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Abstract
Finding nodes with certain criteria is a critical need for
many cloud services. For example, a cloud monitoring
service needs to query thousands of hosts in a data-center
to check for resource usage while a cloud homing ser-
vice needs to find edge data centers across the world that
satisfy certain complex constraints. This is a challeng-
ing problem, especially when confronted with highly dy-
namic state, scale on the order of hundreds or even thou-
sands, geo-distribution and complex query constraints
that traverse decentralized data sources. In this paper, we
address this problem through the design of NodeFinder
that is based on a novel pull-based approach in which
we maintain decentralized (peer-to-peer) groups of nodes
structured according to the node attribute values (i.e.,
their state). This allows queries to be sent to only a few
representatives of the groups that have the potential of
satisfying the constraints, and then the representatives
gossip with their peers and return the latest set of nodes.
This guarantees freshness of results, and ensures directed
and thereby scalable querying. We show NodeFinder’s
use in production use-cases such as host monitoring in
our OpenStack clouds and NFV homing on edge clouds.
Our preliminary experiments on Amazon EC2 illustrate
NodeFinder’s scalability and efficiency as compared to
today’s approaches.

1 Introduction

In this paper, we introduce NodeFinder, a scalable
service providing timely search across geo-distributed
nodes with varied and highly dynamic state.

This is a critical service for cloud systems [3, 4, 7, 12],
such as OpenStack, where they need to monitor the phys-
ical hosts’ resource usage, such that admins and schedul-
ing algorithms can identify nodes with certain properties
(e.g., those that have high CPU utilization) in order to
make decisions (e.g., migrate a virtual machine to an-
other server). Edge cloud frameworks [10, 17, 21], as

in ISP deployments of Network Function Virtualization
(NFV) [16], make decisions on which network func-
tions to run and where based on a variety of proper-
ties that are locally known, such as hardware capabilities
and availability of host resources or the current profile
of the traffic properties (e.g., to defend against a DDoS
attack [19]). In each case, these applications need to in-
corporate some ad-hoc mechanism in order to find nodes
(hosts or edge clouds).

This task has proven to be a challenging problem, and
is becoming increasingly more challenging – mainly due
to three intertwined reasons: (i) Highly dynamic state:
the state of the nodes can change dynamically in the mat-
ter of minutes or seconds. For example, the resources
available on a host (CPU, memory, disk) in a cloud sys-
tem can change every few minutes based on the tenants
running on the host, and similarly, the available band-
width for a VM can change in the order of seconds - de-
pending on the network activity. Hence, we need a sys-
tem which provides search over fresh state. (ii) Scale and
geo-distribution: the number of nodes can be on the or-
der of thousands for the cloud and edge use-cases. Even
worse, they could be distributed across the world (e.g.,
multisite clouds [11]) and are accessible through the
wide-area network. At this scale, the resource require-
ments to enable search (in terms of bandwidth, compute
power, etc.) cannot grow in direct proportion to the num-
ber of nodes in the system. (iii) Complex queries span-
ning different data sources: the queries for nodes in real-
world services often contain constraints/sub-queries that
need to be simultaneously satisfied by different nodes,
and the information to answer these queries may be
drawn from decentralized, heterogeneous data sources.
For example, a single query may contain two sub-queries
one of which requires node attributes from an Open-
Stack [12] cloud while the other requires AWS [3] cloud
information (we elaborate more on this in §2.2).

As distributed applications continue to grow in size
and geographical distribution, and as nodes are able (re-
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Figure 1: High-level overview of NodeFinder in which nodes are
distributed across multiple cloud sites and form p2p groups (not shown)
based on attribute values such as available CPU or memory for scalable
query processing.

quested) to provide richer and more dynamic informa-
tion, we are hitting the limits of existing approaches.
Existing systems follow two main approaches: push or
pull. In push-based approaches, the nodes periodically
send updates to a centralized manager with their cur-
rent state. While maintaining complete knowledge of
every node in the network centrally makes the search-
ing much easier, the excessive workload from perhaps
thousands of nodes frequently updating their status in
a highly dynamic environment renders the scheme very
expensive. To cope, these systems tune the update fre-
quency, but this, in turn, means searching over stale data.
In pull-based approaches, when the application needs to
find nodes, it will send a query to all nodes on-demand
and request the current state. This approach provides the
freshest information, but simultaneously (and frequently)
querying such many nodes is not scalable (and may result
in the TCP incast problem [22, 18]).

