
This paper is included in the Proceedings of the
11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’14).
April 2–4, 2014 • Seattle, WA, USA

ISBN 978-1-931971-09-6

Open access to the Proceedings of the
11th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’14)

is sponsored by USENIX

SENIC: Scalable NIC for End-Host Rate Limiting
Sivasankar Radhakrishnan, University of California, San Diego; Yilong Geng and

Vimalkumar Jeyakumar, Stanford University; Abdul Kabbani, Google Inc.;
George Porter, University of California, San Diego;

Amin Vahdat, Google Inc. and University of California, San Diego

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/radhakrishnan

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 475

SENIC: Scalable NIC for End-Host Rate Limiting
Sivasankar Radhakrishnan∗, Yilong Geng+, Vimalkumar Jeyakumar+,

Abdul Kabbani†, George Porter∗, Amin Vahdat†∗
∗ University of California, San Diego + Stanford University † Google Inc.

{sivasankar, gmporter, vahdat}@cs.ucsd.edu {gengyl08, jvimal}@stanford.edu akabbani@google.com

Abstract
Rate limiting is an important primitive for managing
server network resources. Unfortunately, software-based
rate limiting suffers from limited accuracy and high CPU
overhead, and modern NICs only support a handful of
rate limiters. We present SENIC, a NIC design that can
natively support 10s of thousands of rate limiters—100x
to 1000x the number available in NICs today. The key
idea is that the host CPU only classifies packets, en-
queues them in per-class queues in host memory, and
specifies rate limits for each traffic class. On the NIC,
SENIC maintains class metadata, computes the transmit
schedule, and only pulls packets from host memory when
they are ready to be transmitted (on a real time basis). We
implemented SENIC on NetFPGA, with 1000 rate lim-
iters requiring just 30KB SRAM, and it was able to accu-
rately pace packets. Further, in a memcached benchmark
against software rate limiters, SENIC is able to sustain
up to 250% higher load, while simultaneously keeping
tail latency under 4ms at 90% network utilization.

1 Introduction

Today’s trend towards consolidating servers in dense
data centers necessitates careful resource management.
It is hence unsurprising that there have been several re-
cent proposals to manage and allocate network band-
width to different services, tenants and traffic flows in
data centers. This can be a challenge given the bursty
and unpredictable nature of data center traffic, which has
necessitated new designs for congestion control [29].

Many of these recent proposals can be realized on
top of a simple substrate of programmable rate limiters.
For example, Seawall [38], Oktopus [4], EyeQ [12] and
Gatekeeper [35] use rate limiters between pairs of com-
municating virtual machines to provide tenant rate guar-
antees. QCN [1] and D3 [40] use explicit network feed-
back to rate limit traffic sources. Such systems need to
support thousands of rate limited flows or traffic classes,
especially in virtual machine deployments.

Unfortunately these new ideas have been hamstrung
by the inability of current NIC hardware to support more
than a handful of rate limiters (e.g., 8–128) [11, 18]. This
has resulted in delegating packet scheduling function-
ality to software, which is unable to keep up with line
rates, while diverting CPU resources away from appli-

Property Hardware Software
Scales to many classes × �

Works at high link speeds � ×
Low CPU overhead � ×

Precise rate enforcement � ×
Supports hypervisor bypass � ×

Table 1: Pros and cons of current hardware and software based
approaches to rate limiting.

cation processing. As networks get faster, this problem
will only get worse since the capabilities of individual
cores will likely not increase. We are left with a com-
promise between precise hardware rate limiters that are
few in number [14, 38] and software rate limiters that
support more flows but suffer from high CPU overhead
and burstiness (see Table 1). Software rate limiters also
preclude VMs from bypassing the hypervisor for better
performance [20, 24].

The NIC is an ideal place to offload common case or
repetitive network functions. Features such as segmen-
tation offload (TSO), and checksum offload are widely
used to improve CPU performance as we scale commu-
nication rates. However, a key missing functionality is
scalable rate limiting.

In this work, we present SENIC, a NIC architecture
that combines the scalability of software rate limiters
with the precision and low overhead of hardware rate
limiters. Specifically, in hardware, SENIC supports 10s
of thousands of rate limiters, 100–1000x the number
available in today’s NICs. The key insight in SENIC is
to invert the current duties of the host and the NIC: the
OS stores packet queues in host memory, and classifies
packets into them. The NIC handles packet scheduling
and proactively pulls packets via host memory DMA for
transmission. This late-binding enables SENIC to main-
tain transmit queues for many classes in host memory,
while the NIC enforces precise rate limits in real-time.

This paper’s contributions are: (1) identifying the lim-
itations of current operating system and NIC capabilities,
(2) the SENIC design that provides scalable rate lim-
iting with low CPU overhead, and supports hypervisor
bypass, (3) a unified scheduling algorithm that enforces
strict rate limits and gracefully falls back to weighted
sharing if the link is oversubscribed, and (4) evaluating
SENIC through implementation of a software prototype
and a hardware 10G-NetFPGA prototype. Our evalua-

1

476 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tion shows that SENIC can pull packets on-demand and
achieve (nearly) perfect packet pacing. SENIC sustains
43–250% higher memcached load than current software
rate limiters, and achieves low tail latency under 4ms
even at high loads. SENIC isolates memcached from
bandwidth intensive tenants, and sustains the configured
rate limits for all tenants even at high loads (9Gb/s), un-
like current approaches.

2 Motivation

We motivate SENIC by describing two capabilities
which rely on scalable rate limiting, then describe the
limitations of current NICs which prevent these capabil-
ities from being realized.1

2.1 The Need For Scalable Rate Limiting
Scalable rate limiting is required for network virtualiza-
tion as well as new approaches for data center congestion
control, as we now describe.

Network Virtualization: Sharing network bandwidth
often relies on hierarchical rate limiting and weighted
bandwidth sharing. For example, Gatekeeper [35], and
EyeQ [12] both rate limit traffic between every com-
municating source-destination VM pair, as well as use
weighted sharing across source VMs on a single ma-
chine. With greater server consolidation and increasing
number of cores per server, the number of rate limiters
needed is only expected to increase.

To quantify the number of rate limiters required
for network virtualization, we observe that Moshref et
al. [22] cite the need for 10s of thousands of flow rules
per server to support VM-to-VM rules in a cluster with
10s of thousands of servers. Extending these to support
rate limits would thus necessitate an equal number of
rate limiters. For example, if there are 50 VMs/server,
each communicating with a modest 50 other VMs, we
need 2500 rate limiters to provide bandwidth isolation.
Furthermore, supporting native hardware rate limiting is
necessary, since VMs with latency sensitive applications
may want to bypass the hypervisor entirely [20, 24].

Data Center Congestion Control: Congestion con-
trol has typically been an end-host responsibility, as
exemplified by TCP. Bursty correlated traffic at high
link speeds, coupled with small buffers in commodity
switches can result in poor application performance [29].
This has led to the development of QCN [1], DCTCP [2],
HULL [3], and D3 [40] to demonstrate how explicit net-
work feedback can be used to pace or rate limit traffic
sources and reduce congestion. In the limit, each flow
(potentially thousands [7]) needs its own rate limiter.

1The motivation for this work appeared in an earlier workshop pa-
per [30].

2.2 Limitations of Current Systems
Today, rate limiting is performed either (1) in hardware
in the NIC, or (2) in software in the OS or VM hypervi-
sor. We consider these alternatives in detail.

2.2.1 Hardware Rate Limiting

Modern NICs support a few hardware transmit queues
(8-128) that can be rate limited. When the OS transmits a
packet, it sends a doorbell request2 to the NIC notifying it
of the packet and the NIC Tx ring buffer to use. The NIC
DMA’s the packet descriptor from host RAM to its inter-
nal SRAM memory. The NIC uses an arbiter to compute
the order in which to fetch packets from different Tx ring
buffers. It looks up the physical address of the packet in
the descriptor, and initiates a DMA transfer of the packet
contents to its internal packet buffer. Eventually a sched-
uler decides when different packets are transmitted.

