
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

Tectonic-Shift: A Composite Storage Fabric for Large-
Scale ML Training

Mark Zhao, Stanford University and Meta; Satadru Pan, Niket Agarwal,
Zhaoduo Wen, David Xu, Anand Natarajan, Pavan Kumar, Shiva Shankar P,

Ritesh Tijoriwala, Karan Asher, Hao Wu, Aarti Basant, Daniel Ford, Delia David,
Nezih Yigitbasi, Pratap Singh, and Carole-Jean Wu, Meta; Christos Kozyrakis,

Stanford University
https://www.usenix.org/conference/atc23/presentation/zhao

Tectonic-Shift: A Composite Storage Fabric for Large-Scale ML Training

Mark Zhao1,2, Satadru Pan2, Niket Agarwal2, Zhaoduo Wen2, David Xu2, Anand Natarajan2,
Pavan Kumar2, Shiva Shankar P2, Ritesh Tijoriwala2, Karan Asher2, Hao Wu2, Aarti Basant2,

Daniel Ford2, Delia David2, Nezih Yigitbasi2, Pratap Singh2, Carole-Jean Wu2, Christos Kozyrakis1

1Stanford University, 2Meta

Abstract
Tectonic-Shift is the storage fabric for Meta’s production ma-
chine learning (ML) training infrastructure. Industrial storage
fabrics for ML need to meet both the intensive IO and high-
capacity storage demands of training jobs. Our prior storage
fabric, Tectonic, used hard disk drives (HDDs) to store training
data. However, HDDs provide poor IO-per-watt performance.
This inefficiency hindered the scalability of our storage fabric,
and thus limited our ability to keep pace with rapidly growing
training IO demands.

This paper describes our journey to build and deploy
Tectonic-Shift, a composite storage fabric that efficiently
serves the needs of our training infrastructure. We begin with
a deep workload characterization that guided an extensive
hardware and software design space exploration. We then
present the principled design of Tectonic-Shift, which max-
imizes storage power efficiency by combining Shift, a flash
storage tier, with Tectonic. Shift improves efficiency by ab-
sorbing reads using IO-efficient flash, reducing required HDD
capacity. Shift maximizes IO absorption via novel application-
aware cache policies that infer future access patterns from
training dataset specifications. Shift absorbs 1.51− 3.28×
more IO than an LRU flash cache and reduces power demand
in a petabyte-scale production Tectonic-Shift cluster by 29%.

1 Introduction

The success of industrial machine learning (ML) training is en-
abled by highly efficient and scalable infrastructures that store
and feed massive amounts of training data to datacenter-scale
training clusters [27, 31, 44, 46, 68]. At Meta, we deploy train-
ing clusters, each with of thousands of GPUs, across many dat-
acenters in order to meet our ML training demands [42]. Each
cluster requires a storage fabric capable of storing exabytes
of data and serving reads at tens of terabytes per second.

Our prior storage fabric was Tectonic, Meta’s exabyte-scale
distributed file system [50]. Each Tectonic instance is backed
by a cluster of disaggregated hard disk (HDD) storage nodes.

To feed trainers, we needed to provision each Tectonic cluster
with HDDs to provide both sufficient storage capacity for
training datasets and enough IO capacity to meet the read
bandwidth demands of all trainers in the datacenter. The sig-
nificant and increasing IO requirements of training acceler-
ators resulted in a large imbalance between IO and storage
demands compared to what is afforded by modern HDDs.
We needed to provision an order of magnitude more storage
capacity to meet trainers’ IO demands than to store datasets.
This storage inefficiency expended a large portion of each dat-
acenter’s power budget — modern ML storage fabrics often
require more power than trainers themselves [68] — which
constrained the scalability of our training infrastructure.

This paper chronicles our journey to improve the power
efficiency of our production storage fabric for IO-bound ML
training workloads. We begin with a hardware design space
exploration and show that traditional homogeneous storage
fabrics (HDD or otherwise) cannot meet the imbalanced stor-
age and IO demands of ML training without resource over-
provisioning. An ideal storage solution should combine mul-
tiple storage media in a composite storage fabric to balance
storage and IO capacity. It can efficiently meet IO demands by
serving most IOPS from IO-efficient (high bytes/s per watt)
devices, e.g., flash, while relying on storage-efficient (high
bytes per watt) devices, e.g., HDDs, to meet storage demands.

However, simply deploying a composite storage fabric does
not beget high efficiency. It must hold the right data in IO-
efficient devices at the right time — exploiting data locality
via caching. We present a software design space exploration,
guided by a deep characterization of our production ML train-
ing workloads, showing that current cache systems do not cap-
ture the data reuse characteristics of these workloads. General-
purpose software flash and DRAM caches are designed for
web-based workloads with trillions of small requests such
as content delivery networks, social graphs, key-value stores,
and databases [1, 6, 7, 9, 13, 38, 43, 45, 55, 56, 66]. Meanwhile,
ML training jobs issue a small number of massive scans over
petabytes of data, resulting in scan and churn patterns that
easily thrash an LRU cache [52]. Alternatively, current ML-

USENIX Association 2023 USENIX Annual Technical Conference 433

specific storage systems [16, 23, 30, 32, 41, 61, 71] are inef-
fective because existing solutions have been designed for
small-scale deployments with highly-synchronized training
jobs reading multiple epochs of the same static data. Mean-
while, large-scale production training environments consist
of highly asynchronous, single-epoch training jobs reading
varying subsets of continuously-updated datasets.

While cache systems leveraging composite storage have
been widely studied and deployed, our hardware and software
design space exploration elucidates the need for a unique
combination of techniques tailored to our ML workloads. To
this end, we built Tectonic-Shift, a composite storage fabric
that improves storage efficiency by balancing storage and IO
capacity across HDDs and flash. We present Tectonic-Shift
and several guiding design principles that make it deployable
and effective across our datacenters: a) Transparent. Tectonic-
Shift presents the same APIs as the Tectonic File System,
requiring no user knowledge or application changes. Tectonic-
Shift combines Shift, a flash storage tier that aims to maximize
IO absorption, with each HDD Tectonic cluster. b) Simple.
Shift is built on top of CacheLib [6], and deploying Shift re-
quires no changes to other storage services such as Tectonic’s
Metadata Layer. c) Scalable. Shift is fully decentralized, con-
sisting only of disaggregated flash storage nodes, each using
local dynamic cache policies that adjust to observed load.
d) Intelligent. While Tectonic-Shift is transparent to users, it
understands application information from training job spec-
ifications, such as the list of table partitions that comprise
the job’s dataset. We present novel cache mechanisms that
leverage this information to improve the performance of Shift
by inferring training jobs’ future data access patterns.

We demonstrate how these principles allow Shift to ab-
sorb 1.51− 3.28× IO than an LRU-based flash cache on a
mix of representative training workloads, all while managing
flash endurance limits. Furthermore, we present results on
our petabyte-scale production tiers, serving real ML training
jobs, showing how Tectonic-Shift can save 29% of power rel-
ative to using HDDs alone for training data. We close with a
discussion of lessons learned in deploying Tectonic-Shift and
several promising areas of future exploration. In summary,
we make the following contributions.

• We provide an in-depth hardware and software design space
exploration of storage systems for ML training jobs, guided
by a characterization of our production workloads.

• We present the principled design of Tectonic-Shift, which
combines Shift, a flash storage tier, with each Tectonic clus-
ter to improve the overall efficiency of Meta’s storage fabric.

• We describe novel cache policies employed by Shift that
predict and optimize for future data access patterns derived
from training job specifications.

• We show detailed production evaluation results. Shift ab-
sorbs 1.51−3.28× more IO than LRU. Tectonic-Shift im-
proves the power efficiency of our storage fabric by 29%.

Inference
Servers

Scribe ETL
Pipelines

Hive Table

Float ID List ID Score List

map<int, float> map<int, list[int]> map<int, map<int,
float>>

...

Raw Logs

Recurring
Partitions

Tectonic-
Shift

ORCDWRF

...

DPP
Readers

Training
Nodes

DPP
Readers

Training
Nodes

Training Job

DPP
Readers

Training
Nodes

DPP
Readers

Training
Nodes

Training Job

Datacenter

ML Scheduler

ML Engineer

Job Submission Job Scheduling &
Routing

Figure 1: Overview of Meta’s data storage and ingestion (DSI)
pipeline. Tectonic-Shift is the durable storage fabric for training data
in each datacenter.

2 ML Data Storage and Ingestion Background

Deep learning recommendation model (DLRM) training dom-
inates our ML infrastructure demands [2], requiring signifi-
cant data storage and ingestion (DSI) capacities to manage
structured datasets [68]. Thus, we primarily focus on DLRM
workloads in this paper, and we discuss extending Tectonic-
Shift to other ML domains and non-ML workloads in Sec-
tion 7. Figure 1 shows how the DSI pipeline continuously
generates, stores, and ingests DLRM training data.
Data Generation. Fresh data is needed to ensure model ac-
curacy [18]. We continuously generate training samples from
inference requests served by our production fleet. When a
given host serves an inference request, it logs a snapshot of
the relevant features of the requester (e.g., a user’s set of liked
pages) and the outcome of the event corresponding to the
inference request (e.g., if a user likes the recommendation).
These logs are continuously published to Scribe [26], Meta’s
global distributed messaging system. A training data pipeline,
corresponding to a set of extract-transform-load (ETL) jobs
(e.g., Spark [67]), consume these logs by joining and labeling
them to form structured training samples.
Dataset Storage. Each pipeline’s training samples are stored
in a corresponding Hive [57] table. Tables are constantly
updated with new time-based partitions of fresh data, gener-
ated by each pipeline with a regular cadence (e.g., hourly).
Old partitions regularly expire and are deleted. Each table is
replicated to all datacenters with training clusters, and each
partition is stored as columnar DWRF [21] files (similar in
format to ORC [14]) in a new directory in each respective
datacenter’s Tectonic File System. Training jobs read from
their local Tectonic instance.

