
This paper is included in the Proceedings of the
14th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’17).
March 27–29, 2017 • Boston, MA, USA

ISBN 978-1-931971-37-9

Open access to the Proceedings of the
14th USENIX Symposium on Networked

 Systems Design and Implementation
is sponsored by USENIX.

Passive Realtime Datacenter
Fault Detection and Localization

Arjun Roy, University of California, San Diego;
Hongyi Zeng and Jasmeet Bagga, Facebook;

Alex C. Snoeren, University of California, San Diego

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/roy

Passive Realtime Datacenter

Fault Detection and Localization

Arjun Roy, Hongyi Zeng†, Jasmeet Bagga†, and Alex C. Snoeren

UC San Diego and †Facebook, Inc.

ABSTRACT
Datacenters are characterized by their large scale,

stringent reliability requirements, and significant appli-

cation diversity. However, the realities of employing

hardware with small but non-zero failure rates mean that

datacenters are subject to significant numbers of failures,

impacting the performance of the services that rely on

them. To make matters worse, these failures are not al-

ways obvious; network switches and links can fail par-

tially, dropping or delaying various subsets of packets

without necessarily delivering a clear signal that they are

faulty. Thus, traditional fault detection techniques in-

volving end-host or router-based statistics can fall short

in their ability to identify these errors.

We describe how to expedite the process of detecting

and localizing partial datacenter faults using an end-host

method generalizable to most datacenter applications. In

particular, we correlate transport-layer flow metrics and

network-I/O system call delay at end hosts with the path

that traffic takes through the datacenter and apply statis-

tical analysis techniques to identify outliers and localize

the faulty link and/or switch(es). We evaluate our ap-

proach in a production Facebook front-end datacenter.

1. INTRODUCTION
Modern datacenters continue to increase in scale,

speed, and complexity. As these massive computing

infrastructures expand—to hundreds of thousands of

multi-core servers with 10- and 40-Gbps NICs [35] and

beyond—so too do the sets of applications they support:

Google recently disclosed that their datacenter network

fabrics support literally thousands of distinct applications

and services [37]. Yet the practicality of operating such

multi-purpose datacenters depends on effective manage-

ment. While any given service might employ an army of

support engineers to ensure its efficient operation, these

efforts can be frustrated by the inevitable failures that

arise within the network fabric itself.

Unfortunately, experience indicates that modern dat-

acenters are rife with hardware and software failures—

indeed, they are designed to be robust to large numbers

of such faults. The large scale of deployment both en-

sures a non-trivial fault incidence rate and complicates

the localization of these faults. Recently, authors from

Microsoft described [44] a rogue’s gallery of datacen-

ter faults: dusty fiber-optic connectors leading to cor-

rupted packets, switch software bugs, hardware faults,

incorrect ECMP load balancing, untrustworthy counters,

and more. Confounding the issue is the fact that fail-

ures can be intermittent and partial: rather than failing

completely, a link or switch might only affect a subset of

traffic, complicating detection and diagnosis. Moreover,

these failures can have significant impact on application

performance. For example, the authors of NetPilot [42]

describe how a single link dropping a small percentage

of packets, combined with cut-through routing, resulted

in degraded application performance and a multiple-hour

network goose chase to identify the faulty device.

Existing production methods for detecting and local-

izing datacenter network faults typically involve watch-

ing for anomalous network events (for example, scanning

switch queue drop and link utility/error counters) and/or

monitoring performance metrics at end hosts. Such

methods consider each event independently: “Did a drop

happen at this link? Is application RPC latency unusually

high at this host?” Yet, in isolation, knowledge of these

events is of limited utility. There are many reasons an end

host could observe poor network performance; similarly,

in-network packet drops may be the result of transient

congestion rather than a persistent network fault. Hence,

datacenter operators frequently fall back to active prob-

ing and a certain degree of manual analysis to diagnose

and localize detected performance anomalies [19, 44].

Instead, we propose an alternative approach: rather

than looking at anomalies independently, we consider the

impacts of faults on aggregate application performance.

Modern datacenter fabrics are designed with a plethora

of disjoint paths and operators work hard to load balance

traffic across both paths and servers [9, 37]. Such designs

result in highly regular flow performance regardless of

path—in the absence of network faults [35]. An (un-

mitigated) fault, on the other hand, will manifest itself

as a performance anomaly visible to end hosts. Hence,

to detect faults, we can compare performance end hosts

observe along different paths and hypothesize that out-

liers correspond to faults within the network.

To facilitate such a comparison, we develop a

lightweight packet-marking technique—leveraging only

forwarding rules supported by commodity switching

ASICs—that uniquely identifies the full path that a

packet traverses in a Facebook datacenter. Moreover,

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 595

the topological regularity of Facebook’s datacenter net-

works allows us to use path information to passively

localize the fault as well. Because each end host can

bin flows according to the individual network elements

they traverse, we can contrast flows traversing any given

link (switch) at a particular level in the hierarchy with

flows that traverse alternatives in order to identify the

likely source of detected performance anomalies. Oper-

ators can then use the output of our system—namely the

set of impacted traffic and the network element(s) seem-

ingly responsible—in order to adjust path selection (e.g.,

through OpenFlow rules, ECMP weight adjustment [32],

or tweaking inputs to flow hashes [23]) to mitigate the

performance impact of the fault until they can repair it.

A naive implementation of our approach is unlikely to

succeed given the noisiness of flow-based metrics at indi-

vidual host scale. Furthermore, distinct applications, or

different workloads for the same application, are likely to

be impacted differently by any given fault. Here the mas-

sive scale of modern datacenters aids us: Specifically,

when aggregated across the full set of traffic traversing

any given network link, we find that statistical techniques

are effective at using end-host-based metrics to identify

under-performing links in real time. Our experience sug-

gests this can remain true even when end hosts service

different requests, communicate with disjoint sets of re-

mote servers, or run entirely distinct application services.

To be practical, our approach must not place a heavy

burden on the computational resources of either end

hosts or the network switches, and neither can we re-

quire significant network bandwidth or esoteric features

from the switches themselves. Furthermore, our analy-

sis techniques must avoid false positives despite the di-

versity and scale of production datacenters yet remain

sensitive to the myriad possible impacts of real-word

faults. Our contributions include (1) a general-purpose,

end-host-based performance monitoring scheme that can

robustly identify flows traversing faulty network compo-

nents, (2) a methodology to discover the necessary path

information scalably in Facebook’s datacenters, and (3)

a system that leverages both types of information in ag-

gregate to perform network-wide fault-localization.

At a high level, while network statistics can be noisy

and confusing to interpret in isolation, the regular topol-

ogy and highly engineered traffic present within Face-

book’s datacenters provides an opportunity to leverage

simple statistical methods to rapidly determine where

partial faults occur as they happen. We demonstrate

that our technique is able to identify links and routers

exhibiting low levels (0.25–1.0%) of packet loss within

a Facebook datacenter hosting user-servicing front-end

web and caching servers within 20 seconds of fault oc-

currence with a minimal amount of processing overhead.

We also perform a sensitivity analysis on a testbed to

consider different types of errors—including those that

induce only additional latency and not loss—traffic pat-

terns, application mixes, and other confounding factors.

2. MOTIVATION & RELATED WORK

While fault detection is a classical problem in dis-

tributed systems [7, 11, 13, 14, 18, 33] and networks [12,

24, 29], modern datacenter environments provide both

significant challenges (e.g., volume and diversity of ap-

plication traffic, path diversity, and stringent latency re-

quirements) and benefits (large degree of control, regular

topologies) that impact the task of effectively finding and

responding to network faults. Moreover, recent work has

indicated that the types and impacts of faults common in

modern datacenters [42, 44] differ from those typically

encountered in the wide-area [34, 40] and enterprise [39].

Datacenters are affected by a menagerie of errors, in-

cluding a mix of software errors (ECMP imbalances,

protocol bugs, etc.), hardware errors (packet corruption

due to cables or switches, unreliable packet counters, bit

errors within routing tables, etc.), configuration errors,

and a significant number of errors without an apparent

cause [44]. Errors can be classed into two main cate-

gories: a complete error, in which an entire link or switch

is unable to forward packets, or a partial error, where

only a subset of traffic is affected. In this work, we fo-

cus primarily on the latter. Even a partial error affecting

and corrupting only 1% of packets on two links inside a

datacenter network was noted to have a 4.5× increase in

the 99th-percentile application latency [42], which can

impact revenue generated by the hosted services [21].

Commonly deployed network monitoring approaches

include end-host monitoring (RPC latency, TCP retrans-

mits, etc.) and switch-based monitoring (drop counters,

queue occupancies, etc.). However, such methods can

fall short for troubleshooting datacenter scale networks.

Host monitoring alone lacks specificity in the presence

of large scale multipath; an application suffering from

dropped packets or increased latency does not give any

intuition on where the fault is located, or whether a given

set of performance anomalies are due to the same fault.

Similarly, if a switch drops a packet, the operator is un-

likely to know which application’s traffic was impacted,

or, more importantly, what is to blame. Even if a switch

samples dropped packets the operator might not have a

clear idea of what traffic was impacted. Due to sampling

bias, mouse flows experiencing loss might be missed, de-

spite incurring great impacts to performance. (We ex-

pound upon this issue in Appendix A.) Switch-counter-

based approaches are further confounded by cut-through

forwarding and unreliable hardware [44].

Thus, we propose a system that focuses not on the oc-

currence of network anomalies but rather on their impact

on traffic. In doing so we leverage the high path diver-

596 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

sity and regular topologies found in modern datacenters,

as well as the finely tuned load balancing common in

such environments. We also expose to each host, for ev-

ery flow, the path taken through the network. As such,

our approach has several key differences with both past

academic proposals and production systems:

1. Full path information: Past fault-finding sys-

tems have associated performance degradations

with components and logical paths [7, 10, 13, 19]

but a solution that correlates performance anoma-

lies with specific network elements for arbitrary ap-

plications has, to the best of our knowledge, proved

elusive—although solutions exist for carefully cho-

sen subsets of traffic [44].
2. Passive monitoring, not active probing: In con-

trast to active probing methods [17, 19], our

method leverages readily available metrics from

production traffic, simultaneously decreasing net-

work overhead, increasing the detection surface,

and decreasing detection and localization time.
3. Reduced switch dependencies: While some ap-

proaches require expanded switch ASIC features

for debugging networks [20], we do not require

them. This allows network operators to deploy

our approach on commodity switches, and makes

our approach resilient to bugs that may escape on-

switch monitoring.
4. No per-application modeling: Our system lever-

ages the stable and load-balanced traffic patterns

found in some modern datacenters [35]. Thus, it

does not need to model complicated application de-

pendencies [7, 11, 13] or interpose on application

middleware [14]. Since we compare relative per-

formance across network links, we do not require

explicit performance thresholds.
5. Rapid online analysis: The regularity inherent in

several academic [8] and production [9, 37] topolo-

gies allow us to simplify our analysis to the point

that we can rapidly (10–20 seconds) detect partial

faults of very small magnitude (≤ 0.5% packet

loss) using an online approach. This contrasts with

prior systems that require offline analysis [7] or

much larger timescales to find faults [11]. Further-

more, localizing faults is possible without resource-

intensive and potentially time consuming graph

analysis [17, 24, 25, 26, 27, 30].

