
6    F EB RUA RY 20 1 5  VO L . 4 0, N O. 1 	 www.usenix.org

FILE SYSTEMS AND STORAGECounter Stacks and the Elusive Working Set
J A K E W I R E S , S T E P H E N I N G R A M , Z A C H A R Y D R U D I , N I C H O L A S J . A . H A R V E Y ,
A N D A N D R E W W A R F I E L D

Counter stacks are a compact and effective data structure for sum-
marizing access patterns in memory and storage workloads. They are
a stream abstraction that efficiently characterizes the uniqueness of

an access stream over time, and are sufficiently low overhead as to allow both
new approaches to online decision-making (such as replacement or prefetching
policies) and new applications of lightweight trace transmission and archiving.

A fascinating shift is currently taking place in the composition of datacenter memory hier-
archies. The advent of new, nonvolatile memories is resulting in larger tiers of fast random-
access storage that are much closer to the performance characteristics of processor caches
and RAM than they are to traditional bulk-capacity storage on spinning disks. There are two
very important consequences to this trend:

The I/O gap is narrowing. Historically, systems designers have been faced with a vast
and progressively widening gulf between the access latencies of RAM (~10 ns) and that of
spinning disks (~10 ms). Storage-class memories (SCMs) are changing this by providing
large, nonvolatile memories that are more similar to RAM than disk from a performance
perspective.

Memory hierarchies are stratifying. SCMs are being built using different types of media,
including different forms of NAND flash and also newer technologies such as Memristor and
PCM. These memories also attach to the host over different interfaces, including traditional
disk (SAS/SATA), PCIe/NVMe, and even the DIMM bus on which RAM itself is connected.
These offerings have a diverse range of available capacities and performance levels, and a
correlated range of prices. As a result, the memory hierarchy is likely to deepen as it becomes
sensible to compose multiple types of SCM to balance performance and cost.

The result of these two changes is that there is now a greater burden on system designers
to effectively design software to both determine the appropriate sizes and to manage data
placement in hierarchical memories. This is especially true in storage systems, where the
I/O gap has been especially profound: Fast memories used for caching data have historically
been small, because they have been built entirely in RAM. As such, relatively simple heuris-
tics (such as LRU and extensions such as ARC and CAR) could be used to keep a small and
obvious set of hot data available for speedy access. The availability of larger fast memories,
such as SCM-based caches, moves cached accesses farther out into the “tail” of the access
distribution, where both sizing and prediction are much more formidable challenges. Put
another way: a storage system has to work a lot harder to get value out of fast memories as it
moves further into the tail of an access distribution.

We faced exactly these problems in the design of an enterprise storage system that attempts
to balance performance and cost by composing a variety of memory types into a single coher-
ent file system. One challenge we encountered early on involved understanding exactly how
much high-performance storage is required to service a given workload. It turns out that
while many storage administrators have a good understanding of the raw volume of data
they’re dealing with, they’re often at a loss when it comes to predicting how much of that data
is hot—and they lack the tools to find out.

Jake Wires is a principal
software engineer at Coho Data
and a doctoral candidate at the
University of British Columbia.
He is broadly interested in the

design of storage systems and scalable data
processing. jake@cohodata.com

Stephen Ingram is a software
engineer at Coho Data. He
received his PhD from the
University of British Columbia
in 2013, his MSc from UBC in

2008, and his BSc Honors degree in computer
science from Georgia Tech in 2004. His
research interests are information visualization
and dimensionality reduction.
stephen@cohodata.com

Zachary Drudi is a software
engineer at Coho Data. He
completed his MSc in computer
science at the University of
British Columbia. Zach is

interested in placing streaming algorithms in
containers. zach@cohodata.com

Nick Harvey is a consultant at
Coho Data and an assistant
professor at the University
of British Columbia. His main
research area is algorithm

design. He completed his PhD in computer
science at MIT in 2008. nick@cohodata.com

Andrew Warfield is co-founder
and CTO of Coho Data and
an associate professor at the
University of British Columbia.
He is broadly interested in

software systems. andy@cohodata.com

www.usenix.org	   F EB RUA RY 20 1 5  VO L . 4 0, N O. 1  7

FILE SYSTEMS AND STORAGE
The Elusive “Working Set”
The concept of a working set is well established within system
design [1]. A working set is the subset of a program’s memory that
is accessed over a period of execution. Working sets capture the
concept of access locality and are the intuition behind the bene-
fits of caching and hierarchical memories in general. A program’s
working set is expected to shift over time as it moves between
phases of execution or shifts to operate on different data, but the
core intuition is that if a program can fit its working set entirely
into fast memory, that it will run quickly and efficiently.

