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Abstract routers [10], 20x speedups for encrypted networks [12],

Graphics processing units (GPUs) have become a verg"d 15X speedups for motion planning [19]. This rapid
powerful platform embracing a concept of heterogeneoudrWth of general-purpose computing on GPd%a.,
many-core computing. However, application domains of 6PGPU. is thanks to emergence of new programming
GPUs are currently limited to specific systems, largely/@hguages, such as CUDA [21]. _
due to a lack of “first-class” GPU resource management S€en from these trends, GPUs are becoming more and
for general-purpose multi-tasking systems. more applicable for general-purpose systems. However,
We present Gdev, a new ecosystem of GPU resourcgyStem software support for GPUs in today's market is
management in the operating system (OS). It allows thdailored to ac_:qelerate partlcqlar appllpatlons dedmme_d
user space as well as the OS itself to use GPUs as firsthe system; itis not well-designed to integrate GPUs into
class computing resources. Specifically, Gdev's virtualdeneral-purposeuilti-tasking systems. Albeit speedups
memory manager supports data swapping for excessivef individual application programs, the previous research
memory resource demands, and also provides a sharé@ised above [10, 12, 19] could not provide performance
device memory functionality that allows GPU contexts to ©F quality-of-service (QoS) management without system
communicate with other contexts. Gdev further providessoftware support. Given that networked and embedded
a GPU scheduling scheme to virtualize a physical GPLSYStems are by nature composed of multiple clients and
into multiple logical GPUs, enhancing isolation among components, it is essential that GPUs should be managed
working sets of multi-tasking systems. as first-class computing resources so that various tasks
Our evaluation conducted on Linux and the NVIDIA €an access GPUs concurrently in a reliable manner.
GPU shows that the basic performance of our prototype The research community has articulated the needs of
implementation is reliable even compared to proprietaryenhancement in the operating system (OS) [2, 15, 24],
software. Further detailed experiments demonstrate thdtypervisor [9], and runtime library [14] to make GPUs
Gdev achieves a 2x speedup for an encrypted file syste@vailable in interactive and/or virtualized multi-tasgfin
using the GPU in the OS. Gdev can also improve theenvironments. However, all these pieces of work depend
makespan of dataflow programs by up to 49% exploitinghighly on the user-space runtime system, often included
shared device memory, while an error in the utilizationas part of proprietary software, which provides the user

of virtualized GPUs can be limited within only 7%. space with an application programming interface (API).
This framework indeed limits the potential of GPUs to

the user space. For example, it prevents the file system
or network stack in the OS from using GPUs directly.
Recent advances in many-core technology have achievethere is another issue of concern with this framework:
an order-of-magnitude gain in computing performancethe device driver needs to expose resource management
Examples includegraphics processing units (GPUs) —  primitives to the user space, since the runtime system is
mature compute devices that best embrace a concept émployed in the user space, implying that non-privileged
heterogeneous many-core computing. In fact, TOP50@iser-space programs may abuse GPU resources. As a
Supercomputing Sites disclosed in November 2011 [29matter of fact, we can launch any program on an NVIDIA
that three of the top five supercomputers employ cluster&PU without using any user-space runtime libraries, but
of GPUs as primary computing resources. Of particulausing anioctl system call directly. This explains that
note is that scientific climate applications have achieved5PUs should be protected by the OS as well as CPUs.
80x speedups leveraging GPUs [27]. Such a continuous In addition to those conceptual issues, there exist more
wealth of evidence for performance benefits of GPUs hasundamental and practical issues with publicly-available
encouraged application domains of GPUs to expand t&sPGPU software. For example, memory allocation for
general-purpose and embedded computing. For instanc&PU computing is not allowed to exceed the physical
previous work have demonstrated that GPU-acceleratedapacity of device memory. We are also not aware of any
systems achieved an order of 10x speedups for softwar&PI that allows GPU contexts to share memory resources

1 Introduction



with other contexts. Such programming constraints may

not be acceptable in general-purpose systems. User Space API API
Contribution: We presenGdev, a new approach to e

GPU resource management in the OS that addresses the Command (ioctl) API Gioctl)

current limitations of GPU computing. Gdev integrates v

runtime support for GPUs into the OS, which allows the  g$ Command Runtime
user space as well as the OS itself to use GPUs with *l [Mm] [pc | [ sched |

the identical API set, while protecting GPUs from non- 3 API
privileged user-space programs at the OS level. Building pevice “
on this runtime-unified OS model, Gdev further provides

first-class GPU resource management schemes for multi-
tasking systems. Specifically, Gdev allows programmers
to share device memory resources among GPU contexts
using an explicit API. We also use this shared memoryNVIDIAs Fermi architecture [20]. The concept of Gdev,
functionality to enable GPU contexts to allocate memoryhowever, is not limited to Fermi, but is also applicable to
exceeding the physical size of device memory. Finally,those based on the following model.

Gdev is able to virtualize the GPU into multiple logical ~Command: The GPU operates using the architecture-
GPUs to enhance isolation among working sets of multi-specific commands. Each GPU context is assigned with
tasking systems. As a proof of concept, we also providé FIFO queue to which the program running on the CPU
an open-source implementation of Gdev. To summarizeSubmits the commands. Computations and data transfers

this paper makes the following contributions: on the GPU are triggered only when the corresponding
commands are dispatched by the GPU itself.

° Iden_tifies the advantage/di_sadvantage of integrating channel: Each GPU context is assigned with a GPU

runtime support for GPUs into the OS. hardware channel within which command dispatching is
e Enables the OS itself to use GPUs. managed. Fermi does not permit multiple channels to
Makes GPUs “first-class” computing resources in 2CC€SS the same GPU fur_wctiona_l unit simultanepusly, _but
multi-tasking systems — memory management forallow them fo coexist bgmg switched automatically in
inter-process communication (IPC) and schedulingh@rdware. This constraint may however be removed in
for GPU virtualization. the future architectures or product lines.

