
Tectonic-Shift:
A Composite Storage Fabric
for Large-Scale ML Training
Mark Zhao, Satadru Pan, Niket Agarwal, Zhaoduo Wen, David Xu, Anand Natarajan, Pavan
Kumar, Shiva Shankar P, Ritesh Tijoriwala, Karan Asher, Hao Wu, Aarti Basant, Daniel Ford,
Delia David, Nezih Yigitbasi, Pratap Singh, Carole-Jean Wu, and Christos Kozyrakis
Stanford University, Meta

2023 USENIX Annual Technical Conference

1

Tectonic Filesystem: Meta’s storage foundation

2

Datacenter

Client Library

Blob Storage Data Warehouse / AI…
Metadata Layer

Name Layer

File Layer

Block Layer Ke
y-

Va
lu

e
St

or
e

Background
Services

Chunk Store

HDD Storage Nodes

S. Pan, et al., Facebook’s Tectonic Filesystem: Efficiency from Exascale, FAST’21

ML infrastructure scaling trends

3

Training larger and more complex models (e.g., LLMs, DLRMs) requires…

Big Sur

2016

Big Basin

2017

Big Basin v2

2018

Zion / ZionEX

2019-
2021

2022

Grand Teton

2023+

MTIA

Scale-Up Infrastructure

CPUs GPUs / ASICs

ML infrastructure scaling trends

4

Training larger and more complex models (e.g., LLMs, DLRMs) requires…

Scale-Out Infrastructure

Node-
Scale

Rack-
Scale

Warehouse-
Scale

Single-Node
Trainers

Datacenter-
Scale

Training
Clusters

ML infrastructure needs IOPS scaling

5

Result: A massive growth in IOPS demand for ML training datasets

M. Zhao, et al., Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training, ISCA’22

How do we scale Tectonic to meet exploding IOPS demands?

Hardware design space exploration

6

Need to provision storage fabric with both sufficient
 storage and IOPS capacity

Hardware design space exploration

7

Option 1: Scale Tectonic’s HDD Chunk Store
Storage
Power

IOPS
Power

Storage &
IOPS
Power

HDD
Cluster

1.00 9.92 9.92

IOPS-Bound
Provision enough HDDs to meet IOPS demand

Storage
Power

IOPS
Power

Storage &
IOPS
Power

HDD
Cluster

1.00 9.92 9.92

Flash
Cluster

6.53 1.88 6.53

Hardware design space exploration

8

Option 2: Place ML datasets in flash

Storage-Bound
Provision enough SSDs to store datasets

IOPS-Bound

Hardware design space exploration

9

Storage
Power

IOPS
Power

Storage &
IOPS
Power

HDD
Cluster

1.00 9.92 9.92

Flash
Cluster

6.53 1.88 6.53

HDD +
Flash
Cluster

1.00 1.88 2.69

Option 3: Composite storage

HDDs: Storage Efficient
Provision enough HDDs to store datasets

IOPS-Bound

Storage-Bound

Hardware design space exploration

10

Storage
Power

IOPS
Power

Storage &
IOPS
Power

HDD
Cluster

1.00 9.92 9.92

Flash
Cluster

6.53 1.88 6.53

HDD +
Flash
Cluster

1.00 1.88 2.69

Option 3: Composite storage

Flash: IOPS Efficient
Provision SSDs to serve IOPS

IOPS-Bound

Storage-Bound

Hardware design space exploration

11

Storage
Power

IOPS
Power

Storage &
IOPS
Power

HDD
Cluster

1.00 9.92 9.92

Flash
Cluster

6.53 1.88 6.53

HDD +
Flash
Cluster

1.00 1.88 2.69

Option 3: Composite storage

Composite Storage
Provision HDDs for storage, flash

for IOPS not covered by HDDs

IOPS-Bound

Storage-Bound

Software design space exploration

12

Goal: Build a flash tier that absorbs read IOPS without storing the entire dataset.

Challenge: While our ML workloads exhibit skewed popularity,
current caches are ineffective at capturing their data reuse.

x% of stored
bytes

…contribute to
y% total

storage IOPS

Why current caches will not work

• ML jobs present challenging cache
patterns
• Scans: Large O(10-100PB), long-

running single-epoch reads
• Churn: data reuse across massive,

asynchronous multi-tenant jobs
• General-purpose LRU caches thrash
• ML caches focus on data reuse within

multi-epoch jobs and single-tenant
environments

13

D. G. Murray, et al., tf.data: A Machine Learning Data Processing
Framework, VLDB vol. 14

Why current caches will not work

• ML jobs present challenging cache
patterns
• Scans: Large O(10-100PB), long-

running single-epoch reads
• Churn: data reuse across massive,

asynchronous multi-tenant jobs
• General-purpose LRU caches thrash
• ML caches focus on data reuse within

multi-epoch jobs and single-tenant
environments

14

Need for a flash storage tier designed for industrial ML workloads.

Shift: A transparent, application-aware flash tier

A disaggregated flash storage tier that is…
• Transparent to end users
• Exposes Tectonic API and semantics used across Meta

• Application-aware
• Maximizes IOPS absorption using application metadata

• Simple
• Builds upon Tectonic’s Metadata Layer and CacheLib

• Scalable and Fault Tolerant
• Decentralized, DHT-based architecture

15

Tectonic-Shift: Meta’s ML storage fabric

16

Datacenter

Training Job

Client
Library

Cache
Eligible?