We adopt a common schema across our training tables
to ensure interoperability across models [68]. Specifically,
all features are stored in a small number of map columns
and comprise the majority of each row (> 99% of bytes).
Each column maps multiple integer feature IDs to the row’s
corresponding value for that feature (e.g., a float for a dense
feature column or lists/maps for a categorical feature column).
Data Ingestion. Training jobs are submitted to a global queue

434 2023 USENIX Annual Technical Conference USENIX Association

DPP Clients

Datacenter / Tectonic Cluster

Application

Client Library

Metadata Layer

Directory

File

Block

ZippyDB

Tectonic
Background

Services

Chunk Store

HDD Storage
Node

HDD Storage
Node

HDD Storage
Node

HDD Storage
Node

Figure 2: Overview of the Tectonic File System. Directory, file, and
block metadata operations are served by a Metadata Layer. Clients
directly read chunks from HDD-based Chunk Store nodes.

by ML engineers and are scheduled and routed to a specific
datacenter when capacity allows. When each job is scheduled,
it allocates a set of training nodes (Trainers) [42] and a set
of Data PreProcessing (DPP) Readers [68] from the datacen-
ter’s training cluster. Trainers are equipped with GPUs and
perform the actual training, continuously ingesting tensors
from Readers. Readers are general-purpose CPU nodes that
continuously read raw bytes from the Tectonic File System,
reconstruct minibatches of samples from the bytes, and pre-
process each minibatch into tensors.

Specifically, Readers read data based on a training job’s
dataset, specified by an ML engineer. The dataset contains a
list of table partitions and a list of feature IDs. Throughout
the lifetime of the training job, Readers will continuously
ingest (disjoint) minibatches of samples, filtering out unused
features in each sample, until the Readers have collectively
read all samples from the specified partitions. To read the ap-
propriate bytes from Tectonic, Readers map each partition to
a set of Tectonic files by querying the Hive Metastore [57,58].
Readers then scan each file and progressively read samples by
issuing Tectonic reads. Readers push filtering to storage, ref-
erencing metadata within footers of the file to selectively read
bytes corresponding to features specified by the dataset [68].

Tectonic File System. Figure 2 shows the architecture of
the Tectonic cluster (sans Shift) backing each Tectonic File
System instance. Files are divided into blocks (typically 72
MiB) representing a logical array of bytes. Tectonic further
divides blocks into smaller chunks (typically 8 MiB) and
durably encodes each via replication or Reed-Solomon (RS)
encoding [51]. Chunks are distributed across the cluster’s
Chunk Store, backed by a number of HDD storage nodes.

Readers directly read data from storage nodes using the
Tectonic Client Library. The Client Library exposes a file
pread interface to clients. For each read, the Client Library
issues requests to specific chunks on storage nodes and per-
forms reconstructions if necessary. The Client Library obtains
chunk mappings and any directory and file metadata (e.g.,
directory ls) via queries to a hash-sharded Metadata Layer
built on ZippyDB [37]. DPP Readers optimize for HDD seeks
and coalesce reads into large O(1MB)-sized IOs [68].

Table 1: Storage power requirements for an HDD, flash, and ideal
composite cluster, assuming 100 PB and 10 TB/s storage and IO
demand. We show required power to meet storage-only, bandwidth-
only, and both requirements, normalized to HDD storage-only.

Storage Req. IO Req. Storage & IO Req.

HDD Cluster 1.00 9.92 9.92
Flash Cluster 6.53 1.88 6.53
HDD + Flash 1.00 1.88 2.69

3 Production ML Storage Design Space

This section explores why we could not efficiently scale Tec-
tonic to meet the IO bandwidth that our training clusters in-
creasingly demand. We present various hardware and software
design space explorations that led us to Tectonic-Shift, guided
by a characterization of our production ML training jobs.

3.1 Hardware Design Space

We first evaluated different storage hardware options, sum-
marized in Table 1. Specifically, we used our HDD [3] and
flash [8] server specifications to calculate the power (watts)
required by the number of HDD, flash, or HDD + flash servers
(rows) to supply 100 PB of storage, 10 TB/s of read band-
width, or both (columns). These demands are representative
of our workloads [42,68], and we must provide both sufficient
storage and IO capacity. The HDD + flash analysis used only
HDDs to supply 100 PB of storage and only flash to supply
10 TB/s of IO. In the storage and IO case, we used HDDs to
supply storage capacity and flash to supply IO capacity, dis-
counting the IO capacity supplied by the HDDs. We focused
on power because it is the primary budget and optimization
metric for services across our fleet [68]. We normalized results
to the HDD, storage-only case.
Option 1: HDD-Only (Status Quo). Our first option to meet
IO demand was to continue provisioning more HDD storage
nodes into each Tectonic cluster. This would linearly scale IO
capacity as chunks are distributed across HDDs evenly. Unfor-
tunately, this option would require us to provision 9.92× more
storage capacity than necessary — 1.6EB of disks assuming
RS(9,6)! Furthermore, since our IO demand is growing 2×
as fast as storage demand [68], this option is unsustainable.
Option 2: Flash-Only. We also considered using a flash
storage tier [28] for our training datasets. Flash trades off
storage-efficiency for IO-efficiency. Compared to HDDs, A
flash cluster would need 5.28× less power to meet IO demand,
but 6.53× more power to meet storage demand. Meeting both
demands is more efficient using flash, but there is a significant
over-provisioning of IO capacity, making this sub-optimal.
Option 3: Composite Storage. Relying on a single stor-
age hardware inherently precludes us from balancing storage
and IO capacity. An ideal cluster would use both a storage-
efficient device and IO-efficient device together, provisioning
enough of each to meet their respective demands. HDDs are

USENIX Association 2023 USENIX Annual Technical Conference 435

Figure 3: IO bandwidth demand across 85 tables over the course of
one day. Training tables exhibit a power law in popularity.

an ideal storage-efficient device due to their density. We con-
sidered DRAM and flash for our IO-efficient device.

Option 3.1: HDD + DRAM. We decided against using
only DRAM, as a DRAM storage node would be bound by
the NIC throughput (e.g., 100 Gbps) as opposed to DRAM
throughput. Modern SSDs can provide O(1GB/s) of read
bandwidth at O(1W) of power [11], allowing a flash storage
node to provide the same IO capacity in roughly the same
power footprint as a DRAM storage node. Meanwhile, flash
storage nodes have significantly higher storage capacities
(O(10T B)), greatly improving cache performance.

Option 3.2: HDD + Flash. We opted to use flash as our
underlying IO-efficient device. Table 1 shows how an ideal
composite cluster would allow us to provision only 1.69×
flash-based power to meet IO demand plus 1.00× HDD-based
power to meet storage demand, reducing the power footprint
of our storage tier by 3.69× compared to Option 1.

However, Option 3.2 assumes that flash servers are able
to meet the bulk of IO demand by holding a popular subset
of bytes. Our next challenge was designing a system that
could intelligently manage the contents of each flash server
to maximize its IO absorption. Our first option was to create
both a flash and HDD Chunk Store within the same durable
storage fabric. The Tectonic Metadata Layer would move
blocks between flash and HDD based on read demand. This
option has several drawbacks. It a) requires extra RS encoding
overheads on flash, b) adds metadata overheads due to block
location updates, and c) requires significant changes to the
Metadata Layer to support sub-block granularities (due to
byte-range popularities, to be discussed in Section 3.2.1). For
these reasons, we decided to use flash as the foundation for
a metadata-less, non-durable cache. We present the design
space exploration of this software cache next.

3.2 Software Design Space
3.2.1 Production ML Workload Characterization

We begin by characterizing our production ML training jobs,
which present a uniquely challenging cache workload.
Row-wise Reuse. Training samples (rows) exhibit a skewed
popularity across training jobs. Figure 3 shows the IO demand
targeting 85 tables over the course of one day. We run many
ML model types in production, and ML engineers continu-
ously train and experiment on each model type with varying

Figure 4: (a) Normalized histogram showing # of date partitions
read by each training job, with orange bars weighing jobs by the
number of partitions read. (b) IO demand across date partitions over
a one-day period, with day 0 being the most recent partition.

popularities. Since each model type typically uses a distinct
table, this variation manifests in tables’ IO demands. There is
a distinct power-law in table popularity with a long tail.

Furthermore, training jobs typically read a subset of table
partitions, as models can typically reach convergence before
all rows are exhausted. For a similar reason, each training job
only reads its specified rows once (i.e., one epoch). Figure 4(a)
shows a distribution for a popular table1 of the number of date
partitions2 read by training jobs in one day. Most jobs read
only a few partitions. However, when we consider IO demand
by weighing the impact of each job by the number of date
partitions it reads (the orange bars), we see that the majority of
IO demand comes from jobs that read 20 or more partitions.

It is also important to understand which partitions training
jobs typically read. Figure 4 shows a normalized histogram
of IO demand over the popular table’s date partitions over the
course of one day. Partitions do not exhibit flat popularity, but
instead show multiple modalities. A large fraction of traffic
reads the most recent date partition. This is typical of “recur-
ring” jobs that keep the model up-to-date and exploratory jobs
that use the freshest data. There also exist multiple groups of
popular date partitions, where multiple larger-scale training
jobs use similar date ranges to ensure comparable results.

The above graphs show multiple important characteristics.
a) Row reuse is solely across single-epoch training jobs. b)
The active working set size of all training jobs is massive.
There are over 85 active tables, each containing O(1−10PB)
of samples [68]. c) Most IO demand comes from jobs that
read tens of date partitions. These jobs have PB-scale working
sets due to O(100T B)-sized date partitions [68]. There are
also many smaller jobs that read a few date partitions. d) Date
partitions exhibit varying popularity, with popularity changing
over time as date partitions are generated and deleted.
Column-wise Reuse. Columns (i.e., features) also exhibit
a distribution in popularity, as training jobs typically use a
subset of all features due to hardware (e.g., GPU memory)
constraints. Figure 5(a) shows an analysis of 1265 production
training jobs that read a specific date partition of the popular

1Where relevant, we characterize this same table throughout this section.
2A date partition consists of all training samples generated in a given day.

436 2023 USENIX Annual Technical Conference USENIX Association

Figure 5: (a) CDF showing distribution of stored feature bytes to
IO served to 1265 training jobs reading a single date partition. (b)
Time-series of training jobs reading a popular table over one week.

table. The x axis shows a distribution of the stored bytes,
ordered by read popularity. The y axis shows the fraction
of total IO bandwidth served by most popular x fraction of
bytes. Over 75% of bytes are read at least once. However,
roughly half of all bytes, corresponding to popular features,
serve almost all IO demand.

