
This paper is included in the Proceedings of the 
19th USENIX Symposium on Networked Systems  

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the  
19th USENIX Symposium on Networked  

Systems Design and Implementation  
is sponsored by

DispersedLedger: High-Throughput Byzantine 
Consensus on Variable Bandwidth Networks

Lei Yang, Seo Jin Park, and Mohammad Alizadeh, MIT CSAIL;  
Sreeram Kannan, University of Washington; David Tse, Stanford University

https://www.usenix.org/conference/nsdi22/presentation/yang



DispersedLedger: High-Throughput Byzantine Consensus
on Variable Bandwidth Networks

Lei Yang1, Seo Jin Park1, Mohammad Alizadeh1, Sreeram Kannan2, David Tse3

1MIT CSAIL 2University of Washington 3Stanford University

Abstract
The success of blockchains has sparked interest in large-

scale deployments of Byzantine fault tolerant (BFT) consen-
sus protocols over wide area networks. A central feature of
such networks is variable communication bandwidth across
nodes and across time. We present DispersedLedger, an asyn-
chronous BFT protocol that provides near-optimal throughput
in the presence of such variable network bandwidth. The core
idea of DispersedLedger is to enable nodes to propose, or-
der, and agree on blocks of transactions without having to
download their full content. By enabling nodes to agree on an
ordered log of blocks, with a guarantee that each block is avail-
able within the network and unmalleable, DispersedLedger
decouples bandwidth-intensive block downloads at different
nodes, allowing each to make progress at its own pace. We
build a full system prototype and evaluate it on real-world and
emulated networks. Our results on a geo-distributed wide-area
deployment across the Internet shows that DispersedLedger
achieves 2× better throughput and 74% reduction in latency
compared to HoneyBadger, the state-of-the-art asynchronous
protocol.

1 Introduction
State machine replication (SMR) is a foundational task
for building fault-tolerant distributed systems [25]. SMR
enables a set of nodes to agree on and execute a replicated
log of commands (or transactions). With the success of
cryptocurrencies and blockchains, Byzantine fault-tolerant
SMR (BFT) protocols, which tolerate arbitrary behavior from
adversarial nodes, have attracted considerable interest in
recent years [2, 5, 7, 15, 31, 39]. The deployment environment
for these protocols differs greatly from standard SMR use
cases. BFT implementations in blockchain applications must
operate over wide-area networks (WAN), among possibly
hundreds to thousands of nodes [2, 18, 31].

Large-scale WAN environments present new challenges
for BFT protocols compared to traditional SMR deployments
across a few nodes in datacenter. In particular, WANs are
subject to variability in network bandwidth, both across
different nodes and across time. While BFT protocols
are secure in the presence of network variability, their
performance can suffer greatly.

To understand the problem, let us consider the high-level

structure of existing BFT protocols. BFT protocols operate
in epochs, consisting of two distinct phases: (i) a broadcast
phase, in which one or all of the nodes (depending on whether
the protocol is leader-based [1, 39] or leaderless [17, 31])
broadcast a block (batch of transactions) to the others; (ii)
an agreement phase, in which the nodes vote for blocks to
append to the log, reaching a verifiable agreement (e.g., in the
form of a quorum certificate [11]). From a communication
standpoint, the broadcast phase is bandwidth-intensive while
the agreement phase typically comprises of multiple rounds
of short messages that do not require much bandwidth but
are latency-sensitive.

Bandwidth variability hurts the performance of BFT pro-
tocols due to stragglers. In each epoch, the protocol cannot
proceed until a super-majority of nodes have downloaded the
blocks and voted in the agreement phase. Specifically, a BFT
protocol on N = 3 f +1 nodes (tolerant to f faults) requires
votes from at least 2 f + 1 nodes to make progress [11].
Therefore, the throughput of the protocol is gated by the
( f +1)th slowest node in each epoch. The implication is that
low-bandwidth nodes (which take a long time to download
blocks) hold up the high-bandwidth nodes, preventing
them from utilizing their bandwidth efficiently. Stragglers
plague even asynchronous BFT protocols [31], which aim
to track actual network performance (without making timing
assumptions), but still require a super-majority to download
and vote for blocks in each epoch. We show that this lowers
the throughput of these protocols well below the average
capacity of the network on real WANs.

