Separating Data via Block Invalidation Time Inference for Write Amplification Reduction in Log-Structured Storage

Qiuping Wang^{1,2}, Jinhong Li¹, Patrick P. C. Lee¹, Tao Ouyang², Chao Shi², Lilong Huang²

¹The Chinese University of Hong Kong (CUHK)

²Alibaba Group

Log-Structured Storage

- > Alibaba Cloud ESSDs
 - Log-structured block storage atop Alibaba Cloud Pangu
 - Backed by flash-based storage, with ~100 μ s latency and up to 1M IOPS

Abstraction

- Each ESSD is a block-level volume as an append-only log
- Each log contains segments
 (hundreds of MiB) composed of
 blocks (several KiB), each identified
 by logical block addresses (LBAs)

Garbage Collection

- ➤ Space reclamation of invalid (stale) blocks
 - Triggering: garbage proportion (GP) over a threshold, e.g., 15%
 - Garbage proportion = #invalid blocks / (#invalid blocks + #valid blocks)
 - Selection: select segments according to some algorithm, e.g., Greedy
 - Rewriting: rewrite valid blocks, delete old segments and reuse space
- > Write amplification (WA): repeated rewrites of valid blocks
 - Reduced flash lifespan and bandwidth at Alibaba Cloud ESSDs

Data Placement

- ➤ Each write/update to an LBA gives one user-written block and zero or multiple GC-rewritten blocks
 - WA = 1 + #GC-rewritten blocks / #user-written blocks
- ➤ Goal: separates blocks into groups by properties
 - Produce high-GP segments for GC

Contribution

- SepBIT: Separates blocks via block invalidation time (BIT) inference [He, EuroSys'17]
 - Effective BIT inference based on mathematical and trace analyses
 - Separates each set of user-written blocks and GC-rewritten blocks by BIT inference
 - Deployed at Alibaba Cloud ESSDs
- Extensive trace analysis and prototype evaluation to validate SepBIT effectiveness

Ideal Data Placement and Limitations

- > Ideal data placement can achieve the minimum WA of 1
 - Strictly places all written blocks based on their invalidation orders
 - Selects segments whose blocks are earliest invalidated for GC
 - No rewrites of valid blocks
- > Impractical assumptions:
 - Future knowledge: the invalidation order (time) of each written block
 - Space reservation: memory/storage reservation for all written blocks
- > Practical solution:
 - Infers accurately the BIT for each written block
 - Groups blocks of close BITs

Observations

- > Derive three observations based on lifespan analysis
 - Lifespan: number of bytes written from when a block is written until it is invalidated (or until the end of the trace)
- > Focus on Alibaba Cloud block traces:
 - 186 out of 1000 volumes over one full month in January 2020
 - Large write working set size (WSS) (# unique LBAs written x block size): 10GiB 1TiB
 - Large write traffic size: 43GiB 36.2TiB.
- > Also validated on Tencent Cloud block traces

Observations

- > O1: User-written blocks generally have short lifespans
 - e.g., 10% of write WSS
 - GC-rewritten blocks have long lifespans
- ➤ O2: Frequently updated blocks have highly varying lifespans
 - Large variations in different groups of frequently updated blocks
- > O3: Rarely updated blocks dominate with highly varying lifespans
 - Spanning both long and short ranges
- ➤ Temperature-based placement (e.g., via access frequencies) are ineffective in BIT inference

SepBIT Design

- User-written blocks
 - Short-lived blocks (Class 1) written near the same time have similar BITs
 - Remaining long-lived blocks (Class 2) span large BIT ranges
- ➤ GC-rewritten blocks
 - Short-lived blocks (Class 3) identified in user-written blocks
 - Blocks with similar BITs inferred are grouped to Classes 4-6

Note: WA reduction of SepBIT is less sensitive to # of classes

User-Written Block Separation

➤ Intuition: Any user-written block that invalidates a short-lived block is also likely to be a short-lived block

- > Analysis
 - Probability analysis: $Pr(u \le u_0 | v \le v_0)$
 - *u*, *v*: lifespans of user-written block and invalidated block, respectively
- > High conditional probabilities in Alibaba Cloud block traces
 - e.g., 77.8-90.9% for v_0 = 40% and u_0 in [2.5%,40%] of write WSS

GC-rewritten Block Separation

➤ Intuition: Any GC-rewritten block with a smaller age is likely to have a short residual lifespan

- ➤ Analysis
 - Probability analysis: $Pr(u \le g_0 + r_0 | u \ge g_0)$
 - g_0 , r_0 : thresholds of age and residual lifespans, respectively
- \succ Conditional probabilities drop significantly when g_0 increases in Alibaba Cloud block traces
 - From 90% to 14.5% when g_0 increases from 0.8X to 6.4X write WSS

SepBIT Implementation

- ➤ ℓ: average segment lifespan of collected segments in Class 1
 - Segment lifespan: #bytes written since first append until collection
 - Compute ℓ for each fixed number (e.g., 16) of collected segments
- > Threshold selection
 - Classes 1 and 2: Use ℓ as lifespan threshold for user-written blocks based on the lifespans of their invalidated blocks
 - Track (in memory) blocks whose ages are less than ℓ
 - Classes 4-6: Use 4ℓ and 16ℓ as age thresholds for GC-rewritten blocks according to their ages
 - Maintain age information for each block in flash page spare space

Evaluation

- ➤ Trace analysis for per-volume WA
 - 186 volumes from Alibaba block traces
 - Varying segment selection algorithms: Greedy and Cost-Benefit
 - Varying segment sizes and GP thresholds for GC
 - Schemes: 12 schemes, including 8 state-of-the-art placement schemes and FK (oracle scheme)
- Prototype evaluation for throughput
 - Build C++ prototype implementing SepBIT
 - Use emulated zoned storage devices using Optane PM
 - For reproducibility and best match with production storage at Alibaba

Trace Analysis on WA

- ➤ SepBIT reduces overall WA of existing schemes by 9.1-20.2%
 - Only 3.1% higher overall WA than Future Knowledge (FK)
- ➤ SepBIT has lowest 75th percentile in per-volume WA

Overall WA of Cost-Benefit

Per-volume WA of Cost-Benefit

Prototype Throughput

- > Throughput on 20 write-heavy volumes
- > SepBIT achieves the highest throughput
 - 25th and 50th percentiles: 28.3% and 20.4% higher than the second best, respectively

Absolute throughput

Normalized throughput

Conclusion

- SepBIT is a novel data placement scheme that mitigates WA in log-structured storage via BIT inference
 - Infers BIT patterns based on trace analysis
 - Deployed at Alibaba Cloud ESSDs

> See paper, technical report, and source code for more details

> Source code: http://adslab.cse.cuhk.edu.hk/software/sepbit

Thank You! Q & A