In NodeFinder, we address this trade-off through a
hybrid architecture (Figure 1) wherein we intelligently
group nodes based on attribute and value (i.e., their
state). To realize this, nodes form peer-to-peer (p2p)
groups with nodes which have similar values for a given
attribute (e.g., average CPU utilization of 70% or more).
These peers use gossip protocols [23] to exchange mem-
bership information internally and a representative of
the group periodically pushes an aggregated update to
NodeFinder, which then adjusts the groups based on
this information. This means that when a query comes
in, NodeFinder has already filtered nodes which might
match the search (i.e., in groups that match the value, or
in groups of nearby values). NodeFinder then only needs
to send requests to those groups – providing timely data
in a scalable manner. This goes beyond simply adding
hierarchy, which only reduces a factor of the scale, and
compromises the visibility that maybe required to answer
complex global queries.

Simply put, NodeFinder fills a substantial need by
providing a common service which can be integrated

into any distributed system, solving a problem which
has proven challenging for distributed systems. We have
implemented a prototype of NodeFinder leveraging sev-
eral systems [20, 6, 15] and deployed it on Amazon
EC2, with nodes spread across 4 regions. Our evaluation
shows that NodeFinder reduces bandwidth to the central
server by 93% when compared to push/pull approaches,
can perform queries at scale in less than 1 second, and
does not impose overhead even for smaller scales.

2 Motivating Use-Cases

Searching for nodes with highly dynamic state is a cen-
tral task of a number of applications. In this section,
we highlight two critical applications from our produc-
tion systems that illustrate the need for a service like
NodeFinder: host monitoring in the cloud and virtual
network function (VNF) homing on edge clouds.

2.1 Host Monitoring in the Cloud
A critical function in cloud management platforms is to
monitor the physical hosts (e.g., compute nodes) that are
hosting virtual machines. Such task involves tracking
the inventory of VMs running on each host, their re-
source usage, tenant quota information, and other associ-
ated metrics. Typically, an agent running on each of the
nodes updates the state of the corresponding host through
a message broker. For instance, OpenStack clouds utilize
RabbitMQ [14] as a messaging medium to convey re-
source status information. We discovered through exten-
sive experiments on OpenStack that this approach does
not scale well when increasing the number of compute
nodes. The memory footprint of RabbitMQ increases lin-
early with an increase in compute nodes. This is primar-
ily because Nova (the component in OpenStack which
takes the messages off the message queues) reaches peak
CPU utilization very fast and is unable to clear Rab-
bitMQ queues. Our findings on scalability are backed
up by results from the OpenStack community [13].

This scalability bottleneck is caused by every compo-
nent in OpenStack frequently pushing its status update
messages regardless of the need for them1. NodeFinder
addresses this problem in a much more scalable and effi-
cient manner. That is, each host runs a NodeFinder agent
and reports its state as a set of attributes (e.g., number
of VMs or CPU usage). NodeFinder then creates p2p
groups based on these attributes such as: (nodes with 50
VMs or less), (nodes with 50 VMs or more), (nodes with
50% CPU utilization or more) and (nodes with 50% CPU
utilization or less). NodeFinder maintains these groups
and their representatives to whom the query can be sent

1except for healthchecks, where the updates are merely heartbeats.
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Figure 2: VNF homing: an apt use-case for NodeFinder that illus-
trates homing requirements for the residential vCPE service [8].

and then collect up to date state from their peers only
when needed.

