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Abstract
Graphics processing units (GPUs) have become a very
powerful platform embracing a concept of heterogeneous
many-core computing. However, application domains of
GPUs are currently limited to specific systems, largely
due to a lack of “first-class” GPU resource management
for general-purpose multi-tasking systems.

We present Gdev, a new ecosystem of GPU resource
management in the operating system (OS). It allows the
user space as well as the OS itself to use GPUs as first-
class computing resources. Specifically, Gdev’s virtual
memory manager supports data swapping for excessive
memory resource demands, and also provides a shared
device memory functionality that allows GPU contexts to
communicate with other contexts. Gdev further provides
a GPU scheduling scheme to virtualize a physical GPU
into multiple logical GPUs, enhancing isolation among
working sets of multi-tasking systems.

Our evaluation conducted on Linux and the NVIDIA
GPU shows that the basic performance of our prototype
implementation is reliable even compared to proprietary
software. Further detailed experiments demonstrate that
Gdev achieves a 2x speedup for an encrypted file system
using the GPU in the OS. Gdev can also improve the
makespan of dataflow programs by up to 49% exploiting
shared device memory, while an error in the utilization
of virtualized GPUs can be limited within only 7%.

1 Introduction

Recent advances in many-core technology have achieved
an order-of-magnitude gain in computing performance.
Examples includegraphics processing units (GPUs) –
mature compute devices that best embrace a concept of
heterogeneous many-core computing. In fact, TOP500
Supercomputing Sites disclosed in November 2011 [29]
that three of the top five supercomputers employ clusters
of GPUs as primary computing resources. Of particular
note is that scientific climate applications have achieved
80x speedups leveraging GPUs [27]. Such a continuous
wealth of evidence for performance benefits of GPUs has
encouraged application domains of GPUs to expand to
general-purpose and embedded computing. For instance,
previous work have demonstrated that GPU-accelerated
systems achieved an order of 10x speedups for software

routers [10], 20x speedups for encrypted networks [12],
and 15x speedups for motion planning [19]. This rapid
growth of general-purpose computing on GPUs,a.k.a.,
GPGPU, is thanks to emergence of new programming
languages, such as CUDA [21].

Seen from these trends, GPUs are becoming more and
more applicable for general-purpose systems. However,
system software support for GPUs in today’s market is
tailored to accelerate particular applications dedicatedto
the system; it is not well-designed to integrate GPUs into
general-purposemulti-tasking systems. Albeit speedups
of individual application programs, the previous research
raised above [10, 12, 19] could not provide performance
or quality-of-service (QoS) management without system
software support. Given that networked and embedded
systems are by nature composed of multiple clients and
components, it is essential that GPUs should be managed
as first-class computing resources so that various tasks
can access GPUs concurrently in a reliable manner.

The research community has articulated the needs of
enhancement in the operating system (OS) [2, 15, 24],
hypervisor [9], and runtime library [14] to make GPUs
available in interactive and/or virtualized multi-tasking
environments. However, all these pieces of work depend
highly on the user-space runtime system, often included
as part of proprietary software, which provides the user
space with an application programming interface (API).
This framework indeed limits the potential of GPUs to
the user space. For example, it prevents the file system
or network stack in the OS from using GPUs directly.
There is another issue of concern with this framework:
the device driver needs to expose resource management
primitives to the user space, since the runtime system is
employed in the user space, implying that non-privileged
user-space programs may abuse GPU resources. As a
matter of fact, we can launch any program on an NVIDIA
GPU without using any user-space runtime libraries, but
using anioctl system call directly. This explains that
GPUs should be protected by the OS as well as CPUs.

In addition to those conceptual issues, there exist more
fundamental and practical issues with publicly-available
GPGPU software. For example, memory allocation for
GPU computing is not allowed to exceed the physical
capacity of device memory. We are also not aware of any
API that allows GPU contexts to share memory resources



with other contexts. Such programming constraints may
not be acceptable in general-purpose systems.

Contribution: We presentGdev, a new approach to
GPU resource management in the OS that addresses the
current limitations of GPU computing. Gdev integrates
runtime support for GPUs into the OS, which allows the
user space as well as the OS itself to use GPUs with
the identical API set, while protecting GPUs from non-
privileged user-space programs at the OS level. Building
on this runtime-unified OS model, Gdev further provides
first-class GPU resource management schemes for multi-
tasking systems. Specifically, Gdev allows programmers
to share device memory resources among GPU contexts
using an explicit API. We also use this shared memory
functionality to enable GPU contexts to allocate memory
exceeding the physical size of device memory. Finally,
Gdev is able to virtualize the GPU into multiple logical
GPUs to enhance isolation among working sets of multi-
tasking systems. As a proof of concept, we also provide
an open-source implementation of Gdev. To summarize,
this paper makes the following contributions:

• Identifies the advantage/disadvantage of integrating
runtime support for GPUs into the OS.

• Enables the OS itself to use GPUs.

• Makes GPUs “first-class” computing resources in
multi-tasking systems – memory management for
inter-process communication (IPC) and scheduling
for GPU virtualization.

• Provides open-source implementations of the GPU
device driver, runtime/API libraries, utility tools,
and Gdev resource management primitives.

• Demonstrates the capabilities of Gdev using real-
world benchmarks and applications.

Organization: The rest of this paper is organized as
follows. Section 2 provides the model and assumptions
behind this paper. Section 3 outlines the concept of Gdev.
Section 4 and 5 present Gdev memory management and
scheduling schemes. Section 6 describes our prototype
implementation, and Section 7 demonstrates our detailed
experimental results. Section 8 discusses related work.
We provide our concluding remarks in Section 9.