In this paper, we present DispersedLedger, a new approach
to build BFT protocols that significantly improves perfor-
mance in the presence of bandwidth variability. The key
idea behind this approach is to decompose consensus into
two steps, one of which is not bandwidth intensive and the
other is. First, nodes agree on an ordered log of commitments,
where each commitment is a small digest of a block (e.g.,
a Merkle root [30]). This step requires significantly less
bandwidth than downloading full blocks. Later, each node
downloads the blocks in the agreed-upon order and executes
the transactions to update its state machine. The principal
advantage of this approach is that each node can download
blocks at its own pace. Importantly, slow nodes do not impede
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Figure 1: Impact of bandwidth variability on overall per-
formance. Bcast: broadcast, Agmt: agreement. Fast nodes
currently have a high bandwidth, while slow nodes currently
have low bandwidth. (a) In traditional BFT protocols, the speed
of consensus is always limited by the slow nodes since they take
a long time to download the blocks. (b) DispersedLedger allows
each node to download blocks at its own pace as permitted by
its bandwidth.

the progress of fast nodes as long as they have a minimal
amount of bandwidth needed to participate in the first step.

The key to realizing this idea is to guarantee the data avail-
ability of blocks. When a node accepts a commitment into the
log, it must know that the block referred to by this commit-
ment is available in the network and can be downloaded at a
later time by any node in the network. Otherwise, an attacker
can put a commitment of an unavailable block into the log,
thus halting the system. To solve this problem, our proposal
relies on Verifiable Information Dispersal (VID) [10]. VID
uses erasure codes to store data across N nodes, such that
it can be retrieved later despite Byzantine behavior. Prior
BFT protocols like HoneyBadger [31] have used VID as
a communication-efficient broadcast mechanism [10], but
we use it to guarantee data availability. Specifically, unlike
HoneyBadger, nodes in DispersedLedger do not wait to
download blocks to vote for them. They vote as soon as they
observe that a block has been dispersed, and the next epoch
can begin immediately once there is agreement that dispersal
has completed. This enables slow nodes to participate in the
latest epoch, even if they fall behind on block downloads
(retrieval). Such nodes can catch up on retrievals when
their bandwidth improves. Figure 1 shows the structure of
DispersedLedger, contrasting it to traditional BFT protocols.

Enabling nodes to participate in a consensus protocol
with minimal bandwidth has applications beyond improving
performance on temporally fluctuating bandwidth links. It
also creates the possibility of a network with two types of

nodes: high-bandwidth nodes and low-bandwidth nodes.
All nodes participate in agreeing on the ordered log of
commitments, but only the high-bandwidth nodes retrieve all
blocks. Network participants can choose what mode to use at
any time. For example, a node running on a mobile device can
operate in the low-bandwidth mode when connected to a cel-
lular network, and switch to high-bandwidth mode on WiFi to
catch up on block retrievals. All nodes, both high-bandwidth
and low-bandwidth, contribute to the network’s security. Our
approach is also a natural way to shard a blockchain [27],
where different nodes only retrieve blocks in their own shard.

We make the following contributions:
• We propose a new asynchronous VID protocol, AVID-M

(§3). Compared to the current state-of-the-art, AVID-M
achieves 1–2 orders of magnitudes better communication
cost when operating on small blocks (hundreds of KBs to
several MBs) and clusters of more than a few servers.

• We design DispersedLedger (§4), an asynchronous BFT
protocol based on HoneyBadger [31] with two major
improvements: (i) It decomposes consensus into data
availability agreement and block retrieval, allowing nodes
to download blocks asynchronously and fully utilize their
bandwidth (§4.2). (ii) It provides a new solution to the
censorship problem [31] that has existed in such BFT pro-
tocols since [4] (§4.3). Unlike HoneyBadger, where up to
f correct blocks can get dropped every epoch, our solution
guarantees that every correct block is delivered (and exe-
cuted). The technique is applicable to similarly-constructed
protocols, and can improve throughput and achieve
censorship resilience without advanced cryptography [31].

• We address several practical concerns (§4.5): (i) how to
prevent block retrieval traffic from slowing down dispersal
traffic, which could reduce system throughput; (ii) how
to prevent constantly-slow nodes from falling arbitrarily
behind the rest of the network; (iii) how to avoid invalid
“spam” transactions, now that nodes may not always have
the up-to-date system state to filter them out.

• We implement DispersedLedger in 8,000 lines of Go (§5)
and evaluate it in multiple settings (§6), including two
global testbeds on AWS and Vultr, and controlled network
emulations. DispersedLedger achieves a throughput of 36
MB/s when running at 16 cities across the world, and a
latency of 800 ms that is stable across a wide range of load.
Compared to HoneyBadger, DispersedLedger has 105%
higher throughput and 74% lower latency.