Shift Cluster
Shift SN

Shift SN

Consistent
Hash Ring

Shift Storage Node (SN)

CacheLibDRAM Flash

Admit? Reinsert?

Cache Ineligible /
Miss

Cache Hit / Miss

Cache
Lookup

Data
Fetch

Evicted
Data

Admitted /
Reinserted

Data

Tectonic Cluster

Absorbing IOPS with intelligent Shift policies

17

Each Shift Storage Node implements cache policies on top of
CacheLib to maximize absorbed IOPS:

Absorbing IOPS with intelligent Shift policies

18

1. Group similar accesses (e.g., table partition) to buckets

Bucket A

Bucket B

Bucket C

Bucket D

Bucket E

Bucket F

Buckets

Shift Storage Node

Read
Miss/Evict

Absorbing IOPS with intelligent Shift policies

19

2. Prioritize buckets based on historic and derived future accesses

Shift Storage Node

Priority

Bucket E

Bucket C

Bucket A

Bucket D

Bucket B

Bucket F

BucketsRead
Miss/Evict

Absorbing IOPS with intelligent Shift policies

20

3. Admit buckets based on threshold to avoid thrashing and flash
burn

Shift Storage Node

Priority

Bucket E

Bucket C

Bucket A

Bucket D

Bucket B

Bucket F

BucketsRead
Miss/Evict

Admit Threshold
CacheLib

(LRU)

Bucket priorities: Predicting the future

Calculate bucket priorities
based on…
• Historic accesses

• Log of recent per-bucket
accesses

• Key insight: Future accesses
• Derived from dataset

specifications

21

class DLRMDataset(...):
 def __init__(self, table, rows, cols):
 ...
 def __iter__(self):
 # return iterator over table rows/cols
...

ds = DLRMDataset(
 table_t,
 [date_d, ...],
 [feature_f, ...]
)
loader = DataLoader(ds, ...) # DPP client

for sample in loader:
 # read sample from storage
 # train model

Dynamic priority and threshold tuning

22

Bucket A

Bucket B

Bucket C

Bucket D

Bucket E

Bucket F

Shift Storage Node

Storage Node Control Plane

Priority

Job 1:
Dataset: {C, D, E}

Job 2:
Dataset: {E, F}

Job 3:
Dataset: {A, C, E}

Admit Threshold

Bucket E Reads

CacheLib
(LRU)

High Flash
Write Rate

Dynamic priority and threshold tuning

23

Bucket E

Bucket A

Bucket B

Bucket C

Bucket D

Bucket F

Shift Storage Node

Storage Node Control Plane

Priority

Admit Threshold

CacheLib
(LRU)

Bucket E
Missed Read

Request

Admit to Cache

Shift dynamically adjusts admission policies to keep high-priority data in cache,
while minimizing thrashing and flash writes.

Putting it all together

24

Map
Read to
Bucket

Priority >=
Admit /
Reinsert

Threshold?

CacheLib
(LRU)

Shift Storage Node

Read

Drop

Admit

Spatial
Locality

Temporal
Locality

Avoid
Thrashing

& Flash
BurnBucket E

Bucket C

Bucket A

Bucket D

Bucket B

Bucket F

Buckets

Priority

Shift admission policies improve IOPS absorption

Average Normalized IO Absorption Across Benchmarks

LRU Eviction FIFO Eviction Historic
Admission +
LRU Eviction

Future
Admission +
LRU Eviction

Historic &
Future
Admission +
LRU Eviction

1.00 1.31 1.51 3.28 1.67

25

• Benchmark setup
• Three production DLRM training workloads
• 6-node Shift cluster

• Policy evaluation
• CacheLib LRU, FIFO eviction only
• Historic admission: bucket priority from recent accesses
• Future admission: bucket priority from future accesses derived from Dataset
• Historic & Future admission: bucket priority from max of Historic, Future

Shift admission policies manage flash endurance

26

• Need to limit flash write rates in production
• Evaluation: 100 MB/s average write rate limit

Average IO Absorption & NVM Write Rate for Synchronized Workload

CacheLib
Dynamic
Admission

Reject First Admit All Historic
Admission

Future
Admission

Historic &
Future
Admission

IO Absorption
(norm. to
Dynamic)

1.00 1.51 2.66 2.14 3.07 2.99

NVM Write Rate
(norm. to 100
MB/s limit)

0.96 8.39 22.05 1.01 1.01 1.00

Production deployment

Shift has been deployed across DCs at PB scale since early 2022,
saving significant amounts storage infrastructure power.

27

Shift saves 29% power
relative to only HDDs.
Massive @ DC scale.

Conclusion

• Modern ML training clusters require massive storage IOPS.

• Tectonic-Shift meets IOPS demand by combining Tectonic with Shift,
an IOPS-efficient flash storage tier.

• Shift maximizes absorbed IOPS (1.5-3.3x over LRU) using intelligent
policies leveraging historic and derived future access patterns.

• Tectonic-Shift serves as Meta’s ML storage fabric, improving storage
efficiency (29% in our trace) across multiple datacenters.

28

myzhao@cs.stanford.edu