2 System Model

This paper focuses on a system composed of a GPU and
a multi-core CPU. GPU applications use a set of the API
supported by the system, typically taking the following
steps: (i) allocate space to device memory, (ii) copy data
to the allocated device memory space, (iii) launch the
program on the GPU, (iv) copy resultant data back to
host memory, and (v) free the allocated device memory
space. We also assume that the GPU is designed based on
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Figure 1: Logical view of Gdev’s ecosystem.

NVIDIA’s Fermi architecture [20]. The concept of Gdev,
however, is not limited to Fermi, but is also applicable to
those based on the following model.

Command: The GPU operates using the architecture-
specific commands. Each GPU context is assigned with
a FIFO queue to which the program running on the CPU
submits the commands. Computations and data transfers
on the GPU are triggered only when the corresponding
commands are dispatched by the GPU itself.

Channel: Each GPU context is assigned with a GPU
hardware channel within which command dispatching is
managed. Fermi does not permit multiple channels to
access the same GPU functional unit simultaneously, but
allow them to coexist being switched automatically in
hardware. This constraint may however be removed in
the future architectures or product lines.

Address Space: Each GPU context is assigned with
virtual address space managed through the page table
configured by the device driver. Address translations are
performed by he memory management unit on the GPU.

Compute Unit: The GPU mapsthreads assigned by
programmers tocores on the compute unit. This thread
assignment is not visible to the system, implying that
GPU resource management at the system level should
be context-based. Multiple contexts cannot execute on
the compute unit at once due to the channel constraint,
but multiple requests issued from the same context can
be processed simultaneously. We also assume that GPU
computation is non-preemptive.

DMA Unit: There are two types of DMA units for
data transmission: (i) synchronous with the compute unit
and (ii) asynchronous. Only the latter type of DMA units
can overlap their operations with the compute unit. We
also assume that DMA transaction is non-preemptive.

3 Gdev Ecosystem

Gdev aims to (i) enhance GPU resource management and
(ii) extend a class of applications that can leverage GPUs.
To this end, we integrate the major portion of runtime
support into the OS. Figure 1 illustrates the logical view



of Gdev’s ecosystem. For a compatibility issue, we still
support the conventional stack where applications make
API calls to the user-space runtime library, but system
designers may disable this stack to remove the concern
discussed in Section 1. A new ecosystem introduced by
Gdev is runtime support integrated in the OS, allowing
the user space as well as the OS to use the identical API
set. This ecosystem prevents non-privileged user-space
programs from bypassing the runtime system to access
GPUs. The wrapper library is a small piece of software
provided for user-space applications, which relays API
calls to the runtime system employed in the OS.

Leveraging this ecosystem, we design an API-driven
GPU resource management scheme. Figure 1 shows that
Gdev allows the OS to manage API calls, whereas the
traditional model translates API calls to GPU commands
before the OS receives them. As discussed in previous
work [15], it is very hard to analyze GPU commands and
recognize the corresponding API calls in the OS. Hence,
the existing GPU resource management schemes in the
OS [2, 15] compromise overhead to invoke the scheduler
at every GPU command submission, unless an additional
programming abstraction is provided [24]. On the other
hand, Gdev can manage GPU resources along with API
calls, without any additional programming abstractions.

Programming Model: We provide a set of low-level
functions for GPGPU programming, called “Gdev API”.
Gdev API is a useful backend for high-level APIs, such
as CUDA. The details of Gdev API can be found at our
project website [25]. Programmers may use either Gdev
API directly or high-level APIs built on top of Gdev API.
This paper particularly assumes that programmers use
the well-known CUDA Driver API 4.0 [21].

Gdev uses an existing programming framework and
commodity compiler, such as NVIDIA CUDA Compiler
(NVCC) [21]. When a program is compiled, two pieces
of binary are generated. One executes on the CPU, and
loads the other binary onto the GPU. The CPU binary is
provided as an executable file or loadable module, while
the GPU binary is an object file. Hence, both user-space
and OS-space applications can use the same framework:
(i) read the GPU binary file and (ii) load it onto the GPU.
The detailed information embedded in the object file,
such as code, static data, stack size, local memory size,
and parameter format, may depend on the programming
language, but the framework does not depend on it once
the object file is parsed.

Resource Management: We provide device memory
management and GPU scheduling schemes to manage
GPUs as first-class computing resources. Especially we
realize shared device memory for IPC, data swapping
for large memory demands, resource-based queuing for
throughput, and bandwidth-aware resource partitioning
for isolation of virtual GPUs. Since some pieces of these

features require low-level access to system information,
such as I/O space, DMA pages, and task control blocks,
it is not straightforward for traditional user-space runtime
systems to realize such a resource management scheme.
Therefore, we claim that Gdev is a suitable approach to
first-class GPU resource management. The concept of
Gdev is also not limited to GPUs, but can be generalized
for a broad class of heterogeneous compute devices.

4 Device Memory Management

Gdev manages device memory using the virtual memory
management unit supported by the GPU. Virtual address
space for GPU contexts can be set through the page table.
Gdev stores this page table in device memory, though it
can also be stored in host memory. Beyond such basic
pieces of memory management, this section seeks how
to improve memory-copy throughput. We also explore
how to share memory resources among GPU contexts,
and support data swap for excessive memory demands.

4.1 Memory-Copy Optimization
Given that data move across device and host memory
back and forth, memory-copy throughput could govern
the overall performance of GPU applications. While the
primary goal of this paper is to enhance GPU resource
management, we respect standalone performance as well
for practical use. Hence, we first study the characteristic
of memory-copy operations.