2 Background and Related Work
2.1 The BFT Problem
DispersedLedger solves the problem of Byzantine-fault-
tolerant state machine replication (BFT) [25]. In general, BFT
assumes a server-client model, where N servers maintain N
replicas of a state machine. At most f servers are Byzantine
and may behave arbitrarily. Clients may submit transactions
to a correct server to update or read the state machine. A
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BFT protocol must ensure that the state machine is replicated
across all correct servers despite the existence of Byzantine
servers. Usually, this is achieved by delivering a consistent,
total-ordered log of transactions to all servers (nodes) [31].
Formally, a BFT protocol provides the following properties:

• Agreement: If a correct server executes a transaction m,
then all correct servers eventually execute m.

• Total Order: If correct servers p and q both execute
transactions m1 and m2, then p executes m1 before m2 if
and only if q executes m1 before m2.

• Validity: If a correct client submits a transaction m to a cor-
rect server, then all correct servers eventually execute m.1

There are multiple trust models between BFT servers
and the clients. In this paper, we assume a model used for
consortium blockchains [2, 3,6,40], where servers and clients
belong to organizations. Clients send their transactions
through the servers hosted by their organization and trust
these servers. Many emerging applications of BFT like
supply chain tracing [14], medical data management [26], and
cross-border transaction clearance [22] fall into this model.

2.2 Verifiable Information Dispersal
DispersedLedger relies on verifiable information dispersal
(VID). VID resembles a distributed storage, where clients can
disperse blocks (data files) across servers such that they are
available for later retrieval. We provide a formal definition
of VID in §3.1. The problem of information dispersal was
first proposed in [37], where an erasure code was applied to
efficiently store a block across N servers without duplicating
it N times. [19] extended the idea to the BFT setting under
the asynchrony network assumption. However, it did not
consider Byzantine clients; these are malicious clients which
try to cause two retrievals to return different blocks. Verifiable
information dispersal (VID) was first proposed in [10], and
solved this inconsistency problem. However, [10] requires
that every node downloads the full block during dispersal,
so it is no more efficient than broadcasting. The solution was
later improved by AVID-FP [21], which requires each node
to only download an O(1/N) fraction of the dispersed data
by utilizing fingerprinted cross-checksums [21]. However,
because every message in AVID-FP is accompanied by the
cross-checksum, the protocol provides low communication
cost only when the dispersed data block is much larger than
the cross-checksum (about 37N bytes). This makes AVID-FP
unsuitable for small data blocks and clusters of more than a
few nodes. In §3, we revisit this problem and propose AVID-
M, a new asynchronous VID protocol that greatly reduces the
per-message overhead: from 37N bytes to the size of a single
hash (32 bytes), independent of the cluster size N, making
the protocol efficient for small blocks and large clusters.

1Some recent BFT protocols provide a weaker version of validity, which
guarantees execution of a transaction m only after being sent to all correct
servers. This is referred to by different names: “censorship resilience” in
HoneyBadger, and “fairness” in [8, 9].

2.3 Asynchronous BFT protocols
A distributed algorithm has to make certain assumptions
on the network it runs on. DispersedLedger makes the
weakest assumption: asynchrony [28], where messages can
be arbitrarily delayed but not dropped. A famous impossi-
bility result [16] shows there cannot exist a deterministic
BFT protocol under this assumption. With randomization,
protocols can tolerate up to f Byzantine servers out of a total
of 3 f +1 [24]. DispersedLedger achieves this bound.

Until recently [31], asynchronous BFT protocols have been
costly for clusters of even moderate sizes because they have a
communication cost of at least O(N2) [8]. HoneyBadger [31]
is the first asynchronous BFT protocol to achieve O(N) com-
munication cost per bit of committed transaction (assuming
batching of transactions). The main structure of HoneyBadger
is inspired by [4], and it in turn inspires the design of other
protocols including BEAT [15] and Aleph [17]. In these pro-
tocols, all N nodes broadcast their proposed blocks in each
epoch, which triggers N parallel Binary Byzantine Agreement
(BA) instances to agree on a subset of blocks to commit. [10]
showed that VID can be used as an efficient construction of
reliable broadcast, by invoking retrieval immediately after dis-
persal. HoneyBadger and subsequent protocols use this con-
struction as a blackbox. BEAT [15] explores multiple trade-
offs in HoneyBadger and proposes a series of protocols based
on the same structure. One protocol, BEAT3, also includes a
VID subcomponent. However, BEAT3 is designed to achieve
BFT storage, which resembles a distributed key-value store.

2.4 Security Model
Before proceeding, we summarize our security model. We
make the following assumptions:
• The network is asynchronous (§2.3).
• The system consists of a fixed set of N nodes (servers). A

subset of at most f nodes are Byzantine, and N≥3 f +1. N
and f are protocol parameters, and are public knowledge.

• Messages are authenticated using public key cryptography.
The public keys are public knowledge.

