, all running Ubuntu.

We deploy SoftTRR into each system against one rep-
resentative kernel privilege escalation attack, i.e., Memory
Spray [46] that hammers user memory adjacent to L1PTEs,
CATTmew [13] that hammers device driver buffer adjacent
to L1PTEs, and PThammer [62] that implicitly hammers
L1PTEs adjacent to other L1PTEs. Both Memory Spray and
CATTmew are explicit rowhammer attacks with two different
types of memory accessible to unprivileged users. PThammer
is the only published implicit rowhammer attack.

5.1 Defeating Memory Spray

Background. The Memory Spray [46] is the first rowhammer
attack targeting L1PTs. It is a probabilistic attack, as it sprays
numerous L1PT pages into the memory with the hope that
some L1PT pages are placed onto victim rows adjacent to
attacker-controlled rows. As such, exploitable bits in L1PTEs
can be flipped, resulting in kernel privilege escalation.
Evaluation Details. We test the effectiveness of SoftTRR
against the Memory Spray on the Dell Optiplex 390. In this

machine, traditional 2-sided hammer pattern cannot trigger
any bit flip and instead we use the 3-sided hammer identified
by TRRespass2. We first conduct 3-sided hammer to randomly
identify n (e.g., 50 in our evaluation) vulnerable pages that
have reproducible bit flips, that is, a vulnerable page has at
least one victim physical address (Pv) and hammering three
aggressor addresses Pa, Pb and Pc will flip bits in Pv.

We then optimize the attack by using the kernel privilege to
put page tables onto vulnerable pages in a deterministic way.
Specifically, we spray n pages of L1PTs by creating a virtual
memory region of 2n MiB, ask the kernel to copy the content
of the n pages of L1PTs into the n vulnerable pages, which
are then used to translate the virtual memory region. The
vulnerable pages now contain L1PTs and the original L1PTs
are removed. By doing so, an attacker will definitely corrupt
any one of the L1PTs pages by hammering three relevant
aggressor addresses. When SoftTRR is enabled to collect and
protect the n pages of L1PTs, we re-start the optimized attack
for n hours (one-hour hammer for one vulnerable L1PT page)
and observe no single bit flip in those n pages of L1PTs by
checking their integrity, indicating that the Memory Spray
attack has been successfully defeated.

5.2 Defeating CATTmew

Background. As mentioned in Section 2, CATT [12] en-
forces physical user-kernel isolation. CATTmew [13] breaks
CATT’s security guarantee by identifying device (e.g., SCSI
Generic) driver buffers that are kernel memory but can be
accessed by unprivileged users. CATTmew exploits the driver
buffers to ambush adjacent L1PT pages for hammer, with the
hope that these L1PT pages are prone to bit flips.
Evaluation Details. We use 2-sided hammer to search n
vulnerable pages on the Dell Optiplex 990. A vulnerable page
has at least one victim physical address (Pv) and hammering
two aggressor addresses (Pa and Pb) flips bits in Pv.

We then rely on the kernel privilege to convert CATTmew
into a deterministic attack. Specifically, we spray n L1PT
pages and copy their entries onto the n vulnerable pages as
what we did in the optimized Memory Spray attack. On top
of that, we apply for the SCSI Generic (SG) buffer using

2https://github.com/vusec/trrespass

406    2022 USENIX Annual Technical Conference USENIX Association



Linux user APIs. In this test machine, we can apply as large
as 123 MiB and only 8n KiB of the SG buffer are enough. We
instruct the kernel to copy the allocated SG buffer’s content
into the 2n aggressor pages and change the buffer’s address
mappings accordingly. To this end, hammering the buffer will
induce bit flips in the vulnerable L1PT pages. However, when
SoftTRR is set active, no single bit flip has been observed in
those L1PT pages after n hours of hammering, indicating that
SoftTRR is effective in defeating the CATTmew attack.

