
USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  347

DEFINED: Deterministic Execution for Interactive Control-Plane
Debugging

Chia-Chi Lin1 Virajith Jalaparti1 Matthew Caesar1 Jacobus Van der Merwe2

1University of Illinois at Urbana-Champaign
2University of Utah

Abstract
Large-scale networks are among the most complex soft-
ware infrastructures in existence. Unfortunately, the ex-
treme complexity of their basis, the control-plane soft-
ware, leads to a rich variety of nondeterministic failure
modes and anomalies. Research on debugging modern
control-plane software has focused on designing compre-
hensive record and replay systems, but the large volumes
of recordings often hinder the scalability of these de-
signs. Here, we argue for a different approach. Namely,
we take the position that deterministic network execu-
tion would vastly simplify the control-plane debugging
process. This paper presents the design and implementa-
tion of DEFINED, a user-space substrate for interactive
debugging that provides deterministic execution of net-
works in highly distributed and dynamic environments.
We demonstrate our system’s advantages by reproducing
discovery of known ordering and timing bugs in popu-
lar software routing platforms, XORP and Quagga. Us-
ing Rocketfuel topologies and routing data from a Tier-1
backbone, we show DEFINED is practical and scalable
for interactive fault diagnosis in large networks.

1 Introduction
Large-scale networks such as enterprise and ISP net-
works consist of a complex intertwining of systems
and protocol implementations distributed over wide dis-
tances. At the basis of these networks lies the control-
plane software that is responsible for controlling and
managing data flows. Like other complex software sys-
tems, control-plane software is prone to defects or bugs
introduced through human error. Indeed, studies have
shown that control-plane traffic accounts for 95 – 99%
of the observed bugs in networks [1].
One school of research has focused on applying fully au-
tomated techniques to analyze, test, and debug control-
plane software. However, while automated techniques
have been developed to localize memory faults [5] and
avoid concurrency bugs [21], the larger class of logi-
cal or semantic errors seems to fundamentally require
human knowledge to solve. To address this, most re-
search has employed recording mechanisms to assist hu-

man troubleshooters in debugging large-scale control-
plane software. Packet capture and replay tools such
as tcpdump [30] record and replay packets at individ-
ual nodes. Friday [10] correlates recordings across dis-
tributed nodes to provide system-wide reproducibility for
control-plane software. OFRewind [32] enables cen-
trally controlled record and replay of control-plane soft-
ware by leveraging the structure of OpenFlow controller
domains. Unfortunately, while these schemes improve
troubleshooter’s ability to analyze control-plane soft-
ware, the large volumes of recordings hinder the scala-
bility of these systems. In fact, even the authors of Friday
and OFRewind point out that a comprehensive recording
of all events in an entire production network is infeasible.
Consequently, troubleshooters often enable only partial
recordings in production networks, e.g., logging only
packet headers or logging only at specific network lo-
cations. However, solutions based on partial recordings
can fail to reproduce bugs triggered by nondeterminis-
tic behaviors, e.g., message orderings or unsynchronized
clocks. Troubleshooting these nondeterministic bugs is
challenging. Since a bug may happen only when certain
messages arrive at a specific node in a specific ordering,
if troubleshooters didn’t select the node to record mes-
sages beforehand, it is difficult to reproduce the bug. Two
types of nondeterministic bugs are particularly notorious
in control-plane software: ordering bugs that appear only
when certain messages occur in specific orderings and
timing bugs that appear only when certain messages are
processed at specific timings.
To address these nondeterministic bugs, in this paper, we
present a new system, DEFINED, a debugger that al-
lows a troubleshooter to analyze control-plane bugs after
detecting erroneous behaviors of a system. DEFINED
simplifies interactive control-plane software debugging
through deterministic network execution. Namely, given
the same set of external events (e.g., messages from ex-
ternal routers, failures of links and routers), we make
every node in the network always receive messages in
a deterministic ordering and timing. Accordingly, with
DEFINED, troubleshooters can adopt partial recordings
and still be able to reproduce nondeterministic bugs.

1

348  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

To enable deterministic network execution, DEFINED
eliminates all sources of nondeterministic internal events
in a network, and relies on partial recordings to record
and replay nondeterministic external events. Specifi-
cally, DEFINED ensures each node receives messages
and fires local timers in a deterministic fashion. To
provide more debugging functionality without introduc-
ing prohibitive overheads to control-plane software, DE-
FINED consists of two components: DEFINED-RB (RB:
RollBack) that instruments production networks, and
DEFINED-LS (LS: LockStep) that manages debugging
networks.
DEFINED-RB introduces minimum overheads to
control-plane software with an “optimistic” approach:
each node independently decides on a pseudorandom
sequence of events, and then lets the network execute
in an arbitrary fashion. If the order in which events
execute is different from the pseudorandom sequence,
the network is “rolled back” to an earlier state, and
played forward with the correct ordering. We introduce
a novel pseudorandom sequence to reduce to the number
of rollbacks, and hence minimize the overheads.
DEFINED-LS provides an interactive stepping function-
ality to troubleshooters in a debugging network. It allows
troubleshooters to investigate and manipulate state, and
slowly step through the operation of individual messages.
DEFINED-LS does so by forcing debugging networks to
execute in a lockstep fashion. To reproduce nondeter-
ministic bugs, DEFINED guarantees that DEFINED-LS
deterministically reproduces DEFINED-RB’s execution.
Deterministic execution [4, 6, 12, 27] and interactive
stepping [11, 13] have been widely applied in non-
control-plane software to ease interactive debugging.
These techniques, however, to our best knowledge, can-
not operate efficiently and effectively with control-plane
software. Our system, DEFINED, is a debugger for
control-plane software that address the problem of in-
teractive debugging in modern wide-area networks. To
demonstrate the utility of DEFINED in assisting trou-
bleshooters analyzing ordering and timing bugs, we use
DEFINED to reproduce the discovery of known bugs in
two popular open-source control-plane implementations,
XORP and Quagga. Our evaluation on Emulab [31] with
Rocketfuel topologies [28] and Tier-1 ISP traces shows
that very little overhead is required to make production
networks deterministic and that performance in debug-
ging networks has sufficiently low response time for in-
teractive use.

2 System Design
In this section, we describe the details of the design
of DEFINED. We first give an overview of the sys-
tem (Section 2.1). Then, we describe DEFINED-RB
(Section 2.2), which instruments a production network

to make its execution deterministic. We next show
DEFINED-LS (Section 2.3), which allows a debugging
network to be “stepped” through in a manner controlled
by a human troubleshooter. We then conclude the section
by discussing some properties and limitations of our de-
sign (Section 2.4 and Section 2.5). To keep the descrip-
tion concise, in this section, we focus on how our system
ensures deterministic message events, and in Section 3,
we will describe how DEFINED can be extended to pro-
vide deterministic timer events.