3. SYSTEM OVERVIEW
In this section, we present the high-level design of a

system that implements our proposed approach. To set

the context for our design, we first outline several im-

portant characteristics of Facebook’s datacenter environ-

ment. We then introduce and describe the high-level re-

sponsibilities of the three key components of our system,

deferring implementation details to Section 4.

3.1 Production datacenter
Facebook’s datacenters consist of thousands of hosts

and hundreds of switches grouped into a multi-rooted,

multi-level tree topology [9]. The datacenter we con-

sider serves web requests from a multitude of end users,

and is comprised primarily of web servers and cache

servers [35]. While wide-area connections to other in-

stallations exist, we do not focus on those in this work.

3.1.1 Topology

Web and cache hosts are grouped by type into racks,

each housing a few tens of hosts. User requests are

load balanced across all web servers, while cached ob-

jects are spread across all caches. Since any web server

can service any user request, there is a large fan-out of

connections between web servers and caches; in particu-

lar, each web server has thousands of bidirectional flows

spread evenly amongst caches [35]. Prior work notes

both the prevalence of partition-aggregate workloads and

the detrimental impact of packet loss and delay in this

latency sensitive environment—even if they only consti-

tute the long tail of the performance curve [43].

A few tens of racks comprises a pod. Each pod also

contains four aggregation switches (Aggs). Each ToR

has four uplinks, one to each Agg. There are a few tens

of pods within the datacenter, with cross-pod communi-

cation enabled by four disjoint planes of core switches

(each consisting of a few tens of cores). Each Agg is

connected to the cores in exactly one plane in a mesh.

Each host transmits many flows with differing network

paths. Due to the effects of ECMP routing, mesh-like

traffic patterns, and extensive load balancing, links at the

same hierarchical level of the topology end up with a

very even distribution of a large number of flows. More-

over, if we know which path (i.e., set of links) every flow

traverses, it is straightforward to separate the flows into

bins based on the link they traverse at any particular level

of the hierarchy. Hence, we can simultaneously perform

fault identification and localization by considering per-

formance metrics across different subsets of flows.

3.1.2 Operational constraints

The sheer scale of the datacenter environment imposes

some significant challenges on our system. The large

number of links and switches require our system to be ro-

bust to the presence of multiple simultaneous errors, both

unrelated (separate components) and correlated (faults

impacting multiple links). While some errors might be

of larger magnitude than others, we must still be sensi-

tive to the existence and location of the smaller errors. In

addition, we must detect both packet loss and delay.

The variety of applications and workloads within

the datacenter further complicate matters—an improper

choice of metric can risk either masking faults or trigger-

ing false positives (for example, the reasonable sounding

choice of request latency is impacted not only by net-

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 597

Figure 1: High-level system overview (single pod depicted).

work faults but also cache misses, request size and server

loads). Moreover, datacenters supporting multiple ten-

ants clearly require application-agnostic metrics.

Furthermore, we must be able to support measure-

ments from large numbers of end hosts describing the

health of a large number of links, without imposing

large computational or data overheads either on the end

hosts or on the network. This is especially true of net-

work switches, where relatively under-provisioned con-

trol planes are already engaged in critical tasks including

BGP routing. Thus, we are limited to capabilities present

in the data planes of commodity switch ASICs.

3.2 System architecture
Our fault detection and localization approach involves

functional components at all end hosts, a subset of

switches, and a centralized controller, depicted in Fig-

ure 1. Switches mark packets to indicate network path

(1). Hosts then independently compare the performance

of their own flows to generate a host-local decision about

the health of all network components (2). These verdicts

are sent (3) to a central controller, which filters false pos-

itives to arrive at a final set of faulty components (4),

which may be further acted upon by other systems (5).

We expand on the role of each element below.

3.2.1 End hosts

Hosts run production application traffic and track var-

ious per-flow metrics detailed in Section 4.2. In addition,

the host is aware of each flow’s path through the network.

Periodically, hosts will use collected performance data to

issue verdicts for whether it considers a given subset of

flows to have degraded performance, or not. By default,

flow metrics are binned by the set of links they traverse.

These bins are then further grouped into what we call

equivalence sets (ESes), i.e., the set of bins that should

perform equivalently, allowing us to pinpoint link-level

faults. In the Facebook datacenter, the set of bins corre-

sponding to the downlinks from the network core into a

pod forms one such ES. Alternative schemes can give us

further resolution into the details of a fault: for example,

comparing traffic by queue or subnet (Section 5.4.4). We

discuss the impact of heterogeneous traffic and topolo-

gies on our ability to form ESes in Section 6.

We define a guilty verdict as an indication that a partic-

ular bin has degraded performance compared to others in

its ES; a not guilty verdict signifies typical performance.

We leverage path diversity and the ability to compare per-

formance across links—if every link in an ES is perform-

ing similarly, then either none of the links are faulty, all

of them are faulty (unlikely in a production network) or

a fault exists but might be masked by some other bot-

tleneck (for which we cannot account). The target case,

though, is that enough links in an ES will be fault-free at

any given moment, such that the subset of links experi-

encing a fault will be readily visible if we can correlate

network performance with link traversed. Even in the

absence of path diversity (e.g., the access link for a host)

we can use our method with alternative binning schemes

and equivalence sets to diagnose certain granular errors.

3.2.2 Switches

A subset of the network switches are responsible for

signaling to the end hosts the network path for each

flow; we describe details in Section 4.1. Once faults are

discovered by the centralized controller, switches could

route flows away from faulty components, relying on the

excess capacity typically found in datacenter networks.

We leave fault mitigation to future work.

3.2.3 Controller

In practice, there will be some number of false posi-

tives within host-generated verdicts for link health (e.g.

hosts flagging a link that performs poorly even in the ab-

sence of an error, possibly due to momentary conges-

tion) confounding the ability to accurately deliver fixes

to the network. Furthermore, there might be errors which

do not affect all traffic equally; for example, only traffic

from a certain subnet might be impacted, or traffic of a

certain class. Hence, we employ a central controller that

aggregates end-host verdicts for links (or other bins) into

a single determination of which links—if any—are suf-

fering a fault. In addition, the controller can drive other

administrative systems, such as those used for data vi-

sualization/logging or rerouting of traffic around faults.

Such systems are outside the scope of this work.

4. IMPLEMENTATION
We now present a proof-of-concept implementation

that meets the constraints presented above. In order, we

focus on scalable path signalling, our choice of end-host

598 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: Determining flow network path.

performance metrics and the required aggregation pro-

cessing, our verdict generator for aggregated flow met-

rics, and the operation of our centralized controller.

4.1 Datacenter flow path discovery
Central to our approach is the ability to scalably and

feasibly discover flow path information within the dat-

acenter. While switch CPU/dataplane limits complicate

this task, the regularity of the network topology aids us.

4.1.1 Topological constraints

Figure 2 depicts the pathfinding scheme we use in the

Facebook datacenter. To aid discussion, the diagram

shows a restricted subset of an unfolded version of the

topology, with source hosts on the left and destinations

on the right; the topology is symmetric so our approach

works in either direction. Note that cross-pod traffic has

only two ECMP decisions to make: which Agg switch

(and thus, core plane) to transit after the ToR, and which

core switch to use within the core plane. Each core plane

is only connected to one Agg switch per pod, so the des-

tination Agg switch is fixed given the core plane.

The source and destination racks and ToRs are fixed

for any particular host pair, and can be determined by

examining the IP addresses of a flow. Thus, for cross-pod

traffic, the choice of core switch uniquely determines the

flow’s path, as the Agg switches are then constrained on

both sides. For intra-pod traffic it suffices to identify the

Agg switch used to connect the ToRs.

In the presence of a total link error, the network

attempts to forward traffic using an alternative, non-

shortest path advertised as a backup route. While we do

not address this case in our proof of concept, we discuss

the impacts of link failures in Section 6.3.

4.1.2 Packet marking

We assign an ID to each core switch, that is stamped

on all packets traversing the switch. Note that the stamp

need not be inserted by the core switch itself—the Agg

switches on either side are also aware of the core’s iden-

tity and are equally capable of marking the packet. We

use Linux eBPF (Extended Berkeley Packet Filter) [3]

along with bcc (BPF Compiler Collection) [2] instru-

mentation at end hosts to read packet markings and de-

rive flow paths. Our naive implementation imposes less

than 1% CPU overhead (top row of Table 2), but room

for optimization remains.

Several candidate header fields can be used for mark-

ing, and the best choice likely depends on the details of

any given deployment. One possibility is the IPv6 flow

label field; a 20-bit ID could scale to a network with over

a million core switches. However, the ASIC in our Agg

switches does not currently support modifying this field.

Thus, for our proof of concept, we instead mark the IPv6

DSCP field, which is supported at line rate and requires

only a constant number of rules (one per uplink).

While DSCP suffices for a proof of concept, its length

limits the number of discernible paths. Furthermore, dat-

acenter operators often use DSCP to influence queuing,

limiting the available bits. One alternative is to mark the

TTL field1. A packet marked at a downward-facing Agg

traverses exactly two more hops before arriving at the

destination host; a host could recover an ID in the TTL

field as long as the value was in the range 3–255.

4.1.3 General case

More complex topologies might preclude our ability

to compute paths from a single stamp. In the event that

traffic is made up of long-lived flows (as it is, for ex-

ample, for the web and cache servers we tested) we can

leverage the match/mark capability that many switching

ASICs possess to implement a form of marking reminis-

cent of previous proposals for IP traceback [36].

