USENIX ATC 2023 — Boston, MA, USA — 10t July

zpoline: a system call hook mechanism
based on binary rewriting

Kenichi Yasukatal, Hajime Tazakil, Pierre-Louis Aublinl, Kenta Ishiguro2

'11) Research Laboratory
"Hosei University

System Call

« System calls are the primary interface for user-space
programs to communicate with OS kernels

System Call

« System calls are the primary interface for user-space
programs to communicate with OS kernels

User-space program

System Call

« System calls are the primary interface for user-space
programs to communicate with OS kernels

User-space program

Kernel-space OS subsystem

System Call

« System calls are the primary interface for user-space
programs to communicate with OS kernels

User-space program

system call

Kernel-space OS subsystem

System Call Hook

« System calls are the primary interface for user-space
programs to communicate with OS kernels

* A system call hook mechanism intercepts a system call

User-space program

system call

Kernel-space OS subsystem

System Call Hook

« System calls are the primary interface for user-space
programs to communicate with OS kernels

* A system call hook mechanism intercepts a system call

User-space program

interce ptl
system call hook

Kernel-space OS subsystem

System Call Hook

« System calls are the primary interface for user-space
programs to communicate with OS kernels

* A system call hook mechanism intercepts a system call, and
redirects the execution to a user-defined hook function

User-space program User-defined
hook function

system call hook redirect

Kernel-space OS subsystem

Motivating Use Case

« System call hook mechanisms allow us to transparently apply
user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem

Motivating Use Case

« System call hook mechanisms allow us to transparently apply
user-space OS subsystems to existing applications

[User—space program] User-space
OS subsystem

system céll

[Kernel—space OS subsystem]

10

Motivating Use Case

« System call hook mechanisms allow us to transparently apply
user-space OS subsystems to existing applications

User-space program User-space
OS subsystem

system call Highly performant

Kernel-space OS subsystem

11

Motivating Use Case

TCP ping-pong performance
) transparently apply

1.6 allo

L _ plications

~ 14 5.3 times

g 1.2 faster

s 1

— 0.8

o 06 User-space
2.

D OS subsystem
S 0.4

E 0.2 Highly performant

. 1N
Linux TCP stack | IwlP on DPDK] = user-space network stack
12

Motivating Use Case

« System call hook mechanisms allow us to transparently apply
user-space OS subsystems to existing applications

User-space program User-space
OS subsystem

system call Highly performant

Kernel-space OS subsystem

13

Motivating Use Case

« System call hook mechanisms allow us to transparently apply
user-space OS subsystems to existing applications

Normally, adaptation requires changes of a user-space program
to apply a specific APl of a user-space OS subsystem

User-space program User-space
OS subsystem

system call Highly performant

Kernel-space OS subsystem

14

Motivating Use Case

« System call hook mechanisms allow us to transparently apply
user-space OS subsystems to existing applications

Normally, adaptation requires changes of a user-space program
to apply a specific APl of a user-space OS subsystem

. H Specitic AP/
- User-space program User-space
- OS subsystem

We need to change the program Highly performant

Kernel-space OS subsystem

15

Motivating Use Case

« System call hook mechanisms allow us to transparently apply
user-space OS subsystems to existing applications

If we use a system call hook mechanism, ...

User-space program User-space
OS subsystem

system call

Kernel-space OS subsystem

16

Motivating Use Case

« System call hook mechanisms allow us to transparently apply
user-space OS subsystems to existing applications

If we use a system call hook mechanism, ...

User-space program User-defined User-space
hook function| OS subsystem

system call hook

Kernel-space OS subsystem

17

Motivating Use Case

« System call hook mechanisms allow us to transparently apply
user-space OS subsystems to existing applications

If we use a system call hook mechanism, ...
no modification of the user-space program is necessary

(A A) [User—space program] User-defined User-space
- hook function| OS subsystem

system call hook

[Kernel—space OS subsystem]

18

Problem

« System call hook mechanisms allow us to transparently apply
user-space OS subsystems to existing applications

If we use a system call hook mechanism, ...
no modification of the user-space program is necessary

[User—space program] User-defined | User-space
hook function| OS subsystem

system call hook <— There is no perfect hook mechanism

[Kernel—space OS subsystem]

19

Problem

/ Existing Mechanisms \ms allow us to transparently apply
to existing applications

e ptrace _
* int3 signaling technique ok mechanism, ...

 Syscall User Dispatch (SUD) user-space program is necessary
« LD PRELOAD trick

. B ting techn
. ..{nary rewrting techniques @ User-defined User-space
\ hook function| OS subsystem
system call hook <— There is no perfect hook mechanism

[Kernel—space OS subsystem]

20

Problem

/ Existing Mechanisms

e ptrace

« int3 signaling technique
« Syscall User Dispatch (SUD)
« LD PRELOAD trick

« Binary rewriting techniques

\ system call hook

ﬁwm on DPDK : TCP ping—pong\

16

S 14 Compared to
G LD PRELOAD
» 1.2

O

o 1

= 0.8

= 0.6

=04 0
o 14.7% 17.0%
5 0.2

@)

c 0

|_

Kernel-space OS subsys

Problem

/ Existing Mechanisms

e ptrace

« int3 signaling technique
« Syscall User Dispatch (SUD)
« LD PRELOAD trick

« Binary rewriting techniques

\ system call hook

ﬁwm on DPDK : TCP ping—pong\

1.6

S 14 Compared to
2 LD _PRELOAD

» 1.2

03 1 Relying on

S 0.8 kernel facilities
= 0.6 l_‘_\
=04 o
oD 14.7% 17.0%
> 0.2

O

c 0

|_

[Kernel—space OS subsys

DrAahlAm ﬂW”D on DPDK : TCP ping—pong\
/ Compared to

e ptrace LD _PRELOAD
e overhead: process scheduling between _
the tracer and tracee processes Relying on

ernel facilities

l_‘_\

14.7% 17.0%

_

Kernel-space OS Subsy;ﬁa\

DrAahlAm ﬂW”D on DPDK : TCP ping—pong\
/ Compared to

e ptrace LD _PRELOAD
e overhead: process scheduling between _
the tracer and tracee processes Relying on

. int3 signaling /SUD ernel facilities

« overhead: context manipulation for l_‘_\

a signal() handler (SIGINT/SIGSYS) 14.7% 17.0%

_

Kernel-space OS subsyé‘\

DrAahlAm /|W|P on DPDK : TCP ping—pong\
/ Compared to

e ptrace LD _PRELOAD
e overhead: process scheduling between _
the tracer and tracee processes Relying on

. int3 signaling /SUD ernel facilities

« overhead: context manipulation for l_‘_\

a signal() handler (SIGINT/SIGSYS) 14.7% 17.0%

« LD PRELOAD just replaces . 5
u . . @ . Q
kfunc:’uon calls, therefore, it is fast/ &N \a

Q
N &
& oS
Kernel-space OS subsys N Y

app_function(...)