2.1 Interactive Network Debugging
We first clarify the benefits of a tool for interactive
control-plane software debugging. Under our design,
control-plane software runs on top of DEFINED, a user-
space substrate, instead of directly on an operating sys-
tem. Complementing existing log-based systems [10, 30,
32] that passively record software activities, we instru-
ment control-plane software in a production network and
actively manipulate ordering and timing of internal mes-
sage receptions. The manipulation ensures network-wide
execution is deterministic. When human troubleshooters
observe any control-plane software bug in a production
network, they can reproduce the bug deterministically in
a debugging network with only partial recordings, and
analyze it through the debugging coordinator with the
interactive stepping functionality.
Our design consists of two key components, DEFINED-
RB, which makes control-plane execution deterministic
by masking internal nondeterminism and DEFINED-LS,
which introduces distributed lockstep execution for inter-
active debugging.
DEFINED-RB: Debugging a control-plane system be-
comes much easier if the operation of that system is de-
terministic. Unfortunately, existing control-plane soft-
ware incorporates a high degree of internal randomness
in its execution, arising from varying message orderings,
delay and jitter, and other variables arising from dis-
tributed execution. To address this, our design manip-
ulates the operation of a production network itself, to re-
move all internal nondeterminism and cause it to run in
a deterministic manner.
Each node intercepts message and timer events before
delivering them to the control-plane software, and then
uses a pseudorandom ordering function to determine the
exact orderings and timings at which to send the events
up to the software. Instead of adopting a stop-and-wait
design [12], we employ speculative execution to reduce
overheads: upon each event occurrence, a node uses its
pseudorandom ordering function to check whether the
order in which the events appeared so far follows the
computed pseudorandom sequence. If the order is the
same as the pseudorandom sequence, the node delivers
the event to the control-plane software. On the other

2

USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  349

hand, if the order is different from the pseudorandom se-
quence, the network is “rolled back” to an earlier state,
and played forward with the correct ordering. To fur-
ther optimize the performance, we construct the pseu-
dorandom ordering function according to the network
topology, so that the computed pseudorandom sequence
matches the event sequence that most frequently occurs.
Consequently, the number of rollbacks is minimized.
DEFINED-LS: The tremendous load, scale, and rates
of change of modern networks make it hard for a human
troubleshooter to build an understanding of the entire
control-plane system’s state. Debugging such a system
becomes much easier if the troubleshooter has time to in-
vestigate and manipulate state, and slowly step through
the operation of individual messages.
To achieve such interactive stepping of software in wide-
area networks, a runtime coordinator manages execution
across the distributed set of processes making up the
control-plane software. This is done by logically divid-
ing the software’s execution into a series of steps. These
steps may be chosen at various levels of granularity (per-
event or per-path-change). The coordinator then runs the
software in virtual time, executing it in a “lockstep” fash-
ion across nodes (alternating between event-sending and
event-processing phases). Distributed user-space sub-
strates replay events to their local software and collect
outbound events to be sent in the next cycle. Nodes use
a distributed semaphore to coordinate. This approach
controls execution, and deterministically reproduces the
software’s behavior by adopting the exact pseudorandom
ordering function used by the production network.

2.2 Interfacing with Production Networks
To remove internal nondeterminism from a production
network, DEFINED-RB uses speculative execution to
ensure determinism while not significantly slowing down
network execution. It does this by speculatively letting
messages be sent to the software in the order in which
they are received. To make sure the ordering can be re-
produced, nodes in the network locally compute a pseu-
dorandom ordering over these messages, and if messages
do not arrive in the computed pseudorandom order, the
node is rolled back to the point at which the first message
arrived out of sequence, and messages are then played
back in the correct order. Rolling back slows down pro-
cessing, but with appropriate selection of the pseudoran-
dom sequence, we can make rolling back rare. In partic-
ular, we design an optimized pseudorandom sequence to
match the common-case ordering of events we would ex-
pect to see in the production network. Overall, we need
to solve two problems: (i) we need to come up with a
pseudorandom ordering that matches the common-case
ordering of events; (ii) we need to perform the rollback
when the predicted ordering is violated.

W Z

X

Y

ma

da = lwx

mb

mc

db = da + lxz = lwx + lxz

dc = db + lzy = lwx + lxz + lzy

Figure 1: Example: calculating di.

Computing a message ordering: There are many ways
to compute the pseudorandom ordering, for example us-
ing straightforward hashing and permutation. However,
to ensure correctness, the pseudorandom ordering needs
to maintain causal relationships between messages. In
addition, every time the pseudorandom ordering diverges
from the production network operation, DEFINED-RB
requires a rollback. Hence, for efficiency reasons, we
would like a pseudorandom ordering function that mini-
mizes the number of rollbacks that are needed.
To do this, we construct an ordering function that reflects
the expected ordering of message arrivals. The func-
tion takes as input a set of messages {m1,m2, . . . ,mk}
received at a node n, where each message mi is anno-
tated with (i) ni, the identifier of the originating node that
generated the first message of the causal chain; (ii) si, a
strictly increasing sequence number assigned by the orig-
inating node; (iii) di, a deterministic estimate of the delay
from the originating node ni to the local node n.
To clarify the meaning of each field, Figure 1 illus-
trates how DEFINED-RB calculates ni, si, and di for
three causally related messages. For each link (ni,n j),
DEFINED-RB measures the average link delay li j before
launching the control-plane software. When a node gen-
erates a message due to external events (e.g., a withdraw
message when a link goes down), it is called the origi-
nating node of the message. The node annotates the mes-
sage with ni equal to its id, si equal to the current value
of a strictly increasing counter, and di equal to the aver-
age link delay of the outgoing link. On the other hand,
assume a node generates a message mi due to another in-
ternal message m j (e.g., a route update when receiving a
message from another node in the system), where m j is
annotated with n j, s j, and d j. The node annotates mes-
sage mi with ni equal to n j, si equal to s j, and di equal to
d j plus the average link delay of the outgoing link. In the
figure, we assume ma is generated due to external events,
while mb is generated due to ma, and mc is generated
due to mb. Then, all messages have the same originating
node W and sequence number. In addition, da equal to
lwx, and db and dc are calculated by increasing da and db
by lxz and lzy, respectively.1