This has important implications for a cache system, as
features are stored into columnar byte streams within large
DWRF files. Specifically, row-wise popularity corresponds to
file-popularity, and column-wise popularity corresponds to
byte-range popularity within each file. A cache system must
effectively capture both dimensions.
Temporal Behavior. Cache systems must also account for the
unique temporal characteristics of training jobs. Figure 5(b)
shows a time-series plot of 642 jobs, launched over one week,
that read the popular table. Each horizontal bar reflects the
lifetime of each job, during which it reads the samples and
features specified in its dataset. We observe that first, training
jobs are largely asynchronous. Cache systems cannot solely
optimize for highly synchronized jobs (e.g., hyperparameter
tuning) and assume high temporal locality. Secondly, data
reuse is expressed across a small number of training jobs,
unlike the billions of requests common to web-based work-
loads [6]. Finally, each training job can run from hours to
days, requiring a large storage and temporal footprint.

3.2.2 Cache Software Design Space Exploration

With our workload characteristics in mind, we evaluated vari-
ous system architectures to manage our flash storage tier.
Option 1: General-purpose Software Caches. We built
CacheLib at Meta as a general-purpose cache engine to sup-
port caches for datacenter applications such as key-value
stores, databases, CDNs, and social graphs [6]. CacheLib
offers LRU and FIFO eviction policies over flash, and random
and reject first admission policies to manage flash endurance.
Our first option was to simply deploy a cluster of flash storage
nodes, each managed by CacheLib, to cache file byte ranges.

Unfortunately, ML training workloads exhibit patterns that
general-purpose cache policies fail to handle. Our characteri-
zation showed a long tail of jobs that read unpopular tables
and partitions. However, each job can still have working sets
up to tens of petabytes, potentially larger than the entire cache

itself. These massive and long-running scans can easily evict
the entire cache, reducing hits on popular items. Furthermore,
even popular training samples are susceptible to churn, where
each sample is repeatedly evicted and inserted into cache.
Churn occurs because a) there are relatively few training jobs
in each datacenter, b) data reuse occurs with a relatively long
duration between jobs (Figure 5), and c) working set sizes ex-
ceed our cache capacities. Scans and churns are well-known
antagonist cache patterns [52], motivating the need for spe-
cialized and domain-specific admission and eviction policies.
Option 2: ML-specific Caches. We also considered tech-
niques for building an ML-specific cache, inspired by recent
work [16, 23, 30, 32, 41, 61, 71], that allows applications to
explicitly cache samples in high-bandwidth storage. While
such caches can optimize policies for ML workloads, they
face several disadvantages. First, current ML caches employ
techniques that require assumptions not representative of our
workloads, limiting their effectiveness. For example, they
cache entire files (e.g., images), and they rely on a large
amount of intra-job data reuse across multiple epochs and
inter-job data reuse across highly concurrent hyperparameter
tuning jobs. Meanwhile, feature popularity requires our cache
to store byte ranges within files, and our workloads only ex-
hibit inter-job data reuse with highly asynchronous workloads.
Secondly, an application-controlled cache introduces security
concerns due to the need to handle access to and deletion of
multiple copies of data. Finally, ML caches require end-user
efforts to adopt, hindering both our deployment velocity, and
more importantly, the productivity of ML engineers.
Option 3: A Transparent, Application-aware Cache. Our
final cache design combined benefits from both software
and ML caches. We focused on policies that provide the
transparency and generalizability of software caches and the
application-level awareness of ML caches. Our characteriza-
tion highlighted key opportunities. Specifically, not only do
training jobs tend to favor specific rows and columns, their
dataset specifies which features, tables, and partitions the job
will deterministically read throughout its lifetime.

We next explore how our entire design space exploration
yielded a principled design of Tectonic-Shift. Section 5 then
describes how we leverage policies that infer future access
patterns from dataset specifications to minimize cache con-
tention and to maximize the read IO absorbed by the cache.

4 Tectonic-Shift Architecture

4.1 Tectonic-Shift Design Principles
Figure 6 shows the architecture of Tectonic-Shift. We designed
Tectonic-Shift around four key design principles.

Transparency: Tectonic-Shift combines Shift, a flash stor-
age tier, in front of each HDD Tectonic cluster transparently.
Each Tectonic-Shift cluster serves read requests for all training
workloads in its respective datacenter. It exposes the same

USENIX Association 2023 USENIX Annual Technical Conference 437

Tectonic Cluster
...

Shift Cluster
Shift Storage Node

Shift Storage
Node

Admission

Storage Node
Control Plane

Shift Storage
NodeDRAM SSD

CacheLib

Cache
Miss

Data Fetch

Admitted /
Reinserted Data

Evicted
Data

Datacenter

... ...

...
Consistent
Hash Ring

Training Job
DPP Readers
Client Library

Cache
Eligibility

Cache
Ineligible Read

Cache Eligible
Lookup

Cache Hit

Training Job
or Cache Ineligible

1a

1b

2a

2b

3

4

5
6

Reinsertion

Figure 6: The block diagram of Tectonic-Shift, with numbered arrows depicting the path of each read request.

APIs and semantics as our current Tectonic File System. Trans-
parency was important for two reasons. First, we avoided ex-
posing storage decisions to ML engineers, as doing so may
lead to inefficient configurations and hinder their productiv-
ity. It also eased deployment, allowing us to progressively
roll out Shift and re-balance Tectonic clusters under the hood.
Secondly, because most of Meta’s storage services rely on
Tectonic, a general API would allow us extend Shift to new
customers that could become IO-bound (see Section 7).

Simplicity: We kept Shift simple and robust by reusing as
much infrastructure as possible. Shift can only be accessed
via the Client Library, which uses Tectonic’s Metadata Layer.
This simplifies security since all access controls are validated
before reaching Shift. Shift also uses the fact that training data
is stored in immutable, sealed blocks [50] to avoid managing
cache invalidations or mutations. Each Shift node uses Cache-
Lib as its internal caching engine, allowing us to harness
resources from the myriad teams that rely on CacheLib.

Scalability: We built Shift to be effective at any deploy-
ment size, quickly deployable, and easily scalable to meet the
demands of each datacenter. Shift is fully decentralized, con-
sisting of only flash storage nodes placed in a consistent hash
ring. Cache decisions are only made locally to each storage
node and dynamically adjust based on observed load.

Intelligence: Finally, based on Section 3, Shift must adapt
to the unique workload characteristics of ML training jobs.
Section 5 explores how we built intelligent cache policies
on top of CacheLib. These policies infer each training job’s
data access pattern based on its initial dataset specification,
allowing each Shift node to maximize IO absorption based on
both historic and expected future data access patterns.

4.2 The Life of a Tectonic-Shift Read

Client Library. As discussed in Section 2, for each training
job, DPP Readers collectively scan through the specified par-
titions, with each Reader individually reading separate splits
of rows. Each partition is mapped to a distinct file system
directory, and Readers directly read data corresponding to
used features from files in the respective directories. Readers
obtain file handles by querying the Tectonic Metadata Layer
(Figure 2). Mappings from features and rows to file byte

ranges are decoded by Readers from file footers. Each Reader
issues reads via a pread Client Library API call, which re-
turns count bytes starting at offset within a file.

Figure 6 shows how the Client Library handles each pread.
It first decomposes the pread into a set of block reads by
querying the Tectonic File Layer. The Client Library then
checks if each block read is cache eligible. Cache ineligible
reads directly read each block range from the Tectonic Chunk
Store 1a . Cache eligible reads directly issue a get(blockId,

offset, length) for each block to the Shift cluster 1b .
We piggyback a number of tags with each get request that
associate each request with relevant metadata, such as the file
path and training job ID, to be used by Shift policies. The Shift
cluster consists of a number of flash Shift Storage Nodes (SNs)
placed in a consistent hash ring [25]. The Client Library maps
each get request to a Shift SN based on hash(blockId). get
requests either return data for the corresponding block 2a ,

or return a cache miss 2b . The Client Library reads missed

blocks from the Tectonic cluster 1a . Once all blocks are
fetched, the Client Library returns the results of the pread to
the caller.
Shift Storage Node Data Plane. Shift uses CacheLib [6]
within each SN to manage both DRAM and flash. We break
up each Tectonic block into fixed-size segments, which are
the objects that we place into CacheLib. Blocks are typically
72 MiB; we discuss segment sizes in Section 5.2.

The SN breaks up each get request’s range into segments.
If all segments are present in cache, the SN simply returns the
requested data 2a . Otherwise, Shift implements two critical
policies on top of CacheLib. First, if any segments are missing,
the SN decides if the segment is admitted (i.e., allowed) into
cache 3 . If any segment is not admitted, the SN returns a
cache ineligible miss to the Client 2b . Otherwise, the SN will
fetch admitted segments from the Tectonic cluster and insert
them into cache 4 . The SN then returns data corresponding
to the get request 2a . Secondly, any cache insertions will
potentially result in segments being evicted from the cache
5 . For each evicted segment, the SN can optionally reinsert

the segment into cache 6 , potentially avoiding a cache miss
if the evicted segment is accessed in the near future.
Shift Abstractions and Guarantees. The primary goal of

438 2023 USENIX Annual Technical Conference USENIX Association

Shift is to serve IO bandwidth corresponding to popular bytes,
reducing IO to Tectonic’s Chunk Store. We rely on and do not
change the semantics of the Tectonic File System.

Specifically, the Tectonic File System provides append-only
semantics. Data pipelines will seal blocks; we do not have to
handle modifications in Shift. Shift SNs act only as a part of
the data plane. To keep file system operations centralized and
scalable, we rely on the Tectonic cluster’s Metadata Layer for
all metadata operations. Thus, Shift does not expose a put
API. Inserts into cache are only made for missed get requests.
Accesses to blocks are consistent since Shift SNs can only be
accessed by the Tectonic Client Library, which first references
the Metadata Layer for file-to-block mappings, preventing
reads to renamed or deleted files. Similarly, unauthorized
reads are prevented as any the Client Library performs ACL
checks for each block before issuing reads to Shift.

Our proposed design also allows Shift to be inherently fault
tolerant. Shift contains no centralized state. Shift relies on the
fault tolerant Tectonic Metadata Layer [50] for metadata op-
erations. Cache policies are made local to each SN, allowing
other SNs to proceed unhindered in the event of a SN failure.
Furthermore, Shift serves only reads, and Clients will default
to Tectonic reads (e.g., after a timeout) if a given SN fails.

