
USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  199

Redundant State Detection for Dynamic Symbolic Execution

Suhabe Bugrara
Stanford University

Dawson Engler
Stanford University

Abstract

Many recent tools use dynamic symbolic execution to
perform tasks ranging from automatic test generation,
finding security flaws, equivalence verification, and ex-
ploit generation. However, while symbolic execution
is promising, it perennially struggles with the fact that
the number of paths in a program increases roughly ex-
ponentially with both code and input size. This paper
presents a technique that attacks this problem by elimi-
nating paths that cannot reach new code before they are
executed and evaluates it on 66 system intensive, com-
plicated, and widely-used programs. Our experiments
demonstrate that the analysis speeds up dynamic sym-
bolic execution by an average of 50.5 X, with a median
of 10 X, and increases coverage by an average of 3.8 %.

1 Introduction

Dynamic symbolic execution has enabled many recent
advances in program analysis such as high-coverage test
input generation, patch checking, equivalence verifica-
tion, malware signature generation, assertion checking,
and debugging [7]. The technique’s power comes from
its ability to systematically and precisely enumerate pro-
gram paths automatically. Further, in many cases it can
eliminate false positives by producing a concrete test
case to demonstrate a bug or specific path execution.

There are many variations in modern symbolic execu-
tion interpreters, but broadly speaking they work as fol-
lows. First, they start from some initial program state
in which program inputs are represented by “unknowns”
that take on any value. The interpreter symbolically ex-
ecutes the program by updating the state with the effect
of each instruction. When it reaches a branch statement
with condition C, the interpreter forks the state into two
states, adding the constraint C to one and ¬C to the other.
This forking is skipped if one branch direction is infeasi-
ble. The interpreter repeatedly executes and forks states

until either it generates every possible state of the pro-
gram, thereby exploring every possible path with respect
to the inputs or, more typically, it exhausts memory or
exceeds a time limit.

While powerful, naive symbolic execution faces the
significant challenge in practice that the number of paths
(and thus states) increases roughly exponentially both
with the size of the tested program and with the size of
the program inputs. Programs with fewer than ten thou-
sand lines of code routinely generate millions of states,
each consisting of tens of thousands of memory loca-
tions. Thus, under realistic time and memory limits,
state-of-the-art dynamic symbolic execution tools only
explore a small percentage of paths.

As a result, while capable of deep reasoning, these
tools have had limited applicability. They often fail when
used to verify a property when doing so requires ex-
ploring every feasible path involving the property. Even
when used purely for bug-finding, they often quickly get
lost in an exponential number of superficially different
but essentially identical states. Many tools [4, 5, 10, 12]
counter this problem by using heuristic search strategies,
but these have proven notoriously fragile.

This paper presents a novel, complementary approach
that exploits a key observation: for many program analy-
sis applications, most paths are redundant with respect to
the goal of the symbolic execution and thus do not need
to be explored. For example, if the goal is to generate
a suite of program inputs that covers every line of code,
then the symbolic execution only needs to explore paths
that will reach lines which have not been covered by pre-
viously explored paths.

The contributions of this paper are (1) the design
and implementation of a sound, redundant state detec-
tor capable of scaling up to handle real programs and
(2) a thorough experimental evaluation on 66 system-
intensive, complicated, and widely used programs which
demonstrates that the detector yields dramatic perfor-
mance improvements. Our technique speeds up dynamic

200  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

symbolic execution by an average of 50.5 X, with a me-
dian of 10 X, and increases coverage by an average of
3.8 %. On 12 of the benchmarks, the analysis reduces
the state space sufficiently that the tool exhaustively ex-
plores all remaining states.

2 Overview

In this section, we give an overview of our analysis using
the following program, which contains two variables: w

and m.

1 if (w)

2 printf("X");

3 else

4 printf("Y");

5 if (m)

6 exit (0);

7 else

8 exit (1);

The program is symbolically executed from four initial
states. States consists of a program counter and a set of
constraints over program variables. Each of these four
initial states starts at line 1. Suppose that state A has the
constraints {w = 0, m = 1}, state B has constraints {w =

1, m = 1}, state C has constraints {w = 2, m = 1}, and
state D has constraints {w = 3, m = 0}. When state A is
symbolically executed through the program, it covers the
lines 1, 3, 4, 5, and 6; state B covers 1, 2, 5 and 6; state
C covers 1, 2, 5, and 6; and state D covers 1, 2, 5, 7, and
8. Figure 1 shows a diagram of the state tree produced
by symbolically executing the program from these initial
states.

As these four initial states are executed over the pro-
gram, the same lines are covered over and over again.
Since our goal is to produce high-coverage test suites
and to explore different parts of the program to find bugs,
we can avoid a significant amount of redundant work if
we discard states that behave similarly to previously ex-
ecuted states. For example, after states A and B are ex-
ecuted to completion, state C will only cover a subset of
the lines that A and B covered, so C is redundant and can
be eliminated. The challenge is to detect that C is redun-
dant without actually executing it. One simple approach
is to compare the constraints of C to the constraints of
A and B: if they have the same constraints, then they
must follow the same paths, and thus will cover exactly
the same lines. However, requiring that two states have
identical constraints is unnecessarily conservative.

In this paper, we present an approach that precisely
determines which constraints affect whether a state will
cover the same lines as a previously executed state. We
use dynamic slicing [1], a program analysis technique
that finds all program statements that affected the value
of a variable occurrence for given program inputs. Our

Figure 1: A diagram illustrating the state tree produced
by symbolically executing the program in Section 2 from
the initial states A, B, C, and D. Each state is represented
by a circle that is labeled with the state’s constraints.
Each row of the diagram corresponds to a line of the
program. States at exit instructions are denoted by thick
borders. Let pc1 be the program counter of state σ1. An
arrow from state σ1 to state σ2 means that σ2 is the result
of executing pc1 on σ1. The initial states A, B, C, and D
appear in the top row, which corresponds to line 1. Note
that the path starting from state A does not reach lines
2, 7, and 8, which is reflected in the diagram by missing
circles in those rows along the path.

approach detects which variables affect branch instruc-
tions that control uncovered lines and restrict state com-
parison to constraints that involve these variables. By
minimizing the set of constraints used to compare states,
the analysis can find more opportunities to eliminate re-
dundant states.

In the remainder of this section, we describe how our
analysis works on the example program. As described
above, symbolic execution of the program begins with
four initial states A, B, C, and D whose program coun-
ters are set to line 1. First, state A is selected and a path
through lines 1, 3, 4, 5, and 6 is explored until it termi-
nates by executing the exit instruction on line 6. Figure 2
shows four different state trees at various stages of sym-
bolically executing the program using our analysis. The
leftmost diagram shows the state tree immediately after
the path starting from A terminates. Note that the dia-
gram indicates that the path starting from state B has not

2

USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  201

Figure 2: The state tree at four different stages of symbolic execution of the example program in Section 2. The box
next to each state contains its relevant location set.

been explored yet since B has no successor states. At this
stage, the uncovered lines are 2, 7 and 8.