2.2 VNF Homing on Edge Clouds
A crucial network service management function for large
scale Network Service Providers (NSPs) is the homing
service, which uses optimization techniques to find suit-
able sites on which to deploy complex Network Ser-
vices [9]. NSPs often have hundreds of sites (expected to
increase to thousands for edge use-cases) spread across
tens of countries hosting anywhere between 10 and 500
compute servers. The “home” (or location) of a VNF
is chosen based on policies and requirements from ser-
vice providers, cloud operators and VNF vendors. Hom-
ing is a challenging problem since the constraints that
need to be satisfied for site selection often contain sub-
queries that needs to be simultaneously satisfied by dif-
ferent nodes, often requiring fresh information of dy-
namic node attributes (such as available CPUs on a host).
Further, information to answer these queries may be
drawn from decentralized, heterogeneous data sources
(edge clouds such as Akraino [1], OpenStack clouds or
even third party clouds like Azure [7] or AWS [3]).

Figure 2 shows the homing requirements of a real-
world network service, virtual Customer Premises
Equipment (vCPE) [8], that provides residential broad-
band connectivity. Figure 2(a) shows the layout archi-
tecture, connecting the residence to the vG (virtual gate-
way) hosting infrastructure at the Service Provider Edge
(PE). Here, the bridged residential gateway (BRG) is
the vCPE located at the residential customer premises,
while the vGMux is a shared network function at the
PE that maps layer-2 traffic between a subscriber’s BRG
and its unique vG (which hosts the service related Net-
work Functions), ensuring traffic isolation between mul-

tiple customers. Figure 2(b) shows the homing poli-
cies (or constraints) that drive the selection of an opti-
mal PE site to host the vGMux and vG for a given cus-
tomer. While constraints like distance or cloud affinity
depend on relatively static cloud attributes (from service
provider inventories), the other two constraints depend
on attributes that are relatively more dynamic (from re-
source inventories and cloud providers). Resource capa-
bilities within a cloud site may change as new host ag-
gregates are added, while instantaneous site capacities
may vary at even shorter time scales since resources are
typically shared among multiple services and customers.

One of the principal challenges in homing is collect-
ing and aggregating the information required for hom-
ing from multiple data sources in a holistic manner, and
at different time granularities. Further, this information
needs to be collected from thousands of sites including
service provider-owned sites and third party clouds like
Azure and AWS. The critical need is for a service that can
provide a holistic, up-to-date list of the cloud sites that
satisfy all the constraints. NodeFinder is well suited to
address this problem, where each data source (including
cloud sites) can simply run the NodeFinder agents form-
ing p2p groups for the different attributes (e.g., one group
for clouds that have CPU greater than a certain value
while another group for clouds that have hosts with CPU
pinning). Further, these agents can also act as “trans-
lators”, using the cloud native APIs to acquire informa-
tion about their attributes, which may differ across cloud
providers. Instead, the homing service can simply query
NodeFinder and use the aggregated information to iden-
tify sites that satisfy the constraints.

3 Abstractions

In this section, we provide a high-level overview of the
abstractions provided by NodeFinder. Figure 1 depicts
the high-level design of NodeFinder wherein an applica-
tion can specify constraints for the nodes it wants to find,
and NodeFinder will efficiently query the end nodes and
return a list of nodes satisfying the constraints out of pos-
sibly thousands of nodes.

Node Attributes: Nodes have attributes that can be
described as static or dynamic. Values of static attributes
do not change (e.g., number of CPUs) while values of
dynamic attributes can and do change over time (e.g., free
memory).

Query Structure: Queries are attribute-oriented,
meaning that each application issuing a query should
specify the attributes and their desired values. A query
structure contains a list of “queryable” attributes, and for
each attribute there are the following fields: name, up-
per bound value, lower bound value, and a freshness pa-
rameter. The attribute name is used to describe the at-
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tribute of interest to the requester application. The up-
per bound and lower bound values are used to support
less/greater than operations. If an exact match is needed,
then both bounds should be of the same value. And fi-
nally, the freshness field can be specified in terms of
milliseconds (a value of zero means the response must
be as close to real time as possible to guarantee ex-
tremely fresh results). We note that this is one version
of a query structure, and there are multiple versions that
NodeFinder supports for other attribute types (e.g., loca-
tion, text-based attributes, etc).