While the idea of a working set is relatively simple, it proves to
be a very challenging characteristic to measure and model. One
aspect of this is that working sets are very different depending
on the period of time that they are considered over. A processor
architect might consider working set phases to be the sort of
thing that distill value from L1 or L2 caches: possibly megabytes
of data over several thousand basic blocks of execution. In this
domain, working sets may (and do) shift tens or hundreds of
times a second. Conversely, a storage system may be concerned
with workload characteristics that span minutes, hours, or even
days of execution.

A second challenge in characterizing working sets is to measure
them at all, at any range in time. Identifying working sets requires
tracking the recency of access to addressable memory over time,
which is generally both hard and expensive to do. One longstand-
ing approach to this is Mattson’s stack algorithm, which is used
to model hit ratio curves (also more pessimistically referred to as
miss ratio curves in some of the literature) over an LRU replace-
ment policy.

Mattson’s stack algorithm [4] is a simple technique that provides
a really useful result: Given a stream of memory accesses over
time, and assuming that those accesses are sent through a cache
that is managed using an LRU replacement, Mattson’s algorithm
can be run once over the entire trace and will report the hit rate
at all sizes of the cache. The algorithm works by maintaining a
stack of all addresses that have been accessed and an accompa-
nying array of access counts at each possible depth within that
stack. For each access in the stream, the associated address is
located in the stack, the counter at that depth is incremented by
one, and then that address is pulled to the front of the stack. At
the end of the trace, the array is a histogram of reuse distances
that directly reports the hit ratio curve. For progressively larger
caches, it indicates the number of requests that would have hit in
a cache of that size.

The hit ratio curves produced by Mattson (by plotting cache size
on the x-axis and hit rate on the y-axis) are a useful way to iden-
tify working sets: Horizontal plateaus indicate a range of cache
allocation that will not assist workload performance, while sud-
den jumps in hit rate indicate the edges of working sets, where a
specified amount of cache is able to effectively serve a workload.

Unfortunately, calculating HRCs using Mattson is prohibitively
expensive, in both time and space, for production systems. Even
with optimizations that have been proposed over the decades
that the technique has been studied, its memory consumption
is linear with the amount of data being addressed, and lookups
require log complexity over that set of addresses. This is far too
heavyweight to perform at the granularity of every single access.
The offline calculation of HRCs is similarly challenging because
of the requirement that it carries for trace collection and storage:
The resulting I/O traces are very large and challenging to ship to
a central point of analysis.

So while modeling working sets has the potential to offer a great
deal of insight into storage workloads, especially in regard to
managing hierarchical memories, it is too expensive to run in
production and so cannot be used for online decisions. Moreover,
traces are prohibitively large to ship centrally, making it chal-
lenging for system designers to learn from and adapt products
to customer workloads. To take full advantage of SCMs in the
system, we wanted to achieve both of these things, and so needed
a better approach to characterizing working sets.

Counter Stacks
The counter stack [5] is a data structure designed to provide an
efficient measure of uniqueness over time. In the case of storage
workloads, we are interested in measuring the number of unique
block addresses accessed over a window of time. Mattson’s
original algorithm (and its subsequent optimizations) measure
this by tracking accesses to individual blocks, leading to high
memory overheads. Counter stacks have much lower overheads
because they do not bother recording accesses to individual
addresses, but instead track only the cardinality of the accessed
addresses. In other words, counter stacks measure how many
unique blocks are accessed during a given interval, but they do
not record the identity of those blocks. By making some relatively
simple comparisons of the cardinalities observed over different
intervals, we are able to compute approximate reuse distances
and, by extension, miss ratio curves.

8    F EB RUA RY 20 1 5  VO L . 4 0, N O. 1 	 www.usenix.org

FILE SYSTEMS AND STORAGE
Counter Stacks and the Elusive Working Set

To see how this works, consider the sequence of requests for disk
addresses {a, b, c, a} shown in Figure 1. Imagine that we instan-
tiate a cardinality counter for each request we see. Cardinality
counters support two operations: update() accepts arbitrary
64-bit values, and count() returns the total number of unique
values passed to update(). Cardinality counters can be trivially
implemented with a hash table; in practice, probabilistic counters
like HyperLogLog (see sidebar) use approximation techniques to
provide fairly accurate estimates with very low overheads.

