
www.usenix.org	   A p r i l 20 14   Vo l .  3 9,  N o.  2  21

sysadmin

The Case of the Clumsy Kernel
B r e n d a n  G r e gg

Brendan Gregg is the lead per­
formance engineer at Joyent, 
where he analyzes performance 
and scalability at any level of the 
software stack. He is the author 

of the book Systems Performance (Prentice Hall, 
2013) and is the recipient of the USENIX 2013 
LISA Award for Outstanding Achievement in 
System Administration. He was previously a 
performance lead and kernel engineer at Sun 
Microsystems, where he developed the ZFS 
L2ARC, and later Oracle. He has invented and 
developed performance analysis tools, which 
are included in multiple operating systems, 
and has recently developed performance 
visualizations for illumos and Linux kernel 
analysis. brendan.gregg@joyent.com

A ll benchmarks are wrong until proven otherwise. Benchmarking is 
an amazingly error-prone activity, with results commonly misinter-
preted and wrong conclusions drawn. However, every now and then, 

a benchmark takes me by surprise and not only is correct but also identifies a 
legitimate issue. This is a story of debugging a benchmark.

A Joyent customer had benchmarked Node.js connection rates and found a competitor had 
five times higher throughput than we did. Because we’re supposed to be the “High Perfor-
mance Cloud,” as well as the stewards of Node.js, this was more than a little embarrassing. I 
was asked to troubleshoot and determine what was happening: were the results misleading, 
or was there a real performance issue? We hoped that the problem was something simple, 
like the benchmark system hitting a CPU limit.

Our support staff had already begun collecting a problem statement, which included check-
ing which software versions were used. This process can solve some issues immediately, 
without any hands-on analysis. The benchmark was Apache Bench (ab) [1], measuring the 
rate of HTTP connections to a simple Node.js program from 100 simulated clients. This was 
about as simple as it gets.

Some factors can make these investigations very hard. The worst I deal with involve net-
working between multiple hardware-virtualized guests, which means trekking between 
guest and host kernels via a hypervisor, and where those kernels are entirely different (Linux 
and illumos [2]). In this case, it was on a single host via localhost, and in an OS-virtualized 
guest. These factors took the physical network components and lower-level network stack 
completely off the investigation table and left only one kernel to study (illumos). This should 
be easy, I thought.

The USE Method
I created a server instance and ran the same benchmark that the customer had. Benchmarks 
like ab run as fast as they can and are usually limited by some systemic bottleneck. The 
utilization, saturation, and errors (USE) method is a good way to identify these bottlenecks 
[3], and I performed it while the benchmark was executing. The USE method involves check-
ing physical system resources: CPUs, memory, disks, network, as well as resource controls. 
I discovered that CPUs, which I expected to be the limiter for this test, were largely idle and 
also were not driven near the cloud-imposed limit. The USE method often gives me quick and 
early wins, but not in this case.

By this point, I had run ab a few times and noticed that its results matched what the customer 
had seen: the connection rate averaged around 1000 per second. Because I don’t trust any-
thing any benchmark software tells me, ever, I looked for a second way to verify the result 
and to get more information about it. Running on SmartOS [4], I used “netstat -s 1” to print 
per-second summaries, which also shows per-second variation (on Linux, I would have used 
“sar -n TCP 1”).



22    A p r i l 20 14   Vo l .  3 9,  N o.  2 	 www.usenix.org

sysadmin
The Case of the Clumsy Kernel

$ netstat -s 1 | grep ActiveOpen

    tcpActiveOpens  =728004   tcpPassiveOpens  =726547

    tcpActiveOpens  =   4939   tcpPassiveOpens  =   4939

    tcpActiveOpens  =   5849   tcpPassiveOpens  =   5798

    tcpActiveOpens  =   1341   tcpPassiveOpens  =   1292

    tcpActiveOpens  =   1006   tcpPassiveOpens  =   1008

    tcpActiveOpens  =    872   tcpPassiveOpens  =    870

    tcpActiveOpens  =    932   tcpPassiveOpens  =    932

    tcpActiveOpens  =    879   tcpPassiveOpens  =    879

[…]

