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Abstract

In this paper, we present GridGraph, a system for pro-
cessing large-scale graphs on a single machine. Grid-
Graph breaks graphs into 1D-partitioned vertex chunks
and 2D-partitioned edge blocks using a first fine-grained
level partitioning in preprocessing. A second coarse-
grained level partitioning is applied in runtime. Through
a novel dual sliding windows method, GridGraph can
stream the edges and apply on-the-fly vertex updates,
thus reduce the I/O amount required for computation.
The partitioning of edges also enable selective schedul-
ing so that some of the blocks can be skipped to reduce
unnecessary I/O. This is very effective when the active
vertex set shrinks with convergence.

Our evaluation results show that GridGraph scales
seamlessly with memory capacity and disk bandwidth,
and outperforms state-of-the-art out-of-core systems, in-
cluding GraphChi and X-Stream. Furthermore, we show
that the performance of GridGraph is even competitive
with distributed systems, and it also provides significant
cost efficiency in cloud environment.

1 Introduction

There has been increasing interests to process large-scale
graphs efficiently in both academic and industrial com-
munities. Many real-world problems, such as online so-
cial networks, web graphs, user-item matrices, and more,
can be represented as graph computing problems.

Many distributed graph processing systems like Pregel
[17], GraphLab [16], PowerGraph [8], GraphX [28], and
others [1, 22] have been proposed in the past few years.
They are able to handle graphs of very large scale by ex-
ploiting the powerful computation resources of clusters.
However, load imbalance [11, 20], synchronization over-
head [33] and fault tolerance overhead [27] are still chal-
lenges for graph processing in distributed environment.
Moreover, users need to be skillful since tuning a cluster

and optimizing graph algorithms in distributed systems
are non-trivial tasks.

GraphChi [13], X-Stream [21] and other out-of-core
systems [9, 15, 31, 34] provide alternative solutions.
They enable users to process large-scale graphs on a sin-
gle machine by using disks efficiently. GraphChi par-
titions the vertices into disjoint intervals and breaks the
large edge list into smaller shards containing edges with
destinations in corresponding intervals. It uses a vertex-
centric processing model, which gathers data from neigh-
bors by reading edge values, computes and applies new
values to vertices, and scatters new data to neighbors
by writing values on edges. By using a novel parallel
sliding windows method to reduce random I/O accesses,
GraphChi is able to process large-scale graphs in rea-
sonable time. However, its sharding process requires
the edges in every shard to be sorted by sources. This
is a very time consuming process since several passes
over edges are needed. Fragmented accesses over several
shards are often inevitable, decreasing the usage of disk
bandwidth. X-Stream introduces an edge-centric scatter-
gather processing model. In the scatter phase, X-Stream
streams every edge and generates updates to propagate
vertex states. In the gather phase, X-Stream streams ev-
ery update, and applies it to the corresponding vertex
state. Accesses to vertices are random and happen on
a high level of storage hierarchy which is small but fast.
And accesses to edges and updates fall into a low level of
storage hierarchy which is large but slow. However, these
accesses are sequential so that maximum throughput can
be achieved. Although X-Stream can leverage high disk
bandwidth by sequential accessing, it needs to generate
updates which could be in the same magnitude as edges,
and its lack of support on selective scheduling could also
be a critical problem when dealing with graphs of large
diameters.

We propose GridGraph, which groups edges into a
“grid” representation. In GridGraph, vertices are parti-
tioned into 1D chunks and edges are partitioned into 2D
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blocks according to the source and destination vertices.
We apply a logical higher level of partitioning in run-
time. Chunks and blocks are grouped into larger ones
for I/O efficiency. Different from current vertex-centric
or edge-centric processing model, GridGraph combines
the scatter and gather phases into one “streaming-apply”
phase, which streams every edge and applies the gener-
ated update instantly onto the source or destination ver-
tex. By aggregating the updates, only one pass over the
edge blocks is needed. This is nearly optimal for itera-
tive global computation, and is suited to both in-memory
and out-of-core situations. Moreover, GridGraph offers
selective scheduling, so that streaming on unnecessary
edges can be reduced. This significantly improves per-
formance for many iterative algorithms.

We evaluate GridGraph on real-world graphs and
show that GridGraph outperforms state-of-the-art out-of-
core graph engines by up to an order of magnitude. We
also show that GridGraph has competitive performance
to distributed solutions, and is far more cost effective and
convenient to use. In summary, the contributions of this
paper are:

• A novel grid representation for graphs, which can
be generated from the original edge list using a fast
range-based partitioning method. Different from
the index plus adjacency list or shard representation
that requires sorting, edge blocks of the grid can be
transformed from an unsorted edge list with small
preprocessing overhead, and can be utilized for dif-
ferent algorithms and on different machines.

• A 2-level hierarchical partitioning schema, which
is effective for not only out-of-core but also in-
memory scenarios.

• A fast streaming-apply graph processing model,
which optimizes I/O amount. The locality of ver-
tex accesses is guaranteed by dual sliding windows.
Moreover, only one sequential read of edges is
needed and the write amount is optimized to the or-
der of vertices instead of edges.