. . . Address Space: Each GPU context is assigned with
e Provides open-source implementations of the GPU .
. ) . . ; i virtual address space managed through the page table
device driver, runtime/API libraries, utility tools, ) . . .
I configured by the device driver. Address translations are
and Gdev resource management primitives. .
=" i performed by he memory management unit on the GPU.
e Demonstrates the capablhtl_es pf Gdev using real- Compute Unit: The GPU mapshreads assigned by
world benchmarks and applications. programmers ta@ores on the compute unit. This thread
assignment is not visible to the system, implying that

follows. Section 2 provides the model and assumption\fpU resoulroce rganagle_mlent at the system level should
behind this paper. Section 3 outlines the concept of Gde\’® Context-based. Multiple contexts cannot execute on
Section 4 and 5 present Gdev memory management a he compute unit at once due to the channel constraint,
scheduling schemes. Section 6 describes our prototy ut multiple requests issued from the same context can

implementation, and Section 7 demonstrates our detaiIeBe processed simultaneously. We also assume that GPU

experimental results. Section 8 discusses related Worig_omputatlorj !S non-preemptive. )
We provide our concluding remarks in Section 9. DMA Unit: There are two types of DMA units for
data transmission: (i) synchronous with the compute unit

and (i) asynchronous. Only the latter type of DMA units
2 System Model can overlap their operations with the compute unit. We

This paper focuses on a system composed of a GPU arf/so assume that DMA transaction is non-preemptive.

a multi-core CPU. GPU applications use a set of the API

supported by the system, typically taking the following 3 Gdev Ecosystem

steps: (i) allocate space to device memory, (ii) copy data

to the allocated device memory space, (iii) launch theGdev aims to (i) enhance GPU resource management and
program on the GPU, (iv) copy resultant data back to(ii) extend a class of applications that can leverage GPUs.
host memory, and (v) free the allocated device memorylo this end, we integrate the major portion of runtime
space. We also assume that the GPU is designed based support into the OS. Figure 1 illustrates the logical view

Figure 1: Logical view of Gdev’s ecosystem.

Organization: The rest of this paper is organized as



of Gdev’s ecosystem. For a compatibility issue, we still features require low-level access to system information,
support the conventional stack where applications maksuch as 1/0 space, DMA pages, and task control blocks,
API calls to the user-space runtime library, but systemitis not straightforward for traditional user-space ruomei
designers may disable this stack to remove the concersystems to realize such a resource management scheme.
discussed in Section 1. A new ecosystem introduced by herefore, we claim that Gdev is a suitable approach to
Gdev is runtime support integrated in the OS, allowingfirst-class GPU resource management. The concept of
the user space as well as the OS to use the identical ARBdev is also not limited to GPUs, but can be generalized
set. This ecosystem prevents non-privileged user-spader a broad class of heterogeneous compute devices.
programs from bypassing the runtime system to access
GPUs. The wrapper library is a small piece of software4  Device Memory M anagement
provided for user-space applications, which relays API
calls to the runtime system employed in the OS. Gdev manages device memory using the virtual memory
Leveraging this ecosystem, we design an API-drivenmanagement unit supported by the GPU. Virtual address
GPU resource management scheme. Figure 1 shows thgpace for GPU contexts can be set through the page table.
Gdev allows the OS to manage AP calls, whereas thé>dev stores this page table in device memory, though it
traditional model translates AP calls to GPU commands©an also be stored in host memory. Beyond such basic
before the OS receives them. As discussed in previouBieces of memory management, this section seeks how
work [15], it is very hard to analyze GPU commands andt0 improve memory-copy throughput. We also explore
recognize the corresponding API calls in the OS. Hencellow to share memory resources among GPU contexts,
the existing GPU resource management schemes in ttend support data swap for excessive memory demands.
OS [2, 15] compromise overhead to invoke the scheduler
at every GPU command submission, unless an additiona#t.1  Memory-Copy Optimization

programming abstraction is provided [24]. On the_otherGiVen that data move across device and host memory
hand, Gdev can manage GPU resources along with ARyack and forth, memory-copy throughput could govern
calls, without any additional programming abstractions. ihe overall performance of GPU applications. While the
Programming Model: We provide a set of low-level primary goal of this paper is to enhance GPU resource
functions for GPGPU programming, called “Gdev API". management, we respect standalone performance as well
Gdev APl is a useful backend for high-level APIs, suchfor practical use. Hence, we first study the characteristic
as CUDA. The details of Gdev API can be found at ourof memory-copy operations.
project website [25]. Programmers may use either Gdev gplit Transaction: We often need to copy the same
APl directly or high-level APIs built on top of Gdev API.  data setwice to communicate with the GPU, unless we
This paper particularly assumes that programmers usgjlocate buffers to host I/0 memory directly. One copy
the well-known CUDA Driver API 4.0 [21]. happens within host memory, moving data between main
Gdev uses an existing programming framework andmemory and host I/O memorg.k.a., pinned pages of
commodity compiler, such as NVIDIA CUDA Compiler host memory. The other copy happens between device
(NVCC) [21]. When a program is compiled, two pieces and host I/O memory. In order to optimize this two-stage
of binary are generated. One executes on the CPU, angiemory-copy operation, we split the data buffer into a
loads the other binary onto the GPU. The CPU binary isfixed size of multiple chunks. Using split transactions,
provided as an executable file or loadable module, whilavhile some chunk is transferred within host memory, the
the GPU binary is an object file. Hence, both user-spac@receding chunk can be transferred between device and
and OS-space applications can use the same frameworkost I/O memory. Thus, only the first and last pieces
(i) read the GPU binary file and (ii) load it onto the GPU. of chunks need to be transferred alone, and other chunks
The detailed information embedded in the object file,are all overlapped, thus reducing a total makespan almost
such as code, static data, stack size, local memory siz@alf. An additional advantage of this method is that only
and parameter format, may depend on the programminghe same size of an intermediate “bounce” buffer as the
language, but the framework does not depend on it oncehunk size is required on host /0 memory, thus reducing
the object file is parsed. the usage of host I/O memory significantly. It should be
Resource Management: We provide device memory noted that “pinned” pages do not use split transaction.
management and GPU scheduling schemes to manageDirect I/O Access. The split transaction is effective
GPUs as first-class computing resources. Especially wéor a large size of data. For a small size of data, however,
realize shared device memory for IPC, data swappinghe use of DMA engines incurs non-trivial overhead by
for large memory demands, resource-based queuing fatself. Hence, we also employ a method to read/write
throughput, and bandwidth-aware resource partitioninglata one by one by mapping device memory space onto
for isolation of virtual GPUs. Since some pieces of thesehost I/O memory space, rather than send/receive data in