In a counter stack, each cardinality counter records the number
of unique addresses observed since that counter’s inception. For
each request, we update every existing counter and also instanti-
ate a new one. If a request increases the value of a given counter,
we know that the address has not been accessed at any time since
the start of the counter; likewise, if the request does not increase
a counter’s value, we know that the address must have been previ-
ously accessed some time after the start of that counter.

This property makes it easy to pinpoint the logical time at which
a requested address was last accessed. For every request, we
iterate through the counters from youngest to oldest, updating
each as we go. The first counter whose value does not change is
necessarily the youngest counter old enough to have observed
the last access to the address. Moreover, we know that the last
access occurred at exactly the time that this counter was instan-
tiated. If every counter’s value changes for a given request, we
know that address has never been observed before.

In the example from the diagram, the first matrix gives the
values of the counters started for each request. Each row shows
the sequence of values for a particular counter, and each column
gives the values of the counters at a particular time. We can see
that there are four requests for three unique addresses, and at
the end of the sequence, each counter has a value of three or less,
depending on how many requests it has observed.

We perform two transformations on the matrix to compute
reuse distances. First, we calculate ∆x, or the difference of

each counter’s value with its previous value. Each cell of ∆x will
have a value of 1 if the counter had not previously observed the
request seen at that time, or 0 if it had. Then we calculate ∆y, or
the difference between adjacent rows of ∆x. Each cell of ∆y will
have a value of 1 if and only if the corresponding request was not
previously observed by the younger counter but was observed by
the older counter.

A non-zero entry of ∆y marks the presence of a repeated address
in the request stream, and the row containing such an entry
represents the youngest counter to have observed the previous
access to the given address. We look up the cell’s coordinates in
the original matrix to obtain the cardinality value of the cor-
responding counter at the time of the repeated access, which
gives us the number of unique addresses observed since the last
access to the given address—in other words, the reuse distance
of that address. Similar to Mattson’s algorithm, we aggregate
these reuse distances in a histogram, which directly gives a miss
ratio curve.

Implementing counter stacks with a perfect counter (like a
hash table) would be many orders of magnitude more expensive
than Mattson’s algorithm. Probabilistic counters go a long way
towards making this approach feasible in practice, but at roughly
5 KB per counter, maintaining one per request for a workload
with billions of requests is still prohibitively expensive. But as
the diagram hints, the counter stack matrix is highly redundant
and readily compressible.

We employ two additional lossy compression techniques to
control the memory overheads of counter stacks. First, instead
of maintaining a counter for every request in a workload, we only
maintain counters for every kth request, and we only compute
counter values after every kth request. This downsampling
introduces uncertainty proportional to the value k. Second, we
periodically prune requests as their values converge on those of
their predecessors. Convergence occurs when younger counters
eventually observe all the same values their predecessors have
(it should be clear that counter values will never diverge). When
the difference in the value of two adjacent counters falls below
a pruning distance p, we can reap the younger counter since it
provides little to no additional information.

These compression techniques are quite effective in practice,
and they provide a means of lowering memory and storage
overheads at the cost of reduced accuracy. In our experiments,
we have observed that counter stacks require roughly 1200x
less memory than Mattson’s original algorithm while producing
miss ratio curves with mean absolute errors comparable to other
approximation techniques that have much higher overheads.
Moreover, counter stacks are fast enough to use on the hot path
in production deployments: we can process 2.3 million requests
per second, compared to about 600,000 requests per second with
a highly optimized implementation of Mattson’s algorithm.

(a, b, c, a,)
1 2 3 3

1 2 3
1 2

1

{ a, b, c, a }
1 1 1 0

1 1 1
1 1

1
∆ x

{ a, b, c, a }
0 0 0 1

0 0 0
0 0

0
∆ y

Figure 1: Using cardinality counters to characterize uniqueness over time

www.usenix.org	   F EB RUA RY 20 1 5  VO L . 4 0, N O. 1  9

FILE SYSTEMS AND STORAGE
Counter Stacks and the Elusive Working Set

Strictly speaking, only the last two columns of the counter
matrix are needed to compute a miss ratio curve: The values pro-
duced by computing ∆x and ∆y can be incrementally aggregated
into a histogram as the algorithm works through the sequence
of requests, and older columns can be discarded. However, the
matrix provides a convenient record of workload history, and,
with a simple transformation (amounting in essence to a column
index shift), it can be used to compute miss ratio curves over
arbitrary sub-intervals of a given workload. This functionality
turns out to be very expensive with traditional techniques for
computing miss ratio curves, but it can be quite useful for tasks
like identifying workload anomalies and phase changes.

