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Abstract

The physical and data link layers of the network stack

contain valuable information. Unfortunately, a systems

programmer would never know. These two layers are

often inaccessible in software and much of their poten-

tial goes untapped. In this paper we introduce SoNIC,

Software-defined Network Interface Card, which pro-

vides access to the physical and data link layers in soft-

ware by implementing them in software. In other words,

by implementing the creation of the physical layer bit-

stream in software and the transmission of this bitstream

in hardware, SoNIC provides complete control over the

entire network stack in realtime. SoNIC utilizes com-

modity off-the-shelf multi-core processors to implement

parts of the physical layer in software, and employs an

FPGA board to transmit optical signal over the wire. Our

evaluations demonstrate that SoNIC can communicate

with other network components while providing realtime

access to the entire network stack in software. As an ex-

ample of SoNIC’s fine-granularity control, it can perform

precise network measurements, accurately characteriz-

ing network components such as routers, switches, and

network interface cards. Further, SoNIC enables tim-

ing channels with nanosecond modulations that are un-

detectable in software.

1 Introduction
The physical and data link layers of the network stack of-

fer untapped potential to systems programmers and net-

work researchers. For instance, access to these lower

layers can be used to accurately estimate available band-

width [23, 24, 32], increase TCP throughput [37], char-

acterize network traffic [19, 22, 35], and create, detect

and prevent covert timing channels [11, 25, 26]. In par-

ticular, idle characters that only reside in the physical

layer can be used to accurately measure interpacket de-

lays. According to the 10 Gigabit Ethernet (10 GbE)

standard, the physical layer is always sending either data

or idle characters, and the standard requires at least 12

idle characters (96 bits) between any two packets [7].

Using these physical layer (PHY1) idle characters for a

measure of interpacket delay can increase the precision

of estimating available bandwidth. Further, by control-

ling interpacket delays, TCP throughput can be increased

1We use PHY to denote the physical layer throughout the paper.

by reducing bursty behavior [37]. Moreover, capturing

these idle characters from the PHY enables highly ac-

curate traffic analysis and replay capabilities. Finally,

fine-grain control of the interpacket delay enables timing

channels to be created that are potentially undetectable

to higher layers of the network stack.

Unfortunately, the physical and data link layers are

usually implemented in hardware and not easily accessi-

ble to systems programmers. Further, systems program-

mers often treat these lower layers as a black box. Not to

mention that commodity network interface cards (NICs)

do not provide nor allow an interface for users to ac-

cess the PHY in any case. Consequently, operating sys-

tems cannot access the PHY either. Software access to

the PHY is only enabled via special tools such as BiFo-

cals [15] which uses physics equipment, including a laser

and an oscilloscope.

As a new approach for accessing the PHY from soft-

ware, we present SoNIC, Software-defined Network In-

terface Card. SoNIC provides users with unprecedented

flexible realtime access to the PHY from software. In

essence, all of the functionality in the PHY that ma-

nipulate bits are implemented in software. SoNIC con-

sists of commodity off-the-shelf multi-core processors

and a field-programmable gate array (FPGA) develop-

ment board with peripheral component interconnect ex-

press (PCIe) Gen 2.0 bus. High-bandwidth PCIe inter-

faces and powerful FPGAs can support full bidirectional

data transfer for two 10 GbE ports. Further, we created

and implemented optimized techniques to achieve not

only high-performance packet processing, but also high-

performance 10 GbE bitstream control in software. Par-

allelism and optimizations allow SoNIC to process mul-

tiple 10 GbE bitstreams at line-speed.

With software access to the PHY, SoNIC provides the

opportunity to improve upon and develop new network

research applications which were not previously feasi-

ble. First, as a powerful network measurement tool,

SoNIC can generate packets at full data rate with min-

imal interpacket delay. It also provides fine-grain control

over the interpacket delay; it can inject packets with no

variance in the interpacket delay. Second, SoNIC accu-

rately captures incoming packets at any data rate includ-

ing the maximum, while simultaneously timestamping

each packet with sub-nanosecond granularity. In other
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words, SoNIC can capture exactly what was sent. Fur-

ther, this precise timestamping can improve the accu-

racy of research based on interpacket delay. For exam-

ple, SoNIC can be used to profile network components.

It can also create timing channels that are undetectable

from software application.

The contributions of SoNIC are as follows:

• We present the design and implementation of

SoNIC, a new approach for accessing the entire net-

work stack in software in realtime.

• We designed SoNIC with commodity components

such as multi-core processors and a PCIe pluggable

board, and present a prototype of SoNIC.

• We demonstrate that SoNIC can enable flexible,

precise, and realtime network research applications.

SoNIC increases the flexibility of packet generation

and the accuracy of packet capture.

• We also demonstrate that network research studies

based on interpacket delay can be significantly im-

proved with SoNIC.

2 Challenge: PHY Access in Software
Accessing the physical layer (PHY) in software provides

the ability to study networks and the network stack at

a heretofore inaccessible level: It can help improve the

precision of network measurements and profiling/moni-

toring by orders of magnitude [15]. Further, it can help

improve the reliability and security of networks via faith-

ful capture and replay of network traffic. Moreover,

it can enable the creation of timing channels that are

undetectable from higher layers of the network stack.

This section discusses the requirements and challenges

of achieving realtime software access to the PHY, and

motivates the design decisions we made in implement-

ing SoNIC. We also discuss the Media Access Control

(MAC) layer because of its close relationship to the PHY

in generating valid Ethernet frames.

The fundamental challenge to perform the PHY func-

tionality in software is maintaining synchronization with

hardware while efficiently using system resources. Some

important areas of consideration when addressing this

challenge include hardware support, realtime capability,

scalability and efficiency, precision, and a usable inter-

face. Because so many factors go into achieving realtime

software access to the PHY, we first discuss the 10 GbE

standard before discussing detailed requirements.

2.1 Background

According to the IEEE 802.3 standard [7], the PHY of

10 GbE consists of three sublayers: the Physical Cod-

ing Sublayer (PCS), the Physical Medium Attachment

(PMA) sublayer, and the Physical Medium Dependent

(PMD) sublayer (See Figure 1). The PMD sublayer is

responsible for transmitting the outgoing symbolstream

over the physical medium and receiving the incoming
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Figure 1: 10 Gigabit Ethernet Network stack.

symbolstream from the medium. The PMA sublayer is

responsible for clock recovery and (de-)serializing the

bitstream. The PCS performs the blocksync and gear-

box (we call this PCS1), scramble/descramble (PCS2),

and encode/decode (PCS3) operations on every Ethernet

frame. The IEEE 802.3 Clause 49 explains the PCS sub-

layer in further detail, but we will summarize below.

