
This paper is included in the Proceedings of the
22nd USENIX Conference on File and Storage Technologies.

February 27–29, 2024 • Santa Clara, CA, USA
978-1-939133-38-0

Open access to the Proceedings
of the 22nd USENIX Conference on

File and Storage Technologies
is sponsored by

We Ain’t Afraid of No File Fragmentation:
Causes and Prevention of Its Performance Impact

on Modern Flash SSDs
Yuhun Jun, Sungkyunkwan University and Samsung Electronics Co., Ltd.;

Shinhyun Park, Sungkyunkwan University; Jeong-Uk Kang, Samsung Electronics Co., Ltd.;
Sang-Hoon Kim, Ajou University; Euiseong Seo, Sungkyunkwan University

https://www.usenix.org/conference/fast24/presentation/jun

We Ain’t Afraid of No File Fragmentation:
Causes and Prevention of Its Performance Impact on Modern Flash SSDs

Yuhun Jun1,2, Shinhyun Park3, Jeong-Uk Kang2, Sang-Hoon Kim4 and Euiseong Seo*3

1Department of Semiconductor and Display Engineering, Sungkyunkwan University
2Memory Business Unit, Samsung Electronics Co. Ltd.

3Department of Computer Science and Engineering, Sungkyunkwan University
4Department of Software and Computer Engineering, Ajou University

*Corresponding Author: Euiseong Seo (euiseong@skku.edu)

Abstract
A few studies reported that fragmentation still adversely

affects the performance of flash solid-state disks (SSDs) par-
ticularly through request splitting. This research investigates
the fragmentation-induced performance degradation across
three levels: kernel I/O path, host-storage interface, and flash
memory accesses in SSDs. Our analysis reveals that, contrary
to assertions in existing literature, the primary cause of the
degraded performance is not due to request splitting but stems
from a significant increase in die-level collisions. In SSDs,
when other writes come between writes of neighboring file
blocks, the file blocks are not placed on consecutive dies, re-
sulting in random die allocation. This randomness escalates
the chances of die-level collisions, causing deteriorated read
performance later. We also reveal that this may happen when
a file is overwritten. To counteract this, we propose an NVMe
command extension combined with a page-to-die allocation
algorithm designed to ensure that contiguous blocks always
land on successive dies, even in the face of file fragmentation
or overwrites. Evaluations with commercial SSDs and an SSD
emulator indicate that our approach effectively curtails the
read performance drop arising from both fragmentation and
overwrites, all without the need for defragmentation. Repre-
sentatively, when a 162 MB SQLite database was fragmented
into 10,011 pieces, our approach limited the performance drop
to 3.5%, while the conventional system experienced a 40%
decline.

1 Introduction

File system fragmentation, in which discontinuities exist be-
tween data blocks belonging to a single file, transforms se-
quential access to the file into a series of random accesses
to scattered chunks at the storage level [35, 37]. In the era
of hard disks (HDDs), which suffer from considerably long
seek delays for random accesses, this resulted in additional
seek operations and ended up with significantly impaired read
performance [7].

To prevent performance degradation caused by fragmen-
tation, file systems utilize various techniques [35], such as
delayed allocation [23] and preallocation of data blocks [2],
to maintain continuity among data blocks. Nonetheless, it
is inherently challenging to avoid situations where the file
system cannot locate free data blocks immediately adjacent to
a file’s data blocks, either due to the simultaneous writing of
multiple files or appending to a file after a significant amount
of time has passed since its last write.

In contrast to HDDs, flash-based solid-state disks (SSDs)
eliminate mechanical movements, significantly reducing the
performance gap between random and sequential accesses.
However, recent studies have revealed that SSDs also expe-
rience a two to five times slower read performance when
accessing fragmented files [4], prompting the development
of several defragmentation schemes to address this perfor-
mance decline [13, 31, 42]. However, these studies only su-
perficially observed the performance degradation based on
the fragmentation patterns and hypothesized that its primary
cause is request splitting in the kernel I/O path due to frag-
mentation [13, 31].

In this paper, through a series of experiments, we reveal that
the previous claim suggesting file fragmentation adversely
impacts sequential read performance also in flash SSDs due
to request splitting is based on inaccurate experiment settings
and analyses. Moreover, we demonstrate that during file frag-
mentation, the page-to-die mappings within the SSD deviate
from the ideal state, leading to a substantially increased num-
ber of die-level collisions [18] compared to the cases without
file fragmentation. This increase in die-level collisions, which
leads to the degradation of SSD’s internal parallelism, is the
primary contributing factor to the observed deterioration in
read performance in an SSD with file fragmentation.

An SSD’s firmware allocates its flash memory pages in a
round-robin manner across the flash memory dies based on the
order in which they are written. Consequently, in situations
where file fragmentation occurs, the pages storing contigu-
ous file blocks cannot be placed on contiguous dies but are
instead allocated to arbitrary dies. To prevent such improper

USENIX Association 22nd USENIX Conference on File and Storage Technologies 193

page-to-die mapping patterns arising from file fragmentation,
we propose a simple extension to the NVMe protocol that
provides hints for page-to-die mapping in conjunction with a
write command. With these hints, the page for an appending
write is mapped to the die following the die where the previ-
ous file block’s page was assigned to. In addition, the page
for an overwrite operation to an existing file block, which
also disrupts the page-to-die mapping pattern, is mapped to
the same die where the original page was located. Through
these simple hints and mapping rules, it is possible to avoid
performance degradation in read operations even in situations
with file fragmentation or overwrites to existing files. We eval-
uate the proposed approach using two configurations: first,
through emulation with commercial SSDs, and second, by
implementing it in the Linux kernel and NVMeVirt [22], an
SSD emulator.

To the best of our knowledge, this research is the first to
experimentally demonstrate that the primary cause of file
fragmentation-induced performance degradation in an SSD
is the deterioration of its internal parallelism. Moreover, we
show that this performance degradation is not an inevitable
consequence of fragmentation and can be easily avoided while
keeping the fragmentation state unchanged.

The rest of this paper is organized as follows. After intro-
ducing the background and related work on the file system
fragmentation in Section 2, Section 3 analyzes its impact on
performance when using flash SSDs. Section 4 proposes our
approach to avoid performance degradation from file fragmen-
tation and overwrite operations, and Section 5 evaluates the
proposed approach. Finally, Section 6 concludes the research.

2 Background and Motivation

2.1 Old Wisdom on File Fragmentation
In the HDD era, the primary and direct cause of performance
degradation from file fragmentation was the seek time be-
tween dispersed sectors of the file [7]. File fragmentation
has a more pronounced negative impact on read operations,
which must wait for the completion, compared to writes that
can be buffered by the storage. The long seek time of HDDs
overshadowed other factors that negatively impacted perfor-
mance due to file fragmentation. However, file fragmentation
adversely affects performance at three levels: kernel I/O path,
storage device interface, and storage media access.

As shown in Fig. 1, to the file system, a file is an array
of file blocks, which are logically contiguous. However, the
file system data blocks where these file blocks are actually
stored may not be contiguous. Naturally, file systems strive to
store contiguous file’s logical blocks in contiguous file system
data blocks. However, it is difficult to achieve a completely
fragmentation-free data block allocation, especially when a
file grows incrementally over time, as other files may be writ-
ten behind the last written data block. Therefore, the data

blocks of a file can be allocated in separate locations.

Kernel Contiguous File Fragmented File

Extents

bio

request

Storage Blocks
(Pages in SSD)

File System
Data Blocks

Storage Device

① ② ③①

100 101 102 103

1100 1101 1102 1103

200 201 400 500… …

1200 1201 1400 1500… …

File Blocks 0 1 2 3 0 1 2 3

Begin: 200, Len: 2 Begin: 400, Len: 1 Begin: 500, Len: 1Begin: 100, Len: 4

Figure 1: A sequential access to a contiguous file is translated
to a single device command while that to a fragmented file
ends up with multiple requests.

Only a single command is required for the host to instruct
the storage device to perform read or write operations on
contiguous storage space. Thus, when a sequential read occurs
for a file, the Linux kernel reads the data block mapping in
the file’s inode, and for each contiguous data block region, it
creates a bio (block I/O) data structure. This data structure is
used to create the corresponding request data structure to be
passed to the device driver, which then issues the command
for the request to the device. Through this process, a single
sequential file access may be split into multiple bios and
corresponding requests to the storage device, depending on
the degree of file fragmentation.

This request splitting is known to increase I/O execution
time, as it increases the number of data structure creations
and calls to underlying functions, including the device driver
code [13, 16, 17, 31, 32]. Naturally, the increased number of
device commands leads to time delays at the SATA [34] or
NVMe [9] interface level. The increased number of storage
device commands leads to an increased time for the storage
device’s firmware to process them. Specifically, the frequency
of fetching, decoding, translating commands into storage me-
dia operations, and queuing media access operations increases.
Therefore, file fragmentation also delays the processing time
of the storage device controller.

Finally, file fragmentation extends the time to access stor-
age media in the storage device. As mentioned earlier, in the
case of HDDs, seek time is required for the disk head to move
to the track where the requested sector is located, and a disk
rotation delay occurs to locate it on the track [7]. However,
unlike performance degradation caused by the kernel I/O path
and storage device interface, SSDs are expected to not expe-
rience an increase in the storage medium access time due to
fragmentation, as SSDs do not have seek time and rotational
delay [10, 12, 39, 41].

To address the fragmentation-induced performance decline,
two types of studies have been conducted: one aims to prevent
fragmentation from occurring, and the other aims to recover

194 22nd USENIX Conference on File and Storage Technologies USENIX Association

file access performance by transforming fragmented files into
contiguous ones.