4 Under the Hood

NodeFinder (shown in Figure 1) consists of three main
components elaborated here: a Registrar, where nodes
and their attributes are learned and maintained, a Groups
Manager, where nodes are placed into groups based on
attribute values, and a Query Router, where NodeFinder
can selectively pull from a select group of nodes based
on the filtering already performed in managing groups.

4.1 Node Registry
The very initial step for end nodes (running NodeFinder
agents) is to register themselves with NodeFinder by
consuming NodeFinder’s southbound API (the Regis-
trar). The Registrar acts as a rendezvous point for newly
arrived nodes and is responsible for knowing all nodes
in the system. To facilitate the attribute based group-
ing, when a node registers, it will provide information
about what attributes it has. NodeFinder, in turn, knows
what and how many attributes it will be handling, which
is needed to appropriately create and manage the cor-
responding p2p groups. In addition, upon node regis-
tration, NodeFinder classifies each of the provided at-
tributes as static or dynamic, which is useful for query
processing (static state is answered locally and dynamic
state is fetched from nodes).

4.2 Dynamic Group Management
NodeFinder groups nodes based on their attribute val-
ues (one p2p group per range of attribute values) and dy-
namically adjusts these groups as nodes change values,
in a loosely-coupled fashion. This is so that by the time
a query comes in, NodeFinder has already pre-filtered
nodes based on their attribute values to only those that
have the potential to successfully match the query.

P2P Group Life-cycle: Upon node registration, and
depending on its attributes and values, NodeFinder will
suggest the appropriate p2p groups for each of the re-
ported attributes, and the node then will join such groups.
For the very first node that registers for an attribute,

there will not be established groups yet, so NodeFinder
instructs the node to start a group and act as a group
representative. During the operation of a p2p group, a
group representative pushes periodic updates (with a fre-
quency set by NodeFinder) containing group member-
ship information. NodeFinder, through its Groups Man-
ager, uses this information to populate a mapping table to
keep track of which nodes are in which p2p groups. The
Groups Manager uses this information to decide to: start
a “twin” group (e.g., when group size exceeds a thresh-
old), terminate a group (e.g., empty group), or elect a
new node as a group representative (e.g., when current
representative times out). When NodeFinder refers a
node to a group, it also announces the group boundaries
(i.e., upper and lower bounds described in §3) so that
the node leaves the group when the new values fall out-
side the specified range. Unless the new values fall out-
side the specified range of the group, nodes do not need
to communicate with the NodeFinder server, thereby en-
abling a loosely-coupled style of node management.

4.3 Query Routing
NodeFinder adopts a pull-based approach to acquire dy-
namic node state. The use of groups enables NodeFinder
to be highly scalable and efficient by significantly nar-
rowing down the number of nodes to pull from. After de-
termining the p2p groups based on adaptive attribute fil-
tering ( §4.2), the Query Router needs to route the query
to the node to get the current value, and returns a fresh
result to the query requester. As described in §3, each
query request consists of a list of queryable attributes.
For each of which, NodeFinder sends a query to the cor-
responding p2p group. When a member of the p2p group
receives a query, it gossips the query with other nodes,
and returns the aggregate results to NodeFinder.

Optimizations: We optimize the Query Router in
three ways. First, our Query Router processes the list
of attributes of a query request in parallel. Second, we
cache results to serve future queries. Third, the Query
Router, with the help of the Groups Manager (§4.2),
sends the query only to the smallest p2p group in order to
get faster responses. The latter is only done for queries
whose constraints should be all met.

5 Evaluation

We have implemented a prototype of NodeFinder and
used it to gain some preliminary insight into the scala-
bility and efficiency of the queries. Our prototype lever-
ages existing tools, such as: Apache Cassandra [20] as
an inventory and Serf by HashiCorp [15] for the p2p
groups. We deployed NodeFinder on Amazon EC2 [2],
with nodes spanning 4 different regions in the United
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Figure 3: This preliminary experiment illustrates how NodeFinder
scales much better with the number of nodes as compared to push/pull
approaches, despite pulling information once every second to deal with
the dynamic nature of the attributes.