As soon as the path starting from initial state A termi-
nates, the analysis determines which variables affected
the decisions of branch instructions along the path that
controlled each uncovered line. We call these variables
relevant locations. A set of relevant locations at each
point along the terminated path is computed backwards
starting from the termination point. For example, the set
of relevant locations at line 1 along this path is {m,w} be-
cause, at this stage of symbolic execution, lines 2, 7, and
8 are uncovered, and both m and w affect the decisions of
the branches that control these lines. Similarly, the rel-
evant location set at line 5 is {m}, because, from line 5
onward, the only variable that affects the decision of a
branch that controls an uncovered line is m.

After the analysis has computed a relevant location set
for each of the previously executed states along this ter-
minated path, it can now try to match any of the currently
running states to the previously executed ones that have
the same program counter. For example, our analysis
tries to match the currently running state B to the previ-
ously executed state A. This matching is performed by
looking up the relevant location set of state A, which is
{m,w}, and checking whether the constraints of state A
that involve m and w imply the constraints of state B that
involve m and w. Because the constraints differ on vari-
able w, the analysis determines that no match exists, and
thus, it cannot eliminate B.

Next, the path starting at state B executes line 1 and
moves to line 2. The second diagram from the left in
Figure 2 shows the state tree at this stage of symbolic
execution, which illustrates an important aspect of our
analysis. Now, lines 1, 2, 3, 4, 5, and 6 are all covered,
which means that the branch on line 1 no longer controls
an uncovered line. Our analysis immediately detects this
change and refines the relevant location sets along the
path starting from state A by removing w because w no
longer affects the decision of a branch that controls an
uncovered line. Dynamically adjusting the relevant lo-
cation sets as more lines become covered increases our
analysis’s ability to eliminate redundant states. As a re-
sult, in many cases, the analysis can eliminate all states,
exhaustively exploring the state space and soundly prov-
ing that the remaining uncovered lines are dead code with
respect to the modeled environment.

After the refinement of the relevant location sets, the
analysis tries to match the currently running state on line
2 to other previously executed states along terminated
paths. The analysis fails to find a match because, so far,
no other states have reached line 2, so there’s nothing to
compare it to. Thus, the path continues executing until
it reaches line 5 as illustrated in the third state tree from
the left in Figure 2. Let this state be called σB,5 because
it is generated on the path that started from state B and
its program counter is line 5. Again, the analysis tries
to find a match for σB,5 and sees that a previously ex-
ecuted state on the terminated path starting from A has
the same program counter. Let this state be called σA,5.

3

202  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

Now, the analysis checks to see if σA,5’s constraint set
implies σB,5’s constraint set with respect to the relevant
location set associated with σA,5. In this case, a match
does exist: σA,5’s constraint set is {w=0,m=1}, σB,5’s con-
straint set is {w=1,m=1}, and σA,5’s relevant location set is
m. Note that even though their constraint sets differ on w,
a match still exists because w is not relevant to covering
the remaining lines 7 and 8. After finding the match, the
analysis prunes σB,5 by eliminating it from symbolic ex-
ecution and deallocating it. Figure 2 illustrates that σB,5
has been pruned by giving it a thick, dashed border.

Next, the analysis performs the same process on the
paths starting from states C and D. State C is pruned im-
mediately because it matches state A on m. State D is
never pruned. The analysis tries to match states along the
path starting from D to the previously executed states, but
it finds that they always differ on m: in state D, m is 0 and
in the other three states, it is 1. The path starting from
D proceeds until it reaches the uncovered lines 7 and 8
and then terminates when it reaches the exit instruction
on line 8.

The fourth state tree in Figure 2 illustrates the final
state tree generated at the end of the symbolic execu-
tion. Note that because all lines are now covered, the
relevant location sets for every state have been refined
to the empty set because there are no longer any more
branch instructions that control uncovered lines.

3 Redundant State Detector

This section explains how the redundant state detector
dynamically monitors symbolic execution and eliminates
redundant states. Algorithm 1 gives a high-level descrip-
tion of the different parts of the detector and how they
interact with symbolic execution. The boxed lines are
performed by the detector, and the non-boxed ones are
performed by normal symbolic execution, which we dis-
cuss first.

Symbolic execution uses a worklist algorithm to gen-
erate and execute states until the entire state space is ex-
plored. A state consists of both a program counter and
a constraint set that encodes the sequence of branch de-
cisions made by the state thus far in terms of program
memory locations. Line 2 initializes the worklist with
special states in which global variables are initialized and
program arguments have been assigned to arrays of “un-
knowns” which can take on any value. On each iteration
of the worklist algorithm, line 4 selects and removes a
state with constraint set C from the worklist. If the state
is at a branch, lines 6 - 10 create two copies of the state
and place them on the worklist if their paths are feasible.
Otherwise, line 12 updates the state with the effects of
the instruction specified by its program counter, which is
then incremented on the following line. If the state has

reached a program exit, line 21 generates concrete pro-
gram inputs that drive program execution down the cor-
responding path, and then line 22 deletes the state. Oth-
erwise, the state is inserted into the worklist on line 24.

input: A program and a set of initial states

1 ConstructStaticControlDepGraph()

2 worklist ← InitialStates
3 while worklist �= /0 do
4 stateC ← worklist.pop()
5 if stateC at branch condition B then
6 (stateB, state¬B) ← Fork(stateC)

7 if C∧B is satisfiable then
8 worklist.insert(stateB)

9 if C∧¬B is satisfiable then
10 worklist.insert(state¬B);

11 else
12 Execute(stateC)

13 increment stateC’s program counter

14 UpdateDynamicDepGraph(stateC)

15 if stateC.pc was previously uncovered then
16 UpdateRelBranchSet(stateC)

17 RefineRelLocSets()

18 FindMatch(stateC)

19 if stateC has match or is at program exit then
20 ConstructRelLocSets(stateC)

21 compute test inputs for stateC
22 delete stateC

23 else
24 worklist.insert(stateC)

Algorithm 1: High-level description of how the re-
dundant state detector dynamically monitors sym-
bolic execution to eliminate redundant states.

We now discuss the statements of Algorithm 1 per-
formed by the redundant state detector. On line 1, the
detector constructs a static control dependence graph to
keep track of which static branches are relevant in the
sense that they control a line that has not yet been cov-
ered by symbolic execution as described in Section 3.1.
Line 14 updates the dynamic dependence graph imme-
diately after every call to Execute with the effects of
the recently executed instruction. This graph, which is
described in Section 3.2.1, tracks the dynamic data de-
pendencies between two writes as well as the dynamic
control dependencies between a dynamic branch and the
writes it controls.