Suppose there are H hops between source and destina-

tion system, and C routing choices per hop. If we want to

determine the path taken by a flow at the first hop where

a routing choice must be made, the operating system can

mark C packets, each with the IPv6 flow label set to the

possible IDs of each switch that the packets could transit

for that hop. Switches would be configured with a sin-

gle rule that would examine the flow label—if it matches

the switch ID, the switch would set a single DSCP bit

to 1. When the end host receiving the packet notes the

DSCP bit set to 1, it could signal the sender with the ID

of the switch that was transited at that hop (that is, the

flow label of the packet when the DSCP bit was set). For

example, it could do this by setting a specific DSCP bit

in the ACK packet while setting the flow label of the re-

turn packet to the switches ID. Thus, if the flow sends

≥ (H ·C) packets in total it can discover the entire path,

at the expense of just a single rule per switch. While we

have not deployed this approach in production, we vali-

dated that our switch hardware can implement it. While

this method finds out path information hop by hop, par-

tial path information can still be useful to our system. We

discuss this further in Section 6.4.

4.2 Aggregating host metrics & path data
Given the availability of per-flow path information,

we show that both transport-layer and system-call-timing

1Constraints exist on the use of TTL as well, such as in the
presence of traceroute or eBGP session protection [15].

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 599

metrics can be used to find under-performing links in

real-world scenarios. We consider both latency-sensitive,

client/server production applications [35] and bulk-flow,

large-scale computation applications [4, 16, 22]. Mixed

traffic is considered in Section 6.2.

4.2.1 Latency sensitive services

Web servers and caches within the Facebook data-

center service user requests, where low latency is desir-

able [43]. Faults harm performance, where either drops

or queuing delay can result in unacceptable increases in

request latency. Since loss is often a sign of network

congestion, the TCP state machine tracks various related

statistics. These include the number of retransmitted

packets, the congestion window (cwnd) and the slow-

start threshold (sstresh). Latency is also tracked us-

ing smoothed round trip time (srtt). When considered

in isolation, these metrics are limited in usefulness; while

a retransmit signifies diminished performance for a flow,

it does not provide any predictive power for the underly-

ing cause, or whether a given set of flows experiencing

retransmits are doing so for the same underlying reason.

Furthermore, while cwnd and ssthresh decrease with

loss, the specific values depend highly on the application

pattern. For example, bulk flows tend to have a larger

congestion window than mouse flows. Thus, comparing

any given flow against an average can be difficult, since

it is unclear whether ‘worse’ performance than average

is due to a network issue or traffic characteristics.

However, when augmented with path data, these met-

rics can become valuable indicators of faults. To illus-

trate the effectiveness of this approach, we induced a net-

work fault impacting two hosts: one web server, and one

cache server. In each case, the local ToR is connected

to four aggregation switches. Using iptables rules,

each host dropped 0.5% of incoming packets that tran-

sited the link from the first aggregation switch to the ToR

switch. We then measured the TCP metrics for outgoing

flows, grouped by which aggregation switch (and, thus,

rack downlink) was transited on the way to the host.

Rows 1–6 and 9–14 in Table 1 depict the cwnd,

ssthresh, and retransmission count distributions

grouped by inbound downlink for production cache (C)

and web servers (W) respectively. While we aggregate

the values for the non-faulty links into a single series

(the even rows in the table), each individual non-faulty

link follows the same aggregate distribution with little

variation. On the other hand, the faulty-link distribution

for each metric is significantly skewed—towards smaller

numbers for cwnd and ssthresh, and larger for re-

transmits. Rows 17–22 show that cwnd, ssthresh,

and retransmits provide a similarly strong signal when

the link fault impacts traffic in the outbound direction in-

stead. srtt is effective for detecting faults that induce

latency but not loss; we defer details to Section 5.3.1.

4.2.2 Bulk data processing

Next, we consider bulk data processing workloads.

Commonly used frameworks like Hadoop involve read-

ing large volumes of data from various portions of the

network; slowdowns caused by the network can have a

disproportionate impact on job completion times due to

stragglers. While the TCP metrics above work equally

well in the case of Hadoop (not shown), the high-

volume flows in Hadoop allow us to adopt a higher-level,

protocol-independent metric that depends on the buffer

dynamics present in any reliable transport protocol.

Consider the case of an application making a block-

ing system call to send data. Either there will be room

present in the connection’s network buffer, in which case

the data will be buffered immediately, or the buffer does

not have enough space and causes the application to wait.

As packets are transmitted, the buffer is drained. How-

ever, if a fault induces packet drops, packets need to be

retransmitted and thus the goodput of the network buffer

drops. Correspondingly, the buffer stays full more of

the time and the distribution of the latency of send()

and similar blocking system calls skews larger. Delays

caused by packet reordering have similar impacts. Non-

blocking sends exhibit this behavior too; we can instru-

ment either the select() or epoll_ctl() system

calls to get insight into buffer behavior.

To demonstrate this, we consider a synthetic traffic

pattern representative of the published flow-size distribu-

tions for Hadoop workloads present in Facebook’s data-

centers [35]. Specifically, we designate one server in our

testbed (see Section 5.1 for details) as a sink and the re-

mainder as sources. In addition, we induce a random

packet drop impacting 1 of 9 testbed core switches. For

a fixed period of time, each server in a loop creates a

fixed number of simultaneous sender processes. Each

sender starts a new flow to the sink, picks a flow size from

the Facebook flow-size distribution for Hadoop servers

and transmits the flow to completion, while recording the

wait times for each select() system call.

Rows 23–24 in Table 1 show the distributions of

select() latencies for flows grouped by core switch

transited in our private testbed—again, the non-faulty

distributions are aggregated. Faulty links on the im-

pacted core yield a dramatically shifted distribution. Ad-

ditionally, the distributions for non-faulty cores show lit-

tle variation (omitted for space). This allows us to differ-

entiate between faulty and normal links and devices. We

found the metric to be sensitive to drop rates as low as

0.5%. Moreover, this signal can also be used for caches,

due to the long-lived nature of their flows. Rows 7–8 and

15–16 in Table 1 show the distribution of epoll() and

select() latencies for flows on faulty and non-faulty

links in production and on the testbed, respectively; in

both cases, the faulty link distribution skews larger.

600 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Host Type Metric Path Error p25 p50 p75 p90 p95 p99

1 (C) Prod cwnd In 0.5% 7 (-30%) 8 (-20%) 10 (par) 10 (par) 10 (-41%) 20 (-33%)

2 (C) Prod cwnd In - 10 10 10 10 17 30

3 (C) Prod ssthresh In 0.5% 6 (-62.5%) 7 (-63.2%) 18 (-25%) 24 (-64.7%) 31 (-51.6%) 63 (-17.1%)

4 (C) Prod ssthresh In - 16 19 24 57 64 76

5 (C) Prod retx In 0.5% 0 (par) 1 2 3 4 6

6 (C) Prod retx In - 0 0 0 0 0 1

7 (C) Prod epoll In 0.5% 0.003 (par) 0.14 (+1.4%) 0.47(+10.8%) 0.71(+30.6%) 1.07 (+60.6%) 2.28 (+125%)

8 (C) Prod epoll In - 0.003 0.14 0.43 0.54 0.67 1.01

9 (W) Prod cwnd In 0.5% 8 (-63.6%) 12 (-60%) 17 (-74.6%) 38 (-60%) 121 (+23.5%) 139 (-33.2%)

10 (W) Prod cwnd In - 22 30 67 95 98 208

11 (W) Prod ssthresh In 0.5% 4 (-42.9%) 12 (-40%) 16 (-66.7%) 19 (-75%) 31 (-66.7%) 117 (+19.4%)

12 (W) Prod ssthresh In - 7 20 48 73 93 98

13 (W) Prod retx In 0.5% 0 0 1 3 4 6

14 (W) Prod retx In - 0 0 0 0 0 0

15 (C) Syn select Out 2.0% 0.56(+25k%) 4.22(+717%) 7.01(+642%) 37.5(+1.6k%) 216 (+4.3k%) 423 (+969%)

16 (C) Syn select Out - 0.002 0.516 0.944 2.15 4.90 39.6

17 (W) Syn cwnd Out 0.5% 2 (-80%) 2 (-80%) 2 (-80%) 4 (-60%) 7 (-30%) 10 (par)

18 (W) Syn cwnd Out - 10 10 10 10 10 10

19 (W) Syn ssthresh Out 0.5% 2 (-50%) 2 (-71%) 2 (-75%) 2 (-78%) 4 (-56%) 7 (-22%)

20 (W) Syn ssthresh Out - 4 7 8 9 9 9

21 (W) Syn retx Out 0.5 21 23 26 29 30 40

22 (W) Syn retx Out - 0 0 0 0 0 0

23 (H) Syn select Out 2.0% 22 (+11%) 223 (+723%) 434 (+85%) 838 (+32%) 1244 (+47%) 2410 (+39%)

24 (H) Syn select Out - 19.5 27.1 235 634 844 1740

Table 1: Metric statistics for Production/Synthetic (C)ache/(W)eb/(H)adoop hosts grouped by (In/Out)bound path and induced loss rates; sycall

metrics in msec. Each color-banded pair of rows denotes the base and impacted metrics for (aggregated) working and (unique) faulty paths.

Component p25 p50 p75 p95

eBPF (paths) 0.17% 0.23% 0.46% 0.65%

TCP metrics/t-test 0.25% 0.27% 0.29% 0.33%

Table 2: End-host monitoring CPU utilization in production.

4.2.3 Metric collection computational overhead

While the aforementioned statistics provide a useful

signal, care must be taken when determining how to col-

lect statistics. While system-call latency can be instru-

mented within an application, that requires potentially

invasive code changes. Instead, we again leverage eBPF

to track system-call latencies. For TCP statistics, we di-

rectly read netlink sockets in a manner similar to the

ss command. Table 2 depicts the overall CPU usage

of our TCP statistics collection and verdict generation

agent; the cumulative CPU overhead is below 1%.

4.3 Verdict generation
Previously, we demonstrated that path aggregated end-

host metrics can single out under-performing groups of

flows. Here, we develop an end-host decision engine to

generate verdicts based on these metrics.

4.3.1 Outlier detection

Due to the clumping of distributions in the absence

of faults, we hypothesize that every observed value of a

given metric under test can be treated as a sample from

the same underlying distribution characterizing a fault-

free link, during a particular time period containing a

given load. Moreover, a substantially different distribu-

tion applies for a faulty link for the same time period.

Thus, determining whether a link is faulty reduces to de-

termining whether the samples collected on that link are

part of the same distribution as the fault-free links.

While we cannot state with certainty the parameters

of the fault-free distribution due to the complexities of

network interactions, we rely on the assumption that the

number of faulty datacenter links at any given instant is

much lower than the number of working links. Suppose

we consider the number of retransmits per flow per link,

for all links, over a fixed time period. For each link, we

compare its distribution to the aggregate distribution for

all the other links. If there exists only one fault in the net-

work, then there are two possible cases: the distribution

under consideration is faulty and the aggregate contains

samples from exclusively non-faulty links, or it is non-

faulty and the aggregate contains samples from 1 faulty

link and (N − 1) working links. In the former case, the

distribution under test is skewed significantly to the right

of the aggregate; in the latter, it is skewed slightly to the

left (due to the influence of the single faulty link in the

aggregate). Thus a boolean classifier can be used: if the

test distribution is skewed to the right by a sufficiently

large amount, we issue a guilty verdict; else, we do not.