burst mode by using DMA engines. We have found thatsize, and selects one owned by a low-priority context,
direct 1/0 access is much faster than DMA transactionwhere ties are broken arbitrarily. This “victim” memory
for a small size of data. In Section 7, we will identify a object is shared by the caller contémiplicitly. Unlike
boundary on the data size that inverts the latency of I/Can explicit shared memory object obtained through the
access and DMA, and also derive the best chunk size tAPI presented in Section 4.2, an implicit shared memory

optimize memory-copy throughput. object must evict data when accessed by other contexts,
and retrieve them later when the corresponding context is
4.2 Shared Device Memory resumed. Since Gdev is designed API-driven, it is known

o ) when contexts may access the shared memory object:
Existing GPU programming languages do not support an

explicit API for IPC. For example, data communications ¢ The memory-copy API will affect specific address
among GPU contexts incur significant overhead due to ~ Space given by the API parameters. Hence, we need
copying data back and forth between device and host  to evict only such data that cover this range.

memory. Currently, an OS dataflow abstraction [24] is e The compute-launch APl may also be relevant to

a useful approach to reduce such data movement costs; some address space, but its address range is not all

users are required to use a dataflow programming model.  specified when the API is called, since the program

We believe that it is more flexible and straightforward for may use dynamic memory allocation. Hence, we

programmers to use a familiar POSIX-like method. need to evict such data that are associated with all
Gdev supports a set of API functions to share device the memory objects owned by the context.

memory space among GPU contexts respecting POSIX

IPC functions ofshmget, shmat, shmdt, andshmctl.

As a high-level API, we extend CUDA to provide new

We allocate swap buffers to host main memory for
evicted data. Swapping itself is a simple asynchronous

API functions of cuShmGet, cuShmAt, cuShmDt, and  MemMory-copy operation, but is not visibI(_e to application
cuShnCt1 in our CUDA implementation so that CUDA programs. It should be noted that swapping never occurs

applications can easily leverage Gdev’s shared devic¥/hen copyi_ng data from_devipe to _hOSt memory. f the_
memory functionality. corresponding data set is evicted in the swap space, it

Our shared memory design is straightforward, thoungan be retrieved frqm the swap space directly, and there
its implementation is challenging. Suppose that we usés N0 need to swap it back to device memory.

the above extended CUDA API for IPC. Upon the first Reducing L atency: It_ i_s apparent _that the swappin_g
call to cuShnGet, Gdev allocates new space to device latency could be non-trivial, depending on the data size.

memory, and holds an identifier to this memory object In order to reduce this latency, Gdev reserves a certain
After the first call, Gdev simply returns this identifier to amountof device memory spacetasiporal swap space.
this call. WhencuShmat is called, the allocated space is SINCe @ memory-copy operation within device memory is

mapped to the virtual address space of the correspondirgUCh faster than that between device and host memory,

GPU context. This address mapping is done by settin dev first tries to evict data to this temporal swap space.

the page table so that the virtual address points to th his temporarily-evicted data set is eventually evicted to
host memory after a while to free up the swap space

physical memory space of this shared memory object;

The allocated space can be unmapped§hnDt and for other contexts. Gdev also tries to hide this second
freed bycuShmCt1. If the shared memory object needs eviction latency by overlapping it with GPU computation

exclusive access, the host program running on the cplpunched by the same context. We create a special GPU

must use traditional mutex and semaphore primitives. context that is dedicated to memory-copy operations for
eviction, since the compute and DMA units cannot be

. used by the same context simultaneously. This approach
4.3 Data Swapping is quite reasonable because data eviction is likely to be
We have found that proprietary software in Linux [21] followed by GPU computation. Evicted data, if exist,
fails to allocate device memory exceeding the physicamust be retrieved before GPU computation is launched.
memory capacity, while the Windows display driver [23] If they remain in the swap space, they can be retrieved at
supports data swapping to some extent. In either caséow cost. Else, Gdev retrieves them from host memory.
however, a framework of data swapping with GPUs has

not been WeII_ studied so far. This sgction explores honws  Gpy Scheduling

to swap data in the presence of multiple GPU contexts.

