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System Call Hook

« System calls are the primary interface for user-space
programs to communicate with OS kernels

* A system call hook mechanism intercepts a system call, and
redirects the execution to a user-defined hook function
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system call hook redirect
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Motivating Use Case

« System call hook mechanisms allow us to transparently apply
user-space OS subsystems to existing applications

Normally, adaptation requires changes of a user-space program
to apply a specific APl of a user-space OS subsystem
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« System call hook mechanisms allow us to transparently apply
user-space OS subsystems to existing applications

If we use a system call hook mechanism, ...
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Motivating Use Case

« System call hook mechanisms allow us to transparently apply
user-space OS subsystems to existing applications

If we use a system call hook mechanism, ...
no modification of the user-space program is necessary
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Problem

« System call hook mechanisms allow us to transparently apply
user-space OS subsystems to existing applications

If we use a system call hook mechanism, ...
no modification of the user-space program is necessary
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system call hook <— There is no perfect hook mechanism

[Kernel—space OS subsystem]
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Problem
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Contribution

« zpoline: a system call hook mechanism for x86-64 CPUs
e based on binary rewriting
e free from the drawbacks of the pervious mechanisms

« This work addresses a challenge that is specific to binary
rewriting approaches
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Sinary Rewriting Approach 0x0001

0x0002

* On x86-64 CPUs, syscall and sysenter instructions
trigger a system call
« syscall: 0x0f 0x05, sysenter: 0x0f 0x34 Jump
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hook function

« What we wish to achieve

- replace syscall/sysenter instruction with something
e to jump to a user-defined hook function
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Virtual Memory

0x0000

Sinary Rewriting Approach 0x0001

0x0002

* On x86-64 CPUs, syscall and sysenter instructions
trigger a system call
« syscall: 0x0f 0x05, sysenter: 0x0f 0x34 Jump

user-defined
hook function

« What we wish to achieve

- replace syscall/sysenter instruction with something
e to jump to a user-defined hook function

« Question: what should we put here? —
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« On x86-64 CPUs, syscall and sysenter instructions
trigger a system call
« syscall: Ox0f 0x05, sysenter: 0x0f 0x34

user-defined
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0x0002

* On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
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needs more than 2 bytes syscall 0x05
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0x0000
0x0001
Challenge 0+0001
« On x86-64 CPUs, syscall and sysenter instructions some
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hook function

 syscall and sysenter are 2-byte instructions
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It we put ADDR, subsequent instructions are overwritten I
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0x0000

0x0001
Challenge 0x0001

« On x86-64 CPUs, syscall and sysenter instructions —seme

trigger a system call

Virtual Memory

e syscall: O0x0f 0x0b, sysenter: 0x0f Ox34 ADDR

Jump

 syscall and sysenter are 2-byte instructions

« Specification for a jump destination address
needs more than 2 bytes

ADDR is
ibigger than

It we put ADDR, subsequent instructions are overwritten | 2 bytes

jump to the overwritten part leads to unexpected behaviors
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Challenge 0x0001
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« On x86-64 CPUs, syscall and sysenter instructions —seme

trigger a system call [ program
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Because of this issue, previous binary rewriting techniques
« could not ensure exhaustive hooking
« or, overwrite neighbour instructions
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jump to the overwritten part leads to unexpected behaviors
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Virtual Memory

0x0000

G oa\ jump to a function using only 2 bytes 0x0001

originally occupied by syscall/sysenter x0002

« On x86-64 CPUs, syscall and sysenter instructions —seme

trigger a system call né‘l program
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-

Because of this issue, previous binary rewriting techniques
« could not ensure exhaustive hooking
« or, overwrite neighbour instructions
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« How to invoke a system call
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hook function

syscall X5t
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« How to invoke a system call

A user-space program sets a system call number,
predefined by the kenel, to the rax register

e e.g., 0:read(), 1: write(), 2: open(), ... user-defined
hook function

set syscall num

to rax register
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Virtual Memory