• A flexible programming interface consisting of two
streaming functions for vertices and edges respec-
tively. Programmers can specify an optional user-
defined filter function to skip computation on inac-
tive vertices or edges. This improves performance
significantly for iterative algorithms that active ver-
tex set shrinks with convergence.

The remaining part of this paper is organized as fol-
lows. Section 2 describes the grid representation, which
is at the core of GridGraph. Section 3 presents the com-
putation model, and the 2-level hierarchical partitioning
schema. Section 4 evaluates the system, and compares it

with state-of-the-art systems. Section 5 discusses related
works, and finally Section 6 concludes the paper.

2 Graph Representation

The grid representation plays an important role in Grid-
Graph. We introduce the details of the grid format, as
well as how the fast partitioning process works. We also
make a comparison with other out-of-core graph engines
and discuss the trade-offs in preprocessing.

2.1 The Grid Format
Partitioning is employed to process a graph larger than
the memory capacity of a single machine. GraphChi de-
signs the shard data format, and stores the adjacency list
in several shards so that each shard can be fit into mem-
ory. Vertices are divided into disjoint intervals. Each
interval associates a shard, which stores all the edges
with destination vertex in the interval. Inside each shard,
edges are sorted by source vertex and combined into the
compact adjacency format. X-Stream also divides the
vertices into disjoint subsets. A streaming partition con-
sists of a vertex set, an edge list and an update list, so that
data of each vertex set can be fit into memory. The edge
list of a streaming partition (in the scatter phase) consists
of all edges whose source vertex is in the partition’s ver-
tex set. The update list of a streaming partition (in the
gather phase) consists of all updates whose destination
vertex is in the partition’s vertex set.

GridGraph partitions the vertices into P equalized ver-
tex chunks. Each chunk contains vertices within a con-
tiguous range. The whole P×P blocks can be viewed as
a grid, and each edge is put into a corresponding block
using the following rule: the source vertex determines
the row of the block and the destination vertex deter-
mines the column of the block. Figure 1(b) illustrates
how GridGraph partitions the example graph in Figure
1(a). There are 4 vertices in this graph and we choose
P = 2 for this example. {1, 2} and {3, 4} are the 2 ver-
tex chunks. For example, Edge (3, 2) is partitioned to
Block (2, 1) since Vertex 3 belongs to Chunk 2 and Ver-
tex 1 belongs to Chunk 1.

In addition to the edge blocks, GridGraph creates a
metadata file which contains global information of the
represented graph, including the number of vertices V
and edges E, the partition count P, and the edge type T
(to indicate whether the edges are weighted or not). Each
edge block corresponds to a file on disks.

GridGraph does preprocessing in the following way:

1. The main thread sequentially reads edges from
original unordered edge list and divides them into
batches of edges and pushes each batch to the task
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(a) An example graph (b) Grid representation

Figure 1: Organization of the edge blocks

Figure 2: Edge block size distribution of Twitter graph
using a 32×32 partitioning.

queue (to achieve substantial sequential disk band-
width, we choose 24MB to be the size of each edge
batch).

2. Each worker thread fetches a task from the queue,
calculates the block that each edge in this batch be-
longs to, and appends the edge to the correspond-
ing edge block file. To improve I/O throughput,
each worker thread maintains a local buffer of each
block, and flushes to files once the buffer is full.

After the partitioning process, GridGraph is ready to
do computation. However, due to the irregular struc-
ture of real world graphs, some edge blocks might be
too small to achieve substantial sequential bandwidth on
HDDs. Figure 2 shows the distribution of edge block
sizes in Twitter [12] graph using a 32× 32 partitioning,
which conforms to the power-law [7], with a large num-
ber of small files and a few big ones. Thus full sequential
bandwidth can not be achieved sometimes due to poten-
tially frequent disk seeks. To avoid such performance
loss, an extra merge phase is required for GridGraph to
perform better on HDD based systems, in which the edge
block files are appended into a large file one by one and
the start offset of each block is recorded in metadata. The
time taken by each phase is shown in Section 4.

2.2 Discussion
Different from the shard representation used in
GraphChi, GridGraph does not require the edges in each
block to be sorted. This hence reduces both I/O and com-
putation overhead in preprocessing. We only need to
read and write the edges from and to disks once, rather
than several passes over the edges in GraphChi. This
lightweight preprocessing procedure can be finished very
quickly (see Table 2), which is much faster than the pre-
processing of GraphChi.

X-Stream, on the other hand, does not require explicit
preprocessing. Edges are shuffled to several files accord-
ing to the streaming partition. No sorting is required and
the number of partitions is quite small. For many graphs
that all the vertex data can be fit into memory, only one
streaming partitions is needed. However, this partition-
ing strategy makes it inefficient for selective scheduling,
which can largely affect its performance on many itera-
tive algorithms that only a portion of the vertices are used
in some iterations.

