
zpoline: a system call hook mechanism
based on binary rewriting

Kenichi Yasukata , Hajime Tazaki , Pierre-Louis Aublin , Kenta Ishiguro

USENIX ATC 2023 ‒ Boston, MA, USA ‒ 10th July

IIJ Research Laboratory
Hosei University

1 1 1 2

1

2

1

System Call
• System calls are the primary interface for user-space

programs to communicate with OS kernels

2

System Call
• System calls are the primary interface for user-space

programs to communicate with OS kernels

User-space program

3

System Call
• System calls are the primary interface for user-space

programs to communicate with OS kernels

User-space program

Kernel-space OS subsystem
4

System Call
• System calls are the primary interface for user-space

programs to communicate with OS kernels

User-space program

system call

Kernel-space OS subsystem
5

System Call Hook
• System calls are the primary interface for user-space

programs to communicate with OS kernels
• A system call hook mechanism intercepts a system call

User-space program

system call

Kernel-space OS subsystem
6

System Call Hook
• System calls are the primary interface for user-space

programs to communicate with OS kernels
• A system call hook mechanism intercepts a system call

User-space program

system call hook
intercept

Kernel-space OS subsystem
7

System Call Hook
• System calls are the primary interface for user-space

programs to communicate with OS kernels
• A system call hook mechanism intercepts a system call, and

redirects the execution to a user-defined hook function

User-space program User-defined
hook function

system call hook redirect

Kernel-space OS subsystem
8

Motivating Use Case
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
9

Motivating Use Case
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
10

User-space
OS subsystem

Motivating Use Case
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
11

User-space
OS subsystem

Highly performant

Motivating Use Case
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
12

User-space
OS subsystem

Highly performant
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Linux TCP stack lwIP on DPDK

Th
ro

ug
hp

ut
 [M

 re
qs

/s
]

TCP ping-pong performance

5.3 times
faster

= user-space network stack

Motivating Use Case
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
13

User-space
OS subsystem

Highly performant

Motivating Use Case
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
14

User-space
OS subsystem

Highly performant

Normally, adaptation requires changes of a user-space program
to apply a specific API of a user-space OS subsystem

Motivating Use Case
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program
Specific API

Kernel-space OS subsystem
15

User-space
OS subsystem

Modified

Highly performant

Normally, adaptation requires changes of a user-space program
to apply a specific API of a user-space OS subsystem

We need to change the program
😞

Motivating Use Case
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
16

User-space
OS subsystem

If we use a system call hook mechanism, ...

Motivating Use Case
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
17

User-space
OS subsystem

system call hook

User-defined
hook function

If we use a system call hook mechanism, ...

Motivating Use Case
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
18

User-space
OS subsystem

system call hook

User-defined
hook function

If we use a system call hook mechanism, ...
no modification of the user-space program is necessary

😄

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
19

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
20

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

• ptrace
• int3 signaling technique
• Syscall User Dispatch (SUD)
• LD_PRELOAD trick
• Binary rewriting techniques
• …

Existing Mechanisms

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
21

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

• ptrace
• int3 signaling technique
• Syscall User Dispatch (SUD)
• LD_PRELOAD trick
• Binary rewriting techniques
• …

Existing Mechanisms

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

ptr
ac

e

int
3 s

ign
ali

ng SUD

LD
_P

RELO
AD

Th
ro

ug
hp

ut
 [M

 re
qs

/s
ec

]

lwIP on DPDK : TCP ping-pong

17.0%
1.1%

14.7%

Compared to
LD_PRELOAD

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
22

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

• ptrace
• int3 signaling technique
• Syscall User Dispatch (SUD)
• LD_PRELOAD trick
• Binary rewriting techniques
• …

Existing Mechanisms

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

ptr
ac

e

int
3 s

ign
ali

ng SUD

LD
_P

RELO
AD

Th
ro

ug
hp

ut
 [M

 re
qs

/s
ec

]

lwIP on DPDK : TCP ping-pong

17.0%
1.1%

14.7%

Compared to
LD_PRELOAD

Relying on
kernel facilities

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
23

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

• ptrace
• int3 signaling technique
• Syscall User Dispatch (SUD)
• LD_PRELOAD trick
• Binary rewriting techniques
• …

Existing Mechanisms

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

ptr
ac

e

int
3 s

ign
ali

ng SUD

LD
_P

RELO
AD

Th
ro

ug
hp

ut
 [M

 re
qs

/s
ec

]

lwIP on DPDK : TCP ping-pong

17.0%
1.1%

14.7%

Compared to
LD_PRELOAD

Relying on
kernel facilities

• ptrace
• overhead: process scheduling between

the tracer and tracee processes

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
24

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

• ptrace
• int3 signaling technique
• Syscall User Dispatch (SUD)
• LD_PRELOAD trick
• Binary rewriting techniques
• …