A straightforward approach of storing per-class packet
queues on the NIC does not scale well. For instance, even
storing 15KB packet data per queue for 10,000 queues
requires around 150MB of SRAM, which is too expen-
sive for commodity NICs. Likewise, storing large packet
descriptor ring buffers for each queue is also expensive.

2.2.2 Software Rate Limiting

Operating systems and VM hypervisors support rate lim-
iting and per-class prioritization; for example, Linux of-
fers a configurable queueing discipline (QDisc) layer for
enforcing packet transmission policies. The QDisc can
be configured with traffic classes from which packets are
transmitted by the operating system.

In general, handling individual packets in software im-
poses high CPU overhead due to lock contention and fre-
quent interrupts for computing and enforcing the sched-
ule. To reduce CPU load, the OS transfers packets to the
NIC in batches, leveraging features like TSO. Once these
batches of packets are in the NIC, the operating system
loses control over packet schedules; packets may end up
being transmitted at unpredictable times on the wire, fre-
quently in large bursts (e.g., 64KB with 10Gb/s NICs) of
back-to-back MTU-sized packets transmitted at the full
line rate.

Quantifying Software Overheads: Accurate rate
limiting is challenging at 10Gb/s and higher. For in-
stance, at 40Gb/s, accurately pacing 1500B packets
means sending a packet approximately every 300ns.
Such accuracy is difficult to achieve even with Linux’s
high resolution timers, as servicing an interrupt can eas-
ily cost thousands of nanoseconds. To quantify the over-
head of software rate limiting, we benchmarked Linux’s

2A doorbell request is a mechanism whereby the network driver
notifies the NIC that packet(s) are ready to be transmitted.

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 477

Figure 1: Comparison of CPU overhead and accuracy of software (Linux htb) and hardware (hwrl, hwrl+) rate limiting. At
high rates (5Gb/s and 9Gb/s), hwrl ensures low CPU overhead and high accuracy, while htb is unable to drive more than 6.5Gb/s
of aggregate throughput. Accuracy is measured as the ratio between the standard deviation of successive packet departure time
differences, to the ideal. For instance, at 0.5Gb/s, 1500B packets should depart at times roughly 24us apart, but a “normalized
stddev” of 0.2 means the observed deviation from 24us was as much as ∼4.8us.

Hierarchical Token Bucket (htb), and compared it to
the hardware rate limiter (hwrl) on an Intel 82599 NIC.
The tests were conducted on a dual 4-core, 2-way hy-
perthreaded Intel Xeon E5520 2.27GHz server running
Linux 3.6.6.

We use userspace UDP traffic generators to send
1500B packets, and compare htb and hwrl on two
metrics—OS overhead and accuracy—for varying num-
ber of classes. Each class is allocated an equal rate (total
rate is 1Gb/s, 5Gb/s, or 9Gb/s). When the number of
classes exceeds the available hardware rate limiters (16
in our setup), we assign classes to them in a round robin
fashion (shown as hwrl+). OS overhead is the total frac-
tion of CPU time spent in the kernel across all cores, and
includes overheads in the network stack, packet schedul-
ing, and servicing interrupts. To measure how well traffic
is paced, we use a hardware packet sniffer at the receiver,
which records timestamps with a 500ns precision. These
metrics are plotted in Figure 1; the shaded bars indicate
that many classes are mapped to one hardware rate lim-
iter (hwrl+).

These experiments show that implementations of rate
limiting in hardware are promising and deliver accurate
rate limiting at low CPU overheads. However, they only
offer few rate limiters, in part due to limited buffering

on the NIC. Figure 1 shows that htb, while scalable in
terms of the number of queues supported, is unable to
pace packets at 9Gb/s, resulting in inaccurate rates.

3 Design

In the previous section, we described limitations of to-
day’s software and hardware approaches to rate limiting.
The primary limitation in hardware today is scalability
on the transmit path; we do not modify the receive path.
In light of this, we now describe the design of the basic
features in SENIC, and defer more advanced NIC fea-
tures to §5. We begin with the service model abstraction.

3.1 Service Model

SENIC has a simple service model. The NIC exposes
multiple transmit queues (classes), each with an associ-
ated rate limit. When the sum of rate limits of active
classes does not exceed link capacity, each class is re-
stricted to its rate limit. When it exceeds link capac-
ity (i.e., the link is oversubscribed), SENIC gracefully
shares the capacity in the ratio of class rate limits.

3

478 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Entry Bytes Description
Queue management

ring buffer 4 Aligned address of the head
of the ring buffer

buffer size 2 Size of ring buffer (entries)
head index 2 Index of first packet
tail index 2 Index of last packet

Head packet descriptor
head paddr 8 Address of the first packet
head plen 2 Length of the first packet (B)
pkt offset 2 Next segment offset into the

packet (for TSO)
Scheduler state (say for token bucket scheduler)

rate mbps 2 Rate limit for the queue
tokens bytes 2 Number of bytes that can be

sent from the queue without
violating rate limit

timestamp 4 Last timestamp at which to-
kens were refreshed

Table 2: Per-class metadata in NIC SRAM. Total size=30B

3.2 CPU and NIC Responsibilities
To enforce a service model, we need a packet scheduler,
and must store state for all classes. The state and func-
tionality are spread across the CPU/host and the NIC.

State: Memory on the NIC (typically SRAM) is ex-
pensive, and we therefore use it to only store metadata
about the classes. To store packet queues, SENIC lever-
ages the large amount of host memory. Table 2 shows an
example class metadata structure; the total size for stor-
ing 10,000 classes is about 300kB of SRAM. Note that
the Myricom 10Gb/s NIC has 2MB SRAM [23].

Functionality: At a high level, the CPU classifies and
enqueues packets in transmit queues, while the NIC com-
putes a schedule that obeys the rate limits, pulls pack-
ets from queues in host memory using DMA, and trans-
mits them on to the wire. The NIC handles all real time
per-packet operations and transmit scheduling of pack-
ets from different classes based on their rate limits. This
frees up the CPU to batch network processing, which re-
duces overall CPU utilization. This architecture is illus-
trated in Figure 2, which we now describe in detail.

3.2.1 CPU Functionality

As in current systems, the OS manages the NIC and ini-
tializes the device, creates/deletes classes, and configures
rate limits. The OS is also in charge of classifying and
enqueueing packets in appropriate queues. In both cases,
the OS communicates with the NIC through memory-
mapped IO. For instance, when the OS enqueues a packet
(or a burst of packets) into a queue, it notifies the NIC
through a special doorbell request that it writes to a
device-specific memory address.

Host RAM

NIC

Wire

. . . FIFO queues
(or ring buffers)

Packet
Scheduler

Arbitrarily
many

Wire

Packe

ma

et

y
ny

e

a

1

2

3

��  ���
	�
��  �	
��������������������������������������
��  ���������������

Figure 2: SENIC — “Schedule and Pull” model.

3.2.2 NIC Functionality

The NIC is responsible for all per-packet real time op-
erations on transmit queues. Since it has limited hard-
ware buffer resources, the NIC first computes the trans-
mit schedule based on the rate limits. It then chooses
the next packet that should be transmitted, and DMAs
the packet from the per-class queue in host memory to a
small internal NIC buffer for transmitting on to the wire.
Figure 3 shows a schematic of the SENIC hardware and
related interfaces from software.