Concurrent errors shift the aggregate distribution closer

to the outlier distribution for a single faulty link. If ev-

ery link is faulty, we cannot detect faulty links since we

do not find any outliers. However, our method is robust

even in the case where 75% of the links have faults; we

examine the sensitivity of our approach in Section 5.4.2.

4.3.2 Hypothesis testing

Due to the large volume of traffic, even small time in-

tervals contain a large number of samples. Thus, we have

to carefully implement our outlier test to avoid signif-

icant end-host computational overhead. Our approach

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 601

computes a lightweight statistic for each metric under

consideration, for each link, over successive fixed-length

(10 seconds by default) sampling periods. Each end

host generates verdicts for links associated with its own

pod. Thus, for each flow, there are a few tens of pos-

sible core-to-aggregation downlinks, and four possible

aggregation-to-ToR downlinks. Having acquired TCP

metrics and path information for all flows via our col-

lection agent, we bucket each sample for the considered

metrics into per-link, per-direction buckets. Thus, each

metric is bucketed four times: into the inbound and out-

bound rack and aggregation (up/down)links traversed.

For TCP retransmit and system-call latency met-

rics, we compute the t-statistic from the single-tailed

1-sample Student’s t-test using a low-overhead and

constant-space streaming algorithm. To do so we need

the average and standard deviation per distribution, and

the aggregate average—all of which are amenable to

streaming computation via accumulators, including stan-

dard deviation via Welford’s Algorithm [41]. We then in-

put the t-statistic to the test. The t-test compares a sample

mean to a population mean, rejecting the null hypothesis

if the sample mean is larger—in our case, if the tested

link has more retransmits or higher system-call latency

than the other links in aggregate. In every time period,

each host checks if the t-statistic is greater than 0 and

the p-value ≤ 0.05. If so, we reject the null hypothesis,

considering the link to be faulty.

This approach limits the computational overhead at

any individual host since it only needs to track statistics

for its own select()/epoll() calls and TCP statis-

tics. The bottom row of Table 2 depicts the CPU utiliza-

tion at a single production web server for this approach

over 12 hours. The t-test computation and netlink

TCP statistics reader uses roughly 0.25% of CPU usage.

This result is roughly independent of how often the ver-

dict is computed; the majority of the CPU usage is incre-

menting the various accumulators that track the compo-

nents of the t-statistic. The bcc/eBPF portion, however,

has periods of relatively high CPU usage approaching

1% overall, due to the need to periodically flush fixed-

sized kernel structures that track flow data.

For cwnd, ssthresh and srtt TCP statistics, we

find the student’s t-test to be too sensitive in our envi-

ronment. However, a modified 2-sample Kolmogorov-

Smirnov (KS-2) test provides an effective alternative.

Specifically, we compare two down-sampled distribu-

tions: the 99-point {p1, p2, . . . , p99} empirical distri-

bution for the link under consideration, and a similarly

defined distribution for the other links in aggregate.

4.4 Centralized fault localization
While individual hosts can issue verdicts regarding

link health, doing so admits significant false positives.

Instead, we collate host verdicts at a centralized con-

troller that attempts to filter out individual false positives

to arrive at a network-wide consensus on faulty links.

4.4.1 Controller processing

Assuming a reliable but noisy end-host-level signal,

we hypothesize that false positives should be evenly dis-

tributed amongst links in the absence of faults. Note that

while some networks might contain hotspots that skew

flow metrics and violate this assumption, traffic in the

Facebook datacenter is evenly distributed on the consid-

ered timescales, with considerable capacity headroom.

We use a centralized controller to determine if all

links have approximately the same number of guilty (or

not guilty) verdicts, corresponding to the no-faulty-links

case. Hosts write link verdicts—generated once per

link every ten seconds—to an existing publish-subscribe

(pub-sub) framework used for aggregating log data. The

controller reads from the pub-sub feed and counts the

number of guilty verdicts per link from all the hosts, over

a fixed accumulation period (10 seconds by default). The

controller flags a link as faulty if it is a sufficiently large

outlier. We use a chi-squared test with the null hypothe-

sis that, in the absence of faults, all links will have rela-

tively similar numbers of hosts that flag it not-guilty. The

chi-square test outputs a p-value; if it is ≤ 0.05, we flag

the link with the least not-guilty verdicts as faulty. We

iteratively run the test on the remaining links to uncover

additional faults until there are no more outliers.

4.4.2 Computational overhead

The controller has low CPU overhead: a Python im-

plementation computes 10,000 rounds for tens of links

in <1 second on a Xeon E5-2660, and scales linearly

in the number of links. Each host generates two ver-

dicts per link (inbound/outbound) every 10 seconds, with

O(1000s) hosts per pod. Each verdict consists of two 64-

bit doubles (t-stat and p-value) and a link ID. In total, this

yields a streaming overhead of < 10 Mbps per pod, well

within the capabilities of the pub-sub framework.

5. EVALUATION
We now evaluate our approach within two environ-

ments: the Facebook datacenter described in Section 3.1,

and a small private testbed. First, we describe our test

scenario in each network, and provide a motivating ex-

ample for real-world fault detection. We then consider

the speed, sensitivity, precision, and accuracy of our ap-

proach, and conclude with experiences from a small-

scale, limited-period deployment at Facebook.

5.1 Test environment
Within one of Facebook’s datacenters, we instru-

mented 86 web servers spread across three racks with the

monitoring infrastructure described in Section 4. Path

markings are provided by a single Agg switch, which

sets DSCP bits based on the core switch from which the

packet arrived. (Hence, all experiments are restricted to

602 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.0

0.2

0.4

0.6

0.8

1.0

t-
te

s
t
p
-v

a
lu

e Link A

Link B

Link C

Non-faulty links

0 100 200 300 400 500 600 700 800 900

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

c
h
i-
s
q
u
a
re

 p
-v

a
lu

e

All links

All - {A}

All - {A,B}

All - {A,B,C}

Figure 3: Single host t-test output (top) and controller chi-square out-

put (bottom) for three separate link faults.

the subset of traffic that transits the instrumented Agg

switch, and ignores the remainder.) To inject faults, we

use iptables rules installed at end hosts to selectively

drop inbound packets that traversed specific links (ac-

cording to DSCP markings). For example, we can con-

figure an end host to drop 0.5% of all inbound packets

that transited a particular core-to-Agg link. This has the

effect of injecting faults at an arbitrary network location,

yet impacting only the systems that we monitor.2

Our private testbed is a half-populated k = 6 fat tree,

consisting of 3 (of 6) pods of 9 hosts each, connected

via 9 core switches. Each core has three links, one to

each pod. To inject faults, we use a ‘bump in the wire’ to

perturb packets on a link. For example, consider a faulty

core that drops (or delays) a random subset of packets

traversing a link to an Agg. Thus, to inject a fault at that

link, we replace the link connecting the core to the Agg

with a link connecting it to a network bridge, which is in

turn connected to the Agg. The bridge is a Linux host

that forwards packets, randomly dropping (or delaying)

a subset of packets in a given direction. We implement

ECMP using source routing; the 5-tuple therefore allows

us to determine the paths packets traverse in our testbed.

5.2 Motivating example
Over a five-minute interval in the Facebook datacen-

ter, we induced faults on links from three different core

switches to the instrumented Agg, denoted A, B and C.

In particular, we induce faults in the order A, B, C, with

a one-minute gap; we then removed the faults in reverse

order with the same gap. Each fault is a random 0.5%

packet drop (1 in 200 packets). In aggregate, this corre-

sponds to an overall packet loss rate of < 0.02%.

The top portion of Figure 3 depicts the t-test output

for a single host. Flows are grouped according to incom-

ing core downlink, and TCP retransmission statistics are

2Note that while all monitored hosts will see the same loss rate
across the link, the actual packets dropped may vary because
iptables functions independently at each host.

aggregated into ten-second intervals. For a single host,

for every non-faulty link (every series in black, and the

faulty links before/after their respective faults) the t-test

output is noisy, with p-values ranging from 0.15 to 1.0.

However, during a fault event the p-value drops down to

near 0. Close to 100% of the hosts flag the faulty links as

guilty, with few false positives.

These guilty verdicts are sent to our controller. The

controller runs the chi-squared test every 10 seconds us-

ing each core downlink as a category; it counts the num-

ber of non-guilty verdicts from the end hosts as metric

and flags an error condition if the output p-value ≤ 0.05.

Note that this flag is binary, indicating that there exists

at least one active fault; the guilty verdict count must be

consulted to identify the actual guilty link. The bottom

portion of Figure 3 depicts the controller output using

this mechanism. We depict the output of the test for all

paths (in red), and for the set of paths excluding faulty

paths {A}, {A,B} and {A,B,C} (in yellow, purple and

black, respectively). These results indicate that the con-

troller will flag the presence of a fault as long as there is

at least one faulty link in the set of paths under consider-

ation, thus supporting an iterative approach.

5.3 Speed and sensitivity
For our mechanism to be useful, it must be able to

rapidly detect faults, even if the impact is slight. More-

over, ideally we could detect faults that result in in-

creased latency, not just those that cause packet loss.

5.3.1 Loss rate sensitivity

We performed a sensitivity analysis on the amount of

packet loss we can detect in the datacenter. While loss

rates ≥ 0.5% are caught by over 90% of hosts, we see

a linear decrease in the number of guilty verdicts as the

loss decreases past that point—at 0.1% drop rate, only

≈ 25% of hosts detect a fault in any given 10-second in-

terval, reducing our controller’s effectiveness. However,

we can account for this by prolonging the interval of the

controller chi-square test. Figure 4a depicts the distribu-

tion of p-values outputted by the controller for a given

loss rate and calculation interval. Each point with error

bars depicts the median, p5 and p95 p-values outputted

by the controller during a fault occurrence; each loss rate

corresponds to a single series. We see that while a 0.25%

loss is reliably caught with a 20-second interval, a 0.15%

loss requires 40 seconds to be reliably captured; lower

loss rates either take an unreasonably large (more than a

minute) period of time to be caught or do not get detected

at all. Note that in the no-fault case, no false positives are

raised despite the increased monitoring interval.