It takes very short time for GridGraph to complete the
preprocessing. Moreover, the generated grid format can
be utilized in all algorithms running on the same graph.
By partitioning, GridGraph is able to conduct selective
scheduling and reduce uncessary accesses to edge blocks
without active edges1. We can see that this contributes a
lot in many iterative algorithms like BFS and WCC (see
Section 4), which a large portion of vertices are inactive
in many iterations.

The selection of the number of partitions P is very im-
portant. With a more fine-grained partitioning (which
means a larger value of P), while the preprocessing time
becomes longer, better access locality of vertex data and
more potential in selective scheduling can be achieved.
Thus a larger P is preferred in partitioning. Currently,
we choose P in such a way that the vertex data can be fit
into last level cache. We choose P to be the minimum
integer such that

V
P
×U ≤C,

where C is the size of last level cache and U is the data
size of each vertex. This partitioning shows not only
good performance (especially for in-memory situations)
but also reasonable preprocessing cost. In Section 4, we
evaluate the impact of P and discuss the trade-offs inside.

3 The Streaming-Apply Processing Model

GridGraph uses a streaming-apply processing model in
which only one (read-only) pass over the edges is re-
quired and the write I/O amount is optimized to one pass
over the vertices.

1An edge is active if its source vertex is active.
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3.1 Programming Abstraction
GridGraph provides 2 functions to stream over vertices
(Algorithm 1) and edges (Algorithm 2).

Algorithm 1 Vertex Streaming Interface
function STREAMVERTICES(Fv,F)

Sum = 0
for each vertex do

if F(vertex) then
Sum += Fv(edge)

end if
end for
return Sum

end function

Algorithm 2 Edge Streaming Interface
function STREAMEDGES(Fe,F)

Sum = 0
for each active block do � block with active edges

for each edge ∈ block do
if F(edge.source) then

Sum += Fe(edge)
end if

end for
end for
return Sum

end function

F is an optional user defined function which accepts
a vertex as input and should returns a boolean value to
indicate whether the vertex is needed in streaming. It is
used when the algorithm needs selective scheduling to
skip some useless streaming and is often used together
with a bitmap, which can express the active vertex set
compactly. Fe and Fv are user defined functions which
describe the behavior of streaming. They accept an edge
(for Fe), or a vertex (for Fv) as input, and should return a
value of type R. The return values are accumulated and
as the final reduced result to user. This value is often
used to get the number of activated vertices, but is not
restricted to this usage, e.g. users can use this function to
get the sum of differences between iterations in PageR-
ank to decide whether to stop computation.

GridGraph stores vertex data on disks. Each vertex
data file corresponds to a vertex data vector. We use the
memory mapping mechanism to reference vertex data
backed in files. It provides convenient and transparent
access to vectors, and simplifies the programming model:
developers can treat it as normal arrays just as if they are
in memory.

We use PageRank [19] as an example to show how
to implement algorithms using GridGraph (shown in Al-
gorithm 32). PageRank is a link analysis algorithm that

2Accum(&s, a) is an atomic operation which adds a to s.

calculates a numerical weighting to each vertex in the
graph to measure its relative importance among the ver-
tices. The PR value of each vertex is initialized to 1.
In each iteration, each vertex sends out their contribu-
tions to neighbors, which is the current PR value divided
by its out degree. Each vertex sums up the contribu-
tions collected from neighbors and sets it as the new PR
value. It converges when the mean difference reaches
some threshold3.

Algorithm 3 PageRank
function CONTRIBUTE(e)

Accum(&NewPR[e.dest], PR[e.source]
Deg[e.source] )

end function
function COMPUTE(v)

NewPR[v] = 1−d +d ×NewPR[v]
return |NewPR[v]−PR[v]|

end function
d = 0.85
PR = {1, ...,1}
Converged = 0
while ¬Converged do

NewPR = {0, ...,0}
StreamEdges(Contribute)
Diff = StreamVertices(Compute)
Swap(PR, NewPR)
Converged = Diff

V ≤ Threshold
end while

3.2 Dual Sliding Windows
GridGraph streams edges block by block. When stream-
ing a specific block, say, the block in the i-th row and
j-th column, vertex data associated with this block falls
into the i-th and j-th chunks. By selecting P such that
each chunk is small enough to fit into the fast storage
(i.e. memory for out-of-core situations or last level cache
for in-memory situations), we can ensure good locality
when accessing vertex data associated with the block be-
ing streamed.

The access sequence of blocks can be row-oriented or
column-oriented, based on the update pattern. Assume
that a vertex state is propagated from the source vertex to
the destination vertex (which is the typical pattern in a lot
of applications), i.e. source vertex data is read and des-
tination vertex data is written. Since the column of each
edge block corresponds to the destination vertex chunk,
column oriented access order is preferred in this case.
The destination vertex chunk is cached in memory when
GridGraph streams blocks in the same column from top
to bottom, so that expensive disk write operations are ag-
gregated and minimized. This property is very impor-

3Sometimes we run PageRank for certain number of iterations to
analyze performance.
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Figure 3: Illustration of dual sliding windows. It shows the first iteration of PageRank on the example graph. Shaded
block and chunks are active (loaded into memory).

tant in practical use, especially for SSDs, since the write
performance might degrade after writing large volume of
data due to the write amplification phenomenon. On the
other hand, since SSDs have upper limits of write cycles,
it is thus important to reduce disk writes as much as pos-
sible to achieve ideal endurance.