0x0000

: ; 0x0001
Calling Convention Dr0003

« How to invoke a system call

« A user-space program sets a system call number,
predefined by the kenel, to the rax register

e e.g.]0: read(), 1: write(), 2: open(), ... user-defined
« The user-space program executes syscall/sysenter hook function
---- the context is switched to the kernel ---- —
« Kernel executes a system call specified through set syscall num
the system call number set to the rax register to rax register
o if the rax register has|0, the kernel executes|read()
o if the rax register has|1, the kernel executes|write() Sysca” 8§8f5
- if the rax register has|2/the kernel executes|open()
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« How to invoke a system call

« A user-space program sets a system call number,
predefined by the kenel, to the rax register
e e.g., 0: read(), 1: write(), 2: open(), ...
« The user-space program executes syscall/sysenter
---- the context is switched to the kernel ----
« Kernel executes a system call specified through

the system call number set to the rax register
Point: Calling Convention
When syscall/sysenter is executed,

the rax register always has a system call number,

Virtual Memory

user-defined

hook function

set syscall num

to rax register

syscall X5t
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Virtual Memory

0x0000

: ; 0x0001
Calling Convention Dr0003

« How to invoke a system call

« A user-space program sets a system call number,
predefined by the kenel, to the rax register

 e.g., 0:read(), 1: write(), 2: open(), ... user-defined
« The user-space program executes syscall/sysenter hook function
---- the context is switched to the kernel ---- ——
« Kernel executes a system call specified through set syscall num
the system call number set to the rax register to rax register
Point: Calling Corrventlon Z syscall Ox0f
When syscall/sysenter is executed, 0x05

the rax register always has a system call number,
which is 0 ~ around 500 (defined in the kernel)
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0x0000

' 0x0001
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 zpoline replaces syscall/sysenter with callg *%rax

user-defined
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set syscall num

to rax register
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When syscall/sysenter is executed,

syscall X5t

the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

. 64



Virtual Memory
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 zpoline replaces syscall/sysenter with callg *%rax
« callg *%rax is a 2-byte instruction (0xff 0xd0)

user-defined

hook function

set syscall num
to rax register
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 zpoline replaces syscall/sysenter with callg *%rax

« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to
the address stored in the rax register

After the binary rewriting
Point: Calling Convention

When syscall/sysenter callq *%rax is executed,

|the rax register always has a system call number, |

which is 0 ~ around 500 (defined in the kernel)

Virtual Memory
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to rax register

callq *%rax
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* Neighbour instructions are not overwritten

|callg *%rax is an instruction to jump to user-defined
the address stored in the rax register hook function

set syscall num
After the binary rewriting to rax register

Point: Calling Convention

When syscall/sysenter callq *%rax is executed,

the rax register always has a system call number,
| which is 0 ~ around 500 (defined in the kernel) |

callq *%rax

. /3



Virtual Memory
A

0x0000

' 0x0001
zpoline 0x000

around 580

 zpoline replaces syscall/sysenter with callg *%ra
« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to user-defined
the address stored in the rax register hook function

e replaced callg *%rax jumps to address O~around 500

I |

set syscall num
After the binary rewriting to rax register

Point: Calling Convention

When syscall/sysenter callq *%rax is executed,

the rax register always has a system call number,
which is 0 ~ around 500 (defined in the kernel)

callq *%rax

. (4



Virtual Memory

: 0x0000
- address range, potentially A
ZDO‘ ITIC  replaced “callq *%rax” jumps to ‘|: PR

0x000
( V is the max syscall number ) N

 zpoline replaces syscall/sysenter with callg *%ra
« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to
the address stored in the rax register

e replaced callg *%rax jumps to address O~around 500

user-defined
hook function

v

set syscall num
to rax register

After the binary rewriting
Point: Calling Convention

When syscall/sysenter callq *%rax is executed,

the rax register always has a system call number,
which is 0 ~ around 500 (defined in the kernel)

callq *%rax
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address range, potentially { 0x0000

ZDO‘ Ine replaced “callg *%rax” jumps to

( V is the max syscall number ) N

 zpoline replaces syscall/sysenter with callg *%ra

« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to
the address stored in the rax register

« replaced callg *%rax jumps to address O~around 500

0x0001
0x000

Virtual Memory

user-defined

hook function

set syscall num
to rax register

callq *%rax
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ZDO‘ Ine replaced “callg *%rax” jumps to
( V is the max syscall number )

address range, potentially { 0x0000

N

 zpoline replaces syscall/sysenter with callg *%ra
« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to
the address stored in the rax register

« replaced callg *%rax jumps to address O~around 500

How to redirect to the user-defined hook function?