5.3.2 High latency detection

In our private testbed, we induced delays for traf-

fic traversing a particular core switch. To do this, we

used Linux tc-netem on our ‘bump-in-the-wire’ net-

work bridges to add constant delay varying from 100

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 603

10 40 60 120 180

Controller interval (seconds)

0.05

0.20

0.40

0.60

0.80

1.00

C
h

is
q

u
a

re
 p

-v
a

lu
e

No drops

0.05%

0.1%

0.15%

0.2%

0.25%

(a) Single fault loss rate sensitivity.

10 40 60 120 180

Controller interval (seconds)

0.05

0.20

0.40

0.60

0.80

1.00

C
h

is
q

u
a

re
 p

-v
a

lu
e

Filtered

0.05%

0.1%

0.15%

0.2%

0.25%

(b) Masked fault sensitivity.

10 40 60 120 180

Controller interval (seconds)

0.05

0.20

0.40

0.60

0.80

1.00

C
h

is
q

u
a

re
 p

-v
a

lu
e

1/4 linecards error

1/2 linecards error

3/4 linecards error

(c) Linecard faults.

Figure 4: Controller chi-square p-value convergence for various faults vs. controller interval length.

Request

bytes

Latency

msec

p50 p75 p95 p99

100 - 1643 1680 2369 2476

100 0.1 3197 3271 4745 4818

100 1.0 10400 10441 19077 19186

8000 - 4140 4778 619 7424

8000 0.1 6809 7510 9172 11754

8000 0.5 11720 14024 18367 21198

Table 3: srtt_us distribution vs. additional latency and request size.

The no-additional-latency case is aggregated across all non-impacted

links, while the others correspond to a single (faulty) link.

microseconds to 1 millisecond (a typical 4-MB switch

buffer at 10 Gbps can incur a maximum packet latency

of roughly 3 milliseconds before overflowing). We then

ran client/server traffic with a single pod of 9 HHVM [5]

servers serving static pages, and two pods (18 hosts) con-

figured as web clients running Apache Benchmark [1].

Each server handled 180 simultaneous clients and served

either small (100-B) or medium (8-KB) requests.

Table 3 depicts the distributions for TCP srtt_us

TCP at a particular end host as a function of induced la-

tency and request size. As in previous experiments, the

distributions of non-impacted links are very close to each

other, while the distribution of the latency heavy link is

clearly differentiable. No drops were detected in the 100-

B case; due to our use of 1-Gbps links, a handful of drops

comparable to the no-fault case were detected in the 8-

KB case. The modified KS-2 test operating over a 10-

second interval correctly flags all intervals experiencing

a latency increase, while avoiding false positives.

5.4 Precision and accuracy
Next, we demonstrate the precision and accuracy of

the system in the presence of concurrent and correlated

faults, as well as the absence of false positives.

5.4.1 Concurrent unequal faults

A large network will likely suffer concurrent faults of

unequal magnitude, where the largest fault may mask the

presence of others. While we surmise that the most vis-

ible fault will be easily diagnosable, ideally it would be

possible to parallelize fault identification in this case.

We consider a scenario in the Facebook datacenter

with two concurrent faults on distinct core-to-Agg switch

links: one causing a packet loss rate of 0.5%, and one

with a rate that varies from 0.25% to 0.15% (which we

can easily identify in isolation). Using TCP retransmit

statistics, the high-loss fault was flagged by almost all

the hosts the entire time, while the flagging rate for the

lower-impact fault depends roughly linearly on its mag-

nitude. However, the drop-off in guilty verdicts is steeper

in the presence of a masking, higher-impact fault. As a

result, the 10- and 20-second controller intervals that flag

the low-loss-rate faults in isolation no longer suffice.

Figure 4b depicts the controller chi-square p-value

outputs for the set of paths excluding the one suffering

from the readily identified larger fault; each series corre-

sponds to a different loss rate for the smaller fault. The

interval needed to detect such “masked” faults is longer;

a 0.25% loss rate requires a 40-second interval to reliably

be captured vs. 20 seconds in the unmasked case (Fig-

ure 4a), while a 0.15% rate requires over three minutes.

5.4.2 Large correlated faults

So far, we have considered faults impacting a small

number of uncorrelated links. However, a single hard-

ware fault can affect multiple links. For example, each

Agg switch contains several core-facing linecards, each

providing a subset of the switch’s cross-pod capacity.

A linecard-level fault would thus affect several uplinks.

Similarly, a ToR-to-Agg switch link might be impacted,

affecting a full quarter of the uplinks for that rack’s hosts.

Our approach relies on the student’s t-test picking out-

liers from a given average, with the assumption that the

average represents a non-broken link. However, certain

faults might impact a vast swath of links, driving the av-

erage performance closer to that of the impacted links’.

To test this scenario, we induce linecard-level faults

on 25%, 50%, 75% and 100% of the uplinks on the in-

strumented Agg switch in the Facebook datacenter. The

per-link loss rate in each case was 0.25%. With 100%

faulty links, our method finds no faults since no link is an

outlier—a natural consequence of our approach. How-

604 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

MetricError p50 p90 p95 p99

retx - 0 0 1 2

retx 0.5% 1 3 4 5

cwnd - 10 18 26 39

cwnd 0.5% 9 10 16 28

Table 4: TCP congestion window and retransmit distributions when

binning by remote rack with a faulty rack inducing a 0.5% drop rate.

ever, in all other cases our approach works if the hosts

declare paths faulty when the p-value ≤ 0.1. Figure 4c

shows the controller performance for various linecard-

level faults as a function of interval length. A 10-second

interval captures the case where 25% of uplinks experi-

ence correlated issues, but intervals of 20 and 40 seconds,

respectively are required in the 50% and 75% cases.

5.4.3 False positives

The longer our controller interval, the more sensitive

we are to catching low-impact faults but the more likely

we are to be subject to false positives. We ran our system

in production in the absence of any (known) faults with

intervals ranging from 10 seconds to an hour. Even with

30-minute intervals, the lowest p-value over 42 hours of

data is 0.84; only one-hour intervals generated any false

positives (p ≤ 0.05) in our data. We note, however, that

we need not support arbitrarily large intervals. Recall

that an interval of roughly three minutes is enough to get

at least an intermittent fault signal for a 0.1% loss rate.

5.4.4 Granular faults and alternative binnings

By default, our approach bins flow metrics by path. In

certain cases, however, a fault may only impact a specific

subset of traffic. For example, traffic from a particular

subnet might exhibit microburst characteristics, periodi-

cally overflowing switch buffers and losing packets.

Alternative binnings can be employed to identify such

“granular” faults. To illustrate, we induced a fault at a

single cache server, in which packets from exactly one

remote rack are dropped at a rate of 0.5%. We then

binned traffic by remote rack. Table 4 depicts the distri-

bution of congestion window and retransmit by remote

rack; as before, the distributions for non-impacted bins

are all close to each other. The KS-2 test and t-test suc-

cessfully pick out the fault without false positives using

the cwnd and retransmissions metrics respectively. Note

such alternative binning can help diagnose faults even if

there is no path diversity—in this case, the alternatives

are provided by application load balancing.

5.5 Small-scale deployment experience
While our experiments focus on injected failures, we

are obviously interested in determining whether our sys-

tem can successfully detect and localize network anoma-

lies “in the wild”. Thus, we examine the performance

of our system over a relatively long time period (in the

absence of any induced failures) to answer the following

questions: “Does our system detect performance anoma-

−300 −200 −100 0 100 200 300

Seconds since linecard fault

0

5

10

15

20

25

M
ea
n
co
n
g
es
ti
o
n
w
in
d
ow

Faulty linecard links average

Regular linecard links average

Figure 5: Mean cwnd per (host,link) during linecard fault.

lies?” “Do non-issues trigger false positives?” “Do

we notice anomalies before or after Facebook’s existing

fault-detection services catch it?”

To answer these questions, we deployed our system

on 30 hosts for a two-week period in early 2017. As

an experimental system, deployment was necessarily re-

stricted; our limited detection surface thus impacted our

chance of detecting partial faults. An operator of another

large-scale datacenter suggests that, in their experience,

partial failures occur at a rate of roughly 10 per day in a

network containing O(1M) hosts [28]. It is not surpris-

ing, then, that our two-week trial on only 30 hosts did

not uncover any partial faults. We were, however, able to

derive useful operational experience that we relate below.

5.5.1 Response to organic failure

On January 25th, 2017, the software agent managing

a switch linecard that our system was monitoring failed.

The failure had no immediate impact on traffic; the data-

plane continued to forward traffic according to the most

recent ruleset installed by the agent. Thus, the initial fail-

ure is invisible to and explicitly outside the scope of our

tool, which focuses only on faults that impact traffic.

Roughly a minute later, however, as the BGP peer-

ings between the linecard and its neighbors began to

time out, traffic was preemptively routed away from the

impacted linecard. Thus, applications saw no disrup-

tion in service despite the unresponsive linecard control

plane. Yet, we observe that as traffic was routed away

from the failed linecard, the distributions of TCP’s cwnd

and ssthresh metrics for the traffic remaining on the

linecard’s links rapidly diverged from the values on other

links in the equivalence set. Figure 5 depicts the per-

link mean congestion window measured by every host,

aggregated per-linecard and averaged across every corre-

sponding host, with the afflicted linecard colored red.

The deviations are immediate and significant, with the

mean cwnd dropping over 10% in the first interval after

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 605

the majority of traffic is routed away, and continually di-

verging from the working links thereafter. Furthermore,

the volume of measured flows at each host traversing the

afflicted linecard rapidly drops from O(1000s) to O(10s)

per link. By contrast, one of Facebook’s monitoring sys-

tems, NetNORAD [6], took several minutes to detect the

unresponsive linecard control plane and raise an alert.

It is important to note that in this case, we did not catch

the underlying software fault ourselves; that honor goes

to BGP timeouts. However, we do observe a sudden shift

in TCP statistics in real time as traffic is routed away,

as our system was designed to do. With respect to our

stated goal—to pinpoint the links responsible for delete-

rious traffic impact—our system performs as expected.

Thus, this anecdote shows that our system can compli-

ment existing fault-detection systems, and provide rapid

notification of significant changes in network conditions

on a per-link or per-device basis.

5.5.2 Filtering normal congestion events

During the monitoring period, no other faults were de-

tected by the system. While a small number of false pos-

itives were generated in every interval, the controller fil-

ters out these indications since the noise is spread across

the monitored links. However, we noticed that the num-

ber of false positives had periodic local maxima around

1200 and 1700 GMT. Furthermore, these were correlated

with the raw (i.e., independent of flow/path) TCP retrans-

mit counts tracked by the end hosts. Given that they oc-

curred at similar times each day and were evenly spread

across all the monitored hosts, we surmise that these re-

transmits were not due to network faults, but organically

occurring congestion. This experience provides some

confidence that our system effectively distinguishes be-

tween transient congestion and partial faults.