Gdev uses the shared device memory functionality toThe goal of the Gdev scheduler is to correctly assign
achieve data swapping. When memory allocation failscomputation and data transmission times for each GPU
due to a short of free memory space, Gdev seeks memoigontext based on the given scheduling policy. Although
objects whose allocated size is greater than the request®ee make use of some previous techniques [14, 15], Gdev



provides a new queuing scheme and virtual GPU support vgpu->bgt: budget of the virtual GPU.

for multi-tasking systems. Gdev also propagates the task vgpu->utl: actual GPU utilization of the virtual GPU.
priority used in the OS to the GPU context. vgpu->bw: bandwidth assigned to the virtual GPU.
current/next: current/next virtual GPU selected for run.
void on_arrival(vgpu, ctx) {

5.1 Scheduling and Queuing

Gdev uses a similar scheme to TimeGraph [15] for GPU suspend (ctx) ;

scheduling. Specifically, it allows GPU contexts to use ~ dispatch(ctx);

GPU resources only when no other contexts are using

the corresponding resources. The stalling GPU contexts VirtualGPU on_completion(vgpu, ctx) {

are queued by the Gdev scheduler while waiting for the ~ if (vgpu->bgt < 0 && vgpu->utl > vgpu->bw)
current context to leave the resources. In order to notify move_to_queue_tail(vgpu);

the completion of the current context execution, Gdev  next = get_queue_head();

uses additional GPU commands to generate an interrupt if (!next) return null;

from the GPU. Upon every interrupt, the highest-priority =~ if (next != vgpu && next->utl > next->bw) {
context is dispatched to the GPU from the waiting queue. wait_for_short();

Computation and data transmission times are separately =~ if (current) return null;

accumulated for resource accounting. For computations,

we allow the same context to launch multiple compute  return next;

instances simultaneously, and the total makespan from*
the first to the last instance is deemed as the computation

time. PTask [24] and RGEM [14] also provide similar Figure 2: Pseudo-code of the BAND scheduler.
schedulers, but do not use interrupts, and hence resource . L

accounting is managed by the user space via the API. 2.2 GPU Virtualization

Gdev is API-driven where the scheduler is invoked Gdev is able to virtualize a physical GPU into multiple
only when computation or data transmission requestsogical GPUs to protect working groups of multi-tasking
are submitted, whereas TimeGraph is command-driversystems from interference. Virtual GPUs are activated
which invokes the scheduler whenever GPU commandsy specifying weights of GPU resources assigned to each
are flushed. In this regard, Gdev is similar to PTask [24]of them. GPU resources are classifiedri@mory share,
and RGEM [14]. However, Gdev differs from these two memory bandwidth, and compute bandwidth. Memory
approaches in that it can separate queues for accountinghare is the weight of physical memory available for the
of computations and data transmissions, which we callirtual GPU. Memory bandwidth is the amount of time
the Multiple Resource Queues (MRQ) scheme. On the in a certain period allocated for memory-copy operations
other hand, what we call tHgéingle Device Queue (SDQ)  using the virtual GPU, while compute bandwidth is that
scheme uses a single queue per device for accounting. for compute operations. Regarding memory share, Gdev

The MRQ scheme is apparently more efficient than thesimply partitions physical memory space. Meanwhile,
SDQ scheme, when computations and data transmissionge provide the GPU scheduler to meet the requirements
can be overlapped. Suppose that there are two contexts compute and memory-copy bandwidth. Considering
both requesting 50% of computation and 50% of datasimilar characteristics of non-preemptive computations
transmission demands. The SDQ scheme presumes thahd data transmissions, we apply the same policy to the
the demand of each context is 50 + 50 = 100%, implyingcompute and memory-copy schedulers.

a total demand of 200% by the two contexts. As aresult, The challenge for virtual GPU scheduling is raised by
this workload looks overloaded under the SDQ schemethe non-preemptive and burst nature of GPU workloads.
The MRQ scheme, on the other hand, does not considaie have implemented the Credit scheduling algorithm
the total workload to be overloaded due to overlappingsupported by Xen hypervisor [1] to verify if an existing
but each resource to be fully utilized. virtual CPU scheduling policy can be applied for a virtual

Gdev creates two different scheduler threads to controGPU scheduler. However, we have found that the Credit
the resource usage of the GPU compute unit and DMAscheduler fails to maintain the desired bandwidth for the
unit separately. The compute scheduler thread is invokedirtual GPU, largely attributed to the fact that it presumes
by GPU interrupts generated upon the completion ofpreemptive constantly-working CPU workloads, while
each GPU compute operation, while the DMA scheduletGPU workloads are non-preemptive and bursting.
thread is awakened by the Gdev runtime system when To overcome the virtual GPU scheduling problem,
the memory-copy operation is completed, since we dave propose aandwidth-aware non-preemptive device
not use interrupts for memory-copy operations. (BAND) scheduling algorithm. The pseudo-code of the

if (current && current != vgpu)




