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Abstract 

We are building a tool that uses symbolic execution to 

search for BIOS security vulnerabilities including dan-

gerous memory references (call outs) by SMM interrupt 

handlers in UEFI-compliant implementations of BIOS. 

Our tool currently applies only to interrupt handlers for 

SMM variables.  Given a snapshot of SMRAM, the base 

address of SMRAM, and the address of the variable in-

terrupt handler in SMRAM, the tool uses S2E to run the 

KLEE symbolic execution engine to search for concrete 

examples of a call to the interrupt handler that causes the 

handler to read memory outside of SMRAM. This is a 

work in progress. We discuss our approach, our current 

status, our plans for the tool, and the obstacles we face. 

1 BIOS security 

BIOS security — a hot topic for years among technical 

professionals with nearly a decade of high-quality work 

finding and protecting against security vulnerabilities — 

finally hit the mainstream press with a bang when Forbes 

magazine reported [1] on results presented at the Can-

SecWest conference in March 2015.  At that conference 

alone, four talks [2] [3] [4] [5] discussed security vulner-

abilities related to the System Management Mode on the 

Intel processor architecture running BIOS implementing 

UEFI, the Unified Extensible Firmware Interface [6], an 

industry-standard specification and architecture for 

BIOS. 

System Management Mode (SMM) is the highest, most 

privileged state of execution on Intel-based platforms. 

Code running in system management mode has com-

plete, unfettered access to everything, including all reg-

isters and all memory and all devices attached to the pro-

cessor. Code running in system management mode lives 

in a small, protected region of memory (SMRAM) made 

invisible to everything but code running in system man-

agement mode.  It is the perfect place to hide a root kit: 

it is invisible to tools like virus checking software that 

might otherwise be able to find it, and code within it has 

complete access to the machine, able to read and write 

everything.  Unfortunately, clever teams have demon-

strated for years that this is distressingly easy to do. 
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This point exploded into public view [1] at the Can-

SecWest conference in March 2015.  Among several in-

teresting results was a paper provocatively titled “How 

many million BIOSes would you like to infect?” [2]. The 

authors made the following observation: Almost all ma-

chines are vulnerable because almost all machines are 

running unpatched BIOS (most consumers don’t know 

patches exist, and even sophisticated consumers apply 

patches with their fingers crossed), and widespread soft-

ware reuse in the BIOS community (normally considered 

an enlightened approach to software development) 

means that almost all machines are vulnerable to the 

same attacks.  As a result, attacks can be automated in a 

reliable fashion.  The authors drove home this point by 

demonstrating that in a database of over 3000 BIOS im-

ages from shipping platforms, each one was vulnerable 

to at least one of three known vulnerabilities in SMM, 

and only seven were not vulnerable to all three. 

Code running in system management mode (SMM) is in-

tended to be trusted code sitting in a protected region of 

memory (SMRAM) and accessing only trusted compo-

nents of the system.  It would be a severe security vul-

nerability if trusted code in SMRAM could be tricked 

into executing untrusted code outside of SMRAM, or 

into reading or writing data outside of SMRAM under 

the control of an attacker. It would. And it is, as recent 

work has demonstrated so compellingly. 

Hardware mitigation is available.  On recent Intel pro-

cessors, if a bit is set in a machine status register, a ma-

chine check is generated if code running in SMM tries 

access memory outside of SMRAM.  Too often, how-

ever, systems ship with this security feature turned off.  

Because BIOS is written so late in product development, 

and because evidence of the machine bricking due to 

SMM-related machine checks is discovered so close to 

product ship dates, the pressure to simply turn off this 

security feature and ship can be overwhelming. (Soft-

ware mitigation --- such as making pages outside 

SMRAM un-executable in SMM --- suffer a similar 

fate). 



 

 

Our goal is to find these vulnerabilities (and the inputs 

inducing them) in the earliest stages of product develop-

ment, and give developers a chance to remove them.  