Split Transaction: We often need to copy the same
data settwice to communicate with the GPU, unless we
allocate buffers to host I/O memory directly. One copy
happens within host memory, moving data between main
memory and host I/O memory,a.k.a., pinned pages of
host memory. The other copy happens between device
and host I/O memory. In order to optimize this two-stage
memory-copy operation, we split the data buffer into a
fixed size of multiple chunks. Using split transactions,
while some chunk is transferred within host memory, the
preceding chunk can be transferred between device and
host I/O memory. Thus, only the first and last pieces
of chunks need to be transferred alone, and other chunks
are all overlapped, thus reducing a total makespan almost
half. An additional advantage of this method is that only
the same size of an intermediate “bounce” buffer as the
chunk size is required on host I/O memory, thus reducing
the usage of host I/O memory significantly. It should be
noted that “pinned” pages do not use split transaction.

Direct I/O Access: The split transaction is effective
for a large size of data. For a small size of data, however,
the use of DMA engines incurs non-trivial overhead by
itself. Hence, we also employ a method to read/write
data one by one by mapping device memory space onto
host I/O memory space, rather than send/receive data in



burst mode by using DMA engines. We have found that
direct I/O access is much faster than DMA transaction
for a small size of data. In Section 7, we will identify a
boundary on the data size that inverts the latency of I/O
access and DMA, and also derive the best chunk size to
optimize memory-copy throughput.

4.2 Shared Device Memory
Existing GPU programming languages do not support an
explicit API for IPC. For example, data communications
among GPU contexts incur significant overhead due to
copying data back and forth between device and host
memory. Currently, an OS dataflow abstraction [24] is
a useful approach to reduce such data movement costs;
users are required to use a dataflow programming model.
We believe that it is more flexible and straightforward for
programmers to use a familiar POSIX-like method.

Gdev supports a set of API functions to share device
memory space among GPU contexts respecting POSIX
IPC functions ofshmget, shmat, shmdt, andshmctl.
As a high-level API, we extend CUDA to provide new
API functions ofcuShmGet, cuShmAt, cuShmDt, and
cuShmCtl in our CUDA implementation so that CUDA
applications can easily leverage Gdev’s shared device
memory functionality.

Our shared memory design is straightforward, though
its implementation is challenging. Suppose that we use
the above extended CUDA API for IPC. Upon the first
call to cuShmGet, Gdev allocates new space to device
memory, and holds an identifier to this memory object.
After the first call, Gdev simply returns this identifier to
this call. WhencuShmAt is called, the allocated space is
mapped to the virtual address space of the corresponding
GPU context. This address mapping is done by setting
the page table so that the virtual address points to the
physical memory space of this shared memory object.
The allocated space can be unmapped bycuShmDt and
freed bycuShmCtl. If the shared memory object needs
exclusive access, the host program running on the CPU
must use traditional mutex and semaphore primitives.

4.3 Data Swapping
We have found that proprietary software in Linux [21]
fails to allocate device memory exceeding the physical
memory capacity, while the Windows display driver [23]
supports data swapping to some extent. In either case,
however, a framework of data swapping with GPUs has
not been well studied so far. This section explores how
to swap data in the presence of multiple GPU contexts.

Gdev uses the shared device memory functionality to
achieve data swapping. When memory allocation fails
due to a short of free memory space, Gdev seeks memory
objects whose allocated size is greater than the requested

size, and selects one owned by a low-priority context,
where ties are broken arbitrarily. This “victim” memory
object is shared by the caller contextimplicitly. Unlike
an explicit shared memory object obtained through the
API presented in Section 4.2, an implicit shared memory
object must evict data when accessed by other contexts,
and retrieve them later when the corresponding context is
resumed. Since Gdev is designed API-driven, it is known
when contexts may access the shared memory object:

• The memory-copy API will affect specific address
space given by the API parameters. Hence, we need
to evict only such data that cover this range.

• The compute-launch API may also be relevant to
some address space, but its address range is not all
specified when the API is called, since the program
may use dynamic memory allocation. Hence, we
need to evict such data that are associated with all
the memory objects owned by the context.

We allocate swap buffers to host main memory for
evicted data. Swapping itself is a simple asynchronous
memory-copy operation, but is not visible to application
programs. It should be noted that swapping never occurs
when copying data from device to host memory. If the
corresponding data set is evicted in the swap space, it
can be retrieved from the swap space directly, and there
is no need to swap it back to device memory.

Reducing Latency: It is apparent that the swapping
latency could be non-trivial, depending on the data size.
In order to reduce this latency, Gdev reserves a certain
amount of device memory space astemporal swap space.
Since a memory-copy operation within device memory is
much faster than that between device and host memory,
Gdev first tries to evict data to this temporal swap space.
This temporarily-evicted data set is eventually evicted to
host memory after a while to free up the swap space
for other contexts. Gdev also tries to hide this second
eviction latency by overlapping it with GPU computation
launched by the same context. We create a special GPU
context that is dedicated to memory-copy operations for
eviction, since the compute and DMA units cannot be
used by the same context simultaneously. This approach
is quite reasonable because data eviction is likely to be
followed by GPU computation. Evicted data, if exist,
must be retrieved before GPU computation is launched.
If they remain in the swap space, they can be retrieved at
low cost. Else, Gdev retrieves them from host memory.

5 GPU Scheduling

The goal of the Gdev scheduler is to correctly assign
computation and data transmission times for each GPU
context based on the given scheduling policy. Although
we make use of some previous techniques [14, 15], Gdev



provides a new queuing scheme and virtual GPU support
for multi-tasking systems. Gdev also propagates the task
priority used in the OS to the GPU context.