The delayed allocation technique used in the ext4 file sys-
tem performs data block allocation not at the write system
call handling but at the time of page flush [23]. In cases where
small write operations are interleaved with writes to other
files, delayed allocation increases the likelihood that write
operations for a file are allocated to contiguous data blocks.

In addition, ext4 reserves a predefined window of free data
blocks for each file’s inode. These reserved free blocks will be
actually allocated to the file for its successive append writes.
This significantly reduces the occurrences of fragmentation
especially when multiple files in the same directory are simul-
taneously written [2, 35].

While these techniques can reduce the frequency of file
fragmentation, research has shown that it is an inevitable
result of file system aging [5, 37]. Therefore, various defrag-
mentation tools have been proposed to rewrite scattered file
data blocks to contiguous ones to recover the I/O perfor-
mance [8, 25, 27, 30, 35].

Sato proposed an online defragmentation tool for the Linux
ext4 file system [35]. The proposed scheme allocates contigu-
ous free blocks to a temporary inode, copies the fragmented
file data to the temporary inode, deletes the original file, and
renames the temporary inode to the original’s.

Various techniques have been proposed to mitigate the
overhead caused by defragmentation, as copying all frag-
mented files can take a significant amount of time. For ex-
ample, F2FS’s defragmentation tool, defrag.f2fs, allows
users to selectively migrate only the user-selected area by
manually inputting the starting block address, length, and tar-
get location as parameters [30]. XFS’s xfs_fsr sorts files
by their number of extents and groups the top 10% of files
into a unit called a pass, performing defragmentation for each
pass [27]. Btrfs’s built-in defragmentation tool defragments
only extents smaller than the target extent size specified as
a parameter [33]. However, ultimately, defragmentation con-
sumes a significant amount of time and energy as it induces a
large number of read and write operations on relatively slow
storage devices [13, 31].

2.2 File Fragmentation in SSD-Era
Most researchers and SSD manufacturers initially claimed
that SSD performance is not affected by file fragmentation,
and that defragmentation is unnecessary and may even be
harmful due to the write operations involved in the defrag-
mentation process, which can reduce the lifespan of the flash
memory [10, 12, 39, 41]. However, contrary to initial claims
that SSDs do not have fragmentation issues, some researchers
observed performance degradation due to file system aging
and resulting fragmentation.

SSDs offer significantly higher performance than a sin-
gle flash memory die (chip) because they operate multiple

flash dies in parallel [21]. Specifically, NVMe SSDs offer
65,535 command queues, each capable of queueing 65,536
commands. Even when fragmentation leads to smaller request
sizes that cannot fully utilize die-level parallelism, smaller
flash operations in the command queues can still be processed
out-of-order, allowing most dies to be fully utilized. This en-
ables SSDs to achieve performance close to their maximum
potential even when accessing small fragments. Consequently,
some researchers speculated that the kernel I/O path and inter-
face overhead due to request splitting have a greater impact
on fragmentation-induced performance degradation than flash
memory access time [13, 16, 17, 31, 32].

Conway et al. empirically observed performance degra-
dation in various workloads due to file system aging on
SSDs [4,5]. They discovered that file fragmentation frequently
occurs on SSDs as the file system ages. In scenarios where the
git pull commands are executed repeatedly, they observed
that read performance can be degraded by up to five times.
Geriatrix is a tool capable of effectively emulating file system
and storage aging [20]. Using Geriatrix, the authors demon-
strated a performance degradation of up to 78% due to file
system aging on SSDs. While both studies observed changes
in file system layout and performance degradation due to
file system aging in various circumstances, they did not con-
duct an in-depth analysis of the underlying causes for this
performance decline.

Park and Eom argued that the main cause of performance
degradation due to fragmentation on SSDs is request splitting,
and thus the distance between data blocks does not signifi-
cantly affect read performance, while the degree of fragmen-
tation does [31]. In a subsequent paper, they made a contra-
dictory claim, stating that the distance between fragmented
blocks also significantly affects performance on SSDs [32].
In addition, they proposed FragPicker, an efficient defragmen-
tation approach that carries out online migration of fragments
only that have been accessed [31].

Zhu et al. proposed a scheme that can simultaneously is-
sue parallel I/O requests for defragmentation in ext4, mini-
mizing defragmentation time and maximizing SSD internal
parallelism. This approach improved defragmentation time
by three times compared to the traditional e4defrag [42].

Regarding these conflicting claims, we clarify in Section 3
that this arises because previous studies’ experimental setups
fail to distinguish between performance degradation directly
caused by fragmentation and that indirectly caused by the
influence of fragmentation on SSD’s internal data placement.

2.3 Internals of Modern Flash SSDs

As previously mentioned, a modern flash SSD is equipped
with multiple flash dies that can operate in parallel. To maxi-
mize the bandwidth and throughput of an SSD, it is crucial
to maintain a high degree of die-level parallelism [3, 21].
Conversely, since a die can only process one request at a

USENIX Association 22nd USENIX Conference on File and Storage Technologies 195

Die 0 Die 1 Die 2 Die 3
SSD

Page 0
Page 0
Page 1

Page 1
Page 0
Page 2

Page 2
Page 1
Page 3

Page 3
Page 2
Page 3

File (A) File (B) File (C)

Figure 2: Data placement of three files in a flash SSD where
one is contiguous and the other two are fragmented.

time [14,40], if the pages to be read are stored on a single die,
the read requests for these pages must be serialized within
that die. This die-level read collision significantly degrades
read performance [18].

To prevent die-level collisions for read operations, the flash
translation layer (FTL) of an SSD’s firmware must perform
physical page allocation in a manner that distributes the phys-
ical pages storing contiguous logical pages across as many
dies as possible. For this purpose, the FTL of most modern
SSDs selects a die in a round-robin manner when allocat-
ing a flash page for processing an incoming page write re-
quest [3, 19]. Additionally, modern FTLs perform the valid
page copy within the die where the page resides during the
garbage collection (GC) process if the die has a sufficient
number of free pages [11]. This allows for the maintenance of
die parallelism. However, since GC occurs in parallel across
all dies, this strategy does not significantly impact the perfor-
mance of GC.

For example, in Fig. 2, File A is evenly distributed across
four dies since its four pages were written without interfer-
ence. Thus, a sequential read of File A will be performed
simultaneously on these four dies, resulting in a bandwidth of
up to four times the flash die performance. In contrast, assume
that the writes to File B and File C were interleaved. As the
die for storing a logical page is assigned in a round-robin
manner according to the order of writes performed within the
SSD, both the third and last pages of File B ended up being
allocated to Die 3. As a result, the time to read File B is twice
as long as that for reading an ideally-placed file of the same
size, such as File A.

File fragmentation occurs in most cases when multiple
files are simultaneously written [4, 31]. Therefore, when file
fragmentation occurs, the die allocation of flash pages asso-
ciated with a file might not be evenly distributed, leading to
the pages of a single file being consolidated on certain dies.
This phenomenon arises because the FTL allocates dies for
pages solely based on their incoming order. However, the
presence of file fragmentation does not inevitably result in
uneven page distribution over dies, just as a contiguous file
does not guarantee that its pages will always be evenly and
sequentially allocated on consecutive dies.

Through ext4’s preallocation, data blocks can be allocated
contiguously in the file system, even if writes from other files

Table 1: System configurations for experiments.

Processor Intel Xeon Gold 6138 2.0 GHz, 160-Core
Chipset Intel C621
Memory DDR4 2666 MHz, 32 GB x16

OS Ubuntu 20.04 Server (kernel v5.15.0)
Interface PCIe Gen 3 x4 and SATA 3.0

NVMe-A: Samsung 980 PRO 1 TB
NVMe-B: WD Black SN850 1 TB
NVMe-C: SK Hynix Platinum P41 1 TB
NVMe-D: Crucial P5 Plus 1 TB
SATA-A: Samsung 870 EVO 500 GB

Storage

SATA-B: WD Blue SA510 500 GB

occur in between. However, since the die mapping of flash
pages takes place at the actual moment of their writing inside
the SSD, even files that are contiguous at the file system level
can exhibit uneven page distribution in the SSD. Conversely,
if the data blocks of a fragmented file are written at the appro-
priate timing, it is possible for the file’s pages to be distributed
evenly across all dies.

In addition to the fragmentation cases, irregular die allo-
cation may occur in cases of file overwrites. Assume a file
stored in contiguous file system blocks has its pages sequen-
tially allocated to dies on the SSD. In this ideal situation, if
an overwrite is performed on a middle block of the file, the
SSD must allocate a new page for that block and invalidate
the page currently mapped to the block due to the nature of
flash memory, which does not allow in-place updates. At this
point, the new page will be allocated from the die next to the
one that last allocated a page, according to the round-robin
policy. As a result, there is a high likelihood that the new page
will not be located on the same die as the original page, lead-
ing to a considerable decline in performance due to die-level
collisions when conducting a sequential read on the file.

3 Analysis of File Fragmentation

This section explores the cause behind fragmentation-induced
performance degradation through a series of experiments. The
configuration of the experimental system for our analysis is
described in Table 1. We used the ext4 file system [28]. To
minimize the influence of the kernel’s page cache and extent
cache on the experimental results, we performed a cache drop
before each experiment run. In addition, to adjust the block
I/O request queue depth for our experiments, we used the
kernel’s nr_requests parameter. All experimental results
are an average of 10 repetitions.