5.3 Defeating PThammer

Background. Rowhammer attacks before PThammer [62]
are explicit rowhammer that require access to an exploitable
aggressor row (e.g. adjacent to a row of L1PTs). PThammer
voids this requirement. By spaying L1PT pages and placing
some onto victim rows with a high probability, PThammer
exploits page-table walk to produce frequent loads of some
L1PTEs from aggressor rows (i.e., “implicitly hammering
L1PTEs"), which will induce bit flips in other L1PTEs in
victim rows.
Evaluation Details. We optimize PThammer by using the
kernel privilege to present a more efficient and deterministic
attack on the Thinkpad X230. Specifically, PThammer uses
eviction sets to flush TLB entries and CPU caches of desired
L1PTEs and user memory loads trigger the page-table walk to
implicitly hammer the L1PTEs. However, the eviction-based
flush is probabilistic. In our test, the kernel assists PTham-
mer in performing the flush through explicit instructions (i.e.,
invlpg for TLB flush and clflush for L1PTEs flush). Thus,
its hammer instruction sequence is kernel-assisted flush with
a user memory load, which is less efficient than the aforemen-
tioned 2-sided hammer that applies clflush for user data
flush. In such a case, we cannot use the traditional 2-sided
hammer to identify vulnerable pages, as these pages may be-
come non-flippable to the kernel-assisted hammer. To address
this issue, we add a certain number of NOP (e.g., 180) instruc-
tions into the 2-sided hammer instruction sequence to meet
the time cost taken by the kernel-assisted hammer. By doing
so, n vulnerable pages of interest can be discovered.

As PThammer massages L1PTEs onto vulnerable pages
with a probability, we instead spray 3n L1PT pages by creat-
ing a virtual memory region of 6n MiB. We then ask the kernel
to copy all entries of the L1PT pages into the n vulnerable
pages and the 2n aggressor pages. The kernel then changes
the address mappings of the created virtual memory region
by using the new 3n L1PT pages. As such, the optimized
PThammer successfully induces bit flips in the n vulnerable
L1PT pages by using the kernel-assisted hammer against the
2n aggressor L1PT pages. In comparison, we enable SoftTRR
before starting the optimized PThammer. As each 2 aggres-
sor L1PT pages is adjacent to a vulnerable L1PT page in
pt_rbtree, SoftTRR traces memory accesses to the created
virtual pages pointed by the L1PT page entries. Considering

Benchmarks Programs SoftTRR Overhead
∆±1 ∆±6 (default)

SPECspeed 2017 Integer

perlbench_s 0.67% 0.67%
gcc_s 0.23% 0.92%
mcf_s -0.76% 0.30%
omnetpp_s -0.81% 1.82%
xalancbmk_s 0.36% 2.50%
x264_s 0.00% 0.61%
deepsjeng_s 0.00% 0.28%
leela_s 0.23% 0.46%
exchange2_s -0.70% -0.23%
xz_s 1.48% 0.93%
Mean 0.07% 0.83%

Phoronix

Apache -0.16% 0.32%
unpack-linux 1.31% 1.84%
iozone 0.89% -1.15%
postmark 0.89% 0.00%
stream:Copy 0.01% 0.00%
stream:Scale 0.60% 0.23%
stream:Triad 0.07% 0.37%
stream:Add 0.03% 0.35%
compress-7zip 1.52% 2.24%
openssl 0.14% 0.13%
pybench 0.00% 0.52%
phpbench 0.92% 0.01%
cacheben:read -0.38% 0.26%
cacheben:write -0.26% -0.44%
cacheben:modify -0.01% 0.67%
ramspeed:INT -0.09% -0.63%
ramspeed:FP -0.15% -0.63%
Mean 0.22% 0.24%

memcached

Statistics
Ops 0.39% 0.18%
TPS 0.39% 0.15%
Net_rate 0.46% 0.31%

Table 3: Benchmark results for SPECspeed 2017 Integer,
Phoronix and memcached.

that the PThammer still requires frequent memory loads of
the created virtual pages for page-table walk, it cannot bypass
the tracing. After n hours of hammering the 2n aggressor
pages, no bit flip occurs, meaning that SoftTRR has mitigated
PThammer.