When Ethernet frames are passed from the data link

layer to the PHY, they are reformatted before being sent

across the physical medium. On the transmit (TX) path,

the PCS encodes every 64-bit of an Ethernet frame into

a 66-bit block (PCS3), which consists of a two bit syn-

chronization header (syncheader) and a 64-bit payload.

As a result, a 10 GbE link actually operates at 10.3125

Gbaud (10G× 66
64

). The PCS also scrambles each block

(PCS2) to maintain DC balance2 and adapts the 66-bit

width of the block to the 16-bit width of the PMA in-

terface (PCS1; the gearbox converts the bit width from

66- to 16-bit width.) before passing it down the network

stack. The entire 66-bit block is transmitted as a contin-

uous stream of symbols which a 10 GbE network trans-

mits over a physical medium (PMA & PMD). On the

receive (RX) path, the PCS performs block synchroniza-

tion based on two-bit syncheaders (PCS1), descrambles

each 66-bit block (PCS2) before decoding it (PCS3).

Above the PHY is the Media Access Control (MAC)

sublayer of the data link layer. The 10 GbE MAC oper-

ates in full duplex mode; it does not handle collisions.

Consequently, it only performs data encapsulation/de-

capsulation and media access management. Data encap-

sulation includes framing as well as error detection. A

Cyclic Redundancy Check (CRC) is used to detect bit

corruptions. Media access management inserts at least

96 bits (twelve idle /I/ characters) between two Eth-

ernet frames.

On the TX path, upon receiving a layer 3 packet,

the MAC prepends a preamble, start frame delimiter

(SFD), and an Ethernet header to the beginning of the

frame. It also pads the Ethernet payload to satisfy a

2Direct current (DC) balance ensures a mix of 1’s and 0’s is sent.
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minimum frame-size requirement (64 bytes), computes

a CRC value, and places the value in the Frame Check

Sequence (FCS) field. On the RX path, the CRC value is

checked, and passes the Ethernet header and payload to

higher layers while discarding the preamble and SFD.

2.2 Hardware support

The hardware must be able to transfer raw symbols from

the wire to software at high speeds. This requirement can

be broken down into four parts: a) Converting optical

signals to digital signals (PMD), b) Clock recovery for

bit detection (PMA), and c) Transferring large amounts

of bits to software through a high-bandwidth interface.

Additionally, d) the hardware should leave recovered bits

(both control and data characters in the PHY) intact until

they are transferred and consumed by the software. Com-

mercial optical transceivers are available for a). How-

ever, hardware that simultaneously satisfies b), c) and d)

is not common since it is difficult to handle 10.3125 Giga

symbols in transit every second.

NetFPGA 10G [27] does not provide software access

to the PHY. In particular, NetFPGA pushes not only lay-

ers 1-2 (the physical and data link layer) into hardware,

but potentially layer 3 as well. Furthermore, it is not pos-

sible to easily undo this design since it uses an on-board

chip to implement the PHY which prevents direct access

to the PCS sublayer. As a result, we need a new hardware

platform to support software access to the PHY.

2.3 Realtime Capability

Both hardware and software must be able to process

10.3125 Gigabits per second (Gbps) continuously. The

IEEE 802.3 standard [7] requires the 10 GbE PHY to

generate a continuous bitstream. However, synchroniza-

tion between hardware and software, and between multi-

ple pipelined cores is non-trivial. The overheads of inter-

rupt handlers and OS schedulers can cause a discontinu-

ous bitstream which can subsequently incur packet loss

and broken links. Moreover, it is difficult to parallelize

the PCS sublayer onto multiple cores. This is because

the (de-)scrambler relies on state to recover bits. In par-

ticular, the (de-)scrambling of one bit relies upon the 59

bits preceding it. This fine-grained dependency makes it

hard to parallelize the PCS sublayer. The key takeaway

here is that everything must be efficiently pipelined and

well-optimized in order to implement the PHY in soft-

ware while minimizing synchronization overheads.

2.4 Scalability and Efficiency

The software must scale to process multiple 10 GbE

bitstreams while efficiently utilizing resources. Intense

computation is required to implement the PHY and MAC

layers in software. (De-)Scrambling every bit and com-

puting the CRC value of an Ethernet frame is especially

intensive. A functional solution would require multiple

duplex channels to each independently perform the CRC,

encode/decode, and scramble/descramble computations

at 10.3125 Gbps. The building blocks for the PCS and

MAC layers will therefore consume many CPU cores.

In order to achieve a scalable system that can handle

multiple 10 GbE bitstreams, resources such as the PCIe,

memory bus, Quick Path Interconnect (QPI), cache, CPU

cores, and memory must be efficiently utilized.

2.5 Precision

The software must be able to precisely control and cap-

ture interpacket gaps. A 10 GbE network uses one bit per

symbol. Since a 10 GbE link operates at 10.3125 Gbaud,

each and every symbol length is 97 pico-seconds wide

(= 1/(10.3125∗109)). Knowing the number of bits can

then translate into having a precise measure of time at

the sub-nanosecond granularity. In particular, depending

on the combination of data and control symbols in the

PCS block3, the number of bits between data frames is

not necessarily a multiple of eight. Therefore, on the

RX path, we can tell the exact distance between Eth-

ernet frames in bits by counting every bit. On the TX

path, we can control the data rate precisely by control-

ling the number of idle characters between frames: An

idle character is 8 (or 7) bits and the 10 GbE standard

requires at least 12 idle characters sent between Ethernet

frames.

To achieve this precise level of control, the software

must be able to access every bit in the raw bitstream (the

symbolstream on the wire). This requirement is related

to point d) from Section 2.2. The challenge is how to

generate and deliver every bit from and to software.

2.6 User Interface

Users must be able to easily access and control the

PHY. Many resources from software to hardware must

be tightly coupled to allow realtime access to the PHY.

Thus, an interface that allows fine-grained control over

them is necessary. The interface must also implement an

I/O channel through which users can retrieve data such

as the count of bits for precise timing information.

3 SoNIC
The design goals of SoNIC are to provide 1) access to

the PHY in software, 2) realtime capability, 3) scalabil-

ity and efficiency, 4) precision, and 5) user interface. As

a result, SoNIC must allow users realtime access to the

PHY in software, provide an interface to applications,

process incoming packets at line-speed, and be scalable.

Our ultimate goal is to achieve the same flexibility and

control of the entire network stack for a wired network,

as a software-defined radio [33] did for a wireless net-

work, while maintaining the same level of precision as

BiFocals [15]. Access to the PHY can then enhance the

accuracy of network research based on interpacket delay.

3Figure 49-7 [7]
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Figure 2: An FPGA development board [6]

In this section, we discuss the design of SoNIC and how

it addresses the challenges presented in Section 2.