On line 15, the algorithm checks whether the state has
reached a previously uncovered instruction. If so, on
line 16, the detector uses the static control dependence
graph to update the current set of relevant static branches.
Then, on line 17, it refines all relevant constraint sets con-
structed thus far because they may contain reads that are

4

USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  203

no longer relevant as described in Section 3.4.
On line 18, as described in Section 3.3, the detector

searches for a relevant constraint set constructed along a
previously explored path that matches the state. A suc-
cessful match implies that the state is redundant. As soon
as a state reaches a program exit or is pruned, the detector
dynamically slices the part of the dynamic dependence
graph corresponding to the path followed by the state to
determine which reads along the path were relevant in
the sense that they potentially affected whether the state
reached an uncovered instruction. Section 3.2 describes
how the call on line 20 extracts the dynamic slice and
how the slice is used to construct relevant constraint sets.

3.1 Relevant Static Branches
The most basic component of the redundant state detec-
tor is identifying which static branches of the program
are relevant. A static branch is relevant if the outcome of
its condition may affect whether an uncovered instruc-
tion is reachable. Consider the simplified code snippet
from the Unix utility chown below. Suppose for now that
the program never exits before line 11—we explain how
we handle embedded halts in Section 3.2.3.
1 if (reference_file) {

2 if (stat (...))

3 error (...); // uncovered

4 ...;

5 } else {

6 if (parse_user_spec (...))

7 error (...);

8 ...;

9 }

10 if (chopt.recurse & preserve_root)

11 ...; // uncovered

Because lines 3 and 11 are uncovered, the branches
if(reference file) on line 1, if(stat(...)) on line
2 and if(chopt.recurse & preserve root) on line 10
are the relevant static branches since they affect whether
an uncovered instruction is reachable.

The detector identifies the relevant static branches of
a program by constructing a static control dependence
graph [17] whose nodes are the static instructions of
the program and whose edges (b, i) signify that branch
b statically controls instruction i, so the outcome of b’s
condition affects whether i is executed. A static branch
b is relevant if there exists a path in the static control
dependence graph from b to some uncovered instruc-
tion i. For example, the static control dependence graph
for this code snippet contains four nodes: one for each
branch condition on lines 1, 2, 6, 10. The static branch
if(reference file) on line 1 is relevant because line 3
is uncovered, and the graph has a path from line 1 to line
3 via line 2.

Note that the set of relevant static branches gets
smaller and smaller as more instructions are reached and

become covered. Thus, every time a state reaches an un-
covered instruction, the detector updates the set of rele-
vant static branches as shown in Algorithm 1, line 16.

3.2 Relevant Locations

The detector determines that a state is redundant by com-
paring it to previously executed states. Conceptually, to
perform this comparison, it records a complete history
of the symbolic execution by taking a snapshot of each
state every time it executes an instruction. The kth snap-
shot of a state is simply a copy of the state’s constraint
set immediately after it executes the kth instruction along
its path.

If a snapshot’s constraint set is equivalent to a state’s
constraint set, then the detector concludes that the state
is redundant and eliminates it. However, this condition
is unnecessarily conservative in the sense that a state
may be redundant even if its constraint set is not entirely
equivalent to a snapshot’s. For example, if a snapshot’s
constraint set is a subset of a state’s constraint set, then
the detector can also conclude that the state is redundant
because the state is “more constrained” than the snapshot
and thus will not explore any new relevant behaviors of
the program.

We say that this subset condition is more precise than
the equivalence condition because its weaker and thus
allows the detector to find more redundant states. We
also say that it is sound because, even though it is weaker,
it never concludes that a state is redundant when it is not.

This approach faces two practical challenges: how to
incrementally encode every snapshot of the symbolic ex-
ecution efficiently, and how to compare a state to a snap-
shot precisely. The detector addresses both challenges
simultaneously using dynamic slicing, a program anal-
ysis technique that identifies which instructions along a
path affect the value of a given memory location [1].

As soon as a state reaches a program exit, the detector
dynamically slices the path taken by the state to identify,
at every kth instruction along the path, which locations
are relevant in the sense that they potentially affected the
outcome of the decision of a relevant static branch further
down the path. We refer to the relevant locations at the
kth instruction along a path taken by a state as the state’s
kth relevant location set. Note that the relevant location
sets for a state are not constructed until it has reached
a program exit to ensure that no relevant locations are
missed.

We use relevant location sets to devise an even more
precise, yet sound, condition for detecting that a state is
redundant: if the constraints of a snapshot that depend on
a relevant location is a subset of the set of constraints of
a state that depend on a relevant location, then the state
is redundant. Conceptually, the constraints in constraint

5

204  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

set ∆ that depend on a location l are those that limit the
possible values that l can have. Formally, let L be a set of
relevant locations. The subset ∆|L of ∆ that depends on
locations in L is recursively defined as the constraints in
∆ that use locations in L or locations that appear in some
constraint in ∆|L. For example, the constraints in the set
{a > b, b = 0, c = 1, d = 2} that depend on the locations
{a,c} are {a > b, b = 0, c = 1}.

We use the following abridged code snippet from the
Unix utility chown to demonstrate relevant location sets.
The symbols TRUE and FALSE in the code below are int

constant variables assigned the values 1 and 0, respec-
tively. Suppose the initial state consists of three com-
mand line arguments: the program name in argv[0],
a three-byte array of “unknowns” in argv[1], and a
sixteen-byte array of “unknowns” in argv[2]. Further,
suppose that lines 7 and 21 are the only uncovered lines.

1 chopt.recurse = FALSE;

2 preserve_root = FALSE;

3 ...

4 if (! strcmp(argv[1], "-R"))

5 chopt.recurse = TRUE;

6 if (! strcmp(argv[2], "--preserve -root"))

7 preserve_root = TRUE; // uncovered

8 ...

9 if (reference_file) {

10 ...

11 chopt.user_name = uid_to_name (...);

12 chopt.group_name = gid_to_name (...);

13 } else {

14 ...

15 if(!chopt.username && chopt.group_name)

16 chopt.username = "";

17 ...

18 }

19 if (chopt.recurse)

20 if (preserve_root)

21 ...; // uncovered

22 ok = chown_file (... ,& chopt);

23 exit(ok);

The branches on lines 6, 19, 20 are the only relevant
static branches because they control the only uncovered
instructions as discussed in Section 3.1. Consider the
state that takes the path through lines 1-6, 8-12, 19, 22,
23. As soon as it reaches the program exit on line 23, the
detector constructs relevant location sets at every point
along the path, which are shown in the table below.