6 Performance Evaluation

We evaluate the performance impacts induced by SoftTRR,
i.e., SoftTRR’s runtime overhead, memory consumption and
system robustness are evaluated in Section 6.1, Section 6.2
and Section 6.3, respectively. The experiments are conducted
in a DDR4-based system. The system is Ubuntu running
on top of a Dell Desktop with Intel i7-7700K and Samsung
16 GiB DDR4 (part number: M378A2G43AB3-CWE). By
default, the row distance implemented by SoftTRR between
adjacent rows and L1PT-page rows is up to 6-row, denoted
by ∆±6. In comparison, we also measure its impacts in the
scenario of only one-row-distance that previous works (e.g.,
[34]) assume, denoted by ∆±1. The results show that SoftTRR
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Figure 3: The memory consumed by SoftTRR in both ∆±1
and ∆±6 for the LAMP production environment.

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (mins)

0

200

400

600

800

1000

1200

1400

1600

Pr
ot

ec
te

d 
L1

PT
 P

ag
e 

Nu
m

 (d
as

he
d 

lin
e)

0

100

200

300

400

500

600

700
Tr

ac
ed

 A
dj

ac
en

t P
ag

e 
Nu

m
 (s

ol
id

 li
ne

)

Δ±1
Δ±1
Δ±6
Δ±6

Figure 4: The numbers of protected L1PT pages and traced
adjacent pages in both ∆±1 and ∆±6 for the LAMP production
environment.

in both scenarios of ∆±6 and ∆±1 incurs an average slow-
down within 0.83% indicating that the row distance may have
a relatively small impact on the performance overhead. We
note that the cost of initially loading SoftTRR into the kernel
is around 28 ms and it occurs only once. We also validate the
system robustness of SoftTRR, results of which show that
SoftTRR does not affect the stability of the protected system,
making itself practical.

6.1 Benchmark Runtime Overhead

We measure SoftTRR-induced runtime overhead using two
popular benchmarks and an industrial memory-intensive appli-
cation, i.e., SPECspeed 2017 Integer [50], Phoronix test
suite3 and memcached4.

3https://github.com/phoronix-test-suite/phoronix-test-suite
4http://memcached.org/latest

SPEC CPU 2017 is an industry standard benchmark pack-
age that contains CPU-intensive programs for measuring
compute-intensive performance. It has 43 benchmarks in total
and is organized into 4 suites, among which SPECspeed 2017
Integer has been used. This suite launches 10 integer programs
with a specific configuration file customized from Example-
linux-gcc-x86.cfg and the benchmark results are summarized
in Table 3. As we can see from the table, the overhead of ∆±6
(0.83%) and ∆±1 (0.07%) are less than 1%.

Phoronix is a free and open-source benchmark software
for mainstream OSes (e.g., Linux, MacOS and Windows).
It allows for testing performance overhead against common
applications in an automated manner. As this suite has a large
number of programs testing different aspects of a system,
we select a subset of the available programs to stress-test
performance of CPU, memory, network I/O and disk I/O. As
shown in Table 3, the average performance overhead is 0.22%
for ∆±1 and 0.24% for ∆±6, respectively, indicating that the
Phoronix overhead is negligible in both scenarios.
memcached is a pervasively used in-memory data storage

system and can consume as much memory as possible. To
evaluate the performance impacts of SoftTRR on memcached,
we start memcached as a memory-intensive process, that is,
13 out of 16 GiB are allocated for memcached, to stress-test
SoftTRR. We then run memaslap [1] for 5 times (with 5
minutes in each time) to benchmark the memcached pro-
cess. The memaslap tool is a load generation and benchmark
for memcached-based servers and allows generating various
workloads. In our experiments, memaslap specifies default
workloads for memcached (i.e., the task window size is 10 K,
the thread for startup is 1 and each thread has 16 self-governed
concurrencies to handle socket connections). As shown in Ta-
ble 3, the average overhead of Ops, TPS and Net_rate are
only 0.39%, 0.39% and 0.46% for ∆±1 and 0.18%, 0.15%,
and 0.31% for ∆±6, respectively.