Existing Mechanisms

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

ptr
ac

e

int
3 s

ign
ali

ng SUD

LD
_P

RELO
AD

Th
ro

ug
hp

ut
 [M

 re
qs

/s
ec

]

lwIP on DPDK : TCP ping-pong

17.0%
1.1%

14.7%

Compared to
LD_PRELOAD

Relying on
kernel facilities

• ptrace
• overhead: process scheduling between

the tracer and tracee processes
• int3 signaling / SUD
• overhead: context manipulation for

a signal() handler (SIGINT/SIGSYS)

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
25

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

• ptrace
• int3 signaling technique
• Syscall User Dispatch (SUD)
• LD_PRELOAD trick
• Binary rewriting techniques
• …

Existing Mechanisms

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

ptr
ac

e

int
3 s

ign
ali

ng SUD

LD
_P

RELO
AD

Th
ro

ug
hp

ut
 [M

 re
qs

/s
ec

]

lwIP on DPDK : TCP ping-pong

17.0%
1.1%

14.7%

Compared to
LD_PRELOAD

Relying on
kernel facilities

• ptrace
• overhead: process scheduling between

the tracer and tracee processes
• int3 signaling / SUD
• overhead: context manipulation for

a signal() handler (SIGINT/SIGSYS)

• LD_PRELOAD just replaces
function calls, therefore, it is fast

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
26

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

• ptrace
• int3 signaling technique
• Syscall User Dispatch (SUD)
• LD_PRELOAD trick
• Binary rewriting techniques
• …

Existing Mechanisms

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

ptr
ac

e

int
3 s

ign
ali

ng SUD

LD
_P

RELO
AD

Th
ro

ug
hp

ut
 [M

 re
qs

/s
ec

]

lwIP on DPDK : TCP ping-pong

17.0%
1.1%

14.7%

Compared to
LD_PRELOAD

Relying on
kernel facilities

• ptrace
• overhead: process scheduling between

the tracer and tracee processes
• int3 signaling / SUD
• overhead: context manipulation for

a signal() handler (SIGINT/SIGSYS)

• LD_PRELOAD just replaces
function calls, therefore, it is fast

app_function(...)
{
…
write(...)
…

}

libc
write()

library call

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
27

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

• ptrace
• int3 signaling technique
• Syscall User Dispatch (SUD)
• LD_PRELOAD trick
• Binary rewriting techniques
• …

Existing Mechanisms

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

ptr
ac

e

int
3 s

ign
ali

ng SUD

LD
_P

RELO
AD

Th
ro

ug
hp

ut
 [M

 re
qs

/s
ec

]

lwIP on DPDK : TCP ping-pong

17.0%
1.1%

14.7%

Compared to
LD_PRELOAD

Relying on
kernel facilities

• ptrace
• overhead: process scheduling between

the tracer and tracee processes
• int3 signaling / SUD
• overhead: context manipulation for

a signal() handler (SIGINT/SIGSYS)

• LD_PRELOAD just replaces
function calls, therefore, it is fast

app_function(...)
{
…
write(...)
…

}

User-defined
write()

library call

LD_PRELOAD

libc
write()

library call

function call
replacement

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
28

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

• ptrace
• int3 signaling technique
• Syscall User Dispatch (SUD)
• LD_PRELOAD trick
• Binary rewriting techniques
• …

Existing Mechanisms

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

ptr
ac

e

int
3 s

ign
ali

ng SUD

LD
_P

RELO
AD

Th
ro

ug
hp

ut
 [M

 re
qs

/s
ec

]

lwIP on DPDK : TCP ping-pong

17.0%
1.1%

14.7%

Compared to
LD_PRELOAD

Relying on
kernel facilities

• ptrace
• overhead: process scheduling between

the tracer and tracee processes
• int3 signaling / SUD
• overhead: context manipulation for

a signal() handler (SIGINT/SIGSYS)

• LD_PRELOAD just replaces
function calls, therefore, it is fast

app_function(...)
{
…
special_write(...)
…

}

User-defined
write()

library call

LD_PRELOAD

libc
write()

library call

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
29

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

• ptrace
• int3 signaling technique
• Syscall User Dispatch (SUD)
• LD_PRELOAD trick
• Binary rewriting techniques
• …