5 Application-Aware Cache Policies

Building on our design principles, our key insight is to in-
strument Shift with intelligent policies that maximize the IO
absorbed from Tectonic. These policies transparently adapt to
workloads by leveraging both historic and application infor-
mation, ensuring that only segments with high reuse across
training jobs are kept in each SN. Specifically, each Shift SN
contains a Control Plane that implements an admission and
reinsertion policy. We incorporate a cache eligibility pol-
icy in the Client Library to reduce RPC pressure and avoid
requests to Shift from “uncacheable” workloads.

We focused on building a flexible SN Control Plane that
aggregates the necessary metadata (including application in-
formation) to define and inform highly configurable policies,
allowing us to constantly tune and improve performance. We
prioritized admission and reinsertion policies as opposed to
eviction policies such as LRU because a) we can prevent
significant thrashing due to the scan and churn (Section 3)
patterns common in our workloads, and b) we can control
write rates to flash in order to manage flash endurance con-
straints. Meanwhile, our policies are built on top of CacheLib,
and we use CacheLib’s provided eviction policies (LRU or
FIFO) after admission into cache.

As discussed in Section 4, each Shift SN acts as an indepen-
dent entity, serving only requests on its portion of a consistent
hash ring. Thus, the overall goal of each Shift SN is to max-
imize the absorbed IO locally — doing so maximizes the
aggregate IO absorbed by the entire Shift cluster. We define
the absorbed IO at each SN as the bandwidth of successful

Cache Request
(Segments)

CacheLib

Bucket

Request History Window

≥ Admit

Threshold

≥ Reinsert
Threshold

Sorted by
Priority

Sorted
by

Priority

Reinsert

Insert
Bucket

Global
Metadata Store

EvictReject

Storage Node Data PlaneAdmit

Storage Node
Control Plane

Segment to
Bucket Mapping

Bucket Priority
Calculation

Policy
Assignment

Dynamic
Threshold Tuning

Cache

Eviction

Configurable
Parameters

Figure 7: Overview of Shift SN Control and Data Plane. The Control
Plane dynamically tunes Data Plane cache policies.

Table 2: Table listing configurable parameters in Shift.

Configurable Parameter Meaning

MapSegment(s) Mapping function from segment to bucket.
BucketPriority(b) Function to calculate priority of bucket b.
AdmitT hreshold Dynamic scalar threshold to admit buckets.
ReinsertT hreshold Dynamic scalar threshold to reinsert buckets.
BucketRe f reshTime Update period for bucket policies.
RHWSize Size of request history window logs to keep.

get requests returned to clients, minus the bandwidth of data
fetches to the Tectonic cluster due to data misses. Importantly,
non-admitted cache requests do not impact absorbed IO, and
reinserted segments do not contribute to fetches to Tectonic.

5.1 Admission and Reinsertion

Figure 7 shows an overview of the Control and Data Plane
running in each SN. The Control Plane dynamically directs
the Data Plane to admit or reinsert segments into the cache
upon a cache miss or eviction, respectively, using historical
and application metadata. These decisions are made based on
the configurable parameters summarized in Table 2.
Mapping a Segment to a Bucket. The Control Plane stat-
ically maps each segment s to a bucket b using the tags at-
tached to each read request, based on a configurable function
MapSegment(s). Intuitively, each bucket represents a collec-
tion of segments that will likely be accessed together and
connects to a logical grouping within the application.

For example, we typically use a segment’s corresponding
directory as its default bucket mapping, as each training job
specifies a set of partitions to read and will scan through
files within each partition’s directory. Furthermore, we can
correlate data reuse across multiple jobs based on their dataset
partitions (and thus directories). While finer-grained bucket
mappings such as files or features (i.e., file byte ranges) are
possible, directories provide sufficient granularity since jobs
mostly read similar features within each file (Section 3).
Assigning a Policy to Each Bucket. Each bucket is assigned
a binary admission and reinsertion policy. The Data Plane sim-
ply admits/rejects (on miss) or reinserts/evicts (on eviction)
each segment depending on its bucket’s current policy. The
Control Plane will admit or reinsert a bucket if the bucket’s
current BucketPriority(b) is greater than AdmitThreshold or

USENIX Association 2023 USENIX Annual Technical Conference 439

ReinsertThreshold, respectively. Bucket policy assignments
are updated every BucketRefreshTime, a configurable parame-
ter. Buckets should be updated frequently enough to react to
changes in reading patterns; we use a default of 10 seconds.
Deriving a Bucket’s Priority. BucketPriority(b) directly de-
termines b’s admission/reinsertion policy. Intuitively, we in-
terpret b’s priority as the number of times we expect each
segment in the bucket to be read in the near future. Higher
priority buckets will be placed into the cache (via admis-
sion/reinsertion) over lower-priority buckets and thus absorb
more IO in total. Our key insight is to calculate buckets’ prior-
ities using both historical and future information derived from
the Request History Window (RHW) and Global Metadata
Store (GMS), respectively.

Historic Priority. The RHW tracks recently observed re-
quests (regardless of admission) over a past time period,
RHWSize. The RHW reports the number of unique segments
and total segments requested for each bucket. A historic pri-
ority for bucket b can be calculated as BucketPriority(b) =
TotalBytes(b)/UniqueBytes(b), providing the traditional
cache signal which assumes that past access patterns are in-
dicative of the future. RHWSize is a configurable parameter.
We tune it to capture sufficient historical data without exceed-
ing memory capacity limits; we use a default of 6 hours.

Future Priority. The RHW also records the set of active
training jobs and the set of buckets read by each training
job using the job ID tag piggybacked with each request. The
GMS is a set of databases which contains real-time informa-
tion about the dataset specification of each training job. By
combining the RHW and GMS, we can directly derive future
accesses for each training job and thus bucket priorities. The
Control Plane queries the RHW for all active training jobs and
pulls each job’s dataset specification from the GMS. For ex-
ample, for directory-based buckets, the Control Plane derives
a bucket’s future priority as equal to the number of jobs that
include the corresponding partition in its dataset, discounting
any jobs that have finished reading the bucket.

In summary, the RHW captures historic access patterns and
active training jobs, while the GMS associates each training
job with application information about its dataset. While we
presented potential historic and future policies, variations can
easily be created using the RHW and GMS. For example, a
potential future policy can further prioritize directories earlier
in read order (and thus read sooner). Section 6 explores a
hybrid policy combining historic and future priorities.
Threshold Tuning. The Control Plane continuously tunes the
AdmitT hreshold and ReinsertT hreshold based on two fac-
tors. First, a minimum threshold avoids admitting unpopular
workloads that can evict the entire cache. We use a mini-
mum value that is strictly greater than 1, and we constantly
tune it based on observed performance. Secondly, we imple-
ment a PID-controlled feedback loop to ensure that the cache
admit plus reinsert rates (reported by the RHW) is strictly
less than our flash endurance limits (defined by a maximum

average write rate). This allows the threshold to increase
beyond the minimum in response to high flash write rates,
thereby admitting/reinserting fewer segments. We only tune
the AdmitT hreshold and tie the ReinsertT hreshold to be a
fixed offset (e.g., AdmitT hreshold + 1) to prioritize admits
over reinserts to limit write amplification due to reinserts.

An additional benefit in building an admission policy above
CacheLib is to rate limit prior to Tectonic reads. While Cache-
Lib provides a rate limiter, which selectively admits segments
to flash upon DRAM eviction, it inherently requires first in-
serting data into DRAM. This results in unnecessary Tectonic
reads if the data is soon to be evicted due to write endurance
limits. Shift’s admission policy acts prior to Tectonic fetches,
avoiding unnecessary HDD reads for rate limited data.

5.2 CacheLib Tuning

CacheLib offers a suite of configurable parameters that we
continuously tune via a host of stress, release validation, and
production tests. While prior flash caches focused on address-
ing write amplification caused by small objects (e.g., <1KB
messages) [6, 13, 38, 56], a key difference and advantage in
Shift is the ability to configure segment sizes. Too large seg-
ments, relative to request sizes, result in overheads since we
fetch and store data in segment-granularity. On the other hand,
too small segment sizes constrain both DRAM and flash due
to metadata and write amplification overheads. We found that
256 KB was a good balance for our workloads. We also rely
on CacheLib to optimize underlying data layouts on flash [6]
to further improve flash endurance. Finally, we evaluated the
available eviction policies for DRAM and flash and found
that LRU works well (when combined with Shift’s policies);
we provide further exploration in Section 6.

5.3 Client Cache Eligibility

We also incorporate a Shift eligibility policy at the Tectonic
Client Library. Tectonic serves a diverse set of training and
non-ML workloads across Meta. The primary purpose of the
cache eligibility policy is to prevent customers that are not
onboarded to Shift, as well as low-priority and uncommon
(and less-cacheable) tables, from issuing lookups to Shift.
While these read requests would likely be rejected by the SN’s
cache admission policy, applying a first filter significantly
reduces the RPC load and memory pressure at each SN.

We currently filter out all non-ML traffic to bolster ML
training capacity. Furthermore, Figure 3 shows that tables are
disproportionately popular. Filtering out rarely-used tables
adds another layer of protection against cache contention,
since all IO can be sufficiently served from Tectonic HDDs.
As a baseline heuristic, we filter out tables whose IO demand
can be sufficiently served by the HDD capacity needed to
store it. We continuously tune our filters based on demand.

440 2023 USENIX Annual Technical Conference USENIX Association

(a) Synchronized workload (b) Pipelined workload (c) Sequential workload
Figure 8: IO absorbed by different policies across benchmarks, normalized to the average IO absorbed by LRU eviction.

Table 3: Benchmark DLRM training job workloads used for eval-
uation. Each job j is denoted as {} j and reads each partition P in
specified order. Each partition P has a ≈ 5 TB working set.

Workload Jobs & Partitions Read Description

Synchronized {P1,P2,P3}1, {P4,P5,P6}2,
{P1,P2,P3}3, {P7,P8,P9}4,
{P1,P2,P3}5

Multi-tenant HP tuning or ex-
ploratory jobs. Jobs are launched
synchronously.

Pipelined {P1,P2,P3}1, {P2,P3}2,
{P3}3

Long-running, pipelined jobs. Jobs
are launched synchronously.