Line Relevant Location Set
1-3 { TRUE, argv[2][0], argv[1][0..2] }
4 { TRUE, argv[2][0], argv[1][0..2] }
5 { TRUE, argv[2][0] }
6 { chopt.recurse, argv[2][0] }
8-12 { chopt.recurse }
19 { chopt.recurse }
22 {}
23 {}

On line 23, the relevant location set is trivially empty be-
cause it is a program exit. On line 22, it is empty because
no relevant static branches are reachable on the path from
this point onward. Now on line 19, the detector deter-
mines that chopt.recurse is a relevant location at this
point because it affects the decision of the relevant static
branch on line 19. On lines 10-12, chopt.recurse is also
relevant for the same reason. Note that preserve root is
not relevant on these lines because even though it stat-
ically controls an uncovered instruction, it does not dy-
namically control the uncovered instruction, since it is
not read along the path taken by the state.

Now, on lines 8 and 9, the relevant location set is still
{chopt.recurse} and does not include reference file.
Even though reference file is read by a branch condi-
tion along the path, it does not affect the decision of a rel-
evant branch. The power of the detector is demonstrated
here: it is capable of reasoning that the entire if-else

block on lines 9-18 does not affect whether the uncov-
ered instruction on line 21 is reachable and can thus be
ignored, keeping the number of relevant locations small,
which is valuable when comparing a snapshot to a state:
the fewer of a snapshot’s constraints that need to ap-
pear in the state’s constraints, the greater the chance of
soundly concluding that the state is redundant.

On line 6, argv[2][0] is included in the relevant loca-
tion set because this location is used by the condition of
the relevant static branch on line 6 via the call to strcmp.

Now, on line 5, chopt.recurse is replaced by the con-
stant TRUE in the relevant location set. Conceptually, the
location chopt.recurse is not relevant at this point be-
cause the write on line 5 which affects the decision of
the relevant static branch on line 19 has not occurred on
the path yet. The location TRUE, however, is now rele-
vant because it is used by the assignment to compute a
value that is written to a relevant location. In Section 3.5
we describe a way to handle locations that have the same
value across all paths, such as TRUE, in a special way that
reduces the overhead of the detector.

Finally, on line 4, argv[1][0..2] is included in the
relevant location set because it is used by the condition of
the branch on line 4 that dynamically controls the write
of the relevant location chopt.recurse. In the remain-
der of this section, we describe how the relevant loca-
tion sets are constructed in the general case. First we de-
scribe how the dynamic dependence graph is constructed
in Section 3.2.1 and then, in Section 3.2.2, how relevant
locations are inferred by slicing the graph with respect to
relevant static branches.

6

USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  205

3.2.1 Dynamic Dependence Graph

Throughout symbolic execution, the detector records the
dependencies between executed instructions along each
path by incrementally updating the dynamic dependence
graph whose nodes are byte-level writes and whose
edges are either data, control, or potential dependen-
cies [1, 2]. A write w2 performed by instruction i is data-
dependent on another write w1 if i reads w1. A write w2
is control-dependent on a write w1 if a branch that reads
w1 dynamically controls w2. A write w2 is potentially-
dependent on a write w1 if a branch that reads w1 stati-
cally controls assignment e2 := e not along the path and
e2 aliases the static location of w2.

Inferring data and control dependencies is straightfor-
ward because it requires reasoning about parts of the ex-
ecuted path only, and not other parts of the program. In
contrast, inferring potential dependencies is challenging
because it requires reasoning about both the executed
path as well as static locations on non-executed paths.
Consequently, potential dependencies require a sound,
interprocedural aliasing analysis. Our implementation
uses a sound, highly precise intraprocedural pointer anal-
ysis to resolve non-escaping aliases and a sound, scal-
able, yet coarse interprocedural alias analysis to resolve
escaping aliases [13]. While state-of-the-art, sound alias-
ing analysis is notoriously imprecise, in Section 3.6, we
describe a technique that allows the detector to recover
from some of the precision loss. Note that this impre-
cision only affects the detector’s ability to identify re-
dundant states; it does not affect the completeness of the
symbolic execution and does not cause it to report false
positives.

3.2.2 Dynamic Slicing

This section describes how, in general, the dynamic de-
pendence graph is sliced with respect to relevant static
branches in order to infer relevant location sets. One
slight complication, however, is that symbolic execution
paths are not linear, but rather form trees, because a state
may fork into several states. Thus, the detector cannot
construct the kth relevant location set until all states gen-
erated by forks after the kth instruction have reached a
program exit.

When a state reaches a program exit, the detector starts
from the end of the path taken by the state and constructs
the relevant location set Lk at the kth instruction along
the path. Let Ck be the relevant control set used as an in-
termediate set for constructing relevant location sets that
consist of the dynamic branches that control the kth in-
struction. The sets Lk and Ck are constructed as follows:

1. Compute L∪
k , which is the union of the relevant loca-

tion sets at the immediate successor instructions of

the kth instruction. Recall that an instruction along
a path may have multiple immediate successor in-
structions if symbolic execution forked at that point.

2. Compute C∪
k , which is the union of the relevant con-

trol sets at the immediate successor instructions of
the kth instruction.

3. If the kth instruction is a program exit, both Lk and
Ck are empty.

4. If the kth instruction is a dynamic branch b, then
add to Ck all of C∪

k −{b}, and also add to Ck the
dynamic branch that controls b. If at least one of
the following three situations hold, then add to Lk
the locations used in the branch condition:

(a) b corresponds to a relevant static branch,
(b) b is in C∪

k ,
(c) some location in L∪

k potentially depends on b.

5. If the kth instruction is a dynamic assignment e2 :=
e1 and the location of e2 is in L∪

k , then add to Ck the
dynamic branch that controls the assignment, and
add to Lk all the locations read by the expression e1.

3.2.3 Irregular Control Dependence

The explanation of the detector thus far is not sound
for programs that have irregular control flow introduced
by embedded halts [17] which are instructions that ter-
minate execution of the program, such as calls to exit

and abort, that are distinct from the normal termination
point. An embedded halt induces interprocedural control
dependence from the branch that controls the halt to any
statement statically reachable from that branch. These
interprocedural control dependencies must be handled by
the detector because, otherwise, it may not recognize a
relevant location as relevant. By expanding the third step
of the dynamic slicing algorithm in Section 3.2.2 as fol-
lows, the detector will soundly handle irregular control
flow:

3. If the kth instruction is a program exit, then Lk is
empty and Ck is the set of dynamic branches that
control it.

3.2.4 Inter-Path Dynamic Slicing

So far in this paper, relevant location sets have been con-
structed along a path only when the state reaches a pro-
gram exit. Because the detector eventually prunes almost
every state before the state can reach a program exit,
very few paths have relevant location sets constructed
along them. Consequently, the precision of the detector
is severely limited: in general, the more relevant loca-
tion sets that are constructed, the more opportunities the
detector has to find a match for state and thus to prune it.