To begin, we examined the performance drop in ext4 on
NVMe SSDs based on the degree of fragmentation (DoF),
which is the ratio of the actual number of extents to the ideal
number of extents [17]. For this, we created a set of files that
have various DoF. Each fragmented file, with a size of 8 MB,
is created by interleaving the writes to the target file and that
to a dummy file as many times as the desired DoF. The size of

196 22nd USENIX Conference on File and Storage Technologies USENIX Association

17.1

10.4
7.6

5.1

3.90
5
10
15

20
25
30

35
40

2561286432168421

R
ea

d
Ti

m
e

(m
s)

Degree of Fragmentation

NVMe-A, Queue Depth = 1
NVMe-A, Queue Depth = 1023
NVMe-B, Queue Depth = 1
NVMe-B, Queue Depth = 1023

Figure 3: Time taken for reading an 8 MB file stored on
NVMe SSDs while varying its DoF.

the write to the dummy file between the writes to the target file
was determined so that the offset between the two fragments
of the target file becomes 8 MB. For example, if the target
DoF is 4, four fragments or extents must compose the 8 MB
target file. We wrote the first quarter of the target file first and
then wrote 6 MB for the dummy file. By repeating this four
times, we can obtain an 8MB file with a DoF of 4.

We varied the DoF in our analysis from 1, representing
contiguous files, to 256, unlike previous studies that went
beyond this range. A fragment size when the DoF is 256 in
our analysis is 32 KB. Due to the aforementioned delayed
allocation and block reservation techniques, which are used
by ext4 to suppress fragmentation, it is highly unlikely for a
fragment to have a smaller size than that.

In order to create a file exactly with the desired DoF us-
ing this method, it is necessary to disable delayed allocation
and block reservation. To disable delayed allocation, we used
the direct mode when writing files and provided the node-
lalloc mount option. Block reservation was neutralized by
setting both the reserved_clusters runtime parameter and
the percentage of reserved block parameter, which is mkfs’s,
to 0. We also disabled the per-inode preallocation feature.
Every fragmented file was verified whether it has the desired
DoF by using the filefrag tool [26]. A single extent in ext4
can represent 215 contiguous blocks, or 128 MB, with a 4
KB file system block size [28]. Since the fragments were
all smaller than 128 MB, the desired DoF value precisely
matched the number of extents constituting the file.

As shown in Fig. 3, the read performance of both NVMe
SSDs decreased from the point where the DoF exceeded 64,
regardless of the request queue depth. Since the default max-
imum request size for the Linux kernel is 1 MB, no perfor-
mance difference was observed when the fragment size ex-
ceeded 1 MB, corresponding to situations where the DoF is 8
or lower.

Notably, both SSDs showed a more drastic performance
change when the queue depth was set to 1. When the I/O
queue depth was set to 1023, which is the Linux default value
for an NVMe SSD, the execution time was shorter, and the
performance degradation due to fragmentation was less pro-

0

2

4

6

8

10

2561286432168421

R
ea

d
Ti

m
e

(m
s)

Degree of Fragmentation

Queue Depth = 1
Queue Depth = 128

Figure 4: Time for sequentially reading an 8 MB file stored
on ramdisk depending on its DoF.

nounced compared to when the queue depth was set to 1.
However, even at a queue depth of 1023, the execution time
increased significantly with the increase in DoF. NVMe-A
exhibited 2.7 times and 4.4 times longer execution times at
DoF 128 and 256, respectively, compared to DoF 1. Simi-
larly, NVMe-B demonstrated 1.3 times and 1.9 times longer
execution times at DoF 128 and 256, respectively.

In this experiment, we have confirmed that file fragmen-
tation indeed causes performance degradation in SSDs. To
further elucidate the specific causes of this performance degra-
dation, subsequent experiments were conducted.

3.1 Impact Caused by Request Splitting
As previously mentioned, file fragmentation results in request
splitting, where a single I/O operation is translated into mul-
tiple device commands. The impact of increased processing
time at the host side due to request splitting on performance
degradation will be more evident when the storage device’s
processing time is shorter. Therefore, we measured the delay
occurring in the kernel I/O path due to request splitting by
using a ramdisk as the storage device, which has an extremely
short host-to-storage interface and storage media access times.

Fig. 4 shows the sequential read performance of files stored
on the ramdisk according to their DoF. Since the ramdisk has
extremely fast access speed and there is negligible difference
between random and sequential access times, the performance
changes observed in Fig. 4 can be attributed primarily to the
difference in time consumed by the kernel I/O path rather
than the storage media. Our experiments revealed that as the
DoF increased with the request queue depth set to 1, read
performance decreased, resulting in a 1.5-fold increase in
read time when the DoF was 256.

As stated, one request to the storage device is generated
for each contiguous storage address range. Consequently, the
numbers of iomap structures, which are required for direct
I/O, bio structures, and request structures increased with
the DoF. Additionally, the number of function invocations
for their creation also rose as the DoF grew. When the queue
depth was set to 1, these procedures were performed syn-

USENIX Association 22nd USENIX Conference on File and Storage Technologies 197

0%

2%

3%

56%

42%

35%

44%

56%

62%

0 2000 4000 6000 8000 10000 12000

1

128

256

Elapsed time (µs)

D
eg

re
e

of
 F

ra
gm

en
ta

tio
n

iomap bio request

Figure 5: Time composition for creating request data struc-
tures in the kernel I/O path depending on File’s DoF.

295 µs

Request
Structure
Creation

402 µs

271 µs

3.75 ms

ramdisk

Figure 6: Reduction of read time due to the overlap of storage
operations and request creation when File’s DoF is 128.

chronously. As a result, the processing time for the kernel I/O
path increased with the rise of DoF, and this increase became
more pronounced when the DoF exceeded 8.

To identify the cause of these delays, we measured the time
taken for the __x64_sys_read function, which processes the
read system call, to create iomap, bio, and request struc-
tures separately, as the DoF changes. As seen in Fig. 5, the
iomap creation time slightly increased in proportion to the
DoF, as one iomap is created per extent. The change in time
spent on bio creation was smaller compared to that of iomap
creation. This is because most of the bio creation time was
spent allocating buffer pages, and the number of buffer pages
to be allocated remains constant at 2048, regardless of the
file’s DoF. During the request creation process, if there are
consecutive bio addresses, they will be merged into a sin-
gle request. However, the fragmented file prevented it from
being merged. Thus, the time spent on creating requests
increased proportionally with the increase in the DoF.

Note that even under the extreme case where the DoF was
256, the kernel I/O path only took approximately 9.7 ms. In
addition, when the I/O queue allows queueing of multiple
outstanding commands, this I/O path delay can be mostly
overlapped by the consecutive read operations to the following
fragments. As shown in Fig. 4, if the request I/O queue depth
was set to 128, which is the default value for a ramdisk, the
file’s DoF barely affected the time for the read operation.

We closely observed the kernel I/O path delay, which can
be masked by I/O queueing. Fig. 6 shows the time spent
on the request data structure creation and ramdisk access
measured with blktrace [24] when reading a file with a

DoF of 128 and a queue depth of 128. The kernel performs
a plug process to merge requests for contiguous blocks,
reducing the number of commands issued to the storage. The
plugged requests are unplugged and sent to the device driver
if the number of requests exceeds the predefined maximum
pluggable requests, or if the size of an individual request
surpasses the predefined plug flush size. The default values of
these parameters are 16 requests and 128 KB, respectively.

Thus, during the experiment, 16 requests were plugged
and then separately issued to the device driver since they
all accessed separate blocks. As a result, the time spent cre-
ating the following 16 requests in the kernel I/O path is
mostly masked by the time it takes the ramdisk to process
the previous 16 requests. Additionally, by issuing multiple
requests simultaneously, the processing time of the ramdisk
is significantly reduced due to the operation overlap.

As a result of these experiments, we found that the delay
occurring in the kernel I/O path due to request splitting is
at the level of a few milliseconds, even in the extreme cases.
Furthermore, we confirmed that its impact on actual execution
time is negligible due to I/O operation queueing.

Next, we analyzed the execution time delay caused by re-
quest splitting in both the host-to-storage interface and the
SSD inside. Since the implementation within the SSD is
a black box, and it is impossible to accurately distinguish
between the time consumed by the interface and the flash
memory access time, we analyzed their combined execution
time. For this analysis, we used two types of SATA SSDs and
two types of NVMe SSDs, as shown in Table 1.

For this analysis, we performed a task to read 8 MB of
contiguous data from the storage device by accessing the raw
device file of the SSD to exclude the influence of the file
system and kernel I/O path. In this process, we measured
performance while increasing the unit read size from 32 KB
to 8192 KB, doubling it each time. To minimize the impact of
the SSD’s state on the results, such as the ratio of invalid pages
and the number of free blocks, we used the trim command
for the entire area after each experiment to restore the SSD to
the fresh-out-of-the-box (FOB) state. Then, we performed a
sequential write on a 1 GB area to be read.

Fig. 7 shows the time taken to read 8 MB of data from
each of the four SSDs, depending on the unit size of the read
operation. Similar to Fig. 4, when the device’s queue depth is
set to 1, the elapsed time for reading 8 MB of data increases
as the size of the read unit decreases. According to the re-
gression analysis of the results, for NVMe SSDs, the elapsed
time increased by 85 µs for each additional request, while for
SATA SSDs, the time increased by 136 µs per request. These
results encompass the impact of request splitting on the host-
to-device interface, SSD firmware, and flash memory access
time. Among these factors, the flash memory access time is
expected to decrease as the unit read operation size increases
influenced by the aforementioned internal parallelism.