3 AVID-M: An Efficient VID Protocol
3.1 Problem Statement
VID provides the following two primitives: Disperse(B),
which a client invokes to disperse block B, and Retrieve,
which a client invokes to retrieve block B. Clients invoke
the Disperse and Retrieve primitives against a particular
instance of VID, where each VID instance is in charge of
dispersing a different block. Multiple instances of VID may
run concurrently and independently. To distinguish between
these instances, clients and servers tag all messages of each
VID instance with a unique ID for that instance. For each
instance of VID, each server triggers a Complete event to
indicate that the dispersal has completed.

A VID protocol must provide the following properties [10]
for each instance of VID:
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• Termination: If a correct client invokes Disperse(B) and
no other client invokes Disperse on the same instance,
then all correct servers eventually Complete the dispersal.

• Agreement: If some correct server has Completed the
dispersal, then all correct servers eventually Complete the
dispersal.

• Availability: If a correct server has Completed the disper-
sal, and a correct client invokes Retrieve, it eventually
reconstructs some block B′.

• Correctness: If a correct server has Completed the disper-
sal, then correct clients always reconstruct the same block
B′ by invoking Retrieve. Also, if a correct client initiated
the dispersal by invoking Disperse(B) and no other client
invokes Disperse on the same instance, then B=B′.

3.2 Overview of AVID-M

At a high level, a VID protocol works by encoding the dis-
persed block using an erasure code and storing the encoded
chunks across the servers. A server knows a dispersal has
completed when it hears from enough peers that they have re-
ceived their chunks. To retrieve a dispersed block, a client can
query the servers to obtain the chunks and decode the block.
Here, one key problem is verifying the correctness of encod-
ing. Without verification, a malicious client may distribute in-
consistent chunks that have more than one decoding result de-
pending on which subset of chunks are used for decoding, vi-
olating the Correctness property. As mentioned in §2.2, AVID
[10] and AVID-FP solve this problem by requiring servers to
download the chunks or fingerprints of the chunks from all cor-
rect peers and examine them during dispersal. While this elim-
inates the possibility of inconsistent encoding, the extra data
download required limits the scalability of these protocols.

More specifically, while AVID-FP [21] can achieve
optimal communication complexity as the block size |B|
goes to infinity, its overhead for practical values of |B| and N
(number of servers) can be quite high. This is because every
message in AVID-FP is accompanied by a fingerprinted
cross-checksum [21], which is Nλ+(N−2 f )γ in size. Here,
λ,γ are security parameters, and we use λ=32 bytes, γ=16
bytes as suggested by [21]. The key factor that limits the
scalability of AVID-FP is that the size of the cross-checksum
is proportional to N. Combined with the fact that a node
receives O(N) messages during dispersal, the overhead
caused by cross-checksum increases quadratically as N
increases. Fig. 2 shows the impact of this overhead. At
N > 40, |B|= 100 KB, every node needs to download more
than the full size of the block being dispersed.

We develop a new VID protocol for the asynchronous net-
work model, Asynchronous Verifiable Information Dispersal
with Merkle-tree (AVID-M). AVID-M is based on one key
observation: as long as clients can independently verify the
encoding during retrieval, the servers do not need to do the
verification during dispersal. In AVID-M, a client invoking
Disperse(B) commits to the set of (possibly inconsistent)

Figure 2: Per-node communication cost during dispersal
of AVID-M and AVID-FP normalized over the size of the
dispersed block. At N = 128 (the biggest cluster size in our
evaluation), every node in AVID-M downloads as much as
1/32 of a block, while a node in AVID-FP downloads 1.2× the
size of the full block.

chunks using a short, constant-sized commitment H. Then
the server-side protocol simply agrees on H and guarantees
enough chunks that match H are stored by correct servers.
This can be done by transmitting only H in the messages,
compared to the O(N)-sized cross-checksums in AVID-FP.
During retrieval, a client verifies that the block it decodes
produces the same commitment H when re-encoded.

Since AVID-M’s per-message overhead is a small constant
(32 bytes), it can scale to many nodes without requiring a
large block size. In fact, AVID-M achieves a per-node commu-
nication cost of O(|B|/N+λN), much lower than AVID-FP’s
O(|B|/N+λN2+γN2). Fig. 2 compares AVID-M with AVID-
FP. At |B|=1 MB, AVID-M is close to the theoretical lower-
bound2 even at N>100, while AVID-FP stops to provide any
bandwidth saving (compared to every server downloading
full blocks) after N>120. Finally, we note that both AVID-M
and AVID-FP rely on the security of the hash. So with the
same hash size λ, AVID-M is no less secure than AVID-FP.