Figure 3 visualizes how GridGraph uses dual sliding
windows to apply updates onto vertices. PageRank is
used as the example. The read window (in which we read
current PageRank value and out degree from the source
vertex) and the write window (in which we accumulate
contributions to the new PageRank value of the destina-
tion vertex) slide as GridGraph streams edge blocks in
the column-oriented order.

Since GridGraph applies in-place updates onto the ac-
tive vertex chunk, there might exists data race, i.e. data of
one vertex is concurrently modified by multiple worker
threads. Thus, inside the process function Fe, users need
to use atomic operations to apply thread-safe updates to
vertices, so as to ensure the correctness of algorithms.

Utilizing the fact that the bandwidth of parallel ran-
domized access to fast level storage is still orders of
magnitude bigger than the sequential bandwidth of slow
level storage (such as main memory vs. disks, and cache
vs. main memory), the time of applying updates is over-
lapped with edge streaming. GridGraph only requires
one read pass over the edges, which is advantageous to
the solutions of GraphChi and X-Stream that need to mu-
tate the edges (GraphChi) or first generating and then
streaming through the updates (X-Stream).

Through read-only access to the edges, the memory
required by GridGraph is very compact. In fact, it only
needs a small buffer to hold the edge data being streamed
so that other free memory can be used by page cache to
hold edge data, which is very useful when active edge
data becomes small enough to fit into memory.

Another advantage of this streaming-apply model is
that it not only supports classical BSP [25] model, but
also allows asynchronous [3] updates. Since vertex up-
dates are in-place and instant, the effect of an update can
be seen by following vertex accesses, which makes lots
of iterative algorithms to converge faster.

3.3 2-Level Hierarchical Partitioning

We first give the I/O analysis of GridGraph in a com-
plete streaming-apply iteration, which all the edges and
vertices are accessed. Assume edge blocks are accessed
in the column-oriented order. Edges are accessed once
and source vertex data is read P times while destination
vertex data is read and written once. Thus I/O amount is

E +P×V +2×V

for each iteration. Thus a smaller P should be preferred
to minimize I/O amount which seems opposite to the grid
partitioning principle discussed in Section 2 that a larger
P can ensure better locality and selective scheduling ef-
fect.

To deal with this dilemma, we apply a second level
partitioning above the edge grid to reduce I/O accesses
of vertices. The higher level partitioning consists of a
Q×Q edge grid. Given a specified amount of memory
M, and the size of each vertex data U (including source
and destination vertex), Q is selected to be the minimum
integer which satisfies the condition

V
Q
×U ≤ M.

As we mentioned in Section 2, P is selected to fit ver-
tex data into last level cache of which the capacity is
much smaller than memory. Hence P is much bigger
than Q, i.e. the Q×Q partitioning is more coarse-grained
than the P×P one, so that we can just virtually group the
edge blocks by adjusting the accessing orders of blocks.
Figure 4 illustrates this concept. The preprocessed grid
consists of 4× 4 blocks, and a virtual 2× 2 grid parti-
tioning is applied over it. The whole grid is thus divided
into 4 big blocks, with each big block containing 4 small
blocks. The number inside each block indicates the ac-
cess sequence. An exact column-oriented access order is
used in the original 4× 4 partitioning. After the second
level 2× 2 over 4× 4 partitioning is applied, we access
the coarse-grained (big) blocks in column-oriented order,
and within each big block, we access the fine-grained
(small) blocks in column-oriented order as well.
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2 6 10 14 

3 7 11 15 

4 8 12 16 

(a) 4x4 grid

1 3 9 11 

2 4 10 12 

5 7 13 15 

6 8 14 16 

(b) 2x2 virtual grid

Figure 4: A 2-Level Hierarchical Partitioning Example.
The number inside each block indicates the access se-
quence.

This 2-level hierarchical partitioning provides not only
flexibility but also efficiency since the higher level par-
titioning is virtual and GridGraph is able to utilize the
outcome of lower level partitioning thus no more actual
overhead is added. At the same time, good properties of
the original fine-grained edge grid such as more selective
scheduling chances can still be leveraged.

3.4 Execution Implementation
Thanks to the good locality ensured by the property of
dual sliding windows, the execution engine of GridGraph
mainly concentrates on streaming edge blocks.

GridGraph streams each block sequentially. Before
streaming, GridGraph first checks the activeness of each
vertex chunk. Edge blocks are streamed one by one in
the sequence that dual sliding windows needs, and if the
corresponding source vertex chunk of the block is active,
it is added to the task list.