CPU

CPU

PCIe x16

Doorbell FIFO
DbDb

Completion FIFO
CmplCmpl

Class table

Packet
Scheduler

PC
Ie

 c
on

tro
lle

r

SENIC

D
M

A
En

gi
ne

DMA-able
Host DRAM

Memory
Mapped IO

Doorbell
FIFO

Completion
FIFO

PktPktPkt

Ring
Buffer

Figure 3: SENIC hardware design. Once the NIC DMAs
a packet from host memory, there is further processing (e.g.
checksum offloads) before the packet is transmitted on the wire.
This paper focuses on the scheduler and the NIC interaction
with the software stack.

Metadata: The NIC maintains state about traffic
classes to enforce rate limits. In the case of a token
bucket scheduler, each class maintains metadata on the
number of tokens, and the global state is a list of active
classes with enough tokens to transmit the next packet.
The memory footprint is small, easily supporting 10,000
or more traffic classes with a few 100kB of metadata.

Scheduling: The NIC schedules and pulls packets
from host memory on demand at link speed. Packets
are not pulled faster, even though PCIe bandwidth be-
tween the NIC and CPU is much higher. This late bind-

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 479

ing reduces the size of NIC hardware buffers required for
storing packets. It also avoids head-of-line blocking, and
allows the NIC to quickly schedule newly active classes
or use updated rate limits. This offloading of scheduling
and real time work to the NIC is what enables SENIC to
accurately enforce rate limits even at high link speeds.

Other Functionality: The NIC does more tasks than
just state management and rate limiting. After the packet
is DMA’d onto NIC memory, there is a standard pipeline
of operations that we leave unmodified. For instance,
NICs support TCP and IP checksum offloading, VLAN
encapsulation, and send completions to notify the CPU
when it can reclaim packet memory.

4 Packet Scheduling in SENIC

SENIC employs an internal scheduler to rate limit traffic
classes. The task of packet scheduling can be realized us-
ing a number of algorithms such as Deficit Round Robin
(DRR) [39], Weighted Fair Queueing (WFQ) [9], Worst-
case Fair weighted Fair Queueing (WF2Q) [5], or simple
token buckets. The choice of algorithm impacts the shar-
ing model, and packet delay bounds. For instance, token
buckets support rate limits, but DRR is work-conserving;
simply arbitrating across token buckets in a DRR-like
fashion can result in bursty transmissions [6].

In this section, we start with our main requirements
to pick the appropriate scheduling algorithm. We desire
hierarchical rate limits, so the above work-conserving
algorithms (DRR, WFQ, etc.) do not directly suit our
needs. We now describe a unified scheduling algorithm
that supports hierarchies and rate limits.

4.1 SENIC Packet Scheduling Algorithm

Recall that the service model exposed by SENIC is rate
limits on classes, with fallback to weighted sharing pro-
portional to the class rates. We begin by describing
a scheduling algorithm which can enforce this service
model. We leverage a virtual time based weighted shar-
ing algorithm, WF2Q+ [6], and modify its system virtual
time (V) computation to support strict rate limiting with a
fallback to weighted sharing. The algorithm computes a
start (S) and finish (F) time for every packet based on the
class rate wi. Packets with S ≤V are considered eligible,
and the algorithm transmits eligible packets in increasing
order of their finish times.

Computing Start and Finish Time: Since each class
is a FIFO, the start and finish times are maintained only
for the packets at the head of each transmit queue. The
start time Si of a class Ci is only updated when a packet
is dequeued from that class or a packet is enqueued into
a previously empty class. The finish time Fi is updated

whenever Si is updated. Si and Fi for each flow Ci are
computed in the same way as in WF2Q+, as follows:

Si =

{
max(Fi,Venq) on enqueue into empty queue
Fi on dequeue

Fi = Si +
L
wi

where Venq is the system time V (described below) when
the packet is enqueued, and L is the head packet’s length.

System Time Computation: WF2Q+ computes a
work-conserving schedule where at least one class is al-
ways eligible to transmit data. To enforce strict rate lim-
its, SENIC incorporates the notions of real time and the
link drain rate (R) to compute the transmit schedule. The
system time is increased by 1 unit (bytetime), in the time
it takes to transmit 1B of data at link speed, and thus in-
corporates the link’s known drain rate R (e.g. 10Gb/s).

SENIC supports graceful fallback to weighted sharing
when the link is oversubscribed. When the link is over-
subscribed, we slow the system time V down to reflect
the marginal rate at which the active flows are serviced.
Without loss of generality, let the rate limits of flows Ci
be represented as fractions wi of the link speed R. We
define the rate oversubscription factor φ to be the sum
of rate limits (weights) of currently backlogged classes
or flows in the system; φ = 0 when no flows are active.
The scheduler modifies the system time V to slow down
by the rate oversubscription factor and proceed at most
as fast as the link speed. V is computed as:

V (0) = 0
V (t + τ) =V (t)+Rτ ×max(1,φ)

where τ is a single packet transmission period, or con-
tiguous link idle period, or the period between successive
updates to φ . Given the system time, the start and finish
times of all classes, we schedule packets in the same or-
der as WF2Q+, i.e. in order of increasing finish times
among all eligible classes at the time of dequeueing.

Example: We now look at an example transmit sched-
ule computed using these time functions. Assume a
10Gb/s link with two continuously backlogged classes
C1 and C2 (with rate limits 4Gb/s and 2Gb/s respec-
tively). The transmit schedule is shown in Figure 4. The
values of Si and Fi are computed using rate limits as a
fraction of link speed (so w1 = 0.4 and w2 = 0.2). All
packets are 1500B in length.

If we consider a single iteration (7500 bytetimes), C1
transmits 3000B, C2 transmits 1500B, and the link is idle
for (750 + 2250 = 3000 bytetimes). Thus C1 achieves
3000 / 7500 = 0.4 of link capacity and C2 achieves 1500
/ 7500 = 0.2 of link capacity. The link remains idle for
40% of the time in each iteration, thereby enforcing strict
rate limits. Notice also that the packets are appropriately
interleaved and accurately paced.

5

480 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 4: Transmit schedule example. Link is not oversub-
scribed. The interval between the vertical dashed lines indi-
cates repeating sequence in the transmit schedule (only 1 repe-
tition shown for clarity). S, F , L as defined in the text. Tx is the
time when a particular packet transmission or idle period starts.

Delay Guarantees: The advantage of using virtual
time based scheduling algorithms is that they offer strong
per-packet delay guarantees. Specifically, WF2Q+ guar-
antees that the finish time of a packet in the discretized
system is no more than a bounded delay from an ideal
fluid model system. SENIC’s unified scheduling algo-
rithm offers similar strong guarantees. Algorithms such
as DRR do not have such strong guarantees [6].

4.2 Hierarchical bandwidth sharing

So far we discussed a flat rate limiting scheme. In prac-
tice, it may be desirable to group classes and enforce an-
other rate limit on the group. For example, an approach
useful in multi-tenant environments is a two level hier-
archy where the first level implements strict rate limits
for each VM on the server, and the second level pro-
vides weighted sharing between the flows originating
from each VM.

It is possible to enforce any hierarchical allocation by
modulating the rate limits of hardware traffic classes.
Control logic in the hypervisor can measure demands and
hardware counters, and adjust the rates based on precon-
figured limits. We instead now describe an extension to
the virtual time based scheduler described above to sup-
port a simple two level hierarchy.

Sharing Model: We define an L1 (level 1) class as one
which is directly attached to the root of the hierarchy. An
L2 (level 2) class is attached to an L1 class. Each class
is configured with a rate limit. The L1 classes only sup-
port strict rate limits, i.e. sum of rate limits of active L1
classes should not exceed link capacity. L2 classes sup-
port strict rate limiting, but fallback to weighted sharing
in the ratio of their rate limits when the active L2 classes
within an L1 class oversubscribe the rate limit of that L1

class. An L1 class might be a leaf or an internal class
while L2 classes can only be leaves.