Existing Mechanisms

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

ptr
ac

e

int
3 s

ign
ali

ng SUD

LD
_P

RELO
AD

Th
ro

ug
hp

ut
 [M

 re
qs

/s
ec

]

lwIP on DPDK : TCP ping-pong

17.0%
1.1%

14.7%

Compared to
LD_PRELOAD

Relying on
kernel facilities

• ptrace
• overhead: process scheduling between

the tracer and tracee processes
• int3 signaling / SUD
• overhead: context manipulation for

a signal() handler (SIGINT/SIGSYS)

• LD_PRELOAD just replaces
function calls, therefore, it is fast

app_function(...)
{
…
special_write(...)
…

}

special_write(...)
{
asm volatile (
trigger
write syscall
)

}

User-defined
write()

library call

LD_PRELOAD

libc
write()

library call

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
30

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

• ptrace
• int3 signaling technique
• Syscall User Dispatch (SUD)
• LD_PRELOAD trick
• Binary rewriting techniques
• …

Existing Mechanisms

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

ptr
ac

e

int
3 s

ign
ali

ng SUD

LD
_P

RELO
AD

Th
ro

ug
hp

ut
 [M

 re
qs

/s
ec

]

lwIP on DPDK : TCP ping-pong

17.0%
1.1%

14.7%

Compared to
LD_PRELOAD

Relying on
kernel facilities

• ptrace
• overhead: process scheduling between

the tracer and tracee processes
• int3 signaling / SUD
• overhead: context manipulation for

a signal() handler (SIGINT/SIGSYS)

• LD_PRELOAD just replaces
function calls, therefore, it is fast

app_function(...)
{
…
special_write(...)
…

}

special_write(...)
{
asm volatile (
trigger
write syscall
)

}

User-defined
write()

library call

LD_PRELOAD

libc
write()

library call

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
31

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

• ptrace
• int3 signaling technique
• Syscall User Dispatch (SUD)
• LD_PRELOAD trick
• Binary rewriting techniques
• …

Existing Mechanisms

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

ptr
ac

e

int
3 s

ign
ali

ng SUD

LD
_P

RELO
AD

Th
ro

ug
hp

ut
 [M

 re
qs

/s
ec

]

lwIP on DPDK : TCP ping-pong

17.0%
1.1%

14.7%

Compared to
LD_PRELOAD

Relying on
kernel facilities

• ptrace
• overhead: process scheduling between

the tracer and tracee processes
• int3 signaling / SUD
• overhead: context manipulation for

a signal() handler (SIGINT/SIGSYS)

• LD_PRELOAD just replaces
function calls, therefore, it is fast

app_function(...)
{
…
special_write(...)
…

}

special_write(...)
{
asm volatile (
trigger
write syscall
)

}

User-defined
write()

library call

LD_PRELOAD

libc
write()

library call

Hook is not applied

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
32

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

• ptrace
• int3 signaling technique
• Syscall User Dispatch (SUD)
• LD_PRELOAD trick
• Binary rewriting techniques
• …

Existing Mechanisms

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

ptr
ac

e

int
3 s

ign
ali

ng SUD

LD
_P

RELO
AD

Th
ro

ug
hp

ut
 [M

 re
qs

/s
ec

]

lwIP on DPDK : TCP ping-pong

17.0%
1.1%

14.7%

Compared to
LD_PRELOAD

Relying on
kernel facilities

• ptrace
• overhead: process scheduling between

the tracer and tracee processes
• int3 signaling / SUD
• overhead: context manipulation for

a signal() handler (SIGINT/SIGSYS)

• LD_PRELOAD just replaces
function calls, therefore, it is fast

app_function(...)
{
…
special_write(...)
…

}

special_write(...)
{
asm volatile (
trigger
write syscall
)

}

User-defined
write()

library call

LD_PRELOAD

because names
are different

libc
write()

library call

Hook is not applied

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
33

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

• ptrace
• int3 signaling technique
• Syscall User Dispatch (SUD)
• LD_PRELOAD trick
• Binary rewriting techniques
• …

Existing Mechanisms

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

ptr
ac

e

int
3 s

ign
ali

ng SUD

LD
_P

RELO
AD

Th
ro

ug
hp

ut
 [M

 re
qs

/s
ec

]

lwIP on DPDK : TCP ping-pong

17.0%
1.1%

14.7%

Compared to
LD_PRELOAD

Relying on
kernel facilities

• ptrace
• overhead: process scheduling between

the tracer and tracee processes
• int3 signaling / SUD
• overhead: context manipulation for

a signal() handler (SIGINT/SIGSYS)

• LD_PRELOAD just replaces
function calls, therefore, it is fast

app_function(...)
{
…
special_write(...)
…

}

special_write(...)
{
asm volatile (
trigger
write syscall
)