6.2 LAMP Runtime Memory Consumption

We use a real-world use case to measure runtime memory
consumption of SoftTRR, that is, a LAMP server (i.e., Linux,
Apache, MySQL and PHP). We run a common tool (i.e.,
Nikto [51]) in another machine for 60 minutes to stress test
the LAMP server. Nikto is a web server scanner that tests the
LAMP server for insecure files and outdated server software.
It also carries out generic and server type specific checks.

The memory cost induced by SoftTRR within the 60 min-
utes is shown in Figure 3. The memory consumption is a
total memory size of three red-black trees (i.e., pt_rbtree,
pt_row_rbtree and adj_rbtree) and the ring buffer (i.e.,
pte_ringbuf). We note that the pre-allocated pte_ringbuf
is 396 KiB. As shown in the figure, the memory costs in both
∆±1 and ∆±6 increase gradually and reach a relatively stable
level in the last 15 minutes. Both ∆±1 and ∆±6 have a similar
and low memory cost (i.e., less than 600 KiB).
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Linux Test Project Vanilla System SoftTRR
∆±1 ∆±6 (default)

File

open " " "

close " " "

ftruncate " " "

rename " " "

Network

Listen " " "

Socket " " "

Send " " "

Recv " " "

Memory

mmap " " "

munmap " " "

brk " " "

mlock " " "

munlock " " "

mremap " " "

Process
getpid " " "

exit " " "

clone " " "

Misc.
ioctl " " "

prctl " " "

vhangup " " "

Table 4: System-call stress tests from Linux Test Project (":
the stress test does not report any problem.).

Protected and Traced Page Number. When computing the
memory consumption, we also collect the unique page num-
bers that SoftTRR protects and traces, respectively. Figure 4
shows that both protected L1PT page number and traced adja-
cent page number in ∆±1 and ∆±6 increase and become stable
within the 60 minutes. We note that the protected L1PT page
numbers in ∆±1 and ∆±6 are in the same order of magnitude
as the overall system activities in both scenarios are similar
to each other. As an L1PT-page row in ∆±6 can have up to
12 adjacent rows, 6 times the adjacent row number that an
L1PT-page row can have in ∆±1, more adjacent pages are ex-
pected to be collected in ∆±6. Figure 4 shows that the traced
adjacent page number in ∆±6 is higher than that in ∆±1.

6.3 System Robustness
To evaluate the robustness of our test system after deploying
SoftTRR, we select 20 system calls of different types and
perform stress tests for each selected system call on both the
vanilla system and the SoftTRR-based system. The stress tests
come from Linux Test Project (LTP)5 and they are used to
identify system problems. Particularly, we follow the LTP’s
quick guide to run a single test each time using the default
configuration without explicitly specifying any parameters
(e.g., binding the test onto one or more CPU cores. As such,
we first run all the tests on the vanilla system, results of which
are used as the baseline to compare with that of SoftTRR.
As can be seen from Table 4, the stress test results clearly

5https://github.com/linux-test-project/ltp

show that there is no deviation for the SoftTRR-based system
compared to the vanilla system. Besides, we do not observe
any issue when executing previous benchmarks. As a result,
the test system runs stably with SoftTRR enabled.

7 Discussion

Other Data Objects Protection. If critical data structures
of SoftTRR are targeted, we can easily extend SoftTRR to
protect them. Similar to the L1PT protection described in
Section 3.3, SoftTRR treats its own data structures as pro-
tected objects. To protect sensitive user objects (e.g., binary
code pages of setuid processes or DNN model weight pages)
against existing attacks [21, 24], RIP-RH [9] is effective by
physically isolating trusted user processes. Orthogonal to RIP-
RH, SoftTRR can also be extended to defeat such attacks.
Particularly, trusted users pass specified objects to SoftTRR
through a provided user API (e.g., netlink) and SoftTRR
thus uses a similar mechanism to protect those objects.
Level-1 and Higher-level Page Table. Existing kernel privi-
lege escalation attacks focus on corrupting L1PTs, and there is
no demonstrated attack that has successfully exploited higher-
level page tables [57]. If such an attack may be feasible in the
future, we can easily extend our SoftTRR to protect higher-
level page tables. For instance, when SoftTRR is extended to
protect L2PT pages, SoftTRR collects desired user pages if
they or their corresponding L1PT or L2PT pages are adjacent
to either L1PT or L2PT pages. SoftTRR traces the collected
user pages by setting rsrv bits in their leaf PTEs and refreshes
relevant page-table pages when necessary. As the number of
higher-level PT pages is significantly smaller than the number
of L1PT pages (e.g., an L2PT page can point up to 512 L1PT
pages), we believe that the additional performance overhead
will not be high.
DMA-based Kernel Privilege Escalation Attack. There is
NO existing DMA-based kernel privilege escalation attack on
x86. Such attack is demonstrated on ARM (Drammer [53]),
and it has been defeated by GuardION [54] that enforces
DMA memory isolation. In the future, if such attacks on x86
prove to be feasible, we can take the following two ways to
solve. One is to integrate SoftTRR with existing orthogonal
defenses. In particular, ALIS [52] on x86 physically isolates
DMA memory using guard rows and bit flips are thus confined
to DMA memory of attackers.