The first line of output is the summary since boot, followed by 
per-second summaries. What caught my eye was the change 
in connection rate: starting around 5000 per second, and then 
slowing down after two seconds. This was not only a great lead, 
it also rang a bell. I remembered that this type of benchmarking 
can hit a problem involving TCP TIME_WAIT. This state occurs 
when the SYN packet heralding a new connection is misidenti-
fied as belonging to an old connection and so is dropped by the 
kernel. My test for this issue is to see how many connections 
are stuck in TIME_WAIT, and whether the client’s ephemeral 
port range is exhausted—which causes every new connection 
to clash with an old one. I used netstat and saw that there were 
only around 11,000 connections from a possible range of about 
33,000. So much for that theory.

What else might be happening after two seconds? I drew a blank.

Thread State Analysis
My other go-to methodology is the thread state analysis (TSA) 
method [5], where thread run time is divided into states, and 
then you investigate the largest states. On Linux, I’d perform 
this using tools including pidstat. On SmartOS, I used prstat 
[6]. When ab was running at 5000 connections per second, this 
showed that a single thread in node (the runtime process for 
Node.js) was on-CPU 100% of the time. This was the kind of 
CPU limit I had expected to hit. When ab slowed down, prstat 
showed:

The node thread was now spending 81% of its time in the sleep 
(SLP) state, meaning the thread is blocked waiting for some 
event to complete, typically I/O. Were this performed between 
two remote hosts on a network, I would guess that it was waiting 
for network packet latency. But this was a localhost test!

One way to investigate the sleep state is to trace system calls 
and their latency. I may find that the sleep time is during read(), 
or accept(), or recv(), and I can investigate each accordingly. On 
Linux, I’d use one of the (in-development) tracing tools, which 
include ktap, SystemTap, dtrace4linux, and perf, or, if I didn’t 
mind the overhead, strace. Because this was SmartOS, I used 
DTrace and quickly found that the sleep time was in the portfs() 
system call. The user-level stacks that led to portfs() told me 
little: the threads were polling for events.

portfs() is part of the event ports implementation, which has a 
similar role to epoll on Linux: an efficient way to wait on mul-
tiple file descriptors. Being blocked on portfs() meant we were 
blocked on something else, but we didn’t know what, and it would 
be a bit of work just to dig out the right file descriptors.

This was looking like a dead end. Imagine you have a thread 
blocked polling on portfs(), or on Linux, epoll_wait(). What do 
you investigate next?

Tracers can lead you to think in a thread-oriented manner. If 
the thread time between A and B is of interest, then you look 
for events that happened between A and B for that thread, and 
measure their relative times. But what if the thread does nothing 
between A and B, as was the case here? Time has been spent on 
something else in the kernel—something mysterious and likely 
involving other threads. There is no easy way to correlate this 
activity, let alone know what activity or threads to trace to in the 
first place.

Walking the Wakeups
There is a way, however, and it’s one that I’ve been using more 
and more of late. My approach is to trace the kernel as it per-
forms wakeups: where one thread wakes up another sleeping 
thread. This provides correlation and context: the stack trace of 
the waker.

$ prstat -mLc 1

  PID	 USERNAME	 USR	 SYS	 TRP	 TFL	 DFL	 LCK	 SLP	 LAT	 VCX	 ICX	 SCL	SIG	 PROCESS/LWPID

63037	root	  15	 3.6	 0.0	 0.0	 0.0	 0.0	 81	 0.2	 268	 26	  8K	   0	 node/1

12927	root	 2.4	 8.3	 0.0	 0.0	 0.0	 0.0	 89	 0.7	  1K	 42	 16K	  0	 ab/1

[...]



www.usenix.org	   A p r i l 20 14   Vo l .  3 9,  N o.  2  23

sysadmin
The Case of the Clumsy Kernel

I used cv_wakeup_slow.d [7], modified to trace node processes. 
This is a DTrace script I wrote earlier, which shows the stack 
trace of the threads that woke up a specified target (the cv is 
for conditional variable, which is how the sleep and wake up is 
implemented by the kernel). I ran it with a 10 ms threshold and 
caught:

# ./cv_wakeup_slow.d 10

[…]

 23  12326    sleepq_wakeone_chan:wakeup 63037 1 0 0 sched… 46 ms

          genunix c̀v_signal+0xa0

          genunix`port_send_event+0x131

          genunix`pollwakeup+0x86

          sockfs̀ so_notify_newconn+0x81

          sockfs̀ so_newconn+0x159

          ip`tcp_newconn_notify+0x198

          ip`tcp_input_data+0x1b4a

          ip`squeue_drain+0x2fa

          ip`squeue_enter+0x28e

          ip`tcp_input_listener+0x1197

          ip`squeue_drain+0x2fa

          ip`squeue_enter+0x28e

          ip`ip_fanout_v4+0xc7c

          ip`ire_send_local_v4+0x1d1

          ip c̀onn_ip_output+0x190

          ip`tcp_send_data+0x59

          ip`tcp_timer+0x6b2

          ip`tcp_timer_handler+0x3e

          ip`squeue_drain+0x2fa

          ip`squeue_worker+0xc0

This stack trace shows a thread slept for 46 ms and was woken 
up by a TCP packet. Interpreting latency depends on application 
needs and expectations for the target. In this case, I was expecting 
the benchmark to stay on-CPU as much as possible, so any non-
zero sleep time was worth investigating. My choice of a 10-ms 
threshold was intended to filter out noise from occasional sys-
temic perturbations, such as interrupts preempting the bench-
mark. These perturbations should be fast (sub-millisecond), and 
unlikely to cause the 81% sleep time I saw earlier. But if a 10-ms 
threshold came up empty-handed, I’d reduce that to 1 ms, and, if 
need be, to 0 ms so I could see all events.

Looking down the stack shows tcp_timer() calling tcp_send_
data(). Huh? I took a quick look at the tcp_timer() code, which 
largely handles TCP retransmission. Retransmits?

I checked the retransmission rate compared to the connection 
rate using “netstat -s 1” (on Linux, use “sar -n TCP -n ETCP 1”). 
When the connection rate from ab was high, the retransmit rate 
was zero. But, when retransmits began to occur, the connection 
rate slowed down. This correlation matched what I’d found with 
the wakeup tracing: the benchmark was getting blocked waiting 
on retransmits.

But…retransmits? Over localhost? How is this possible?

Retransmits can be a sign of a poor physical network, including bad 
wiring, cables not plugged in properly, an overloaded network, 
TCP incast, and other reasons. But this was localhost, where the 
kernel is passing packets to itself, with no networks (reliable or 
otherwise) involved. I mentioned this to a colleague, Robert, and 
we were amused by the mental image of a clumsy kernel, drop-
ping packets as it passed them from one hand to the other.

We did remember some legitimate reasons why a kernel might 
drop packets (firewalls, out of memory, etc.), which could lead 
to retransmits. And there was always the possibility of bugs. It 
wouldn’t be the first localhost bug I’ve seen, and I shuddered at 
the thought of finding another.

I noticed something else about the retransmit rates: they seemed 
to hit a ceiling of 100 per second. ab was simulating 100 clients, 
and the TCP retransmit interval was one second. This fit: each 
client could do at most one retransmit per second, because it 
would then spend an entire second blocked on the retransmit. As 
an experiment, I set the ab client count to 333, and, sure enough, 
the retransmits moved to a ceiling of 333 per second.

I used another DTrace script I had written earlier [8] to trace 
retransmit packets and show their TCP state. This script 
quickly tells me whether the retransmitted packets were from 
an established connection, or from a different stage of a TCP 
session. Such kernel state information is not visible on the wire 
(or “wire” in quotes, as this is localhost), so it cannot be observed 
directly using packet sniffers. I hesitate to use packet sniffers for 
this kind of investigation anyway, because their overheads can 
change the performance of the issue I’m trying to debug.