1We use di to retain causal relationships by never rolling back mes-

3

350  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

When receiving messages from others, a node uses the
ordering function to first sort the messages by di values.
It then sorts messages with identical di values by their
ni values, and messages with identical ni values with
their si values. We sort messages by di before si, since
for control-plane software, messages originating from a
node can take different paths. The resulting function has
three key properties: (i) it is deterministic, as it will al-
ways compute the same outputs given the same external
events; (ii) it is consistent, as it retains causal relation-
ships between messages; (iii) it is closely matched to the
common-case ordering when originating nodes send out
messages at roughly the same time, since di indicates the
average arrival time of a message.
To further avoid long chains of rollbacks, DEFINED-
RB makes sure the ordering function is applied indepen-
dently to messages originated at roughly the same time.
To do this, we divide time into distinct steps, group ex-
ternal events appearing in a single timestep together, and
then independently impose the ordering function men-
tioned above on the messages corresponding to each
timestep. We further bound the length of each causal
chain within a timestep: messages over this bound are
assigned to the next timestep. All messages in a sin-
gle timestep correspond to a single group. Each group
is associated with a distinct group number. One node is
selected to periodically broadcast special packets called
beacons which specify the group numbers to be used by
the rest of the nodes in the network. (Leader election
algorithms [22] are used to make sure the system can
tolerate failures.) Group numbers are strictly increasing.
Messages triggered by an external event are tagged with
the current group number, while output messages gen-
erated due to an internal message are assigned the same
group number as the internal message.2

In our implementation, we assign fixed values of di based
on average link delay between nodes rather than dynam-
ically estimating it. However, if desired, the link delay
values may be periodically re-estimated, as long as they
are applied and recorded at group boundaries.

Detecting if a rollback is necessary: Each node main-
tains a sliding window history of messages it received
since the last group number update, as well as a list of
messages it sent since the last group number update. The
history is sorted by the ordering function. An entry in
the history can be removed after all messages that might
be ordered before it have arrived. Depending on the node

sages with lesser di values. Therefore, to retain causal relationships
for a message with multiple causal parents, we only need to record the
largest di value among all its parents.

2A large variation in distances from nodes to the beacon source may
cause unnecessary rollbacks. We can address this by dividing the net-
work into smaller subnetworks, and applying DEFINED-RB to each
subnetwork independently.

W Z

X

Y

mdmc

mbma

Arrival order: mb md mc ma

Computed order: mb ma md mc

timeRollback set

Figure 2: Example: detecting and performing rollback.
In this example, we assume all messages originate from
node W , and all links have the same expected delay.
Thus, the order of the messages are determined by the se-
quence numbers. We assume messages mb, ma, md , and
mc have sequence numbers 0, 1, 2, and 3, respectively.

W Z

X

Y

mdmc

mbma

V

1. mb md mc

2. rollback(md and mc)
3. ma md mc

S

U

T

Figure 3: Example: rolling back across nodes.

performance, our experience shows that in a modern pro-
duction network, we can generally remove an entry af-
ter two times the maximum propagation time across the
network.3 Whenever a node receives a new message, it
passes the contents of this window to the ordering func-
tion to determine if the new message has arrived in the
correct pseudorandom sequence.
If the message is received in the correct order, it is sent
to the software. Otherwise, the node must roll back the
node’s state to the first point where the sequences diverge
and replay received messages in the correct order. There
are two scenarios in which a node needs to roll back its
state: (i) when receiving messages that have earlier group
numbers; (ii) when receiving messages that have the cur-
rent group number, but don’t arrive in the correct pseudo-
random sequence. For example in Figure 2, if node Z re-
ceives messages in the order {mb,md ,mc,ma} (message
mb received first), but upon receiving ma it computes the
sequence {mb,ma,md ,mc}, it would need to roll back to
the point just before it received message md (i.e., it would
need to roll back messages md and mc). Note the pseudo-
random ordering is computed on every message arrival,
for example, here, the node would compute {mb} after
receiving message mb, then compute {mb,md} after re-
ceiving message md , then compute {mb,md ,mc} after re-
ceiving message mc, but then compute the final sequence
{mb,ma,md ,mc} after receiving ma.

3We only need an upper bound of the maximum propagation time.
In our implementation, we estimate this bound with the sum of the
average propagation time and four times its standard deviation.

4

USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  351

Performing the rollback: Finally, performing a roll-
back at a node may require “unsending” messages pre-
viously sent by it to its neighbors. To do this, the node
keeps a history of previous messages sent within the last
few group intervals. On rolling back, the node informs
neighbors of the range of messages that should be rolled
back. In the example in Figure 3, node Z had previously
sent node V messages {mb,md ,mc}. On performing the
rollback to before receiving md , node Z tells node V to
roll back the messages md and mc, and then sends mes-
sages {ma,md ,mc} in the correct order. This process
continues downstream: since node V had previously for-
warded messages {md ,mc}, it must instruct node U and
node T to roll them back as well. Messages at node S are
rolled back in a similar manner.
To roll back misordered messages, we restore the state of
the control-plane software, and if required, inform neigh-
bors about such a rollback to ensure that all messages
that are causally related to the rolled back messages are
themselves rolled back.

2.3 Stepping through Debugging Networks
In a network instance created to support network debug-
ging, mechanistic delays and overheads are not signif-
icant concerns. Therefore, in this environment, we in-
troduce DEFINED-LS which allows interactive stepping
by forcing the network to execute in a lockstep fashion.
This is done by explicitly queuing messages and timer
events received by a node, and playing them at coordi-
nated intervals using a predetermined ordering function
that is exactly the same as that used in the production net-
work (Section 2.2) to ensure determinism. To make the
network run in lockstep, our system instructs each node
to cycle through two phases: a transmission phase and
a processing phase. The system coordinates all nodes
with a mechanism similar to a distributed semaphore to
make sure they are in the same phase at the same time.
To ensure determinism, DEFINED-LS replays partially
logged external events according to the group numbers
they received in the production network. In a debugging
network, one group of events is replayed at a time. When
all messages are output, the next group is replayed. The
nodes use TCP for communication in order to ensure that
messages are not lost, which is necessary for determin-
ism.4

Transmission phase: In this phase, each node trans-
mits all messages generated in the previous processing
phase. That is, the node sends out messages in a send
buffer (filled in the processing phase) and stores all mes-
sages received in a receive buffer. DEFINED-LS then
uses the same ordering function used in the production

4Alternatively, we can also record these message-loss events, and
replay them in the debugging network.

network over the received messages to compute the order
in which the messages are to be delivered to the applica-
tion. Hence, the messages in the receive buffer are sorted
in the same way as they are received in the production
network, thereby ensuring the same ordering of events.
This results in the debugging network reproducing the
execution of the production network. To indicate readi-
ness to transition to the processing phase, a node sends a
marker packet when it has no further messages to send.

Processing phase: In this phase, each node processes
all messages received during the previous transmission
phase. In particular, the node sends all messages in the
receive buffer up to the control-plane software, and en-
queues the software’s generated messages into the send
buffer. The node moves to the transmission phase after
the control-plane software processes all messages in the
receive buffer.

2.4 System Properties
DEFINED has two provable properties: (i) DEFINED-
LS exactly reproduces the execution of the production
network instrumented by DEFINED-RB; (ii) even with
the presence of cascading rollbacks (i.e., rollbacks across
nodes), DEFINED-RB eventually terminates. The first
property is the core of our system, as it provides repro-
ducibility of network execution. The second property
guarantees there will be no deadlocks when a production
network is instrumented by DEFINED-RB. We present
proofs of these two properties in a technical report [18].

