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Tectonic Filesystem: Meta’s storage foundation
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S. Pan, et al., Facebook’s Tectonic Filesystem: Efficiency from Exascale, FAST’21



ML infrastructure scaling trends
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Training larger and more complex models (e.g., LLMs, DLRMs) requires…
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ML infrastructure scaling trends
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Training larger and more complex models (e.g., LLMs, DLRMs) requires…

Scale-Out Infrastructure

Node-
Scale

Rack-
Scale

Warehouse-
Scale

Single-Node 
Trainers

Datacenter-
Scale 

Training 
Clusters



ML infrastructure needs IOPS scaling
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Result: A massive growth in IOPS demand for ML training datasets

M. Zhao, et al., Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training, ISCA’22

How do we scale Tectonic to meet exploding IOPS demands?



Hardware design space exploration
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Need to provision storage fabric with both sufficient
 storage and IOPS capacity



Hardware design space exploration
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Option 1: Scale Tectonic’s HDD Chunk Store
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Hardware design space exploration
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Option 2: Place ML datasets in flash

Storage-Bound
Provision enough SSDs to store datasets

IOPS-Bound



Hardware design space exploration
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Hardware design space exploration
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Hardware design space exploration
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Software design space exploration
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Goal: Build a flash tier that absorbs read IOPS without storing the entire dataset.

Challenge: While our ML workloads exhibit skewed popularity, 
current caches are ineffective at capturing their data reuse.

x% of stored 
bytes

…contribute to
y% total 

storage IOPS 



Why current caches will not work

• ML jobs present challenging cache 
patterns
• Scans: Large O(10-100PB), long-

running single-epoch reads
• Churn: data reuse across massive, 

asynchronous multi-tenant jobs
• General-purpose LRU caches thrash
• ML caches focus on data reuse within 

multi-epoch jobs and single-tenant 
environments
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D. G. Murray, et al., tf.data: A Machine Learning Data Processing 
Framework, VLDB vol. 14
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Need for a flash storage tier designed for industrial ML workloads.



Shift: A transparent, application-aware flash tier

A disaggregated flash storage tier that is…
• Transparent to end users
• Exposes Tectonic API and semantics used across Meta

• Application-aware
• Maximizes IOPS absorption using application metadata

• Simple
• Builds upon Tectonic’s Metadata Layer and CacheLib

• Scalable and Fault Tolerant
• Decentralized, DHT-based architecture

15



Tectonic-Shift: Meta’s ML storage fabric
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Absorbing IOPS with intelligent Shift policies
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Each Shift Storage Node implements cache policies on top of 
CacheLib to maximize absorbed IOPS:



Absorbing IOPS with intelligent Shift policies

18

1. Group similar accesses (e.g., table partition) to buckets 
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Absorbing IOPS with intelligent Shift policies
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2. Prioritize buckets based on historic and derived future accesses

Shift Storage Node

Priority

Bucket E

Bucket C

Bucket A

Bucket D

Bucket B

Bucket F

BucketsRead 
Miss/Evict



Absorbing IOPS with intelligent Shift policies
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3. Admit buckets based on threshold to avoid thrashing and flash 
burn 
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Bucket priorities: Predicting the future

Calculate bucket priorities 
based on…
• Historic accesses

• Log of recent per-bucket 
accesses

• Key insight: Future accesses
• Derived from dataset 

specifications
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class DLRMDataset(...):
  def __init__(self, table, rows, cols):
    ...
  def __iter__(self):
    # return iterator over table rows/cols
...

ds = DLRMDataset(
  table_t,
  [date_d, ...],
  [feature_f, ...]
)
loader = DataLoader(ds, ...) # DPP client

for sample in loader: 
  # read sample from storage
  # train model



Dynamic priority and threshold tuning
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Dynamic priority and threshold tuning
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Shift dynamically adjusts admission policies to keep high-priority data in cache, 
while minimizing thrashing and flash writes.



Putting it all together
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Shift admission policies improve IOPS absorption

Average Normalized IO Absorption Across Benchmarks

LRU Eviction FIFO Eviction Historic 
Admission + 
LRU Eviction

Future 
Admission + 
LRU Eviction

Historic & 
Future 
Admission + 
LRU Eviction

1.00 1.31 1.51 3.28 1.67
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• Benchmark setup
• Three production DLRM training workloads
• 6-node Shift cluster

• Policy evaluation
• CacheLib LRU, FIFO eviction only
• Historic admission: bucket priority from recent accesses
• Future admission: bucket priority from future accesses derived from Dataset
• Historic & Future admission: bucket priority from max of Historic, Future



Shift admission policies manage flash endurance
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• Need to limit flash write rates in production
• Evaluation: 100 MB/s average write rate limit

Average IO Absorption & NVM Write Rate for Synchronized Workload

CacheLib 
Dynamic 
Admission

Reject First Admit All Historic 
Admission

Future 
Admission

Historic & 
Future 
Admission

IO Absorption 
(norm. to 
Dynamic)

1.00 1.51 2.66 2.14 3.07 2.99

NVM Write Rate 
(norm. to 100 
MB/s limit)

0.96 8.39 22.05 1.01 1.01 1.00



Production deployment

Shift has been deployed across DCs at PB scale since early 2022, 
saving significant amounts storage infrastructure power.
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Shift saves 29% power 
relative to only HDDs.
Massive @ DC scale.  



Conclusion

• Modern ML training clusters require massive storage IOPS.

• Tectonic-Shift meets IOPS demand by combining Tectonic with Shift, 
an IOPS-efficient flash storage tier.

• Shift maximizes absorbed IOPS (1.5-3.3x over LRU) using intelligent 
policies leveraging historic and derived future access patterns.

• Tectonic-Shift serves as Meta’s ML storage fabric, improving storage 
efficiency (29% in our trace) across multiple datacenters.
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