3.3 AVID-M Protocol
The Dispersal algorithm is formally defined in Fig. 3. A
client initiates a dispersal by encoding the block B using an
(N−2 f ,N)-erasure code and constructing a Merkle tree [30]
out of the encoded chunks. The root r of the Merkle tree is a
secure summary of the array of the chunks. The client sends
one chunk to each server along with the Merkle root r and a
Merkle proof that proves the chunk belongs to root r. Servers
then need to make sure at least N−2 f chunks under the same
Merkle root are stored at correct servers for retrieval. To do
that, servers exchange a round of GotChunk(r) messages
to announce the reception of the chunk under root r. When
N− f servers have announced GotChunk(r), they know at
least N − 2 f correct servers have got the chunk under the
same root r, so they exchange a round of Ready(r) messages
to collectively Complete the dispersal.

2Each node has to download at least 1
N−2 f -fraction of the dispersed data.

This is to prevent a specific attack: a malicious client sends chunks to all f
malicious servers plus N−2 f honest servers. For now the malicious servers
do not deviate from the protocol, so the protocol must terminate (otherwise
it loses liveness). Then the malicious servers do not release the chunks, so
the original data must be constructed from the N−2 f chunks held by honest
servers, so each honest server must receive an 1

N−2 f -fraction share.
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Disperse(B) invoker
1. Encode the input block B using an (N−2 f ,N)-erasure

code, which results in N chunks, C1,C2,...,CN .
2. Form a Merkle tree with all chunks C1,C2,...,CN , and

calculate the Merkle tree root, r.
3. Send Chunk(r,Ci,Pi) to the i-th server. Here Pi is the

Merkle proof showing Ci is the i-th chunk under root r.
Disperse(B) handler for the i-th server
• Upon receiving Chunk(r,Ci,Pi) from a client:

1. Check if Ci is the i-th chunk under root r by verifying
the proof Pi. If not, ignore the message.

2. Set MyChunk = Ci, MyProof = Pi, MyRoot = r (all
initially unset).

3. Broadcast GotChunk(r) if it has not sent a GotChunk
message before.

• Upon receiving GotChunk(r) from the j-th server:
1. Increment ShareCount[r] (initially 0).
2. If ShareCount[r]≥N− f , broadcast Ready(r).

• Upon receiving Ready(r) from the j-th server:
1. Increment ReadyCount[r] (inititally 0).
2. If ReadyCount[r]≥ f +1, broadcast Ready(r).
3. If ReadyCount[r] ≥ 2 f + 1, set ChunkRoot = r.

Dispersal is Complete.

Figure 3: Algorithm for Disperse(B). Servers ignore
duplicate messages (same sender and same type). When
broadcasting, servers also send the message to themselves.

The Retrieval algorithm is formally defined in Fig 4. A
client begins retrieval by requesting chunks for the block
from all servers. Servers respond by providing the chunk,
the Merkle root r, and the Merkle proof proving that the
chunk belongs to the tree with root r. Upon collecting N−2 f
different chunks with the same root, the client can decode
and obtain a block B′. However, the client must ensure that
other retrieving clients also obtain B′ no matter which subset
of N−2 f chunks they use – letting clients perform this check
is a key idea of AVID-M. To do that, the client re-encodes
B′, constructs a Merkle tree out of the resulting chunks, and
verifies that the root is the same as r. If not, the client returns
an error string as the retrieved content.

The AVID-M protocol described in this section provides
the four properties mentioned in §3.1. We provide a proof
sketch for each property, and point to Appendix B for
complete proofs.

Termination (Theorem B.2). A correct client sends
correctly encoded chunks to all servers with root r. The
N − f correct servers will broadcast GotChunk(r) upon
getting their chunk. All correct servers will receive the N− f
GotChunk(r) and send out Ready(r), so all correct servers
will receive at least N− f Ready(r). Because N− f >2 f +1,
all correct servers will Complete.
Agreement (Theorem B.4). A server Completes after
receiving 2 f +1 Ready(r), of which f +1 must come from
correct servers. So all correct servers will receive at least

Retrieve invoker
• Broadcast RequestChunk to all servers.
• Upon getting ReturnChunk(r, Ci, Pi) from the i-th

server:
1. Check if Ci is the i-th chunk under root r by verifying

the proof Pi. If not, ignore the messsage.
2. Store the chunk Ci with the root r.

• Upon collecting N−2 f or more chunks with the same
root r:
1. Decode using any N−2 f chunks with root r to get

a block B′. Set ChunkRoot=r (initially unset).
2. Encode the block B′ using the same erasure code to

get chunks C1
′,C2

′,...,CN
′.

3. Compute the Merkle root r′ of C′1,C
′
2,...,C

′
N .

4. Check if r′=ChunkRoot. If so, return B′. Otherwise,
return string “BAD_UPLOADER”.

Retrieve handler for the i-th server
• Upon receiving RequestChunk, respond with message
ReturnChunk(ChunkRoot, MyChunk, MyProof) if
MyRoot=ChunkRoot. Defer responding if dispersal is
not Complete or any variable here is unset.