{

writeC...)

.)
libc
write ()
library call
J

: TCP ping—pong\

pared to
RELOAD

lying on
| facilities

—
app_function(...)
e ptrac t TR
* ’([)f:/é Wr'ite(. .) WI’ItG()
_ library call
eint34 1} . J
A function call
aq
replacement
~
e ID F User-defined
— write ()
L library call y

kfunct
\ LD PRELOAD

: TCP ping—pong\

pared to
RELOAD

lying on
| facilities

—
app_function(...)
.ptrag| C libe
. fﬁ/f special_write(...D)| write()
| : library call
eint34d } S g
* OV{
ay
4)
LD F User-defined
_ write()
library call y

funct
_ | -
LD PRELOAD

- TCP ping—poﬂg\

pared to
RELOAD

lying on
| facilities

—
: TCP ping—pong\

app_function(...)
f pared to
e ptrac 4 libe) RELOAD
°* 0 . = .
ﬂ:’é special_write(...) | write () lying on
cint3d 17 _library call]] facilities
* OV¢ . .
agd special_write(...)
i _ 4)
D P asm volatile (User-defined
funcy trigger wite(
k write syscall _ library call

)
\ 1 LD_PRELOAD

—
: TCP ping—pong\

app_function(...)
f pared to
e ptrac 4 ibe) RELOAD
°* 0 . = .
tFYe(special_write(...) | write () lying on
cint3d 3 . library call y | facilities
* OV¢ . .
agd special_write(...)
i _ 4)
<D F asm volatile User-defined
— [tr}gger write ()
write syscall L library call) Qg/\/

funct
_ | >
1 LD PRELOAD

app_function(...)
.ptrag| C libe
° OG” special_write(...)| write()
| e library call
«int34 } \ <
* OV . .
agd special_write(...)
{ | r)
.IDF asm.volatlle User-defined
P trigger write()
write syscall _ library call

)
\. }Hook is not applied LP-PRELOAD

- TCP ping—pong\

pared to
RELOAD

lying on
| facilities

app_function(...)

e ptrac t
* OVS special_write(...)
the
int39 }
* OV¢ b

aq L?pecial_write

4)

.IDF asm.volatile ser-defined
P trigger write()

write syscall _ library call

(.)
libc
write()
library call
. J

?:ause names
" ‘dre different

)
\. }Hook is not applied LP-PRELOAD

- TCP ping—pong\

pared to
RELOAD

lying on
| facilities

_—
We see this case in glibc often : TCP ping—pong\
app_function(...)

{ pared to
e ptrac 4 ibe) RELOAD
- fr:/e(special_write(...)| write() lying on
library call it
Cint3 « ! L y | facilities
* OV¢
aq L?pecial_write : Pﬁzﬁﬁfgfer:fs
4 A
.IDF asm.volatile ser-defined
P trigger -mNNeO
write syscall _ library call

)
\. }Hook is not applied LP-PRELOAD

Problem

/ Existing Mechanisms \ms allow us to transparently apply
to existing applications

e ptrace _
* int3 signaling technique ok mechanism, ...

 Syscall User Dispatch (SUD) user-space program is necessary
« LD PRELOAD trick

. B ting techn
. ..{nary rewrting techniques @ User-defined User-space
\ hook function| OS subsystem
system call hook <— There is no perfect hook mechanism

[Kernel—space OS subsystem]

34

Problem

/ Existing Mechanisms \ms allow us to transparently apply
ngh to existing applications

c i Sfformg,, hoe Shiaue ok mechanism, ...

o

» Syscall User L,.\,J’ena/t D) | user-space program is necessar
« LD PRELOAD trick P Prog d

. B ting techn
. ..{nary rewrting techniques @ User-defined User-space
\ hook function| OS subsystem
system call hook <— There is no perfect hook mechanism

[Kernel—space OS subsystem]

35

Problem

ngh

* Nt V.ffol’m Nce “bnique

+ Syscall User Lis,P€Nalty, iD
« Som tFI OAD trick

 Binary Mes fail ¢, h“mques

D)

/ Existing Mechanisms \ms allow us to transparently apply

to existing applications
ok mechanism, ...
user-space program Is hecessary

@ User-defined]! User-space
hook function| OS subsystem

@ oo k M_%
\ system call hook <— There is no perfect hook mechanism

[Kernel—space OS subsystem]

36

Prob\em » Appllcabll_

ity of user-space OS subsystems

has been limited regardless of their benefits

ngh

« Syscall User u.q,vpe”alt D)
. Som ;;' NAD trick

e Binary . »esfallt hﬁ”'ﬂues

/ Existing Mechanisms \ms allow us to transparently apply

to existing applications

i Sfformg,, hoe Shiaue ok mechanism, ...

user-space program is necessary

oM User-defined User-space
hook function| OS subsystem

o ... Ook |
\ system call hook <— There is no perfect hook mechanism

Kernel-space OS subsystem

37

Contribution

« zpoline: a system call hook mechanism for x86-64 CPUs
e based on binary rewriting
e free from the drawbacks of the pervious mechanisms

« This work addresses a challenge that is specific to binary
rewriting approaches

Virtual Memory

0x0000

Sinary Rewriting Approach 0x0001

0x0002

* On x86-64 CPUs, syscall and sysenter instructions
trigger a system call
e syscall: Ox0f 0x0b, sysenter: 0x0f Ox34

syscall X5t

.39

Virtual Memory

0x0000

Sinary Rewriting Approach 0x0001

0x0002

* On x86-64 CPUs, syscall and sysenter instructions
trigger a system call
e syscall: Ox0f 0x0b, sysenter: O0x0f 0x34

syscall X5t

40

Virtual Memory

0x0000

Sinary Rewriting Approach 0x0001

0x0002

* On x86-64 CPUs, syscall and sysenter instructions
trigger a system call
e syscall: Ox0f 0x0b, sysenter: 0x0f Ox34