}

User-defined
write()

library call

LD_PRELOAD

because names
are different

We see this case in glibc often

libc
write()

library call

Hook is not applied

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
34

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

• ptrace
• int3 signaling technique
• Syscall User Dispatch (SUD)
• LD_PRELOAD trick
• Binary rewriting techniques
• …

Existing Mechanisms

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
35

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

• ptrace
• int3 signaling technique
• Syscall User Dispatch (SUD)
• LD_PRELOAD trick
• Binary rewriting techniques
• …

Existing Mechanisms
High performance penalty

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
36

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

• ptrace
• int3 signaling technique
• Syscall User Dispatch (SUD)
• LD_PRELOAD trick
• Binary rewriting techniques
• …

Existing Mechanisms
High performance penalty

Sometimes fail to hook

Problem
• System call hook mechanisms allow us to transparently apply

user-space OS subsystems to existing applications

User-space program

system call

Kernel-space OS subsystem
37

User-space
OS subsystem

system call hook

User-defined
hook function

no modification of the user-space program is necessary
If we use a system call hook mechanism, ...

There is no perfect hook mechanism

• ptrace
• int3 signaling technique
• Syscall User Dispatch (SUD)
• LD_PRELOAD trick
• Binary rewriting techniques
• …

Existing Mechanisms
High performance penalty

Sometimes fail to hook

Applicability of user-space OS subsystems
has been limited regardless of their benefits

Contribution
• zpoline: a system call hook mechanism for x86-64 CPUs
• based on binary rewriting
• free from the drawbacks of the pervious mechanisms

• This work addresses a challenge that is specific to binary
rewriting approaches

38

Binary Rewriting Approach
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

. . .

syscall 0x0f
0x05

. . . 39

Binary Rewriting Approach
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

. . .

syscall 0x0f
0x05

. . . 40

Binary Rewriting Approach
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• What we wish to achieve

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

. . .

syscall 0x0f
0x05

. . . 41

Binary Rewriting Approach
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• What we wish to achieve

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

. . .

user-defined
hook function

syscall 0x0f
0x05

. . . 42

Binary Rewriting Approach
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• What we wish to achieve
• replace syscall/sysenter instruction with something

Virtual Memory
0x0000
0x0001
0x0002

. . .

. . .

user-defined
hook function

syscall 0x0f
0x05

. . .

. . . 43

Binary Rewriting Approach
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• What we wish to achieve
• replace syscall/sysenter instruction with something

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

????

. . .

. . .

user-defined
hook function

44

Binary Rewriting Approach
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• What we wish to achieve
• replace syscall/sysenter instruction with something
• to jump to a user-defined hook function

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

????

jump . . .

. . .

user-defined
hook function

45

Binary Rewriting Approach
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• What we wish to achieve
• replace syscall/sysenter instruction with something
• to jump to a user-defined hook function

• Question: what should we put here?

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

????

jump . . .

. . .

user-defined
hook function

46

Challenge
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

syscall 0x0f
0x05

. . .

. . .

user-defined
hook function

47

Challenge
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• syscall and sysenter are 2-byte instructions

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

syscall 0x0f
0x05

. . .

. . .

user-defined
hook function

48

Challenge
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• syscall and sysenter are 2-byte instructions

• Specification for a jump destination address
needs more than 2 bytes

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

syscall 0x0f
0x05

. . .

. . .

user-defined
hook function

49

Challenge
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• syscall and sysenter are 2-byte instructions

• Specification for a jump destination address
needs more than 2 bytes

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

syscall 0x0f
0x05

ADDR . . .

. . .

user-defined
hook function

50

Challenge
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• syscall and sysenter are 2-byte instructions

• Specification for a jump destination address
needs more than 2 bytes

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

. . .

AD
DR

ADDR is
bigger than

2 bytesIf we put ADDR, subsequent instructions are overwritten

. . .

. . .

user-defined
hook function

ADDR

51

Challenge
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• syscall and sysenter are 2-byte instructions

• Specification for a jump destination address
needs more than 2 bytes

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

AD
DR

ADDR is
bigger than

2 bytesIf we put ADDR, subsequent instructions are overwritten

. . .

. . .

user-defined
hook function

ADDR

some
program

52

Challenge
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• syscall and sysenter are 2-byte instructions

• Specification for a jump destination address
needs more than 2 bytes

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

AD
DR

ADDR is
bigger than

2 bytesIf we put ADDR, subsequent instructions are overwritten
jump to the overwritten part leads to unexpected behaviors

jump

. . .