5.1 Scheduling and Queuing

Gdev uses a similar scheme to TimeGraph [15] for GPU
scheduling. Specifically, it allows GPU contexts to use
GPU resources only when no other contexts are using
the corresponding resources. The stalling GPU contexts
are queued by the Gdev scheduler while waiting for the
current context to leave the resources. In order to notify
the completion of the current context execution, Gdev
uses additional GPU commands to generate an interrupt
from the GPU. Upon every interrupt, the highest-priority
context is dispatched to the GPU from the waiting queue.
Computation and data transmission times are separately
accumulated for resource accounting. For computations,
we allow the same context to launch multiple compute
instances simultaneously, and the total makespan from
the first to the last instance is deemed as the computation
time. PTask [24] and RGEM [14] also provide similar
schedulers, but do not use interrupts, and hence resource
accounting is managed by the user space via the API.

Gdev is API-driven where the scheduler is invoked
only when computation or data transmission requests
are submitted, whereas TimeGraph is command-driven,
which invokes the scheduler whenever GPU commands
are flushed. In this regard, Gdev is similar to PTask [24]
and RGEM [14]. However, Gdev differs from these two
approaches in that it can separate queues for accounting
of computations and data transmissions, which we call
the Multiple Resource Queues (MRQ) scheme. On the
other hand, what we call theSingle Device Queue (SDQ)
scheme uses a single queue per device for accounting.

The MRQ scheme is apparently more efficient than the
SDQ scheme, when computations and data transmissions
can be overlapped. Suppose that there are two contexts
both requesting 50% of computation and 50% of data
transmission demands. The SDQ scheme presumes that
the demand of each context is 50 + 50 = 100%, implying
a total demand of 200% by the two contexts. As a result,
this workload looks overloaded under the SDQ scheme.
The MRQ scheme, on the other hand, does not consider
the total workload to be overloaded due to overlapping
but each resource to be fully utilized.

Gdev creates two different scheduler threads to control
the resource usage of the GPU compute unit and DMA
unit separately. The compute scheduler thread is invoked
by GPU interrupts generated upon the completion of
each GPU compute operation, while the DMA scheduler
thread is awakened by the Gdev runtime system when
the memory-copy operation is completed, since we do
not use interrupts for memory-copy operations.

vgpu->bgt: budget of the virtual GPU.
vgpu->utl: actual GPU utilization of the virtual GPU.
vgpu->bw: bandwidth assigned to the virtual GPU.
current/next: current/next virtual GPU selected for run.
void on_arrival(vgpu, ctx) {

if (current && current != vgpu)

suspend(ctx);

dispatch(ctx);

}

VirtualGPU on_completion(vgpu, ctx) {

if (vgpu->bgt < 0 && vgpu->utl > vgpu->bw)

move_to_queue_tail(vgpu);

next = get_queue_head();

if (!next) return null;

if (next != vgpu && next->utl > next->bw) {

wait_for_short();

if (current) return null;

}

return next;

}

Figure 2: Pseudo-code of the BAND scheduler.

5.2 GPU Virtualization
Gdev is able to virtualize a physical GPU into multiple
logical GPUs to protect working groups of multi-tasking
systems from interference. Virtual GPUs are activated
by specifying weights of GPU resources assigned to each
of them. GPU resources are classified tomemory share,
memory bandwidth, andcompute bandwidth. Memory
share is the weight of physical memory available for the
virtual GPU. Memory bandwidth is the amount of time
in a certain period allocated for memory-copy operations
using the virtual GPU, while compute bandwidth is that
for compute operations. Regarding memory share, Gdev
simply partitions physical memory space. Meanwhile,
we provide the GPU scheduler to meet the requirements
of compute and memory-copy bandwidth. Considering
similar characteristics of non-preemptive computations
and data transmissions, we apply the same policy to the
compute and memory-copy schedulers.

The challenge for virtual GPU scheduling is raised by
the non-preemptive and burst nature of GPU workloads.
We have implemented the Credit scheduling algorithm
supported by Xen hypervisor [1] to verify if an existing
virtual CPU scheduling policy can be applied for a virtual
GPU scheduler. However, we have found that the Credit
scheduler fails to maintain the desired bandwidth for the
virtual GPU, largely attributed to the fact that it presumes
preemptive constantly-working CPU workloads, while
GPU workloads are non-preemptive and bursting.

To overcome the virtual GPU scheduling problem,
we propose abandwidth-aware non-preemptive device
(BAND) scheduling algorithm. The pseudo-code of the



BAND scheduler is shown in Figure 2. Theon arrival

function is called when a GPU context (ctx) running on
a virtual GPU (vgpu) attempts to access GPU resources
for computations or data transmissions. The context can
be dispatched to the GPU only if no other virtual GPUs
are using the GPU. Otherwise, the corresponding task is
suspended. Theon completion function is called by
the scheduler thread upon the completion of the context
(ctx) assigned to the virtual GPU (vgpu), selecting the
next virtual GPU to operate.

The BAND scheduler is based on the Credit scheduler,
but differs in the following two points. First, the BAND
scheduler lowers the priority of the virtual GPU, when its
budget (credit) is exhaustedand its actual utilization of
the GPU is exceeding the assigned bandwidth, whereas
the Credit scheduler always lowers the priority, when the
budget is exhausted. This prioritization compensates for
credit errors posed due to non-preemptive executions.

The second modification to the Credit scheduler is that
the BAND scheduler waits for a certain amount of time
specified by the system designer, if the GPU utilization
of the virtual GPU selected by the scheduler is exceeding
its assigned bandwidth. This “time-buffering” approach
works for non-preemptive burst workloads. Suppose that
the system has two virtual GPUs, both of which run some
burst-workload GPU contexts, but their non-preemptive
execution times are different. If the contexts arrive in
turn, they are also dispatched to the GPU in turn, but the
GPU utilization could not be fair due to different lengths
of non-preemptive executions. If the scheduler waits for
a short interval, however, the context with a short length
of non-preemptive execution could arrive with the next
request, and theon arrival function can dispatch it to
the GPU while the scheduler is waiting. Thus, resource
allocations could become fairer. In this case, we need
not to select the next virtual GPU, since theon arrival

function has already dispatched one. If no contexts have
arrived, however, we return the selected virtual GPU.
This situation implies that there are no burst workloads,
and hence no emergency to meet the bandwidth.