GridGraph does computation as follows:

1. The main thread pushes tasks to the queue, contain-
ing the file, offset, and length to issue each read re-
quest. (Length is set to 24MB like in preprocessing
to achieve full disk bandwidth.)

2. Worker thread fetches tasks from the queue until
empty, read data from specified location and pro-
cess each edge.

Each edge is first checked by a user defined filter func-
tion F , and if the source vertex is active, Fe is called on
this edge to apply updates onto the source or destination
vertex (note that we do not encourage users to apply up-
dates onto both the source and destination vertex, which
might make the memory mapped vector suffer from un-
expected write backs onto the slow level storage).

4 Evaluation

We evaluate GridGraph on several real world social
graphs and web graphs, and shows significant perfor-
mance improvement compared with current out-of-core

Dataset V E Data size P

LiveJournal 4.85M 69.0M 527MB 4
Twitter 61.6M 1.47B 11GB 32

UK 106M 3.74B 28GB 64
Yahoo 1.41B 6.64B 50GB 512

Table 2: Graph datasets used in evaluation.

graph engines. GridGraph is even competitive with dis-
tributed systems when more powerful hardware can be
utilized.

4.1 Test Environment
Experiments are conducted on AWS EC2 storage op-
timized instances, including d2.xlarge instance, which
contains 4 hyperthread vCPU cores, 30.5GB memory
(30MB L3 Cache), and 3 HDDs of 2TB, and i2.xlarge in-
stance, which has the same configuration with d2.xlarge
except that it contains 1 800GB SSD instead of 3 2TB
HDDs (and the L3 cache is 24MB). I2 instances are able
to provide high IOPS while D2 instances can provide
high-density storage. Both i2.xlarge and d2.xlarge in-
stances can achieve more than 450GB/s sequential disk
bandwidth.

For the I/O scalability evaluation, we also use more
powerful i2.2xlarge, i2.4xlarge, and i2.8xlarge instances,
which contain multiple (2, 4, 8) 800GB SSDs, as well
as more (8, 16, 32) cores and (61GB, 122GB, 244GB)
memory.

4.2 System Comparison
We evaluate the processing performance of GridGraph
through comparison with the latest version of GraphChi
and X-Stream on d2.xlarge4 and i2.xlarge instances.

For each system, we run BFS, WCC, SpMV and
Pagerank on 4 datasets: LiveJournal [2], Twitter [12],
UK [4] and Yahoo [29]. All the graphs are real-world
graphs with power-law degree distributions. LiveJour-
nal and Twitter are social graphs, showing the follow-
ing relationship between users within each online social
network. UK and Yahoo are web graphs that consist of
hyperlink relationships between web pages, with larger
diameters than social graphs. Table 2 shows the magni-
tude, as well as our selection of P for each graph. For
BFS and WCC, we run them until convergence, i.e. no
more vertices can be found or updated; for SpMV, we
run one iteration to calculate the multiplication result;
and for PageRank, we run 20 iterations on each graph.

4A software RAID-0 array consisting of 3 HDDs is set up for eval-
uation on d2.xlarge instances.
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i2.xlarge (SSD) d2.xlarge (HDD)

BFS WCC SpMV PageR. BFS WCC SpMV PageR.

LiveJournal
GraphChi 22.81 17.60 10.12 53.97 21.22 14.93 10.69 45.97
X-Stream 6.54 14.65 6.63 18.22 6.29 13.47 6.10 18.45
GridGraph 2.97 4.39 2.21 12.86 3.36 4.67 2.30 14.21

Twitter
GraphChi 437.7 469.8 273.1 1263 443.3 406.1 220.7 1064
X-Stream 435.9 1199 143.9 1779 408.8 1089 128.3 1634
GridGraph 204.8 286.5 50.13 538.1 196.3 276.3 42.33 482.1

UK
GraphChi 2768 1779 412.3 2083 3203 1709 401.2 2191
X-Stream 8081 12057 383.7 4374 7301 11066 319.4 4015
GridGraph 1843 1709 116.8 1347 1730 1609 97.38 1359

Yahoo
GraphChi - 114162 2676 13076 - 106735 3110 18361
X-Stream - - 1076 9957 - - 1007 10575
GridGraph 16815 3602 263.1 4719 30178 4077 277.6 5118

Table 1: Execution time (in seconds) with 8GB memory. “-” indicates that the corresponding system failed to finish
execution in 48 hours.

GraphChi runs all algorithms in asynchronous mode, and
an in-memory optimization is used when the number of
vertices are small enough, so that vertex data can be al-
located and hold in memory and thus edges are not mod-
ified during computation, which contributes a lot to per-
formance on Twitter and UK graph.

Table 1 presents the performance of chosen algorithms
on different graphs and systems with memory limited to
8GB to illustrate the applicability. Under this configu-
ration, only the LiveJournal graph can be fit into mem-
ory, while other graphs require access to disks. We can
see that GridGraph outperforms GraphChi and X-Stream
on both HDD based d2.xlarge and SSD based i2.xlarge
instances, and the performance does not vary much ex-
cept for BFS on Yahoo, which lots of seek is experienced
during the computation, thus making SSDs more advan-
tageous than HDDs. In fact, sometimes better results can
be achieved on d2.xlarge instance due to the fact that the
peak sequential bandwidth of 3 HDDs on d2.xlarge is
slightly greater than that of 1 SSD on i2.xlarge.