. . .

user-defined
hook function

ADDR

some
program

53

Challenge
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• syscall and sysenter are 2-byte instructions

• Specification for a jump destination address
needs more than 2 bytes

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

AD
DR

ADDR is
bigger than

2 bytesIf we put ADDR, subsequent instructions are overwritten
jump to the overwritten part leads to unexpected behaviors

jump

. . .

. . .

user-defined
hook function

ADDR

some
program

54

Because of this issue, previous binary rewriting techniques
• could not ensure exhaustive hooking
• or, overwrite neighbour instructions

Goal
• On x86-64 CPUs, syscall and sysenter instructions

trigger a system call
• syscall: 0x0f 0x05, sysenter: 0x0f 0x34

• syscall and sysenter are 2-byte instructions

• Specification for a jump destination address
needs more than 2 bytes

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

AD
DR

ADDR is
bigger than

2 bytesIf we put ADDR, subsequent instructions are overwritten
jump to the overwritten part leads to unexpected behaviors

jump to a function using only 2 bytes
originally occupied by syscall/sysenter

. . .

. . .

user-defined
hook function

some
program

jump
ADDR

55

Because of this issue, previous binary rewriting techniques
• could not ensure exhaustive hooking
• or, overwrite neighbour instructions

Calling Convention
• How to invoke a system call

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

syscall 0x0f
0x05

. . .

. . .

. . .

user-defined
hook function

56

Calling Convention
• How to invoke a system call
• A user-space program sets a system call number,

predefined by the kenel, to the rax register
• e.g., 0: read(), 1: write(), 2: open(), ...

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

syscall 0x0f
0x05

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

57

Calling Convention
• How to invoke a system call
• A user-space program sets a system call number,

predefined by the kenel, to the rax register
• e.g., 0: read(), 1: write(), 2: open(), ...

• The user-space program executes syscall/sysenter

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

syscall 0x0f
0x05

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

58

Calling Convention
• How to invoke a system call
• A user-space program sets a system call number,

predefined by the kenel, to the rax register
• e.g., 0: read(), 1: write(), 2: open(), ...

• The user-space program executes syscall/sysenter

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

syscall 0x0f
0x05

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

---- the context is switched to the kernel ----
context
switch

to kernel

59

Calling Convention
• How to invoke a system call
• A user-space program sets a system call number,

predefined by the kenel, to the rax register
• e.g., 0: read(), 1: write(), 2: open(), ...

• The user-space program executes syscall/sysenter

• Kernel executes a system call specified through
the system call number set to the rax register

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

syscall 0x0f
0x05

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

---- the context is switched to the kernel ----

60

Calling Convention
• How to invoke a system call
• A user-space program sets a system call number,

predefined by the kenel, to the rax register
• e.g., 0: read(), 1: write(), 2: open(), ...

• The user-space program executes syscall/sysenter

• Kernel executes a system call specified through
the system call number set to the rax register
• if the rax register has 0, the kernel executes read()
• if the rax register has 1, the kernel executes write()
• if the rax register has 2, the kernel executes open()

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

syscall 0x0f
0x05

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

---- the context is switched to the kernel ----

61

Calling Convention
• How to invoke a system call
• A user-space program sets a system call number,

predefined by the kenel, to the rax register
• e.g., 0: read(), 1: write(), 2: open(), ...

• The user-space program executes syscall/sysenter

• Kernel executes a system call specified through
the system call number set to the rax register

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

syscall 0x0f
0x05

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

---- the context is switched to the kernel ----

When syscall/sysenter is executed,
the rax register always has a system call number,

Point: Calling Convention

62

Calling Convention
• How to invoke a system call
• A user-space program sets a system call number,

predefined by the kenel, to the rax register
• e.g., 0: read(), 1: write(), 2: open(), ...

• The user-space program executes syscall/sysenter

• Kernel executes a system call specified through
the system call number set to the rax register

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

syscall 0x0f
0x05

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

---- the context is switched to the kernel ----

When syscall/sysenter is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention

63

zpoline
• zpoline replaces syscall/sysenter with callq *%rax

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

syscall 0x0f
0x05

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

When syscall/sysenter is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention

64

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

When syscall/sysenter is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention

65

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

When syscall/sysenter is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention

66

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

When syscall/sysenter is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention

67

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

When syscall/sysenter is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention

68

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

When syscall/sysenter is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention
After the binary rewriting

69

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

When syscall/sysenter callq *%rax is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention
After the binary rewriting

70

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

When syscall/sysenter callq *%rax is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention
After the binary rewriting

71

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

When syscall/sysenter callq *%rax is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention
After the binary rewriting

72

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

When syscall/sysenter callq *%rax is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention
After the binary rewriting

73

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

When syscall/sysenter callq *%rax is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention
After the binary rewriting

around 500

74

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

When syscall/sysenter callq *%rax is executed,
the rax register always has a system call number,

which is 0 ~ around 500 (defined in the kernel)

Point: Calling Convention
After the binary rewriting

N

address range, potentially
replaced “callq *%rax” jumps to
(N is the max syscall number)

75

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N

address range, potentially
replaced “callq *%rax” jumps to
(N is the max syscall number)

76

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500

Virtual Memory
0x0000
0x0001
0x0002 . . .