6 System Implementation

Our prototype implementation is fully open-source and
available for NVIDIA Fermi GPUs with the Linux kernel
2.6.33 or later, without any kernel modifications. It does
not depend on proprietary software except for compilers.
Hence, it is well self-contained and easy-to-use.

Interface: Gdev is a Linux kernel module (a character
device driver) composing the device driver and runtime
library. The device driver manages low-level hardware
resources, such as channels and page tables, to operate
the GPU. The runtime library manages GPU commands
and API calls. It directly uses the device-driver functions

to control hardware resource usage for first-class GPU
resource management. The Gdev API is implemented
in this runtime library. The kernel symbols of the API
functions are exported so that other OS modules can call
them. These API functions are also one-to-one mapped
to theioctl commands defined by Gdev so that user-
space programs can also be managed by Gdev.

We provide two versions of CUDA Driver API: one
for the user space and the other for the OS. The former
is provided as a typical user-space library, while the lat-
ter is provided as a kernel module, calledkcuda, which
implements and exports the CUDA API functions. They
however internally use Gdev API to access the GPU.

We use/proc filesystem in Linux to configure Gdev.
For example, the number of virtual GPUs and their maps
to physical GPUs are visible to users through/proc.
The compute and memory bandwidth and memory share
for each virtual GPU are also configurable at runtime
through/proc. We further plan to integrate the config-
uration of priority and reserve for each single task into
/proc, using the TimeGraph approach [15].

Gdev creates the same number of character device files
as virtual GPUs,i.e., /dev/{gdev0,gdev1,...}. When users
open one of these device files using Gdev API or CUDA
API, it behaves as if it were one for the physical GPU.

Resource Parameters: The performance of Gdev is
governed by resource parameters, such as the page size
for virtual memory, temporal swap size, waiting time
for the Band scheduler, period for virtual GPU budgets,
chunk size for memory-copy, and boundary between I/O
access and DMA. We use a page size of 4KB, as the
Linux kernel uses the same page size for host virtual
memory by default. The swap size is statically set 10%
of the physical device memory. The waiting time for the
Band scheduler is also statically set 500 microseconds.
For the period of virtual GPU budgets, we respect Xen’s
default setup,i.e., we set it 30ms. The rest of resource
parameters will be determined in Section 7.

Portability: We use Direct Rendering Infrastructure
(DRI) [18] – a Linux framework for graphics rendering
with the GPU – to communicate with the Linux kernel.
Hence, some Gdev functionality may be used to manage
not only compute but also 3-D graphics applications. Our
implementation approach also abstracts GPU resources
by device, address space, context, and memory objects,
which allows other device drivers and GPU architectures
to be easily ported.

Limitations: Our prototype implementation is still
partly experimental. In particular, it does not yet support
texture and 3-D processing. Hence, our CUDA Driver
API implementation is limited to some extent, but many
CUDA programs can execute with this limited set of
functions, as we will demonstrate in Section 7. CUDA
Runtime API [21], a more high-level API than CUDA



Driver API, is also not supported yet, but we could use
Ocelot [5] to translate CUDA Runtime API to CUDA
Driver API. Despite such limitations, we believe that our
prototype implementation contributes greatly to future
research on GPU resource management, given that open-
source drivers/runtimes for GPUs are very limited today.

7 Experimental Evaluation

We evaluate our Gdev prototype, using the Rodinia
benchmarks [3], GPU-accelerated eCryptfs encrypted
file system from KGPU [28], FAST database search [16],
and some dataflow microbenchmarks from PTask [24].
We disclose that the basic performance of our prototype
is practical even compared to proprietary software, and
also demonstrate that Gdev provides significant benefits
for GPU applications in time-sharing systems.

Our experiments are conducted with the Linux kernel
2.6.39 on NVIDIA GeForce GTX 480 graphics card and
Intel Core 2 Extreme QX9650 processor. GPU programs
are written in CUDA and compiled by NVCC [21], while
CPU programs are compiled by gcc 4.4.6.

7.1 Basic Performance
We evaluate the standalone performance of applications
achieved by our Gdev prototype to argue that the rest of
our evaluation is practical in the real world. To this end,
first of all, we need to find the best parameters used for
memory-copy optimization, using simple test code that
copies data between device and host memory.

Figure 3 shows the impact of the chunk size on data
transfer times for host-to-device (HtoD) and device-to-
host (DtoH) directions respectively, when using DMA-
based memory-copy operations with 256MB and 512MB
of data. Since each chunk incurs some overhead in DMA
configuration, a smaller chunk size producing a greater
number of chunks increases a transfer time. On the other
hand, there is a constraint that the first and last pieces of
chunks cannot be overlapped with others, as described
in Section 4.1. Hence, a larger chunk size leading to a
longer blocking time with these pieces of chunks also
increases a transfer time. According to our observation,
a chunk size of 4MB is the best trade-off for both HtoD
and DtoH directions. We therefore set the chunk size to
4MB for our experiments.

Figure 4 shows the relative speed of direct I/O access
to DMA for a small size of data. Due to some hardware
effect, HtoD and DtoH directions show different transfer
times, but it clearly explains the advantage of direct I/O
access for small data. According to our observation, the
data transfer speed inverses around a data size of 4KB
and 1KB for HtoD and DtoH directions respectively. We
therefore set the boundary of direct I/O access and DMA
to 4KB and 1KB for them respectively.
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Figure 5: Memory-copy throughput.