2 BIOS validation 

BIOS validation of SMM is accomplished today in an ad 

hoc fashion. BIOS health may be judged using criteria as 

basic as “Does the operating system boot?” and “Do the 

test suites for the operating system pass?” Unfortunately, 

SMM correctness may not be visible or testable at the 

level of the operating system. The next few paragraphs 

assume some familiarity with the UEFI specification [7] 

and implementation architecture [8]. The bottom line, 

however, is that validation and debugging of SMM can 

be as primitive as setting breakpoints and stepping 

through code on a development board with the debug 

equivalent of printf statements, and we want to do better. 

There are heuristics employed to detect errant behavior 

of SMM handlers. For example, on 64-bit machines, the 

UEFI PI SMM [6] software model requires that the PI 

SMM handlers run in the same mode as the DXE, 

namely 64-bit long mode with paging. Implementations 

often perform one-to-one virtual-to-physical mapping of 

SMRAM, with page faults for accesses outside of 

SMRAM. On a debug build, the page fault handler can 

log the accesses. On a release build, though, there is no 

such observability. Debugging UEFI SMM drivers is a 

difficult and low-level task for BIOS developers since 

SMM code cannot be viewed when SMRAM is closed 

and locked. Specifically, leaving SMRAM accessible af-

ter installation of the 

EFI_SMM_READY_TO_LOCK_PROTOCOL from 

the PI specification poses a potential privilege escalation 

since third-party code should not have the opportunity to 

install itself. The above protocol is invoked prior to the 

invocation of third-party UEFI drivers and applications.  

A hardware-based JTAG debugger, such as the Intel® In 

Target Probe (ITP) [9], provides the ability to break on 

SMM entry, allowing engineers to step through SMM 

code at the hardware level.  The UEFI Development Kit 

(UDK) at www.tianocore.org provides a 

SourceLevelDebugPkg containing a SmmDebugAgent 

with some SMM debug capabilities in a Windows 

WinDbg or Linux GDB environment.  The UDK also 

provides a DEBUG() macro that can be used as printf’s 

to monitor SMM execution flows.  These provide access 

to SMM code using the UDK’s SMM Communication2 

Protocol.  

For more white box style debugging and testing, the fact 

that the console resources are managed by the UEFI Boot 

Service drivers, and subsequently the operating system 

after ExitBootServices() invocation, means that having a 

debug print facility is difficult to support.  

Also, the use of ASSERTs, which typically result in a 

jump-to-self condition, are typically used to detect some 

error conditions on a DEBUG build. On a release build, 

though, this facility is not available. Even for critical er-

ror conditions that are mapped from ASSERTs to dynamic 

checks, what to do in the case of an error path is a chal-

lenging problem for developers. Failing safely is imper-

ative, just as much as making forward progress since a 

jump-to-self (a “while (1){}” condition in the code) 

can be ascertained via the ITP, but on a release build of 

the firmware on a production system in the field, this 

would look like an overall system hang. 

We propose a new path to BIOS validation and bug hunt-

ing: symbolic execution. 

3 Symbolic execution 

Symbolic execution [10] [11] [12] is an approach to soft-

ware testing that searches for interesting, high-quality 

test cases that will push the software into previously un-

tested regions of the code, or will induce the software to 

make mistakes like reading past the end of a buffer or 

dereferencing an invalid pointer. Symbolic execution 

thus enhances both code coverage and bug hunting.  

Symbolic execution works by selecting a set of program 

variables as “interesting” (perhaps just the input to the 

function under test), assigning these variables symbolic 

values, and “executing” the code to construct sets of con-

straints on these symbolic values.  When it encounters a 

branch that depends on a symbolic value, it forks two 

new sets of constraints, one in which the branch condi-

tion is true and one in which the condition is false.  In 

this way, it builds a symbolic computation tree for the 

code.   

When symbolic execution reaches the end of a computa-

tion path (a leaf of the computation tree), it hands the 

resulting set of constraints to a solver, and produces an 

actual, concrete test case that will follow this computa-

tion path. Continuing in this way, we can (in principal) 

accumulate sets of input values (test cases) that will to-

gether cause the program to execute every line of code 

(code coverage) and every branch in both directions 

(branch coverage).  The same idea can be used to find 

inputs that would cause the program to index past the end 

of an array or dereference an invalid pointer. Or cause an 

SMM interrupt handler to execute memory outside of 

SMRAM. 