6. APPLICABILITY
Here, we consider the applicability of our approach in

various challenging scenarios, e.g., datacenters with het-

erogeneous traffic patterns, topologies less amenable to

single-marking path discovery (either by design or due

to failed links re-routing traffic), virtualized multi-tenant

environments, and more. We first list some conditions to

which our approach is resilient. Subsequently, we clar-

ify the extent to which traffic homogeneity, link failures

and topology impact the suitability of our approach. We

conclude with a discussion on known limitations.

6.1 Surmountable issues
While we have access to only one production envi-

ronment, we have conducted sensitivity analyses in our

testbed to consider alternative deployments. Due to

space limits, we summarize our findings here, but pro-

vide more extensive discussion in Appendix B.

1. VMs and high CPU utilization: Our datacenter

tests were on bare metal; we find the approach

works equally well in a hypervisor-based environ-

ment, even when the hardware CPU is fully taxed.
2. Mixed, over-subscribed and uneven traffic: The

Facebook datacenter lacks saturated links and un-

even load. We consider a mixed workload with

latency sensitive and core-saturating bulk traffic,

where server load ranges from 1×—16×.
3. TCP settings: Datacenter hosts employ NIC of-

fload features such as TSO. Turning these opti-

mizations off does not obscure TCP or timing-

based signals; neither does varying buffer sizes

across three orders of magnitude (16 MB—16 KB).

6.2 Traffic homogeneity
Facebook traffic is highly load balanced [35], aiding

our outlier-based detection approach. We are optimistic,

however, that our method is also applicable to datacen-

ters with more heterogeneous and variable workloads.

That said, outlier analysis is unlikely to succeed in the

presence of heterogeneous traffic if we do not carefully

pick the links or switches that we compare against each

other—specifically, if we fail to form a valid ES.

In the case of our experiments at Facebook, the ES we

used was the set of downlinks from the network core into

a pod. ECMP routing ensured that these links did form an

ES; all cross-pod flows had an equal chance of mapping

to any of these links, and the path from these links down

to the hosts were equal cost. This characteristic notably

holds true regardless of the specific mix of traffic present.

Thus, we hypothesize that on any network where such an

ES can be formed, our approach works regardless of traf-

fic homogeneity. To demonstrate this, we ran our fat-tree

testbed with a worst case scenario of heterogeneous traf-

fic: running synthetic bulk transfer and latency sensitive

RPC traffic, with heavy traffic skew (with per host-load

ranging from 1–16× the minimum load). Furthermore,

we overloaded the network core by artificially reducing

the number of links. Even in this case, our t-test classifier

operating on the select() latency metric was able to

successfully differentiate the outlier link.

6.3 Link failures
In addition to being able to detect and localize partial

faults, our system must be able to account for total link

failures, which can confound our ability to determine a

flow’s path through the network due to re-routing. Con-

sider the outcome of a total link failure on the fate of

traffic routed via that link. There are three possible out-

comes for such traffic: (1) traffic is redirected at a prior

hop to a working alternative path, (2) traffic is re-routed

by the switch containing the dead-end link to a backup

non-shortest path, and (3) traffic is black holed and the

flow stops (the application layer might restart the flow).

Cases (1) and (3) do not affect our approach. ECMP

routing will ensure that flows are evenly distributed

among the surviving links, which still form an ES (al-

606 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

beit one smaller in size than before the failure). Case

(2) can impact our approach in two ways. First, traffic

taking a longer path will likely see worse performance

compared to the rest of the traffic that traverses links

on the backup path—harming the average performance

on that path. Moreover, backup path performance might

drop due to unfair loading as more flows join. Presum-

ing rerouting is not silent (e.g., because it is effected by

BGP), the former effect can be accounted for; traffic us-

ing backup routes can be marked by switches and ignored

in the end-host t-test computation. The latter can be mit-

igated by careful design: rather than loading a single

backup path unfairly, the load can be evenly distributed

in the rest of the pod. Even if an imbalance cannot be

avoided, two smaller ESes can yet be formed: one with

links handling rerouted traffic, and one without.

6.4 Topologies

Our system leverages the details of Facebook’s dat-

acenter topology to obtain full path info with a single

marking identifying the transited core switch. The topol-

ogy also allows us to form equivalence sets for each

pod by considering the core-to-pod downlinks. Other

networks might provide more challenging environments

(e.g. middleboxes or software load balancers [31] might

redirect some traffic; different pods might have vary-

ing internal layouts; links might fail) that confound the

ability to form equivalence sets. In an extreme case, a

Jellyfish-like topology [38] might make it extremely dif-

ficult to both extract path information and form ESes.

In certain cases, though, even networks with unruly

layouts and routing can be analyzed by our approach.

Consider a hybrid network consisting of a Jellyfish-like

subset. For example, suppose a single switch in the Jel-

lyfish sub-network is connected to every core switch in a

multi-rooted tree, with identical link bandwidths. While

we cannot reason about traffic internal to the Jellyfish, we

can still form an ES for the links from the single switch

connecting to the regular topology, for all traffic flowing

into the regular sub-network. No matter how chaotic the

situation inside the Jellyfish network, the traffic should

be evenly distributed across core switches in the regular

sub-network, and from then on the paths are equivalent.

Note that here, we only consider the subset of the path

that lies within the regular topology. As long as an ES

can be formed, the path behind it can be considered as a

black box. Thus, we argue that even on topologies where

we can’t find the full path, or where inequalities in path

cost exist, we can run our approach on subsets of the

topology where our requirements do hold.

6.5 Limitations

On the other hand, there are certain cases where our

current approach falls short. To begin, we presume

we are able to collect end-host metrics that reflect net-

work performance. While we believe our current metrics

cover the vast majority of existing deployments, we have

not yet explored RDMA-based applications or datacen-

ter fabrics. Our current metrics also have limits to their

precision; while we can detect 0.1% drop rates in the dat-

acenter we studied, past a certain point we are unable to

discern faults from noise. Moreover, the production dat-

acenter is well provisioned, so fault-free performance is

stable, even in the tail. Hence, we do not consider the in-

ability to detect minor impairments to be a critical flaw:

If the impacts of a fault are statistically indistinguishable

from background network behavior, then the severity of

the error might not be critical enough to warrant imme-

diate response. Datacenters operating closer to capacity,

however, may both exhibit less stable fault-free behavior,

as well as require greater fault-detection sensitivity.

Despite extensive use of ECMP and application load-

balancing techniques, datacenter networks with mixed

workloads may include links that see more traffic and

congestion than others. That said, we have not encoun-

tered enough variability in load in the network core and

aggregation layers to trigger enough false positives to

confound the accuracy of our method in either produc-

tion or under our testbed, and thus cannot yet quantify

under what circumstances this degradation in detection

performance would occur. Furthermore, for links lack-

ing alternatives—such as an end host to top-of-rack ac-

cess link in the absence of multihoming—we cannot pick

out an outlier by definition since there is only one link to

analyze. We can, however, still perform our analysis on

different groupings within traffic for that link; for exam-

ple, when traffic to a particular subnet is impacted.

7. SUMMARY
We have demonstrated a method to use the regular-

ity inherent in a real-world deployment to help rapidly

detect and localize the effects of failures in a production

datacenter network. In particular, we have shown that we

can do it with reasonable computational overhead and

ease of deployment. We believe improvements in net-

work core visibility, together with coordinating end-host

performance monitoring with centralized network con-

trol, can aid the task of managing network reliability.

ACKNOWLEDGMENTS
This work is supported in part by the National Sci-

ence Foundation through grants CNS-1422240 and CNS-

1564185. We are indebted to Aaron Schulman, Ariana

Mirian, Danny Huang, Sunjay Cauligi, our shepherd,

Dave Maltz, and the anonymous reviewers for their feed-

back. Alex Eckert, Alexei Starovoitov, Daniel Neiter,

Hany Morsy, Jimmy Williams, Nick Davies, Petr La-

pukhov and Yuliy Pisetsky provided invaluable insight

into the inner workings of Facebook services. Finally,

we thank Omar Baldonado for his continuing support.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 607

8. REFERENCES

[1] ab - Apache HTTP server benchmarking tool.

https://httpd.apache.org/docs/2.4/

programs/ab.html.

[2] BPF Compiler Collection (BCC).

https://github.com/iovisor/bcc/.

[3] Extending extended BPF.

https://lwn.net/Articles/603983/.

[4] Hadoop. http://hadoop.apache.org/.

[5] HHVM. http://hhvm.com.

[6] A. Adams, P. Lapukhov, and H. Zeng.

https://code.facebook.com/posts/

1534350660228025/netnorad-

troubleshooting-networks-via-end-

to-end-probing/.

[7] M. Aguilera, J. Mogul, J. Wiener, P. Reynolds, and

A. Muthitacharoen. Performance Debugging for

Distributed Systems of Black Boxes. SOSP, Bolton

Landing, NY, USA, 2003. ACM.

[8] M. Al-Fares, A. Loukissas, and A. Vahdat. A

Scalable, Commodity Data Center Network

Architecture. SIGCOMM, Seattle, WA, USA,

2008. ACM.

[9] A. Andreyev. Introducing data center fabric, the

next-generation Facebook data center network.

https://code.facebook.com/posts/

360346274145943, 2014.

[10] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and

G. Outhred. Taking the Blame Game out of Data

Centers Operations with NetPoirot. SIGCOMM,

Florianopolis, Brazil, 2016. ACM.

[11] P. Bahl, R. Chandra, A. Greenberg, S. Kandula,

D. A. Maltz, and M. Zhang. Towards Highly

Reliable Enterprise Network Services via

Inference of Multi-level Dependencies.

SIGCOMM, Kyoto, Japan, 2007. ACM.

[12] D. Banerjee, V. Madduri, and M. Srivatsa. A

Framework for Distributed Monitoring and Root

Cause Analysis for Large IP Networks. SRDS,

Niagara Falls, NY, USA, 2009. IEEE Computer

Society.

[13] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd,

D. Patterson, A. Fox, and E. Brewer. Path-based

Faliure and Evolution Management. NSDI, San

Francisco, California, 2004. USENIX Association.

[14] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and

E. Brewer. Pinpoint: Problem Determination in

Large, Dynamic Internet Services. DSN, Bethesda,

MD, USA, 2002. IEEE Computer Society.

[15] Cisco. BGP Support for TTL Security Check.

http://www.cisco.com/c/en/us/td/

docs/ios/12_2s/feature/guide/fs_

btsh.html.