0x0001
0x000

Virtual Memory

user-defined

hook function

I |

set syscall num
to rax register

callq *%rax

- 7



Virtual Memory

: 0x0000
- address range, potentially
ZDO‘ INE  replaced “callq *%rax” jumps to ‘|: 8?8881 —trampoline—
( V is the max syscall number) N e

 zpoline replaces syscall/sysenter with callg *%ra
« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to
the address stored in the rax register

« replaced callg *%rax jumps to address O~around 500

user-defined
hook function

set syscall num

How to redirect to the user-defined hook function? to rax register

e zpoline instantiates trampoline code at address 0 callg *%rax
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Virtual Memory

: 0x0000
: address range, potentially nop
ZpO‘ INE  replaced “callq *%rax” jumps to ‘l: X000 ] —nop

0x000
( V is the max syscall number ) N

 zpoline replaces syscall/sysenter with callg *%ra
« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to
the address stored in the rax register

« replaced callg *%rax jumps to address O~around 500

nop

user-defined

hook function

set syscall num
to rax register

How to redirect to the user-defined hook function?

e zpoline instantiates trampoline code at address 0 callg *%rax
e fills address range 0 to V. with nop (0x90)
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Virtual Memory
address range, potentially { 8?888(1) nop

at.
0 gh

thr

ZDO‘ IS replaced “callq *%rax” jumps to 0x000 nop
( V is the max syscall number ) N

 zpoline replaces syscall/sysenter with callg *%ra
« callg *%rax is a 2-byte instruction (0xff 0xd0)
* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to
the address stored in the rax register

« replaced callg *%rax jumps to address O~around 500

I nop

user-defined

hook function

set syscall num
to rax register

How to redirect to the user-defined hook function?

e zpoline instantiates trampoline code at address 0 callg *%rax
e fills address range 0 to V. with nop (0x90)
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Virtual Memory

0x0000

0x0001
0x000

{N
 zpoline replaces syscall/sysenter with callg *%ra
« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to
the address stored in the rax register

« replaced callg *%rax jumps to address O~around 500

address range, potentially
replaced “callq *%rax” jumps to
( V is the max syscall number )

zpoline

How to redirect to the user-defined hook function?

e zpoline instantiates trampoline code at address 0
e fills address range 0 to V. with nop (0x90)

e puts code to jump to the hook function next to the last nop

nop

nop

%
ough

th r

I nop

jump to

hook function

user-defined

hook function

set syscall num

to rax register

callq *%rax
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Virtual Memory
— 0x0000 nop

. address range, potentially <
ZDO‘ INE  replaced “callq *%rax” jumps to 8?8881 —FE
( V is the max syscall number) = = 1 nop
jump to

 zpoline replaces syscall/sysenter with callg *%ra
« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to user-defined
the address stored in the rax register hook function

« replaced callg *%rax jumps to address O~around 500

hook function

set syscall num
to rax register

How to redirect to the user-defined hook function?

« zpoline instantiates trampoline code at addresg
e fills address range 0 to V. with nop (0x90)

e puts code to jump to the hook function next to the last hop
We could reach the user-defined hook function! —

0 callq *%rax




Virtual Memory

< | hop
ZDO‘IHG € trampoline code at address 0 (zero) — :f nop
( NV is the max syscall number ) L/v —= I nop

 zpoline replaces syscall/sysenter with callg *%ra hO;ETupnﬁion
e callg *%rax is a 2-byte instruction (0xff 0xd0) - _

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to user-defined
the address stored in the rax register hook function

« replaced callg *%rax jumps to address O~around 500

set syscall num
to rax register

How to redirect to the user-defined hook function?

« zpoline instantiates trampoline code at addresg
e fills address range 0 to V. with nop (0x90)

e puts code to jump to the hook function next to the last hop
We could reach the user-defined hook function!