Figure 4: Algorithm for Retrieve. Clients ignore duplicate
messages (same sender and same type).

f +1 Ready(r). This will drive all of them to send Ready(r).
Eventually every correct server will receive N− f Ready(r),
which is enough to Complete (N− f >2 f +1).
Availability (Theorem B.6). To retrieve, a client must collect
N−2 f chunks with the same root. This requires that at least
N−2 f correct servers have a chunk for the same root. Now
suppose that a correct server Completes when receiving
2 f + 1 Ready(r). When this happens, at least one correct
server has sent Ready(r). We prove that this implies that
at least N−2 f correct servers must have sent GotChunk(r)
(Lemma B.1),i.e., they have received the chunk. Assume the
contrary. Then there will be less than N − f GotChunk(r).
Now a correct server only sends Ready(r) if it either receives
(i) at least N− f GotChunk(r), or (ii) at least f +1 Ready(r).
Neither is possible (see Lemma B.1).

All correct servers agree on the same root upon Complete

by setting ChunkRoot to the same value (Lemma B.5). To
see why, notice that each server will only send one GotChunk
per instance. If correct servers Complete with 2 (or more)
ChunkRoots, then at least N − f servers must have sent
GotChunk for each of these roots. But 2(N − f ) > N + f ,
hence at least one correct server must have sent GotChunk
for two different roots, which is not possible.
Correctness (Theorem B.9). First, note that two correct
clients finishing Retrieve will set ChunkRoot to be the
same, i.e., they will decode from chunks under the same
Merkle root r (Lemma B.5). However, we don’t know if two
different subsets of chunks under r would decode to the same
block, because a malicious client could disperse arbitrary
data as chunks. To ensure consistency of Retrieve across
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Figure 5: DispersedLedger architecture with N = 4. During
this single epoch, 4 VIDs are initiated, one for each node, and
three blocks B1,B2 and B4 are committed.

different correct clients, every correct client re-encodes
the decoded block B′, calculates the Merkle root r′ of the
encoding result, and compares r′ with the root r. There are
two possibilities: (i) Some correct client gets r′= r. Then r
corresponds to the chunks given by the correct encoding of
B′, so every correct client decoding from any subset of blocks
under r will also get B′ and r′=r. (ii) No correct client gets
r′= r, i.e, all of them get r′ 6= r. In this case, they all deliver
the fixed error string. In either case, all correct clients return
the same data (Lemma B.8).

4 DispersedLedger Design
4.1 Overview

DispersedLedger is a modification of HoneyBadger [31], a
state-of-the-art asynchronous BFT protocol. HoneyBadger
runs in epochs, where each epoch commits between N− f
to N blocks (at most 1 block from each node). As shown in
Fig. 5, transactions submitted by clients are stored in each
node’s input queue. At the beginning of each epoch, every
node creates a block from transactions in its input queue, and
proposes it to be committed to the log in the current epoch.
Once committed, all transactions in the block will eventually
be retrieved and delivered to the state machine for execution.

DispersedLedger has two key differences with HoneyBad-
ger. First, unlike HoneyBadger, a node in DispersedLedger
does not broadcast its proposed block; instead, it disperses
the proposed block among the entire cluster using AVID-M
(which we will refer to as VID from here on). As shown in
Fig. 5, there are N instances of VID in every epoch, one for
each node. DispersedLedger then relies on N instances of Bi-
nary Agreement (BA, details below) [32] to reach a consensus
on which proposed blocks have been successfully dispersed
and thus should be committed in the current epoch. Once
committed, a block can be retrieved by nodes lazily at any
time (concurrently with future block proposals and dispersals).
The asynchronous retrieval of blocks allows each node to

Phase 1. Dispersal at the i-th server
1. Let Be

i be the block to disperse (propose) for epoch e.
2. Invoke Disperse(Be

i ) on VIDe
i (acting as a client).

• Upon Complete of VIDe
j (1≤ j ≤ N), if we have not

invoked Input on BAe
j, invoke Input(1) on BAe

j.
• Upon Output(1) of least N− f BA instances, invoke
Input(0) on all remaining BA instances on which we
have not invoked Input.

• Upon Output of all BA instances,
1. Let (local variable) Se

i ⊂{1...N} be the indices of all
BA instances that Output(1). That is, j∈ Se

i if and
only if BAe

j has Output(1) at the i-th server.
2. Move to retrieval phase.

Phase 2. Retrieval
1. For all j∈Se

i , invoke Retrieve on VIDe
j to download

full block Be
j
′.