[16] J. Dean and S. Ghemawat. MapReduce: Simplified

Data Processing on Large Clusters. OSDI, San

Francisco, CA, 2004. USENIX Association.

[17] N. Duffield, F. L. Presti, V. Paxson, and

D. Towsley. Network Loss Tomography Using

Striped Unicast Probes. ACM Transactions on

Networking, 14(4), Aug. 2006.

[18] G. Forman, M. Jain, M. Mansouri-Samani,

J. Martinka, and A. C. Snoeren. Automated

Whole-System Diagnosis of Distributed Services

Using Model-Based Reasoning. DSOM, Newark,

DE, Oct. 1998.

[19] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang,

D. Maltz, Z. Liu, V. Wang, B. Pang, H. Chen,

Z.-W. Lin, and V. Kurien. Pingmesh: A

Large-Scale System for Data Center Network

Latency Measurement and Analysis. SIGCOMM,

London, United Kingdom, 2015. ACM.

[20] N. Handigol, B. Heller, V. Jeyakumar,

D. Mazières, and N. McKeown. I Know What

Your Packet Did Last Hop: Using Packet Histories

to Troubleshoot Networks. NSDI, Seattle, WA,

2014. USENIX Association.

[21] T. Hoff. Latency Is Everywhere And It Costs You

Sales - How To Crush It.

http://highscalability.com/

latency-everywhere-and-it-costs-

you-sales-how-crush-it.

[22] M. Isard, M. Budiu, Y. Yu, A. Birrell, and

D. Fetterly. Dryad: Distributed Data-parallel

Programs from Sequential Building Blocks.

EuroSys, Lisbon, Portugal, 2007. ACM.

[23] A. Kabbani, B. Vamanan, J. Hasan, and

F. Duchene. FlowBender: Flow-level Adaptive

Routing for Improved Latency and Throughput in

Datacenter Networks. CoNEXT, Sydney,

Australia, 2014. ACM.

[24] S. Kandula, D. Katabi, and J.-P. Vasseur. Shrink: A

Tool for Failure Diagnosis in IP Networks.

MineNet, Philadelphia, Pennsylvania, USA, 2005.

ACM.

[25] R. R. Kompella, J. Yates, A. Greenberg, and A. C.

Snoeren. IP Fault Localization via Risk Modeling.

NSDI, Boston, MA, USA, 2005. USENIX

Association.

[26] R. R. Kompella, J. Yates, A. Greenberg, and A. C.

Snoeren. Detection and Localization of Network

Black Holes. INFOCOM, Anchorage, AK, USA,

2007. IEEE Computer Society.

[27] R. R. Kompella, J. Yates, A. Greenberg, and A. C.

Snoeren. Fault Localization via Risk Modeling.

IEEE Trans. Dependable Secur. Comput., 7(4),

Oct. 2010.

[28] D. Maltz. Private communication, Feb. 2017.

608 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://github.com/iovisor/bcc/
https://lwn.net/Articles/603983/
http://hadoop.apache.org/
http://hhvm.com
https://code.facebook.com/posts/1534350660228025/netnorad-troubleshooting-networks-via-end-to-end-probing/
https://code.facebook.com/posts/1534350660228025/netnorad-troubleshooting-networks-via-end-to-end-probing/
https://code.facebook.com/posts/1534350660228025/netnorad-troubleshooting-networks-via-end-to-end-probing/
https://code.facebook.com/posts/1534350660228025/netnorad-troubleshooting-networks-via-end-to-end-probing/
https://code.facebook.com/posts/360346274145943
https://code.facebook.com/posts/360346274145943
http://www.cisco.com/c/en/us/td/docs/ios/12_2s/feature/guide/fs_btsh.html
http://www.cisco.com/c/en/us/td/docs/ios/12_2s/feature/guide/fs_btsh.html
http://www.cisco.com/c/en/us/td/docs/ios/12_2s/feature/guide/fs_btsh.html
http://highscalability.com/latency-everywhere-and-it-costs-
http://highscalability.com/latency-everywhere-and-it-costs-
you-sales-how-crush-it

[29] V. Mann, A. Vishnoi, and S. Bidkar. Living on the

edge: Monitoring network flows at the edge in

cloud data centers. COMSNETS, Bangalore, India,

2013. IEEE.

[30] R. N. Mysore, R. Mahajan, A. Vahdat, and

G. Varghese. Gestalt: Fast, Unified Fault

Localization for Networked Systems. USENIX

ATC, Philadelphia, PA, 2014. USENIX

Association.

[31] P. Patel, D. Bansal, L. Yuan, A. Murthy,

A. Greenberg, D. A. Maltz, R. Kern, H. Kumar,

M. Zikos, H. Wu, C. Kim, and N. Karri. Ananta:

Cloud Scale Load Balancing. SIGCOMM, Hong

Kong, China, 2013. ACM.

[32] S. Radhakrishnan, M. Tewari, R. Kapoor,

G. Porter, and A. Vahdat. Dahu: Commodity

Switches for Direct Connect Data Center

Networks. ANCS, San Jose, California, USA,

2013. IEEE Press.

[33] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K.

Aguilera, and A. Vahdat. WAP5: Black-box

Performance Debugging for Wide-area Systems.

WWW, Edinburgh, Scotland, 2006. ACM.

[34] M. Roughan, T. Griffin, Z. M. Mao, A. Greenberg,

and B. Freeman. IP Forwarding Anomalies and

Improving Their Detection Using Multiple Data

Sources. NetT, Portland, Oregon, USA, 2004.

ACM.

[35] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C.

Snoeren. Inside the Social Network’s (Datacenter)

Network. SIGCOMM, London, United Kingdom,

2015. ACM.

[36] S. Savage, D. Wetherall, A. Karlin, and

T. Anderson. Practical Network Support for IP

Traceback. SIGCOMM, Stockholm, Sweden,

2000. ACM.

[37] A. Singh, J. Ong, A. Agarwal, G. Anderson,

A. Armistead, R. Bannon, S. Boving, G. Desai,

B. Felderman, P. Germano, A. Kanagala,

J. Provost, J. Simmons, E. Tanda, J. Wanderer,

U. Hölzle, S. Stuart, and A. Vahdat. Jupiter Rising:

A Decade of Clos Topologies and Centralized

Control in Google’s Datacenter Network.

SIGCOMM, London, United Kingdom, 2015.

ACM.

[38] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey.

Jellyfish: Networking Data Centers Randomly.

NSDI, San Jose, CA, 2012. USENIX Association.

[39] D. Turner, K. Levchenko, J. C. Mogul, S. Savage,

and A. C. Snoeren. On Failure in Managed

Enterprise Networks. Technical report,

Hewlett-Packard Labs, May 2012.

[40] D. Turner, K. Levchenko, A. C. Snoeren, and

S. Savage. California Fault Lines: Understanding

the Causes and Impact of Network Failures.

SIGCOMM, New Delhi, India, 2010. ACM.

[41] B. P. Welford. Note on a Method for Calculating

Corrected Sums of Squares and Products.

Technometrics, 4(3), 1962.

[42] X. Wu, D. Turner, C.-C. Chen, D. A. Maltz,

X. Yang, L. Yuan, and M. Zhang. NetPilot:

Automating Datacenter Network Failure

Mitigation. SIGCOMM, Helsinki, Finland, 2012.

ACM.

[43] D. Zats, T. Das, P. Mohan, D. Borthakur, and

R. Katz. DeTail: Reducing the Flow Completion

Time Tail in Datacenter Networks. SIGCOMM,

Helsinki, Finland, 2012. ACM.

[44] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu,

R. Mahajan, D. Maltz, L. Yuan, M. Zhang, B. Y.

Zhao, and H. Zheng. Packet-Level Telemetry in

Large Datacenter Networks. SIGCOMM, London,

United Kingdom, 2015. ACM.

A. ALTERNATIVE METHODS

Alternative methods abound for investigating datacen-

ter faults. One appealing option is to couple switch coun-

ters with programmable switches. For example, sup-

pose a switch is configured such that when a packet is

dropped, either due to error or queuing pressure, it is

probabilistically sampled to the switch CPU (note that

with switches shifting millions of packets a second, ex-

amining all packets leads to unacceptable CPU over-

head). Additionally, some switches can be configured

to sample packets from high occupancy queues. Thus,

counters could indicate a fault, while sampled packets

could be used to build a picture of which traffic is im-

pacted.

While this method can alert network operators to

faulty links, it is slow in determining which traffic is

impacted. Suppose a link carrying 2,000,000 packets

per second develops a 0.5% drop rate, leading to 10,000

drops per second. Such a link might be carrying tens

of thousands of flows, however. With a relatively high

1 in 100 sampling rate (and thus, 100 sampled packets

per second), and with just 10,000 flows carried (a large

underestimation) it would take around 100 seconds to

determine all the flows if the sampling was perfect and

captured a different 5-tuple each time. Furthermore, this

would be subject to sampling bias; a lightweight flow

carrying control traffic might lose packets but fly un-

der the radar of sampled dropped packets. One heavy

handed potential approach could be to disable the entire

link; however, consider the case of a partial fault only af-

fecting a subset of traffic (for example, a misconfigured

routing rule). In such a case, disabling the entire link

would penalize all traffic routed through that link with-

out providing any insight to the underlying problem.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 609

1
(Faulty)

2 3 4 5 6 7 8 9

Core switch

104

105

106

107

108
S

y
s
c
a
ll

la
te

n
c
y
 (

n
s
e
c
)

Figure 6: select() latency distribution per core switch for the two-

VM CPU stress test.

For contrast, our proposed system can quickly iden-

tify all the flows impacted by a link error in a less than

a minute in several tested cases. In the case of gran-

ular errors affecting only a subset of traffic (by source

or destination subnet, application port, queuing policy,

etc.) our mechanism can still detect outliers, enabling

end hosts to reroute around damaged links for afflicted

traffic as a stopgap measure. Note that switch counters

can be used in conjunction with our methods; features of

sampled dropped or latency enduring packets could be

used to guide our system’s binning of flows in order to

converge on which traffic is affected by link faults even

quicker. Furthermore, our proposed system is ASIC ag-

nostic since we do not rely on the features of any given

chipset. Finally, it is robust to unreliable reporting by

switches, as well as the uncertainty of counters that might

arise within environments using cut-through routing.

B. METRIC ROBUSTNESS
Here, we demonstrate the effectiveness of our ap-

proach in the presence of pathological confounding fac-

tors. These experiments are performed on our private

testbed, since we could not induce harmful configuration

changes in production traffic. We focus on syscall la-

tency metrics, which are less obviously robust to many

of thse factors. To save space, we omit similarly strong

results using TCP statistics.

