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System Call Hook
• System calls are the primary interface for user-space 

programs to communicate with OS kernels
• A system call hook mechanism intercepts a system call, and 
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Contribution
• zpoline: a system call hook mechanism for x86-64 CPUs
• based on binary rewriting
• free from the drawbacks of the pervious mechanisms

• This work addresses a challenge that is specific to binary 
rewriting approaches
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• replace syscall/sysenter instruction with something
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• Question: what should we put here?
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Challenge
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34
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Challenge
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• syscall and sysenter are 2-byte instructions
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Challenge
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• syscall and sysenter are 2-byte instructions

• Specification for a jump destination address
needs more than 2 bytes
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syscall 0x0f
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Challenge
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• syscall and sysenter are 2-byte instructions

• Specification for a jump destination address
needs more than 2 bytes
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syscall 0x0f
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Challenge
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• syscall and sysenter are 2-byte instructions

• Specification for a jump destination address
needs more than 2 bytes
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ADDR is
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2 bytesIf we put ADDR, subsequent instructions are overwritten
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Challenge
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• syscall and sysenter are 2-byte instructions

• Specification for a jump destination address
needs more than 2 bytes

Virtual Memory
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2 bytesIf we put ADDR, subsequent instructions are overwritten

. . .
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Challenge
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• syscall and sysenter are 2-byte instructions

• Specification for a jump destination address
needs more than 2 bytes

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

AD
DR

ADDR is
bigger than

2 bytesIf we put ADDR, subsequent instructions are overwritten
jump to the overwritten part leads to unexpected behaviors 

jump

. . .

. . .

user-defined
hook function
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Challenge
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• syscall and sysenter are 2-byte instructions

• Specification for a jump destination address
needs more than 2 bytes

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

AD
DR

ADDR is
bigger than

2 bytesIf we put ADDR, subsequent instructions are overwritten
jump to the overwritten part leads to unexpected behaviors 

jump

. . .

. . .
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hook function

ADDR
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program
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• could not ensure exhaustive hooking
• or, overwrite neighbour instructions 



Goal
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• syscall and sysenter are 2-byte instructions

• Specification for a jump destination address
needs more than 2 bytes

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

AD
DR

ADDR is
bigger than

2 bytesIf we put ADDR, subsequent instructions are overwritten
jump to the overwritten part leads to unexpected behaviors 

jump to a function using only 2 bytes
originally occupied by syscall/sysenter

. . .

. . .
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hook function

some
program

jump
ADDR
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Because of this issue, previous binary rewriting techniques
• could not ensure exhaustive hooking
• or, overwrite neighbour instructions 



Calling Convention
• How to invoke a system call
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Calling Convention
• How to invoke a system call
• A user-space program sets a system call number,

predefined by the kenel, to the rax register
• e.g., 0: read(), 1: write(), 2: open(), ...
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Calling Convention
• How to invoke a system call
• A user-space program sets a system call number,

predefined by the kenel, to the rax register
• e.g., 0: read(), 1: write(), 2: open(), ...

• The user-space program executes syscall/sysenter
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Calling Convention
• How to invoke a system call
• A user-space program sets a system call number,

predefined by the kenel, to the rax register
• e.g., 0: read(), 1: write(), 2: open(), ...

• The user-space program executes syscall/sysenter
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---- the context is switched to the kernel ----
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Calling Convention
• How to invoke a system call
• A user-space program sets a system call number,

predefined by the kenel, to the rax register
• e.g., 0: read(), 1: write(), 2: open(), ...

• The user-space program executes syscall/sysenter

• Kernel executes a system call specified through
the system call number set to the rax register
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syscall 0x0f
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user-defined
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set syscall num
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---- the context is switched to the kernel ----
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Calling Convention
• How to invoke a system call
• A user-space program sets a system call number,

predefined by the kenel, to the rax register
• e.g., 0: read(), 1: write(), 2: open(), ...

• The user-space program executes syscall/sysenter

• Kernel executes a system call specified through
the system call number set to the rax register
• if the rax register has 0, the kernel executes read()
• if the rax register has 1, the kernel executes write()
• if the rax register has 2, the kernel executes open()
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to rax register

---- the context is switched to the kernel ----
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Calling Convention
• How to invoke a system call
• A user-space program sets a system call number,

predefined by the kenel, to the rax register
• e.g., 0: read(), 1: write(), 2: open(), ...