7

206  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

We add an additional step to the dynamic slicing al-
gorithm in Section 3.2.2 to give the detector the ability
to construct relevant location sets along paths taken by
states that are pruned before they reach a program exit:

6. If the kth instruction is the last instruction along the
path of the state that was matched and pruned by the
relevant location set L′

j, then add to Lk all of L′
j and

add to Ck all the dynamic branches that control the
kth instruction.

The effect of this additional step allows the dynamic slic-
ing algorithm to incorporate the slicing result of previ-
ously explored paths to construct relevant location sets
along new paths of pruned states.

3.3 State Matching
A state is redundant if it matches any snapshot, which
occurs when the following conditions hold. Let L be the
relevant location set that corresponds to the snapshot.

1. The state and the snapshot are at the same context-
sensitive static instruction. A state’s context-
sensitive static instruction is a pair consisting of (1)
the state’s program counter and (2) the sequence of
call instructions on its call stack.

2. The snapshot constraints that depend on L are a sub-
set of the state constraints that depend on L.

Recall from Section 3.2 that the constraints of a con-
straint set that depend on a location l are those that limit
the possible values that l can have in a satisfying assign-
ment.

Throughout Section 3, we use the concept of snapshots
to explain how the detector works. However, our imple-
mentation never explicitly constructs these snapshots be-
cause the time and space overhead of allocating millions
of constraint sets, each of which contains tens of thou-
sands of constraints is prohibitively expensive. Instead,
the detector exploits the fact that the matching conditions
above only need the constraints of a snapshot that depend
on relevant locations, called the relevant constraints of
the snapshot. The set of relevant constraints of a snap-
shot is 100X smaller than its entire set of constraints.

3.4 Dynamic Refinement
In this section we describe a technique that increases the
detector’s precision as symbolic execution covers more
and more of the program. Recall from Section 3.1 that
relevant static branches are those that control uncovered
instructions, and a location is relevant if it affects the de-
cision of a relevant static branch. Thus, as symbolic exe-
cution covers more uncovered instructions, the fewer the

relevant static branches, and the fewer the relevant loca-
tions, and thus the more chances the detector has to find
a match for a state.

As soon as symbolic execution reaches an uncovered
instruction, the detector iterates over all the relevant lo-
cation sets and removes any locations that were included
because that line was previously uncovered.

This dynamic refinement of relevant location sets sub-
stantially improves the precision of the detector, making
it possible to exhaustively explore the entire state space
on some benchmarks, proving that any remaining uncov-
ered instructions are dead code with respect to the envi-
ronment without any false positives or false negatives.

3.5 Single-Valued Locations
In this section, we describe an optimization that reduces
the overhead of the detector by exploiting the fact that,
in practice, more than half of the locations that appear in
relevant constraint sets are single-valued, meaning they
have the same value written to them along every path
explored thus far by symbolic execution. Note that a
single-valued location is not necessarily constant; it may
be that the symbolic execution will eventually explore a
path that writes a different value to the location. Thus,
a location that is single-valued for the first few minutes
of symbolic execution may not be single-valued there-
after. These locations are prevalent in programs that ex-
tensively use libraries because the majority of locations
are typically initialized to a single value and then mostly
read and rarely overwritten with a different one.

The detector exploits this observation by removing
single-valued locations from relevant constraint sets,
thus reducing the sizes of the sets, and consequently, re-
ducing overhead substantially. The optimization is sound
and does not introduce a loss in precision.

One difficulty with implementing this optimization is
that a location l may be single-valued for the first n sym-
bolically executed instructions, but on the n + 1 instruc-
tion, a different value may be written to it. At this point,
the detector may become unsound and prune a non-
redundant state because a relevant constraint set con-
structed before this point may have previously removed
l. To ensure that soundness is maintained, as soon as l
is written-to with a different value, the detector identifies
which relevant constraint sets previously removed l and
re-adds l to them before executing the n + 2 instruction.
This refinement step requires re-slicing the paths along
which l was removed.

3.6 Relevant Search Heuristic
One source of imprecision in the detector is the use of a
sound, coarse, interprocedural alias analysis to infer po-

8

USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  207

tential dependencies as described in Section 3.2.1. Con-
sequently, locations that are not actually relevant may be
inferred as such. To recover from this loss of precision,
the detector keeps two relevant location sets at each in-
struction along a path: one relevant location set is con-
structed soundly by slicing through data, control and po-
tential dependencies in the dynamic dependence graph,
and the other is constructed unsoundly by only slicing
through data and control dependencies.

Throughout the entire symbolic execution, the detec-
tor uses only sound relevant location set to prune states.
However, simultaneously, the detector incorporates the
unsound relevant location sets into its search strategy by
giving priority to states that do not match any unsound
relevant location set. This technique substantially de-
creases the time it takes to reach the maximum coverage
of a program. Intuitively, it is effective because it gives
preference to states that are the most “different”, in a rel-
evant way, from any other previously explored state, and
thus are more likely to reach an uncovered instruction.

3.7 Efficient State Matching
As discussed in Section 3.3, after each executed instruc-
tion, the detector searches for a match of a state by com-
paring it to all the relevant constraint sets at the same
context-sensitive static instruction. A straightforward
implementation will perform this search by comparing
the state to each relevant constraint set individually.

Unfortunately, even programs with fewer than ten
thousand lines of code will have thousands of unique
relevant constraint sets at each program point, and each
set may contain hundreds of constraints. Thus, compar-
ing a state to each relevant constraint set individually
after each executed instruction is prohibitively expen-
sive. To address this challenge, the detector constructs,
at each context-sensitive static instruction pc, a decision
tree [16] that organizes relevant constraint sets at pc in
a manner that makes searching for a match efficient. A
decision tree is a highly effective data structure for this
search problem because it can exploit the fact that the
relevant constraint sets at a program point share many
common locations.

Consider the following seven relevant constraint sets
at context-sensitive static instruction pc.