BAND scheduler is shown in Figure 2. The_arrival  to control hardware resource usage for first-class GPU
function is called when a GPU contextux) running on  resource management. The Gdev API is implemented
a virtual GPU {gpu) attempts to access GPU resourcesin this runtime library. The kernel symbols of the API
for computations or data transmissions. The context cafunctions are exported so that other OS modules can call
be dispatched to the GPU only if no other virtual GPUsthem. These API functions are also one-to-one mapped
are using the GPU. Otherwise, the corresponding task ito theioctl commands defined by Gdev so that user-
suspended. Then_completion function is called by space programs can also be managed by Gdev.
the scheduler thread upon the completion of the context We provide two versions of CUDA Driver API: one
(ctx) assigned to the virtual GPWgpu), selecting the  for the user space and the other for the OS. The former
next virtual GPU to operate. is provided as a typical user-space library, while the lat-
The BAND scheduler is based on the Credit schedulerter is provided as a kernel module, callezlida, which
but differs in the following two points. First, the BAND implements and exports the CUDA API functions. They
scheduler lowers the priority of the virtual GPU, when its however internally use Gdev API to access the GPU.
budget (credit) is exhaustenhd its actual utilization of We use/proc filesystem in Linux to configure Gdev.
the GPU is exceeding the assigned bandwidth, whereasor example, the number of virtual GPUs and their maps
the Credit scheduler always lowers the priority, when theto physical GPUs are visible to users througgroc.
budget is exhausted. This prioritization compensates foThe compute and memory bandwidth and memory share
credit errors posed due to non-preemptive executions. for each virtual GPU are also configurable at runtime
The second modification to the Credit scheduler is thathrough/proc. We further plan to integrate the config-
the BAND scheduler waits for a certain amount of time uration of priority and reserve for each single task into
specified by the system designer, if the GPU utilization/proc, using the TimeGraph approach [15].
of the virtual GPU selected by the scheduler is exceeding Gdev creates the same number of character device files
its assigned bandwidth. This “time-buffering” approach as virtual GPUsi,e., /dev/ gdev0,gdevl,.}. When users
works for non-preemptive burst workloads. Suppose thabpen one of these device files using Gdev APl or CUDA
the system has two virtual GPUs, both of which run someaAPI, it behaves as if it were one for the physical GPU.
burst-workload GPU contexts, but their non-preemptive Resource Parameters: The performance of Gdev is
execution times are different. If the contexts arrive in governed by resource parameters, such as the page size
turn, they are also dispatched to the GPU in turn, but théor virtual memory, temporal swap size, waiting time
GPU utilization could not be fair due to different lengths for the Band scheduler, period for virtual GPU budgets,
of non-preemptive executions. If the scheduler waits forchunk size for memory-copy, and boundary between 1/0
a short interval, however, the context with a short lengthaccess and DMA. We use a page size of 4KB, as the
of non-preemptive execution could arrive with the nextLinux kernel uses the same page size for host virtual
request, and then_arrival function can dispatch itto  memory by default. The swap size is statically set 10%
the GPU while the scheduler is waiting. Thus, resourceof the physical device memory. The waiting time for the
allocations could become fairer. In this case, we nee®and scheduler is also statically set 500 microseconds.
not to select the next virtual GPU, since thearrival  For the period of virtual GPU budgets, we respect Xen's
function has already dispatched one. If no contexts hav@efault setupij.e., we set it 30ms. The rest of resource
arrived, however, we return the selected virtual GPU parameters will be determined in Section 7.
This situation implies that there are no burst workloads, portability: We use Direct Rendering Infrastructure

and hence no emergency to meet the bandwidth. (DRI) [18] — a Linux framework for graphics rendering
with the GPU — to communicate with the Linux kernel.
6 System Implementation Hence, some Gdev functionality may be used to manage

not only compute but also 3-D graphics applications. Our

Our prototype implementation is fully open-source andimplementation approach also abstracts GPU resources
available for NVIDIA Fermi GPUs with the Linux kernel by device, address space, context, and memory objects,
2.6.33 or later, without any kernel modifications. It doeswhich allows other device drivers and GPU architectures
not depend on proprietary software except for compilersto be easily ported.
Hence, it is well self-contained and easy-to-use. Limitations: Our prototype implementation is still

Interface: Gdev is a Linux kernel module (a character partly experimental. In particular, it does not yet support
device driver) composing the device driver and runtimetexture and 3-D processing. Hence, our CUDA Driver
library. The device driver manages low-level hardwareAPI implementation is limited to some extent, but many
resources, such as channels and page tables, to oper@&DA programs can execute with this limited set of
the GPU. The runtime library manages GPU commandg$unctions, as we will demonstrate in Section 7. CUDA
and API calls. It directly uses the device-driver functionsRuntime API [21], a more high-level API than CUDA
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7 Experimental Evaluation _ chonksizefovees) -
Figure 3: Impact of the chunk size on DMA speeds.
We evaluate our Gdev prototype, using the Rodinia

benchmarks [3], GPU-accelerated eCryptfs encrypted ] X
file system from KGPU [28], FAST database search [16], I
and some dataflow microbenchmarks from PTask [24].
We disclose that the basic performance of our prototype £
is practical even compared to proprietary software, and *
also demonstrate that Gdev provides significant benefits e Ny
for GPU applications in time-sharing systems. 128 25 512 1K K 4K B 16K
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2.6.39 on NVIDIA GeForce GTX 480 graphics cardand T 19ure 4: Relative speed of /O access to DMA.
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7.1 Basic Performance

We evaluate the standalone performance of applications
achieved by our Gdev prototype to argue that the rest of
our evaluation is practical in the real world. To this end,
first of all, we need to find the best parameters used for _
memory-copy optimization, using simple test code that Figure 5: Memory-copy throughput.

copies data between device and host memory.

Figure 3 shows the impact of the chunk size on data Figure 5 shows memory-copy throughput achieved by
transfer times for host-to-device (HtoD) and device-to-our Gdev prototype compared to NVIDIA'S proprietary
host (DtoH) directions respectively, when using DMA- software. “Gdev/User” employs a runtime library in the
based memory-copy operations with 256 MB and 512MBuser-space, while “Gdev” integrates runtime support into
of data. Since each chunk incurs some overhead in DMAhe OS. Interestingly, user-space runtime achieves higher
configuration, a smaller chunk size producing a greatethroughputthan OS-space runtime, particularly for DtoH
number of chunks increases a transfer time. On the othatirection. This difference comes frofremcpy's effect
hand, there is a constraint that the first and last pieces ofithin host memory. In fact, theemcpy implementation
chunks cannot be overlapped with others, as describeith the Linux kernel is slower than that in the user-space
in Section 4.1. Hence, a larger chunk size leading to &GNU library, when copying data from host I/O to main
longer blocking time with these pieces of chunks alsomemory. This could be a disadvantage of our approach.
increases a transfer time. According to our observationye will investigate this effect more in depth. Apart from
a chunk size of 4MB is the best trade-off for both HtoD the DtoH memory-copy throughput, however, our Gdev
and DtoH directions. We therefore set the chunk size tqrototype and NVIDIA's proprietary software are almost
4MB for our experiments. competitive.