Start and Finish Time Computation: SENIC only
computes time variables for leaf classes as packets are
“enqueued” and “dequeued” only at the leaves. For L1
leaf classes, the scheduler computes start and finish times
as usual, using the rate limits of the respective classes.
For each L1 class, it maintains a rate oversubscription
factor φL1 , of active L2 classes within the L1 class. For L2
classes, to compute finish time, the scheduler scales the
rate limits and uses the minimum of (1) the configured
rate limit wi of the L2 class, and (2) the scaled rate limit
of the parent L1 class based on L2’s share, given as:

wiscaled = min
(

wi,wL1 ×
wi

φL1

)

System Time Computation: System time is purely
based on real time and link drain rate R, as the L1 classes
are configured such that they never oversubscribe the
link. This condition can be easily met even if weighted
sharing is required at level 1 of the hierarchy, by simply
having the host driver periodically measure demand and
adjust the rate limits of the L1 classes.

Summary: Driven by requirements to support rate
limits, we described a scheduling algorithm incorporat-
ing both weighted sharing and rate limiting into one co-
herent algorithm. We also extended the algorithm to sup-
port two-level rate limits across classes and groups of
classes. We realized the unified scheduling algorithm
on top of QFQ [8], which in turn implements WF2Q+
efficiently. The metadata structure for this QFQ based
scheduler is around 40B per class, and it needs only 10kB
of global state, thereby scaling easily to 10,000 classes.

5 Advanced NIC features

This section touches upon advanced features in today’s
NICs that are impacted by SENIC’s design, and how we
achieve similar functionality with SENIC.

5.1 OS and Hypervisor Bypass
Many applications benefit from bypassing the OS net-
work stack to meet their stringent latency and perfor-
mance requirements [13, 25]. Further, high-performance
virtualized workloads benefit from bypassing the hyper-
visor entirely, and directly access the NIC [20, 24]. To
support such requirements, modern NICs expose queues
directly to user-space, and include features that virtualize
the device state (ring buffers, etc.) through technologies
like Single-Root IO Virtualization (SR-IOV [28]). We
now describe how SENIC provides these features.

Configurable SR-IOV Slices or VNICs: SENIC
leverages SR-IOV to expose multiple VNICs. Each

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 481

Guest 1 Driver (Data Plane)

Host Driver
(Control Plane)

QueueFlow
TCP
/IP

SENIC
Hardware

Guest 2 Driver (Data Plane)

Guest 1
VNIC

Guest 2
VNIC

Figure 5: The SENIC architecture, with each guest given a vir-
tualized slice of the NIC (VNIC) using SR-IOV.

VNIC is allocated a configurable number of queues, and
guest VMs directly transmit and receive packets through
the VNICs, as shown in Figure 5. Guest VMs are only
aware of queues for their respective VNICs (which is
standard SR-IOV functionality), thereby ensuring isola-
tion between transmit queues of different guest VMs. A
simple lookup table on the NIC translates VNIC queue
IDs to actual queue IDs. A host SENIC driver provides
the interface for the hypervisor to configure VNICs, al-
locate queues, and configure rate limits. A guest driver
running in the VM provides a standard interface to en-
queue packets into different queues on the VNIC.

Classifying Packets: SENIC relies on the operating
system to classify and enqueue packets in the right traffic
classes or queues. The host driver residing in the hyper-
visor maintains the packet classification table. It exports
an OpenFlow [26] like API to configure traffic classes
and rate limits. When SR-IOV is enabled, the hypervisor
is bypassed in the datapath. SENIC therefore relies on
the guest VM to perform packet classification.

The guest driver maintains a cached copy of the packet
classification table. When the guest driver receives a
packet from the network stack for transmission, it looks
up its guest packet classification table for a match. If no
match is found, it makes a hypercall to the hypervisor for
a lookup and caches the matching rule. The actual map-
ping to the appropriate queue is also cached in the socket
data structure to avoid repeated lookups for each packet
of a flow. The hypervisor can also proactively setup rules
in guest classification tables. Once the rules are cached
in the guest, the hypervisor is completely bypassed dur-
ing packet transmission.

Untrusted Guests: It may be unwise to trust guests to
classify packets correctly. However, we argue this is not
an issue. Even though SR-IOV ensures that a VM can
only place packets in queues for its own VNIC, the guest
may ignore the hypervisor-specified classification among
its queues. We adopt a trust-but-verify approach to en-
sure that guest VMs do not cheat by directing packets to

queues with higher rate limits. The key idea is that the
hypervisor need not look at every packet to ensure rate
limits are not violated, but instead only look at a sampled
subset of packets. Since classification is used to provide
QoS, sampling packet headers and verifying their classi-
fication is sufficient to identify violations. The adminis-
trator can be alerted to misbehaving guests, or they can
be halted, or forced to give up SR-IOV, and rely on the
hypervisor for future packet transmissions.

5.2 Other features

Below we describe few other features that are affected by
SENIC’s design.

Segmentation Offload: TCP Segmentation Offload
(TSO) is a widely available NIC feature to reduce CPU
load by transferring large (upto 64KB) TCP segments
to the NIC, which are then divided into MTU sized
segments and transmitted with appropriately updated
checksums and sequence numbers. SENIC only pulls
MTU sized portions of the packet on demand from host
memory queues before transmission. This avoids long
bursts from a single class, and enables better interleav-
ing and pacing. SENIC augments per-queue metadata
with a TSO-offset field that indicates which portion of the
packet at the head of the queue remains to be transmit-
ted. When interleaving packets, SENIC does not cache
packet headers for each class on the NIC, thereby keep-
ing NIC SRAM requirements low. When transmitting
TSO packets, SENIC issues two DMA requests: one for
the packet header, and another for the MTU sized pay-
load based on TSO-offset.

Scatter-Gather: A related optimization is scatter-
gather, where the NIC can fetch packet data spread across
multiple memory regions, e.g., the header separately
from the payload. In such cases, SENIC stores the loca-
tion of the next segment to be transmitted for each queue
and fetches descriptors and data on demand.

Handling Concurrency: The design assumed each
transmit queue corresponds to one traffic class. To al-
low multiple CPU cores to concurrently enqueue packets
to a class, the SENIC design is extended to support some
number of queues (say 8) for each class. Round robin or-
dering is used among queues within a class, whenever the
class gets its turn to transmit. This is easily accomplished
by separately storing head and tail indices for each queue
in the class metadata table, an active queue bitmap and
round robin counter for each class.

Priority Scheduling: SENIC can easily also support
strict priority scheduling between transmit queues of a
class instead of round-robin scheduling. In this case, a
priority encoder picks the highest priority active class.
One use case is for applications to prioritize their traffic
within a given rate limit.

7

482 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6 Implementation

We have implemented two SENIC prototypes:

1. A software prototype using a dedicated CPU core to
perform custom NIC processing. This implements the
unified QFQ-based rate limiting and weighted sharing
scheduler described in §4.1.

2. A NetFPGA-based hardware prototype designed to
run microbenchmarks and evaluate the feasibility of
pulling packets on demand from host memory for
transmission. For engineering expediency, this proto-
type relies on a simpler, token bucket scheduler (with-
out hierarchies).

We now describe both prototypes in detail. Both
prototypes are available for download at http://

sivasankar.me/senic/.

6.1 Software Prototype
The software prototype is implemented as a Linux kernel
module with modest changes to the kernel. The sched-
uler is implemented in a new Linux queueing discipline
(QDisc) kernel module. We also modified the Linux tc

utility to enable us to configure the new QDisc module.
As described in §4, SENIC’s packet scheduling algo-
rithm is implemented on top of the Quick Fair Queueing
(QFQ) scheduler available in Linux.

Transmit Queues and Rate Limits: The SENIC
QDisc maintains per-class FIFO transmit queues in host
memory as linked lists. We configure classification rules
via tc, and also set a rate limit for each class.