2. Deliver {Be
j
′| j∈Se

i } (sorted by increasing indices).

Figure 6: Algorithm for single-epoch DispersedLedger.

adapt to temporal network bandwidth variations by adjusting
the rate it retrieves blocks without slowing down other nodes.

In HoneyBadger, up to f correct blocks can be dropped
in every epoch (§4.3). This wastes bandwidth and can lead
to censorship where blocks from certain nodes are always
dropped [31]. DispersedLedger’s second innovation is a
new method, called inter-node linking, that guarantees every
correct block is committed.

DispersedLedger uses an existing BA protocol [32]
that completes in O(1) time (parallel rounds) with O(Nλ)
per-node communication cost, where λ is the security
parameter. In BA, each node provides a binary Input({0,1})
as input to the protocol, and may get an Output({0, 1})
event indicating the result of the BA instance. Formally, a
BA protocol has the following properties:

• Termination: If all correct nodes invoke Input, then every
correct node eventually gets an Output.

• Agreement: If any correct node gets Output(b) (b ∈
{0,1}), then every correct node eventually gets Output(b).

• Validity: If any correct node gets Output(b) (b∈{0,1}),
then at least one correct node has invoked Input(b).

4.2 Single Epoch Protocol
In each epoch, the goal is to agree on a set of (the indices of)
at least N− f dispersed blocks which are available for later
retrieval. An epoch contains N instances of VID and BA. Let
VIDe

i be the i-th (1≤ i≤N) VID instance of epoch e. VIDe
i

is reserved for the i-th node to disperse (propose) its block.3

Let BAe
i be the i-th (1≤ i≤N) BA instance of epoch e. BAe

i
is for agreeing on whether to commit the block dispersed by
the i-th node.

3Correct nodes ignore attempts from another node j ( j 6= i) to disperse into
VIDe

i by dropping Chunk messages for VIDe
i from node j ( j 6= i). Therefore,

a Byzantine node cannot impersonate and disperse blocks on behalf of others.
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Fig. 6 describes the single epoch protocol for the i-th node
at epoch e. It begins by taking the block Be

i to be proposed for
this epoch, and dispersing it for epoch e through VIDe

i . Note
that every block in the system is dispersed using a unique VID
instance identified by its epoch number and proposing node.

Nodes now need to decide which blocks get committed
in this epoch, and they should only commit blocks that have
been successfully dispersed. Because there are potentially f
Byzantine nodes, we cannot wait for all N instances of VID
to complete because Byzantine nodes may never initiate their
VID Disperse. On the other hand, nodes cannot simply wait
for and commit the first N− f VIDs to Complete, because
VID instances may Complete in different orders at different
nodes (hence correct nodes would not be guaranteed to
commit the same set of blocks). DispersedLedger uses a
strategy first proposed in [4]. Nodes use BAe

i to explicitly
agree on whether to commit Be

i (which should be dispersed
in VIDe

i ). Correct nodes input 1 into BAe
i only when VIDe

i
Completes, so BAe

i outputs 1 only if Be
i is available for later

retrieval. When N− f BA instances have output 1, nodes give
up on waiting for any more VID to Complete, and input 0
into the remaining BAs to explicitly signal the end of this
epoch. This is guaranteed to happen because VID instances
of the N − f correct nodes will always Complete by the
Termination property (§3.1). Once the set of committed
blocks are determined, nodes can start retrieving the full
blocks. After all blocks have been downloaded, a node sorts
them by index number and delivers (executes) them in order.

The single-epoch DispersedLedger protocol is readily
chained together epoch by epoch to achieve full SMR, as
pictured in Fig. 5. At the beginning of every epoch, a node
takes transactions from the head of the input buffer to form
a block. After every epoch, a node checks if its block is com-
mitted. If not, it puts the transactions in the block back to the
input buffer and proposes them in the next epoch. Also, a node
delivers epoch e only after it has delivered all previous epochs.

4.3 Inter-node Linking

Motivation. An important limitation of the aforementioned
single-epoch protocol (and all protocols with a similar con-
struction [15, 31]) is that not all proposed blocks from correct
nodes are committed in an epoch. An epoch only guarantees
to commit N− f proposed blocks, out of which N−2 f are
guaranteed to come from correct nodes. In other words, at
most f blocks proposed by correct nodes are dropped every
epoch. Dropped blocks can happen with or without adversar-
ial behavior. Transmitting such blocks wastes bandwidth, for
example, reducing HoneyBadger’s throughput by 25% in our
experiments (§6.2). To make the matter worse, the adversary
(if present) can determine which blocks to drop [31], i.e. at
most f correct servers can be censored such that no block
from these servers gets committed. HoneyBadger provides a
partial mitigation by keeping the proposed blocks encrypted
until they are committed so that the adversary cannot censor