« What we wish to achieve

syscall X5t

L 41

Virtual Memory

0x0000

Sinary Rewriting Approach 0x0001

0x0002

« On x86-64 CPUs, syscall and sysenter instructions

trigger a system call

« syscall: Ox0f 0x05, sysenter: 0x0f 0x34
user-defined

hook function
« What we wish to achieve S

syscall X5t

L 42

Virtual Memory

0x0000

Sinary Rewriting Approach 0x0001

0x0002

« On x86-64 CPUs, syscall and sysenter instructions

trigger a system call

« syscall: Ox0f 0x05, sysenter: 0x0f 0x34
user-defined

hook function
« What we wish to achieve

« replace syscall/sysenter instruction with something

syscall X5t

L 43

Virtual Memory

0x0000

Sinary Rewriting Approach 0x0001

0x0002

* On x86-64 CPUs, syscall and sysenter instructions
trigger a system call
e syscall: Ox0f 0x0b, sysenter: 0x0f Ox34

user-defined
hook function

« What we wish to achieve
- replace syscall/sysenter instruction with something

44

Virtual Memory

0x0000

Sinary Rewriting Approach 0x0001

0x0002

* On x86-64 CPUs, syscall and sysenter instructions
trigger a system call
« syscall: 0x0f 0x05, sysenter: 0x0f 0x34 Jump

user-defined
hook function

« What we wish to achieve

- replace syscall/sysenter instruction with something
e to jump to a user-defined hook function

L 45

Virtual Memory

0x0000

Sinary Rewriting Approach 0x0001

0x0002

* On x86-64 CPUs, syscall and sysenter instructions
trigger a system call
« syscall: 0x0f 0x05, sysenter: 0x0f 0x34 Jump

user-defined
hook function

« What we wish to achieve

- replace syscall/sysenter instruction with something
e to jump to a user-defined hook function

« Question: what should we put here? —

. 46

Virtual Memory

0x0000

0x0001
Challenge 0x0001

« On x86-64 CPUs, syscall and sysenter instructions
trigger a system call
« syscall: Ox0f 0x05, sysenter: 0x0f 0x34

user-defined
hook function

syscall X5t

. 47

Virtual Memory

0x0000

0x0001
Challenge 0x0001

« On x86-64 CPUs, syscall and sysenter instructions
trigger a system call
« syscall: O0x0f 0x05, sysenter: 0x0f 0x34

user-defined
hook function

 syscall and sysenter are 2-byte instructions

L 48

Virtual Memory

0x0000

Challenge 0x0001

0x0002

* On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
« syscall: O0x0f 0x0b, sysenter: 0x0f 0x34

user-defined
hook function

 syscall and sysenter are 2-byte instructions

« Specification for a jump destination address

OxOf
needs more than 2 bytes syscall 0x05

L 49

Virtual Memory

0x0000

Challenge 0x0001

0x0002

* On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
 syscall: Ox0f 0x05, sysenter: Ox0f 0x34 ADDR

user-defined

hook function

 syscall and sysenter are 2-byte instructions

« Specification for a jump destination address

OxOf
needs more than 2 bytes syscall 0x05

. 50

Virtual Memory

0x0000

0x0001
Challenge 0x0001

* On x86-64 CPUs, syscall and sysenter instructions
trigger a system call
« syscall: 0x0f 0x0b, sysenter: 0x0f 0x34 ADDR

user-defined

_ _ hook function
 syscall and sysenter are 2-byte instructions

« Specification for a jump destination address

needs more than 2 bytes = ADDRs
g bigger than

It we put ADDR, subsequent instructions are overwritten I < 2 bytes

. 51

Virtual Memory

0x0000
0x0001
Challenge 0+0001
« On x86-64 CPUs, syscall and sysenter instructions some
trigger a system call roETATT——
» syscall: 0x0f 0x05, sysenter: 0x0f 0x34 ADDR - -

user-defined

hook function

 syscall and sysenter are 2-byte instructions

« Specification for a jump destination address
needs more than 2 bytes

o= ADDR s
g bigger than
<X 2 bytes

It we put ADDR, subsequent instructions are overwritten I

. 52

0x0000

0x0001
Challenge 0x0001

« On x86-64 CPUs, syscall and sysenter instructions —seme

trigger a system call

Virtual Memory

e syscall: O0x0f 0x0b, sysenter: 0x0f Ox34 ADDR

Jump

 syscall and sysenter are 2-byte instructions

« Specification for a jump destination address
needs more than 2 bytes

ADDR is
ibigger than

It we put ADDR, subsequent instructions are overwritten | 2 bytes

jump to the overwritten part leads to unexpected behaviors

. 53

Virtual Memory

0x0000

Challenge 0x0001

0x0002

« On x86-64 CPUs, syscall and sysenter instructions —seme

trigger a system call [program

a_ Cc\ICON IEATVIAT S ATVI AT NP S VI N~ tor- OOF N2/ A

-

Because of this issue, previous binary rewriting techniques
« could not ensure exhaustive hooking
« or, overwrite neighbour instructions

W—Webb

needs more than 2 bytes ADDR is
. . _ b igger than
It we put ADDR, subsequent instructions are overwritten 2 bytes

jump to the overwritten part leads to unexpected behaviors

. 54

Virtual Memory

0x0000

G oa\ jump to a function using only 2 bytes 0x0001

originally occupied by syscall/sysenter x0002

« On x86-64 CPUs, syscall and sysenter instructions —seme

trigger a system call né‘l program

a_ Cc\ICON IEATVIAT S ATVI AT NP S VI N~ tor- OOF N2/

-

Because of this issue, previous binary rewriting techniques
« could not ensure exhaustive hooking
« or, overwrite neighbour instructions