Enqueueing Packets: In Linux, when the transport
layer wants to transmit a packet, it hands it down to the
IP layer, which in turn hands it to the QDisc layer. When
the QDisc receives a packet from IP, it first classifies
the packet, then enqueues it in the corresponding queue,
marking the class as active.

Dedicated CPU Core for Packet Scheduling: In to-
day’s kernel, the dequeue operation starts right after en-
queue. However, to mimic NIC functionality, we mod-
ified the kernel so the enqueue call immediately returns
to the caller, and dedicate a CPU core to perform all NIC
scheduling (i.e. dequeueing). The dedicated CPU core
runs a kernel thread that computes the schedule based on
configured rate limits, and pulls packets from the active
transmit queues when they should be transmitted. Pack-
ets are transferred to the physical NIC using the stan-
dard NIC driver. We disabled TSO to control the transmit
schedule at a fine granularity and avoid traffic bursts.

6.2 NetFPGA Prototype
We now describe our SENIC hardware implementation
on a NetFPGA [16]. The primary hardware components

of SENIC are (a) the packet scheduler with the class ta-
ble, (b) doorbell FIFOs to process notifications from the
host, and (c) completion FIFOs to send notifications to
the host. Each component maintains its own indepen-
dent state machine and executes in parallel. Figure 6 be-
low zooms into the operation of the packet scheduler. We
now describe each component in detail.

Class table
Token
Bucket
Sched

CF
Packet buffers

(SRAM) to receive
DMA responses

DMA Controller

1
2

Doorbell FIFO

3PCIe x16
to host memory

Further processing
(e.g. TSO, checksum

offloads, etc.)

4

Figure 6: The 4 stages of scheduling a packet: (1) pick a
class for dequeueing, (2) submit work-request to the class-fetch
(CF) module, (3) DMA descriptors and packet payload from
the class, (4) handoff packet payload for further processing.

6.2.1 Packet Scheduler

The scheduler operates on the class metadata table
(SRAM block), and performs the following operations:

• It cycles through all active classes (i.e., classes with at
least one enqueued packet), and determines if a class
has enough tokens to transmit a packet (i.e., whether it
is eligible). If not, the scheduler refreshes the class’s
tokens and continues with other classes.

• If the class is eligible, the scheduler submits a work-
request to a ‘class-fetch’ (CF) module and disables the
class. Each CF module has a small FIFO to accept
requests from the scheduler.

• If the CF module’s FIFO is full, the scheduler stalls
and waits for feedback from the CF module.

• In parallel, the scheduler processes any pending door-
bell requests that modify the class metadata table. For
instance, if the doorbell request is an enqueue opera-
tion, the scheduler parses the class ID in the request
and updates the class table.

6.2.2 Class-Fetch Module

The class-fetch (CF) module is given a class entry, and
its task is to dequeue as many packets as possible until
limited by (a) the tokens available for the class, or (b)
the burst size of the class. The class entry only stores
the descriptor for the first packet. Therefore the CF dis-
patches DMA requests to (a) fetch the descriptor of the
next packet in the ring buffer, and (b) fetch the packet
payload of the first descriptor stored in the class entry.
The module then synchronously waits for the first DMA

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 483

to complete, and repeats the process until it exhausts the
class tokens, or burst size. Finally, it issues (a) feedback
to the scheduler with the new class entry state (updated
tokens, tail pointer, and the first packet descriptor), and
(b) a completion notification for the class.

The latency to make a scheduling decision, and the
DMA fetch latency determine the maximum achievable
throughput. We evaluate this in detail in §7.1.3.

6.2.3 Host Notifications

SENIC uses standard notification mechanisms to syn-
chronize state between the NIC and the host: doorbell re-
quests and completions. Doorbells update class state on
the NIC (e.g., new packets and new rates), and comple-
tions notify the host about transmitted packets and pro-
cessed doorbells. Doorbells and completions are stored
in FIFO ring buffers, on the NIC and host respectively.

Doorbells: The doorbell is a 16B message written by
the host to the memory mapped doorbell FIFO on the
NIC. The FIFO is a circular buffer—the host enqueues at
the tail while the NIC dequeues at the head. The host
synchronizes the head index when it receives comple-
tions from the NIC, thereby freeing FIFO entries.

Completions: The NIC issues completions by
DMA’ing an entry into the completion FIFO in host
memory and interrupting the CPU. Each entry indicates
(1) the class and number of packets transmitted from the
class, or (2) the number of doorbell requests processed.
This information is used by the host to reclaim packet
memory, and doorbell FIFO entries. These event notifi-
cations are similar to BSD’s kqueue mechanism [15].

Avoiding Write Conflicts: Note that the CF module’s
feedback, and host notifications both modify the class
entry state. However, the feedback only modifies tokens,
the first packet’s length and address; the host notification
only modifies the tail index. If the class’s rate changes
while it is being serviced, the new rate takes effect only
the next iteration when the scheduler refreshes tokens.

7 Evaluation

This section dissects SENIC to answer the following as-
pects of the system:

• How scalable and accurate are the hardware rate lim-
iters? We synthesized our hardware prototype with
1000 rate limiters. At 1Gb/s, we found the mean inter-
packet timing was within 10ns of ideal, and the stan-
dard deviation was 191ns (less than 1.6% of the mean).

• How many packets should be pipelined for achieving
line rate at various link speeds? This value depends on
the scheduling and DMA latency, and the dominant
factor is the DMA latency across the PCIe bus.

• How effective is SENIC at supporting high loads and
delivering low latency compared to state of the art soft-
ware rate limiters? We compare SENIC against Linux
HTB and a Parallel Token Bucket (PTB) implementa-
tion in software (used in EyeQ [12]). We found that
at very low load, all approaches have comparable la-
tencies. But SENIC sustains 55% higher load com-
pared to PTB, and 250% higher than HTB while keep-
ing memcached 99.9th percentile latency under 3ms.

• How effectively can SENIC isolate different tenants—
memcached latency sensitive tenants and a back-
ground bandwidth intensive UDP tenant? We found
that SENIC could comfortably sustain the configured
3Gb/s of UDP traffic and nearly 6Gb/s of memcached
traffic with tail latency under 4ms. However, HTB and
PTB had trouble sustaining more than 1.4Gb/s of UDP
traffic. SENIC sustains 233% higher memcached load
compared to HTB and 43% higher than PTB.

7.1 Hardware Microbenchmarks
7.1.1 Scalability and Accuracy

Due to limitations on the number of outstanding DMA
requests3, and pipeline datawidth, we were unable to sus-
tain more than 3Gb/s packet transmission rate, and we
restrict our tests to rates less than 3Gb/s.

N Rate μ ±σ Rel. error in μ
500 1Mb/s 12ms ± 7.1us 3.1×10−6

1 10Mb/s 1.2ms ± 233ns 1.5×10−6

10 1.2ms ± 240ns 1.5×10−6

100 1.2ms ± 1.3μs 2.3×10−5

1 100Mb/s 120μs ± 87ns 1.7×10−7

10 120μs ± 173ns 1.6×10−6

1 1Gb/s 11.25μs† ± 161ns 3.5×10−4

3 11.25μs† ± 191ns 3.8×10−4

Table 3: Rate limit accuracy as we vary the number of rate
limiters N, and the rate per class. We see that SENIC is within
10−2% of ideal even as we approach the maximum throughput
we could push through the NetFPGA (3Gb/s).

Table 3 shows the rate limiting accuracy of one of
the classes, as we vary the number of eligible classes
on the NIC. We measure accuracy by timestamping ev-
ery packet with a clock resolution of 10ns, and retriev-
ing the inter-packet timestamp difference for packets of
that one class. We compute the mean (μ) and stan-
dard deviation (σ), and also the relative error in μ as
|μempirical −μideal|/μideal. We see that SENIC very accu-
rately enforces the configured rate even with 500 classes
each operating at 1Mb/s.