Figure 5 shows memory-copy throughput achieved by
our Gdev prototype compared to NVIDIA’s proprietary
software. “Gdev/User” employs a runtime library in the
user-space, while “Gdev” integrates runtime support into
the OS. Interestingly, user-space runtime achieves higher
throughput than OS-space runtime, particularly for DtoH
direction. This difference comes frommemcpy’s effect
within host memory. In fact, thememcpy implementation
in the Linux kernel is slower than that in the user-space
GNU library, when copying data from host I/O to main
memory. This could be a disadvantage of our approach.
We will investigate this effect more in depth. Apart from
the DtoH memory-copy throughput, however, our Gdev
prototype and NVIDIA’s proprietary software are almost
competitive.

Figure 6 demonstrates the standalone performance of
benchmarks achieved by our Gdev prototype compared
to NVIDIA’s proprietary software. Table 1 describes the
microbenchmarks and Rodinia [3] benchmarks used in
this evaluation. First of all, we have found that NVIDIA
GPUs have some “performance mode” to boost hardware
performance that we do not use for our Gdev prototype
implementation. As observed in the LOOP benchmark
result, our Gdev prototype incurs about 20% of decrease



Table 1: List of benchmarks.
Benchmark Description
LOOP Long-loop compute without data
MADD 1024x1024 matrix addition
MMUL 1024x1024 matrix multiplication
CPY 256MB of HtoD and DtoH
PINCPY CPY using pinned host I/O memory
BP Back propagation (pattern recognition)
BFS Breadth-first search (graph algorithm)
HW Heart wall (medical imaging)
HS Hotspot (physics simulation)
LUD LU decomposition (linear algebra)
NN K-nearest neighbors (data mining)
NW Needleman-wunsch (bioinformatics)
SRAD Speckle reducing anisotropic diffusion (imaging)
SRAD2 SRAD with random pseudo-inputs (imaging)

in performance compared to the proprietary software due
to a lack of performance mode. However, the impact of
performance mode is workload dependent. If workloads
are very compute-intensive, such as the HW and SRAD
benchmarks, this impact appears clearly, whereas some
friendly workloads, such as the BFS and HS benchmarks,
are not influenced very much. In either case, however,
this is an implementation issue, but is not a conceptual
limitation of Gdev. These benchmark results also imply
that Gdev’s runtime-unified OS approach would not be
appreciated by data-intensive workloads. For example,
the BP benchmark is associated with a very large size of
data, though its compute demand is not very high. This
type of workload would not perform well with our Gdev
prototype, since thememcpy function of the Linux kernel
becomes a bottleneck. On the other hand, the PINCPY
benchmark does not needmemcpy operations. Hence,
performance does not depend on implementations.

7.2 Reliability
We next evaluate reliability of runtime support integrated
in the OS. Figure 7 compares the performances of the
OS-space API-driven scheme (Gdev and PTask [24]),
the OS-space command-driven scheme (TimeGraph [15]
and GERM [2]), and the user-space API-driven scheme
(RGEM [14]). We run Rodinia benchmarks recursively
as fast as possible as real-time tasks, contending with
such background tasks that bypass the user-space library
and launch many meaningless GPU commands. The
user-space API-driven scheme severely suffers from this
situation, since it cannot schedule these bypassing tasks
at all. The OS-space command-driven scheme is able to
sustain the interference to some extent by using the GPU
command scheduler, but the overhead is non-trivial due
to many scheduler invocations. On the other hand, the
OS-space API-driven scheme can reject such command
submission that is not submitted through the API. Gdev
and PTask are both API-driven, but PTask exposes the
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Figure 6: Basic standalone performance.
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Figure 7: Unconstrained real-time performance.

system call to user-space programs, which could allow
misbehaving tasks to abuse GPU resources. This evinces
that Gdev’s approach that integrates runtime support into
the OS is a more reliable solution.

7.3 GPU Acceleration for the OS
We now evaluate the performance of the Linux encrypted
file system accelerated by the GPU. In particular, we use
KGPU’s implementation of eCryptfs [28]. KGPU is a
framework that allows the OS to access the user-space
runtime library to use GPUs for computations. We have
modified KGPU’s eCryptfs implementation to call the
CUDA API functions provided by Gdev directly instead
of sending requests to the KGPU user-space daemon.

Figure 8 and 9 show the read and write throughput
of several versions of eCryptfs. “CPU” represents the
CPU implementation, while “KGPU & NVIDIA” and
“KGPU & Gdev/User” represent those using KGPU with
NVIDIA’s library and Gdev’s library respectively in the
user space. “Gdev” is our contribution that enables the
eCryptfs module to use the GPU directly within the OS.
Due to some page cache effect, read and write are not
identical in throughput, but an advantage of using the
GPU is clearly depicted. One may observe that Gdev’s
runtime-unified OS approach does not really outperform
KGPU’s approach. This is not surprising at all, because
a magnitude of improvements in latency achieved by our
OS approach would be at most microseconds, while the
AES/DES operations of eCryptfs performed on the GPU
are orders-of-milliseconds. Nonetheless, Gdev provides
a significant benefit that the OS is freed from the user
space, and thus is more secure.
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Figure 8: eCryptfs read throughput.
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Figure 9: eCryptfs write throughput.
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Figure 10: eCryptfs write throughput with priorities.