Figure 4 shows the relative speed of direct I/O access Figure 6 demonstrates the standalone performance of
to DMA for a small size of data. Due to some hardwarebenchmarks achieved by our Gdev prototype compared
effect, HtoD and DtoH directions show different transfer to NVIDIA's proprietary software. Table 1 describes the
times, but it clearly explains the advantage of direct I/Omicrobenchmarks and Rodinia [3] benchmarks used in
access for small data. According to our observation, thehis evaluation. First of all, we have found that NVIDIA
data transfer speed inverses around a data size of 4KBPUs have some “performance mode” to boost hardware
and 1KB for HtoD and DtoH directions respectively. We performance that we do not use for our Gdev prototype
therefore set the boundary of direct I/O access and DMAmplementation. As observed in the LOOP benchmark
to 4KB and 1KB for them respectively. result, our Gdev prototype incurs about 20% of decrease

N
<)
S

Throughput (MB/s)
o

Data Size (bytes)



. ONVIDIA @ Gdev/U \|Gd
Table 1: List of benchmarks. ev/ser Eadev

Benchmark | Description - -
LOOP Long-loop compute without data g 08
MADD 1024x1024 matrix addition 9%
MMUL 1024x1024 matrix multiplication £ 04
CPY 256MB of HtoD and DtoH =02
PINCPY CPY using pinned host /O memory 0 N NN
R O S

BP Back propagation (pattern recognition) & ‘“@Q@@& C‘Q\é? LIPS goég&
BFS Breadth-first search (graph algorithm) Benchmarks
HW Heart wall (medical imaging) ) )
HS Hotspot (physics simulation) Figure 6: Basic standalone performance.
LUD LU decomposition (linear algebra)
NN K-nearest neighbors (data mining) O User API-driven B OS cmd-driven B OS API-driven M Standalone
NW Needleman-wunsch (bioinformatics) (RGEM) (TimeGraph/GERM) - (Gdev/PTask)
SRAD Speckle reducing anisotropic diffusion (imaging) e !
SRAD2 SRAD with random pseudo-inputs (imaging) = 08

g o6
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in performance compared to the proprietary software due 2 O'f)
[
3

S éf\ééf\ SFLNEL S @(‘%@ &
N

to a lack of performance mode. However, the impact of

performance mode is workload dependent. If workloads T ¥

are very compute-intensive, such as the HW and SRAD Benchmarks

benchmarks, this impact appears clearly, whereas some Figure 7: Unconstrained real-time performance.

friendly workloads, such as the BFS and HS benchmarks,

are not influenced very much. In either case, howeversystem call to user-space programs, which could allow
this is an implementation issue, but is not a conceptuaishehaving tasks to abuse GPU resources. This evinces

limitation of Gdev. These benchmark results also implythat Gdev's approach that integrates runtime support into
that Gdev’s runtime-unified OS approach would not bethe OS is a more reliable solution.

appreciated by data-intensive workloads. For example,

the BP bench_mark is associated With avery Iarge size _()?_3 GPU Acceleration for the OS

data, though its compute demand is not very high. This .

type of workload would not perform well with our Gdev Ve now evaluate the performance of the Linux encrypted
prototype, since theemcpy function of the Linux kernel ~ filé system accelerated by the GPU. In particular, we use
becomes a bottleneck. On the other hand, the PINCPYXGPU's implementation of eCryptfs [28]. KGPU is a
benchmark does not neegmcpy operations. Hence, framework that allows the OS to access the user-space
performance does not depend on implementations. runtime library to use GPUs for computations. We have
modified KGPU’s eCryptfs implementation to call the
R CUDA API functions provided by Gdev directly instead
7.2 Reliability of sending requests to the KGPU user-space daemon.
We next evaluate reliability of runtime supportintegrated Figure 8 and 9 show the read and write throughput
in the OS. Figure 7 compares the performances of thef several versions of eCryptfs. “CPU” represents the
OS-space API-driven scheme (Gdev and PTask [24])CPU implementation, while “KGPU & NVIDIA" and
the OS-space command-driven scheme (TimeGraph [15KGPU & Gdev/User” represent those using KGPU with
and GERM [2]), and the user-space API-driven scheme\VIDIA's library and Gdev’s library respectively in the
(RGEM [14]). We run Rodinia benchmarks recursively user space. “Gdev” is our contribution that enables the
as fast as possible as real-time tasks, contending witeCryptfs module to use the GPU directly within the OS.
such background tasks that bypass the user-space libraBue to some page cache effect, read and write are not
and launch many meaningless GPU commands. Thalentical in throughput, but an advantage of using the
user-space API-driven scheme severely suffers from thi&PU is clearly depicted. One may observe that Gdev's
situation, since it cannot schedule these bypassing tasksntime-unified OS approach does not really outperform
at all. The OS-space command-driven scheme is able tGPU’s approach. This is not surprising at all, because
sustain the interference to some extent by using the GP magnitude of improvements in latency achieved by our
command scheduler, but the overhead is non-trivial du®©S approach would be at most microseconds, while the
to many scheduler invocations. On the other hand, théAES/DES operations of eCryptfs performed on the GPU
OS-space API-driven scheme can reject such commanare orders-of-milliseconds. Nonetheless, Gdev provides
submission that is not submitted through the API. Gdeva significant benefit that the OS is freed from the user
and PTask are both API-driven, but PTask exposes thepace, and thus is more secure.

N
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Figure 8: eCryptfs read throughput.
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A further advantage of using Gdev appears in a multi-gig e 13: Impact of swapping latency on virtual GPUSs.
tasking scenario. Figure 10 shows the write throughput

of eCryptfs when the FAST search task [16] is Compet_“NVIDIA/moduIar" and “Gdev/imodular” use NVIDIAS

ing for the GPU. Since Gdev supports priorities in the ) i ) )
0S, we can assign the eCryptfs task with the highes?nd Gdev’s CUDA implementations respectively, where

priority, while the search task is still assigned a highera dataflow program IS implemented in such a way that
priority than other tasks. Using KGPU in this scenario,anocates a self-contained context to each graph node as

however, the performance of eCryptfs is affected by the? module, and connects its output and input by copying

search task due to a lack of prioritization, as observed irijata between host and device memory back and forth.