Concolic testing [13] [14] is an approach to symbolic ex-

ecution that repeatedly executes a program on concrete 

inputs, but piggybacks symbolic execution on top of the 

concrete execution via instrumentation (hence the name 

concolic from concrete and symbolic) .  By keeping track 

of the constraints imposed on symbolic values in the 



 

 

course of a concrete execution, a solver can use these 

constraints to find new concrete values that will push the 

computation down a new path. 

4 KLEE 

KLEE [12] is an open-source implementation of sym-

bolic execution that started at Stanford University and 

moved to Imperial College.  KLEE can be used with any 

code written in C to generate a minimal set of inputs in-

ducing maximal code coverage.  Consider a simple func-

tion with type 

int f(int x); 

The key to using KLEE is writing a test harness that 

KLEE can use to explore paths through the code f(x). 

The primary purpose of the test harness is to identify the 

variables to make symbolic. The test cases KLEE gener-

ates are assignments of values to these symbolic varia-

bles.  These symbolic variables are the “knobs” available 

to KLEE as it explores the computation tree, collecting 

constraints on these symbolic variables that determine a 

particular computation path through the tree.  For a sim-

ple function like f(x), the test harness can be as simple 

as 

#include <klee/klee.h> 

int main(int argc, char *argv[]) { 

  int x; 

  klee_make_symbolic(x,sizeof(x),”x”); 

  f(x); 

  return 0; 

} 

The KLEE workflow is illustrated in Figure 1. KLEE 

works by compiling the source code for the software un-

der test together with the test harness to LLVM [15] with 

the compiler Clang [16], and running the LLVM on a 

symbolic execution engine for LLVM written by the 

KLEE project.  LLVM is an aggressive compiler optimi-

zation project that performs its optimization on an as-

sembly-level intermediate language called LLVM 

bitcode.  Clang is a compiler that compiles C to LLVM 

(and then to machine code), and front ends like Clang 

exist for many languages.  We compile the code and the 

test harness to LLVM and run KLEE to generate test 

cases.  Then we compile the code and the test harness to 

native code with coverage profiling (e.g., gcov with gcc), 

and run the profiled code on the test cases to generate 

coverage information. 

KLEE is fast! The idea of using KLEE to look for secu-

rity vulnerabilities like buffer overflow is almost imme-

diately obvious, and, in fact, a tutorial at BlackHat 2014 

[17] made exactly this point and demonstrated to the 

world how to do it.  We have at Intel spent some time 

using KLEE (and before that an internal implementation 

of concolic testing) to do exactly this for BIOS and Intel 

security products, and we have found some limitations to 

symbolic execution at the source-code level that are hard 

to overcome. 

One problem is the need for C code.  Every project like 

BIOS interacting directly with the hardware includes 

embedded assembly code.  We must either stub out this 

code or restrict our work to parts of the program that 

don’t execute code. 

The real problem, though, is writing the test harness.  

The need to write a test harness is just one more obstacle 

to keep a busy developer from using the tool, no matter 

how helpful the tool. Automating test harness generation 

is essential for tool adoption in a production environ-

ment.  For simple, purely functional code like f(x) 

above, the test harness is easy to generate, but generation 

gets harder rapidly. Consider the function 

int f(int x, struct foo *y); 

The type of y is not so simple, but we can search for the 

type foo and construct the test harness.  Now consider 

the function 

int f(int x, void *y); 

The code gives no indication y’s type. We can search for 

invocations of the function 

struct foo y; 

f(1, &y); 

and conclude the actual type to use for the second argu-

ment is foo until we discover a second invocation  

struct bar z; 

f(2, &z); 

and conclude that the second argument is actually a un-

ion type.  Now consider 

int f(void); 

Figure 1: The KLEE work flow 



 

 

The function passes all information through the global 

state. There is no local information to help write the test 

harness. We can search the body of the function and find 

extern struct foo y; 

y->bar = 1; 

and build up the portion of the global state that the test 

harness must model to test the function, but the ease of 

automating test harness generation is rapidly going 

downhill. 