3.1 Access to the PHY in software

An application must be able to access the PHY in soft-

ware using SoNIC. Thus, our solution must implement

the bit generation and manipulation functionality of the

PHY in software. The transmission and reception of bits

can be handled by hardware. We carefully examined the

PHY to determine an optimal partitioning of functional-

ity between hardware and software.

As discussed in Section 2.1, the PMD and PMA sub-

layers of the PHY do not modify any bits or change the

clock rate. They simply forward the symbolstream/bit-

stream to other layers. Similarly, PCS1 only converts the

bit width (gearbox), or identifies the beginning of a new

64/66 bit block (blocksync). Therefore, the PMD, PMA,

and PCS1 are all implemented in hardware as a forward-

ing module between the physical medium and SoNIC’s

software component (See Figure 1). Conversely, PCS2

(scramble/descramble) and PCS3 (encode/decode) actu-

ally manipulate bits in the bitstream and so they are im-

plemented in SoNIC’s software component. SoNIC pro-

vides full access to the PHY in software; as a result, all of

the functionality in the PHY that manipulate bits (PCS2

and PCS3) are implemented in software.

For this partitioning between hardware and software,

we chose an Altera Stratix IV FPGA [4] development

board from HiTechGlobal [6] as our hardware platform.

The board includes a PCIe Gen 2 interface (=32 Gbps)

to the host PC, and is equipped with two SFP+ (Small

Form-factor Pluggable) ports (Figure 2). The FPGA is

equipped with 11.3 Gbps transceivers which can perform

the 10 GbE PMA at line-speed. Once symbols are deliv-

ered to a transceiver on the FPGA they are converted to

bits (PMA), and then transmitted to the host via PCIe by

direct memory access (DMA). This board satisfies all the

requirements discussed in the previous Section 2.2.

3.2 Realtime Capability

To achieve realtime, it is important to reduce any syn-

chronization overheads between hardware and software,

and between multiple pipelined cores. In SoNIC, the

hardware does not generate interrupts when receiving or

transmitting. Instead, the software decides when to initi-

ate a DMA transaction by polling a value from a shared

TX MAC

TX PCS RX PCS

TX HW RX HW

Socket

(a) Packet Generator

APP RX MAC

TX PCS RX PCS

TX HW RX HW

Socket

(b) Packet Capturer

Figure 3: Example usages of SoNIC

data memory structure where only the hardware writes.

This approach is called pointer polling and is better than

interrupts because there is always data to transfer due to

the nature of continuous bitstreams in 10 GbE.

In order to synchronize multiple pipelined cores, a

chasing-pointer FIFO from Sora [33] is used which sup-

ports low-latency pipelining. The FIFO removes the

need for a shared synchronization variable and instead

uses a flag to indicate whether a FIFO entry is available

to reduce the synchronization overheads. In our imple-

mentation, we improved the FIFO by avoiding memory

operations as well. Memory allocation and page faults

are expensive and must be avoided to meet the realtime

capability. Therefore, each FIFO entry in SoNIC is pre-

allocated during initialization. In addition, the number

of entries in a FIFO is kept small so that the amount of

memory required for a port can fit into the shared L3

cache.

We use the Intel Westmere processor to achieve high

performance. Intel Westmere is a Non-Uniform Memory

Access (NUMA) architecture that is efficient for imple-

menting packet processing applications [14, 18, 28, 30].

It is further enhanced by a new instruction PCLMULQDQ
which was recently introduced. This instruction per-

forms carry-less multiplication and we use it to imple-

ment a fast CRC algorithm [16] that the MAC requires.

Using PCLMULQDQ instruction makes it possible to im-

plement a CRC engine that can process 10 GbE bits at

line-speed on a single core.

3.3 Scalability and Efficiency

The FPGA board we use is equipped with two physical

10 GbE ports and a PCIe interface that can support up

to 32 Gbps. Our design goal is to support two physical

ports per board. Consequently, the number of CPU cores

and the amount of memory required for one port must be

bounded. Further, considering the intense computation

required for the PCS and MAC, and that recent proces-

sors come with four to six or even eight cores per socket,

our goal is to limit the number of CPU cores required per

port to the number of cores available in a socket. As a

result, for one port we implement four dedicated kernel

threads each running on different CPU cores. We use a

PCS thread and a MAC thread on both the transmit and

receive paths. We call our threads: TX PCS, RX PCS,

TX MAC and RX MAC. Interrupt requests (IRQ) are re-

4
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routed to unused cores so that SoNIC threads do not give

up the CPU and can meet the realtime requirements.

Additionally, we use memory very efficiently: DMA

buffers are preallocated and reused and data structures

are kept small to fit in the shared L3 cache. Further, by

utilizing memory efficiently, dedicating threads to cores,

and using multi-processor QPI support, we can linearly

increase the number of ports with the number of proces-

sors. QPI provides enough bandwidth to transfer data

between sockets at a very fast data rate (> 100 Gbps).

A significant design issue still abounds: communi-

cation and CPU core utilization. The way we pipeline

CPUs, i.e. sharing FIFOs depends on the application.

In particular, we pipeline CPUs differently depending on

the application to reduce the number of active CPUs; un-

necessary CPUs are returned to OS. Further, we can en-

hance communication with a general rule of thumb: take

advantage of the NUMA architecture and L3 cache and

place closely related threads on the same CPU socket.

Figure 3 illustrates examples of how to share FIFOs

among CPUs. An arrow is a shared FIFO. For exam-

ple, a packet generator only requires TX elements (Fig-

ure 3a); RX PCS simply receives and discards bitstreams,

which is required to keep a link active. On the contrary,

a packet capturer requires RX elements (Figure 3b) to

receive and capture packets. TX PCS is required to es-

tablish and maintain a link to the other end by sending

/I/s. To create a network profiling application, both the

packet generator and packet capturer can run on different

sockets simultaneously.

3.4 Precision

As discussed in Section 3.1, the PCS2 and PCS3 are im-

plemented in software. Consequently, the software re-

ceives the entire raw bitstream from the hardware. While

performing PCS2 and PCS3 functionalities, a PCS thread

records the number of bits in between and within each

Ethernet frame. This information can later be retrieved

by a user application. Moreover, SoNIC allows users to

precisely control the number of bits in between frames

when transmitting packets, and can even change the

value of any bits. For example, we use this capability to

give users fine-grain control over packet generators and

can even create virtually undetectable covert channels.

3.5 User Interface

SoNIC exposes fine-grained control over the path that

a bitstream travels in software. SoNIC uses the ioctl
system call for control, and the character device interface

to transfer information when a user application needs to

retrieve data. Moreover, users can assign which CPU

cores or socket each thread runs on to optimize the path.