Alternatively, SoftTRR can leverage IOMMU [26] to mon-
itor remote access to DMA memory by configuring I/O page
tables, similar to MMU-based page tables. Specifically, Soft-
TRR collects (I/O) page tables and their adjacent DMA mem-
ory pages that are allocated to users. By configuring I/O page
tables, SoftTRR traces accesses to the collected DMA pages.
When IOMMU is widely available on x86, we believe that
SoftTRR can leverage it to defend (I/O) page tables against
unknown DMA-based kernel privilege escalation attacks.
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Half-Double Attack. Inspired by [17], Google recently pro-
poses a new hammer technique, called Half-Double [20],
which induces bit flips in a target victim row that is 2-row
away from a row being hammered. Specifically, Half-Double
observes that some ChipTRR implementations in DDR4 mod-
ules will refresh a row’s two neighboring rows if the row is
detected to be hammered. With this key observation, Half-
Double hammers a row (known as Far Aggressor), which
enables ChipTRR to frequently refresh the row’s neighboring
rows (known as Near Aggressor). As such, Half-Double can
combine the frequent refreshes and a few activations against
Near Aggressors to induce bit flips in victim rows that are
2-row away from a Far Aggressor.

However, we believe that Half-Double is unlikely to bypass
SoftTRR and break page tables. In order to induce the first
bit flip, #ACT required by Half-Double to hammer one Far
Aggressor is about 296K, whereas SoftTRR assumes that the
minimum #ACT is 20K for the first bit flip based on Kim et
al. [32]. Thus, SoftTRR can detect Half-Double’s hammering
and refresh page-table rows (if any) from being flipped by a 2-
row-distance Far Aggressor. In the current implementation of
SoftTRR, it can protect page-table rows from being corrupted
by a Far Aggressor that is up to 6-row away.

Possible Performance Degradation Attack. We did not
observe a high performance impact in our real-world appli-
cations and it might rarely occur that memory accesses con-
centrate on locations adjacent to L1PTEs. The system perfor-
mance can be badly affected (as a kind of DoS attack [41]) if
an adversary stresses SoftTRR by causing many additional
page faults and refreshes. To alleviate such attack, SoftTRR
can count the number of refreshes. If the count reaches a
threshold, it can raise an alarm and leverage the scheduling
information to narrow down the list of potentially malicious
processes.

Support for ARM Architecture. Although there are re-
served bits in page table entries in the ARM architecture,
setting these bits will not trigger any hardware fault [4]. If
we extend SoftTRR to provide ARM support, a possible solu-
tion is to disable the page table walk and capture the address-
translation fault. However, this solution may introduce a larger
performance overhead, as each memory access to a process
triggers the fault if the process has pages adjacent to L1PT
pages. Alternatively, we can leverage the present bit rather
than the reserved bit in both x86 and ARM. As discussed in
Section 4.3, the kernel performs active checks of the present
bit in a leaf PTE. To address this issue, we can leverage the
approach [56] to find all the functions where the kernel per-
forms the check. By hooking these functions, we can restore
the present bit and bypass the kernel check.