The fundamental problem is that the test harness must 

model for the software under test all aspects of the envi-

ronment that the software depends on.  As we have just 

described, this may not be too hard for libraries or func-

tions near the leaves of the computation tree.  For code 

closer to the root of the computation tree, however, the 

amount of state to model can be immense.  And just 

knowing the state to model is not enough. We must also 

know and model all of the assumptions (written and un-

written) about the state variables.  We are guaranteed to 

be flooded with false positives unless we model im-

portant assumptions like x<10 when is_odd(y).  

Building the test harness, either manually or mechani-

cally, now can be as hard as writing test cases them-

selves. 

For SMM, and more generally for the runtime services 

BIOS provides to the operating system, the problem of 

writing a test harness to model the environment of an 

SMM function is overwhelming to the point of impossi-

ble.   

All SMM code and data resides in a protected region of 

memory called SMRAM illustrated in Figure 2. In 

SMRAM, the primary SMM data structure is a system 

table that points to, among other things, entry points for 

SMM functions. The code for an SMM function may 

contain an expression 

ST->foo->f() 

invoking a function identified by following a sequence 

of pointers from the system table.  How can we look at 

code containing a function reference and know what 

function is actually being invoked?  We can’t without 

knowing the system table and the contents of SMRAM. 

The contents of SMRAM is determined by a long se-

quence of initializations in which drivers load modules 

into SMRAM and install into the system table pointers 

to entry points in the module that implement the func-

tionality being installed by the driver, essentially a form 

of dynamic linking. The problem of writing a test harness 

to model the environment of an SMM function essen-

tially becomes modeling the entire initialization process 

itself, which is almost impossible to automate. 

What is frustrating is the fact that everything we need for 

the model of the SMM environment (the test harness) is 

sitting in SMRAM after initialization.  All the code, all 

the data, all the layouts.  Why can’t we just dump the 

contents of SMRAM, and write a test harness that simply 

points to an entry point in SMRAM and executes sym-

bolically from there on top of KLEE’s symbolic execu-

tion engine? S2E is a path to KLEE’s symbolic execution 

engine that lets us do exactly that. 

5 S2E 

S2E [18] is a tool from École Polytechnique Fédérale de 

Lausanne (EPFL) built on top of the QEMU virtual ma-

chine [19] and the KLEE symbolic execution engine 

[12].  S2E operates directly on x86 binaries (no source 

code required) and considers the entire system (applica-

tion, library, operating system, kernel, device firmware, 

and so on) to be a single binary program. S2E (which 

stands for selective symbolic execution) lets us specify 

which parts of this program should be executed con-

cretely and which parts should be executed symbolically, 

Figure 2: SMRAM is` a protected region of memory 

containing all SMM code and data. 

Figure 3: S2E as illustrated in the S2E paper [18]. 



 

 

and to switch back and forth between concrete and sym-

bolic execution of the code under test.  

Consider the example illustrated in Figure 3 taken from 

the S2E paper [18].  Here an application calls a library 

that calls into the kernel, which returns to the library 

which returns to the application.  Suppose it is only the 

library that we want to explore.  S2E makes it possible to 

execute only the library symbolically, shadowing con-

crete values symbolically in the library, and carefully re-

placing symbolic values with consistent concrete values 

in the kernel and application.   

S2E allows us to perform our analysis within a real soft-

ware stack, with actual user programs running with ac-

tual libraries, kernel, drivers, and so on, without building 

abstract models of the code under test required by a tool 

like KLEE.  And because it operates directly on binaries, 

we can even study the code under test in the context of 

proprietary software for which source code is not even 

available. 