To allow further flexibility, SoNIC allows additional

application-specific threads, called APP threads, to be

pipelined with other threads. A character device is used

1: #include "sonic.h"
2:
3: struct sonic_pkt_gen_info info = {
4: .pkt_num = 1000000000UL,
5: .pkt_len = 1518,
6: .mac_src = "00:11:22:33:44:55",
7: .mac_dst = "aa:bb:cc:dd:ee:ff",
8: .ip_src = "192.168.0.1",
9: .ip_dst = "192.168.0.2",
10: .port_src = 5000,
11: .port_dst = 5000,
12: .idle = 12, };
13:
14: fd1 = open(SONIC_CONTROL_PATH, O_RDWR);
15: fd2 = open(SONIC_PORT1_PATH, O_RDONLY);
16:
17: ioctl(fd1, SONIC_IOC_RESET)
18: ioctl(fd1, SONIC_IOC_SET_MODE, SONIC_PKT_GEN_CAP)
19: ioctl(fd1, SONIC_IOC_PORT0_INFO_SET, &info)
20: ioctl(fd1, SONIC_IOC_RUN, 10)
21:
22: while ((ret = read(fd2, buf, 65536)) > 0) {
23: // process data }
24:
25: close(fd1);
26: close(fd2);

Figure 4: E.g. SoNIC Packet Generator and Capturer

to communicate with these APP threads from userspace.

For instance, users can implement a logging thread

pipelined with receive path threads (RX PCS and/or RX

MAC). Then the APP thread can deliver packet informa-

tion along with precise timing information to userspace

via a character device interface. There are two con-

straints that an APP thread must always meet: Perfor-

mance and pipelining. First, whatever functionality is

implemented in an APP thread, it must be able to perform

it faster than 10.3125 Gbps for any given packet stream

in order to meet the realtime capability. Second, an APP

thread must be properly pipelined with other threads,

i.e. input/output FIFO must be properly set. Currently,

SoNIC supports one APP thread per port.

Figure 4 illustrates the source code of an example

use of SoNIC as a packet generator and capturer. Af-

ter SONIC IOC SET MODE is called (line 18), threads

are pipelined as illustrated in Figure 3a and 3b. After

SONIC IOC RUN command (line 20), port 0 starts gen-

erating packets given the information from info (line 3-

12) for 10 seconds (line 20) while port 1 starts capturing

packets with very precise timing information. Captured

information is retrieved with read system calls (line 22-

23) via a character device. As a packet generator, users

can set the desired number of /I/s between packets (line

12). For example, twelve /I/ characters will achieve the

maximum data rate. Increasing the number of /I/ char-

acters will decrease the data rate.

3.6 Discussion

We have implemented SoNIC to achieve the design goals

described above, namely, software access to the PHY, re-

altime capability, scalability, high precision, and an inter-

active user interface. Figure 5 shows the major compo-

nents of our implementation. From top to bottom, user
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Figure 5: SoNIC architecture

applications, software as a loadable Linux kernel mod-

ule, hardware as a firmware in FPGA, and a SFP+ optical

transceiver. Although Figure 5 only illustrates one physi-

cal port, there are two physical ports available in SoNIC.

SoNIC software consists of about 6k lines of kernel mod-

ule code, and SoNIC hardware consists of 6k lines of

Verilog code excluding auto-generated source code by

Altera Quartus [3] with which we developed SoNIC’s

hardware modules.

The idea of accessing the PHY in software can be ap-

plied to other physical layers with different speeds. The

1 GbE and 40 GbE PHYs are similar to the 10 GbE PHY

in that they run in full duplex mode, and maintain con-

tinuous bitstreams. Especially, the 40GbE PCS employes

four PCS lanes that implements 64B/66B encoding as in

the 10GbE PHY. Therefore, it is possible to access the

PHYs of them with appropriate clock cycles and hard-

ware supports. However, it might not be possible to im-

plement four times faster scrambler with current CPUs.

In the following sections, we will highlight how

SoNIC’s implementation is optimized to achieve high

performance, flexibility, and precision.

4 Optimizations
Performance is paramount for SoNIC to achieve its goals

and allow software access to the entire network stack.

In this section we discuss the software (Section 4.1) and

hardware (Section 4.2) optimizations that we employ to

enable SoNIC. Further, we evaluate each optimization

(Sections 4.1 and 4.2) and demonstrate that they help to

enable SoNIC and network research applications (Sec-

tion 5) with high performance.

4.1 Software Optimizations

MAC Thread Optimizations As stated in Section 3.2,

we use PCLMULQDQ instruction which performs carry-

less multiplication of two 64-bit quadwords [17] to im-

plement the fast CRC algorithm [16]. The algorithm

folds a large chunk of data into a smaller chunk using the

PCLMULQDQ instruction to efficiently reduce the size of

data. We adapted this algorithm and implemented it us-

ing inline assembly with optimizations for small packets.

PCS Thread Optimizations Considering there are 156

million 66-bit blocks a second, the PCS must process

each block in less than 6.4 nanoseconds. Our opti-

mized (de-)scrambler can process each block in 3.06

nanoseconds which even gives enough time to imple-

ment decode/encode and DMA transactions within a sin-

gle thread.

In particular, the PCS thread needs to implement the

(de-)scrambler function, G(x) = 1 + x39 + x58, to en-

sure that a mix of 1’s and 0’s are always sent (DC bal-

ance). The (de-)scrambler function can be implemented

with Algorithm 1, which is very computationally ex-

pensive [15] taking 320 shift and 128 xor operations (5

shift operations and 2 xors per iteration times 64 iter-

ations). In fact, our original implementation of Algo-

rithm 1 performed at 436 Mbps, which was not sufficient

and became the bottleneck for the PCS thread. We opti-

mized and reduced the scrambler algorithm to a total of 4

shift and 4 xor operations (Algorithm 2) by carefully ex-

amining how hardware implements the scrambler func-

tion [34]. Both Algorithm 1 and 2 are equivalent, but

Algorithm 2 runs 50 times faster (around 21 Gbps).

Algorithm 1 Scrambler

s ← state

d ← data

for i = 0 → 63 do

in ← (d >> i) & 1

out ← (in⊕ (s >> 38)⊕ (s >> 57)) & 1

s ← (s << 1) | out

r ← r | (out << i)
state ← s

end for

Algorithm 2 Parallel Scrambler

s ← state

d ← data

r ← (s >> 6)⊕ (s >> 25)⊕d

r ← r⊕ (r << 39)⊕ (r << 58)
state ← r

Memory Optimizations We use packing to further im-

prove performance. Instead of maintaining an array of

data structures that each contains metadata and a pointer

to the packet payload, we pack as much data as possible

into a preallocated memory space: Each packet structure

contains metadata, packet payload, and an offset to the

next packet structure in the buffer. This packing helps to

reduce the number of page faults, and allows SoNIC to

process small packets faster. Further, to reap the bene-

fits of the PCLMULQDQ instruction, the first byte of each

packet is always 16-byte aligned.