Sequential {P1}1, {P1}2, {P1}3, {P1}4,
{P2}5, {P3}6, {P1}7, {P4}8,
{P5}9

Queued jobs that launch when
training capacity is available. Jobs
1-3, 4-6, and 7-9 launch together.

6 Tectonic-Shift Deployment and Evaluation

Tectonic is Meta’s durable storage system. It has been in pro-
duction since 2015 and stores exabytes of data. Shift has been
in production since early 2022 and is deployed at petabyte-
scale alongside multiple Tectonic clusters serving DLRM
training workloads. In this section, we evaluate Shift’s various
caching policies compared to state of the art using a series of
representative workloads, and we present results of Shift in
production. We focus on and report absorbed IO because it is
Shift’s top-line metric and optimization goal. A comparison
of hit rates would yield analogous results since requests rates
are equally distributed across SNs due to consistent hashing.

6.1 Shift Policy Evaluation

To better understand how Shift policies perform, we used
a set of representative workload patterns shown in Table 3.
Each pattern was derived from production DLRM training job
traces and downsized to scale to our evaluation cluster. The
Synchronized pattern represents a case where multiple training
jobs reading the same partitions are launched at the same
time (e.g., for hyperparameter tuning jobs), with training jobs
reading other partitions interleaved due to the multi-tenancy of
our training clusters. The Pipelined pattern frequently occurs
in long-running jobs when users kill an under-performing job
and replace it with a new model using the same dataset. The
Sequential pattern occurs due to limited training resources,
where jobs will run in separate batches as jobs finish and
resources become available. For each workload, we used a set

of Readers that each read from Tectonic-Shift at ≈ 1.5 GB/s.
We evaluated on a 6-node Shift cluster deployed with our

production configuration. In each experiment, we configured
nodes with different policies and evaluated each policy concur-
rently to ensure equal read locality; consistent hashing evenly
spread requests across nodes. We used 16 GB of DRAM
cache for each node. The Synchronized, Pipelined, and Se-
quential patterns used (1.28 TB, 5 TB, and 5 TB), and (4, 5,
and 5) of total flash cache and Readers per job, respectively.
Unless otherwise stated, we used directory bucket mappings
and disabled reinsertion and write rate limits.
Do admission policies improve IO absorption? First,
we evaluated if various Shift admission policies improved
IO absorption across all workloads. We used the Historic
and Future admission policies presented in Section 5.1,
which use historic and future metadata, respectively, from
the RHW and GMS to calculate a priority equal to the
number of expected reads per segment. We also used
a Hybrid admission that uses BucketPriorityHybrid(b) =
max(BucketPriorityHistoric(b),BucketPriorityFuture(b)). We
set a minimum admit threshold of 1.1 for each policy, imple-
menting a "reject first" policy. We used LRU eviction for each
admission policy, and we compared to two baselines that only
used CacheLib’s FIFO and LRU eviction policies.

Figure 8 shows the IO (bandwidth) absorbed by each policy,
normalized to the average IO absorbed by LRU. A higher IO
absorption directly translates to higher Shift efficiency. In
the Synchronized workload, FIFO absorbed an equal amount
of IO (1.01×) as LRU. The Historic policy absorbed 2.01×
more IO than LRU, since it was able to avoid cache thrashing
induced by P4−9 (see Table 3) by not admitting them. The
Future and Hybrid policies absorbed 2.27× and 2.32× more
IO, out-performing Historic admission since they were also
able to immediately cache P1,2,3 without rejecting initial reads
waiting for the Request History Window to populate.

For the Pipelined workload, FIFO was able to absorb
1.86× more IO than LRU, since churn caused LRU to evict
more objects in P3 before job 1 read P3. Historic admission
performed worse than LRU, absorbing only 0.80× IO, as it
did not admit any bytes from P3 until job 2. Since the Future
admission policy immediately knew of P2 and P3’s popularity,

USENIX Association 2023 USENIX Annual Technical Conference 441

(a) IO Absorbed (b) NVM Write Rate (c) HDD Read / Cache Fill Rate
Figure 9: Policy performance using the Synchronized workload, normalized to Dynamic. Dynamic and Shift write limits are set to 100 MB/s.

it was able to maximize and absorb 5.84× more IO than LRU
by admitting them to both to cache on the first read by jobs
2 and 3. Hybrid admission equalled LRU (0.99×), since it
kept admitting P2 during job 1, expecting future reads due to
historic popularity and thrashing P3’s data in cache.

Finally, we observe that for the Sequential workload, FIFO
performed on-par (1.06× IO absorbed) with LRU, while His-
toric, Future, and Hybrid outperformed LRU equally (1.71×,
1.74× and 1.69× respectively). Specifically, for the first set
of jobs (1-3), all policies saw high hit rates since only P1
was actively read. However, for the second (4-6) and third
(7-9) sets of jobs, the Shift policies rejected reads from P2−5,
avoiding contention and improving IO absorbed by P1.

On average across all workloads, FIFO, Historic, Future,
and Hybrid respectively absorbed 1.31×, 1.51×, 3.28×, and
1.67× more IO compared to LRU.
Can admission policies manage flash endurance? We need
to limit the write rate to SSDs in order to preserve their life-
time. To study how well Shift policies perform under con-
strained write limits, we repeated the Synchronized workload
while limiting each Shift node with an flash write limit. We
compared to two state-of-the-art admission policies provided
by CacheLib: a Dynamic flash admission policy randomly
rejects writes to flash in order to maintain the specified write
limit, and a Reject First flash admission policy rejects objects’
first write to flash. We also evaluated no admission policy
(Admit All). We used LRU eviction for all admission policies,
and we configured Shift policies and the Dynamic policy to
write only 100 MB/s per node. To fully evaluate the Shift
threshold tuner, we did not set a minimum admit threshold.

Figure 9 shows the IO absorbed, flash write rate, and Tec-
tonic HDD read rate for each admission policy, with each
metric normalized to the average for the Dynamic admission
policy. All admission policies absorb more IO than Dynamic.
Reject First and Admit All absorb 1.51× and 2.66× more IO,
respectively; the Historic, Future, and Hybrid policies absorb
2.14×, 3.07×, and 2.99× more IO, respectively.

While Shift’s Future and Hybrid policies performed simi-
larly to Admit All, Figure 9b shows how Admit All required
significantly more (10.38×) flash writes than Dynamic, ex-
ceeding our write limit. Reject First was similarly ineffec-

Table 4: Hit rate and HDD IO (cache fills) using Hybrid admission
with dynamically-tuned reinsertion, normalized to Hybrid admission
without reinsertion. Write rate is limited to 1 GB/s.

Normalized Hit Rate Normalized HDD IO

Hybrid with Reinsertion 1.03 0.82

tive, requiring 3.78× more flash writes. Meanwhile, all of
Shift’s policies matched CacheLib’s write rate (within 5%,
even discounting CacheLib’s increased writes initially due to
its counter warm-up) while outperforming its IO absorption.

Furthermore, Shift has the advantage of avoiding excess
reads from Tectonic HDD nodes for rejected objects, com-
pared to CacheLib’s Dynamic policy which always admits
objects to DRAM first (and thus incurring an HDD read) be-
fore rejecting it from flash. Figure 9c shows this benefit; each
of Shift’s policies avoids an HDD read upon rejection, sig-
nificantly reducing the amount of cache fills (96% less than
Dynamic) compared to CacheLib’s baseline policies.

These results show that Shift’s threshold tuning mecha-
nism is effective at maximizing IO absorption given a write
constraint, without incurring excess Tectonic cluster reads.
How effective is reinsertion? We evaluated if reinsertion
was effective at reducing HDD reads compared to admission
only. We repeated the Synchronized workload with a write
limit of 1 GB/s and a reinsertion threshold 1.0 greater than
the dynamic admission threshold with a minimum admit of
1.1. We compared a Hybrid admission policy with reinsertion
against a baseline Hybrid policy without reinsertion.

Table 4 shows the hit rate and HDD IO with reinsertion
enabled, normalized to the baseline without reinsertion. We
observe that enabling reinsertion resulted in similar hit rates
(3% increase), while reducing HDD reads by 18%. However,
compared to the limited flash write rate of the baseline (≈ 300
MB/s), enabling reinsertion with dynamic threshold tuning re-
sulted in Shift always hitting the write limit, since reinsertions
caused more reinsertions until the limit was exceeded. Our
takeaway is that currently, reinsertions may be effective when
reducing HDD reads are prioritized over reducing flash writes.
However, potential future optimizations in CacheLib (see Sec-
tion 7) can harness reinsertion’s benefits while eliminating
the write overheads caused by continued reinsertions.

442 2023 USENIX Annual Technical Conference USENIX Association

Figure 10: Production results comparing Shift to an expert manual-
tuned policy that admits only IO-heavy tables.

6.2 Production Results
We have enabled the policies presented in Section 5 in our
production clusters. Since the mix of training jobs and re-
sources varies across datacenters, we are continuously tuning
policy configurations for each cluster. These policies have
helped Shift save significant amounts of power.

To demonstrate this, Figure 10 shows a representative trace
of the IO absorbed by Shift nodes in a petabyte-scale produc-
tion cluster over the course of 9 hours. We show a baseline
that uses an Expert-tuned admission policy on top of LRU,
which admitted only high-IOPS tables to cache; no admission
policy (admit all) showed near-zero IO absorption due to sig-
nificant cache contention across training jobs. We compared
against Shift using a Hybrid policy, with a minimum admit
threshold of 3.0 and without reinsertion. Both used client
eligibility policies and our production write rate limit (the
baseline additionally used Dynamic admission if necessary),
and we normalized results to the “power-neutral” IO absorp-
tion point: the required amount of IO Shift needs to absorb to
reduce power consumption compared to using only HDDs.

The Expert admission policy is ineffective at saving power
due to its inability to capture the limited data reuse of train-
ing jobs we characterized in Section 3. Simply deploying a
flash cache without intelligent and adaptable cache policies is
inefficient; our production trace shows that doing so would
only absorb 0.21× the IO needed to achieve power neutral-
ity. By employing the application-aware policies presented
in Section 5, we show that Shift can exploit the unique char-
acteristics of training jobs, saving 29% of power relative to
using only HDDs for training data storage. At our scale, this
corresponds to a massive efficiency improvement.