1. { x = 2, y = 4, u = 10 }
2. { x = 2, y = 5, u = 10 }
3. { x = 1, u = 10 }
4. { x = 3, u = 11 }
5. { x = 2, u = 11 }
6. { x = 2, u = 10, w = 6 }
7. { x = 2, u = 10, w = 7 }

Suppose that the current state is also at pc and has con-
straints {x = 2, y = 4, z = 8, u = 11}. If the state is

y

x

w

1 2 3

4 5 undef

6 7

{ x=1, u=10}

{ x=2, u=11}

{ x=3, u=11 }

{ x=2, y=4, u=10 } { x=2, y=5, u=10 }

{ x=2, u=10, w=6 } { x=2, u=10, w=7}

Figure 3: The decision tree for the seven relevant con-
straint sets in Section 3.7.

compared to each relevant constraint set individually, the
detector would need to perform eighteen lookups in the
state’s constraint set, one for each relevant constraint.
However, by organizing these relevant constraints sets
into a decision tree, only four lookups are required.

Figure 3 shows the decision tree for the seven relevant
constraint sets above. Each of the tree’s non-leaf nodes
is labeled with a location l, and its outgoing edges are
labeled with the possible values associated with l in the
relevant constraint sets. If l does not appear in every rel-
evant constraint set, then it may have an outgoing edge
labeled undef. Each relevant constraint set is associated
with exactly one of the nodes. In the figure, the node for
location x has three outgoing edges, one for each of the
possible values that x is constrained to. The node for lo-
cation y has an outgoing edge labeled undef because it is
not constrained in some relevant constraint sets.

The decision tree is used to search for a relevant con-
straint set that matches the state. The search process
starts at root node x, so x is looked up in the state and
is found to have the value 2. Thus, the search process
moves to the child whose incoming edge has the value 2,
which is node y. Then, y is looked up in the state and
is found to have the value 4. Thus, the search process
moves to the child whose incoming edge has the value 4
and contains the relevant constraint set {x = 2, y = 4,

u = 10}. Now, the search process checks if this relevant
constraint set matches the state entirely. The locations x,
y and u are looked up in the state to see if they have the
same values in the relevant constraint set, that is, 2 and
11, respectively. They do not match on the location u, so
the state does not match this relevant constraint set. Be-
cause the current node is a leaf, the search process ends,
which means that the state does not match any of these
relevant constraint sets. Thus, by using a decision tree
for the search process, only four lookups were necessary
in this example, compared to eighteen lookups if the rel-
evant constraint sets were compared individually.

In general, the search process starts at the root node of

9

208  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

y

4 5

{ x=2, y=5, u=10 }{ x=2, y=4, u=10 }

{ x=1, u=10}

y

4 5

{ x=2, y=5, u=10 }{ x=2, y=4, u=10 }

undef

x

{ x=1, u=10} { x=3, u=11 }

1 3

y

x
1

2
3

4 5

{ x=1, u=10}

{ x=2, u=11}

{ x=3, u=11 }

{ x=2, y=4, u=10 } { x=2, y=5, u=10 }

y

4 5

{ x=2, y=4, u=10 } { x=2, y=5, u=10 }

{ x=2, y=4, u=10 }

Figure 4: The different stages of the decision tree in Fig-
ure 3 as each of the first five relevant constraint sets in
Section 3.7 is incorporated.

the decision tree and performs the following steps until
either a match or a conflict is found. Let t be a non-leaf
node representing a location l. If l is defined by the state,
let v be its value. There are three possibilities:

1. If l is defined in the state and if t has an outgoing
edge labeled v to a node s, then the search proceeds
to s.

2. If l is defined in the state and if t has no outgoing
edge labeled with v, then a conflict is found and the
search process at this node ends without finding a
match.

3. If l is undefined in the state, the search proceeds to
each child node of t individually.

Construction. Even for programs with fewer than ten
thousand lines of code, thousands of new, relevant con-
straint sets are generated during each minute of symbolic
execution. Thus, the construction of these decision trees
must be incremental: every time a relevant constraint set

is generated, it must be efficiently incorporated into the
already existing decision tree.

Figure 4 shows how the decision tree in Figure 3 is
constructed incrementally as each of the first five relevant
constraint sets above are added. Initially, the decision
tree contains a single, empty root node. The first set { x

= 2, y = 4, u = 10 } is simply added to the root node.
When the second relevant constraint set { x = 2, y =

5, u = 10 } is added, the root node is labeled with the
location that has most number of distinct values, which
is y because it takes on the two values, 4 and 5, whereas
locations x and u each only take on a single value. Then,
two child nodes are added, one for each distinct value of
y. The relevant constraint set { x = 2, y = 4, u = 10

} is placed at the child node for value 4 and { x = 2, y

= 5, u = 10 } at the child node for value 5.
Conceptually, y is chosen because it splits the relevant

constraint sets into as many partitions as possible, thus
minimizing the number of lookups needed to find match-
ing relevant constraint sets. If either x or u was chosen,
no partitioning would have been possible. In general, the
split heuristic used by the decision trees to minimize the
number of lookups is to select locations that maximize
the number of partitions at each level of the tree.

Next, the third set { x = 1, u = 10 } is added to the
root node because it does not have a constraint for y, and
it is the only such set. Once the fourth set { x = 3, u

= 11 } is added, a new child node labeled x is created
whose edge from the root node is labeled undef. Both the
third and fourth sets are placed at separate child nodes of
this x node.

Now, once the fifth set { x = 2, u = 11 } is added,
the location x takes on three distinct values whereas y

only takes on two distinct values. Consequently, the split
heuristic is violated at the first level of the tree. As a
result, the tree is rebuilt from scratch to have location x at
the root node and a node labeled y as one of its children.

We use two additional optimizations to further reduce
construction overhead:

1. Relevant constraint sets are added to a decision tree
lazily. Instead of incorporating the constraint set
immediately after it is generated, the detector waits
until a state actually needs to match itself against
the corresponding decision tree.

2. Only the specific subtree of the decision tree that
violates the split heuristic is rebuilt from scratch.
The remaining portion of the tree remains intact.

4 Evaluation

We implemented our state space reduction analysis
by augmenting a copy of the open source version of

10

USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  209

KLEE [5], a symbolic virtual machine capable of au-
tomatically generating test inputs for complex programs
such as device drivers, network drivers, and utility pro-
grams written in C. For the remainder of this paper, we
refer to this unmodified open source version of KLEE
as KLEE-BASE, and we refer to our augmentation of
KLEE with our state space reduction analysis as KLEE-
REDUCE. In this section, we discuss the details of our
implementation that enabled us to achieve the orders of
magnitude improvement in performance.

KLEE-BASE performs symbolic execution over
LLVM bytecode instructions starting from several initial
states, each with different numbers and sizes of symbolic
objects representing the program’s arguments. The initial
states were generated using the following KLEE flags:
--sym-args 0 1 10 --sym-args 0 2 2 --sym-files

1 8 --sym-stdout. We configured KLEE-BASE to
use KLEE’s best, built-in heuristic search strategy
for line coverage, which is specified using the flags:
--use-random-path --use-interleaved-covnew-NURS

--use-batching-search

--batch-instructions=10000.
This section measures how KLEE-REDUCE performs

compared to KLEE-BASE on three metrics: (1) how
much faster it reaches the same statement coverage, (2)
how much more statement coverage it gets, and (3) how
many more programs have their state spaces exhausted.