Evaluation We evaluated the performance of the TX

MAC thread when computing CRC values to assess the

performance of the fast CRC algorithm and packing

packets we implemented relative to batching an array of

6
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packets. For comparison, we computed the theoretical

maximum throughput (Reference throughput) in packets

per second (pps) for any given packet length (i.e. the

pps necessary to achieve the maximum throughput of 10

Gbps less any protocol overhead).

If only one packet is packed in the buffer, packing will

perform the same as batching since the two are essen-

tially the same in this case. We doubled the factor of

packing from 1 to 32 and assessed the performance of

packing each time, i.e. we doubled the number of packets

written to a single buffer. Figure 6 shows that packing by

a factor of 2 or more always outperforms the Reference

throughput and is able to achieve the max throughput for

small packets while batching does not.

Next, we compared our fast CRC algorithm against

two CRC algorithms that the Linux Kernel provides. One

of the Linux CRC algorithms is a naive bit computa-

tion and the other is a table lookup algorithm. Figure 7

illustrates the results of our comparisons. The x-axis

is the length of packets tested while the y-axis is the

throughput. The Reference line represents the maximum

possible throughput given the 10 GbE standard. Packet

lengths range the spectrum of sizes allowed by 10 GbE

standard from 64 bytes to 1518 bytes. For this evalua-

tions, we allocated 16 pages packed with packets of the

same length and computed CRC values with different al-

gorithms for 1 second. As we can see from Figure 7, the

throughput of the table lookup closely follows the Ref-

erence line; however, for several packet lengths, it un-

derperforms the Reference line and is unable to achieve

the maximum throughput. The fast CRC algorithm, on

the other hand, outperforms the Reference line and tar-

get throughput for all packet sizes.

Lastly, we evaluated the performance of pipelining and

using multiple threads on the TX and RX paths. We

tested a full path of SoNIC to assess the performance

as packets travel from the TX MAC to the TX PCS for

transmission and up the reverse path for receiving from

the RX PCS to the RX MAC and to the APP (as a log-

ging thread). We do not show the graph due to space

constraints, but all threads perform better than the Ref-

erence target throughput. The overhead of FIFO is neg-

ligible when we compare the throughputs of individual

threads to the throughput when all threads are pipelined

0M

5M

10M

15M

20M

25M

 0  200  400  600  800  1000  1200  1400  1600

T
hr

ou
gh

pu
t (

pp
s)

Ethernet frame size (in bytes)

Reference
bitwise

table
fast crc

Figure 7: Throughput of different CRC algorithms

together. Moreover, when using two ports simultane-

ously (two full instances of receive and transmit SoNIC

paths), the throughput for both ports achieve the Refer-

ence target maximum throughput.

4.2 Hardware Optimizations

DMA Controller Optimizations Given our desire to

transfer large amounts of data (more than 20 Gbps) over

the PCIe, we implemented a high performance DMA

controller. There are two key factors that influenced our

design of the DMA controller. First, because the incom-

ing bitstream is a continuous 10.3125 Gbps, there must

be enough buffering inside the FPGA to compensate for a

transfer latency. Our implementation allocates four rings

in the FPGA for two ports (Figure 5 shows two of the

rings for one port). The maximum size of each ring is

256 KB, with the size being limited by the amount of

SRAM available.

The second key factor we needed to consider was the

efficient utilization of bus bandwidth. The DMA con-

troller operates at a data width of 128 bits. If we send a

66-bit data block over the 128-bit bus every clock cy-

cle, we will waste 49% of the bandwidth, which was

not acceptable. To achieve more efficient use of the

bus, we create a sonic dma page data structure and

separated the syncheader from the packet payload be-

fore storing a 66-bit block in the data structure. Sixteen

two-bit syncheaders are concatenated together to create

a 32-bit integer and stored in the syncheaders field

of the data structure. The 64-bit packet payloads associ-

ated with these syncheaders are stored in the payloads
field of the data structure. For example, the ith 66-bit

PCS block from a DMA page consists of the two-bit sync

header from syncheaders[i/16] and the 64-bit pay-

load from payloads[i]. With this data structure there

is a 32-bit overhead for every page, however it does not

impact the overall performance.

PCI Express Engine Optimizations When SoNIC was

first designed, it only supported a single port. As we

scaled SoNIC to support multiple ports simultaneously,

the need for multiplexing traffic among ports over the

single PCIe link became a significant issue. To solve

this issue, we employ a two-level arbitration scheme to

provide fair arbitration among ports. A lower level ar-

biter is a fixed-priority arbiter that works within a sin-

7
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Configuration Same Socket? # pages
Throughput (RX)

# pages
Throughput (TX)

Realtime?
Port 0 Port 1 Port 0 Port 1

Single RX 16 25.7851

Dual RX
Yes 16 13.9339 13.899

No 8 14.2215 13.134

Single TX 16 23.7437

Dual TX
Yes 16 14.0082 14.048

No 16 13.8211 13.8389

Single RX/TX 16 21.0448 16 22.8166

Dual RX/TX

Yes

4 10.7486 10.8011 8 10.6344 10.7171 No

4 11.2392 11.2381 16 12.384 12.408 Yes

8 13.9144 13.9483 8 9.1895 9.1439 Yes

8 14.1109 14.1107 16 10.6715 10.6731 Yes

No

4 10.5976 10.183 8 10.3703 10.1866 No

4 10.9155 10.231 16 12.1131 11.7583 Yes

8 13.4345 13.1123 8 8.3939 8.8432 Yes

8 13.4781 13.3387 16 9.6137 10.952 Yes

Table 1: DMA throughput. The numbers are average over eight runs. The delta in measurements was within 1% or

less.

gle port and arbitrates between four basic Transaction

Level Packet (TLP) types: Memory, I/O, configuration,

and message. The TLPs are assigned with fixed priority

in favor of the write transaction towards the host. The

second level arbiter implements a virtual channel, where

the Traffic Class (TC) field of TLP’s are used as demul-

tiplexing keys. We implemented our own virtual channel

mechanism in SoNIC instead of using the one available

in the PCIe stack since virtual channel support is an op-

tional feature for vendors to comply with. In fact, most

chipsets on the market do not support the virtual channel

mechanism. By implementing the virtual channel sup-

port in SoNIC, we achieve better portability since we do

not rely on chip vendors that enable PCI arbitration.