3Our NetFPGA stalls the processor if it has more than 2 outstanding
DMA requests. Others have reported a similar issue with the Virtex5
FPGA [41].

9

484 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

†Note: NetFPGA supports rates that are of form
12.8Gb/s/K, where K is an integer. Therefore, though we
set the rate limit to 1Gb/s, the output will 12.8/12 Gb/s
(1.067Gb/s), for which the inter-packet time is 11.25μs.

7.1.2 Scheduler Latency

We dig deeper into how long it takes for a scheduling op-
eration in hardware. On the NetFPGA, the SRAM has a
datawidth of 512 bits (64B), an access latency of 1 cycle,
and enough bandwidth to support one operation (either
a read or a write) every cycle. In the worst case, each
scheduler iteration takes at most 5 cycles:

• 1 for reading the class metadata from SRAM.
• 1 for refreshing the tokens and CF-enqueue.
• 1 SRAM write for processing CF-feedback.
• 2 for processing a doorbell: 1 for reading the class

metadata from SRAM, and 1 for updating class meta-
data and writing it back.

We synthesized our NetFPGA prototype at 100MHz
(10ns per clock cycle), and therefore, it takes no more
than 50ns to make a scheduling decision. We expect
a production-quality NIC to have a higher clock rate,
and thus a faster scheduler. For instance, the ASIC in
Myricom 10Gb/s Ethernet NIC runs at a clock rate of
364.6MHz [23]. The QFQ based scheduler takes about
twice as many cycles as simple token buckets [8], so with
a higher clock rate, it can still complete in 50ns.

7.1.3 Maximum Per-Class Throughput

In this experiment, we first analyze the DMA latency
which affects the achievable throughput per-class. We
measure the time interval between sending a DMA re-
quest from the CF-module to fetch 16B from host mem-
ory, and receiving the response. We find that the aver-
age latency is L = 1.25μs (σ = 40ns) with the NetFPGA
platform (using a second generation PCIe x8 bus). How-
ever, the number is often better with a production-quality
NIC. For instance, the DMA latency on an Intel NIC was
found to be close to 200ns [31].

Recall that the CF-module processes each class by
issuing a DMA request for the class’s second packet
descriptor, followed by the request for the class’s first
packet payload. With a burst size of 1 packet per class,
the maximum achievable throughput per class depends
on the sum of DMA latency and scheduler latency. For
instance, if the scheduler takes 50ns to dispatch a class
to the CF module, the DMA latency to fetch a packet de-
scriptor is 1250ns, and burst size is 1 packet, the max-
imum achievable throughput per-class is about 1500B
(MTU) every 1300ns. Therefore, to achieve line rate

Figure 7: Maximum throughput per class as a function of
the packet size, and the number N of CF modules operating
in parallel, and the DMA latency L. We see that the achiev-
able throughput on the NetFPGA (L = 1.25μs) with N = 1 is
9.23Gb/s with 1500B packets (if not for the DMA request con-
straints described earlier).

we can instantiate multiple CF modules, and the sched-
uler dispatches classes to them in parallel. Further, us-
ing TSO, or multiple queues per class enables higher
throughput per class. Figure 7 shows the trend.

7.2 Software Macrobenchmarks

We ran experiments with our software based SENIC
prototype to evaluate the application level performance
when SENIC is used for rate limiting traffic.

7.2.1 Memcached

We conducted an experiment with several memcached
tenants sharing a cluster—10 tenants on each machine
in an 8 node cluster. Each node is a dual 4-core, 2-way
hyperthreaded Intel Xeon E5520 2.27GHz server, with
24GB of RAM, a 10Gb/s NIC (Intel or Myricom), and
running Linux 3.9.0. Each tenant was allocated 1 CPU
hyperthread on each machine, and 2GB of RAM. One
machine (Msrv) had 10 memcached server instances—1
for each tenant. We pre-populated them with 12B-key,
2KB-value pairs. Each of the other 7 machines (Mcli) ran
10 memcached client processes that sent GET requests to
the respective tenant’s memcached server instance.

Rate limits were configured for each memcached
client-server pair. The total rate limit was 9.5Gb/s on
Msrv, and 6Gb/s on Mcli machines. Each tenant got an
equal share of the total rate, divided equally among its
own destinations. These limits were chosen to be large
enough that memcached would not be bandwidth limited.
We ran experiments using HTB, PTB, and the SENIC
software prototype.

We define the unit rpstc, requests per second per tenant
per client, to denote the load on the system. For instance,
2,000 rpstc means each of the 7 client instances of each
tenant generates a load of 2,000 req/s, resulting in a total
load on Msrv of 140,000 req/s.

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 485

Figure 9: Memcached response latency at different loads. We see that SENIC easily sustains 7,000 rpstc (which was also the
maximum load the cluster sustained without any rate limiting). However HTB and PTB latencies spike up at much lower loads.

Figure 8: CDF of memcached response latency at different
loads. SENIC, HTB and PTB have similar latency at 2,000 rp-
stc, but HTB latency shoots up at 3,000 rpstc.

Latency: We varied the client load (2000, 3000 rp-
stc) and observed the latency distribution of memcached
responses (Figure 8). The total egress bandwidth utiliza-
tion on Msrv is quite low at 2.3Gb/s and 2.9Gb/s respec-
tively at the two loads. At 2,000 rpstc, we observed that
HTB, PTB and SENIC perform similarly. But at 3,000
rpstc, HTB’s latency suffers a drastic hit, whereas PTB
and SENIC are able to keep up. With HTB, requests keep
getting backlogged as the scheduler is the bottleneck and
is unable to push packets out of the server fast enough.
At the fairly low load of 3,000 rpstc, PTB has marginally
lower latency than the SENIC software prototype due to
the cache misses incurred for pulling and transmitting all
packets from a single CPU core. A hardware SENIC im-
plementation would not have this penalty.

Throughput: We varied the memcached load and
measured the average, 99th, and 99.9th percentile la-
tency in each case. Figure 9 shows that SENIC could
comfortably handle 7,000 rpstc, sustaining 55% higher
load compared to PTB, and 250% higher than HTB. We
stopped at 7,000 rpstc as that was the maximum load the
cluster could sustain even without any rate limiters (with
the default Linux multi queue QDisc).

While the SENIC software prototype is much better
than HTB and PTB, a hardware SENIC implementation
would perform even better as there would not be cache
misses for each transmit operation. Further, if hypervi-
sor bypass is used by VMs to communicate directly with

SENIC hardware, the relative latency and throughput
benefits of the hardware solution would be even more.

7.2.2 Memcached and UDP Tenant Isolation

To evaluate how effectively SENIC can isolate different
tenants, we repeated the above experiments with 1 co-
located UDP tenant on each machine, that generates all-
to-all UDP traffic as fast as it can. The total rate limit was
set at 3Gb/s for UDP traffic, and 6Gb/s for memcached
on each machine—divided equally among respective ten-
ants and destinations. The maximum memcached band-
width utilization we tested was around 5.75Gb/s on Msrv,
so memcached was again not bandwidth limited.

Memcached Latency and Throughput: As shown in
Figure 10, SENIC was able to sustain 5,000 rpstc mem-
cached throughput (5.75Gb/s) with 99.9th percentile la-
tency around 4ms while simultaneously delivering very
close to the configured 3Gb/s of total UDP tenant traffic
on the memcached server machine. On the other hand,
HTB was only able to sustain 1,500 rpstc, while PTB
sustained 3,500 rpstc.

Figure 11: Throughput achieved by UDP background traffic.
The configured rate limit was 3Gb/s. We found that SENIC
could sustain very close to the configured 3Gb/s throughput,
but HTB and PTB had trouble delivering more than 1.3Gb/s.