0 callq *%rax
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Virtual Memory

nation B AT
NULL Access |ermination 0x0001 (= F T 'nop
N = | nop

jump to
hook function

« A buggy program may access NULL (address 0)

user-defined

hook function

set syscall num
to rax register

callq *%rax
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Virtual Memory

nation B AT
NULL Access |ermination 0x0001 (= F T 'nop
N = | nop

jump to
hook function

« A buggy program may access NULL (address 0)

user-defined

hook function

set syscall num
to rax register

callq *%rax

Bug
Access NULL
. . .8




Virtual Memory

_ . 0x00 — | nop

OxO0@01 =3 In
NULL Access [ermination 00001 (= T nop
N = | nop

jump to
hook function

« A buggy program may access NULL (address 0)

user-defined

hook function

set syscall num
to rax register

callq *%rax

Bug
Access NULL
. . . 86




Virtual Memory
0x00

. . = nop
Ox0Q01l [ = =@
NULL Access [ermination Ox0) L2 [ nop
N f. I nop
« A buggy program may access NULL (address 0) hO;ETupnﬁion
* In principle, NULL access has to be terminated

user-defined

hook function

set syscall num
to rax register

callq *%rax

Bug
Access NULL
. . . 87




Normally, ... Virtual Memory

0x00

: : oxoqD1 ! Pagefaultl-

NULL Access [ermination o Y il
N memory

mabbhing!
| gl | [ @ ]

« A buggy program may access NULL (address 0)
* In principle, NULL access has to be terminated

« Normally, a page fault happens because no physical
memory is mapped to virtual address 0 user-defined

hook function

set syscall num
to rax register

callq *%rax

Bug
Access NULL
. . . 88




Virtual Memory

_ . 0x00 — | nop
NULL Access |ermination 00401 =" nop
N = | nop

jump to
hook function |

« A buggy program may access NULL (address 0)
* In principle, NULL access has to be terminated

« Normally, a page fault happens because no physical
memory is mapped to virtual address 0 user-defined

 zpoline uses virtual address 0, therefore, hook function
the page fault does not happen

set syscall num
to rax register

callq *%rax

Bug
Access NULL
.. . 89




Virtual Memory

_ . 0x00 — | nop
NULL Access |ermination 00401 =" nop
N = | nop

jump to
hook function |

« A buggy program may access NULL (address 0)
* In principle, NULL access has to be terminated
« Normally, a page fault happens because no physical

memory is mapped to virtual address O user-defined
 zpoline uses virtual address 0, therefore, hook function
the page fault does not happen —
o set syscall num
* The buggy program continues to run to rax register

callq *%rax

Bug
Access NULL
.. . 90




Virtual Memory

_ . 0x00 — | nop
NULL Access |ermination 00401 =" nop
N = | nop

jump to
hook function

« A buggy program may access NULL (address 0)
* In principle, NULL access has to be terminated
« Normally, a page fault happens because no physical

memory is mapped to virtual address O user-defined
 zpoline uses virtual address 0, therefore, hook function
the page fault does not happen —
o set syscall num
* The buggy program continues to run to rax register

callq *%rax

How can we detect and terminate a buggy NULL access?

Bug
Access NULL
.. .91




Virtual Memory
0x0000

. . = nop
Ox000]1 =@
NULL Access ermination 0x0001 (= F T 'nop
N f. I nop
« Memory access: read / write / execute hO;ETupni‘;ion

user-defined

hook function

set syscall num
to rax register

callq *%rax

Bug
Access NULL
Y.




Virtual Memory

0x0000
NULL Access [ermination 0x0001
N

« Memory access: read / write / execute
e Solution
 read/write: configure the trampoline code as XOM

user-defined
hook function

set syscall num
to rax register

callq *%rax

Bug
Access NULL
Y




Virtual Memory

0x0000
NULL Access [ermination 0x0001
N

« Memory access: read / write / execute
e Solution

 read/write: configure the trampoline code as XOM Jefined
« read/write access to the trampoline code causes a fault user-ae m_e
« This can be done by mprotect() system call hook function

set syscall num
to rax register

A
callq *%rax

Bug
Access NULL
. . . 94




Virtual Memory

0x0000

NULL Access |ermination 0x0001

N
« Memory access: read / write / execute
e Solution

 read/write: configure the trampoline code as XOM _
 read/write access to the trampoline code causes a fault user'defln_ed