# ./tcpretranssnoop_sdc6.d

TIME	 TCP_STATE	 SRC	 DST	 PORT

2014 Jan  4 01:31:31	 TCPS_SYN_SENT	 127.0.0.1	 127.0.0.1	 3000

2014 Jan  4 01:31:31	 TCPS_SYN_SENT	 127.0.0.1	 127.0.0.1	 3000

2014 Jan  4 01:31:31	 TCPS_SYN_SENT	 127.0.0.1	 127.0.0.1	 3000

[…]

The output showed that the sessions were in the SYN_SENT 
state, so the packets were likely SYNs for establishing new 
connections. I’ve seen this before, when the TCP backlog queue 
is full due to saturation, and the kernel starts dropping SYN 
packets. This can be identified from “netstat -s” and the tcpLis-
tenDrop and tcpListenDropQ0 counters on SmartOS (on Linux, 
“SYNs to LISTEN sockets dropped” and “times the listen queue 
of a socket overflowed”). I was kicking myself for not checking 
these sooner—I should have suspected this problem for this type 
of benchmark.

However, these drop counters were zero. Another dead end.

Given a TCP-related issue, I looked at the remaining counters 
from the “netstat -s” output to study TCP more carefully, and I 



24    A p r i l 20 14   Vo l .  3 9,  N o.  2 	 www.usenix.org

sysadmin
The Case of the Clumsy Kernel

saw that the rate of tcpOutRsts was consistent with tcpRetrans-
Segs. tcpOutRsts indicates TCP RST (reset) packets. Now I had 
a new factor to investigate: RSTs.

TCP Resets
I was curious to see packet-by-packet sequences, to see if there 
was a direct relationship between the RSTs and retransmits. 
This may also reveal other packet types that are involved. To 
do this, I could trace all packets or use a packet-capturing 
tool. I decided to try the latter to begin with, despite the higher 
overheads, because these tools typically do a good job of present-
ing packet and protocol details, which can help reveal patterns 
across multiple packets. I could do the same with a tracing tool, 
but in that case I’d need to code that presentation myself, which 
takes time. I tried snoop (on Linux, tcpdump) to check how the 
RSTs occurred, and I saw that they were happening in response 
to the SYNs. Why would we RST a SYN? The port was open. Was 
this TIME_WAIT?

Another DTrace script from my toolkit [9] showed whether pack-
ets were arriving during TIME_WAIT:

The output showed hundreds of packets per second. This was 
the TIME_WAIT issue I had thought of at the very beginning, 
although manifesting in a different way. Checking the ephemeral 
ports from the snoop output and revisiting rate counters from 
netstat, I could see that each of the 100 ab clients would aver-
age two successful connections per second and then block on 
the third. This left two connections per client in TIME_WAIT 
for the default of 60 seconds. So, for each second, there would be 
about 2 x 100 x 60 = 12,000 connections still around in TIME_
WAIT, similar to the 11,000 connections I had seen earlier, 
which I had thought was too few to matter. Picking an ephemeral 
port from a range of about 33,000 when 11,000 were in use was 
also consistent with encountering one clash out of every three 
attempts. A final detail also fell into place: the “fast” rate of 5000 
connections per second, seen in the earlier prstat output, lasted 
about two seconds. That was the time it took to reach approxi-
mately 11,000 connections in TIME_WAIT.

To find the kernel code that was causing this problem, I could 
follow the stack traces that led to the RSTs. I remembered that 
I could do this using the DTrace TCP provider I had developed 
while at Sun, although I couldn’t remember my own syntax! A 
quick Internet search found my documentation, and I quickly 
had the stack trace responsible.

Unfortunately, the stack trace didn’t look that special, with 
tcp_send_data() called by tcp_xmit_ctl(), which can happen 
for many different reasons. Fortunately, I found a gift from the 
kernel engineer who wrote tcp_xmit_ctl(): its first argument 
was a character pointer to a string explanation. Such strings are 
trivial to trace, and I found that it contained the text “TCPS_
SYN_SENT-Bad_seq”. This took me straight to the problem 
code, which was…familiar.

Too familiar. I started remembering more about the last time 
I had debugged this: we had laughed about how silly it seemed 
to have 60 seconds of TIME_WAIT for localhost connections 
and had said that that should be fixed. In fact, it had been fixed 
(thank you, Jerry!), but the customer had benchmarked on a 
system with an older illumos kernel. Linux has a different way 
to recycle sessions in TIME_WAIT and didn’t suffer this issue 
in the first place. This was the reason that the competitor, on 
Linux, was always running five times faster, without any slow-
down from retransmits.