In fact, we’ve found that counter stacks can help to answer
a number of questions that extend beyond the original prob-
lems that led us to develop them. In particular, they provide an
extremely concise format for preserving workload histories in
the wild. We use counter stacks to record and transfer access
patterns in production deployments at the cost of only a few MB
per month; the next best compression technique we evaluated
had a roughly 50x overhead. The ability to retain extended work-
load histories—and ship them back for easy analysis—is invalu-
able for diagnosing performance problems and understanding
how our system is used in general, and it is enabling a new data-
driven approach to designing placement algorithms. As we learn
more about real-world workloads, we expect to augment counter
stacks with additional metadata, thereby providing a richer
representation of application behavior.

Probabilistic Counters
Probabilistic counters are a family of data structures that are
used to approximate the number of distinct elements within
a stream. HyperLogLogs [2] are a common example of such a
probabilistic cardinality estimator and have been characterized
as allowing cardinalities of over 109 elements to be estimated
in a single streaming scan within 2% accuracy using only 1.5 KB
of memory. As a result, these estimators are now being used
in the implementation of network monitoring, data mining,
and database systems [3]. Counter stacks [5] take advantage
of HyperLogLogs to efficiently count cardinality in individual
epochs during the request stream.

In many senses, HyperLogLogs are a data structure that is simi-
lar to, but more restrictive than, Bloom filters. An appropriately
sized Bloom filter can provide an accurate hint as to whether
or not a specific object has been inserted into it, but does not
encode how many objects have been inserted. By simply adding
an integer counter, Bloom filters can be extended to estimate
cardinality. A HyperLogLog summarizes just the total cardi-
nality of distinct objects, and cannot directly answer questions
about whether a given object has been inserted. The result

of sacrificing tests of membership is that HyperLogLogs can
accurately estimate cardinality with much lower space require-
ments than would be needed to achieve the same precision
using a Bloom filter-based counter.

A detailed explanation of how HyperLogLogs work would
require more space than is available here, but the core intuition
is relatively simple: If we were to consider a long series of coin
tosses, one approach to approximate the total number of flips
would be to observe the longest series of consecutive “heads”
over the entire stream. Probabilistically, it will take much
longer to have 10 heads in a row than it will to have 2; the longest
string of heads provides a rough approximation of the total
number of tosses. HyperLogLogs work similarly: They hash
each element in a stream and then count the number of leading
zero bits in the resulting hashed value. By aggregating counts of
leading zeros into a set of independently sampled buckets, and
then taking the harmonic mean across those resulting indepen-
dent counts, HyperLogLogs are able to provide a very accurate
(significantly better than the coin toss example above) and very
compact approximation of the total cardinality.

References

[1] Peter J. Denning, “The Working Set Model for Program
Behavior,” Communications of the ACM, vol. 11, no. 5 (May
1968), pp. 323–333.

[2] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “Hyper-
LogLog: The Analysis of a Near-Optimal Cardinality Esti-
mation Algorithm,” in Proceedings of the 2007 International
Conference on Analysis of Algorithms (DMTCS, 2007),
pp. 127–146.

[3] S. Heule, M. Nunkesser, and A. Hall, “HyperLogLog in
Practice: Algorithmic Engineering of a State of the Art
Cardinality Estimation Algorithm,” in Proceedings of the 16th
International Conference on Extending Database Technology
(EDBT ’13) (ACM, 2013), pp. 683–692.

[4] R. L. Mattson, J. Gecsei, J. D. R. Slutz, and I. L. Traiger,
“Evaluation Techniques for Storage Hierarchies,” IBM
Systems Journal, vol. 9, no. 2 (1970), pp. 78–117.

[5] J. Wires, S. Ingram, Z. Drudi, N. J. A. Harvey, and
A.  Warfield, “Characterizing Storage Workloads with Coun-
ter Stacks,” in Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation (OSDI ’14)
(USENIX Association, 2014), pp. 335–349.