7 Lessons Learned and Open Questions

Define the right interface to users. Our focus on designing a
transparent but intelligent interface to users was instrumental
in the success of Tectonic-Shift. A transparent interface al-
lowed us to quickly onboard new users by simply configuring
the cache eligibility policy, requiring zero application modifi-
cations. Since applications could be agnostic to their use of
Shift, this allowed us to dynamically manage the deployment
and operation of Shift with fine granularity. For example, we
could gradually roll-out to a new customer, A/B test differ-

ent policies across SNs, or even roll-back to reduce request
pressure — all without affecting customers’ performance.

At the same time, we quickly learned that it was essential to
work closely with customers to maximize Shift performance.
We collaborated heavily with AI infrastructure and ML en-
gineering teams to understand and extract the right set of
application metadata to optimize Shift policies. Looking for-
ward, we believe that a wide range of other ML domains (e.g.,
vision, NLP, etc.) and non-ML applications will benefit from
Shift. Since these applications use the same Tectonic API, our
focus can simply lie in working with customers to extracting
the best features to maximize Tectonic-Shift efficiency.
Rely on a slate of robust testing, experimentation, and
monitoring mechanisms. We use multiple tools such as
stress tests, production A/B testing, trace-based simulation,
shadowing, and dashboards to continuously tune the multiple
Shift policies and configurations discussed in Section 5. These
tools have also helped ensure a stable deployment of Shift. For
example, data corruptions are common at our scale, requiring
us to compute, store, and verify checksums for each Shift seg-
ment. To ensure data correctness prior to deployment, we used
a shadow deployment to have clients fetch Shift checksums
to compare against data read from Tectonic.
Effectively use DRAM. CacheLib uses both DRAM and
flash to store data. For our use case, DRAM capacity was
negligible relative to the orders of magnitude larger flash ca-
pacity. Instead, we prioritized using DRAM to store metadata
(e.g., the RHW) to improve the effectiveness of Shift policies,
but we still had to reserve tens of gigabytes of memory for
CacheLib to buffer and serve requests at high throughput. Fur-
ther CacheLib optimizations to reduce memory requirements
and an investigation into the optimal split between data and
metadata may further improve Shift performance.
Can data placement and job routing policies improve
cache performance? A key opportunity we foresee is co-
designing Tectonic-Shift with data placement and training
job routing policies. Data placement policies govern how ta-
bles are replicated across our datacenters. Cache-aware data
placement policies can help reduce cache working set sizes
by intelligently reducing data replication while balancing for
data availability. Cache-aware job routing policies can im-
prove the IO absorbed by Shift by coalescing jobs that read
similar data within the same datacenter.
How much can priority-aware evictions improve cache
performance? Section 6 showed that while reinsertion was
effective, it required significant flash writes due to reinsertion
cycles. Reinsertions are necessary because CacheLib only
offers LRU or FIFO eviction. We believe that further opti-
mizations in CacheLib, such as allowing selective evictions
based on a cache object’s priority, can harness the benefits of
reinsertion without write overheads.
Can historic and future knowledge inform better cache
policies? Shift provides an extensible framework to build
cache admission and reinsertion policies based historic and

USENIX Association 2023 USENIX Annual Technical Conference 443

future information. While we demonstrated that a hybrid
policy based on the maximum of historic and future priorities
was effective, a promising research direction is to explore
novel cache policies that can leverage future information.
For example, a potential cache policy may account for when
objects will be read in the future and prioritize earlier objects.

8 Related Work

Software Flash/DRAM Caches. Systems such as Redis [36],
memcached [45], RAMCloud [49], and Pocket [29] are widely
used as caches across datacenter applications. These soft-
ware caches commonly manage DRAM and/or flash using
a mix of policies including admission (e.g., TinyFLU [12]
and LARC [20]) and eviction/replacement policies (e.g.,
ARC [39], LRU [47], 2Q [22], and OPT [5]) that leverage his-
torical (or oracular) access patterns. Techniques to predict file
access patterns, e.g., access trees [33], are also well studied.

Recent works have also proposed mechanisms to dynam-
ically tune these policies using ML models [34, 52, 59],
hardware access signatures [63], NLP techniques [17, 69],
and other heuristics [40, 66]. Meanwhile, flash-specific poli-
cies [6, 13, 38, 56, 65] largely focus on managing flash write
amplification (WA). CacheSack [66] is used as the admission
policy for Google’s Colossus Flash Cache, which shares a
similar goal to Shift in absorbing IO from HDDs. CacheSack
splits objects by category and tunes the admission policy of
each category. Janus [4] is also a flash tier used in Google’s
Colossus file system, but instead requires files to be written
to flash first before being evicted to HDDs.

Various existing storage systems also leverage architectures
similar to Tectonic-Shift. Swift uses a set of configurable hash
rings to map objects to their respective storage device [48].
Numerous file systems leverage heterogeneous storage de-
vices to optimize for performance and efficiency across vari-
ous applications [24, 60, 62, 64]. For example, burst buffers,
typically consisting of IO-performant devices such as flash,
are commonly used to absorb peaks of high IO-demand from
backend (e.g., HDD) storage systems in high-performance
computing applications [35].

Tectonic-Shift is a composite storage fabric that employs
a mix of cache policies across Tectonic Clients and Shift
Storage Nodes to maximize its efficiency. Shift runs a Cache-
Lib [6] instance in each SN. We use comparatively large
segments (256 KB) and rely on CacheLib’s Large Object
Cache to handle WA. Each Shift SN dynamically tunes its
cache policies, including admission and reinsertion, indepen-
dent of CacheLib’s. While Tectonic-Shift shares a similar goal
with Google’s CacheSack [66] and Janus [4], and leverages
well-known techniques such as consistent hashing and het-
erogeneous devices, it uniquely targets industrial ML training
jobs and adopts novel application-aware policies that infer
future access patterns from job specifications.
ML-specific Caches. Recent work has shown the utility

of caches for ML training workloads. CoorDL [41] elimi-
nates data stalls in single-server training using local SSDs.
Quiver [30] and OneAccess [23] cache and share data across
highly-synchronized HP tuning jobs. DIESEL [61] targets
training workloads over small files (e.g., images). DLFS [71]
and DeepIO [70] randomize mini-batches using specialized
hardware. Cachew [16] builds on tf.data [44], and puts inter-
mediate data in cloud storage to reduce preprocessing costs.

While other ML caches require adoption effort, Tectonic-
Shift is completely transparent to users. Furthermore, Sec-
tion 3 explored why industrial ML training workloads present
novel challenges not addressed by these caches. Tectonic-
Shift is designed for exascale and continuously serves traffic
to datacenter-scale GPU training clusters.
Production ML Workload Characterization. tf.data [44]
provided an ML training workload characterization at Google,
highlighting similar traits such as prevalent data reuse and
selective reading. Tectonic-Shift is motivated by and builds
upon prior characterization of Meta’s training workloads [68].
Distributed File Systems. Tectonic-Shift is built on top of Tec-
tonic [50] and provides the same API and append-only seman-
tics as the Tectonic File System. Other distributed file systems,
such as Spanner [10], GFS [15], Colossus [19], HDFS [54],
and Lustre [53], are used across industry.

9 Conclusion

We presented Tectonic-Shift, the composite storage fabric used
in Meta’s production ML training infrastructure. Tectonic-
Shift maximizes efficiency by balancing storage and IO capac-
ity across HDD and flash. We provided an in-depth workload
characterization and design space exploration which guided
the principled design of Tectonic-Shift. Shift employs a set of
application-aware policies that infer and exploit future access
patterns using job specifications. We demonstrated how Shift
absorbed 1.51−3.28× more IO than an LRU flash cache and
improved the power efficiency of Tectonic-Shift by 29%.

Acknowledgments

We are grateful to the anonymous reviewers and to our shep-
herd, Apoorve Mohan, whose comments have greatly helped
improve this paper. We would also like to acknowledge
the contributions of Rocky Wang, Mario Consuegra, Cem
Cayiroglu, Jolene Tan, and many others at Meta who have
played a vital role in this endeavor. Christos Kozyrakis was
partially supported by the Stanford Platform Lab and its affil-
iates, and by ACE, one of the seven centers in JUMP 2.0, a
Semiconductor Research Corporation (SRC) program spon-
sored by DARPA. Mark Zhao was supported by a Stanford
Graduate Fellowship while at Stanford University.

444 2023 USENIX Annual Technical Conference USENIX Association

References

[1] Lior Abraham, John Allen, Oleksandr Barykin, Vinayak
Borkar, Bhuwan Chopra, Ciprian Gerea, Daniel Merl,
Josh Metzler, David Reiss, Subbu Subramanian, Janet L.
Wiener, and Okay Zed. Scuba: Diving into data at face-
book. Proc. VLDB Endow., 6(11):1057–1067, aug 2013.

[2] B. Acun, M. Murphy, X. Wang, J. Nie, C. Wu, and
K. Hazelwood. Understanding training efficiency of
deep learning recommendation models at scale. In 2021
IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 802–814, Los
Alamitos, CA, USA, mar 2021. IEEE Computer Soci-
ety.

[3] Jason Adrian. Introducing bryce canyon: Our
next-generation storage platform. https:
//engineering.fb.com/2017/03/08/data-center-
engineering/introducing-bryce-canyon-our-
next-generation-storage-platform/, 2017.

[4] Christoph Albrecht, Arif Merchant, Murray Stokely,
Muhammad Waliji, François Labelle, Nate Coehlo,
Xudong Shi, and C. Eric Schrock. Janus: Optimal
flash provisioning for cloud storage workloads. In 2013
USENIX Annual Technical Conference (USENIX ATC
13), pages 91–102, San Jose, CA, June 2013. USENIX
Association.

[5] L. A. Belady. A study of replacement algorithms for a
virtual-storage computer. IBM Systems Journal, 5(2):78–
101, 1966.

[6] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac
Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar,
Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, and
Gregory R. Ganger. The CacheLib caching engine:
Design and experiences at scale. In 14th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 20), pages 753–768. USENIX Association,
November 2020.

[7] Daniel S. Berger, Ramesh K. Sitaraman, and Mor
Harchol-Balter. Adaptsize: Orchestrating the hot ob-
ject memory cache in a content delivery network. In
Proceedings of the 14th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’17,
page 483–498, USA, 2017. USENIX Association.