Figure 5 shows the disk bandwidth usage of 3 systems,
which records the I/O throughput of a 10-minute interval
running PageRank on Yahoo graph, using a d2.xlarge in-
stance. X-Stream and GridGraph are available to exploit
high sequential disk bandwidth while GraphChi is not
so ideal due to more fragmented reads and writes across
many shards. GridGraph try to minimize write amount
thus more I/O is spent on read while X-Stream has to
write a lot more data.

Figure 5: Disk bandwidth usage chart of a 10-minute in-
terval on GraphChi, X-Stream and GridGraph. R̄ = aver-
age read bandwidth; W̄ = average write bandwidth.

For algorithms that all the vertices are active in com-
putation, like SpMV and PageRank (thus every edge
is streamed), GridGraph has significant reduction in
I/O amount that is needed to complete computation.
GraphChi needs to read from and write to edges to prop-
agate vertex states, thus 2×E I/O amount to edges are
required. X-Stream needs to read edges and generate up-
dates in scatter phase, and read updates in gather phase,
thus a total I/O amount of 3×E is required (note that
the size of updates is in the same magnitude as edges).
On the other hand, GridGraph only requires one read
pass over the edges and several passes over the vertices.
The write amount is also optimized in GridGraph, which
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(a) PageRank on Yahoo graph (b) WCC on Twitter graph (c) WCC on Twitter graph

Figure 6: I/O amount comparison.

only one pass over the vertex data is needed. Figure 6(a)
shows the I/O amount that each system needs to com-
plete 5 iterations of PageRank on Yahoo graph. We can
see that the input amount of GridGraph is about 60 per-
cent of X-Stream and GraphChi, while the output amount
of GridGraph is about 4.5 times less. Thanks to the nice
vertex access pattern of dual sliding windows, vertex up-
dates are aggregated within a chunk, which can be a very
useful feature in practical use. For graphs that all the ver-
tex data can be cached in memory (like in Figure 6(b)),
only one disk read in the first iteration and one disk write
after the final iteration is required no matter how many
iterations are needed.

For iterative algorithms that only a portion of the
whole vertex set participates in the computation of some
iterations, such as BFS and WCC, GridGraph can ben-
efit from another good property of grid partitioning that
we can skip lots of useless reads with selective schedul-
ing. We compare the I/O amount versus X-Stream and
GraphChi using WCC on Twitter graph in Figure 6(b),
and provide a per iteration I/O amount in Figure 6(c).
We can see that I/O amount decreases with the conver-
gence of the algorithm. In fact, when the volume of ac-
tive edges reaches a certain level such that the data size
is smaller than memory capacity, the page cache could
buffer almost all of the edges that might be needed in
latter iterations, thus complete the following computa-
tions very fast. This phenomenon is more obvious in
web graphs than in social graphs, since the graph diam-
eter is much bigger. GraphChi also supports selective
scheduling, and its shard representation can have even
better effect than GridGraph on I/O reduction. Though
I/O amount required by GraphChi is rather small, it has
to issue many fragmented reads across shards. Thus the
performance is not ideal enough due to limited band-
width usage.

Another interesting observation from Figure 6(c) is
that GridGraph converges faster than X-Stream. This is
due to the availability to support asynchronous update in
GridGraph that applied updates can be used directly in

the same iteration. In WCC, we always push the latest
label through edges, which can speed up the label prop-
agation process.

We conclude that GridGraph can perform well on
large-scale real world graphs with limited resource. The
reduction in I/O amount is the key to the performance
gain.

4.3 Preprocessing Cost
Table 3 shows the preprocessing cost of GraphChi and
GridGraph on i2.xlarge (SSD) and d2.xlarge (HDD) in-
stances5. For SSDs, we only need to partition the edges
and append them to different files. For HDDs, a merg-
ing phase that combines all the edge block files is re-
quired after partitioning. It is known that HDDs do not
perform well on random access workloads due to high
seek time and low I/O concurrency while SSDs do not
have such severe performance penalty. As P increases,
edge blocks become smaller and the number of blocks
increases, thus making it hard for HDDs to achieve full
sequential bandwidth since more time will be spent on
seeking to potentially different positions. By merging all
the blocks together and use offsets to indicate the region
of each block, we can achieve full sequential throughput
and benefit from selective scheduling at the same time.

We can see that GridGraph outperforms GraphChi in
preprocessing time. GridGraph uses a lightweight range
based partitioning, thus only one sequential read over the
input edge list and append-only sequential writes to P×P
edge block files are required, which can be handled very
well by operating systems.