Evaluation We examined the maximum throughput for

DMA between SoNIC hardware and SoNIC software

to evaluate our hardware optimizations. It is important

that the bidirectional data rate of each port of SoNIC is

greater than 10.3125 Gbps. For this evaluation, we cre-

ated a DMA descriptor table with one entry, and changed

the size of memory for each DMA transaction from one

page (4K) to sixteen pages (64KB), doubling the num-

ber of pages each time. We evaluated the throughput of

a single RX or TX transaction, dual RX or TX transac-

tions, and full bidirectional RX and TX transactions with

both one and two ports (see the rows of Table 1). We also

measured the throughput when traffic was sent to one or

two CPU sockets.

Table 1 shows the DMA throughputs of the transac-

tions described above. We first measured the DMA with-

out using pointer polling (see Section 3.2) to obtain the

maximum throughputs of the DMA module. For sin-

gle RX and TX transactions, the maximum throughput

is close to 25 Gbps. This is less than the theoretical max-

imum throughput of 29.6 Gbps for the x8 PCIe interface,

but closely matches the reported maximum throughput

of 27.5 Gbps [2] from Altera design. Dual RX or TX

transactions also resulted in throughputs similar to the

reference throughputs of Altera design.

Next, we measured the full bidirectional DMA trans-

actions for both ports varying the number of pages again.

As shown in the bottom half of Table 1, we have multi-

ple configurations that support throughputs greater than

10.3125 Gbps for full bidirections. However, there are

a few configurations in which the TX throughput is less

than 10.3125 Gbps. That is because the TX direction

requires a small fraction of RX bandwidth to fetch the

DMA descriptor. If RX runs at maximum throughput,

there is little room for the TX descriptor request to get

through. However, as the last column on the right in-

dicates these configurations are still able to support the

realtime capability, i.e. consistently running at 10.3125

Gbps, when pointer polling is enabled. This is because

the RX direction only needs to run at 10.3125 Gbps, less

than the theoretical maximum throughput (14.8 Gbps),

and thus gives more room to TX. On the other hand, two

configurations where both RX and TX run faster than

10.3125 Gbps for full bidirection are not able to support

the realtime capability. For the rest of the paper, we use

8 pages for RX DMA and 16 pages for TX DMA.

5 Network Research Applications
How can SoNIC enable flexible, precise and novel net-

work research applications? Specifically, what unique

value does software access to the PHY buy? As dis-

cussed in Section 2.5, SoNIC can literally count the num-

ber of bits between and within packets, which can be

used for timestamping at the sub-nanosecond granular-

ity (again each bit is 97 ps wide, or about ∼0.1 ns).

At the same time, access to the PHY allows users con-

trol over the number of idles (/I/s) between packets

when generating packets. This fine-grain control over

the /I/s means we can precisely control the data rate

and the distribution of interpacket gaps. For example, the

data rate of a 64B packet stream with uniform 168 /I/s

is 3 Gbps. When this precise packet generation is com-

bined with exact packet capture, also enabled by SoNIC,

we can improve the accuracy of any research based on

interpacket delays [11, 19, 22, 23, 24, 25, 26, 32, 35, 37].

8
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Figure 8: Experiment setups for SoNIC

In this section, we demonstrate that SoNIC can pre-

cisely and flexibly characterize and profile commodity

network components like routers, switches, and NICs.

Section 5.4 discusses the profiling capability enabled

by SoNIC. Further, in Section 5.5, we demonstrate that

SoNIC can be used to create a covert timing channel that

is not detectable by applications that do not have access

to the PHY and data link layers and that do not have

accurate timestamping capabilities. First, however, we

demonstrate SoNIC’s accurate packet generation capa-

bility in Section 5.2 and packet capture capability in Sec-

tion 5.3, which are unique contributions and can enable

unique network research in and of themselves given both

the flexibility, control, and precision.

Interpacket delay (IPD) and interpacket gap (IPG) are

defined as follows: IPD is the time difference between

the first bit of successive packets, while IPG is the time

difference between the last bit of the first packet and the

first bit of the next packet.

5.1 Experiment Setup

We deployed SoNIC on a Dell Precision T7500 work-

station. This workstation is a dual socket, 2.93 GHz

six core Xeon X5670 (Westmere) with 12 MB of shared

L3 cache and 12 GB of RAM, 6 GB connected to each

of the two CPU sockets. The machine has two PCIe

Gen 2.0 x8 slots, where SoNIC hardware is plugged in,

and is equipped with an Intel 5520 chipset connected

to each CPU socket by a 6.4 GT/s QuickPath Intercon-

nect (QPI). Two Myricom 10G-SFP-LR transceivers are

plugged into SoNIC hardware. We call this machine the

SoNIC server. For our evaluations we also deployed an

Altera 10G Ethernet design [1] (we call this ALT10G)

on an FPGA development board. This FPGA is the same

type as the one SoNIC uses and is deployed on a server

identical to the SoNIC server. We also used a server iden-

tical to the SoNIC server with a Myricom 10G-PCIE2-

8B2-2S dual 10G port NIC (we call this Client).

To evaluate SoNIC as a packet generator and capturer,

we connected the SoNIC board and the ALT10G board

directly via optic fibers (Figure 8a). ALT10G allows us

to generate random packets of any length and with the

minimum IPG to SoNIC. It also provides us with de-

tailed statistics such as the number of valid/invalid Eth-

ernet frames, and frames with CRC errors. We used this
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Figure 9: Throughput of packet generator and capturer

feature to stress test SoNIC for the packet generator and

capturer. We compared these numbers from ALT10G

with statistics from SoNIC to verify the correctness of

SoNIC.

To evaluate other applications, we used port 0 of

SoNIC server to generate packets to the Client server

via an arbitrary network, and split the signal with a fiber

optic splitter so that the same stream can be directed

to both the Client and port 1 of the SoNIC server per-

forming the packet capture (Figure 8b). We used var-

ious network topologies composed of Cisco 4948, and

IBM BNT G8264 switches for the network between the

SoNIC server and the Client.

5.2 Packet Generator

Packet generation is important for network research. It

can stress test end-hosts, switches/routers, or a network

itself. Moreover, packet generation can be used for re-

playing a trace, studying distributed denial of service

(DDoS) attacks, or probing firewalls.

In order to claim that a packet generator is accurate,

packets need to be crafted with fine-grained precision

(minimum deviations in IPD) at the maximum data rate.

However, this fine-grained control is not usually exposed

to users. Further, commodity servers equipped with a

commodity NIC often does not handle small packets ef-

ficiently and require batching [14, 18, 28, 30]. Thus, the

sending capability of servers/software-routers are deter-

mined by the network interface devices. Myricom Snif-

fer 10G [8] provides line-rate packet injection capability,

but does not provide fine-grained control of IPGs. Hard-

ware based packet generators such as ALT10G can pre-

cisely control IPGs, but do not provide any interface for

users to flexibly control them.