However, the read time delay caused by request splitting

198 22nd USENIX Conference on File and Storage Technologies USENIX Association

0
10
20
30
40
50
60

81
92

 K
B ×

1
40

96
 K

B ×
2

20
48

 K
B ×

4
10

24
 K

B ×
8

51
2 K

B ×
16

25
6 K

B ×
32

12
8 K

B ×
64

64
 K

B ×
12

8
32

 K
B ×

25
6

El
ap

se
d

Ti
m

e
(m

s)

Unit Size × Number of Reads

NVMe-A (Q-Depth 1) NVMe-A (Q-Depth 32)
NVMe-B (Q-Depth 1) NVMe-B (Q-Depth 32)
SATA-A (Q-Depth 1) SATA-A (Q-Depth 32)
SATA-B (Q-Depth 1) SATA-B (Q-Depth 32)

Figure 7: Time for reading 8 MB of data through raw device
I/O operations with varying unit sizes.

disappeared when multiple outstanding I/O operations were
queued, similar to the effect in the kernel I/O path. The na-
tive command queue (NCQ) of the SATA standard can queue
up to 32 outstanding commands, while the NVMe standard
also supports 65,536 queues with a queue depth of 65,535.
Therefore, when request splitting occurs, the SSD can simul-
taneously place the split requests into the command queue
and process them out of order. This reduces the number of
interactions at the host-to-device interface and can further in-
crease the die-level parallelism of the SSD. The dashed lines
in Fig. 7 show the results when the command queue depth
was set to 32. As expected, despite reducing the read unit size
and, consequently, increasing the number of read commands
in all SSDs, the difference in the total execution time was
observed to be within a few milliseconds.

Based on our analyses, we confirmed that the request split-
ting overhead in the kernel I/O path is negligible compared
to the increased operation time due to fragmentation. Fur-
thermore, its impact is largely mitigated when issuing I/O
operations asynchronously through command queueing. Ad-
ditionally, we verified that even when request splitting occurs,
the increase in processing time both at the host-to-device
interface and within the storage device itself is extremely min-
imal, again thanks to command queueing, which most modern
SSDs support.

3.2 Page Misalignment from Fragmentation
As explained with Fig. 2, when a file is written sequentially
and there are no interrupting writes between the sequential
write operations, the SSD evenly distributes the pages of the
file across all dies in a round-robin manner. However, in cases
of file fragmentation, such an ideal page allocation becomes
impossible because writes to other files have occurred in
between the writes to the fragmented file.

In cases of fragmentation, the page after the discontinuity
point will be placed on a random die, regardless of the die

where its semantically preceding page is located. In modern
SSDs, because they have several tens of dies, the likelihood
of a page containing a fragmented block being placed on a
die immediately adjacent to the die where the previous file
block’s page is located is significantly low. As a result, when
performing a sequential read access on a fragmented file, it
causes significantly more die-level collisions compared to
an ideal page placement scenario. The experiments in Fig. 3
created fragmented files and read them in such a way. Most
previous research also fragmented files in the similar way. As
a result, the significant performance degradation observed in
fragmented file accesses in the experiments was very likely
due to die-level collisions.

The read patterns observed at the die-level in these exper-
iments can be emulated in actual SSDs by reading consec-
utively written file blocks at specific intervals. For instance,
consider an SSD that assigns 4 KB pages to its dies in a round-
robin manner and suppose this SSD has 16 dies. If we were
to write 1 MB of data, that is, 256 pages consecutively, and
then read every second page, resulting in reading 128 pages,
this situation would produce a die-level read pattern similar to
our experimental setup for sequentially accessing a 512 KB
file with a DoF of 128. In this situation, compared to reading
128 consecutive pages without any interval, read operations
would only take place on a half of the die set. This would
inevitably lead to double the die-level collisions, making the
time to read the 128 pages nearly twice as long. For the same
reasons, reading every fourth page, amounting to 64 pages in
total, would result in a read duration nearly four times longer
than reading 64 consecutive pages.

To examine how read performance changes in such patterns,
we conducted the following experiments. After initializing an
SSD to its FOB state, we sequentially wrote 1 GB data to the
area designated for reading. Subsequently, we configured fio
to sequentially read 4 KB chunks at consistent intervals. For
instance, if the interval of the read starting point were set to 16
KB, it would be set up to read 4 KB, skip a gap of 12 KB, and
then read another 4 KB. To accomplish this, we modified the
blockalign parameter of fio, incrementing it in 4 KB steps,
ranging from a minimum of 4 KB to a maximum of 1024 KB
in multiples. In these experiments, for NVMe SSDs, we set
the iodepth parameter of fio to 512, and for SATA SSDs, we
set it to the maximum supported value of 32. Furthermore, to
exclude the effects of the file system and kernel I/O path, we
configured fio to perform direct access on the raw device file.

Fig. 8a displays the throughput measurements for two
NVMe SSDs when varying the read interval. When inter-
nal parallelism was adequately utilized, the SSDs achieved
throughputs of 2600 MB/s and 3020 MB/s, respectively. How-
ever, as the interval between read operations expanded, the
observed sustained throughput decreased to 166 MB/s and
480 MB/s for each SSD, respectively.

In both NVMe SSDs, the first significant performance drop
was observed when the interval reached 64 KB. This indicates

USENIX Association 22nd USENIX Conference on File and Storage Technologies 199

1803

1062

324 166557
0

500
1000
1500
2000
2500
3000
3500

0 64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

70
4

76
8

83
2

89
6

96
0

10
24

Th
ro

ug
hp

ut
 (M

B
/s

)

Interval Between Consecutive Read Offsets (KB)

NVMe-A NVMe-B

(a) NVMe-A/B

122
630

100

200

300

400

0 32 64 96 12
8

16
0

19
2

22
4

25
6

28
8

32
0

35
2

38
4

41
6

44
8

48
0

51
2

Th
ro

ug
hp

ut
 (M

B
/s

)

Interval Between Consecutive Read Offsets (KB)

SATA-A SATA-B

(b) SATA

1131 1080 1034

0
500

1000
1500
2000
2500
3000
3500

0
12

8
25

6
38

4
51

2
64

0
76

8
89

6
10

24
11

52
12

80
14

08
15

36
16

64
17

92
19

20
20

48

Th
ro

ug
hp

ut
 (M

B
/s

)

Interval Between Consecutive Read Offsets (KB)

NVMe-C NVMe-D

(c) NVMe-C/D

Figure 8: Throughput while varying the interval between starting points of consecutive read operations.

that the two NVMe SSDs allocate pages of a 32 KB size to a
die before proceeding with allocation on the subsequent die,
even though the actual number of pages allocated to a die at
once might vary based on the device’s page size. We refer
to the size of the pages allocated to a single die at a given
instance as the die allocation granularity. Both NVMe SSDs
use a 16 KB page size [15,36], and a die allocation granularity
of 32 KB means that they allocate two pages per die. This
suggests that both SSDs store two pages per die using the
two-plane program method [40].

The alignment size exhibited a significant performance
drop starting at the 64 KB interval, and as it doubled each time,
the decrease in performance became even more noticeable.
This was likely due to the number of dies used for reads being
halved every time the interval size doubled, as previously
mentioned. In fact, for both SSDs, when the alignment size
doubled from 64 KB to 1024 KB, the throughput decreased
by 41 to 49% each time.

The lowest performance for both products was observed
when the alignment size was 1024 KB for NVMe-A, dropping
to approximately 6.5% of its typical value, and at 256 KB for
NVMe-B, decreasing to 18.5%. These observations suggest
that the stripe size, which represents the volume of data writ-
ten across all dies before the allocation process restarts with
the first die, differs among SSDs. Our experiments infer that
the stripe size for NVMe-A is 1 MB, while for NVMe-B, it
stands at 256 KB. For alignment sizes that exceed the stripe
size, performance will mirror that of an alignment size equal
to (alignment size % stripe size).

This phenomenon was also observed in the SATA SSDs,
as illustrated in Fig. 8b. While both products exhibited a
throughput of 400 MB/s when all pages were accessible, the
throughput decreased with the variation in the alignment size
of accessible pages: dropping to 62 MB/s for SATA-A and 82
MB/s for SATA-B.

The performance degradation points of SATA SSDs
showed a significant difference compared to those of NVMe
SSDs, with SATA-A exhibiting its first performance drop at
an alignment size of 8 KB. This indicates that its die alloca-
tion granularity is 4 KB. The most significant performance
drop occurred at 32 KB, pointing to a stripe size of 32 KB.
For SATA-B, the first performance drop was observed when

the interval reached 32 KB, and, at 256 KB, it showed only
20.7% of its normal throughput. Therefore, SATA-B has a
die allocation granularity of 16 KB, and the stripe size is
estimated to be 256 KB.

When accounting for file fragmentation, the spacing be-
tween two accessed blocks typically aligns with multiples of
the file block size, which is usually 4 or 8 KB. As evidenced in
SATA SSDs, there’s a marked performance dip when reading
with intervals that are multiples of 4 KB. Consequently, the
uptick in die-level collisions due to file fragmentation and the
subsequent performance reduction are unavoidable. While
NVMe SSDs generally have larger die allocation granularity
and stripe sizes compared to SATA SSDs, leading to less pro-
nounced performance drops with small read intervals, they are
not exempt from the heightened die-level collisions brought
about by the gap-reading patterns.

However, not all SSDs exhibited performance degradation
at consistent intervals, as observed with the previous four
products. Fig. 8c shows the performance drop in relation
to the read offset intervals for NVMe-C and NVMe-D, re-
spectively. Unlike the previous SSDs, the intervals at which
these two products showed a decline were not necessarily
powers of two. For NVMe-C, performance dips were noted
at 64 KB and 128 KB intervals while the subsequent drops
were found at multiples of 584 KB. In the case of NVMe-
D, the drop was observed at intervals that are multiples of
604 KB. The die allocation policy of an SSD varies across
manufacturers. However, the experimental results confirmed
that non-sequential page access eventually leads to significant
performance reduction due to high die-level collisions.