« This can be done by mprotect() system call hook function

« execute: check the caller address

set syscall num
to rax register

callq *%rax

Bug
Access NULL
T




Virtual Memory

0x0000

NULL Access |ermination 0x0001

N
« Memory access: read / write / execute
e Solution
 read/write: configure the trampoline code as XOM

- read/write access to the trampoline code causes a fault user'defln_ed
« This can be done by mprotect() system call hook function
« execute: check the caller address . .
1. during the binary rewriting phase, set syscall hum
we collect the addresses of replaced syscall/sysenter to rax register

A
callq *%rax

B

Bug
Access NULL
.. . 9




Virtual Memory

0x0000

NULL Access |ermination 0x0001

N
« Memory access: read / write / execute
e Solution
 read/write: configure the trampoline code as XOM

- read/write access to the trampoline code causes a fault user'defln_ed
« This can be done by mprotect() system call hook function
« execute: check the caller address . .
1. during the binary rewriting phase, set syscall hum
we collect the addresses of replaced syscall/sysenter to rax register
During binary rewriting phase ... A callg *%rax

B

Bug
Access NULL
Y




Virtual Memory

0x0000

NULL Access |ermination 0x0001

N
« Memory access: read / write / execute
e Solution
 read/write: configure the trampoline code as XOM

- read/write access to the trampoline code causes a fault user'defln_ed
« This can be done by mprotect() system call hook function
« execute: check the caller address . .
1. during the binary rewriting phase, set syscall hum
we collect the addresses of replaced syscall/sysenter to rax register
During binary rewriting phase ... A callg *%rax

B

Bug
Access NULL
. . . 98

List of replaced addresses : |...]




Virtual Memory

0x0000

NULL Access |ermination 0x0001

N
« Memory access: read / write / execute
e Solution
 read/write: configure the trampoline code as XOM

- read/write access to the trampoline code causes a fault user'defln_ed
« This can be done by mprotect() system call hook function
« execute: check the caller address . .
1. during the binary rewriting phase, set syscall hum
we collect the addresses of replaced syscall/sysenter to rax register
During binary rewriting phase ... / A callg *%rax
5

Bug
Access NULL
c .. 99

List of replaced addresses : |...]




Virtual Memory

0x0000

NULL Access |ermination 0x0001

N
« Memory access: read / write / execute
e Solution
 read/write: configure the trampoline code as XOM

- read/write access to the trampoline code causes a fault user'defln_ed
« This can be done by mprotect() system call hook function
« execute: check the caller address .
1. during the binary rewriting phase, set syscall num
we collect the addresses of replaced syscall/sysenter to rax register
: . . A
During binary rewriting phase ... / callg *%rax
. B B
List of replaced addresses : [A4, ...] ug

Access NULL
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Virtual Memory
0x0000

NULL Access |ermination 0x0001

N
« Memory access: read / write / execute

e Solution

 read/write: configure the trampoline code as XOM
« read/write access to the trampoline code causes a fault

user-defined

« This can be done by mprotect() system call hook function
e execute: check the caller address .
1. during the binary rewriting phase, set syscall num
we collect the addresses of replaced syscall/sysenter to rax register
2. atruntime, in the hook function,
we check if the caller is one of the replaced addresses callq *%rax
. B Bu
List of replaced addresses : [A4, ...] g

Access NULL

. lol




Virtual Memory

Ox00Q&
NULL Access [ermination 0x0g01
At runtime ... N

« Memory access: read / write / execute

e Solution

 read/write: configure the trampoline code as XOM
« read/write access to the trampoline code causes a fault

user-defined

« This can be done by mprotect() system call hook function
e execute: check the caller address .
1. during the binary rewriting phase, set syscall num
we collect the addresses of replaced syscall/sysenter to rax register
2. atruntime, in the hook function,
we check if the caller is one of the replaced addresses callq *%rax
. B Bu
List of replaced addresses : [A4, ...] g

Access NULL
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Virtual Memory

NULL Access lermination

At runtime ...