[8] Matt Bowman, Abe Garcia, Jun Shen, Haken Michael,
Wei Zhang, and Ross Stenfort. Yosemite v3: Sierra
point e1.s 2ou flash blade and expansion board design
specification. https://www.opencompute.org/
documents/e1s-expansion-2ou-1s-server-
design-specification-pdf, 2021.

[9] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov,
Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat
Venkataramani. TAO: Facebook’s distributed data store
for the social graph. In 2013 USENIX Annual Technical
Conference (USENIX ATC 13), pages 49–60, San Jose,
CA, June 2013. USENIX Association.

[10] James C. Corbett, Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, JJ Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s Globally-Distributed database. In
10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), pages 261–264, Holly-
wood, CA, October 2012. USENIX Association.

[11] Western Digital. Wd gold ssd product brief.
https://documents.westerndigital.com/
content/dam/doc-library/en_us/assets/
public/western-digital/product/internal-
drives/wd-gold-ssd/product-brief-wd-gold-
enterprise-class-nvme-ssd.pdf, 2022.

[12] Gil Einziger and Roy Friedman. Tinylfu: A highly effi-
cient cache admission policy. In 2014 22nd Euromicro
International Conference on Parallel, Distributed, and
Network-Based Processing, pages 146–153, 2014.

[13] Assaf Eisenman, Asaf Cidon, Evgenya Pergament,
Or Haimovich, Ryan Stutsman, Mohammad Alizadeh,
and Sachin Katti. Flashield: a hybrid key-value cache
that controls flash write amplification. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 65–78, Boston, MA, Febru-
ary 2019. USENIX Association.

[14] Apache Software Foundation. Apache orc: High-
performance columnar storage for hadoop. https:
//orc.apache.org/, 2022.

[15] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The google file system. In Proceedings of the Nine-
teenth ACM Symposium on Operating Systems Princi-
ples, SOSP ’03, page 29–43, New York, NY, USA, 2003.
Association for Computing Machinery.

[16] Dan Graur, Damien Aymon, Dan Kluser, Tanguy Al-
brici, Chandramohan A. Thekkath, and Ana Klimovic.
Cachew: Machine learning input data processing as a
service. In 2022 USENIX Annual Technical Conference

USENIX Association 2023 USENIX Annual Technical Conference 445

https://engineering.fb.com/2017/03/08/data-center-engineering/introducing-bryce-canyon-our-next-generation-storage-platform/
https://engineering.fb.com/2017/03/08/data-center-engineering/introducing-bryce-canyon-our-next-generation-storage-platform/
https://engineering.fb.com/2017/03/08/data-center-engineering/introducing-bryce-canyon-our-next-generation-storage-platform/
https://engineering.fb.com/2017/03/08/data-center-engineering/introducing-bryce-canyon-our-next-generation-storage-platform/
https://www.opencompute.org/documents/e1s-expansion-2ou-1s-server-design-specification-pdf
https://www.opencompute.org/documents/e1s-expansion-2ou-1s-server-design-specification-pdf
https://www.opencompute.org/documents/e1s-expansion-2ou-1s-server-design-specification-pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/internal-drives/wd-gold-ssd/product-brief-wd-gold-enterprise-class-nvme-ssd.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/internal-drives/wd-gold-ssd/product-brief-wd-gold-enterprise-class-nvme-ssd.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/internal-drives/wd-gold-ssd/product-brief-wd-gold-enterprise-class-nvme-ssd.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/internal-drives/wd-gold-ssd/product-brief-wd-gold-enterprise-class-nvme-ssd.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/internal-drives/wd-gold-ssd/product-brief-wd-gold-enterprise-class-nvme-ssd.pdf
https://orc.apache.org/
https://orc.apache.org/

(USENIX ATC 22), pages 689–706, Carlsbad, CA, July
2022. USENIX Association.

[17] Milad Hashemi, Kevin Swersky, Jamie Smith, Grant Ay-
ers, Heiner Litz, Jichuan Chang, Christos Kozyrakis, and
Parthasarathy Ranganathan. Learning memory access
patterns. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 1919–1928. PMLR, 10–15
Jul 2018.

[18] Kim Hazelwood, Sarah Bird, David Brooks, Soumith
Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed
Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law,
Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyan-
skiy, Liang Xiong, and Xiaodong Wang. Applied ma-
chine learning at facebook: A datacenter infrastructure
perspective. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA),
pages 620–629, 2018.

[19] Dean Hildebrand and Denis Serenyi. Colossus
under the hood: a peek into google’s scalable stor-
age system. https://cloud.google.com/blog/
products/storage-data-transfer/a-peek-
behind-colossus-googles-file-system/, April
2021.

[20] Sai Huang, Qingsong Wei, Jianxi Chen, Cheng Chen,
and Dan Feng. Improving flash-based disk cache with
lazy adaptive replacement. In 2013 IEEE 29th Sym-
posium on Mass Storage Systems and Technologies
(MSST), pages 1–10, 2013.

[21] Facebook Inc. Hive-dwrf. https://github.com/
facebookarchive/hive-dwrf, 2015.

[22] Theodore Johnson and Dennis Shasha. 2q: A low over-
head high performance buffer management replacement
algorithm. In Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB ’94, page
439–450, San Francisco, CA, USA, 1994. Morgan Kauf-
mann Publishers Inc.

[23] Aarati Kakaraparthy, Abhay Venkatesh, Amar Phan-
ishayee, and Shivaram Venkataraman. The case for
unifying data loading in machine learning clusters. In
11th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 19), Renton, WA, July 2019. USENIX
Association.

[24] Elena Kakoulli and Herodotos Herodotou. Octopusfs: A
distributed file system with tiered storage management.
In Proceedings of the 2017 ACM International Con-
ference on Management of Data, SIGMOD ’17, page
65–78, New York, NY, USA, 2017. Association for Com-
puting Machinery.

[25] David Karger, Eric Lehman, Tom Leighton, Rina Pani-
grahy, Matthew Levine, and Daniel Lewin. Consistent
hashing and random trees: Distributed caching proto-
cols for relieving hot spots on the world wide web. In
Proceedings of the Twenty-Ninth Annual ACM Sympo-
sium on Theory of Computing, STOC ’97, page 654–663,
New York, NY, USA, 1997. Association for Computing
Machinery.

[26] Manolis Karpathiotakis, Dino Wernli, and Milos
Stojanovic. Scribe: Transporting petabytes per
hour via a distributed, buffered queueing system.
https://engineering.fb.com/2019/10/07/data-
infrastructure/scribe/, Oct 2019.

[27] Andrej Karpathy. Software 2.0. https:
//karpathy.medium.com/software-2-0-
a64152b37c35, Mar 2021.

[28] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu
John, and Sanjeev Kumar. Flash storage disaggregation.
In Proceedings of the Eleventh European Conference on
Computer Systems, EuroSys ’16, New York, NY, USA,
2016. Association for Computing Machinery.

[29] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic ephemeral storage for serverless analytics. In
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 427–444, Carls-
bad, CA, October 2018. USENIX Association.

[30] Abhishek Vijaya Kumar and Muthian Sivathanu. Quiver:
An informed storage cache for deep learning. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 283–296, Santa Clara, CA, February
2020. USENIX Association.

[31] Frederic Lardinois. Google launches a 9 exaflop
cluster of cloud TPU v4 pods into public preview.
https://techcrunch.com/2022/05/11/google-
launches-a-9-exaflop-cluster-of-cloud-tpu-
v4-pods-into-public-preview/, May 2022.

[32] Gyewon Lee, Irene Lee, Hyeonmin Ha, Kyunggeun Lee,
Hwarim Hyun, Ahnjae Shin, and Byung-Gon Chun. Re-
furbish your training data: Reusing partially augmented
samples for faster deep neural network training. In 2021
USENIX Annual Technical Conference (USENIX ATC
21), pages 537–550. USENIX Association, July 2021.

[33] Hui Lei and Dan Duchamp. An analytical approach
to file prefetching. In USENIX 1997 Annual Technical
Conference (USENIX ATC 97), Anaheim, CA, January
1997. USENIX Association.

446 2023 USENIX Annual Technical Conference USENIX Association

https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system/
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system/
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system/
https://github.com/facebookarchive/hive-dwrf
https://github.com/facebookarchive/hive-dwrf
https://engineering.fb.com/2019/10/07/data-infrastructure/scribe/
https://engineering.fb.com/2019/10/07/data-infrastructure/scribe/
https://karpathy.medium.com/software-2-0-a64152b37c35
https://karpathy.medium.com/software-2-0-a64152b37c35
https://karpathy.medium.com/software-2-0-a64152b37c35
https://techcrunch.com/2022/05/11/google-launches-a-9-exaflop-cluster-of-cloud-tpu-v4-pods-into-public-preview/
https://techcrunch.com/2022/05/11/google-launches-a-9-exaflop-cluster-of-cloud-tpu-v4-pods-into-public-preview/
https://techcrunch.com/2022/05/11/google-launches-a-9-exaflop-cluster-of-cloud-tpu-v4-pods-into-public-preview/

[34] Evan Zheran Liu, Milad Hashemi, Kevin Swersky,
Parthasarathy Ranganathan, and Junwhan Ahn. An im-
itation learning approach for cache replacement. In
Proceedings of the 37th International Conference on
Machine Learning, ICML’20. JMLR.org, 2020.

[35] Ning Liu, Jason Cope, Philip Carns, Christopher
Carothers, Robert Ross, Gary Grider, Adam Crume,
and Carlos Maltzahn. On the role of burst buffers in
leadership-class storage systems. In 2012 IEEE 28th
Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–11, 2012.

[36] Redis Ltd. Redis. https://redis.io/, 2022.

[37] Sarang Masti. How we built a general pur-
pose key value store for facebook with zippydb.
https://engineering.fb.com/2021/08/06/core-
data/zippydb/, Aug 2021.

[38] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias,
Juncheng Yang, Sathya Gunasekar, Jimmy Lu, Daniel S.
Berger, Nathan Beckmann, and Gregory R. Ganger. Kan-
garoo: Caching billions of tiny objects on flash. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 243–262,
New York, NY, USA, 2021. Association for Computing
Machinery.

[39] Nimrod Megiddo and Dharmendra S. Modha. ARC: A
Self-Tuning, low overhead replacement cache. In 2nd
USENIX Conference on File and Storage Technologies
(FAST 03), San Francisco, CA, March 2003. USENIX
Association.