S2E is implemented as an extension of the QEMU virtual 

machine [19].  QEMU is based on dynamic binary trans-

lation. It works by repeatedly fetching basic blocks of the 

guest code running on the guest architecture and trans-

lating them into host code running on the host architec-

ture. It performs this translation with a front end translat-

ing the guest instructions into QEMU micro-operations, 

and a back end translating micro-operations into host in-

structions. QEMU comes with front and back ends for 

x86.  S2E simply adds a back end translating micro-op-

erations into LLVM bitcode.  When S2E encounters a 

basic block to execute concretely, it produces x86 code 

to run natively.  When S2E encounters a basic block to 

execute symbolically, it produces LLVM bitcode to ex-

ecute symbolically on the LLVM symbolic execution en-

gine from KLEE. 

The power of S2E, and the unlimited extensibility of S2E, 

rests on its system of plugins.  A plugin in S2E can sub-

scribe to a set of signals and register callbacks for S2E to 

run when a signal is raised.  For example, one signal is 

raised when the dynamical binary translator is about to 

translate an instruction, letting us mark particular in-

structions as interesting.  Another signal is raised when 

an interesting instruction is about to be executed, letting 

us intercept (for example) a particular function invoca-

tion or return and modify arguments to the function or 

return values.  And another signal is raised when S2E en-

counters a branch x<10 depending a symbolic value x 

and has to branch the current state into two states, one 

with x<10 and one with x≥10, allowing us to control 

how S2E searches the computation tree, perhaps by prun-

ing the x<10 branch from the computation tree. 

An important example of how S2E facilitates exploration 

of BIOS code is that we can use a plugin to over approx-

imate the behavior of a device.  We can use a plugin to 

intercept calls to functions accessing the device, throw 

away the function inputs, and return a symbolic (arbi-

trary) value from the device.  In this way, we can stub 

out all hardware devices and reduce code exploration to 

a pure-software problem.  If this over approximation re-

sults in too many false-positives, our plugin can model 

the device more accurately. 

6 Our approach 

Our goal is use S2E to explore execution paths through 

SMM interrupt handlers and discover paths in which an 

interrupt handler tries to access memory outside of the 

protected region SMRAM for SMM code.  We want to 

generate input test cases that will exercise every branch 

in the code for test purposes, and induce insecure 

memory references whenever possible. 

To do this, we write a test harness that S2E can use to 

explore paths through an interrupt handler.  We can ei-

ther write the test harness as a user-level application that 

runs from a bash shell on top of an operating system, or 

as a UEFI application that runs from a UEFI shell on top 

of a UEFI implementation of BIOS.  The test harness has 

two jobs.  First, it must establish the SMRAM region of 

memory.  Second, it must identify a small number of key 

variables to give symbolic values.  Again, these symbolic 

variables are essentially the “knobs” that S2E has to play 

with as it explores the computation tree.  It is by varying 

the values of these symbolic variables that S2E is able to 

control the outcomes of branches in the code. 

For the test harness to establish the SMRAM region of 

memory, our approach is illustrated in Figure 4. 

 

Figure 4: Generating a test harness for an SMM inter-

rupt handler. 

First we boot BIOS on a development board to some 

point where SMRAM has been established (e.g., just be-

fore access to SMRAM is locked).  Then we dump the 



 

 

contents of SMRAM to a disk file via the In-Target 

Probe (ITP) [9], a debug tool commercially available 

from Intel, along with symbol table information includ-

ing the base and extent of SMRAM and the entry point 

for the handler we want to exercise.  (Alternatively, we 

could use SerialICE [20] in place of ITP, or we could 

write a UEFI driver to dump SMRAM in place of both.) 

The test harness uses this image to establish SMRAM in 

memory. If the test harness is running as a user-level ap-

plication, we simply memory map the SMRAM image 

into the correct location of the user address space with 

mmap.  If the test harness is a UEFI application, we al-

locate the needed pages in memory and write this image 

into memory.   

For example, consider the SMM variable interrupt han-

dler with interface 

EFI_STATUS 

EFIAPI 

SmmVariableHandler ( 

  IN     EFI_HANDLE DispatchHandle, 

  IN     CONST VOID *RegisterContext, 

  IN OUT VOID       *CommBuffer, 

  IN OUT UINTN      *CommBufferSize 

  ) 

The handler communicates with its caller via a commu-

nication buffer containing a command to read or write a 

particular environment variable (or some other variable-

related command).  This communication buffer is an ob-

vious candidate for symbolic data, since it is the contents 

of this buffer that drives the behavior of the interrupt 

handler and is untrusted input to SMM. 