UDP Tenant Throughput: We measured the total
throughput the UDP tenant achieved on Msrv as it was
the primary machine under heavy overall load. Figure 11
shows that while SENIC sustained the configured 3Gb/s
of throughput for the bandwidth intensive UDP tenant,

11

486 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 10: Memcached latency at different loads, with configured background all-to-all UDP traffic of 3Gb/s from each server. We
see that SENIC could sustain 5,000 rpstc (network throughput was roughly equal to the configured limit of 6Gb/s). HTB and PTB
on the other hand, fell over at lower loads.

HTB and PTB had difficulty keeping up. Even at lower
memcached loads, HTB and PTB had trouble deliver-
ing more than 1.3Gb/s UDP throughput. Measurements
showed that the CPU cores allocated to the UDP tenant
were highly loaded, indicating that current software ap-
proaches suffer when CPU load increases and the tenants
with high CPU load might notice degraded performance
as the rate limiter is unable to keep up.

8 Practical Considerations

SENIC’s design goals expose a tension in its imple-
mentation. Its on-board packet scheduler must be able
to transfer sequences of individual packets from a po-
tentially large number of traffic classes for fine-grained
rate control. Yet, to drive high line rates, it must sup-
port a high overall DMA transfer rate to transfer packets
from host memory to the wire. Thus, the performance
of SENIC is upper-bounded by the performance of the
host’s underlying DMA subsystem.

Today’s NICs rely on a number of optimizations to
drive high link rates, while lowering their impact on
the DMA subsystem. For example, when TSO is en-
abled, they can transfer the packet header just once from
memory and cache it on the NIC. The NIC can then
pull in the rest of the payload (issuing the appropriate
DMA operations), combine it with the cached header and
transmit MTU-sized segments. SENIC’s design supports
interleaving MTU-sized segments from different traffic
classes, depending on their configured rates and burst
sizes. Because the number of such classes can be quite
large, SENIC does not cache packet headers on the NIC
for each class. Thus, SENIC’s impact on the underlying
DMA subsystem is going to be greater than a traditional
NIC with TSO. We now briefly examine this impact.

In the absence of TSO, SENIC requires the same
number of DMA transfers from host memory as current
NICs—one for each packet, in addition to the packet de-
scriptors. However when TSO is active, SENIC issues a
DMA operation for the header in addition to one for the
payload, for each MTU-sized segment. Note that NICs

today are capable of processing many more DMA trans-
fers per second than required for handling MTU-sized
frames at line rate. This headroom allows SENIC to drive
high line rates even when TSO is enabled, despite the
larger number of DMA transfers it requires.

To ground this claim experimentally, we examined
the DMA subsystem performance of both 10Gb/s and
40Gb/s commercial NICs. Using a Myricom 10Gb/s
NIC, we were able to sustain 13–14 million 64 byte
packets per second (pps). Since packets were randomly
spread across host memory, each packet required at least
one DMA transfer, and thus the NIC can sustain roughly
the same number of DMA transfers per second.

For 40Gb/s, we used a Mellanox Connect-X3
NIC [18] to transmit 64 byte packets. We observed that
it could only support about 13.1 Mpps, which is less than
the rate required to sustain 40Gb/s with 64 byte packets.
However, using MTU-sized frames, and TSO disabled,
it was able to drive 3.25 Mpps, which was sufficient to
sustain 40Gb/s.

The above reference points allow us to gauge the per-
formance of SENIC at both 10Gb/s and 40Gb/s. For
instance, at 40Gb/s, SENIC would require 3.25 × 2 =
6.5 million DMA transfers per second (to DMA both
payloads and headers) to achieve line rate. This is well
under the 13.1 million transfers per second we were
able to sustain on the same NIC. Hence, we believe
that SENIC should be able to support line rate per-
formance with TSO enabled for MTU-sized segments.
Since SENIC does not introduce additional DMA re-
quests for non-TSO packets, it should perform compa-
rably to today’s commercial NICs.

9 Related Work

We classify related work into two parts: (1) hardware
improvements, and (2) software improvements, some of
which try to work around limited hardware capabilities.
The NIC hardware datapath has only recently received
attention from the research community in light of the re-
quirements listed in §2.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 487

Hardware Efforts: Commercial NICs support trans-
port offloading to support millions of connection end-
points, such as ‘queue pairs’ in InfiniBand [32], or TCP
sockets in case of TCP offload engines [19]. The SENIC
design is simpler as we only offload rate limiting, and
leave the task of reliable delivery to software.

Recent work [20, 36] calls for changes in the NIC
architecture in light of low-latency applications (e.g.
RAMCloud [10]), and virtualized environments (e.g.
public clouds). Such efforts are complementary to
SENIC, which focuses only on scaling transmit schedul-
ing. ServerSwitch [17] presented a programmable NIC
to support packet classification and configurable con-
gestion management. ServerSwitch can directly benefit
from the large number of rate limiters in SENIC.

A number of efforts have focused on scalable packet
schedulers in switches [21, 33]. A NIC is conceptu-
ally no different from a switch; however, switch sched-
ulers have to deal with additional complexity due to
limited on-chip SRAM, and the fact that they cannot
control the exogenous traffic arrival rate. Thus, com-
mercial switches often resort to simpler approaches like
AFD [27] which can scale to 1000s of policers, but can
only drop packets (instead of accurate pacing). On the
other hand, the NIC being the first hop is in a unique
position—its design can be made considerably simpler
by leveraging host DRAM to store all packets. This ap-
proach enables SENIC to simultaneously scale to, and
accurately pace, a large number of traffic classes.

Software Efforts: An alternate approach to deal
with limited NIC rate limiters is to share them in some
fashion, which has been explored by approaches like
vShaper [14] and FasTrak [24]. SENIC eases the bur-
den on such approaches, as we believe the NIC is par-
ticularly amenable to large-scale rate limiting by taking
advantage of host DRAM. However, if unforeseen appli-
cations require more rate limiters than SENIC can offer,
such techniques come in handy.

IsoStack [37] proposed offloading the entire TCP/IP
network stack to dedicated cores. Our SENIC soft-
ware prototype mimics this approach (offloading only the
scheduler to a dedicated core), which explains the perfor-
mance benefits in our evaluation. Architectures for fast
packet IO such as Netmap [34] are orthogonal to SENIC,
and they only stand to benefit from scalable rate limiting
in the NIC.

10 Conclusion

Historically, the NIC has been an ideal place to offload
common network tasks such as packet segmentation,
VLAN encapsulation, checksumming, and rate limiting
is no exception. Today’s NICs offer only a handful of rate
limiters, however new requirements such as performance

isolation and OS-bypass for low-latency transport de-
mand more rate limiters. We argued why it makes sense
to pursue a hardware offload approach to rate limiting:
at data center scale, a custom ASIC is cheaper than ded-
icating CPU resources for a task that requires real time
packet processing. We implemented a proof-of-concept
NIC on the NetFPGA to demonstrate the feasibility of
scaling hardware rate limiters to thousands of queues.
We believe the NIC hardware is the cost-effective place
to implement rate limiting, especially as we scale the
bandwidth per-server to 40Gb/s and beyond.

Acknowledgments

This research was supported in part by the NSF through
grants CNS-1314921 and CNS-1040190. Additional
funding was provided by a Google Focused Research
Award. We would like to thank our shepherd Saikat Guha
and the anonymous NSDI reviewers.

References

[1] ALIZADEH, M., ATIKOGLU, B., KABBANI, A., LAK-
SHMIKANTHA, A., PAN, R., PRABHAKAR, B., AND

SEAMAN, M. Data Center Transport Mechanisms: Con-
gestion Control Theory and IEEE Standardization. In
46th Annual Allerton Conference on Communication,
Control, and Computing (2008).

[2] ALIZADEH, M., GREENBERG, A., MALTZ, D. A.,
PADHYE, J., PATEL, P., PRABHAKAR, B., SENGUPTA,
S., AND SRIDHARAN, M. Data Center TCP (DCTCP).
In SIGCOMM (2010).