N

\TPECWWWWWWWEbb

needs more than 2 bytes ADDR is
. . _ b igger than
It we put ADDR, subsequent instructions are overwritten 2 bytes

jump to the overwritten part leads to unexpected behaviors

. 55

Calling Convention

« How to invoke a system call

Virtual Memory

0x0000

0x0001

0x0002

user-defined
hook function

syscall X5t

. 56

Virtual Memory

0x0000

: ; 0x0001
Calling Convention Dr0003

« How to invoke a system call

A user-space program sets a system call number,
predefined by the kenel, to the rax register

e e.g., 0:read(), 1: write(), 2: open(), ... user-defined
hook function

set syscall num

to rax register

syscall X5t

. 07

Virtual Memory

0x0000

: ; 0x0001
Calling Convention Dr0003

« How to invoke a system call

A user-space program sets a system call number,

predefined by the kenel, to the rax register

e e.g., 0:read(), 1: write(), 2: open(), ... user-defined
« The user-space program executes syscall/sysenter hook function

set syscall num

to rax register

syscall X5t

. 58

Virtual Memory

0x0000

: ; 0x0001
Calling Convention Dr0003

« How to invoke a system call

A user-space program sets a system call number,
predefined by the kenel, to the rax register

e e.g., 0:read(), 1: write(), 2: open(), ... user-defined
« The user-space program executes syscall/sysenter hook fi’ a1ction

---- the context is switched to the kernel ----

'context
switch

to kernel

. 59

Virtual Memory

0x0000

: ; 0x0001
Calling Convention Dr0003

« How to invoke a system call

« A user-space program sets a system call number,
predefined by the kenel, to the rax register

e e.g., 0: read(), 1: write(), 2: open(), ... user-defined
« The user-space program executes syscall/sysenter hook function
---- the context is switched to the kernel ---- . .
« Kernel executes a system call specified through set syscall num
the system call number set to the rax register to rax register

syscall X5t

. 60

Virtual Memory

0x0000

: ; 0x0001
Calling Convention Dr0003

« How to invoke a system call

« A user-space program sets a system call number,
predefined by the kenel, to the rax register

e e.g.]0: read(), 1: write(), 2: open(), ... user-defined
« The user-space program executes syscall/sysenter hook function
---- the context is switched to the kernel ---- —
« Kernel executes a system call specified through set syscall num
the system call number set to the rax register to rax register
o if the rax register has|0, the kernel executes|read()
o if the rax register has|1, the kernel executes|write() Sysca” 8§8f5
- if the rax register has|2/the kernel executes|open()

. 61

0x0000

: ; 0x0001
Calling Convention Dr0003

« How to invoke a system call

« A user-space program sets a system call number,
predefined by the kenel, to the rax register
e e.g., 0: read(), 1: write(), 2: open(), ...
« The user-space program executes syscall/sysenter
---- the context is switched to the kernel ----
« Kernel executes a system call specified through

the system call number set to the rax register
Point: Calling Convention
When syscall/sysenter is executed,

the rax register always has a system call number,

Virtual Memory

user-defined

hook function

set syscall num

to rax register

syscall X5t

. 62

Virtual Memory

0x0000

: ; 0x0001
Calling Convention Dr0003

« How to invoke a system call

« A user-space program sets a system call number,
predefined by the kenel, to the rax register

 e.g., 0:read(), 1: write(), 2: open(), ... user-defined
« The user-space program executes syscall/sysenter hook function
---- the context is switched to the kernel ---- ——
« Kernel executes a system call specified through set syscall num
the system call number set to the rax register to rax register
Point: Calling Corrventlon Z syscall Ox0f
When syscall/sysenter is executed, 0x05

the rax register always has a system call number,
which is 0 ~ around 500 (defined in the kernel)

. 63

Virtual Memory

0x0000

' 0x0001
zpoline 0x0001

 zpoline replaces syscall/sysenter with callg *%rax

user-defined

hook function

set syscall num

to rax register

Point: Calling Convention
When syscall/sysenter is executed,

syscall X5t

the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

. 64

Virtual Memory

0x0000

' 0x0001
zpoline 0x0001

 zpoline replaces syscall/sysenter with callg *%rax
« callg *%rax is a 2-byte instruction (0xff 0xd0)

user-defined

hook function

set syscall num
to rax register

Point: Calling Convention

When syscall/sysenter is executed,
the rax register always has a system call number,
which is 0 ~ around 500 (defined in the kernel)

callq *%rax

. 65

Virtual Memory

0x0000

' 0x0001
zpoline 0x0001

 zpoline replaces syscall/sysenter with callg *%rax
« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

user-defined

hook function

set syscall num
to rax register

Point: Calling Convention

When syscall/sysenter is executed,
the rax register always has a system call number,
which is 0 ~ around 500 (defined in the kernel)

callq *%rax

. 66

Virtual Memory

0x0000

' 0x0001
zpoline 0x0001

 zpoline replaces syscall/sysenter with callg *%rax
« callg *%rax is a 2-byte instruction (0xff 0xd0)
* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to user-defined
the address stored in the rax register hook function

set syscall num
to rax register

Point: Calling Convention

When syscall/sysenter is executed,
the rax register always has a system call number,
which is 0 ~ around 500 (defined in the kernel)

callq *%rax

. 07

Virtual Memory

0x0000

' 0x0001
zpoline 0x0001

 zpoline replaces syscall/sysenter with callg *%rax
« callg *%rax is a 2-byte instruction (0xff 0xd0)
* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to user-defined
the address stored in the rax register hook function

set syscall num
to rax register

| Point: Calling Convention |

When syscall/sysenter is executed,
the rax register always has a system call number,
which is 0 ~ around 500 (defined in the kernel)

callq *%rax

. 68

Virtual Memory

0x0000

' 0x0001
zpoline 0x0001

 zpoline replaces syscall/sysenter with callg *%rax
« callg *%rax is a 2-byte instruction (0xff 0xd0)
* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to user-defined
the address stored in the rax register hook function

set syscall num
After the binary rewriting to rax register

Point: Calling Convention
When syscall/sysenter is executed,

the rax register always has a system call number,
which is 0 ~ around 500 (defined in the kernel)

callq *%rax

. 69

Virtual Memory

0x0000

' 0x0001
zpoline 0x0001

 zpoline replaces syscall/sysenter with callg *%rax
« callg *%rax is a 2-byte instruction (0xff 0xd0)
* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to user-defined
the address stored in the rax register hook function

set syscall num
After the binary rewriting to rax register

Point: Calling Convention

When syscall/sysenter callq *%rax is executed,

the rax register always has a system call number,
which is 0 ~ around 500 (defined in the kernel)

callq *%rax

. 70

zpoline

0x0000

0x0001
0x0002

 zpoline replaces syscall/sysenter with callg *%rax

« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to
the address stored in the rax register