[40] Michael P. Mesnier and Jason B. Akers. Differentiated
storage services. SIGOPS Oper. Syst. Rev., 45(1):45–53,
feb 2011.

[41] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala,
and Vijay Chidambaram. Analyzing and mitigating
data stalls in dnn training. Proc. VLDB Endow.,
14(5):771–784, jan 2021.

[42] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-
hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,
Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,
Jie (Amy) Yang, Leon Gao, Dmytro Ivchenko, Aarti
Basant, Yuxi Hu, Jiyan Yang, Ehsan K. Ardestani, Xi-
aodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu,
Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng,
Yinbin Ma, Junjie Yang, Ellie Wen, Hong Li, Lin Yang,
Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna
Dhulipala, KR Kishore, Tyler Graf, Assaf Eisenman, Ki-
ran Kumar Matam, Adi Gangidi, Guoqiang Jerry Chen,
Manoj Krishnan, Avinash Nayak, Krishnakumar Nair,

Bharath Muthiah, Mahmoud khorashadi, Pallab Bhat-
tacharya, Petr Lapukhov, Maxim Naumov, Ajit Mathews,
Lin Qiao, Mikhail Smelyanskiy, Bill Jia, and Vijay Rao.
Software-hardware co-design for fast and scalable train-
ing of deep learning recommendation models. In Pro-
ceedings of the 49th Annual International Symposium
on Computer Architecture, ISCA ’22, page 993–1011,
New York, NY, USA, 2022. Association for Computing
Machinery.

[43] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy,
Cory Hill, Ernest Lin, Weiwen Liu, Satadru Pan, Shiva
Shankar, Viswanath Sivakumar, Linpeng Tang, and San-
jeev Kumar. f4: Facebook’s warm BLOB storage sys-
tem. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 383–398,
Broomfield, CO, October 2014. USENIX Association.

[44] Derek G. Murray, Jiří Šimša, Ana Klimovic, and Ihor
Indyk. Tf.data: A machine learning data processing
framework. Proc. VLDB Endow., 14(12):2945–2958,
jul 2021.

[45] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing memcache at facebook. In 10th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 13), pages 385–398, Lombard, IL, April 2013.
USENIX Association.

[46] Kunle Olukotun. Designing computer systems for soft-
ware 2.0. https://iscaconf.org/isca2018/docs/
Kunle-ISCA-Keynote-2018.pdf, June 2018.

[47] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard
Weikum. The lru-k page replacement algorithm for
database disk buffering. In Proceedings of the 1993
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’93, page 297–306, New York,
NY, USA, 1993. Association for Computing Machinery.

[48] Openstack. The rings. https://
docs.openstack.org/swift/latest/
overview_ring.html, 2023.

[49] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego Ongaro,
Seo Jin Park, Henry Qin, Mendel Rosenblum, Stephen
Rumble, Ryan Stutsman, and Stephen Yang. The ram-
cloud storage system. ACM Trans. Comput. Syst., 33(3),
aug 2015.

[50] Satadru Pan, Theano Stavrinos, Yunqiao Zhang,
Atul Sikaria, Pavel Zakharov, Abhinav Sharma,
Shiva Shankar P, Mike Shuey, Richard Wareing,

USENIX Association 2023 USENIX Annual Technical Conference 447

https://redis.io/
https://engineering.fb.com/2021/08/06/core-data/zippydb/
https://engineering.fb.com/2021/08/06/core-data/zippydb/
https://iscaconf.org/isca2018/docs/Kunle-ISCA-Keynote-2018.pdf
https://iscaconf.org/isca2018/docs/Kunle-ISCA-Keynote-2018.pdf
https://docs.openstack.org/swift/latest/overview_ring.html
https://docs.openstack.org/swift/latest/overview_ring.html
https://docs.openstack.org/swift/latest/overview_ring.html

Monika Gangapuram, Guanglei Cao, Christian Preseau,
Pratap Singh, Kestutis Patiejunas, JR Tipton, Ethan
Katz-Bassett, and Wyatt Lloyd. Facebook’s tectonic
filesystem: Efficiency from exascale. In 19th USENIX
Conference on File and Storage Technologies (FAST
21), pages 217–231. USENIX Association, February
2021.

[51] I. S. Reed and G. Solomon. Polynomial codes over
certain finite fields. Journal of the Society for Industrial
and Applied Mathematics, 8(2):300–304, 1960.

[52] Liana V Rodriguez, Farzana Yusuf, Steven Lyons, Eysler
Paz, Raju Rangaswami, Jason Liu, Ming Zhao, and
Giri Narasimhan. Learning cache replacement with
CACHEUS. In 19th USENIX Conference on File and
Storage Technologies (FAST 21), pages 341–354, 2021.

[53] Philip Schwan et al. Lustre: Building a file system for
1000-node clusters. In Proceedings of the 2003 Linux
symposium, volume 2003, pages 380–386, 2003.

[54] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file system.
In 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–10, 2010.

[55] Zhenyu Song, Daniel S. Berger, Kai Li, and Wyatt Lloyd.
Learning relaxed belady for content distribution network
caching. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
529–544, Santa Clara, CA, February 2020. USENIX
Association.

[56] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar,
and Kai Li. RIPQ: Advanced photo caching on flash
for facebook. In 13th USENIX Conference on File and
Storage Technologies (FAST 15), pages 373–386, Santa
Clara, CA, February 2015. USENIX Association.

[57] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng
Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete
Wyckoff, and Raghotham Murthy. Hive: A warehousing
solution over a map-reduce framework. Proc. VLDB
Endow., 2(2):1626–1629, August 2009.

[58] Suketu Vakharia, Peng Li, Weiran Liu, and Sundaram
Narayanan. Shared foundations: Modernizing meta’s
data lakehouse. In The Conference on Innovative Data
Systems Research, CIDR, 2023.

[59] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Mar-
tinez, Steven Lyons, Jason Liu, Raju Rangaswami, Ming
Zhao, and Giri Narasimhan. Driving cache replacement
with ML-based LeCaR. In 10th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 18),
Boston, MA, July 2018. USENIX Association.

[60] Lukas Vogel, Viktor Leis, Alexander van Renen, Thomas
Neumann, Satoshi Imamura, and Alfons Kemper. Mo-
saic: A budget-conscious storage engine for rela-
tional database systems. Proc. VLDB Endow.,
13(12):2662–2675, jul 2020.

[61] Lipeng Wang, Songgao Ye, Baichen Yang, Youyou Lu,
Hequan Zhang, Shengen Yan, and Qiong Luo. Diesel: A
dataset-based distributed storage and caching system for
large-scale deep learning training. In 49th International
Conference on Parallel Processing - ICPP, ICPP ’20,
New York, NY, USA, 2020. Association for Computing
Machinery.

[62] John Wilkes, Richard Golding, Carl Staelin, and Tim
Sullivan. The hp autoraid hierarchical storage system.
ACM Trans. Comput. Syst., 14(1):108–136, feb 1996.

[63] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Mar-
garet Martonosi, Simon C. Steely, and Joel Emer.
Ship: Signature-based hit predictor for high perfor-
mance caching. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-44, page 430–441, New York, NY, USA,
2011. Association for Computing Machinery.

[64] Chenggang Wu, Vikram Sreekanti, and Joseph M.
Hellerstein. Autoscaling tiered cloud storage in anna.
Proc. VLDB Endow., 12(6):624–638, feb 2019.

[65] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala,
Swaminathan Sundararaman, and Robert Wood. Hec:
Improving endurance of high performance flash-based
cache devices. In Proceedings of the 6th International
Systems and Storage Conference, SYSTOR ’13, New
York, NY, USA, 2013. Association for Computing Ma-
chinery.

[66] Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Mer-
chant, and Homer Wolfmeister. CacheSack: Admis-
sion optimization for google datacenter flash caches. In
2022 USENIX Annual Technical Conference (USENIX
ATC 22), pages 1021–1036, Carlsbad, CA, July 2022.
USENIX Association.

[67] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauly, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In 9th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 12), pages 15–28, San Jose, CA, April 2012.
USENIX Association.

[68] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik,
Satadru Pan, Mustafa Ozdal, Rakesh Komuravelli, Jerry
Pan, Tianshu Bao, Haowei Lu, Sundaram Narayanan,

448 2023 USENIX Annual Technical Conference USENIX Association

Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-
Jean Wu, Christos Kozyrakis, and Parik Pol. Understand-
ing data storage and ingestion for large-scale deep rec-
ommendation model training: Industrial product. In Pro-
ceedings of the 49th Annual International Symposium
on Computer Architecture, ISCA ’22, page 1042–1057,
New York, NY, USA, 2022. Association for Computing
Machinery.

[69] Giulio Zhou and Martin Maas. Learning on distributed
traces for data center storage systems. In A. Smola,
A. Dimakis, and I. Stoica, editors, Proceedings of Ma-
chine Learning and Systems, volume 3, pages 350–364,
2021.

[70] Y. Zhu, F. Chowdhury, H. Fu, A. Moody, K. Mohror,
K. Sato, and W. Yu. Entropy-aware i/o pipelining for
large-scale deep learning on hpc systems. In 2018 IEEE
26th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication
Systems (MASCOTS), pages 145–156, 2018.

[71] Yue Zhu, Weikuan Yu, Bing Jiao, Kathryn Mohror,
Adam Moody, and Fahim Chowdhury. Efficient user-
level storage disaggregation for deep learning. In 2019
IEEE International Conference on Cluster Computing
(CLUSTER), pages 1–12, 2019.

USENIX Association 2023 USENIX Annual Technical Conference 449

	Introduction
	ML Data Storage and Ingestion Background
	Production ML Storage Design Space
	Hardware Design Space
	Software Design Space
	Production ML Workload Characterization
	Cache Software Design Space Exploration

	Tectonic-Shift Architecture
	Tectonic-Shift Design Principles
	The Life of a Tectonic-Shift Read

	Application-Aware Cache Policies
	Admission and Reinsertion
	CacheLib Tuning
	Client Cache Eligibility

	Tectonic-Shift Deployment and Evaluation
	Shift Policy Evaluation
	Production Results

	Lessons Learned and Open Questions
	Related Work
	Conclusion