Support for Hardware-assisted Virtualization . SoftTRR,
by design, works in a bare-metal system. To adapt itself to
work in the guest OS kernel of a VM, SoftTRR needs the map-
pings of guest physical addresses to DRAM addresses. As

host physical addresses to DRAM mappings and in-DRAM
address remappings can be reverse-engineered through prior
works [14, 44, 55, 59], SoftTRR requires the guest-to-host
memory mapping that is managed by the hypervisor. To this
end, SoftTRR can register a virtual interrupt to communicate
with the hypervisor. Particularly, upon the VM’s physical
memory is allocated, SoftTRR obtains the guest-to-host mem-
ory mapping through the registered interrupt. If the VM’s
physical memory is updated at runtime, the hypervisor noti-
fies the SoftTRR of the updated mapping. If the hypervisor
maintains mostly consecutive mapping (e.g., the Xen hyper-
visor uses 1 GiB huge-pages by default), we do not think
maintaining the mapping would cause a major issue (e.g.,
SoftTRR only maintains a mapping of 1K entries even if the
VM’s memory is up to 1 TiB).

8 Conclusion

In this paper, we proposed a software-only defense, named
SoftTRR, that protects level-1 page tables against rowhammer
attacks on x86. SoftTRR is a loadable kernel module and
compatible with commodity Linux systems without requiring
any kernel modification.

We evaluated the security effectiveness of SoftTRR-
enabled systems using three kernel privilege escalation at-
tacks. Also, we measured SoftTRR’s performance overhead,
memory cost, and stability using multiple benchmark suites
and a real-world use case. The experimental results indicate
that SoftTRR is effective in defending against all the men-
tioned attacks, and practical in incurring low performance
overhead and memory cost. Besides, it does not affect the
system stability.
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A SPECint 2006

SPECint 2006 is an industry standard benchmark suite in-
tended for measuring the performance of CPU and memory.
For this suite, we launch 12 integer programs with a specific
configuration file (i.e., linux64-amd64-gcc43+.cfg) and sum-
marize the benchmark results in Table 5. As we can see from
the table, the overhead of ∆±6 (i.e., 0.75%) is a bit higher than
that of ∆±1 (i.e., 0.04%) although the row distance of ∆±6 is
an order of magnitude larger than that of ∆±1.

Programs SoftTRR Overhead
∆±1 ∆±6 (default)

perlbench 0.47% 1.42%
bzip2 -0.61% 1.52%
gcc 0.00% 0.51%
mcf -2.08% -2.08%
gobmk 0.30% 0.60%
hmmer 0.41% 0.83%
sjeng 0.00% 0.26%
libquantum 0.00% 0.59%
h264ref 0.00% 0.89%
omnetpp 0.32% 0.00%
astar 0.97% 2.60%
xalancbmk 0.63% 1.89%
Mean 0.04% 0.75%

Table 5: SPECint 2006 benchmark results.

B Artifact

Abstract
This artifact contains a prototype implementation of SoftTRR
that protects level-1 page tables from rowhammer attacks. It
works as a loadable Linux kernel module without any modifi-
cations to the kernel.

Scope
This artifact is effective and practical in protecting level-1
page tables from being corrupted by rowhammer attacks. Par-
ticularly, it leverages realistic and reasonable software re-
freshes to mitigate a rowhammer attack where a hammered
row can be up to 6-row away from a targeted row hosting
level-1 page tables.

Contents
This artifact has 6 main source files, which are briefly in-
troduced as follows. defense.c is to initialize our kernel
module such as registering dynamic hooks to relevant ker-
nel functions (we rely on a third-party inline hook library

https://github.com/cppcoffee/inl_hook that resides in the di-
rectory of inl_hook in our repository). victim_handler.c col-
lects level-1 page-table pages and their physically adjacent
pages. pgfault.c monitors do_page_fault to trace memory
accesses to pages that are physically adjacent to level-1 page-
table pages. rbtree.c, dramaddr.c and kernel_symbol.c provide
some helper functions such as maintaining important data
structures and DRAM address mappings, parsing relevant
kernel symbols, etc. We refer the readers to our repository for
more details.

Hosting
This artifact is available at
https://doi.org/10.6084/m9.figshare.19721692.
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