2.5 Limitations
Supporting incremental deployment: DEFINED as-
sumes control over all devices that need to be debugged.
For example, when using our design to debug an Open
Shortest Path First (OSPF) network, all OSPF-speaking
routers should be instrumented with DEFINED. This
may pose a challenge in environments in which the net-
work operator can only instrument subsets the network,
or needs to interface with adjacent networks not un-
der the operator’s control. Similar issues can also oc-
cur between the interactions of control plane and data
plane, e.g., external rollbacks might be required when
the control-plane software attempts to modify the data-
plane forwarding table. To deal with these situations,
DEFINED records inputs at interfaces with external sys-
tems. Our system can then replay these partial record-
ings at a later point in time to reproduce execution. In
addition, we can avoid external rollbacks by employing
buffers at border nodes as proposed in earlier work [14].

Inferring causality in closed-source software: An-
other assumption of our design is that the source code of
the software is available, as our design requires the abil-
ity to infer causal relationships between incoming mes-

5

352  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

sages and outgoing ones. Despite this assumption, DE-
FINED is still highly useful for control-plane software
developers as we will demonstrate with case studies in
Section 4. In fact, it took a graduate student only one
day to instrument the control-plane software in these case
studies. In addition, if developers are willing to incor-
porate DEFINED in their software, their customers can
still experience the benefits of deterministic network ex-
ecution even when the shipped software is closed-source.
Moreover, work on tracing information flow through ap-
plication binaries [7] can help enable our design directly
on closed-source software.

Imposing determinism on a single node: To provide
deterministic network execution, DEFINED also needs
to eliminate internal nondeterminism triggered by events
on a local node (e.g., thread scheduling, memory reorder-
ing). In Section 4, we describe a specific implementation
that removes internal nondeterminism triggered by local
events from XORP and Quagga. Fortunately, existing
works [2–4] provide more general solutions to this prob-
lem, and DEFINED can be combined with these works to
ensure determinism of general control-plane software.

3 Implementation
To simplify deployment and operate with existing soft-
ware bases, we implement DEFINED as a user-space
“shim layer” in the form of a library consisting of func-
tion wrappers to intercept message sending, message re-
ceiving, and timer calls.
Our implementation addresses three key challenges:

Providing interfaces to mark causal relationships:
As discussed in Section 2.2, DEFINED-RB must deter-
mine which messages sent by the control-plane software
are causally related to messages that are received by the
software. This information is used to determine which
messages need to be “unsent” when the pseudorandom
sequence is violated. Our implementation overcomes
this challenge by providing interfaces for developers to
tag a message with a unique identifier when it is origi-
nated, and extract the identifier from the message when
it is received. With our design in Section 2.2, develop-
ers only need to mark “immediate” causal relationships
between messages (causal relationships of messages that
are triggered by the same external event). Then, DE-
FINED will use these immediate relationships to gener-
ate the correct annotated fields and sort messages in the
correct order. When instrumenting XORP and Quagga,
we track all immediate causal relationships by passing
the identifier of an incoming message from message re-
ceiving functions, to message processing functions, and
finally, to message sending functions. This is done by
instrumenting these message related functions in the ap-
plication software with an extra parameter.

Rolling back: After obtaining a pseudorandom order-
ing, a node needs to rollback the state of the software
when the ordering is violated. To do this, nodes perform
three steps: (i) check-point states between message re-
ceipts, (ii) restore a particular state, and (iii) play back
messages in the given pseudorandom ordering.
To accomplish these steps, DEFINED employs the
fork() system call. When a message is received, the
node inserts the message into the history as described in
Section 2.2 and, at the same time, checks if the pseu-
dorandom ordering is violated. If the message arrival
complies with the ordering, the node invokes the fork()
system call. Then, a piece of shared memory is estab-
lished between the parent and child processes for noti-
fications of possible rollbacks. If the received message
violates the ordering, the node uses the shared memory
to instruct the process ID it wishes to roll back to. As
discussed in previous literature [24], a normal fork() is
not sufficient to ensure determinism. Specifically, DE-
FINED also saves the state of any open files and pending
signals, and manipulates process and thread IDs. After
restoring its state, the node plays back the received mes-
sages according to the pseudorandom ordering.
While using fork() may seem somewhat heavyweight,
we found its overhead to be low enough in our imple-
mentation that pursuing other techniques did not seem
necessary for common environments (modern OSs use
copy-on-write to reduce overheads). If desired, the over-
head of rollback may be reduced further, for example
by only calling fork() for every several messages, and
rolling back to the last fork() before the sequences di-
verge, or by using standard application-specific check-
pointing techniques (we investigate some optimizations
in Section 5).
Dealing with timers: The mechanisms described above
are sufficient to reproduce message events. However, to
reproduce timer events in our design, we need to ensure
the rate at which the process perceives time as progress-
ing is the same, every time the system is run. To do this
we run control-plane software in virtual time: instead of
triggering timers with the system clock, we make timers
expire according to a counter that advances determinis-
tically with respect to the message events. This enables
timer events to be reproduced in our system. However,
we would like to ensure that we do not substantially
change behavior of the protocol when doing this. For
example, consider the flap damping algorithm in Bor-
der Gateway Protocol (BGP) [23], which “holds down”
unstable routes for a certain period of time. When we
run flap damping in virtual time, we would like BGP
to hold down routes for a similar amount of time, to
avoid making the network less or more stable. To achieve
this, we use a virtual time that is deterministically repro-
ducible, yet progresses at a rate similar to “real” wall-

6

USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  353

clock time. We do this by using a deterministic counter
for virtual time that is advanced on receipt of every bea-
con message, with the rate of advancement between bea-
cons equal to the configured beacon inter-arrival time. In
our implementation, we broadcast one beacon message
every 250 ms, corresponding to one unit of virtual time.