// SMRAM image 

#define SMRAM_IMAGE "SmramDump.bin" 

#define SMRAM_START (0x7b001000) 

#define SMRAM_SIZE (0x7b3f6000 - 0x7b001000) 

#define HANDLER_ENTRY (0x7B3E6998) 

 

// Handler signature 

typedef  

  EFI_STATUS EFIAPI SmmVariableHandler(EFI_HANDLE, VOID *, VOID *, UINTN *); 

 

// Handler CommBuffer 

#define COMMBUFFERSIZE 100 

char CommBuffer[COMMBUFFERSIZE]; 

UINTN CommBufferSize=COMMBUFFERSIZE; 

 

int main (int argc, char *argv[]) { 

  // map the SMRAM image into memory 

  FILE *fp = fopen(SMRAM_IMAGE, "r"); 

  mmap((void *)SMRAM_START,  

       SMRAM_SIZE,  

       PROT_READ | PROT_EXEC | PROT_WRITE,  

       MAP_PRIVATE,  

       fileno(fp),  

       0); 

   

  // create the symbolic communication buffer 

  s2e_make_symbolic(CommBuffer,sizeof(CommBuffer),”CommBuffer”); 

 

  // call the interrupt handler 

  ((SmmVariableHandler *)HANDLER_ENTRY)(0,0,CommBuffer,&CommBufferSize); 

 

  // terminate symbolic execution before returning to the shell 

  s2e_kill_state(0, “handler done”);   

  return 0; 

} 

 

 

Figure 5: Test Harness for SMM variable interrupt handler. 



 

 

The test harness for this handler (ignoring header files, 

signal handling, etc.) is given in Figure 5. With this test 

harness we are able to explore the “get variable” func-

tionality of the handler in a few seconds and generate 50 

test cases. 

The simplicity of the test harness is the primary ad-

vantage of using S2E as the path to the KLEE symbolic 

execution engine instead of KLEE itself.  The test har-

ness for KLEE would need to model the entire environ-

ment of SMM. The test harness for S2E uses SMRAM as 

the SMM environment, which it is. Writing the test har-

ness now reduces merely to identifying what aspects of 

the state to make symbolic and jumping to the entry point 

of the handler. 

7 Current results 

We have demonstrated that we can boot BIOS on a de-

velopment board to a point where the SMRAM region of 

memory containing all the SMM code and data has been 

established, dump the contents of SMRAM to a disk im-

age, load this image into S2E , jump to the entry point of 

an SMM interrupt handler, and begin symbolic execu-

tion of the handler to generate high-quality inputs for 

validation and code coverage  We can then replay those 

test cases on our development board and analyze the 

code coverage we have achieved for the execution paths 

we are testing.  In the case of the SMM variable interrupt 

handler, for example, we can generate 4000 test cases in 

4 hours and replay them on the development board in 30 

minutes. 

We have formulated the research problem in terms of 

open source infrastructure to foster collaboration with in-

dustry and academia. We are using an open source de-

velopment board called MinnowMax that is a compact, 

affordable, and powerful development board with an 

open hardware design that allows for endless customiza-

tion and integration potential [20]. On this board we are 

running an open source implementation of UEFI. For re-

searchers without access to this infrastructure, we can 

likely provide the SMRAM image we are using in our 

own work.  

8 Future plans 

Our goal is to develop a tool that we can place in the open 

source to support the enormous UEFI ecosystem that in-

cludes both open source and proprietary code.  

Our goal is a turn-key, command-line tool that is suffi-

ciently automated that it can be used on a daily basis 

along with other development tools, like Klocwork [21], 

but finding concrete instances of security issues that 

Klocwork may or may not be able to warn about. Given 

a copy of SMRAM dumped from a development board, 

a simulator, a virtual platform, or any other emulation 

environment, and given the base and extent of SMRAM 

in memory, the tool will scan SMRAM for interrupt han-

dler entry points and generate test harnesses that load 

SMRAM and jumps to each entry point, and execute 

each handler symbolically to generate high-quality test 

cases, including test cases that induce security issues like 

reading outside of a protected region. 