B.1 CPU utilization
Datacenter networks run a variety of applications, fre-

quently with stringent CPU requirements and high uti-

lization. To be general, our approach needs to cope with

high utilization figures. Furthermore, while some data-

centers run applications on bare metal hardware, a sig-

nificant number of installations use virtual machines.

In order to ascertain the impact of virtual machine

hardware and high cpu utilization on our approach, we

set up an experiment where each host in our private

testbed runs two virtual machines, cpuvm and netvm.

Each instance of cpuvm runs a variety of simultane-

ous CPU intensive tasks: specifically, a fully loaded

mysql server instance (with multiple local clients), a

scheduler-intensive multithreading benchmark, and an

ALU-operation-intensive math benchmark. This causes

the CPU utilization of the bare metal host to go to 100%.

Meanwhile, each instance of netvm runs a bidirectional

client-server communication pattern using flow size dis-

tributions prevalent in certain datacenters [35]. This sit-

uation is analogous to the case where one VM is shuf-

fling data for a map-reduce job, while another is actively

processing information, for example. Figure 6 depicts

the distribution of select() latencies across each core

switch in the presence of this extreme CPU stress. The

distribution corresponding with paths through the faulty

switch are clearly distinguishable, with a median value

over three orders of magnitude greater than the no-error

case. This corresponds to a 100% accuracy rate of flag-

ging the faulty link using our chi-squared test over 1-

minute intervals for a 5-minute long test.

B.2 Oversubscription and uneven load
Thus far, all our experiments have networks without

saturated core links. While this is a desirable quality

in real deployments, it might not be feasible depend-

ing on the amount of oversubscription built into the net-

work. Furthermore, in heterogeneous environments such

as multi-tenant datacenters, it is conceivable that not ev-

ery end-host is participating in monitoring traffic metrics.

Finally, not every system that is being monitored is sub-

ject the same load.

To determine how our approach deals with these chal-

lenges, we devised an experiment in our private testbed

where 1/3rd of our 27 hosts are no longer participating

in monitoring. Instead, these hosts suffuse the network

with a large amount of background traffic, with each so-

called ‘background host’ communicating with all other

background hosts. Each background host sends a large

amount of bulk traffic; either rate limited to a fraction of

access link capacity, or unbound and limited only by link

capacity. In conjunction with this, our network core is re-

duced to 1/3rd of normal capacity: from 9 core switches

to 3. Thus, the background hosts can, by themselves, sat-

urate core capacity. Our remaining 18 servers continue to

run the bidirectional client-server network pattern, with

one important difference: rather than all servers having

the same amount of load, they are partitioned into three

classes. The first class chooses flow sizes from the Face-

book cache server flow size distribution [35]; the other

two classes choose flow sizes from larger 4× and 16×
multiples of the Facebook distribution. In other words,

the 4× distribution is simply the normal distribution, ex-

cept every value for flow size being multiplied by 4.

610 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1
(Faulty)

2 3

Core switch

104

105

106

107

108
S

y
s
c
a
ll

la
te

n
c
y
 (

n
s
e
c
)

Figure 7: select() latency distribution per core switch for the over-

subscribed background traffic uneven server test.

Thus, the link utilizations of the 4× and 16× distribu-

tions are correspondingly higher than normal. While the

normal distribution has a link utilization of roughly 100

Mbps in this case, the 4× case and 16× cases bring us to

roughly 40% and 100% link utilization respectively.

Figure 7 depicts the select() latency distribution

for this scenario as a multi-series CDF. Each series rep-

resents the distribution for a single network path; there

is one faulty path and two working paths in this case.

The x-axis depicts latency in nanoseconds. Despite the

combination of confounding factors, the distribution for

the faulty path remains significantly higher (shifted to

the right in the figure) than the non-faulty paths (which

possess roughly equivalent distributions). Correspond-

ingly, the signal derived from the select() latencies re-

mains useful. Using 1-minute intervals, we note that the

chi-squared test hovered at close to 0 when we consid-

ered all paths, and close to 1 when the faulty path was

removed from the set of candidate paths. This indicates

that we remain successful at finding the faulty link even

under these circumstances.

B.3 Sensitivity to TCP send buffer size
Our system call latency approach uses the latency of

select()/epoll() calls by hosts that are sending

data over the network as a signal. As a reminder, when

an application calls select()/epoll() (or send())

on a socket, the call returns (or successfully sends data)

when there is enough room in the per-flow socket buffer

to store the data being sent. Thus, the distribution of

results is fundamentally impacted by the size of the per-

flow socket buffer. Note that with the advent of send-

side autotuning in modern operating systems, the size of

this buffer is not static. In Linux, the kernel is config-

ured with a minimum size, a default (initial) size and a

maximum size, with the size growing and shrinking as

necessary.

1
(Faulty)

2 3 4 5 6 7 8 9

Core switch

104

105

106

107

S
y
s
c
a
ll

la
te

n
c
y
 (

n
s
e
c
)

Figure 8: select() latency distribution per core switch for the 10-

Gbps 16-KB socket send buffer test.

By default, our private testbed systems are configured

with a maximum send buffer size of 4 MB. Values for the

median buffer size vary from 1.5–2.5 MB for our server

hosts and 0.8–1.2 MB for our client hosts in our bidirec-

tional traffic pattern. To determine the sensitivity of our

approach to buffer size, we first increased the buffer size

to values of 8 and 16 MB. Then, we decreased the buffer

size significantly, to values of 52, 26 and 16 KB (note

that 16 KB is the default initial size). We noticed that

TCP autotune prevents the buffer from growing too large

even if the maximum is set significantly higher than de-

fault; accordingly, raising the maximum had little to no

impact.

Reducing the maximum buffer size, however, is ex-

pected to have a larger impact on our metrics. Intu-

itively, a smaller buffer should correspond with higher

overall buffer occupancy; thus, a larger percentage of

select() and send() calls would need to wait until

the buffer is drained. This should have the two-fold ef-

fect of shifting the select() latency distributions to the

right—since more calls to select() wait for longer—

and decreasing the distance between a faulty-path distri-

bution and the normal case.

To test this out, we ran our bidirectional client-server

traffic pattern using 1-Gbps NICs on our k = 6 testbed,

and using 10-Gbps NICs on our three system setup. We

ran a low-intensity test (roughly 50 and 300 Mbps link

utilization per client and server host, respectively) and a

high-intensity test (roughly 1–2 and 5–7 Gbps for client

and server hosts respectively in the 10-Gbps case, and

saturated links for servers in the 1-Gbps case). We noted

that in all the low-intensity test cases, and in the 1-Gbps

high-intensity cases, we were still able to derive a clear

signal and successfully pick out the faulty link using 1-

minute intervals. In our worst-case scenario of 10-Gbps

links and a 16-KB send buffer size, we note a significant

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 611

1
(Faulty)

2 3 4 5 6 7 8 9

Core switch

103

104

105

106

107

S
y
s
c
a
ll

la
te

n
c
y
 (

n
s
e
c
)

Figure 9: select() latency distribution per core switch for the no-

offload test with CPU stress.

shifting of the distribution to the right by roughly three

orders of magnitude, as predicted, as depicted in Fig-

ure 8. While the faulty-path distribution is closer to the

non-faulty distributions, there is still enough divergence

to clearly differentiate it from the pack, albeit requiring

our statistical tests to run over longer time intervals. We

note, however, that such small send socket buffer sizes

are unlikely in real-world deployments.

B.4 The effect of NIC offloads
Contemporary NICs have a variety of processing of-

fload features designed to cut down on end host CPU uti-

lization (which we’ve already discussed can be heavily

utilized in a datacenter environment). For example, TCP

discretizes a continuous stream into individual packets

determined by end to end path MTU; a feature called

"TCP Segmentation Offload" allows the NIC to perform

this discretization, saving the CPU the effort.

NICs typically implement three common offload fea-

tures: TCP Segmentation Offload, Generic Segmentation

Offload and Generic Receive Offload. All our previous

experiments had these features turned on in every end

host. To test the sensitivity of our approach to the avail-

ability and state of these features, we re-ran the bidirec-

tional client-server traffic pattern with all three offload

features turned off. Figure 9 depicts the select() la-

tency distribution for two client hosts and one server host

within our private testbed with all offloads turned off and

a CPU utilization of 100% using the combination of pro-

grams described in the CPU stress test earlier. This sce-

nario represents a sort of worst case for our approach

due to the high CPU utilization required to push mul-

tiple gigabits of traffic without offload; despite this, our

approach is still able to correctly flag the faulty path over

a 30-second interval.

C. GENERAL-CASE TOPOLOGIES

The characteristics of the production datacenter we

examined in this work lends itself to relatively simple

diagnosis of which link is faulty based on per-link per-

formance metric binning; however, alternative scenarios

may exist where either traffic is not as evenly load bal-

anced, or a different topology complicates the ability to

subdivide link by hierarchy for the purposes of compari-

son (for example, different pods in a network might have

different tree depths).

Our method fundamentally depends on finding

roughly equivalent binnings for flow metrics, such that

outliers can be found. In the case of a network with

hotspots or complicated topologies, which can confound

this process, we can still make headway by considering

links at every multipath decision point as a single equiv-

alency group. If one of these links exhibits outlier per-

formance, the flows traversing the link can be marked

individually as faulty rather than the link as a whole, and

the flow and the traversed path can be submitted as in-

put to a graph-based fault localization algorithm such as

SCORE [25] or Gestalt [30]. We leave the evaluation of

such a scenario to future work.

612 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Motivation & related work
	System overview
	Production datacenter
	Topology
	Operational constraints

	System architecture
	End hosts
	Switches
	Controller

	Implementation
	Datacenter flow path discovery
	Topological constraints
	Packet marking
	General case

	Aggregating host metrics & path data
	Latency sensitive services
	Bulk data processing
	Metric collection computational overhead

	Verdict generation
	Outlier detection
	Hypothesis testing

	Centralized fault localization
	Controller processing
	Computational overhead

	Evaluation
	Test environment
	Motivating example
	Speed and sensitivity
	Loss rate sensitivity
	High latency detection

	Precision and accuracy
	Concurrent unequal faults
	Large correlated faults
	False positives
	Granular faults and alternative binnings

	Small-scale deployment experience
	Response to organic failure
	Filtering normal congestion events

	Applicability
	Surmountable issues
	Traffic homogeneity
	Link failures
	Topologies
	Limitations

	Summary
	References
	Alternative methods
	Metric robustness
	CPU utilization
	Oversubscription and uneven load
	Sensitivity to TCP send buffer size
	The effect of NIC offloads

	General-case topologies