4 Case Studies
To demonstrate the practicality of DEFINED, we instru-
ment the BGP module in XORP 0.4 and the Routing In-
formation Protocol (RIP) module in Quagga 0.96.5 with
our system. We use DEFINED to reproduce discovery of
two known bugs in these control-plane implementations:
an ordering bug in the BGP path selection process and
a timing bug in the RIP timer refresh procedure. These
case studies demonstrate how an operator might utilize
DEFINED to troubleshoot control-plane bugs after ob-
serving erroneous behaviors. We then conclude this sec-
tion with a discussion of our experience.
Ordering bug in XORP BGP path selection: A BGP
module should select the best path among all paths it
receives from its peers. To do so, it checks all valid
paths against a list of rules. There are dozens of rules
in the BGP path selection process, but to understand
the XORP bug, we need to know only three of them.
First, the selection process compares the AS path length
of each path, and those with shortest AS path length
are selected as preferable paths. Then, these preferable
paths are grouped by the neighboring AS of each path.
Within each group, paths with lowest multi-exit discrimi-
nator (MED) are selected. All selected paths are checked
against the last rule that compares the interior gateway
protocol (IGP) distance of the paths. Finally, the path
with the lowest IGP distance is selected as the best path.
One peculiar aspect of this process is the MED rule. Be-
cause the rule checks the MED attribute only within a
group of paths that have the same neighboring AS, it cre-
ates a non-transitive ordering among paths. For exam-
ple, as illustrated in Figure 4, an AS with three routers
R1, R2, and R3 peers with another two ASs at external
routers ER1, ER2, and ER3. These external routers ad-
vertise three paths p1, p2, and p3. Through neighboring
routers R1 and R2, these paths eventually arrive at R3.
All three paths have the same AS path length, while p1
and p2 have the same neighboring AS. In addition, p1
has a MED attribute of 10, p2 has 5, and p3 has 20. Fi-
nally, p1 has an IGP distance of 10, p2 has 30, and p3
has 20. Under these settings, when R3 considers only a
pair of paths each time, p2 wins over p1, p3 wins over
p2, but p1 wins over p3. Thus, to avoid choosing a less
preferable path, a BGP module on R3 should compare all
valid paths whenever the process is executed and select
p3 as the best path.
Version 0.4 of the XORP BGP module, however, makes a

ER1
ER2 ER3

R1

R3

R2
p1

p2
p3

Figure 4: An illustration of a known bug in the BGP
module of XORP 0.4.

mistake here. When receiving an incoming path, it only
compares the path with the current best path. As a re-
sult, the outcome of the selection process implementa-
tion can differ across executions: if the ordering of in-
coming paths at R3 is p1, p2, and p3, then p3 is selected
as the best path; unfortunately, if the ordering of the in-
coming path is p1, p3, and p2, then p2 is incorrectly se-
lected as the best path.
Using only partial recordings on border routers and gdb
to troubleshoot this bug, an operator enables logging for
both external and internal network nondeterminism at R1
and R2 in Figure 4. When the bug is triggered, the op-
erator replays log contents to reproduce the bug within
a debugging network. However, because internal nonde-
terminism is recorded only at border routers, the set of
paths can still reach router R3 in a nondeterministic fash-
ion. The operator faces complications when experiment-
ing with execution in the debugging network due to the
inability to mirror behavior of the production network.
To address this, we use DEFINED to troubleshoot this
XORP bug. We first use six machines to emulate the
network depicted in Figure 4 and load them with the ver-
sion of XORP containing the bug. We intercept nonde-
terministic system calls from XORP to remove internal
nondeterminism triggered by local events. We then run
the production network until the bug occurs. During the
process, we are only required to enable partial recordings
of external events at R1 and R2 but not recordings of in-
ternal events. Upon identifying the bug, we then activate
DEFINED-LS in the debugging network. Since our sys-
tem ensures that execution of both these networks match
precisely, when we replay the logged external events and
run the debugging network, the bug immediately occurs.
We then use DEFINED-LS’s stepping functionality, to
find the exact point at which XORP begins behaving in-
correctly. After understanding the bug, we implement
a patch for XORP and validate it in the debugging net-
work. Finally, we install the patch in the production net-
work. Deterministic execution again guarantees that all
workarounds we create in the debugging network will
behave the same way in the production network.

Timing bug in Quagga RIP timer refresh: To handle
network dynamics, RIP maintains a timer for each route

7

354  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

R1

R2(Main)

R3(Backup)

Destination

Figure 5: An illustration of the known timing bug in the
RIP module of Quagga 0.96.5.

in its routing table. When receiving route announce-
ments, if the route is already in the routing table, RIP
updates the timer for the route. When a timer expires,
RIP removes the route from the routing table. This mech-
anism ensures that the routing table contains only valid
paths.
One subtle point of this process is that when comparing a
route announcement with a route in the routing table, RIP
must check both the destination field as well as the next-
hop field. The Quagga RIP module, however, makes a
mistake by only considering the destination field. As
a result, the implementation contains a timing bug that
triggers a black hole when certain route announcements
are received at particular timings.
As illustrated in Figure 5, a router R1 connects to two
other routers R2 and R3. Both R2 and R3 provide R1
routes to the same destination, and R2 serves as the main
router, while R3 is the backup. All routers are running
RIP, so what should happen is that R1 maintains the route
through R2 in its routing table and refreshes the timer
only when receiving announcements from R2. When R2
goes down, due to the lack of periodic announcement,
the timer for the route will eventually time out. Then, R1
will remove the route through R2 from its routing table
and pick up the route through R3.
However, because the RIP implementation in Quagga
0.96.5 checks only the destination field when comparing
announcements with routes in the routing table, R1 will
refresh the timer for the route through R2 when receiv-
ing announcements from not only R2 but also R3. In this
case, when R2 goes down, two scenarios can happen. If
announcements from R3 reach R1 after the route through
R2 times out, then R1 correctly picks up the new route
through R3. Unfortunately, if announcements from R3
reach R1 before the route through R2 times out, then R1
will incorrectly refreshes the route through R2 in the rout-
ing table. Even worse, the periodic announcements from
R3 will keep the invalid route through R2 in the routing
table and effectively create a black hole.
Using partial recordings of only message events and gdb
to troubleshoot this bug can take a lot of time and re-
sources, due to nondeterministic timer events embedded
in control-plane software. For example, when using gdb,
a human troubleshooter will experience timers going off
unexpectedly while stepping through one instance of the
Quagga RIP module on one of the routers. Moreover, to

be able to reproduce the bug, it is also challenging for the
human troubleshooter to manually coordinate the timing
of message receipt and timer expirations.
We use four machines to emulate the network in Fig-
ure 5 and load them with the version of Quagga con-
taining the bug. Fortunately, the same approach we used
to troubleshoot the BGP path selection bug can address
the RIP timer refresh bug, since timing events were also
triggered deterministically in networks instrumented by
DEFINED. As a result, during the debugging process,
timers will not go off unexpectedly even when we step
through the network execution at different paces.
Discussion: As shown in these case studies, DEFINED
actively manipulates the ordering and timing of internal
network events, and it makes control-plane software eas-
ier to test and debug. Another property that comes with
the active manipulation, however, is that some network
execution paths will never occur, and hence, some bugs
will never appear in an instrumented network. For ex-
ample, as we were debugging the XORP bug, we no-
ticed that if the ordering function in DEFINED sorted
the paths in the order of p1, p2, and p3, the bug would
not happen in the production network nor in the debug-
ging network. This property, though, still protects instru-
mented networks from the bug, since the deterministic
network execution guarantees that the bug will never ap-
pear.5 Nevertheless, a troubleshooter may choose to not
instrument the production network with DEFINED-RB,
but to still leverage the interactive stepping functionality
of DEFINED-LS. Fortunately, we can apply different or-
dering functions in DEFINED-LS, and then we will be
able to examine all possible execution paths in the de-
bugging network.