[3] ALIZADEH, M., KABBANI, A., EDSALL, T., PRAB-
HAKAR, B., VAHDAT, A., AND YASUDA, M. Less Is
More: Trading a Little Bandwidth for Ultra-Low Latency
in the Data Center. In NSDI (2012).

[4] BALLANI, H., COSTA, P., KARAGIANNIS, T., AND

ROWSTRON, A. Towards Predictable Datacenter Net-
works. In SIGCOMM (2011).

[5] BENNETT, J. C., AND ZHANG, H. WF2Q : Worst-case
Fair Weighted Fair Queueing. In INFOCOM (1996).

[6] BENNETT, J. C. R., AND ZHANG, H. Hierarchical
Packet Fair Queueing Algorithms. In SIGCOMM (1996).

[7] BENSON, T., AKELLA, A., AND MALTZ, D. A. Net-
work Traffic Characteristics of Data Centers in the Wild.
In IMC (2010).

[8] CHECCONI, F., RIZZO, L., AND VALENTE, P. QFQ:
Efficient Packet Scheduling With Tight Guarantees. In
IEEE/ACM Transactions on Networking (June 2013).

[9] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis
and Simulation of a Fair Queueing Algorithm. In SIG-
COMM (1989).

13

488 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[10] FLAJSLIK, M., AND ROSENBLUM, M. Network Inter-
face Design for Low Latency Request-Response Proto-
cols. In USENIX ATC (2013).

[11] Intel 82599 10GbE Controller. http://www.intel.

com/content/dam/doc/datasheet/82599-10-gbe-

controller-datasheet.pdf.

[12] JEYAKUMAR, V., ALIZADEH, M., MAZIÈRES, D.,
PRABHAKAR, B., KIM, C., AND GREENBERG, A.
EyeQ: Practical Network Performance Isolation at the
Edge. In NSDI (2013).

[13] KAPOOR, R., PORTER, G., TEWARI, M., VOELKER,
G. M., AND VAHDAT, A. Chronos: Predictable Low
Latency for Data Center Applications. In SOCC (2012).

[14] KUMAR, G., KANDULA, S., BODIK, P., AND MEN-
ACHE, I. Virtualizing Traffic Shapers for Practical Re-
source Allocation. In HotCloud (2013).

[15] LEMON, J. Kqueue - A Generic and Scalable Event No-
tification Facility. In USENIX ATC (2001).

[16] LOCKWOOD, J. W., MCKEOWN, N., WATSON, G.,
GIBB, G., HARTKE, P., NAOUS, J., RAGHURAMAN, R.,
AND LUO, J. NetFPGA - An Open Platform for Gigabit-
rate Network Switching and Routing. In IEEE Interna-
tional Conference on Microelectronic Systems Education
(2007).

[17] LU, G., GUO, C., LI, Y., ZHOU, Z., YUAN, T., WU, H.,
XIONG, Y., GAO, R., AND ZHANG, Y. ServerSwitch: A
Programmable and High Performance Platform for Data
Center Networks. In NSDI (2011).

[18] Mellanox Connect-X3. http://www.mellanox.com/

related-docs/prod_adapter_cards/ConnectX3_

EN_Card.pdf.

[19] MOGUL, J. C. TCP Offload Is a Dumb Idea Whose Time
Has Come. In HotOS (2003).

[20] MOGUL, J. C., MUDIGONDA, J., SANTOS, J. R., AND

TURNER, Y. The NIC Is the Hypervisor: Bare-Metal
Guests in IaaS Clouds. In HotOS (2013).

[21] MOON, S., REXFORD, J., AND SHIN, K. G. Scalable
Hardware Priority Queue Architectures for High-Speed
Packet Switches. IEEE Transactions on Computers (Nov.
2000).

[22] MOSHREF, M., YU, M., SHARMA, A., AND GOVIN-
DAN, R. Scalable Rule Management for Data Centers. In
NSDI (2013).

[23] Myri-10G PCI Express Network Adapter.
https://www.myricom.com/products/network-

adapters/10g-pcie-8b-2s.html, Retrieved 25
September 2013.

[24] MYSORE, R. N., PORTER, G., AND VAHDAT, A. Fas-
Trak: Enabling Express Lanes in Multi-Tenant Data Cen-
ters. In CoNEXT (2013).

[25] ONGARO, D., RUMBLE, S. M., STUTSMAN, R.,
OUSTERHOUT, J., AND ROSENBLUM, M. Fast Crash
Recovery in RAMCloud. In SOSP (2011).

[26] OpenFlow Consortium. http:://www.openflow.org.

[27] PAN, R., BRESLAU, L., PRABHAKAR, B., AND

SHENKER, S. Approximate Fairness Through Differen-
tial Dropping. SIGCOMM CCR (Apr. 2003).

[28] PCI-SIG SR-IOV Primer: An Introduction to SR-IOV
Technology. http://www.intel.com/content/www/

us/en/pci-express/pci-sig-sr-iov-primer-

sr-iov-technology-paper.html, Retrieved 25
September 2013.

[29] PHANISHAYEE, A., KREVAT, E., VASUDEVAN, V., AN-
DERSEN, D. G., GANGER, G. R., GIBSON, G. A.,
AND SESHAN, S. Measurement and Analysis of TCP
Throughput Collapse in Cluster-based Storage Systems.
In USENIX FAST (2008).

[30] RADHAKRISHNAN, S., JEYAKUMAR, V., KABBANI,
A., PORTER, G., AND VAHDAT, A. NicPic: Scalable and
Accurate End-Host Rate Limiting. In HotCloud (2013).

[31] RAMCloud RPC Performance Numbers. https:

//ramcloud.stanford.edu/wiki/display/

ramcloud/RPC+Performance+Numbers, Retrieved
25 September 2013.

[32] RDMA Aware Networks Programming User Man-
ual. http://www.mellanox.com/related-docs/

prod_software/RDMA_Aware_Programming_user_

manual.pdf, Retrieved 25 September 2013.

[33] REXFORD, J., BONOMI, F., GREENBERG, A., AND

WONG, A. A Scalable Architecture for Fair Leaky-
Bucket Shaping. In INFOCOM (1997).

[34] RIZZO, L. netmap: a novel framework for fast packet
I/O. In USENIX ATC (2012).

[35] RODRIGUES, H., SANTOS, J. R., TURNER, Y.,
SOARES, P., AND GUEDES, D. Gatekeeper: Supporting
Bandwidth Guarantees for Multi-tenant Datacenter Net-
works. In WIOV (2011).

[36] RUMBLE, S. M., ONGARO, D., STUTSMAN, R.,
ROSENBLUM, M., AND OUSTERHOUT, J. K. It’s Time
for Low Latency. In HotOS (2011).

[37] SHALEV, L., SATRAN, J., BOROVIK, E., AND BEN-
YEHUDA, M. IsoStack: Highly Efficient Network Pro-
cessing on Dedicated Cores. In USENIX ATC (2010).

[38] SHIEH, A., KANDULA, S., GREENBERG, A., AND KIM,
C. Seawall: Performance Isolation for Cloud Datacenter
Networks. In HotCloud (2010).

[39] SHREEDHAR, M., AND VARGHESE, G. Efficient Fair
Queueing Using Deficit Round Robin. In SIGCOMM
(1995).

[40] WILSON, C., BALLANI, H., KARAGIANNIS, T., AND

ROWTRON, A. Better Never than Late: Meeting Dead-
lines in Datacenter Networks. In SIGCOMM (2011).

[41] Xilinx User Community Forums: ML506 board: Why
my DMA IP hangs OS? http://forums.xilinx.com/

t5/PCI-Express/ML506-board-Why-my-DMA-IP-

hangs-OS/td-p/94298, Retrieved 25 September 2013.

14