We evaluated SoNIC as a packet generator (Figure 3a).

Figure 10 compares the performance of SoNIC to that of

Sniffer 10G. Note, we do not include ALT10G in this

evaluation since we could not control the IPG to gener-

ate packets at 9 Gbps. We used two servers with Snif-

fer 10G enabled devices to generate 1518B packets at 9

Gbps between them. We split the stream so that SoNIC

can capture the packet stream in the middle (we describe

this capture capability in the following section). As the

graph shows, Sniffer 10G allows users to generate pack-

ets at desired data rate, however, it does not give the con-

9
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Figure 10: Comparison of packet generation at 9 Gbps

trol over the IPD; that is, 85.65% packets were sent in

a burst (instantaneous 9.8 Gbps and minimum IPG (14

/I/s)). SoNIC, on the other hand, can generate packets

with uniform distribution. In particular, SoNIC gener-

ated packets with no variance for the IPD (i.e. a single

point on the CDF, represented as a triangle). Moreover,

the maximum throughput perfectly matches the Refer-

ence throughput (Figure 9) while the TX PCS consis-

tently runs at 10.3125 Gbps (which is not shown). In

addition, we observed no packet loss, bit errors, or CRC

errors during our experiments.

SoNIC packet generator can easily achieve the maxi-

mum data rate, and allows users to precisely control the

number of /I/s to set the data rate of a packet stream.

Moreover, with SoNIC, it is possible to inject less /I/s

than the standard. For example, we can achieve 9 Gbps

with 64B packets by inserting only eight /I/s between

packets. This capability is not possible with any other

(software) platform. In addition, if the APP thread is

carefully designed, users can flexibly inject a random

number of /I/s between packets, or the number of /I/s

from captured data. SoNIC packet generator is thus by

far the most flexible and highest performing.

5.3 Packet Capturer

A packet capturer (a.k.a. packet sniffer, or packet ana-

lyzer) plays an important role in network research; it is

the opposite side of the same coin as a packet genera-

tor. It can record and log traffic over a network which

can later be analyzed to improve the performance and

security of networks. In addition, capturing packets with

precise timestamping is important for High Frequency

Trading [21, 31] or latency sensitive applications.

Similar to the sending capability, the receiving capa-

bility of servers and software routers is inherently limited

by the network adapters they use; it has been shown that

some NICs are not able to receive packets at line speed

for certain packet sizes [30]. Furthermore, if batching

is used, timestamping is significantly perturbed if done

in kernel or userspace [15]. High-performance devices

such as Myricom Sniffer10G [8, 20] provide the ability

of sustained capture of 10 GbE by bypassing kernel net-

work stack. It also provides timestamping at 500 ns res-

olution for captured packets. SoNIC, on the other hand,

can receive packets of any length at line-speed with pre-
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cise timestamping. For instance, we will show in Sec-

tion 5.5 that we can create a covert timing channel that

is undetectable to a Sniffer 10G enabled system or any

other software-enabled systems[14, 18, 28, 30].

Putting it all together, when we use SoNIC as a packet

capturer (Figure 3b), we are able to receive at the full

Reference data rate (Figure 9). For the APP thread, we

implemented a simple logging application which cap-

tures the first 48 bytes of each packet along with the num-

ber of /I/s and bits between packets. Because of the rel-

atively slow speed of disk writes, we store the captured

information in memory. This requires about 900MB to

capture a stream of 64 byte packets for 1 second, and 50

MB for 1518 byte packets. We use ALT10G to generate

packets for 1 second and compare the number of packets

received by SoNIC to the number of packets generated.

SoNIC has perfect packet capture capabilities with

flexible control in software. In particular, Figure 11

shows that given a 9 Gbps generated traffic with uni-

form IPD (average IPD=1357.224ns, stdev=0), SoNIC

captures what was sent; this is shown as a single trian-

gle at (1357.224, 1). All the other packet capture meth-

ods within userspace, kernel or a mixture of hardware

timestamping in userspace (Sniffer 10G) failed to accu-

rately capture what was sent. We receive similar results

at lower bandwidths as well.

5.4 Profiler

Interpacket delays are a common metric for network

research. It can be used to estimate available band-

width [23, 24, 32], increase TCP throughput [37], char-

acterize network traffic [19, 22, 35], and detect and pre-

vent covert timing channels [11, 25, 26]. There are a

lot of metrics based on IPD for these areas. We argue

that SoNIC can increase the accuracy of those applica-

tions because of its precise control and capture of IPDs.

In particular, when the SoNIC packet generator and cap-

turer are combined, i.e. one port transmits packets while

the other port captures, SoNIC can be a flexible platform

for various studies. As an example, we demonstrate how

SoNIC can be used to profile network switches.

Switches can be generally divided into two categories:

store-and-forward and cut-through switches. Store-and-

forward switches decode incoming packets, buffers them

before making a routing decision. On the other hand, cut-

10
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through switches route incoming packets before entire

packets are decoded to reduce the routing latency. We

generated 1518B packets with uniform 1357.19 ns IPD

(=9 Gbps) to a Cisco 4948 (store-and-forward) switch

and a IBM BNT G8264 (cut-through) switch. These

switches show different characteristics as shown in Fig-

ure 12. The x-axis is the interpacket delay; the y-axis

is the cumulative distribution function. The long dashed

vertical line on the left is the original IPD injected to the

packet stream.

There are several takeaways from this experiment.

First, the IPD for generated packets had no variance;

none. The generated IPD produced by SoNIC was al-

ways the same. Second, the cut-through switch intro-

duces IPD variance (stdev=31.6413), but less than the

IPD on the store-and-forward switch (stdev=161.669).

Finally, the average IPD was the same for both switches

since the data rate was the same: 1356.82 (cut-through)

and 1356.83 (store-and-forward). This style of experi-

ment can be used to profile and fingerprint network com-

ponents as different models show different packet distri-

butions.

5.5 Covert Channels

Covert channels in a network is a side channel that can

convey a hidden message embedded to legitimate pack-

ets. There are two types of covert channels: Storage and

timing channels. Storage channels use a specific location

of a packet to deliver a hidden message. Timing channels

modulate resources over time to deliver a message [38].

Software access to the PHY opens the possibility for both

storage and timing channels. The ability to detect covert

channels is important because a rogue router or an end-

host can create covert channels to deliver sensitive infor-

mation without alerting network administrators. We will

discuss how to create covert channels with SoNIC, and

thus argue that SoNIC can be used to detect any poten-

tially undetectable covert channels in local area network

or data center networks.