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N

address range, potentially
replaced “callq *%rax” jumps to
(N is the max syscall number) ?

How to redirect to the user-defined hook function?

77

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500

• zpoline instantiates trampoline code at address 0

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N

address range, potentially
replaced “callq *%rax” jumps to
(N is the max syscall number)

How to redirect to the user-defined hook function?

. . .trampoline
code

78

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500

• zpoline instantiates trampoline code at address 0
• fills address range 0 to N with nop (0x90)

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N

address range, potentially
replaced “callq *%rax” jumps to
(N is the max syscall number)

How to redirect to the user-defined hook function?

. . .
nop
nop

nop

79

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500

• zpoline instantiates trampoline code at address 0
• fills address range 0 to N with nop (0x90)

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N

address range, potentially
replaced “callq *%rax” jumps to
(N is the max syscall number)

How to redirect to the user-defined hook function?

. . .
nop
nop

nop

fa
ll

th
ro

ug
h

80

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500

• zpoline instantiates trampoline code at address 0
• fills address range 0 to N with nop (0x90)

• puts code to jump to the hook function next to the last nop

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N

address range, potentially
replaced “callq *%rax” jumps to
(N is the max syscall number)

How to redirect to the user-defined hook function?

. . .
nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

81

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500

• zpoline instantiates trampoline code at address 0
• fills address range 0 to N with nop (0x90)

• puts code to jump to the hook function next to the last nop

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N

address range, potentially
replaced “callq *%rax” jumps to
(N is the max syscall number)

How to redirect to the user-defined hook function?

. . .
nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

We could reach the user-defined hook function! 82

zpoline
• zpoline replaces syscall/sysenter with callq *%rax
• callq *%rax is a 2-byte instruction (0xff 0xd0)

• Neighbour instructions are not overwritten
• callq *%rax is an instruction to jump to

the address stored in the rax register
• replaced callq *%rax jumps to address 0~around 500

• zpoline instantiates trampoline code at address 0
• fills address range 0 to N with nop (0x90)

• puts code to jump to the hook function next to the last nop

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N

address range, potentially
replaced “callq *%rax” jumps to
(N is the max syscall number)

How to redirect to the user-defined hook function?

. . .
nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

We could reach the user-defined hook function! 83

ç trampoline code at address 0 (zero)

NULL Access Termination
• A buggy program may access NULL (address 0)

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

84

NULL Access Termination
• A buggy program may access NULL (address 0)

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

85

NULL Access Termination
• A buggy program may access NULL (address 0)

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

86

NULL Access Termination
• A buggy program may access NULL (address 0)
• In principle, NULL access has to be terminated

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

87

NULL Access Termination
• A buggy program may access NULL (address 0)
• In principle, NULL access has to be terminated
• Normally, a page fault happens because no physical

memory is mapped to virtual address 0

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N

Bug
Access NULL

. . .
page fault!

no physical
memory

mapping!

Normally, ...

88

NULL Access Termination
• A buggy program may access NULL (address 0)
• In principle, NULL access has to be terminated
• Normally, a page fault happens because no physical

memory is mapped to virtual address 0
• zpoline uses virtual address 0, therefore,

the page fault does not happen

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

89

NULL Access Termination
• A buggy program may access NULL (address 0)
• In principle, NULL access has to be terminated
• Normally, a page fault happens because no physical

memory is mapped to virtual address 0
• zpoline uses virtual address 0, therefore,

the page fault does not happen

• The buggy program continues to run

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

90

NULL Access Termination
• A buggy program may access NULL (address 0)
• In principle, NULL access has to be terminated
• Normally, a page fault happens because no physical

memory is mapped to virtual address 0
• zpoline uses virtual address 0, therefore,

the page fault does not happen

• The buggy program continues to run

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

How can we detect and terminate a buggy NULL access?