A further advantage of using Gdev appears in a multi-
tasking scenario. Figure 10 shows the write throughput
of eCryptfs when the FAST search task [16] is compet-
ing for the GPU. Since Gdev supports priorities in the
OS, we can assign the eCryptfs task with the highest
priority, while the search task is still assigned a higher
priority than other tasks. Using KGPU in this scenario,
however, the performance of eCryptfs is affected by the
search task due to a lack of prioritization, as observed in
“KGPU & NVIDIA”. Even with priorities, KGPU could
suffer from a priority inversion problem, where the high-
priority eCryptfs task is reduced to the KGPU priority
level when accessing the GPU, while the search task is
executing at the higher priority level. We could assign a
high priority to the user-space KGPU daemon to avoid
this priority inversion problem, but it affects all user-
space GPU applications performance. On the other hand,
Gdev can assign each GPU application with an identical
priority, which addresses the priority inversion problem
fundamentally.

7.4 Effect of Shared Device Memory
Figure 11 shows the speedups of dataflow benchmarks
brought by Gdev’s shared device memory functionality.
Respecting PTask’s setup [24] for a similar evaluation,
we make a dataflow by a 6x32 tree or a 6x10 rectangle.
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Figure 11: Impact of shared memory on dataflow tasks.
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Figure 13: Impact of swapping latency on virtual GPUs.

“NVIDIA/modular” and “Gdev/modular” use NVIDIA’s
and Gdev’s CUDA implementations respectively, where
a dataflow program is implemented in such a way that
allocates a self-contained context to each graph node as
a module, and connects its output and input by copying
data between host and device memory back and forth.
“Gdev/shm” uses shared device memory,i.e., it connects
output and input by sharing the same “key” associated
with the same memory space. According to the results,
shared device memory is fairly effective for dataflows
with large data. For example, it gains a 49% speedup for
the 1024x1024 madd tree. Specifically, “Gdev/modular”
took 1424ms while “Gdev/shm” took 953ms to complete
this dataflow. This indeed makes sense. The average data
transfer time for a 1024x1024 integer value was about
8ms, and we can reduce data communications by a total
of 32+16+8+4+2=62 intermediate nodes for a 6x32 tree,
which results in a total reduced time of 8x62=496ms.
It should be noted that PTask achieves more speedups
due to advanced dataflow scheduling [24]. However, we
provide users with a first-class API primitive to manage
shared device memory, which could be used as a generic
IPC method to address different problems. Therefore, we
distinguish our contribution from PTask. In addition, it
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Figure 14: Util. of virtual GPUs under unfair workloads.

is surprising that our prototype system outperforms the
proprietary software significantly. We suspect that the
proprietary one takes a long time to initialize contexts
when there are many active contexts, though an in-depth
investigation is required.

Figure 12 depicts the impact of memory swapping
on the makespan of multiple 128MB-data FAST search
tasks, when another 1GB-data FAST search task runs at
the highest priority level. Given that the GPU used in this
evaluation supports 1.6GB of device memory, we cannot
create more than three 128MB-data search tasks at once
if memory swapping is not provided. Memory swapping
uses shared device memory, which needs access to the
page table. Hence, our prototype implementation does
not support memory swapping as well as shared device
memory for “Gdev/User”, and it fails when the number
of the small search tasks exceeds three. It is interesting
to observe that NVIDIA’ proprietary software fails when
the number of the small search tasks exceeds one. This
is because NVIDIA’s proprietary software reserves some
amount of device memory for other purposes. Unlike the
user-space runtime approaches, Gdev’s runtime-unified
OS approach can support memory swapping, and all the
128MB-data search tasks can survive under this memory
pressure. However, a reflection point where the slope of
increase in the makespan changes is different, depending
on whether the temporal swap space allocated on device
memory is used or not. When the temporal swap space
is not used, the reflection point is clearer as observed in
“Gdev w/o swp”, because the swapping latency is not
trivial due to data movement between host and device
memory. Using the temporal swap space, on the other
hand, we can reduce the impact of memory swapping on
the makespan of the search tasks, but the reflection point
appears slightly earlier, since the temporal swap space
itself occupies certain space on device memory.

Figure 13 shows the impact of memory swapping on
virtual GPUs. In this experiment, we introduce virtual
GPUs, and execute 128MB-data search tasks on the first
virtual GPU. The memory size available for the virtual

GPU is more restricted in the presence of more virtual
GPUs. We confirm that the makespans become longer
and their reflection points appear earlier for a greater
number of virtual GPUs, but all the search tasks can still
complete. This explains that memory swapping is also
useful on virtual GPUs.

7.5 Isolation among Virtual GPUs

We now evaluate Gdev in terms of the isolation among
virtual GPUs. Figure 14 demonstrates the actual GPU
utilization of two virtual GPUs, achieved by the FIFO,
Credit, and BAND schedulers under the SDQ scheme.
VGPU 0 executes the LUD benchmark to produce short-
length tasks, while VGPU 1 executes the HW benchmark
to produce long-length tasks. These tasks run repeatedly
for 200 seconds to impose high workloads on the entire
system. To see a workload change clearly, VGPU 1 is
started 30 seconds after VGPU 0. Our observation is that
the FIFO scheduler is not capable of enforcing isolation
at all. The Credit scheduler also fails to provide isolation,
since it is not designed to handle non-preemptive burst
workload. The BAND scheduler, however, can almost
provide the desired GPU utilization, thanks to the time-
buffering policy that allows short-length tasks to meet
the assigned bandwidth. An error in the utilization of
two virtual GPUs is retained within 7% on average.

We next study the effectiveness of the MRQ scheme
that separates the queues for compute and memory-copy
operations. Figure 15 illustrates the utilization of two
virtual GPUs under the BAND scheduler, executing the
SRAD benchmark tasks with different sizes of image.
We noticed that the compute and memory-copy oper-
ations can be overlapped, but they affect the run-to-
completion time with each other. When VGPU 1 uses
more compute resources due to a large size of computa-
tion, the length of memory-copy operations requested by
VGPU 0 is prolonged due to overlapping. As a result,
it requires more memory-copy bandwidth. However, the
available bandwidth is capped by the BAND scheduler,
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Figure 15: Util. of virtual GPUs with the MRQ scheme
(upper for compute and lower for memory-copy).
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Figure 16: Util. of virtual GPUs under fair workloads.

i.e., both the compute and memory-copy operations are
limited to about 50% of bandwidth at most. One can also
observe that the MRQ scheme allowed the sum of com-
pute and memory-copy bandwidth to exceed 100%.