We believe that this approach to symbolic execution — 

dumping a memory image and executing code in that im-

age symbolically — will apply to many other instances 

of embedded firmware outside of BIOS in the style of 

Avatar [23]. In the Internet of Things, simple devices 

with firmware written and release quickly would be a 

great target for this approach to bug hunting.   

But we face a number of obstacles to this goal. 

8.1 Performance 

Performance is always an issue. We are looking for a tool 

that can be run as frequently as a compiler, but we may 

have to settle for a tool that runs at routine checkpoints. 

We have, however, already made some progress on this 

front.  

Out-of-the-box performance of S2E can be improved by 

a factor of thirty with the correct command line argu-

ments. On small examples like quicksort, S2E can be 

made to run just as fast as KLEE, and attains complete 

code coverage in seconds.  

We were also able to address operating system overhead. 

The most common way to use S2E is to run the test har-

ness as a user-level application on top of an operating 

system running on QEMU. We are able to run a test har-

ness as a UEFI shell application on QEMU instead of a 

user-level application (eliminating the overhead of an 

entire operating system). On our small examples, we do 

not see much performance improvement from this opti-

mization, but we expect this to pay dividends on larger, 

more memory-intensive examples.  

8.2 State explosion   

State explosion is a known problem for symbolic execu-

tion. Given a loop controlled by a symbolic variable that 

can assume values 0 through 10, symbolic execution will 

likely generate test cases for all values 0 through 10, 

even though only the values 0, 1, 9, and 10 are interest-

ing. The literature is filled with heuristics for dealing 

with this problem, and we will be implementing them. 

The S2E plugin mechanism, however, gives us a particu-

larly modular way to experiment with such heuristics. 

Because the plugin infrastructure allows us to register in-

terest in state branching — when S2E splits a symbolic 

state into two symbolic states, one for each outcome of a 

branch condition — we have complete control over the 

choice of states to explore, terminating further symbolic 



 

 

execution from redundant states as heuristics discover 

them. 

8.3 Measuring code coverage 

The standard way of measuring coverage with S2E is 

coverage at the level of machine language, but develop-

ers work with source code, so we need to give coverage 

at the level of source code.  The standard way of doing 

this is to generate the test cases, and then to run the code 

on the test cases, after compiling the source code with 

code coverage profiling such as gcov [22] that comes 

with the gcc compiler. Such profiling usually depends on 

libc and a file system we don’t have with BIOS. Our goal 

is to generate the test cases with S2E on top of QEMU, 

but to run the test cases on the development board itself 

(that is, in the actual product development environment). 

For BIOS, we need a different approach to code cover-

age.  

We are currently using an Intel product for measuring 

BIOS code coverage [25]. In the spirit of developing an 

open source tool, however, we expect also to try experi-

ment with a modification of gcov for embedded systems 

[23] that writes profiling data to an in-memory data 

structure instead of to a file system. 

8.4 Inducing security vulnerabilities 

Our goal is to generate concrete test cases that induce 

security vulnerabilities whenever they are possible. We 

are starting with insecure memory references, instances 

of a handler reading data outside of a safe region and po-

tentially under the control of an attacker.  

The S2E plugin mechanism, once again, gives us a mod-

ular way to perform such checks. Because the plugin in-

frastructure allows us to register interest in particular ma-

chine instructions, we can examine individual load and 

store instructions. S2E already comes with a memory 

checking plugin that makes it possible to trap on every 

memory reference and check that the address is in range 

or otherwise satisfies some constraints. We are working 

to modify this plugin to trap on every memory reference 

and — instead of checking the address — invoke the 

constraint solver to ask if there is any assignment of val-

ues to the symbolic variables that would cause this ad-

dress to be out of range (e.g., outside of the protected 

SMRAM memory range). 