After the binary rewriting
Point: Calling Convention

When syscall/sysenter callq *%rax is executed,

|the rax register always has a system call number, |

which is 0 ~ around 500 (defined in the kernel)

Virtual Memory

user-defined

hook function

set syscall num

to rax register

callq *%rax

. /1

Virtual Memory

0x0000

' 0x0001
zpoline 0x0001

 zpoline replaces syscall/sysenter with callg *%rax
« callg *%rax is a 2-byte instruction (0xff 0xd0)
* Neighbour instructions are not overwritten

|callg *%rax is an instruction to jump to user-defined
the address stored in the rax register hook function

set syscall num
After the binary rewriting to rax register

Point: Calling Convention

When syscall/sysenter callq *%rax is executed,

[the rax register always has a system call number,]
which is 0 ~ around 500 (defined in the kernel)

callq *%rax

. 2

Virtual Memory

0x0000

' 0x0001
zpoline 0x0001

 zpoline replaces syscall/sysenter with callg *%rax
« callg *%rax is a 2-byte instruction (0xff 0xd0)
* Neighbour instructions are not overwritten

|callg *%rax is an instruction to jump to user-defined
the address stored in the rax register hook function

set syscall num
After the binary rewriting to rax register

Point: Calling Convention

When syscall/sysenter callq *%rax is executed,

the rax register always has a system call number,
| which is 0 ~ around 500 (defined in the kernel) |

callq *%rax

. /3

Virtual Memory
A

0x0000

' 0x0001
zpoline 0x000

around 580

 zpoline replaces syscall/sysenter with callg *%ra
« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to user-defined
the address stored in the rax register hook function

e replaced callg *%rax jumps to address O~around 500

I |

set syscall num
After the binary rewriting to rax register

Point: Calling Convention

When syscall/sysenter callq *%rax is executed,

the rax register always has a system call number,
which is 0 ~ around 500 (defined in the kernel)

callq *%rax

. (4

Virtual Memory

: 0x0000
- address range, potentially A
ZDO‘ ITIC replaced “callq *%rax” jumps to ‘|: PR

0x000
(V is the max syscall number) N

 zpoline replaces syscall/sysenter with callg *%ra
« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to
the address stored in the rax register

e replaced callg *%rax jumps to address O~around 500

user-defined
hook function

v

set syscall num
to rax register

After the binary rewriting
Point: Calling Convention

When syscall/sysenter callq *%rax is executed,

the rax register always has a system call number,
which is 0 ~ around 500 (defined in the kernel)

callq *%rax

75

address range, potentially { 0x0000

ZDO‘ Ine replaced “callg *%rax” jumps to

(V is the max syscall number) N

 zpoline replaces syscall/sysenter with callg *%ra

« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to
the address stored in the rax register

« replaced callg *%rax jumps to address O~around 500

0x0001
0x000

Virtual Memory

user-defined

hook function

set syscall num
to rax register

callq *%rax

. 76

ZDO‘ Ine replaced “callg *%rax” jumps to
(V is the max syscall number)

address range, potentially { 0x0000

N

 zpoline replaces syscall/sysenter with callg *%ra
« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to
the address stored in the rax register

« replaced callg *%rax jumps to address O~around 500

How to redirect to the user-defined hook function?

0x0001
0x000

Virtual Memory

user-defined

hook function

I |

set syscall num
to rax register

callq *%rax

- 7

Virtual Memory

: 0x0000
- address range, potentially
ZDO‘ INE replaced “callq *%rax” jumps to ‘|: 8?8881 —trampoline—
(V is the max syscall number) N e

 zpoline replaces syscall/sysenter with callg *%ra
« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to
the address stored in the rax register

« replaced callg *%rax jumps to address O~around 500

user-defined
hook function

set syscall num

How to redirect to the user-defined hook function? to rax register

e zpoline instantiates trampoline code at address 0 callg *%rax

. 78

Virtual Memory

: 0x0000
: address range, potentially nop
ZpO‘ INE replaced “callq *%rax” jumps to ‘l: X000] —nop

0x000
(V is the max syscall number) N

 zpoline replaces syscall/sysenter with callg *%ra
« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to
the address stored in the rax register

« replaced callg *%rax jumps to address O~around 500

nop

user-defined

hook function

set syscall num
to rax register

How to redirect to the user-defined hook function?

e zpoline instantiates trampoline code at address 0 callg *%rax
e fills address range 0 to V. with nop (0x90)

. 79

Virtual Memory
address range, potentially { 8?888(1) nop

at.
0 gh

thr

ZDO‘ IS replaced “callq *%rax” jumps to 0x000 nop
(V is the max syscall number) N

 zpoline replaces syscall/sysenter with callg *%ra
« callg *%rax is a 2-byte instruction (0xff 0xd0)
* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to
the address stored in the rax register

« replaced callg *%rax jumps to address O~around 500

I nop

user-defined

hook function

set syscall num
to rax register

How to redirect to the user-defined hook function?

e zpoline instantiates trampoline code at address 0 callg *%rax
e fills address range 0 to V. with nop (0x90)

. 80

Virtual Memory

0x0000

0x0001
0x000

{N
 zpoline replaces syscall/sysenter with callg *%ra
« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to
the address stored in the rax register

« replaced callg *%rax jumps to address O~around 500

address range, potentially
replaced “callq *%rax” jumps to
(V is the max syscall number)

zpoline

How to redirect to the user-defined hook function?

e zpoline instantiates trampoline code at address 0
e fills address range 0 to V. with nop (0x90)

e puts code to jump to the hook function next to the last nop

nop

nop

%
ough

th r

I nop

jump to

hook function

user-defined

hook function

set syscall num

to rax register

callq *%rax

. 8l

Virtual Memory
— 0x0000 nop

. address range, potentially <
ZDO‘ INE replaced “callq *%rax” jumps to 8?8881 —FE
(V is the max syscall number) = = 1 nop
jump to

 zpoline replaces syscall/sysenter with callg *%ra
« callg *%rax is a 2-byte instruction (0xff 0xd0)

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to user-defined
the address stored in the rax register hook function

« replaced callg *%rax jumps to address O~around 500

hook function

set syscall num
to rax register

How to redirect to the user-defined hook function?