Our benchmarks consist of 66 programs from the
GNU Coreutils utility suite, a diverse set of system-
intensive, complicated programs that form the core user-
level environment installed on millions of computer sys-
tems. They are the same benchmarks used in the origi-
nal KLEE paper [5] and are among the largest and most
complex benchmarks that constraint-based automatic in-
put generation has been shown to run on for code cov-
erage. The reader is referred to Figure 4 in [5] for the
distribution of program sizes.

We view Coreutils as a fair test for KLEE-BASE since
it was used in the original paper [5]. For similar reasons,
our experiments follow the original paper’s methodol-
ogy: each program was checked for one hour each with
the same flags and with the same number (and sizes) of
symbolic inputs.

Our experiments have two changes from the origi-
nals, which we do not expect to have substantive im-
pact. First, the open source version of KLEE eliminated
some flags used by the original system, so we obviously
could not use them. Second, we only checked 66 of
the 89 possible utilities since the others either had errors
when run on our 64-bit machine (the original KLEE-
BASE results were on 32-bit) or were so small that they
reached the maximum possible coverage in under ten
seconds. The sizes of these 66 utilities varied from 6.6 K
to 29 K instructions of optimized LLVM bytecode (using

the --optimize KLEE flag) with a median size of 12.6 K.
All together, they sum to 905 K instructions.

Speedups. We calculated speedup as follows:

1. Ran each program for one hour with KLEE-BASE
and one hour with KLEE-REDUCE .

2. Recorded the maximum coverage Cmax that both
KLEE-BASE and KLEE-REDUCE were able to
reach.

3. Recorded the times Tbase and Tred at which KLEE-
BASE and KLEE-REDUCE reached Cmax, respec-
tively.

4. Calculated the speedup as Tbase/Tred.

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70

Sp
ee

du
p

(X
)

Benchmark

Log Speedups

Figure 5: Log-scale speedups of how many times faster
KLEE-REDUCE reaches the same statement coverage as
KLEE-BASE.

Figure 5 uses a log scale to show the relative speedup,
sorted from least to most. A bar below 1.0 means KLEE-
REDUCE ran slower than KLEE-BASE and a bar above
1.0 means that it ran faster. As can be seen from the re-
sults, KLEE-REDUCE gives enormous speedups on the
vast majority of benchmarks. KLEE-REDUCE ’s aver-
age speedup is 50.5 X , that is, 50.5 times faster than
KLEE-BASE. Its median speedup is 10 X , the max-
imum is 717 X and its maximum slow down is 0.2 X
. And, 54 out of 66 (82 %) benchmarks had speedups
greater than 1 X.

Table 1 shows the impact of KLEE-REDUCE on sev-
eral metrics. Table 2 shows individual results from
running KLEE-BASE and KLEE-REDUCE on the ten
largest coreutils benchmarks.

Coverage. On 55 of the 66 (83 %) benchmarks,
KLEE-REDUCE reaches at least the same coverage

11

210  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

Statistic BASE REDUCE Reduction
Instructions 1.8 billion 222 million 8 X
Paths 5,285,596 391,057 14 X
Queries 266,286 77,614 3.4 X
Query Constructs 24.3 million 9.8 million 2.5 X
Solver Time 20.6 hours 4.1 hours 5 X
Solver Overhead 73 % 37 % 1.9 X

Table 1: Impact of KLEE-REDUCE on the number of
instructions executed, paths generated, queries made,
solver time, and solver overhead across all benchmarks.

KLEE-BASE KLEE-REDUCE
T cov Tc T cov Tc X covinc

join 3,587 83.1 3,587 3,189 87.5 1,002 3.6 4.4
csplit 1,686 70.4 1,686 3,163 77.8 1,322 1.3 7.4
stty 2,340 58.2 2,340 694 86.5 66 35.2 28.3
dd 3,353 40.3 3,353 1,999 44.5 137 24.5 4.2
tail 3,230 70.1 3,230 2,305 76.8 143 22.7 6.7
od 3,599 74.7 3,599 1,250 84.9 200 18 10.2
tr 2,839 60.6 2,839 1,164 64 962 3 3.4

ptx 1,541 18.5 1,541 3,461 40.6 18 85.1 22.1
pr 234 57.2 29 54 39.4 54 0.5 -17.8
ls 298 34 92 82 29.5 82 1.1 -4.5

Table 2: Individual results from running KLEE-BASE
and KLEE-REDUCE on the ten largest coreutils bench-
marks. T is time to reach the maximum coverage, cov
is maximum coverage, Tc is time to reach the same cov-
erage, X is relative speedup, and covinc is coverage in-
crease.

as KLEE-BASE, and on 30 (45 %) KLEE-REDUCE
reaches higher coverage. The average coverage increase
is 3.8 % with a median of 2.5 % on the 54 benchmarks on
which either KLEE-BASE or KLEE-REDUCE did not
reach the maximum coverage possible given the modeled
environment. Figure 6 shows the coverage increases for
each benchmark.

Exhaustion. Our analysis eliminates states to the
extent that on 12 out of 66 benchmarks (18 %), KLEE-
REDUCE explores every state in the state space exhaus-
tively, proving that any remaining uncovered lines are

-20

-10

 0

 10

 20

 30

 40

 0 10 20 30 40 50 60 70

C
ov

er
ag

e
In

cr
ea

se
s

(%
)

Benchmark

Coverage Increases

Figure 6: Coverage increases

dead code with respect to the modeled environment.
KLEE-BASE , on the other hand, was not able to explore
the state space exhaustively on any of these benchmarks.

Challenges. Now, we discuss the 14 out of 66 (21 %)
benchmarks that were either slower than KLEE-BASE or
had lower coverage. On eleven of these 14 benchmarks,
KLEE-REDUCE did not reach the maximum coverage of
KLEE-BASE, and on the remaining three, it reached the
maximum coverage but was slower than KLEE-BASE.

On seven of these 14 benchmarks, KLEE-REDUCE
did not outperform KLEE-BASE because these particu-
lar benchmarks had especially high solver overhead, as
they spent more than 90% of their time solving queries.
Thus, there was less opportunity for KLEE-REDUCE to
improve performance. Furthermore, KLEE-REDUCE is
biased, by design, to explore deeper parts of the program
which causes it to encounter harder queries.