5 Evaluation
While DEFINED simplifies the task of control-plane de-
bugging, it comes with several costs. In order to measure
this overhead, we leverage Emulab [31] and take a two-
pronged approach. First, to evaluate the performance of
DEFINED in a practical setting, we perform experiments
using topologies from Rocketfuel [28] and traces from a
Tier-1 ISP (Section 5.2). Then, to study scalability of our
system, we present results under a wide range of topolo-
gies and workloads (Section 5.3).

5.1 Methodology
We first give an overview of our experimental approach:
Topologies and traces: To improve the realism of our
evaluation, we leverage topologies measured with Rock-
etfuel and OSPF traces collected at a Tier-1 ISP network.

5On the other hand, it is possible that DEFINED avoids some net-
work execution paths with particular performance characteristics. In
this case, an operator can modify the ordering function to force such
paths to occur, potentially trading performance for more rollbacks.

8

USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  355

We use PoP-level topologies from Rocketfuel including
Sprintlink (43 nodes), Ebone (25 nodes), and Level3 (52
nodes). (Results from these topologies are similar, so we
only present Sprintlink results due to space constraints.)
Then, the OSPF traces are collected from a Tier-1 ISP
area 0 network consisting of 324 nodes during a 2 week
period (November 1st to 14th, 2009), resulting in 651
OSPF network events. We post-process these traces to
reproduce the network dynamics over time, and then re-
play this workload in our experiments by randomly map-
ping events onto Rocketfuel topologies. Finally, to inves-
tigate the performance of DEFINED at scale, and over a
wider range of topologies, we consider synthetic graphs
constructed by the BRITE topology generator. Over-
all, we focus most of our experiments on intra-domain
routing as opposed to inter-domain routing, as the lower
propagation delays and tighter requirements on fast reac-
tion make our overheads more visible. Unless otherwise
specified, we run our implementation with the XORP
OSPF router daemon, version 1.6.

Metrics: Since DEFINED-RB and DEFINED-LS have
different purposes, we are concerned with different “suc-
cess metrics” for each. As DEFINED-RB instruments a
production network, we measure its control, delay, and
memory overheads. On the other hand, as DEFINED-LS
is designed for use in a debugging network for interac-
tive stepping, overheads are of less concern (though re-
tain some importance). Hence, we measure its response
time for user-driven commands (e.g., a step command).

5.2 Performance
To characterize the performance overheads of DE-
FINED, we replay network traces against our implemen-
tation deployed on Emulab. We evaluate the design on
several scales. First, we collect network-level results on
our implementation in the Rocketfuel Sprintlink topol-
ogy. We then gather node-level microbenchmarks to un-
cover the sources of bottlenecks in our implementation.

Network-wide experiments: First, we replay the Tier-1
ISP workload against our XORP-based implementation
and measure the control overhead per node, for each
event in the trace. Figure 6a shows that a small num-
ber of nodes experience more control overhead than oth-
ers, as the rollback procedure requires additional control
packets to be exchanged between nodes. Fortunately, in
all cases, the percentage of these nodes is less than 1%.
Then, we measure the time for the network to converge
(the time from when a failure is detected, to when all
nodes are updated with their correct routing state). To
stress our design, we reduce XORP’s hello and retrans-
mit intervals to be as small as possible (1 second). We
compare against an unmodified XORP implementation.
We found no statistically significant difference between

the two. However, to improve stability, XORP’s default
OSPF configuration introduces a 1-second delay between
when routing messages are received and when they are
propagated on (due to the retransmit timer). To inves-
tigate whether this delay was the reason why our per-
formance overheads could not be seen, we modified the
XORP code to eliminate this 1-second delay. After doing
this, the delays became more apparent: Figure 6b shows
the network-wide convergence time is still close between
the two, but our implementation has additional delay in
a small number of cases, resulting in a longer tail. In
addition, this figure also demonstrates that our technique
in imposing local determinism on control-plane software
(Section 4) has negligible overhead.
Finally, we measure the response time of DEFINED-LS,
as it is designed to support interactive debugging and
should respond quickly to commands from the human
troubleshooter. Figure 6c shows the cumulative distribu-
tion function of the response time to execute a single step
command of DEFINED-LS (where a single step is mea-
sured as the time to complete a transmission phase and
a processing phase as described in Section 2.3). In this
scenario every step requires less than a second.

Single-node experiments: To investigate the source
of the tail, we instrumented a single node of our im-
plementation to collect microbenchmarks. We compare
XORP running under DEFINED-RB with an unmodified
instance of XORP. In particular, we measure the amount
of time required to perform a rollback (Figure 7a), as
well as the time required to process packets without roll-
backs (Figure 7b). We found that rollback code was trig-
gered rarely, but, as expected, when it was triggered, it
introduced overhead. To reduce the rollback overhead,
instead of using fork() calls as described in Section 3
(FK), we manually intercepted memory writes (MI) us-
ing /proc/<pid>/mem to directly access the memory
of the process to emulate application-specific memory
management, and measured the overhead to only copy
changed bytes between the processes.6 With this opti-
mization, the median overhead for rollback is reduced to
around 0.6 ms (Figure 7a), making non-rollback over-
head the bottleneck. The variance observed in this figure
comes from the variance of fork() calls and the number
of events to be rolled back. Note that even the unopti-
mized implementation of rolling back may be tolerable
for certain protocols, e.g., BGP uses a timer to intention-
ally slow convergence for scalability purposes.7

To reduce the non-rollback overhead, we investigate two
optimizations. First, we try pre-forking (PF): instead of
performing the fork when the new packet arrives (TF),

6We use this optimization to identify the optimal bound of roll-
backs. It is not necessary for a system to do so to adopt DEFINED.

7The MRAI timer determines the minimum time between advertise-
ments of routes to a particular destination from a single BGP device.