Unlike I/O path overhead or interface overhead that can
be hidden by increasing the I/O queue depth, the read perfor-
mance degradation due to die-level collisions was shown to
persist even when the I/O queue depth was large. Therefore,
for SATA SSDs with Linux kernel’s default queue depth of
64 and NVMe SSDs with a queue depth of 1023, we can
conclude that the main cause of performance loss due to file
fragmentation is not the delay in the kernel I/O path or in-
terface overhead but rather die-level collisions inside SSDs.
In other words, while file fragmentation in HDDs causes ad-
ditional seek time and rotational delay, in SSDs, it leads to
additional die-level collisions.

200 22nd USENIX Conference on File and Storage Technologies USENIX Association

4 Our Approach

As previously analyzed, performance degradation of read op-
erations to fragmented files mainly results from an increase in
die-level collisions. However, the irregular page-to-die map-
ping observed in fragmented files is merely a consequence
derived from the situations that cause fragmentation, rather
than being a necessary condition for fragmentation to occur.

For example, let’s assume that the three blocks of File B
are written as in Fig. 9a and File C and A write a single block,
respectively. From this initial state, if the application appends
B3 to File B, B3 will be stored on the same die as B1, as shown
in Fig. 9c. Consequently, a sequential read of File B will cause
a die-level collision at Die 1. However, if File A overwrites not
only A1 but also A2 and A3 in the situation shown in Fig. 9a,
the position of B3 will shift by two dies and be located in Die
3. In this case, File B is stored in non-contiguous blocks on the
file system, as shown in Fig. 9b, and sequential access to this
file will cause request splitting. However, due to command
queueing inside the SSD, all dies simultaneously process the
same number of operations, enabling maximum performance.
As previously mentioned, the time delay in the kernel I/O path
and host-to-storage interface resulting from request splitting
is minimal; consequently, despite File B being fragmented,
its read performance remains barely affected.

Conversely, irregular page-to-die mapping may occur even
without file fragmentation. Typically, overwriting an existing
file block likely breaks the sequentiality of the page-to-die
mapping. For instance, consider overwriting A1 in the sit-
uation shown in Fig. 9a. The file system supports in-place
updates of blocks, so the position of A1 on the file system re-
mains unchanged. Thus, File A maintains its contiguous state
even after overwriting A1. However, since in-place updates
of flash pages are impossible, the original page storing the A1
block becomes invalidated, and as shown in Fig. 9c, a new
page for the updated A1 is assigned to Die 0, which follows
Die 3. Consequently, although File A is contiguous at the file
system level, a sequential read of File A will be significantly
slowed down due to the die-level collision at Die 0.

Examining the two cases of fragmentation and overwriting
that cause the irregular page-to-die mapping mentioned above,
the fundamental reason is that SSD firmware cannot discern
the file-level relationship between flash pages, and conversely,
the file system cannot specify the position of the flash page
storing the file block. To address this mismatch between page
and file block placement, we propose an NVMe command
extension and corresponding page-to-die mapping policy.

In our approach, the file system regards a write operation
requiring a new data block allocation as an append write and
the one to be performed on a data block already allocated to
a file as an overwrite. If the Kernel I/O stack identifies the
write being issued to the NVMe SSD as an append write or
overwrite, it conveys additional information to the NVMe,
on top of the existing NVMe write command, to perform

- File A Append <A0, A1, A2, A3>
- File B Append <B0, B1, B2>
- File C Append <C0>

A0
B0

Die 0 Die 1 Die 2 Die 3

A1
B1

A2
B2

A3
C0

(a) Initial Page-to-Die Mappings After File Creation

A0

File A

File B

File C

Logical Address Space

A1 A2 A3 B0 B1 B2 C0 B3

Overwrite <A1>

Append <B3>

(b) Files’ Data Block Placement in File System
- File A Overwrite <A1>
- File B Append <B3>

A0
B0
A1

A1
B1
B3

A2
B2

A3
C0

(c) Page-to-Die Mappings After Write Operations

Figure 9: File system-level block placement and storage-level
page allocation of three files before and after write operations.

- File A Overwrite <A1>
- File B Append <B3>

A0
B0

A1
B1
A1

A2
B2

A3
C0
B3

Die 0 Die 1 Die 2 Die 3

Figure 10: Page-to-die mappings after overwriting A1 and
appending B3 blocks under our approach.

appropriate page-to-die mapping.
For append writes, the host provides the NVMe with the

logical block address (LBA) of the file block immediately
preceding the one being written, in addition to the write com-
mand. For example, when appending B3 to File B in Fig. 9a,
the host sends the LBA of B2 along with the write command
for B3 to the NVMe. In this case, the NVMe firmware deviates
from the conventional round-robin algorithm for determining
B3’s die placement. Instead, as illustrated in Fig. 10, it assigns
B3 to Die 3, which is the subsequent die after the one where
B2 was stored. If the size of the write operation surpasses
the die allocation granularity, the placement of additional
pages adheres to the conventional round-robin approach; for
instance, in this example, the second page is assigned to Die
0 after the first page is placed in Die 3.

For overwrites, the host sets a flag in the write command to
indicate that the write operation is for overwriting an existing
file block. For a write command with its overwrite flag set, the
SSD firmware invalidates the existing flash page correspond-
ing to the given LBA and allocates a new page. By assigning
the new page to the same die where the original flash page
was located, the die-level contiguity of the file blocks can be
preserved. For example, when overwriting the A1 block of
File A in Fig. 9a, a new flash page is allocated to Die 1, where
the flash page storing A1 was originally located, as shown
in Fig. 10, ensuring that sequential reads of File A maintain
maximum internal parallelism. The die-level contiguity can
also be preserved for overwrites exceeding the die allocation
granularity by assigning new pages to the same dies where

USENIX Association 22nd USENIX Conference on File and Storage Technologies 201

the existing logical pages are located.

To implement the proposed approach, the host needs to
provide additional information to the SSD when issuing a
write operation. We can implement this without additional
protocol overhead by utilizing unused bits in the NVMe pro-
tocol’s write command. For example, the 24th and 25th bits
of Command Dword (CDW) 12, which are currently unused
and reserved, can be utilized to distinguish append writes and
overwrites from conventional writes. Additionally, for append
writes, the reserved CDW 2 and CDW 3 can be used to convey
the LBA of the preceding file block.

Our approach specifically determines only the starting die
for append writes, with subsequent writes following the ex-
isting mapping policy and being distributed across dies in
a round-robin fashion. Consequently, it does not impact the
performance of append writes. While it might be assumed
that repetitive small-sized overwrites to the same file block
could lead to write die collisions, these are typically merged
in the host buffer and infrequently flushed to the SSD. Thus,
even in these extremely rare cases, our approach does not
adversely affect write performance.

Yet, continual overwrites on a small number of file blocks
can quickly deplete free pages in certain dies, triggering GC
earlier in these dies. Simultaneously, these overwrites inval-
idate the overwritten pages, reducing the number of valid
pages. This decrease in valid pages necessitates fewer valid
page copies during GC of those dies, which not only lowers
the write amplification factor but also shortens the duration
of the GC process.

However, despite these conditions being rare, they are not
ideal, as they can lead to more frequent GCs in specific dies
and cause uneven wear across the dies. This uneven wear
might result in some dies wearing out prematurely, ultimately
shortening the lifespan of the SSD. The LBAs that are targets
of the frequent overwrites are likely to be evenly distributed
and allocated across multiple dies, minimizing the occurrence
of uneven wear. Nonetheless, should wear disparity become
significant, a mechanism to reallocate the page for that spe-
cific LBA to a different die for wear leveling would mitigate
the situation, albeit potentially at the expense of performance.

5 Evaluation

To assess the validity and efficacy of the proposed approach,
we carried out two evaluations. First, to validate the proposed
scheme, we emulated the write patterns as if the proposed
approach were applied in commodity SSDs, and measured the
read performance. Second, to examine the performance bene-
fits that applications can gain through the proposed scheme,
we implemented it in the ext4 file system and the NVMeVirt
SSD emulator.

5.1 Validation of Our Approach

To implement the proposed scheme, the SSD’s NVMe proto-
col stack must be modified to process the NVMe command
extension, and its page-to-die mapping policy should also
be adjusted to utilize the hints provided by the host through
the command extension. However, modifying actual SSD
firmware is not feasible. Therefore, to verify the validity of
our approach, we created write patterns that would result in
the same page-to-die mapping as the proposed approach un-
der file fragmentation and partial file overwrite situations. We
then measured the read performance of the files written in
this manner. For these experiments, we deferred file system
metadata writes to prevent them from interfering with die
allocation control and configured journaling to be performed
on a separate storage device. In these experiments, we used
NVMe-A, NVMe-B, SATA-A, and SATA-B, all of which have
regular die allocation granularity and stripe size, as depicted
in Fig. 8.

To evaluate the effectiveness of our proposed method under
fragmentation, we generated a fragmented file on an FOB-
state SSD and measured its read time. This file was formed
by appending 256 fragments, each sized according to the
SSD’s die allocation granularity, cumulating to an 8 MB file.
After writing each fragment of the die granularity size, if we
write enough data to the dummy file to fill the remaining
space of the SSD’s stripe before writing the next fragment,
all the fragments of the target file will be assigned to one
die, resulting in significant performance degradation, which
is denoted as Fragmentation in Fig. 11. Due to the smaller die
allocation granularities of the SATA SSDs, 256 appends were
insufficient to reach the desired 8 MB file size. To compensate,
we adjusted the final append’s size to ensure the total file size
was 8 MB. Note that, as a result, only the initial segment of
the file became fragmented in the SATA SSDs.