« zpoline instantiates trampoline code at addresg
e fills address range 0 to V. with nop (0x90)

e puts code to jump to the hook function next to the last hop
We could reach the user-defined hook function! —

0 callq *%rax

Virtual Memory

< | hop
ZDO‘IHG € trampoline code at address 0 (zero) — :f nop
(NV is the max syscall number) L/v —= I nop

 zpoline replaces syscall/sysenter with callg *%ra hO;ETupnﬁion
e callg *%rax is a 2-byte instruction (0xff 0xd0) - _

* Neighbour instructions are not overwritten

e callg *%rax is an instruction to jump to user-defined
the address stored in the rax register hook function

« replaced callg *%rax jumps to address O~around 500

set syscall num
to rax register

How to redirect to the user-defined hook function?

« zpoline instantiates trampoline code at addresg
e fills address range 0 to V. with nop (0x90)

e puts code to jump to the hook function next to the last hop
We could reach the user-defined hook function!

0 callq *%rax

. 83

Virtual Memory

nation B AT
NULL Access |ermination 0x0001 (= F T 'nop
N = | nop

jump to
hook function

« A buggy program may access NULL (address 0)

user-defined

hook function

set syscall num
to rax register

callq *%rax

. 84

Virtual Memory

nation B AT
NULL Access |ermination 0x0001 (= F T 'nop
N = | nop

jump to
hook function

« A buggy program may access NULL (address 0)

user-defined

hook function

set syscall num
to rax register

callq *%rax

Bug
Access NULL
. . .8

Virtual Memory

_ . 0x00 — | nop

OxO0@01 =3 In
NULL Access [ermination 00001 (= T nop
N = | nop

jump to
hook function

« A buggy program may access NULL (address 0)

user-defined

hook function

set syscall num
to rax register

callq *%rax

Bug
Access NULL
. . . 86

Virtual Memory
0x00

. . = nop
Ox0Q01l [= =@
NULL Access [ermination Ox0) L2 [nop
N f. I nop
« A buggy program may access NULL (address 0) hO;ETupnﬁion
* In principle, NULL access has to be terminated

user-defined

hook function

set syscall num
to rax register

callq *%rax

Bug
Access NULL
. . . 87

Normally, ... Virtual Memory

0x00

: : oxoqD1 ! Pagefaultl-

NULL Access [ermination o Y il
N memory

mabbhing!
| gl | [@]

« A buggy program may access NULL (address 0)
* In principle, NULL access has to be terminated

« Normally, a page fault happens because no physical
memory is mapped to virtual address 0 user-defined

hook function

set syscall num
to rax register

callq *%rax

Bug
Access NULL
. . . 88

Virtual Memory

_ . 0x00 — | nop
NULL Access |ermination 00401 =" nop
N = | nop

jump to
hook function |

« A buggy program may access NULL (address 0)
* In principle, NULL access has to be terminated

« Normally, a page fault happens because no physical
memory is mapped to virtual address 0 user-defined

 zpoline uses virtual address 0, therefore, hook function
the page fault does not happen

set syscall num
to rax register

callq *%rax

Bug
Access NULL
.. . 89

Virtual Memory

_ . 0x00 — | nop
NULL Access |ermination 00401 =" nop
N = | nop

jump to
hook function |

« A buggy program may access NULL (address 0)
* In principle, NULL access has to be terminated
« Normally, a page fault happens because no physical

memory is mapped to virtual address O user-defined
 zpoline uses virtual address 0, therefore, hook function
the page fault does not happen —
o set syscall num
* The buggy program continues to run to rax register

callq *%rax

Bug
Access NULL
.. . 90

Virtual Memory

_ . 0x00 — | nop
NULL Access |ermination 00401 =" nop
N = | nop

jump to
hook function

« A buggy program may access NULL (address 0)
* In principle, NULL access has to be terminated
« Normally, a page fault happens because no physical

memory is mapped to virtual address O user-defined
 zpoline uses virtual address 0, therefore, hook function
the page fault does not happen —
o set syscall num
* The buggy program continues to run to rax register

callq *%rax

How can we detect and terminate a buggy NULL access?

Bug
Access NULL
.. .91

Virtual Memory
0x0000

. . = nop
Ox000]1 =@
NULL Access ermination 0x0001 (= F T 'nop
N f. I nop
« Memory access: read / write / execute hO;ETupni‘;ion

user-defined

hook function

set syscall num
to rax register

callq *%rax

Bug
Access NULL
Y.

Virtual Memory

0x0000
NULL Access [ermination 0x0001
N

« Memory access: read / write / execute
e Solution
 read/write: configure the trampoline code as XOM

user-defined
hook function

set syscall num
to rax register

callq *%rax

Bug
Access NULL
Y

Virtual Memory

0x0000
NULL Access [ermination 0x0001
N

« Memory access: read / write / execute
e Solution

 read/write: configure the trampoline code as XOM Jefined
« read/write access to the trampoline code causes a fault user-ae m_e
« This can be done by mprotect() system call hook function

set syscall num
to rax register

A
callq *%rax

Bug
Access NULL
. . . 94

Virtual Memory

0x0000

NULL Access |ermination 0x0001

N
« Memory access: read / write / execute
e Solution

 read/write: configure the trampoline code as XOM _
 read/write access to the trampoline code causes a fault user'defln_ed

« This can be done by mprotect() system call hook function

« execute: check the caller address

set syscall num
to rax register

callq *%rax

Bug
Access NULL
T

Virtual Memory

0x0000

NULL Access |ermination 0x0001

N
« Memory access: read / write / execute
e Solution
 read/write: configure the trampoline code as XOM

- read/write access to the trampoline code causes a fault user'defln_ed
« This can be done by mprotect() system call hook function
« execute: check the caller address . .
1. during the binary rewriting phase, set syscall hum
we collect the addresses of replaced syscall/sysenter to rax register