« Memory acced e el
. Solution A is in the list, so
this is a valid access

e read/write: :
« read/write acces ode causes a fault user'defm_ed

« This can be done by mprotect() system call hook function

e execute: check the caller address

1. during the binary rewriting phase,
we collect the addresses of replacet

2. atruntime, in the hook function,

set syscall num
to rax register

syscall/sysenter

we check if the caller is one of the replaced addresses caIIq *0frax
5 _
List of replaced addresses : [A4, ...] Bug

Access NULL
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Virtual Memory

0x0000
NULL Access [ermination 0x0001
At runtime ... N

« Memory access: read / write / execute

e Solution

 read/write: configure the trampoline code as XOM
« read/write access to the trampoline code causes a fault

user-defined

« This can be done by mprotect() system call hook function
e execute: check the caller address .
1. during the binary rewriting phase, set syscall num
we collect the addresses of replaced syscall/sysenter to rax register
2. atruntime, in the hook function,
we check if the caller is one of the replaced addresses callq *%rax
. B Bu
List of replaced addresses : [A4, ...] g

Access NULL
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Virtual Memory

0x00
NULL Access [ermination Ox001 (=51 ow
At runtime ... N ama
« Memory access: read / write / execute U

e Solution

 read/write: configure the trampoline code as XOM
« read/write access to the trampoline code causes a fault

user-defined

« This can be done by mprotect() system call hook function
e execute: check the caller address .
1. during the binary rewriting phase, set syscall num
we collect the addresses of replaced syscall/sysenter to rax register
2. atruntime, in the hook function,
we check if the caller is one of the replaced addresses callq *%rax
. 5 Bu
List of replaced addresses : [A4, ...] g

Access NULL
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Virtual Memory

0x00
NULL Access [ermination D01 =75 how
At runtime ... N emo

BV ISTnlgk:Idd=%  The caller address is'B
B is NOT in the list, so
this is an invalid access

e Solution
e read/write;

user-defined

hook function

« This can be done by mprotect() syste

e execute: check the caller address

1. during the binary rewriting phase, set syscall hum
we collect the addresses of replaced syscall/sysenter to rax register

2. atruntime, in the hook function, /]
ced addresses callq *%rax

we check if the caller is one of the repl
B

Bug
Access NULL
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Virtual Memory

NULL Access lermination

At runtime ...

BV ISTnlgk:Idd=%  The caller address is'B
. Solution B is NOT in the list, so
. this is an invalid access

e read/write: =

« This can be done by mprotect() syste
« execute: check the caller address

1. during the binary rewriting phase, set syscali hum
we collect the addresses of replaced syscall/sysenter to rax register

2. atruntime, in the hook function,
we check if the caller is one of the repl

ced addresses Callq *0orax

] Bug
Access NULL

. lo7

List of replaced addresses : [A4, ...




Virtual Memory

NULL Access lermination

At runtime ...

BV ISTnlgk:Idd=%  The caller address is'B
. Solution B is NOT in the list, so
. this is an invalid access

e read/write: =

« read/write acces
« This can be done by mprotect() system call

e execute: check the caller address _ ¢
1. during the binary rewriting phase, set syscali hum

we collect the addresses of replaced syscall/sysenter to rax register
2. atruntime, in the hook function,
we check if the caller is one of the replaced addresses callq *%rax
« Current prototype uses bitmap to implement this check
. B B
List of replaced addresses : [A4, ...] ug

Access NULL
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Virtual Memory

< | hop
System Call Hook Overhead = T nop
= _{nop
» Time to hook getpid() and return a dummy value hO;ETupnf:‘;ion
ptrace 31201 user-defined
int3 signaling 1349 hook function
SUD 1156 set syscall num
zpoline 41 to rax register

LD PRELOAD 6 callg *%rax

. .109




Virtual Memory

< | hop
System Call Hook Overheac = 3 [nop
= nop
+ Time to hook getpid() and return a dummy value  [“hoak function
ptrace 31201 716« user-defin.ed
int3 signaling 1342 32.7x ROGICIHHCHIoN
SUD 1156 ) 28.1X  rsetsyscallnum
zpoline 41 'MProvement( to rax register

LD PRELOAD 6 callg *%rax
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Virtual Memory