In order to emulate the proposed approach, we first wrote
a single fragment and then wrote an amount of garbage data
equal to the SSD’s stripe size to a dummy file. Subsequently,
we wrote the next fragment to the target file. Repeating this
process, as shown in Fig. 10, each fragment of the target
file would be located in the die immediately following the
die where the previous fragment was located. Thus, while
fragmentation occurs at the file system level, within the SSD,
flash pages would be sequentially assigned to consecutive
dies. We repeatedly read the written fragmented file while
measuring the throughput.

As illustrated in Fig. 11a, the read performance of frag-
mented files on NVMe SSDs degraded by 79% for NVMe-A
and 76% for NVMe-B, in comparison to that of contiguous
files. Since the file was appended 256 times in 32 KB sizes
on the NVMe SSDs, it was stored entirely on a single die.
This led to die-level collisions during most read operations.
We believe that NVMe-A’s larger performance decrease was
attributed to it having more dies than NVMe-B. Our approach

202 22nd USENIX Conference on File and Storage Technologies USENIX Association

0

100

200

300

400

500

0

500

1000

1500

2000

2500

NVMe-A NVMe-B SATA-A SATA-B

Th
ro

ug
hp

ut
 (M

B
/s

)
Contiguous Fragmentation Our Approach

(a) Append Write

0

100

200

300

400

500

0

500

1000

1500

2000

2500

NVMe-A NVMe-B SATA-A SATA-B

Th
ro

ug
hp

ut
 (M

B
/s

)

Contiguous Overwrites Our Approach

(b) Overwrite

Figure 11: Read performance of four kinds of SSDs for con-
tiguous files, fragmented files, and fragmented files under our
proposed approach, respectively.

mitigated this, with performance experiencing only a 2% de-
cline from that of the contiguous files.

In the case of the SATA SSDs, the performance degrada-
tion due to fragmentation was less severe than that of NVMe
because only the frontal part of the file was fragmented due
to their smaller die allocation granularity size. Although the
portions of the target files that were fragmented amounted to
12.5% for SATA-A and 50% for SATA-B, the performance ex-
perienced a degradation of 27% and 16%, respectively, when
compared to the contiguous cases. In both products, our ap-
proach reduced the performance degradation, achieving nearly
the same performance as accessing contiguous files, with only
a 1.2% difference.

To understand the misalignment in page-to-die mapping
caused by overwrites on a file, and the resultant performance
degradation from die-level collisions, we conducted exper-
iments on the four types of SSDs. First, we created a file.
Then, we performed 256 overwrites, each of 32 KB, from
the beginning to the end of the file. Finally, we read the file.
The size of the target file was again set to 8 MB. Between
consecutive overwrite operations, we wrote random data as
large as (stripe size - die allocation granularity).

After finishing the series of overwrite operations, the file’s
pages would be placed in a single die, which is denoted as
Overwrites on the graph in Fig. 11. Note that the file’s data
blocks will remain contiguous at the file system level even
after the overwrites are performed.

Fig. 11b shows the results for the overwrite experiments.
The performance degradation of the NVMe SSD was similar
to that of a fragmented file, showing a significant performance
drop to a quarter. However, when our approach was applied,

Table 2: Parameters used for NVMe emulation.

Capacity 60 GB
Host Interface PCIe Gen3 ×4

FTL L2P Mapping Page Mapping [1, 6]
Channel Count 4

SSD

Dies per Channel 2
Read/Write Unit Size 32 KB

Read Time 36 µs
Write Time 185 µs

Flash
Memory

[22]
Channel Speed 800 Mbps

the performance degradation was reduced to an average of
1% compared to the contiguous case. In the case of SATA
SSDs, their performance degradation was smaller due to the
difference in die allocation granularity mentioned earlier, but
they still showed 27% and 16% decrease in performance,
respectively. However, our approach was able to successfully
achieve a similar level of performance as before the overwrites
were executed. The efficacy of our approach was observed
for all four SSDs. The largest performance degradation under
our approach was merely 1.2% for SATA-B.

From this analysis, we confirmed that the proposed ap-
proach can effectively prevent the loss of read performance
even for heavily fragmented files and also successfully avoid
read performance degradation caused by overwrites.

5.2 Effectiveness for Application Workloads
To evaluate the holistic effectiveness of the proposed ap-
proach, we implemented the host-side part of the proposed
scheme both in the ext4 file system and the Linux ker-
nel’s NVMe device driver.1 This allowed applications to di-
rectly utilize our approach via the file system. On the SSD
side, we implemented our proposed approach’s write com-
mand extension and page-to-die allocation mechanism within
NVMeVirt.2 The parameters for NVMeVirt were sourced
from Table 2. The die allocation granularity for the emulated
SSD was set at 32 KB, and the stripe was set to 256 KB, which
mirrors the settings of NVMe-B. To mitigate the onset of frag-
mentation, the ext4 file system was adjusted in accordance
with the experimental configurations delineated in Section 3.

First, we executed experiments based on the configuration
depicted in Fig. 11 using the aforementioned implementa-
tion. In contrast to prior experiments using actual SSDs that
required meticulous control over dummy write sizes, the im-
plementation can sustain optimal die mapping even when
random offsets interleave between successive file block writ-
ings. This enabled us to extend our analysis beyond just the
worst-case conditions, incorporating cases more reflective of

1The source code of the NVMe driver and ext4 extension implemented in
the Linux kernel can be accessed at https://github.com/yuhun-Jun/k
ernel_5_15_DA.

2The SSD emulator enabled with our approach can be found at https:
//github.com/yuhun-Jun/nvmevirt_DA.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 203

https://github.com/yuhun-Jun/kernel_5_15_DA
https://github.com/yuhun-Jun/kernel_5_15_DA
https://github.com/yuhun-Jun/nvmevirt_DA
https://github.com/yuhun-Jun/nvmevirt_DA

0

0.2

0.4

0.6

0.8

1

Append
Worst

Overwrite
Worst

Append
Random

Overwrite
Random

SQLite fileserver fileserver
small

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Fragmentation (or Overwrites) Our Approach

Figure 12: Normalized read throughput of applications exe-
cuted with the implementation of our approach relative to that
with ideal file block and flash page placement.

real-world operations where intervening dummy writes be-
tween target file writes are of random sizes. Consequently,
instead of confining file blocks’ pages to a single die as in
earlier experiments, they were distributed randomly across all
dies after finishing the append or overwrite operations.

In the worst-case experiments, where all file blocks were
allocated to a single die due to fragmentation or overwriting,
the results shown in Fig. 12 aligned with those seen in Fig. 11.
We observed a significant drop in read performance, which
stood at only 19% of the normal throughput for fragmented
files and 18.2% for overwritten ones. Our proposed approach
successfully preserved the read performance after the append
and overwrite operations and only resulted in a 3.5% perfor-
mance dip for Append Worst and 2.3% for Overwrite Worst.

In the random disturbance experiments, where the size of
dummy file writes between target file writes varied randomly
at the 32 KB granularity, ranging from 32 KB to 32 MB, the
performance decreased to 59.4% of the ideal for the fragment-
ing append experiment and 62% for the overwrite experiment.
Our approach again successfully suppressed the read perfor-
mance degradation to 5.8% for Append Random and 1.6% for
Overwrite Random.

In addition to the hypothetical workloads, we analyzed the
effectiveness of the proposed approach with SQLite [29] and
Filebench’s fileserver workload [38].

We established a table and inserted 10,000 records, each
16 KB in size, with SQLite. Simultaneously, we appended
100 KB chunks repeatedly to a dummy file. Following this,
we executed a select query to retrieve all 10,000 records
from the resulting database file, which had a DoF of 5,005. As
depicted in the SQLite column of Fig. 12, the select query’s
performance was only 60% of the case where no disturb-
ing writes were performed. In contrast, under our approach,
the database file blocks were stored on consecutive dies as
intended even with the existence of the dummy writes. As a re-
sult, we observed a performance increase of 1.6 times, which
represents only a 3.5% drop compared to the case without

fragmentation.
The fileserver workload mimics the I/O patterns of a file

server. For this, it employs multiple threads executing file cre-
ation, random-sized append writes of up to 16 KB, sequential
reads on random files, and random file deletion on a file set
consisting of 10,000 files averaging 128 KB each. To induce
more severe file fragmentation, we modified the workload so
that it preallocates a file set of 10,000 128 KB files, each of
10 threads performs 32 KB size append writes on random
files from the file set for a duration of 1 minute and measured
the read performance. We also removed the file creation and
deletion from the workload. At the end of the experiment,
the average file size was around 600 KB, the average DoF
was 15.7, and the total file set size was 11 GB. The results
showed a read performance at 80% of the level seen when
files were stored in contiguous file blocks. This lesser per-
formance degradation compared to the previous experiments
was due to multiple threads reading simultaneously, increas-
ing the number of outstanding commands. This ensured that
most dies continually received operations, enhancing die-level
parallelism. Our approach was able to recover the sequential
read performance on fragmented files to 93% of the ideal file
placement condition.

The fileserver small shown in Fig. 12 is from an experi-
ment with settings identical to fileserver, but where the append
write size was set to 16 KB, smaller than the die granular-
ity. In this experiment, fragmentation further reduced read
performance. When writing 32 KB chunks, a single flash
page, of which size is 32 KB, can accommodate one write
request. However, when writing 16 KB chunks, two chunks
are combined and written to a single flash page. As a re-
sult, writes from two different files could be recorded on the
same page, meaning files of the same size ended up being
stored across more pages. This leads to a higher number of
flash page reads when reading the file. We confirmed that
this phenomenon also occurs when a file uses fallocate
to pre-allocate consecutive file system blocks and then fills
in data in small increments to make a contiguous file, espe-
cially if small writes for dummy files intervene. This serves as
further evidence that the fragmentation-induced performance
degradation is not directly due to fragmentation but rather an
issue of data placement within the SSD.