• The user-space program executes syscall/sysenter

• Kernel executes a system call specified through
the system call number set to the rax register
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syscall 0x0f
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user-defined
hook function

set syscall num
to rax register

---- the context is switched to the kernel ----

When syscall/sysenter is executed,
the rax register always has a system call number,

Point: Calling Convention
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Calling Convention
• How to invoke a system call
• A user-space program sets a system call number,

predefined by the kenel, to the rax register
• e.g., 0: read(), 1: write(), 2: open(), ...

• The user-space program executes syscall/sysenter

• Kernel executes a system call specified through
the system call number set to the rax register
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syscall 0x0f
0x05
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user-defined
hook function

set syscall num
to rax register

---- the context is switched to the kernel ----

When syscall/sysenter is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)
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When syscall/sysenter is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

When syscall/sysenter is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
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When syscall/sysenter is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
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hook function

set syscall num
to rax register

When syscall/sysenter is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention
After the binary rewriting
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
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callq *%rax
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user-defined
hook function

set syscall num
to rax register

When syscall/sysenter callq *%rax is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention
After the binary rewriting
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
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user-defined
hook function

set syscall num
to rax register

When syscall/sysenter callq *%rax is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention
After the binary rewriting
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
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When syscall/sysenter callq *%rax is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention
After the binary rewriting
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
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user-defined
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When syscall/sysenter callq *%rax is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention
After the binary rewriting
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500
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callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
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When syscall/sysenter callq *%rax is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention
After the binary rewriting

around 500
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

When syscall/sysenter callq *%rax is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention
After the binary rewriting

N

address range, potentially
replaced “callq *%rax” jumps to
( N is the max syscall number )
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500
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( N is the max syscall number )
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N

address range, potentially
replaced “callq *%rax” jumps to
( N is the max syscall number ) ?

How to redirect to the user-defined hook function?
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500

• zpoline instantiates trampoline code at address 0
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500

• zpoline instantiates trampoline code at address 0
• fills address range 0 to N with nop (0x90)
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500

• zpoline instantiates trampoline code at address 0
• fills address range 0 to N with nop (0x90)
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( N is the max syscall number )

How to redirect to the user-defined hook function?
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500

• zpoline instantiates trampoline code at address 0
• fills address range 0 to N with nop (0x90)

• puts code to jump to the hook function next to the last nop
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500

• zpoline instantiates trampoline code at address 0
• fills address range 0 to N with nop (0x90)

• puts code to jump to the hook function next to the last nop
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zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500

• zpoline instantiates trampoline code at address 0
• fills address range 0 to N with nop (0x90)

• puts code to jump to the hook function next to the last nop
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How to redirect to the user-defined hook function?
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NULL Access Termination
• A buggy program may access NULL (address 0)
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NULL Access Termination
• A buggy program may access NULL (address 0)
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NULL Access Termination
• A buggy program may access NULL (address 0)
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NULL Access Termination
• A buggy program may access NULL (address 0)
• In principle, NULL access has to be terminated
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NULL Access Termination
• A buggy program may access NULL (address 0)
• In principle, NULL access has to be terminated
• Normally, a page fault happens because no physical

memory is mapped to virtual address 0
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NULL Access Termination
• A buggy program may access NULL (address 0)
• In principle, NULL access has to be terminated
• Normally, a page fault happens because no physical

memory is mapped to virtual address 0
• zpoline uses virtual address 0, therefore,

the page fault does not happen
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NULL Access Termination
• A buggy program may access NULL (address 0)
• In principle, NULL access has to be terminated
• Normally, a page fault happens because no physical

memory is mapped to virtual address 0
• zpoline uses virtual address 0, therefore,

the page fault does not happen

• The buggy program continues to run
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NULL Access Termination
• A buggy program may access NULL (address 0)
• In principle, NULL access has to be terminated
• Normally, a page fault happens because no physical

memory is mapped to virtual address 0
• zpoline uses virtual address 0, therefore,

the page fault does not happen

• The buggy program continues to run
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NULL Access Termination
• Memory access: read / write / execute
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NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM
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NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call
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NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
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NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
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NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
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NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
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NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
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NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
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NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
2. at runtime, in the hook function,

we check if the caller is one of the replaced addresses
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NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
2. at runtime, in the hook function,

we check if the caller is one of the replaced addresses
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NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
2. at runtime, in the hook function,

we check if the caller is one of the replaced addresses
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NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
2. at runtime, in the hook function,

we check if the caller is one of the replaced addresses
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NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
2. at runtime, in the hook function,

we check if the caller is one of the replaced addresses
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NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
2. at runtime, in the hook function,

we check if the caller is one of the replaced addresses
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NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
2. at runtime, in the hook function,

we check if the caller is one of the replaced addresses
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NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
2. at runtime, in the hook function,

we check if the caller is one of the replaced addresses
• Current prototype uses bitmap to implement this check
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System Call Hook Overhead
• Time to hook getpid() and return a dummy value
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System Call Hook Overhead
• Time to hook getpid() and return a dummy value
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System Call Hook Overhead
• Time to hook getpid() and return a dummy value
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System Call Hook Overhead
• Time to hook getpid() and return a dummy value
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System Call Hook Overhead
• Time to hook getpid() and return a dummy value

113

Mechanism Time [ns]
ptrace 31201
int3 signaling 1342
SUD 1156
zpoline 41
LD_PRELOAD 6

Virtual Memory

. . .