8.5 Automation 

Our goal is to automate the application of this tool as 

completely as possible. Remember that one function of a 

test harness is to identify the variable to treat symboli-

cally. Automating the choice of the symbolic variables, 

however, may require some annotation or user-supplied 

information.  We may require the user to indicate, for 

example, that the SMM variable handler communicates 

with the caller via the communication buffer (and hence 

that this is a good candidate for symbolic data).  

UEFI’s modular extensibility, however, may make this 

annotation less painful than it might otherwise be.  UEFI 

drivers install implementations of interfaces that UEFI 

refers to as protocols.  The complexity of SMM stems 

from the fact that different systems may use different im-

plementations of the same protocols. But once a protocol 

is defined, we believe it will be possible to annotate the 

protocol (the interface) and reuse the same annotation 

with all implementations of the protocol.  In this way, 

annotation proceeds in a modular fashion, with protocol 

designers indicating at protocol interface definition what 

data, when made symbolic, is most likely to explore a lot 

of the computation tree. 

9 Related work 

We are not the first to use symbolic execution in the hunt 

for security bugs. 

Work by Davidson et al [24] built a tool on top of KLEE 

to find security bugs in firmware applications written for 

the MSP430 microcontroller. They find two types of 

bugs: memory safety violations, such as buffer overruns 

and out-of-bounds accesses to memory objects like ar-

rays, as well as peripheral-misuse errors in which a firm-

ware writes to a read-only memory location or to locked 

flash.  Work by Corin and Manzano [25] did taint analy-

sis to analyze the security of code by the KLEE symbolic 

execution engine with a tainting mechanism that tracks 

information flows of data.  Work by Godefroid [26] in-

dependent of KLEE addressed our issue of the test har-

ness, and showed that a test harness could be avoided al-

together by dynamically mapping the memory footprint 

of an executable with a virtual machine that traps on 

memory references, and a configurable memory policy 

that determines which of the memory references should 

be treated as inputs. All of this impressive work differs 

from ours in that our work is addressing run-time ser-

vices and not stand-alone applications, and the dynamic-

linking in the SMRAM layout described in Section 4 that 

pushed us from KLEE to S2E. 

S2E has been used in a number of contexts.  Kuznetsov 

et al [27] used an early version of S2E to find bugs in 

device drivers. They applied their tool (DDT) to several 

closed-source Microsoft-certified Windows device driv-

ers and discovered 14 serious new bugs. Chipounov et al 

[28] used an early version of S2E to reverse engineer x86 

binaries.  Their tool (RevNIC) takes a closed-source bi-

nary driver, automatically reverse engineers the driver’s 

logic, and synthesizes new device driver code that im-

plements the exact same hardware protocol as the origi-

nal driver. Zaddach et al [29] built a tool Avatar on top 

of S2E to check security of embedded firmware, and used 



 

 

it to do reverse engineering, vulnerability discovery and 

hardcoded backdoor detection. In hindsight we might 

have saved some time by starting with Avatar, since they 

also run with state dumped from a development board, 

although security mechanisms surrounding SMM make 

this quite nontrivial in our case. What impressed us most 

about this work was their ability to do symbolic execu-

tion on top of actual devices, a technique that may be 

helpful to us in the future.  

In other security work based on symbolic execution, 

Avgerinos et al [30] used symbolic execution to analyze 

14 open-source projects and successfully generated 16 

control flow hijacking exploits.  Saxena et al [31] built a 

tool called Kudzu for JavaScript and used it to find find-

ing client-side code injection vulnerabilities. In experi-

ments on 18 live web applications, they automatically 

discovers two previously unknown vulnerabilities and 

nine more that were previously found only with a manu-

ally-constructed test suite.   

10 Conclusion 

Ours is a work in progress.  We have demonstrated but 

minimal functionality. But we have demonstrated what 

we consider to be a new approach to BIOS security val-

idation, using symbolic execution to search for dynamic 

instances of security vulnerabilities not found by static 

tools, and doing that symbolic execution directly on top 

of production binaries taken directly from the develop-

ment environment. Our approach is to support the open 

source, academic, and industrial communities in high-

quality, secure BIOS implementations. We welcome col-

laboration in this endeavor. 
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