States (400 nodes/region). Each node reported four at-
tributes, and there were four p2p group bins per attribute
resulting in 16 p2p groups in total with 100 nodes on
average per group. For example, the four groups corre-
sponding to percentage CPU utilization of a node were
CPU-25, CPU-50, CPU-75 and CPU-100.

Scalability of querying dynamic state: We mea-
sured the bandwidth consumption at the NodeFinder’s
server (residing in one of the 4 regions) when query-
ing nodes using three approaches: (i) NodeFinder’s ap-
proach where we pull information from the group rep-
resentatives, (ii) a simple pull approach where the cen-
tral NodeFinder server pulls information from each node,
and (iii) a push approach where each node updates its in-
formation at the NodeFinder server. The querying fre-
quency across the three approaches was set to once per
second. Figure 3 shows that the bandwidth consumption
of pull/push approaches 2 increases linearly as the num-
ber of nodes increases, while NodeFinder’s scale stays
relatively constant. As a result, NodeFinder can elimi-
nate about 93% of unneeded communication while main-
taining service.

Resource overhead of running node agent: Our pro-
totype of the NodeFinder node agent consumes about
10MB of memory for each p2p group it joins. Running
NodeFinder agent at the group representative also does
not introduce significant overhead, even when the rep-
resentative queries the entire group every second. We
found that when processing 1 query/second, it consumes
about 5 to 50KBps for groups of 50 and 400 nodes, re-
spectively. This also shows that NodeFinder does not
impose significant overhead on small scale systems.

Query response time: NodeFinder demonstrated fast
query processing when responding to queries targeting
groups with 100, 300, and 500 nodes/group, where end-
to-end query response times were 660ms, 900ms, and
945ms, respectively. These times can be further im-
proved by tuning the p2p group configurations (fanout,

2pull and push both showed identical results.

frequency, etc) [5].

6 Discussion and Future Work

Our work on NodeFinder is ongoing and we are explor-
ing all aspects to enabling NodeFinder to serve as an
essential service for existing and emerging cloud plat-
forms and applications. First, while the current design of
NodeFinder efficiently tackles the challenges of dynamic
state, scale and geo-distribution, there is more research to
efficiently tackle the challenge of complex queries span-
ning different data sources (as exemplified by our VNF
homing use-case in §2.2).

Second, we plan on experimenting with different tech-
niques for deciding the right splitting for the p2p group
sizes. The current implementation assumes fixed and
equally-split groups for each attribute. However, this
might not always lead to the optimal decision as it could
create imbalances across different groups for the same at-
tribute. One way to resolve this is to use heuristics from
real query traces as well as resource information heuris-
tics from the end nodes to assist NodeFinder in deciding
how to organize those dynamic p2p groups.

To enable wide-spread use of NodeFinder, we are
also working toward integrating NodeFinder into exist-
ing cloud frameworks such as OpenStack [12] and net-
work automation platforms like ONAP [10], especially
with respect to the the use-cases described in this pa-
per. Lastly, NodeFinder, as presented, is a system that
responds to queries. Another highly related function is
continuous monitoring for specific events (triggers). To
do so, we can expand the node agents with triggering
queries to be installed to offer a more automatic event
monitoring mechanism.

7 Conclusion

We present NodeFinder, a scalable search service for
highly dynamic and geo-distributed state by organizing
similar nodes in p2p groups for faster and more scalable
query processing. The design of NodeFinder is moti-
vated by real world cloud use-cases. Our preliminary ex-
periments with a prototype of NodeFinder suggest that it
can be scalable (reduces resource usage of the search ser-
vice by almost an order of magnitude), lightweight (does
not impose significant overhead on end nodes), and quick
(answers queries in less than 1 second).
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