A
callq *%rax

B

Bug
Access NULL
.. . 9

Virtual Memory

0x0000

NULL Access |ermination 0x0001

N
« Memory access: read / write / execute
e Solution
 read/write: configure the trampoline code as XOM

- read/write access to the trampoline code causes a fault user'defln_ed
« This can be done by mprotect() system call hook function
« execute: check the caller address . .
1. during the binary rewriting phase, set syscall hum
we collect the addresses of replaced syscall/sysenter to rax register
During binary rewriting phase ... A callg *%rax

B

Bug
Access NULL
Y

Virtual Memory

0x0000

NULL Access |ermination 0x0001

N
« Memory access: read / write / execute
e Solution
 read/write: configure the trampoline code as XOM

- read/write access to the trampoline code causes a fault user'defln_ed
« This can be done by mprotect() system call hook function
« execute: check the caller address . .
1. during the binary rewriting phase, set syscall hum
we collect the addresses of replaced syscall/sysenter to rax register
During binary rewriting phase ... A callg *%rax

B

Bug
Access NULL
. . . 98

List of replaced addresses : |...]

Virtual Memory

0x0000

NULL Access |ermination 0x0001

N
« Memory access: read / write / execute
e Solution
 read/write: configure the trampoline code as XOM

- read/write access to the trampoline code causes a fault user'defln_ed
« This can be done by mprotect() system call hook function
« execute: check the caller address . .
1. during the binary rewriting phase, set syscall hum
we collect the addresses of replaced syscall/sysenter to rax register
During binary rewriting phase ... / A callg *%rax
5

Bug
Access NULL
c .. 99

List of replaced addresses : |...]

Virtual Memory

0x0000

NULL Access |ermination 0x0001

N
« Memory access: read / write / execute
e Solution
 read/write: configure the trampoline code as XOM

- read/write access to the trampoline code causes a fault user'defln_ed
« This can be done by mprotect() system call hook function
« execute: check the caller address .
1. during the binary rewriting phase, set syscall num
we collect the addresses of replaced syscall/sysenter to rax register
: . . A
During binary rewriting phase ... / callg *%rax
. B B
List of replaced addresses : [A4, ...] ug

Access NULL

.. 100

Virtual Memory
0x0000

NULL Access |ermination 0x0001

N
« Memory access: read / write / execute

e Solution

 read/write: configure the trampoline code as XOM
« read/write access to the trampoline code causes a fault

user-defined

« This can be done by mprotect() system call hook function
e execute: check the caller address .
1. during the binary rewriting phase, set syscall num
we collect the addresses of replaced syscall/sysenter to rax register
2. atruntime, in the hook function,
we check if the caller is one of the replaced addresses callq *%rax
. B Bu
List of replaced addresses : [A4, ...] g

Access NULL

. lol

Virtual Memory

Ox00Q&
NULL Access [ermination 0x0g01
At runtime ... N

« Memory access: read / write / execute

e Solution

 read/write: configure the trampoline code as XOM
« read/write access to the trampoline code causes a fault

user-defined

« This can be done by mprotect() system call hook function
e execute: check the caller address .
1. during the binary rewriting phase, set syscall num
we collect the addresses of replaced syscall/sysenter to rax register
2. atruntime, in the hook function,
we check if the caller is one of the replaced addresses callq *%rax
. B Bu
List of replaced addresses : [A4, ...] g

Access NULL

. 102

Virtual Memory

NULL Access lermination

At runtime ...

« Memory acced e el
. Solution A is in the list, so
this is a valid access

e read/write: :
« read/write acces ode causes a fault user'defm_ed

« This can be done by mprotect() system call hook function

e execute: check the caller address

1. during the binary rewriting phase,
we collect the addresses of replacet

2. atruntime, in the hook function,

set syscall num
to rax register

syscall/sysenter

we check if the caller is one of the replaced addresses caIIq *0frax
5 _
List of replaced addresses : [A4, ...] Bug

Access NULL

. 103

Virtual Memory

0x0000
NULL Access [ermination 0x0001
At runtime ... N

« Memory access: read / write / execute

e Solution

 read/write: configure the trampoline code as XOM
« read/write access to the trampoline code causes a fault

user-defined

« This can be done by mprotect() system call hook function
e execute: check the caller address .
1. during the binary rewriting phase, set syscall num
we collect the addresses of replaced syscall/sysenter to rax register
2. atruntime, in the hook function,
we check if the caller is one of the replaced addresses callq *%rax
. B Bu
List of replaced addresses : [A4, ...] g

Access NULL

. 104

Virtual Memory

0x00
NULL Access [ermination Ox001 (=51 ow
At runtime ... N ama
« Memory access: read / write / execute U

e Solution

 read/write: configure the trampoline code as XOM
« read/write access to the trampoline code causes a fault

user-defined

« This can be done by mprotect() system call hook function
e execute: check the caller address .
1. during the binary rewriting phase, set syscall num
we collect the addresses of replaced syscall/sysenter to rax register
2. atruntime, in the hook function,
we check if the caller is one of the replaced addresses callq *%rax
. 5 Bu
List of replaced addresses : [A4, ...] g

Access NULL

. 105

Virtual Memory

0x00
NULL Access [ermination D01 =75 how
At runtime ... N emo

BV ISTnlgk:Idd=% The caller address is'B
B is NOT in the list, so
this is an invalid access

e Solution
e read/write;

user-defined

hook function

« This can be done by mprotect() syste

e execute: check the caller address

1. during the binary rewriting phase, set syscall hum
we collect the addresses of replaced syscall/sysenter to rax register

2. atruntime, in the hook function, /]
ced addresses callq *%rax

we check if the caller is one of the repl
B

Bug
Access NULL

. 106

List of replaced addresses : [A4, ...

Virtual Memory

NULL Access lermination

At runtime ...

BV ISTnlgk:Idd=% The caller address is'B
. Solution B is NOT in the list, so
. this is an invalid access

e read/write: =

« This can be done by mprotect() syste
« execute: check the caller address

1. during the binary rewriting phase, set syscali hum
we collect the addresses of replaced syscall/sysenter to rax register

2. atruntime, in the hook function,
we check if the caller is one of the repl

ced addresses Callq *0orax

] Bug
Access NULL

. lo7

List of replaced addresses : [A4, ...