9

356  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 10 20 30 40 50 60

Cu
m

ul
at

iv
e

Fr
ac

tio
n

Packets per Node

XORP
DEFINED-RB

(a)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Cu
m

ul
at

iv
e

Fr
ac

tio
n

Convergence Time [s]

XORP
DEFINED-RB

(b)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2

Cu
m

ul
at

iv
e

Fr
ac

tio
n

Response Time [s]

DEFINED-LS

(c)

Figure 6: Network-level results of Sprintlink topology with Tier-1 OSPF traces: (a) control message overheads of
DEFINED-RB; (b) delay of DEFINED-RB; (c) response time of DEFINED-LS.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 5 10 15 20 25 30 35

Cu
m

ul
at

iv
e

Fr
ac

tio
n

Processing Time [ms]

DEFINED-RB(MI)
DEFINED-RB(FK)

(a)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Cu
m

ul
at

iv
e

Fr
ac

tio
n

Processing Time [ms]

XORP
DEFINED-RB(TM)
DEFINED-RB(PF)
DEFINED-RB(TF)

(b)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 100 200 300 400 500

Cu
m

ul
at

iv
e

Fr
ac

tio
n

Memory [MB]

XORP
DEFINED-RB(PM)
DEFINED-RB(VM)

(c)

Figure 7: Node-level results of Sprintlink topology with Tier-1 OSPF traces: (a) rollback overhead, (b) non-rollback
overhead, and (c) memory overhead of DEFINED-RB.

we perform the fork after the packet is processed (to
prepare for the next packet). This causes forking to be
performed during idle cycles. However, this does not
completely remove the forking overhead, as due to copy-
on-write, the memory copy associated with the fork is
still delayed until the next packet is received. Hence,
as a heuristic, we overload malloc() to manually touch
memory (TM) on the heap when performing the pre-fork.
This improves performance further (Figure 7b).
Finally, to achieve its benefits, our approach also in-
curs some additional memory overhead. Figure 7c shows
the amount of virtual memory allocated to each process
(VM). We find it increases linearly with the number of
forked processes. However, some of this memory is not
instantiated in practice due to page sharing. To measure
the precise amount of physical memory allocated, we
monitor memory writes in /proc/<pid>/mem in Linux
(PM), and plot the memory actually instantiated by the
process. Since these processes share the vast majority
of memory contents, the amount of memory inflation is
small (less than 2% during the entire run).

5.3 Scalability
To investigate the performance of DEFINED at scale,
and over a wide variety of workloads, we leverage
BRITE topologies and synthetic events to investigate the
sensitivity of our results to network size and event rate.8

8Based on the nature of the bug, debugging can become difficult ex-
tremely fast as the network size increases. For nondeterministic bugs,

Control overhead: We first measure the control over-
head with BRITE topologies of varying sizes (Figure 8a).
We found that the delay-sensitive pseudorandom order-
ing optimization described in Section 2.2 (OO) signifi-
cantly reduces the number of rollbacks (and hence mes-
sage overhead) of DEFINED-RB compared to random
orderings (RO). Regardless of the network size, each
node only needs to process at most 2 additional pack-
ets on average when using the optimized ordering (com-
pared to the unmodified XORP instance).

Delay overhead: Figure 8b shows the network-wide
convergence time of DEFINED-RB compared to the un-
modified XORP instance. Overall, we find that while
DEFINED-RB has a longer tail in its convergence time
distribution (Figure 6b), the average convergence time
between the two instances is comparable. In addition,
the optimized ordering (OO) again outperforms random
orderings (RO).

Response time: To evaluate DEFINED-LS, we measure
how its response time scales with network size. Figure 8c
shows that while the delay of DEFINED-LS increases
with network size, it increases slowly. In addition, even
when the network size grows to 80 nodes, the average
delay remains below 0.8 seconds.

Event rates: Finally, to investigate how DEFINED-RB
scales with event rates, we vary the number of events per
second and measure the convergence time. Figure 8d il-

a dozen nodes can already make debugging difficult.

10

USENIX Association 	 2013 USENIX Annual Technical Conference (USENIX ATC ’13)  357

 0
 10
 20
 30
 40
 50

 20 40 60 80

Nu
m

be
r o

f P
ac

ke
ts

Number of Nodes

DEFINED-RB(RO)
DEFINED-RB(OO)

XORP

(a)

 0
 2
 4
 6
 8

 10

 20 40 60 80

Co
nv

er
ge

nc
e

Ti
m

e
[s

]

Number of Nodes

DEFINED-RB(RO)
DEFINED-RB(OO)

XORP

(b)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 20 40 60 80

Re
sp

on
se

 T
im

e
[s

]

Number of Nodes

DEFINED-LS

(c)

 0
 1
 2
 3
 4
 5
 6
 7

 2 3 4 5 6 7 8 9 10

Co
nv

er
ge

nc
e

Ti
m

e
[s

]

Events per Second

DEFINED-RB

(d)

Figure 8: Scalability over network size: (a) control message overheads, and (b) delay of DEFINED-RB; (c) response
time per step of DEFINED-LS. Scalability over event rate: (d) convergence time of DEFINED-RB.

lustrates that the convergence time increases slowly as
the number of events per second increases, and the aver-
age convergence time is only a little bit over 2 seconds
when there are 10 events per second. This event rate
can easily cover all scenarios we observe in the Tier-1
traces. Nevertheless, when dealing with a higher rate
of events, DEFINED-RB can decrease its beacon inter-
vals to reduce the number of rollbacks and provide better
scalability (as described in Section 2.2).

6 Related Work
DEFINED builds upon existing works and provide new
primitives to support debugging of control-plane soft-
ware in large-scale networks. We leverage works on dis-
tributed algorithms [14, 22] to construct the foundations
of our design. Our work builds on two key areas:
Deterministic execution: DDOS [12] is the closest
work to our design. Similar to DEFINED, DDOS in-
troduces deterministic network execution by manipulat-
ing message orderings. DDOS runs the distributed soft-
ware in virtual time, annotates each message with a vir-
tual timestamp, and orders the messages by the source
nodes’ predefined identification numbers. When the dis-
tributed software tries to read a message from the net-
work, DDOS blocks the read request until the correct
message arrives. While DDOS provides deterministic
network execution to general software, the blocked reads
introduced by the algorithm can slow down software that
requires constant communications, such as control-plane
software. DEFINED improves the software’s perfor-
mance in a production network by leveraging speculative
execution and introducing an innovative message order-
ing that minimizes the number of rollbacks.
Jefferson introduced the concept of Virtual Time [14] to
provide synchronization for distributed software. Virtual
Time is used to determine the ordering of messages, and
rollbacks are used to make sure that messages are indeed
processed in that order. However, the concept of Vir-
tual Time cannot directly and efficiently be generalized
to all software. In DEFINED, the message ordering that
uses group numbers and estimated delays solidifies and
optimizes the Virtual Time idea in the context of control-
plane software.