“KGPU & NVIDIA". Even with priorities, KGPU could G?e"t’ Shrg"_usets ghafd _de‘“t‘;]e memos, it ‘jonned_st .
suffer from a priority inversion problem, where the high- output and input by sharing the same "key- associate

priority eCryptfs task is reduced to the KGPU priority with the same memory space. According to the results,

level when accessing the GPU, while the search task ighared device memory is fairly effective for dataflows

executing at the higher priority level. We could assign aW'th large data. For example, it gains a 49% speedup for

high priority to the user-space KGPU daemon to avoid:hekli)jgleMﬁa?ggee/- r? pf?ﬂcf gé’;ed?\//m()dlilatr”
this priority inversion problem, but it affects all user- 00 mswhile evishm 100 ms to complete

. his dataflow. This indeed makes sense. The average data
GPU applicat f . Onthe other handf, . .
space applications performance. ©Jn ‘e ofer nan ransfer time for a 1024x1024 integer value was about

Gdev can assign each GPU application with an identicaLms and we can reduce data communications by a total
iority, which add the priority i i bl ’ ) .
priorlty, Whien addresses the priority inversion problem of 32+16+8+4+2=62 intermediate nodes for a 6x32 tree,

fundamentally. which results in a total reduced time of 8x62=496ms.

. It should be noted that PTask achieves more speedups
7.4 Effect of Shared Device Memory due to advanced dataflow scheduling [24]. However, we
Figure 11 shows the speedups of dataflow benchmarkgrovide users with a first-class API primitive to manage
brought by Gdev’s shared device memory functionality.shared device memaory, which could be used as a generic
Respecting PTask’s setup [24] for a similar evaluation,|PC method to address different problems. Therefore, we
we make a dataflow by a 6x32 tree or a 6x10 rectangledistinguish our contribution from PTask. In addition, it
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Figure 14: Util. of virtual GPUs under unfair workloads.

is surprising that our prototype system outperforms theGPU is more restricted in the presence of more virtual
proprietary software significantly. We suspect that theGPUs. We confirm that the makespans become longer
proprietary one takes a long time to initialize contextsand their reflection points appear earlier for a greater
when there are many active contexts, though an in-depthumber of virtual GPUs, but all the search tasks can still
investigation is required. complete. This explains that memory swapping is also
Figure 12 depicts the impact of memory swappinguseful on virtual GPUs.
on the makespan of multiple 128MB-data FAST search
tasks, when another 1GB-data FAST search task runs ait 5
the highest priority level. Given that the GPU used in this " *
evaluation supports 1.6GB of device memory, we cannotWe now evaluate Gdev in terms of the isolation among
create more than three 128MB-data search tasks at onegrtual GPUs. Figure 14 demonstrates the actual GPU
if memory swapping is not provided. Memory swapping utilization of two virtual GPUs, achieved by the FIFO,
uses shared device memory, which needs access to ti@redit, and BAND schedulers under the SDQ scheme.
page table. Hence, our prototype implementation doe¥ GPU 0 executes the LUD benchmark to produce short-
not support memory swapping as well as shared devicéength tasks, while VGPU 1 executes the HW benchmark
memory for “Gdev/User”, and it fails when the number to produce long-length tasks. These tasks run repeatedly
of the small search tasks exceeds three. It is interestinfpr 200 seconds to impose high workloads on the entire
to observe that NVIDIA proprietary software fails when system. To see a workload change clearly, VGPU 1 is
the number of the small search tasks exceeds one. Thigarted 30 seconds after VGPU 0. Our observation is that
is because NVIDIA's proprietary software reserves somehe FIFO scheduler is not capable of enforcing isolation
amount of device memory for other purposes. Unlike theat all. The Credit scheduler also fails to provide isolation
user-space runtime approaches, Gdev’s runtime-unifiedince it is not designed to handle non-preemptive burst
OS approach can support memory swapping, and all thevorkload. The BAND scheduler, however, can almost
128MB-data search tasks can survive under this memorprovide the desired GPU utilization, thanks to the time-
pressure. However, a reflection point where the slope obuffering policy that allows short-length tasks to meet
increase in the makespan changes is different, dependirtbe assigned bandwidth. An error in the utilization of
on whether the temporal swap space allocated on devicsvo virtual GPUs is retained within 7% on average.
memory is used or not. When the temporal swap space We next study the effectiveness of the MRQ scheme
is not used, the reflection point is clearer as observed ithat separates the queues for compute and memory-copy
“Gdev w/o swp”, because the swapping latency is notoperations. Figure 15 illustrates the utilization of two
trivial due to data movement between host and devicesirtual GPUs under the BAND scheduler, executing the
memory. Using the temporal swap space, on the otheBRAD benchmark tasks with different sizes of image.
hand, we can reduce the impact of memory swapping oWe noticed that the compute and memory-copy oper-
the makespan of the search tasks, but the reflection poiritions can be overlapped, but they affect the run-to-
appears slightly earlier, since the temporal swap spaceompletion time with each other. When VGPU 1 uses
itself occupies certain space on device memory. more compute resources due to a large size of computa-
Figure 13 shows the impact of memory swapping ontion, the length of memory-copy operations requested by
virtual GPUs. In this experiment, we introduce virtual VGPU 0 is prolonged due to overlapping. As a result,
GPUs, and execute 128MB-data search tasks on the firdtrequires more memory-copy bandwidth. However, the
virtual GPU. The memory size available for the virtual available bandwidth is capped by the BAND scheduler,

I solation among Virtual GPUs



100 —VGPUO

PTask [24] is an OS abstraction for GPU applications

% 23 """ VGPUi N that optimizes data transfers between host and device
[V NORESR, WPV AR DAY S G SR T . .
2 20 | y memory using a data-flow programming model and a
E 20 GPU scheduler. CGCM [11] is another solution based
2 00—t on the compiler and runtime library that dynamically and
(C] 0 40 80 120 160 200 . F
) automatically optimizes the same sort of data trasfers. In
Time (seconds) .
contrast, Gdev does not support data-flow programming
< 128 or automatic code generation. Alternatively, it provides
T o programmers with an explicit API set to share device
8 40 memory among GPU contexts. Such an IPC scheme can
g Zg similarly reduce data transfer overhead.
2w s oo 10w RGEM [14] is a user-space runtime model for real-

time GPGPU applications. It creates preemption points
with data transfers between host and device memory in
order to bound blocking times imposed on high-priority
tasks. It also provides separate queues to demultiplex the
schedulings of data transfers and computations. Albeit
using a similar separate-queue scheme, Gdev addresses a
core challenge of GPU resource managementintegreated
in the OS to overcome the user-space limitations.