This experiment underscores the limitations of the pro-
posed approach. While it is designed to achieve consecutive
die allocation of file blocks during file fragmentation, it’s not
equipped to counteract the effects of small intervening writes,
leading to a file write potentially spanning multiple pages.
Consequently, its performance enhancement stood at 8.2%.
Addressing the flash page-level fragmentation issue, which
may also occur to contiguous files at file system level when
the write size is smaller than the flash page size, requires a
novel page allocation strategy to counteract that. Such a study
would go beyond the scope of this paper and points to an
interesting topic for future research.

204 22nd USENIX Conference on File and Storage Technologies USENIX Association

6 Conclusion

Contrary to early beliefs that file fragmentation does not im-
pact SSD performance, it has now been recognized that SSDs
can indeed suffer significant declines in read performance due
to file fragmentation. In this paper, we have shown that the
root cause of this performance degradation is not delays in the
kernel I/O path caused by request splitting, as previously de-
scribed in the literature. Instead, it arises from misalignments
in the SSD’s page-to-die mapping, which increase die-level
collisions. Furthermore, we demonstrated that such misalign-
ments can occur not only during file fragmentation but also
when files are overwritten.

To address this issue, we proposed an NVMe command ex-
tension that enables the file system to provide hints about the
write operation to SSDs, as well as a novel page-to-die map-
ping scheme considering the hints for the SSD controller. This
ensures that pages are allocated to contiguous dies based on
their order in the file. The resulting well-ordered page-to-die
mappings effectively prevent additional die-level collisions
caused by both file fragmentation and overwrites. Our evalua-
tion showed that, without resorting to costly defragmentation
or file rewriting, the proposed approach effectively suppresses
the read performance degradation for fragmented or overwrit-
ten files to a mere few percent.

Acknowledgements

We thank the anonymous reviewers and our shepherd, Peter
Desnoyers, for their valuable suggestions for this paper.

This research was supported by Samsung Electron-
ics, and by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT)
(2021R1A2C200497612).

References

[1] Amir Ban. Flash file system, April 4 1995. US Patent
5,404,485.

[2] Mingming Cao, Theodore Y Tso, Badari Pulavarty, Su-
parna Bhattacharya, Andreas Dilger, and Alex Tomas.
State of the art: Where we are with the Ext3 filesystem.
In Proceedings of the Ottawa Linux Symposium (OLS
05), pages 69–96. Citeseer, 2005.

[3] Feng Chen, Rubao Lee, and Xiaodong Zhang. Essential
roles of exploiting internal parallelism of flash memory
based solid state drives in high-speed data processing. In
Proceedings of the IEEE 17th International Symposium
on High Performance Computer Architecture (HPCA
11), pages 266–277. IEEE, 2011.

[4] Alex Conway, Ainesh Bakshi, Yizheng Jiao, William
Jannen, Yang Zhan, Jun Yuan, Michael A Bender, Rob

Johnson, Bradley C Kuszmaul, Donald E Porter, et al.
File systems fated for senescence? nonsense, says sci-
ence! In Proceedings of the 15th USENIX Conference on
File and Storage Technologies (FAST 17), pages 45–58,
2017.

[5] Alex Conway, Eric Knorr, Yizheng Jiao, Michael A Ben-
der, William Jannen, Rob Johnson, Donald Porter, and
Martin Farach-Colton. Filesystem aging:It’s more us-
age than fullness. In Proceedings of the 11th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage 19), 2019.

[6] Intel Corporation. Understanding the flash translation
layer (FTL) specification, 1998.

[7] Giel de Nijs, Ard Biesheuvel, Ad Denissen, and Niek
Lambert. The effects of filesystem fragmentation. In
Proceedings of the Linux Symposium, volume 1. Cite-
seer, 2006.

[8] BTRFS documentation. btrfs-filesystem(8). https:
//btrfs.readthedocs.io/en/latest/btrfs-fil
esystem.html.

[9] NVM Express. NVMe Base Specification Revision 1.4c.
2021.

[10] Windows 8 Help Forums. Optimize drives - defrag HDD
and TRIM SSD in Windows 8. https://www.eightf
orums.com/threads/optimize-drives-defrag-h
dd-and-trim-ssd-in-windows-8.8615/.

[11] Congming Gao, Liang Shi, Mengying Zhao, Chun Jason
Xue, Kaijie Wu, and Edwin H.-M. Sha. Exploiting paral-
lelism in I/O scheduling for access conflict minimization
in flash-based solid state drives. In Proceedings of the
Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–11. IEEE, 2014.

[12] Samsung Semiconductor Global. SSD performance
FAQs | support. https://semiconductor.samsung.
com/consumer-storage/support/faqs/03/.

[13] Sangwook Shane Hahn, Sungjin Lee, Cheng Ji, Li-Pin
Chang, Inhyuk Yee, Liang Shi, Chun Jason Xue, Jihong
Kim, et al. Improving file system performance of mo-
bile storage systems using a decoupled defragmenter. In
Proceedings of the USENIX Annual Technical Confer-
ence(ATC 17), pages 759–771, 2017.

[14] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo,
and Shuping Zhang. Performance impact and interplay
of SSD parallelism through advanced commands, allo-
cation strategy and data granularity. In Proceedings of
the international conference on Supercomputing (ICS
11), pages 96–107, 2011.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 205

https://btrfs.readthedocs.io/en/latest/btrfs-filesystem.html
https://btrfs.readthedocs.io/en/latest/btrfs-filesystem.html
https://btrfs.readthedocs.io/en/latest/btrfs-filesystem.html
https://www.eightforums.com/threads/optimize-drives-defrag-hdd-and-trim-ssd-in-windows-8.8615/
https://www.eightforums.com/threads/optimize-drives-defrag-hdd-and-trim-ssd-in-windows-8.8615/
https://www.eightforums.com/threads/optimize-drives-defrag-hdd-and-trim-ssd-in-windows-8.8615/
https://semiconductor.samsung.com/consumer-storage/support/faqs/03/
https://semiconductor.samsung.com/consumer-storage/support/faqs/03/

[15] Woopyo Jeong, Jae-woo Im, Doo-Hyun Kim, Sang-Wan
Nam, Dong-Kyo Shim, Myung-Hoon Choi, Hyun-Jun
Yoon, Dae-Han Kim, You-Se Kim, Hyun-Wook Park,
et al. A 128 Gb 3b/cell V-NAND flash memory with
1 Gb/s I/O rate. IEEE Journal of Solid-State Circuits,
51(1):204–212, 2015.

[16] Cheng Ji, Li-Pin Chang, Sangwook Shane Hahn,
Sungjin Lee, Riwei Pan, Liang Shi, Jihong Kim, and
Chun Jason Xue. File fragmentation in mobile devices:
Measurement, evaluation, and treatment. IEEE Transac-
tions on Mobile Computing, 18(9):2062–2076, 2018.

[17] Cheng Ji, Li-Pin Chang, Liang Shi, Chao Wu, Qiao Li,
and Chun Jason Xue. An empirical study of file-system
fragmentation in mobile storage systems. In Proceed-
ings of the 8th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 16), 2016.

[18] Yuhun Jun, Jaehyung Park, Jeong-Uk Kang, and
Euiseong Seo. Analysis and mitigation of patterned
read collisions in flash SSDs. IEEE Access, 10:96997–
97009, 2022.

[19] Dawoon Jung, Jeong-Uk Kang, Heeseung Jo, Jin-Soo
Kim, and Joonwon Lee. Superblock FTL: A superblock-
based flash translation layer with a hybrid address trans-
lation scheme. ACM Transactions on Embedded Com-
puting Systems, 9(4):1–41, 2010.

[20] Saurabh Kadekodi, Vaishnavh Nagarajan, and Gre-
gory R Ganger. Geriatrix: Aging what you see and
what you don’t see. a file system aging approach for
modern storage systems. In Proceedings of the 2018
USENIX Annual Technical Conference (ATC 18), pages
691–704, 2018.

[21] Jeong-Uk Kang, Jin-Soo Kim, Chanik Park, Hyoungjun
Park, and Joonwon Lee. A multi-channel architecture
for high-performance NAND flash-based storage system.
Journal of Systems Architecture, 53(9):644–658, 2007.

[22] Sang-Hoon Kim, Jaehoon Shim, Euidong Lee,
Seongyeop Jeong, Ilkueon Kang, and Jin-Soo Kim.
NVMeVirt: A versatile software-defined virtual NVMe
device. In Proceedings of the 21st USENIX Conference
on File and Storage Technologies (FAST 23), Santa
Clara, CA, February 2023.

[23] Aneesh Kumar KV, Mingming Cao, Jose R Santos, and
Andreas Dilger. Ext4 block and inode allocator im-
provements. In Proceedings of the Linux Symposium,
volume 1, 2008.

[24] Linux man page. blktrace(8). https://linux.die.
net/man/8/blktrace.

[25] Linux man page. e4defrag(8). https://man7.org/l
inux/man-pages/man8/e4defrag.8.html.

[26] Linux man page. filefrag(8). https://man7.org/lin
ux/man-pages/man8/filefrag.8.html.

[27] Linux man page. xfs_fsr(8): filesystem reorganizer for
XFS. https://man7.org/linux/man-pages/man8/
xfs_fsr.8.html.