The actual problem originates from the TCP specification: 16-bit 
port numbers and a lengthy TIME_WAIT. Sessions are identi-

fied by a four-tuple: client-IP:client-port:server-IP:server-
port (or a three-tuple, if the server IP is not included). 
Because this benchmark only has one client IP, one server 
IP, and one server port, the only variable to uniquely identify 
connections is the 16-bit client ephemeral port (which by 
default is restricted to 32,768–65,535, so only 15-bits). After 
(only) thousands of connections, the chances of colliding 

with an old session in TIME_WAIT become great.

So the final verdict for the customer benchmark: there was a 
real performance issue, and the results were misleading. It was 
thought that our competitor was five times faster, but this wasn’t 
the case for real production workloads. Node.js typically handles 
thousands of clients making new connections every second, not 
one client making thousands of new connections every second. 
The workaround for the benchmark was to use multiple real 
clients (not simulated ab clients), which brought the connec-
tion rate to around 5000 per second and steady, the same as our 
competitor, for this workload. The use of HTTP keep-alives was 
another workaround, as it avoided creating new connections 
altogether.

In the end, I had amazed myself: moving directly from thread 
time in the sleep state to TCP retransmits, by tracing which 
thread woke up our sleeping thread. What if I had stopped at 
pollsys() and not drilled down this far? That’s what had hap-
pened last time I investigated: I had eventually run “netstat -s” 
and studied all counters, hoping for a clue, and found it. Hav-
ing solved the same problem twice, using two very different 
approaches, gives me a rare opportunity to compare my own 
debugging techniques. I much prefer the direct approach that I 
used here—drilling down on latency and walking the wakeups.

# ./tcptimewait.d

TIME	 TCP_STATE	 SRC-IP	 PORT	 DST-IP	 PORT	 FLAGS

2014 Jan  4 01:56:16	 TCPS_TIME_WAIT	 127.0.0.1	54170	 127.0.0.1	3000  2

2014 Jan  4 01:56:16	 TCPS_TIME_WAIT	 127.0.0.1	50427	127.0.0.1	3000  2

2014 Jan  4 01:56:16	 TCPS_TIME_WAIT	 127.0.0.1	37854	127.0.0.1	3000  2

[...]



www.usenix.org	   A p r i l 20 14   Vo l .  3 9,  N o.  2  25

sysadmin
The Case of the Clumsy Kernel

References
[1] ab - Apache HTTP server benchmarking tool:  
http://httpd.apache.org/docs/2.2/programs/ab.html.

[2] illumos: http://illumos.org.

[3] USE Method: http://www.brendangregg.com 
/usemethod.html.

[4] SmartOS: http://smartos.org.

[5] B. Gregg, Systems Performance: Enterprise and the Cloud 
(Prentice Hall, 2013).

[6] prstat: http://illumos.org/man/1m/prstat.

[7] cv_wakeup_slow.d: https://github.com/brendangregg 
/dtrace-cloud-tools/blob/master/system/cv_wakeup_slow.d.

[8] tcpretranssnoop_sdc6.d: https://github.com/brendangregg 
/dtrace-cloud-tools/blob/master/net/tcpretranssnoop_sdc6.d.

[9] tcptimewait.d: https://github.com/brendangregg 
/dtrace-cloud-tools/blob/master/net/tcptimewait.d.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages to help you 
 promote your organization, programs, and products to our membership and con ference attendees. 

Whether you are interested in sales, recruiting top talent, or branding to a highly  targeted audience, we 
offer key outreach for our sponsors. To learn more about  becoming a  USENIX Supporter, as well as our 
multiple conference sponsorship packages, please contact  sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence and innovation 
in neutral forums. Sponsorship of USENIX keeps our  conferences affordable for all and supports scholar-
ships for students, equal representation of women and minorities in the computing research community, 
and the development of open source technology.

Learn more at:
www.usenix.org/supporter