When SoNIC enabled devices are directly connected

between two end-hosts, a secret message can be commu-

nicated without alerting the end-host. In particular, there

are unused bits in the 10 GbE standard where an adver-

sary can inject bits to create covert messages. Unfortu-
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nately, such a covert storage channel can only work for

one hop. On the other hand, precisely controlling IPG

can create a timing channel that can travel multiple hops

in the network, and that cannot be easily detected with

inaccurate timestamping. Such a covert timing channel

is based on the two observations: First, timing channel

detection is usually performed in the application layer,

and depends on the inherently inaccurate timestamping

from kernel or userspace. Secondly, switches perturb the

IPD, although the difference is still bounded, i.e. an IPD

does not increase to an arbitrarily long one. Therefore, if

we can modulate IPGs in a way that allows switches to

preserve the gaps while making them indistinguishable

to kernel/userspace timestamping, it is possible to create

a virtually undetectable timing channel from applications

operating at layers higher than layer 2.

We experimented with the creation of a simple timing

channel. Let ∆ be an uniform IPG for a packet stream.

Then a small time window can be used to signal 1’s and

0’s. For example, IPG with ∆− ε /I/s represents 0 (if

∆− ε < 12, we set it to 12, the minimum IPG) and ∆+ ε
/I/s represents 1. If the number of 1’ and 0’s meets

the DC balance, the overall data rate will be similar to a

packet stream with uniform IPGs of ∆ /I/s. To demon-

strate the feasibility of this approach, we created a net-

work topology such that a packet travels from SoNIC

through a Cisco 4948, IBM G8264, a different Cisco

4948, and then to the SoNIC server and the Client server

with a fiber splitter (Figure 8b). SoNIC generates 1518B

packets with ∆ = 170, 1018, 3562, 13738 (= 9, 6, 3, 1

Gbps respectively), with ε = 16,32, ...,2048. Then, we

measured the bit error ratio (BER) with captured pack-

ets. Table 2 summarizes the result. We only illustrated

the smallest ε from each ∆ that achieves BER less than

1%. The takeaway is that by modulating IPGs at 100 ns

scale, we can create a timing channel.

Data rate (Gbps) ∆ δ (# /I/s) δ (in ns) BER

9 170 2048 1638.9 0.0359

6 1018 1024 819.4 0.0001

3 3562 128 102.4 0.0037

1 13738 128 102.4 0.0035

Table 2: Bit error ratio of timing channels

Figure 13 illustrates the IPDs with kernel timestamp-

ing from overt channel and covert channel when ∆ =

11
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3562 and ε = 128. The two lines closely overlap, in-

dicating that it is not easy to detect. There are other

metrics to evaluate the undetectability of a timing chan-

nel [11, 25, 26], however they are out of the scope of this

paper, and we do not discuss them.

6 Related Works
6.1 Reconfigurable Network Hardware

Reconfigurable network hardware allows for the experi-

mentation of novel network system architectures. Previ-

ous studies on reconfigurable NICs [36] showed that it is

useful for exploring new I/O virtualization technique in

VMMs. NetFPGA [27] allows users to experiment with

FPGA-based router and switches for research in new net-

work protocols and intrusion detection [10, 12, 29, 39].

The recent NetFPGA 10G platform is similar to the

SoNIC platform. While NetFPGA 10G allows user to

access the layer 2 and above, SoNIC allows user to ac-

cess the PHY. This means that user can access the entire

network stack in software using SoNIC.

6.2 Timestamp

The importance of timestamping has long been estab-

lished in the network measurement community. Prior

work either does not provide precise enough timestamp-

ing, or requires special devices. Packet stamping in user-

space or kernel suffers from the imprecision introduced

by the OS layer [13]. Timestamping in hardware either

requires offloading the network stack to a custom proces-

sor [37], or relies on an external clock source [5], which

makes the device hard to program and inconvenient to

use in a data center environment. Data acquisition and

generation (DAG) cards [5] additionally offer globally

synchronized clocks among multiple devices, whereas

SoNIC only supports delta timestamping.

Although BiFocals [15] is able to provide an exact

timestamping, the current state-of-art has limitations that

prevented it from being a portable and realtime tool. Bi-

Focals can store and analyze only a few milliseconds

worth of a bitstream at a time due to the small memory

of the oscilloscope. Furthermore, it requires thousands of

CPU hours for converting raw optic waveforms to pack-

ets. Lastly, the physics equipment used by BiFocals are

expensive and not easily portable. Its limitations moti-

vated us to design SoNIC to achieve the realtime exact

precision timestamping.

6.3 Software Defined Radio

The Software Defined Radio (SDR) allows easy, rapid

prototyping of wireless network in software. Open-

access platforms such as the Rice University’s WARP [9]

allow researchers to program both the physical and net-

work layer on a single platform. Sora [33] presented

the first SDFR platform that fully implements IEEE

802.11b/g on a commodity PC. AirFPGA [39] imple-

mented a SDR platform on NetFPGA, focusing on build-

ing a chain of signal processing engines using commod-

ity machines. SoNIC is similar to Sora in that it allows

users to access and modify the PHY and MAC layers.

The difference is that SoNIC must process multiple 10

Gbps channels which is much more computationally in-

tensive than the data rate of wireless channels. More-

over, it is harder to synchronize hardware and software

because a 10GbE link runs in a full duplex mode, unlike

a wireless newtork.

6.4 Software Router

Although SoNIC is orthogonal to software routers, it is

worth mentioning software routers because they share

common techniques. SoNIC preallocates buffers to re-

duce memory overhead [18, 30], polls huge chunks of

data from hardware to minimize interrupt overhead [14,

18], packs packets in a similar fashion to batching to im-

prove performance [14, 18, 28, 30]. Software routers

normally focus on scalability and hence exploit multi-

core processors and multi-queue supports from NICs to

distribute packets to different cores to process. On the

other hand, SoNIC pipelines multiple CPUs to handle

continuous bitstreams.

7 Conclusion
In this paper, we presented SoNIC which allows users

to access the physical layer in realtime from software.

SoNIC can generate, receive, manipulate and forward

10 GbE bitstreams at line-rate from software. Fur-

ther, SoNIC gives systems programmers unprecedented

precision for network measurements and research. At

its heart, SoNIC utilizes commodity-off-the-shelf multi-

core processors to implement part of the physical layer

in software and employs an FPGA board to transmit

optical signal over the wire. As a result, SoNIC al-

lows cross-network-layer research explorations by sys-

tems programmers.

8 Availability
The SoNIC platform and source code is published under

a BSD license and is freely available for download at

http://sonic.cs.cornell.edu
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