91

NULL Access Termination
• Memory access: read / write / execute

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

92

A

B

NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

93

eXecute
Only

Memory
(XOM)

A

B

NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

94

eXecute
Only

Memory
(XOM)

A

B

NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

95

eXecute
Only

Memory
(XOM)

A

B

NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

96

eXecute
Only

Memory
(XOM)

A

B

NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

97

eXecute
Only

Memory
(XOM)

A

B
During binary rewriting phase ...

NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

98

eXecute
Only

Memory
(XOM)

A

B
List of replaced addresses : [...]

During binary rewriting phase ...

NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

99

eXecute
Only

Memory
(XOM)

A

B
List of replaced addresses : [...]

During binary rewriting phase ...

NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

100

eXecute
Only

Memory
(XOM)

A

B
List of replaced addresses : [A , ...]

During binary rewriting phase ...

NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
2. at runtime, in the hook function,

we check if the caller is one of the replaced addresses

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

101

eXecute
Only

Memory
(XOM)

A

B
List of replaced addresses : [A , ...]

NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
2. at runtime, in the hook function,

we check if the caller is one of the replaced addresses

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

102

eXecute
Only

Memory
(XOM)

A

B
List of replaced addresses : [A , ...]

At runtime ...

NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
2. at runtime, in the hook function,

we check if the caller is one of the replaced addresses

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

103

eXecute
Only

Memory
(XOM)

A

B
List of replaced addresses : [A , ...]

The caller address is A
A is in the list, so

this is a valid access

At runtime ...

NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
2. at runtime, in the hook function,

we check if the caller is one of the replaced addresses

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

104

eXecute
Only

Memory
(XOM)

A

B
List of replaced addresses : [A , ...]

At runtime ...

NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
2. at runtime, in the hook function,

we check if the caller is one of the replaced addresses

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

105

eXecute
Only

Memory
(XOM)

A

B
List of replaced addresses : [A , ...]

At runtime ...

NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
2. at runtime, in the hook function,

we check if the caller is one of the replaced addresses

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

106

eXecute
Only

Memory
(XOM)

A

B
List of replaced addresses : [A , ...]

The caller address is B
B is NOT in the list, so
this is an invalid access

At runtime ...

NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
2. at runtime, in the hook function,

we check if the caller is one of the replaced addresses

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

107

eXecute
Only

Memory
(XOM)

A

B
List of replaced addresses : [A , ...]

The caller address is B
B is NOT in the list, so
this is an invalid access

stop the program

At runtime ...

NULL Access Termination
• Memory access: read / write / execute
• Solution
• read/write: configure the trampoline code as XOM

• read/write access to the trampoline code causes a fault
• This can be done by mprotect() system call

• execute: check the caller address
1. during the binary rewriting phase,

we collect the addresses of replaced syscall/sysenter
2. at runtime, in the hook function,

we check if the caller is one of the replaced addresses
• Current prototype uses bitmap to implement this check

Virtual Memory
0x0000
0x0001
0x0002

. . .

callq *%rax

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

N
. . .

nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

Bug
Access NULL

108

eXecute
Only

Memory
(XOM)

A

B
List of replaced addresses : [A , ...]

The caller address is B
B is NOT in the list, so
this is an invalid access

stop the program

At runtime ...

System Call Hook Overhead
• Time to hook getpid() and return a dummy value

109

Mechanism Time [ns]
ptrace 31201
int3 signaling 1342
SUD 1156
zpoline 41
LD_PRELOAD 6

Virtual Memory

. . .

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

. . .
nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

callq *%rax

System Call Hook Overhead
• Time to hook getpid() and return a dummy value

110

Mechanism Time [ns]
ptrace 31201
int3 signaling 1342
SUD 1156
zpoline 41
LD_PRELOAD 6

Virtual Memory

. . .

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

. . .
nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

callq *%rax

716x
32.7x
28.1x

improvement

System Call Hook Overhead
• Time to hook getpid() and return a dummy value

111

Mechanism Time [ns]
ptrace 31201
int3 signaling 1342
SUD 1156
zpoline 41
LD_PRELOAD 6

Virtual Memory

. . .

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

. . .
nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

callq *%rax
NULL exec check: 1 ns out of

System Call Hook Overhead
• Time to hook getpid() and return a dummy value

112

Mechanism Time [ns]
ptrace 31201
int3 signaling 1342
SUD 1156
zpoline 41
LD_PRELOAD 6

Virtual Memory

. . .

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

. . .
nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

callq *%rax
+35ns
overhead

System Call Hook Overhead
• Time to hook getpid() and return a dummy value

113

Mechanism Time [ns]
ptrace 31201
int3 signaling 1342
SUD 1156
zpoline 41
LD_PRELOAD 6

Virtual Memory

. . .

. . .

. . .