[28] Avantika Mathur, Mingming Cao, Suparna Bhat-
tacharya, Andreas Dilger, Alex Tomas, and Laurent
Vivier. The new Ext4 filesystem: current status and
future plans. In Proceedings of the Linux symposium,
volume 2, pages 21–33. Citeseer, 2007.

[29] SQLite Home Page. Sqlite. https://sqlite.org/i
ndex.html.

[30] Debian Man pages. defrag.f2fs(8) — f2fs-tools — de-
bian testing. https://manpages.debian.org/test
ing/f2fs-tools/defrag.f2fs.8.en.html.

[31] Jonggyu Park and Young Ik Eom. Fragpicker: A new
defragmentation tool for modern storage devices. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles (SOSP 21), pages 280–
294, 2021.

[32] Jonggyu Park and Young Ik Eom. File fragmentation
from the perspective of I/O control. In Proceedings of
the 14th ACM Workshop on Hot Topics in Storage and
File Systems (HotStorage 22), pages 126–132, 2022.

[33] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS:
The linux B-tree filesystem. ACM Transactions on Stor-
age, 9(3):1–32, 2013.

[34] SATA-IO. Serial ATA Revision 3.0, 2009.

[35] Takashi Sato. Ext4 online defragmentation. In Proceed-
ings of the Linux Symposium, volume 2, pages 179–86.
Citeseer, 2007.

[36] Chang Siau, Kwang-Ho Kim, Seungpil Lee, Katsuaki
Isobe, Noboru Shibata, Kapil Verma, Takuya Ariki, Ja-
son Li, Jong Yuh, Anirudh Amarnath, Qui Nguyen,
Ohwon Kwon, Stanley Jeong, Heguang Li, Hua-Ling
Hsu, Tai-yuan Tseng, Steve Choi, Siddhesh Darne,
Pradeep Anantula, Alex Yap, Hardwell Chibvongodze,
Hitoshi Miwa, Minoru Yamashita, Mitsuyuki Watanabe,
Koichiro Hayashi, Yosuke Kato, Toru Miwa, Jang Yong
Kang, Masatoshi Okumura, Naoki Ookuma, Muralikr-
ishna Balaga, Venky Ramachandra, Aki Matsuda, Swa-
roop Kulkani, Raghavendra Rachineni, Pai K. Man-
junath, Masahito Takehara, Anil Pai, Srinivas Rajen-
dra, Toshiki Hisada, Ryo Fukuda, Naoya Tokiwa,
Kazuaki Kawaguchi, Masashi Yamaoka, Hiromitsu

206 22nd USENIX Conference on File and Storage Technologies USENIX Association

https://linux.die.net/man/8/blktrace
https://linux.die.net/man/8/blktrace
https://man7.org/linux/man-pages/man8/e4defrag.8.html
https://man7.org/linux/man-pages/man8/e4defrag.8.html
https://man7.org/linux/man-pages/man8/filefrag.8.html
https://man7.org/linux/man-pages/man8/filefrag.8.html
https://man7.org/linux/man-pages/man8/xfs_fsr.8.html
https://man7.org/linux/man-pages/man8/xfs_fsr.8.html
https://sqlite.org/index.html
https://sqlite.org/index.html
https://manpages.debian.org/testing/f2fs-tools/defrag.f2fs.8.en.html
https://manpages.debian.org/testing/f2fs-tools/defrag.f2fs.8.en.html

Komai, Takatoshi Minamoto, Masaki Unno, Susumu
Ozawa, Hiroshi Nakamura, Tomoo Hishida, Yasuyuki
Kajitani, and Lei Lin. A 512Gb 3-bit/cell 3D flash
memory on 128-wordline-layer with 132MB/s write per-
formance featuring circuit-under-array technology. In
Proceedings of the International Solid-State Circuits
Conference (ISSCC 19), pages 218–220. IEEE, 2019.

[37] Keith A Smith and Margo I Seltzer. File system ag-
ing—increasing the relevance of file system benchmarks.
In Proceedings of the ACM SIGMETRICS international
conference on Measurement and modeling of computer
systems (SIGMETRICS 97), pages 203–213, 1997.

[38] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A flexible framework for file system bench-
marking. USENIX; login, 41(1):6–12, 2016.

[39] Micron Technology. Should you defrag an SSD? https:
//www.crucial.com/articles/about-ssd/shoul
d-you-defrag-an-ssd.

[40] Micron Technology. Tn-29-28: Memory management
in NAND flash arrays overview. 2005.

[41] Tenforums. Optimize and defrag drives in Windows 10.
https://www.tenforums.com/tutorials/8933-o
ptimize-defrag-drives-windows-10-a.html.

[42] Guangyu Zhu, Jeongeun Lee, and Yongseok Son. An ef-
ficient and parallel file defragmentation scheme for flash-
based SSDs. In Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing (SAC 22), pages
1208–1211, 2022.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 207

https://www.crucial.com/articles/about-ssd/should-you-defrag-an-ssd
https://www.crucial.com/articles/about-ssd/should-you-defrag-an-ssd
https://www.crucial.com/articles/about-ssd/should-you-defrag-an-ssd
https://www.tenforums.com/tutorials/8933-optimize-defrag-drives-windows-10-a.html
https://www.tenforums.com/tutorials/8933-optimize-defrag-drives-windows-10-a.html

Artifact Appendix

Abstract
The provided artifacts consist of shell scripts designed to
replicate the experimental results introduced in the paper.
These experiments were aimed at analyzing read performance
degradation caused by fragmentation and assessing the ef-
ficacy of the proposed approach. Additionally, the artifacts
include a customized NVMeVirt implementation featuring
the proposed page placement scheme for the FTL. This is
complemented by a modified Linux kernel equipped with the
necessary file system and NVMe device driver support for the
customized NVMeVirt.

Scope
These artifacts include shell scripts that enable the replication
of results presented in Section 3, as depicted in Figs. 3, 4, 7,
and 8. The shell scripts for demonstrating the effectiveness
of the proposed approach, as illustrated in Fig. 11, are also
included in the artifacts.

Furthermore, the artifacts comprise a customized
NVMeVirt utilizing an FTL that implements the proposed
page placement scheme. This is complemented by the
modified Linux kernel, which is also a part of the artifacts.
It provides NVMeVirt with the page placement hints. The
shell scripts for conducting experiments on the workloads
used in Section 5.2 are provided as well. These scripts were
instrumental in obtaining the experimental results showcased
in Fig. 12.

Contents
The shell scripts below run the experiments introduced in
Section 3 and Section 5.1. In the file names, the * is replaced
with the target device name, such as NVMe_A or SATA_B.

varyingdof_*.sh: These shell scripts are for the experi-
mentation analyzing the read time change according to the
varying DoF of files stored on NVMe and ramdisk, as shown
in Figs. 3 and Fig. 4, respectively.
interface_*.sh: These measure the time taken to read 8

MB of data from the target SSD, depending on the unit size
of the read operation. This was used to produce the results
illustrated in Fig. 7.
alignment_*.sh: These measure the throughput of read

operations while varying the interval between starting points
of consecutive operations, as shown in Fig. 8.
pseudo_(append|overwrite)_*.sh: These shell

scripts mimic the write patterns for three cases: when files are
written contiguously, when written in a fragmented manner,
and when written according to the write patterns that occur in
our approach. It then measures the read performance for each
of these cases. This was used to produce the results introduced
in Fig. 11.

The following shell scripts are intended for the experiments
explained in Section 5.2.
hypothetical_(append|overwrite).sh: These

shell scripts measure the read throughput for a file after
performing a series of append write or overwrite operations
to it. The append and overwrite operations can be configured
to follow the worst-case pattern or the random pattern. The
results of executing these on NVMeVirt are shown in Fig. 12.
sqlite.sh: This was used to obtain the experimental re-

sults shown in Fig. 12. It triggers write operations to create a
fragmented database file when running SQLite. Subsequently,
it performs select operations through SQLite on the frag-
mented database file and measures the performance.
fileserver.sh: This was also used to obtain the experi-

mental results shown in Fig. 12. This shell script measures
the performance in circumstances where the files generated
by Filebench’s fileserver workload become fragmented.
fileserver_small.sh: This script is similar to file-

server.sh, except that the append operations are performed
with a size smaller than the flash memory page size.

The detailed instructions can be found in the README.md
file located in the GitHub repository.

Hosting
The GitHub repository for the artifacts is https://github
.com/yuhun-Jun/fast24_ae. The results introduced in this
paper were produced from the commit version 89ba3a9 of
the main branch.

Requirements
The shell scripts for analyzing fragmentation-induced per-
formance degradation must be configured according to the
internal parameters of the target SSD. The provided artifacts
are set up for the devices introduced in Table 2. For other
SSDs, settings including the write offset must be appropri-
ately adjusted.

For the customized NVMeVirt to function properly, the sup-
port from OS Kernel’s file system and NVMe driver is manda-
tory. Therefore, it operates correctly only when executed on
the provided Linux Kernel. Furthermore, as NVMeVirt uti-
lizes main memory to emulate storage space, stable experi-
mental outcomes require that the workload operates exclu-
sively within a single NUMA domain. This approach avoids
cross-NUMA domain memory accesses, which can signifi-
cantly vary in execution time and potentially affect the con-
sistency of results.

208 22nd USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/yuhun-Jun/fast24_ae
https://github.com/yuhun-Jun/fast24_ae

	Introduction
	Background and Motivation
	Old Wisdom on File Fragmentation
	File Fragmentation in SSD-Era
	Internals of Modern Flash SSDs

	Analysis of File Fragmentation
	Impact Caused by Request Splitting
	Page Misalignment from Fragmentation

	Our Approach
	Evaluation
	Validation of Our Approach
	Effectiveness for Application Workloads

	Conclusion