Figure 7 shows the preprocessing cost on a d2.xlarge
instance using Twitter graph with different selections of
P. We can see that as P becomes larger, the partitioning
time and especially the merging time becomes longer,
due to the fact that more small edge blocks are generated.
Yet we can see the necessity of this merging phase on

5X-Stream does not require explicit preprocessing. Its preprocess-
ing is covered in the first iteration before computation.
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C (S) G (S) C (H) G (H) P G (H) M G (H) A

LiveJournal 14.73 1.99 13.06 1.64 1.02 2.66
Twitter 516.3 56.59 425.9 76.03 117.9 193.9

UK 1297 153.8 1084 167.6 329.7 497.3
Yahoo 2702 277.4 2913 352.5 2235.6 2588.1

Table 3: Preprocessing time (in seconds) for GraphChi and GridGraph on 4 datasets. C = GraphChi, G = GridGraph;
S = SSD, H = HDD; P = time for partitioning phase, M = time for merging phase, A = overall time.

Figure 7: Preprocessing time on Twitter graph with dif-
ferent selections of P (from 2 to 512).

Figure 8: Execution time of PageRank on Twitter graph
with different selections of P (from 2 to 512).

HDD based systems since several passes over the edge
blocks are often required in multi-iteration computations,
which can benefit a lot from this extra preprocessing cost.

We conclude that the preprocessing procedure in Grid-
Graph is very efficient and essential.

4.4 Granularity of Partitioning

First, we evaluate the impact on performance with dif-
ferent selections of P for in-memory situations. Figure 8
shows the execution time of PageRank (5 iterations) on
Twitter graph. We use all the available memory (30.5GB)
of an i2.xlarge instance, so that the whole graph (includ-

Figure 9: Execution time of SpMV on Yahoo graph with
different selections of Q (from 512 to 2).

ing vertex and edge data) can be fit into memory. We
can see that P should be neither too small nor too large
to achieve a good performance. When P is too small, i.e.
each vertex chunk can not be put into last level cache,
the poor locality significantly affects the efficiency of
vertex access. When P is too large, more data race be-
tween atomic operations in each vertex chunk also slows
down the performance. Thus we should choose P by con-
sidering the size of last level cache as we mentioned in
Section 2 to achieve good in-memory performance either
when we have a big server with large memory or when
we are trying to process a not so big graph that can be fit
into memory.

Next, we evaluate the impact of second level partition-
ing on performance for out-of-core scenarios. Figure 9
shows the execution time of SpMV on Yahoo graph with
different selections of Q. Memory is limited to 8GB on
an i2.xlarge instance so that the whole vertex data can
not be cached in memory (via memory mapping). As Q
decreases, we can see that the execution time descends
dramatically due to the fact that a smaller Q can reduce
the passes over source vertex data. Thus we should try
to minimize Q when data of V

Q vertices can be fit into
memory, according to the analysis in Section 3.

We conclude that the 2-level hierarchical partitioning
used in GridGraph is very essential to achieve good per-
formance for both in-memory and out-of-core scenes.
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Memory Twitter WCC Yahoo PageRank

8GB 286.5 1285
30.5GB 120.6 943.1

Table 4: Scalability with Memory. Execution time is in
seconds.

Figure 10: Scalability with I/O.

4.5 Scalability
We evaluate the scalability of GridGraph by observing
the improvement when more hardware resource is added.

Table 4 shows the performance variance of WCC on
Twitter graph and PageRank (5 iterations) on Yahoo
graph when usable memory increases. With the mem-
ory increased from 8GB to 30.5GB, the whole undirected
Twitter graph (22GB) can be fit into memory, so that
edge data is read from disks only once. Meanwhile, with
30.5GB memory, the whole vertex data of Yahoo graph
(16GB) can be cached in memory via memory mapping,
thus only one pass of read (when program initializes) and
write (when program exits) of vertex data is required.

We also evaluate the performance improvement with
disk bandwidth. Figure 10 shows the performance when
using other I2 instances. Each i2.[n]xlarge instance con-
tains n 800GB SSDs, along with 4×n hyperthread vCPU
cores, and 30.5×n RAM. Disks are set up as a software
RAID-0 array. We do not limit the memory that Grid-
Graph can use, but force direct I/O to the edges to by-
pass the effect of page cache. We can see that GridGraph
scales almost linearly with disk bandwidth.

We conclude that GridGraph scales well when more
powerful hardware resource can be utilized.

4.6 Comparison with Distributed Systems
From the result in Figure 10, we find that the per-
formance of GridGraph is even competitive with dis-
tributed graph systems. Figure 11 shows the performance
comparison between GridGraph using an i2.4xlarge in-

Figure 11: Performance comparison with PowerGraph
and GraphX.

stance (containing 16 hyperthread cores, 122GB RAM, 4
800GB SSDs, $3.41/h), versus PowerGraph and GraphX
on a cluster with 16 m2.4xlarge instances (each with 8
cores, 68.4GB RAM, 2 840GB HDDs, $0.98/h), using
the result from [28]. We can find that even single-node
disk based solutions can provide good enough perfor-
mance (note that we do edge streaming via direct I/O
in Figure 10) and significant reduction in cost ($3.41/h
vs. $15.68/h). Moreover, GridGraph is a very conve-
nient single-node solution to use and deploy, thus re-
ducing the effort that cluster-based solutions concerns
about. In fact, limited scaling is observed in distributed
graph engines ([28]) due to high communication over-
head relative to computation in many graph algorithms
while GridGraph can scale smoothly as the memory and
I/O bandwidth being increased.