< | hop
System Call Hook Overheac = ¥ [nop
= nop
+ Time to hook getpid() and return a dummy value  [“hoak function
otrace 31201 user-defined
int3 signaling 1342 ROCICIRnEHon
SUb 1156 set syscall num

to rax register

zpoline NULL exec check: 1 ns out of 41

LD PRELOAD 6 callg *%rax

.o 111




Virtual Memory

< | hop
System Call Hook Overheac = T nop
= _{nop
» Time to hook getpid() and return a dummy value hO;ETupnf:‘;ion
ptrace 31201 user-defined
int3 signaling 1349 hook function
SUD 1156 set syscall_num
zpoline 41 135ns to rax register

LD PRELOAD @ overhead callg *%rax

o112




Virtual Memory

additional
< | hop
System Call Hook Overhead ¢ | =5 [nop
% I nop
» Time to hook getpid() and return a dummy valye hO;ETupni‘;ion
ptrace user-defined
B el hook function
SUD set syscall_num
zpoline 41/, 3505 to rax register

LD PRELOAD @ overhead callg *%rax
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Application Performance

- We transparently apply IwIP + DPDK to an application using

different system call hook mechanisms
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Application Performance

- We transparently apply IwIP + DPDK to an application using
different system call hook mechanisms

Simple HTTP server

lwlP

DPDK
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Application Performance

- We transparently apply IwIP + DPDK to an application using
different system call hook mechanisms

Simple HTTP server ptrace, int3, SUD,
zpoline, LD_PRELOAD
syscat hook

lwlP + DPDK

“““
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Application Performance

- We transparently apply IwIP + DPDK to an application using
different system call hook mechanisms

Simple HTTP server ptrace, int3, SUD,

zpoline, LD_PRELOAD
syscat hook
wrk: benchmark client

lwlP + DPDK fetch 64B content

117



Application Performance

- We transparently apply IwIP + DPDK to an application using
different system call hook mechanisms

Simple HTTP server ptrace, int3, SUD,

zpoline, LD_PRELOAD
syscat hook
wrk: benchmark client

lwlP + DPDK fetch 64B content

Throughput [M reqgs/sec]
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Application Performance

- We transparently apply IwIP + DPDK to an application using
different system call hook mechanisms

Simple HTTP server st i SUD 15 Compared to LD_PRELOAD

zpoline, LD_PRELOAD [ 873%
syscat hook > 1
wrk: benchmark client ; 0.8
lwlP + DPDK fetch 64B content — 06




Application Performance

- We transparently apply IwIP + DPDK to an application using
different system call hook mechanisms

Redis ptrace, int3, SUD,
zpoline, LD_PRELOAD
syscat hook

redis-benchmark
GET 100%

lwlP + DPDK
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Application Performance

- We transparently apply IwIP + DPDK to an application using
different system call hook mechanisms

Redis ptrace, int3, SUD, _
zpoline, LD_PRELOAD
syscat hook 3 00
redis-benchmark 2 100

lwlP + DPDK GET 100% = 300 Linux
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Application Performance

- We transparently apply IwIP + DPDK to an application using
different system call hook mechanisms

Redis otrace, int3, SUD, - .o, Compared to LD_PRELOAD
zpoline, LD_PRELOAD & 288
syscat hook s

redis-benchmark o 288
lwlIP + DPDK GET 100% = 300 Linux




Summary

« zpoline: a system call hook mechanism for x86-64 CPUs

e based on binary rewriting
 replaces syscall/sysenter with callg *%rax
« instantiates the trampoline code at virtual address 0 (zero)

e free from the drawbacks of the pervious mechanisms
« keeps the performance benefit of user-space OS subsystems

« Source code: https://github.com/yasukata/zpoline
« since October 2021



https://github.com/yasukata/zpoline
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Speeding up the Trampoline Code

 Inspired from USENIX ATC'23 reviewers who suggested to
employ a one-byte short jump instruction for speeding up
« Put it on the addresses corresponding to obsolete system calls

« Optimization: repeat Oxeb 0x6a 0x90 instead of nops

« Hook overhead reduction from 41 ns to 10 ns

Syscall number: 3xn+0 3xn+1 3xn+2
jmp @xb6a push 0x90 nop
. jmp @xba jmp @xoa
We pop 0x90 in b 0x6a nop nop

. jm
the hook function nop jmp @x6a jmp @x6a