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

. . .
nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

callq *%rax
+35ns
overhead

additional
overhead



Application Performance
• We transparently apply lwIP + DPDK to an application using 

different system call hook mechanisms

114

100 Gbps



Application Performance
• We transparently apply lwIP + DPDK to an application using 

different system call hook mechanisms

115

100 Gbps

Simple HTTP server

lwIP + DPDK



Application Performance
• We transparently apply lwIP + DPDK to an application using 

different system call hook mechanisms

116

100 Gbps

Simple HTTP server

lwIP + DPDK

syscall hook

ptrace, int3, SUD,
zpoline, LD_PRELOAD



Application Performance
• We transparently apply lwIP + DPDK to an application using 

different system call hook mechanisms

117

100 Gbps

Simple HTTP server

wrk: benchmark client
fetch 64B contentlwIP + DPDK

syscall hook

ptrace, int3, SUD,
zpoline, LD_PRELOAD



Application Performance
• We transparently apply lwIP + DPDK to an application using 

different system call hook mechanisms

118

100 Gbps

Simple HTTP server

wrk: benchmark client
fetch 64B contentlwIP + DPDK

syscall hook

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6

ptr
ac

e

int
3 sig

nalin
g

SUD
zpolin

e

LD_P
RELOADTh

ro
ug

hp
ut

 [M
 re

qs
/s

ec
]ptrace, int3, SUD,

zpoline, LD_PRELOAD

Linux



Application Performance
• We transparently apply lwIP + DPDK to an application using 

different system call hook mechanisms

119

100 Gbps

Simple HTTP server

wrk: benchmark client
fetch 64B contentlwIP + DPDK

syscall hook

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6

ptr
ac

e

int
3 sig

nalin
g

SUD
zpolin

e

LD_P
RELOADTh

ro
ug

hp
ut

 [M
 re

qs
/s

ec
]ptrace, int3, SUD,

zpoline, LD_PRELOAD

17.0%14.7%

87.3%

Linux
1.1%

Compared to LD_PRELOAD



Application Performance
• We transparently apply lwIP + DPDK to an application using 

different system call hook mechanisms

120

100 Gbps

Redis

lwIP + DPDK

syscall hook
redis-benchmark

GET 100%

ptrace, int3, SUD,
zpoline, LD_PRELOAD



Application Performance
• We transparently apply lwIP + DPDK to an application using 

different system call hook mechanisms

121

100 Gbps

Redis

lwIP + DPDK

syscall hook
redis-benchmark

GET 100%

0
100
200
300
400
500
600
700
800

ptr
ac

e

int
3 sig

nalin
g

SUD
zpolin

e

LD_P
RELOADTh

ro
ug

hp
ut

 [K
 re

qs
/s

ec
]ptrace, int3, SUD,
zpoline, LD_PRELOAD

Linux



Application Performance
• We transparently apply lwIP + DPDK to an application using 

different system call hook mechanisms
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Summary
• zpoline: a system call hook mechanism for x86-64 CPUs
• based on binary rewriting

• replaces syscall/sysenter with callq *%rax
• instantiates the trampoline code at virtual address 0 (zero)

• free from the drawbacks of the pervious mechanisms
• keeps the performance benefit of user-space OS subsystems

• Source code: https://github.com/yasukata/zpoline
• since October 2021
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https://github.com/yasukata/zpoline
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Speeding up the Trampoline Code
• Inspired from USENIX ATCʼ23 reviewers who suggested to 

employ a one-byte short jump instruction for speeding up
• Put it on the addresses corresponding to obsolete system calls

• Optimization: repeat 0xeb 0x6a 0x90 instead of nops
• Hook overhead reduction from 41 ns to 10 ns 
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jmp 0x6a
nop
jmp 0x6a
nop

push 0x90
jmp 0x6a
nop
jmp 0x6a

nop
jmp 0x6a
nop
jmp 0x6a

Syscall number:      3 x n + 0              3 x n + 1              3 x n + 2

We pop 0x90 in
the hook function