Virtual Memory

NULL Access lermination

At runtime ...

BV ISTnlgk:Idd=% The caller address is'B
. Solution B is NOT in the list, so
. this is an invalid access

e read/write: =

« read/write acces
« This can be done by mprotect() system call

e execute: check the caller address _ ¢
1. during the binary rewriting phase, set syscali hum

we collect the addresses of replaced syscall/sysenter to rax register
2. atruntime, in the hook function,
we check if the caller is one of the replaced addresses callq *%rax
« Current prototype uses bitmap to implement this check
. B B
List of replaced addresses : [A4, ...] ug

Access NULL

T

Virtual Memory

< | hop
System Call Hook Overhead = T nop
= _{nop
» Time to hook getpid() and return a dummy value hO;ETupnf:‘;ion
ptrace 31201 user-defined
int3 signaling 1349 hook function
SUD 1156 set syscall num
zpoline 41 to rax register

LD PRELOAD 6 callg *%rax

. .109

Virtual Memory

< | hop
System Call Hook Overheac = 3 [nop
= nop
+ Time to hook getpid() and return a dummy value [“hoak function
ptrace 31201 716« user-defin.ed
int3 signaling 1342 32.7x ROGICIHHCHIoN
SUD 1156) 28.1X rsetsyscallnum
zpoline 41 'MProvement(to rax register

LD PRELOAD 6 callg *%rax

. 110

Virtual Memory

< | hop
System Call Hook Overheac = ¥ [nop
= nop
+ Time to hook getpid() and return a dummy value [“hoak function
otrace 31201 user-defined
int3 signaling 1342 ROCICIRnEHon
SUb 1156 set syscall num

to rax register

zpoline NULL exec check: 1 ns out of 41

LD PRELOAD 6 callg *%rax

.o 111

Virtual Memory

< | hop
System Call Hook Overheac = T nop
= _{nop
» Time to hook getpid() and return a dummy value hO;ETupnf:‘;ion
ptrace 31201 user-defined
int3 signaling 1349 hook function
SUD 1156 set syscall_num
zpoline 41 135ns to rax register

LD PRELOAD @ overhead callg *%rax

o112

Virtual Memory

additional
< | hop
System Call Hook Overhead ¢ | =5 [nop
% I nop
» Time to hook getpid() and return a dummy valye hO;ETupni‘;ion
ptrace user-defined
B el hook function
SUD set syscall_num
zpoline 41/, 3505 to rax register

LD PRELOAD @ overhead callg *%rax

. 113

Application Performance

- We transparently apply IwIP + DPDK to an application using

different system call hook mechanisms

W] g

M

ot

SLLLI R LR L) R Lli]

| I |
i
| e B

100 Gbps ~

114

Application Performance

- We transparently apply IwIP + DPDK to an application using
different system call hook mechanisms

Simple HTTP server

lwlP

DPDK

._}_

[LLARLLIRTILR]I
LRI R LI RLLL
pomsis ey (eummusty g fecounse

RLLLIRLLLARATIERE]

115

Application Performance

- We transparently apply IwIP + DPDK to an application using
different system call hook mechanisms

Simple HTTP server ptrace, int3, SUD,
zpoline, LD_PRELOAD
syscat hook

lwlP + DPDK

“““

116

Application Performance

- We transparently apply IwIP + DPDK to an application using
different system call hook mechanisms

Simple HTTP server ptrace, int3, SUD,

zpoline, LD_PRELOAD
syscat hook
wrk: benchmark client

lwlP + DPDK fetch 64B content

117

Application Performance

- We transparently apply IwIP + DPDK to an application using
different system call hook mechanisms

Simple HTTP server ptrace, int3, SUD,

zpoline, LD_PRELOAD
syscat hook
wrk: benchmark client

lwlP + DPDK fetch 64B content

Throughput [M reqgs/sec]
O O O O —
ON B O OO DN
.
=
| c
X
]
]
I
I

100 Gboe

Application Performance

- We transparently apply IwIP + DPDK to an application using
different system call hook mechanisms

Simple HTTP server st i SUD 15 Compared to LD_PRELOAD

zpoline, LD_PRELOAD [873%
syscat hook > 1
wrk: benchmark client ; 0.8
lwlP + DPDK fetch 64B content — 06

Application Performance

- We transparently apply IwIP + DPDK to an application using
different system call hook mechanisms

Redis ptrace, int3, SUD,
zpoline, LD_PRELOAD
syscat hook

redis-benchmark
GET 100%

lwlP + DPDK

120

Application Performance

- We transparently apply IwIP + DPDK to an application using
different system call hook mechanisms

Redis ptrace, int3, SUD, _
zpoline, LD_PRELOAD
syscat hook 3 00
redis-benchmark 2 100

lwlP + DPDK GET 100% = 300 Linux
5 108 B I I
= SHERS P A K

Q@ . Q;\\Q} S on\ <2~<<>/Q

Application Performance

- We transparently apply IwIP + DPDK to an application using
different system call hook mechanisms

Redis otrace, int3, SUD, - .o, Compared to LD_PRELOAD
zpoline, LD_PRELOAD & 288
syscat hook s

redis-benchmark o 288
lwlIP + DPDK GET 100% = 300 Linux

Summary

« zpoline: a system call hook mechanism for x86-64 CPUs

e based on binary rewriting
 replaces syscall/sysenter with callg *%rax
« instantiates the trampoline code at virtual address 0 (zero)

e free from the drawbacks of the pervious mechanisms
« keeps the performance benefit of user-space OS subsystems

« Source code: https://github.com/yasukata/zpoline
« since October 2021

https://github.com/yasukata/zpoline

124

Speeding up the Trampoline Code

 Inspired from USENIX ATC'23 reviewers who suggested to
employ a one-byte short jump instruction for speeding up
« Put it on the addresses corresponding to obsolete system calls

« Optimization: repeat Oxeb 0x6a 0x90 instead of nops

« Hook overhead reduction from 41 ns to 10 ns

Syscall number: 3xn+0 3xn+1 3xn+2
jmp @xb6a push 0x90 nop
. jmp @xba jmp @xoa
We pop 0x90 in b 0x6a nop nop

. jm
the hook function nop jmp @x6a jmp @x6a