In addition to the aforementioned differences, Gdev
can virtualize the GPU in the OS, which enables users to
view a physical GPU as multiple logical GPUs for strong
resource isolation. None of the previous work has also
devided compute and memory bandwidth reservations,
whereas Gdev accounts for these bandwidth reservations
independently to maximize the overall GPU utilization.
i.e., both the compute and memory-copy operations ardéurthermore, the previous work depend more or less on
limited to about 50% of bandwidth at most. One can alsoproprietary software or existing software stack, which
observe that the MRQ scheme allowed the sum of comcould force design and implementation, if not concept,
pute and memory-copy bandwidth to exceed 100%. to adhere to user-space runtime libraries. Our prototype

We finally demonstrate the scalability of our virtual design and implementation of Gdev, in contrast, is fully
GPU support. Figure 16 shows the utilization of four vir- self-contained, allowing the OS to fully control and even
tual GPUs under the BAND scheduler, where all virtual use GPUs as first-class computing resources.

GPUs execute four instances of the LUD benchmark task GPUs as OS Resources. A significant limitation on
exhaustively to produce fair workloads. The workloadsthe current GPU programming framework is that GPU
of each virtual GPU begin in turn at an interval of 30 applications must reside in the user space. KGPU [28] is
seconds. Under such sane workloads, our virtual GPla combination of the OS kernel module and user-space
support can provide fair bandwidth allocations, even ifdaemon, which allows the OS to use GPUs by up-calling
the system exhibits non-preemptive burst workloads. the user-space daemon from the OS to access the GPU.
On the other hand, Gdev provides OS modules with a set
of traditional API functions for GPU programming, such
as CUDA. Hence, a legacy GPU application program can
GPU Resource Management: TimeGraph [15] and execute in the OS, as itis, without any modifications and
GERM [2] provide a GPU command-driven scheduleradditional communications between the user space and
integrated in the device driver. Specifically, TimeGraphthe OS. In addition, we have shown that runtime support
achieves a prioritization and isolation scheme, extendethtegrated in the OS is more reliable.

with a resource sharing scheme [13] later on, whereas GPU Virtualization: VMGL [17] virtualizes GPUs at
GERM enhances fair-share GPU resource control. Gdethe OpenGL API level, and VMware’s Virtual GPU [6]
also respects a prioritization, isolation, and fairnessexhibits I/O virtualization through graphics runtimes. On
scheme, similar to TimeGraph and GERM, but adoptshe other hand, Pegasus [9] uses a hypervisor, Xen [1]
an API-driven scheduler model to reduce the number ofn particular, to co-schedule GPUs and virtual CPUs in
scheduler invocations. The overhead of the command¥Ms. Nonetheless, these virtualization systems rely on
driven scheduler model was also discussed in [15]. user-space runtimes provided by proprietary software,

Time (seconds)

Figure 15: Util. of virtual GPUs with the MRQ scheme
(upper for compute and lower for memory-copy).
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Figure 16: Util. of virtual GPUs under fair workloads.

8 Redated Work



preventing the system from managing GPU resourcess
in a fine-grained manner. In addition, they are mainly

designed to make GPUs available in virtualized envi- [5]
ronments, but are not tailored to isolate GPU resources
among users. Gdev provides virtual GPUs with strong

time and space partitioning, and hence could underlie®®
these GPU virtualization systems. 7

I/0 Scheduling: GPU scheduling deals with a non-
preemptive nature of execution as well as traditional 1/0 ©
scheduling. Several disk bandwidth-aware schedulers [8,
22, 30], for example, contain a similar idea to the Gdev 0
scheduler. Unlike typical /O devices, however, GPUs
are coprocessors operating asynchronously with own setso
of execution contexts, registers, and memory. Therefore[m
Gdev adopts a scheduling algorithm more appropriate for
compute-intensive workload.

Compile-Time and Application Approaches: GPU  [12]
resources can also be managed by application programs
without using drivers and libraries [4, 7, 26]. However, [13]
these approaches essentially need to modify or recompile
the programs using specific compilers and/or algorithms[M]
Thus, a generality of programming frameworks need to
be compromised. In contrast, Gdev allows applications
to use traditional GPU programming frameworks. [15]

. [16]
9 Conclusion

This paper has presented Gdev, a new approach to GPl;
resource management that integrates runtime support
into the OS. This runtime-unified OS approach realizes
new memory management and scheduling schemes th&g!
enable a wide class of applications to GPUs as first-clasg9]
computing resources in general-purpose multi-tasking
systems. We implemented a prototype system of Gdeyv,
and conducted thorough experiments to demonstrate tHe!
advantage and disadvantage of using our Gdev approach,
Our conclusion is that Gdev needs to compromise somgl]
basic performance due to incorporating runtime support?
in the OS, but can enhance GPU resource management
for multi-tasking systems and allow the OS itself to use
GPUs for computations.

Our prototype system and application programs useghy
in the performance evaluation are all open-source, and
may be downloaded from our website [25].

(23]

[25]
(26]
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