We conclude that GridGraph is competitive even with
distributed systems when more powerful hardware is
available.

5 Related Work

While we have discussed GraphChi and X-Stream in
detail, there are other out-of-core graph engines using
alternative approaches. TurboGraph [9] manages adja-
cency lists in pages, issues on-demand I/O requests to
disks, and employs a cache manager to maintain fre-
quently used pages in memory to reduce disk I/O. It
is efficient for targeted queries like BFS while for ap-
plications that require global updates, the performance
might degrade due to frequent accesses to the large vec-
tor backed on disks. FlashGraph [34] implements a semi-
external memory graph engine which stores vertex states
in memory and adjacency lists on SSDs, and presents im-
pressive performance. Yet it lacks the ability to process
extremely large graphs of which vertices can not be fit
into memory. MMap [15] presents a simple approach
by leveraging memory mapping mechanism in operating
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systems by mapping edge and vertex data files in mem-
ory. It provides good programmability and is efficient
when memory is adequate, while may suffer from dras-
tic random writes when memory is not enough due to the
random vertex access pattern. These solutions require
a sorted adjacency list representation of graph, which
needs time-consuming preprocessing, and SSDs to effi-
ciently process random I/O requests. GraphQ [26] di-
vides graphs into partitions and uses user programmable
heuristics to merge partitions. It aims to answer queries
by analyzing subgraphs. PathGraph [31] uses a path-
centric method to model a large graph as a collection
of tree-based partitions. Its compact design in storage
allows efficient data access and achieves good perfor-
mance on machines with sufficient memory. Galois [18]
provides a machine-topology-aware scheduler, a prior-
ity scheduler and a library of scalable data structures,
and uses a CSR format of graphs in its out-of-core im-
plementation. GridGraph is inspired by these works on
out-of-core graph processing, such as partitioning, local-
ity and scheduling optimization, but is unique in its wide
applicability and hardware friendliness that only limited
resource is required and writes to disks are optimized.
This not only provides good performance, but also pro-
tects disks from worn-out, especially for SSDs.

There are many graph engines using shared memory
configurations. X-Stream [21] has its in-memory stream-
ing engine and uses a parallel multistage shuffler to fit
vertex data of each partition into cache. Ligra [23] is a
shared-memory graph processing framework which pro-
vides two very simple routines for mapping over vertices
and edges, inspiring GridGraph for the streaming inter-
face. It adaptively switches between two modes based
on the density of active vertex subsets when mapping
over edges, and is especially efficient for applications
like BFS. Polymer [32] uses graph-aware data allocation,
layout and access strategy that reduces remote memory
accesses and turns inevitable random remote accesses
into sequential ones. While GridGraph concentrates on
out-of-core graph processing, some of the techniques in
these works can be integrated to improve in-memory per-
formance further.

The 2D grid partitioning used in GridGraph is also
utilized similarly in distributed graph systems and ap-
plications [10, 28, 30] to reduce communication over-
head. PowerLyra [6] provides an efficient hybrid-cut
graph partitioning algorithm which combines edge-cut
and vertex-cut with heuristics that differentiate the com-
putation and partitioning on high-degree and low-degree
vertices. GridGraph uses grid partitioning to optimize
the locality of vertex accesses when streaming edges and
applies a novel 2-level hierarchical partitioning to adapt
to both in-memory and out-of-core situations.

6 Conclusion

In this paper, we propose GridGraph, an out-of-core
graph engine using a grid representation for large-scale
graphs by partitioning vertices and edges to 1D chunks
and 2D blocks respectively, which can be produced ef-
ficiently through a lightweight range-based shuffling. A
second logical level partitioning is applied over this grid
partitioning and is adaptive to both in-memory and out-
of-core scenarios.

GridGraph uses a new streaming-apply model that
streams edges sequentially and applies updates onto ver-
tices instantly. By streaming edge blocks in a locality-
friendly manner for vertices, GridGraph is able to ac-
cess the vertex data in memory without involving I/O
accesses. Furthermore, GridGraph could skip over un-
necessary edge blocks. As a result, GridGraph achieves
significantly better performance than state-of-the-art out-
of-core graph systems, such as GraphChi and X-Stream,
and works on both HDDs and SSDs. It is particularly
interesting to observe that in some cases, GridGraph is
even faster than mainstream distributed graph processing
systems that require much more resources.

The performance of GridGraph is mainly restricted
by I/O bandwidth. We plan to employ compression
techniques[5, 14, 24] on the edge grid to further reduce
the I/O bandwidth required and improve efficiency.
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