Mechanisms enabling deterministic execution of paral-
lel programs have long been the focus of extensive re-
search. DPJ [6], Dthreads [19], Kendo [25], Tern [8],
Determinator [2], and dOS [4] have focused on pro-
viding deterministic execution of parallel software with
different approaches. DPJ supports determinism at the
language level, which ensures more control over the
software, but sacrifices generality. On the other hand,
Dthreads, Kendo, and Tern offer determinism at the li-
brary level, and Determinator and dOS provide deter-
minism at the OS level. These designs allow the system
to handle a wider range of software. DEFINED takes
a step further and guarantees deterministic execution of
distributed control-plane software. We leverage a user-
space library design, which allows us to support a wide
range of control-plane software.
Instead of providing deterministic execution, sev-
eral works such as Flashback [29], Friday [10],
OFRewind [32], Pip [26], ReVirt [9], TTVM [16], and
WiDS Checker [20] use comprehensive recordings to
ensure reproducibility of execution. However, as the
authors of Friday and OFRewind point out, the large
storage requirements for logs are one of the limitations
of these works. This limitation hinders these works
from scaling to large systems, because processing a large
amount of logs is prohibitively expensive. Our work
targets large-scale networks, where maintaining compre-
hensive logs may not be tractable.
Finally, DEFINED leverages speculative execution,
which has been previously used in many systems, for
example databases [15] and multi-processor environ-
ments [17]. Our work studies the applicability and effi-
ciency of such speculative techniques in large-scale net-
works. We, further, give several optimizations to reduce
the overhead of rollbacks.

Interactive control: DEFINED not only ensures that
a production network executes in a reproducible fash-
ion, but also enables the network operators to con-
trol the execution in a debugging network. Interac-
tive control has been used previously in several works.
PDB [13] combines gdb with another tool, DISH, to in-
teractively launch, manage, and troubleshoot distributed
processes. The effect is similar to using multiple gdb

11

358  2013 USENIX Annual Technical Conference (USENIX ATC ’13)	 USENIX Association

instances to troubleshoot multiple processes simultane-
ously. Similarly, Clairvoyant [33] supports source-level
troubleshooting in wireless sensor networks by binding
one gdb instance to each node. ndb [11] leverages the
OpenFlow architecture to provide debugging primitives
to software in Software-Defined Networks. Our work
complements these techniques by introducing interactive
debugging primitives targeting large-scale control-plane
software and enabling deterministic network execution.

7 Conclusion
The high complexity of large-scale networks coupled
with the rich variety of faults they undergo will require
humans to be “in-the-loop” to diagnose complex prob-
lems for the foreseeable future. To address this, we pro-
posed techniques for interactive debugging of control-
plane software. We specifically addressed two key chal-
lenges, namely, deterministic network execution and in-
teractive stepping. Our solution draws from previous
work and also proposes new algorithms. We validated
our work through a user-space “shim-layer” implemen-
tation and extensive evaluation using topologies from
Rocketfuel and traces from a Tier-1 ISP. Our results show
the practical feasibility and scalability of our approach.
Specifically, we leveraged our system to reproduce dis-
covery of known bugs in XORP and Quagga, and showed
its benefits over the common debugging method that uses
partial recordings and gdb.

Acknowledgements
We would like to thank our shepherd Meg Walraed-
Sullivan for insightful comments and suggestions. We
would also like to thank anonymous reviewers for valu-
able feedback. This work was supported by NSF CNS-
10-40391 and DARPA MRC.

References
[1] G. Altekar and I. Stoica. Focus Replay Debugging Effort on the

Control Plane. In HotDep, 2010.
[2] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient System-

Enforced Deterministic Parallelism. In OSDI, 2010.
[3] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman.

CoreDet: A Compiler and Runtime System for Deterministic
Multithreaded Execution. In ASPLOS, 2010.

[4] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Deterministic
Process Groups in dOS. In OSDI, 2010.

[5] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A Few
Billion Lines of Code Later: Using Static Analysis to Find Bugs
in the Real World. Commun. ACM, 53(2):66–75, Feb. 2010.

[6] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakil-
ian. A Type and Effect System for Deterministic Parallel Java. In
OOPSLA, 2009.

[7] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosen-
blum. Understanding Data Lifetime via Whole System Simula-
tion. In USENIX Security, 2004.

[8] H. Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable Deterministic
Multithreading through Schedule Memoization. In OSDI, 2010.

[9] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.
ReVirt: Enabling Intrusion Analysis through Virtual-Machine
Logging and Replay. In OSDI, 2002.

[10] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica. Fri-
day: Global Comprehension for Distributed Replay. In NSDI,
2007.

[11] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McK-
eown. Where is the Debugger for my Software-Defined Network?
In HotSDN, 2012.

[12] N. Hunt, T. Bergan, L. Ceze, and S. D. Gribble. DDOS: Taming
Nondeterminism in Distributed Systems. In ASPLOS, 2013.

[13] IBM. PDB parallel debugger. http://www-03.ibm.com/

systems/software/parallel/index.html.
[14] D. R. Jefferson. Virtual Time. ACM Trans. Program. Lang. Syst.,

7(3):404–425, July 1985.
[15] D. R. Jefferson and A. Motro. The Time Warp Mechanism for

Database Concurrency Control. In ICDE, 1986.
[16] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating

systems with time-traveling virtual machines. In USENIX ATC,
2005.

[17] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M.
Chen, and J. Flinn. Respec: Efficient Online Multiprocessor
Replay via Speculation and External Determinism. In ASPLOS,
2010.

[18] C.-C. Lin, V. Jalaparti, M. Caesar, and J. Van der Merwe. DE-
FINED: Deterministic Execution for Interactive Control-Plane
Debugging. Technical report, UIUC, 2013.

[19] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Efficient De-
terministic Multithreading. In SOSP, 2011.

[20] X. Liu, W. Lin, A. Pan, and Z. Zhang. WiDS Checker: Combating
Bugs in Distributed Systems. In NSDI, 2007.

[21] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity
Violations via Access Interleaving Invariants. In ASPLOS, 2006.

[22] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., 1996.

[23] Z. M. Mao, R. Govindan, G. Varghese, and R. H. Katz. Route
Flap Damping Exacerbates Internet Routing Convergence. In
SIGCOMM, 2002.

[24] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative Execu-
tion in a Distributed File System. In SOSP, 2005.

[25] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient
Deterministic Multithreading in Software. In ASPLOS, 2009.

[26] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah,
and A. Vahdat. Pip: Detecting the Unexpected in Distributed
Systems. In NSDI, 2006.

[27] S. R. Sarangi, B. Greskamp, and J. Torrellas. CADRE: Cycle-
Accurate Deterministic Replay for Hardware Debugging. In
DSN, 2006.

[28] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topolo-
gies with Rocketfuel. In SIGCOMM, 2002.

[29] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou. Flash-
back: A LightWeight Extension for Rollback and Deterministic
Replay for Software Debugging. In USENIX ATC, 2004.

[30] The tcpdump Team. tcpdump. http://www.tcpdump.org/.
[31] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,

M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An Inte-
grated Experimental Environment for Distributed Systems and
Networks. In OSDI, 2002.

[32] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann.
OFRewind: Enabling Record and Replay Troubleshooting for
Networks. In USENIX ATC, 2011.

[33] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse. Clairvoyant:
A Comprehensive Source-Level Debugger for Wireless Sensor
Networks. In SENSYS, 2007.

12