On the other seven of these 14 benchmarks, KLEE-
REDUCE did not outperform KLEE-BASE because it
does not reason precisely enough about constraints that
are inconsistent in general, yet, with respect to reach-
ing uncovered lines of code, they are equivalent. For ex-
ample, consider the following common code pattern that
uses the libc read function, which returns either -1 on
error, 0 on reaching the end-of-file, or a positive value
denoting the number of bytes read into buf.

1 while (1) {

2 bytes_read = read(fd, buf , sizeof buf);

3 if (bytes_read <= 0)

4 break; // uncovered

5 ...

6 }

Suppose a state reaches line 3 with the constraint
bytes read = 5, and the detector tries to match it against
a relevant constraint set with bytes read = 7. The de-
tector will conclude that no match exists because it will
see that these two constraints have different values for
bytes read. However, with respect to reaching the un-
covered line, they essentially match and thus the state
should be pruned.

5 Related Work

The closest antecedent to our work is Boonstoppel et
al. [3]. They detect redundant states by comparing a
state’s live constraints against those of previous states
that have reached the same context-sensitive program
point, where a constraint is live if it involves a location
that is read anywhere along the path taken by the pre-
vious state. They require that a depth-first search strat-
egy is used for exploring states, which severely limits its
ability to achieve high coverage. In contrast, our anal-
ysis works with any search strategy and only compares

12

USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  211

constraints that are specifically relevant to uncovered in-
structions, thus making it significantly more precise. In-
ferring relevant locations is substantially more challeng-
ing because it requires slicing the dynamic data, control,
and potential dependencies between locations (§ 3.2.2)
and handling irregular control flow (§ 3.2.3). Further-
more, in our paper, we introduce the novel techniques of
inter-path slicing (§ 3.2.4), dynamic refinement (§ 3.4),
single-valued locations (§ 3.5) and using unsound rele-
vant location sets to enhance search strategies (§ 3.6).

It is difficult to directly compare the two approaches.
This previous system was built on EXE [6], which typ-
ically handles three to five orders of magnitude fewer
states than KLEE, in large part because EXE created a
new kernel process using (fork) at each branch point
(e.g., each if-statement with two feasible branches). As
a result, they did not solve many of the non-trivial en-
gineering challenges we had to handle in order to suc-
cessfully beat a much faster base system (KLEE). As a
crude method to ignore this important engineering as-
pect and just compare the additional benefit of only the
new refinement and propagation ideas in our approach,
we disabled all techniques we added that were not in the
original paper, and re-ran our system over the same 66
benchmarks in Section 4. On more than 90% of these
benchmarks, the previous system either did not reach the
same coverage as KLEE-BASE or was slower than it. On
average, it had a coverage decrease of -15.5%.

In [15], the authors use dynamic slicing as part of a
DART-based path exploration technique that helps avoid
exploring redundant paths. They evaluate their approach
on five very simple benchmarks. On the two smallest
benchmarks each of which is less than 120 lines of code,
they show that their approach saves a total of 60 seconds.
On the other three benchmarks each of which is less than
260 lines, their approach either does not reach the same
coverage as the base system or shows no improvement.
We handle much larger programs, a much larger variety
of them, and get much larger speedups.

Finally, there are a set of interesting state space re-
duction techniques for dynamic symbolic execution that
improve scalability that are complementary to our work.
Collingbourne et al. [8] use phi-node folding to replace
control-flow forking with predicated select instructions
in order to reduce the number of paths explored by sym-
bolic execution. Kuznetsov et al. [14] propose a tech-
nique to merge states obtained on different paths to re-
duce the state space that a dynamic symbolic execution
system needs to explore. The challenge they tackle is that
merging states introduces disjunctions into the path con-
dition and increases its complexity thereby stressing the
underlying constraint solver. They demonstrate that their
technique allows a symbolic execution system to explore
substantially more paths. Godefroid et al. [9, 11] propose

constructing function summaries for dynamic symbolic
execution represented as input-output constraints. We
believe using our techniques would allow this prior work
to achieve even greater improvements (and vice versa).

6 Acknowledgments

We would like to thank Cristian Cadar, David Ramos,
Philip Guo, and the anonymous reviewers for their in-
sightful comments and feedback.

References
[1] AGRAWAL, H., AND HORGAN, J. R. Dynamic Program Slicing.

In PLDI (1990).

[2] AGRAWAL, H., HORGAN, J. R., KRAUSER, E. W., AND LON-
DON, S. Incremental Regression Testing. In CSM (1993).

[3] BOONSTOPPEL, P., CADAR, C., AND ENGLER, D. RWset: At-
tacking Path Explosion in Constraint-based Test Generation. In
TACAS (2008).

[4] BURNIM, J., AND SEN, K. Heuristics for Scalable Dynamic Test
Generation. In ASE (2008).

[5] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unassisted
and Automatic Generation of High-coverage Tests for Complex
Systems Programs. In OSDI (2008).

[6] CADAR, C., GANESH, V., PAWLOWSKI, P. M., DILL, D. L.,
AND ENGLER, D. R. EXE: Automatically Generating Inputs of
Death. In CCS (2006).

[7] CADAR, C., GODEFROID, P., KHURSHID, S., PĂSĂREANU,
C. S., SEN, K., TILLMANN, N., AND VISSER, W. Symbolic
Execution for Software Testing in Practice: A Preliminary As-
sessment. In ICSE (2011).

[8] COLLINGBOURNE, P., CADAR, C., AND KELLY, P. H. Sym-
bolic Crosschecking of Floating-point and SIMD Code. In Eu-
rosys (2011).

[9] GODEFROID, P. Compositional Dynamic Test Generation. In
POPL (2007).

[10] GODEFROID, P., KLARLUND, N., AND SEN, K. DART: Di-
rected Automated Random Testing. In PLDI (2005), V. Sarkar
and M. W. Hall, Eds.

[11] GODEFROID, P., NORI, A. V., RAJAMANI, S. K., AND TETALI,
S. D. Compositional May-Must Program Analysis: Unleashing
the Power of Alternation. In POPL (2010).

[12] GROCE, A., AND VISSER, W. Heuristic Model Checking for
Java Programs. In STTT (2004).

[13] HACKETT, B., AND AIKEN, A. How Is Aliasing Used in Sys-
tems Software? In FSE (2006).

[14] KUZNETSOV, V., KINDER, J., BUCUR, S., AND CANDEA, G.
Efficient State Merging in Symbolic Execution. In PLDI (2012).

[15] QI, D., NGUYEN, H. D., AND ROYCHOUDHURY, A. Path Ex-
ploration Based on Symbolic Output. In FSE (2011).

[16] QUINLAN, J. R. Induction of Decision Trees. Machine Learning
1, 1 (Mar. 1986).

[17] SINHA, S., HARROLD, M. J., AND ROTHERMEL, G. Computa-
tion of Interprocedural Control Dependence. In ISSTA (1998).

13