We finally demonstrate the scalability of our virtual
GPU support. Figure 16 shows the utilization of four vir-
tual GPUs under the BAND scheduler, where all virtual
GPUs execute four instances of the LUD benchmark task
exhaustively to produce fair workloads. The workloads
of each virtual GPU begin in turn at an interval of 30
seconds. Under such sane workloads, our virtual GPU
support can provide fair bandwidth allocations, even if
the system exhibits non-preemptive burst workloads.

8 Related Work

GPU Resource Management: TimeGraph [15] and
GERM [2] provide a GPU command-driven scheduler
integrated in the device driver. Specifically, TimeGraph
achieves a prioritization and isolation scheme, extended
with a resource sharing scheme [13] later on, whereas
GERM enhances fair-share GPU resource control. Gdev
also respects a prioritization, isolation, and fairness
scheme, similar to TimeGraph and GERM, but adopts
an API-driven scheduler model to reduce the number of
scheduler invocations. The overhead of the command-
driven scheduler model was also discussed in [15].

PTask [24] is an OS abstraction for GPU applications
that optimizes data transfers between host and device
memory using a data-flow programming model and a
GPU scheduler. CGCM [11] is another solution based
on the compiler and runtime library that dynamically and
automatically optimizes the same sort of data trasfers. In
contrast, Gdev does not support data-flow programming
or automatic code generation. Alternatively, it provides
programmers with an explicit API set to share device
memory among GPU contexts. Such an IPC scheme can
similarly reduce data transfer overhead.

RGEM [14] is a user-space runtime model for real-
time GPGPU applications. It creates preemption points
with data transfers between host and device memory in
order to bound blocking times imposed on high-priority
tasks. It also provides separate queues to demultiplex the
schedulings of data transfers and computations. Albeit
using a similar separate-queue scheme, Gdev addresses a
core challenge of GPU resource management integreated
in the OS to overcome the user-space limitations.

In addition to the aforementioned differences, Gdev
can virtualize the GPU in the OS, which enables users to
view a physical GPU as multiple logical GPUs for strong
resource isolation. None of the previous work has also
devided compute and memory bandwidth reservations,
whereas Gdev accounts for these bandwidth reservations
independently to maximize the overall GPU utilization.
Furthermore, the previous work depend more or less on
proprietary software or existing software stack, which
could force design and implementation, if not concept,
to adhere to user-space runtime libraries. Our prototype
design and implementation of Gdev, in contrast, is fully
self-contained, allowing the OS to fully control and even
use GPUs as first-class computing resources.

GPUs as OS Resources: A significant limitation on
the current GPU programming framework is that GPU
applications must reside in the user space. KGPU [28] is
a combination of the OS kernel module and user-space
daemon, which allows the OS to use GPUs by up-calling
the user-space daemon from the OS to access the GPU.
On the other hand, Gdev provides OS modules with a set
of traditional API functions for GPU programming, such
as CUDA. Hence, a legacy GPU application program can
execute in the OS, as it is, without any modifications and
additional communications between the user space and
the OS. In addition, we have shown that runtime support
integrated in the OS is more reliable.

GPU Virtualization: VMGL [17] virtualizes GPUs at
the OpenGL API level, and VMware’s Virtual GPU [6]
exhibits I/O virtualization through graphics runtimes. On
the other hand, Pegasus [9] uses a hypervisor, Xen [1]
in particular, to co-schedule GPUs and virtual CPUs in
VMs. Nonetheless, these virtualization systems rely on
user-space runtimes provided by proprietary software,



preventing the system from managing GPU resources
in a fine-grained manner. In addition, they are mainly
designed to make GPUs available in virtualized envi-
ronments, but are not tailored to isolate GPU resources
among users. Gdev provides virtual GPUs with strong
time and space partitioning, and hence could underlie
these GPU virtualization systems.

I/O Scheduling: GPU scheduling deals with a non-
preemptive nature of execution as well as traditional I/O
scheduling. Several disk bandwidth-aware schedulers [8,
22, 30], for example, contain a similar idea to the Gdev
scheduler. Unlike typical I/O devices, however, GPUs
are coprocessors operating asynchronously with own sets
of execution contexts, registers, and memory. Therefore,
Gdev adopts a scheduling algorithm more appropriate for
compute-intensive workload.

Compile-Time and Application Approaches: GPU
resources can also be managed by application programs
without using drivers and libraries [4, 7, 26]. However,
these approaches essentially need to modify or recompile
the programs using specific compilers and/or algorithms.
Thus, a generality of programming frameworks need to
be compromised. In contrast, Gdev allows applications
to use traditional GPU programming frameworks.

9 Conclusion

This paper has presented Gdev, a new approach to GPU
resource management that integrates runtime support
into the OS. This runtime-unified OS approach realizes
new memory management and scheduling schemes that
enable a wide class of applications to GPUs as first-class
computing resources in general-purpose multi-tasking
systems. We implemented a prototype system of Gdev,
and conducted thorough experiments to demonstrate the
advantage and disadvantage of using our Gdev approach.
Our conclusion is that Gdev needs to compromise some
basic performance due to incorporating runtime support
in the OS, but can enhance GPU resource management
for multi-tasking systems and allow the OS itself to use
GPUs for computations.

Our prototype system and application programs used
in the performance evaluation are all open-source, and
may be downloaded from our website [25].
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