. . .

user-defined
hook function

set syscall num
to rax register

. . .
nop
nop

nop

fa
ll

th
ro

ug
h

jump to
hook function

callq *%rax
+35ns
overhead

additional
overhead

Application Performance
• We transparently apply lwIP + DPDK to an application using

different system call hook mechanisms

114

100 Gbps

Application Performance
• We transparently apply lwIP + DPDK to an application using

different system call hook mechanisms

115

100 Gbps

Simple HTTP server

lwIP + DPDK

Application Performance
• We transparently apply lwIP + DPDK to an application using

different system call hook mechanisms

116

100 Gbps

Simple HTTP server

lwIP + DPDK

syscall hook

ptrace, int3, SUD,
zpoline, LD_PRELOAD

Application Performance
• We transparently apply lwIP + DPDK to an application using

different system call hook mechanisms

117

100 Gbps

Simple HTTP server

wrk: benchmark client
fetch 64B contentlwIP + DPDK

syscall hook

ptrace, int3, SUD,
zpoline, LD_PRELOAD

Application Performance
• We transparently apply lwIP + DPDK to an application using

different system call hook mechanisms

118

100 Gbps

Simple HTTP server

wrk: benchmark client
fetch 64B contentlwIP + DPDK

syscall hook

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6

ptr
ac

e

int
3 sig

nalin
g

SUD
zpolin

e

LD_P
RELOADTh

ro
ug

hp
ut

 [M
 re

qs
/s

ec
]ptrace, int3, SUD,

zpoline, LD_PRELOAD

Linux

Application Performance
• We transparently apply lwIP + DPDK to an application using

different system call hook mechanisms

119

100 Gbps

Simple HTTP server

wrk: benchmark client
fetch 64B contentlwIP + DPDK

syscall hook

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6

ptr
ac

e

int
3 sig

nalin
g

SUD
zpolin

e

LD_P
RELOADTh

ro
ug

hp
ut

 [M
 re

qs
/s

ec
]ptrace, int3, SUD,

zpoline, LD_PRELOAD

17.0%14.7%

87.3%

Linux
1.1%

Compared to LD_PRELOAD

Application Performance
• We transparently apply lwIP + DPDK to an application using

different system call hook mechanisms

120

100 Gbps

Redis

lwIP + DPDK

syscall hook
redis-benchmark

GET 100%

ptrace, int3, SUD,
zpoline, LD_PRELOAD

Application Performance
• We transparently apply lwIP + DPDK to an application using

different system call hook mechanisms

121

100 Gbps

Redis

lwIP + DPDK

syscall hook
redis-benchmark

GET 100%

0
100
200
300
400
500
600
700
800

ptr
ac

e

int
3 sig

nalin
g

SUD
zpolin

e

LD_P
RELOADTh

ro
ug

hp
ut

 [K
 re

qs
/s

ec
]ptrace, int3, SUD,
zpoline, LD_PRELOAD

Linux

Application Performance
• We transparently apply lwIP + DPDK to an application using

different system call hook mechanisms

122

100 Gbps

Redis

lwIP + DPDK

syscall hook
redis-benchmark

GET 100%

0
100
200
300
400
500
600
700
800

ptr
ac

e

int
3 sig

nalin
g

SUD
zpolin

e

LD_P
RELOADTh

ro
ug

hp
ut

 [K
 re

qs
/s

ec
]ptrace, int3, SUD,
zpoline, LD_PRELOAD

Linux 17.7%
1.2%

15.0%

94.8%
Compared to LD_PRELOAD

Summary
• zpoline: a system call hook mechanism for x86-64 CPUs
• based on binary rewriting

• replaces syscall/sysenter with callq *%rax
• instantiates the trampoline code at virtual address 0 (zero)

• free from the drawbacks of the pervious mechanisms
• keeps the performance benefit of user-space OS subsystems

• Source code: https://github.com/yasukata/zpoline
• since October 2021

123

https://github.com/yasukata/zpoline

124

Speeding up the Trampoline Code
• Inspired from USENIX ATCʼ23 reviewers who suggested to

employ a one-byte short jump instruction for speeding up
• Put it on the addresses corresponding to obsolete system calls

• Optimization: repeat 0xeb 0x6a 0x90 instead of nops
• Hook overhead reduction from 41 ns to 10 ns

125

jmp 0x6a
nop
jmp 0x6a
nop

push 0x90
jmp 0x6a
nop
jmp 0x6a

nop
jmp 0x6a
nop
jmp 0x6a

Syscall number: 3 x n + 0 3 x n + 1 3 x n + 2

We pop 0x90 in
the hook function