Epoch 1 2 3 4 current

C-IL

VID

V=(4,4,4,3)

V=(4,4,4,3)

node1

node2

node3

node4 V=(4,2,3,3)

Agreed VID
completion:
(4,4,4,3)

Figure 7: An example of commits by inter-node linking where
N = 4, f = 1. Each box indicates a block proposed by a node
at an epoch. Orange blocks are committed by BA. “VID”
indicates that the block is dispersed but not committed. “C-IL”
indicates a block committed by inter-node linking. Blue dotted
boxes indicate a VID in progress. In the current epoch, after
delivering the blocks from node 1, 2, and 4, the block proposed
in epoch 3 by node 2 will be delivered by inter-node linking.

blocks by their content. The adversary can, however, censor
blocks based on the proposing node.4 This is unacceptable for
consortium blockchains (§2.4), because the adversary could
censor all transactions from certain (up to f ) organizations.
Moreover, HoneyBadger’s mitigation relies on threshold
cryptography, which incurs a high computational cost [15].
Our solution. We propose a novel solution to this problem,
called inter-node linking, that guarantees all blocks from cor-
rect nodes are committed. Inter-node linking eliminates any
censorship or bandwidth waste, and is readily applicable to
similarly constructed protocols like HoneyBadger and BEAT.
Notice that a block not committed by BA in a given epoch may
still finish its VID. For example, in Fig. 7, the block proposed
by node 2 in epoch 3 was dispersed but did not get selected by
BA in that epoch. The core idea is to have nodes identify such
blocks and deliver them in a consistent manner in later epochs.

Each node i keeps track of which VID instances have
Completed, in the form of an array V e

i of size N, which
stores the local view at that node. When node i starts epoch
e, it populates V e

i [ j] (for all 1≤ j≤N) with the largest epoch
number such that all node j’s VID instances up to epoch
V e

i [ j] have completed. For example, in Fig. 7, (4, 4, 4, 3)
would be a valid array V for the current epoch, and would
indicate that node 2’s VID for epoch 3 has completed but
node 4’s VID in epoch 4 has not.

Each node i reports its local array V e
i in the block Be

i it pro-
poses in each epoch (in addition to the normal block content).
As shown in Fig. 7, the BA mechanism then commits at least
N− f blocks in each epoch. During retrieval for epoch e, a
node first retrieves the blocks committed by BA in epoch e and
delivers (executes) them as in the single-epoch protocol (§4.2).
It then extracts the set of V arrays in the committed blocks, i.e.
{V e

j | j∈Se
i }, and combines the information across these arrays

to determine additional blocks that it should retrieve (and de-
liver) in this epoch. Note that Se

i =Se
j for any two correct nodes

i, j due to the Agreement property of BA, so all correct nodes

4HoneyBadger suggests sending transactions to all nodes to prevent
censorship, but this isn’t possible for consortium blockchains and still wastes
bandwidth due to dropped blocks (§6.2).
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will use the same set of observations and get the same result.5

Using the committed V arrays, the inter-node linking
protocol computes an epoch number Ee[ j] for each node j.
This is computed locally by each node i, but we omit the
index i since all (correct) nodes compute the same value.
Each node then retrieves and delivers (executes) all blocks
from node j until epoch Ee[ j]. To ensure total order, nodes
sort the blocks, first by epoch number then by node index.
They also keep track of blocks that have been delivered so
that no block is delivered twice.

In computing Ee[ j], we must be careful to not get misled
by Byzantine nodes who may report arbitrary data in their V
arrays. For example, naively taking the largest value reported
for node j across all V arrays, i.e., maxk∈Se

i
V e

k [ j], would allow
a Byzantine node to fool others into attempting to retrieve
blocks that do not exist. Instead, we take the ( f +1)th-largest
value; this guarantees that at least one correct node i has
reported in its array V e

i that node j has completed all its VIDs
up to epoch Ee[ j]. Recall that by the Availability property
of VID (§3.1), this ensures that these blocks are available
for retrieval. Also, since all correct blocks eventually finish
VID (Termination property), all of them will eventually be
included in Ee and get delivered. We provide pseudocode for
the full DispersedLedger protocol in Appendix C.

4.4 Correctness of DispersedLedger
We now analyze the correctness of the DispersedLedger
protocol by showing it guarantees the three properties
required for BFT (§2.1). Full proof is in Appendix D.
Agreement and Total Order (Theorem D.7). Transactions

are embedded in blocks, so we only need to show Agreement
and Total Order of block delivery at each correct node. Blocks
may get committed and delivered through two mechanisms:
BA and inter-node linking. First consider blocks committed
by BA. BA’s Agreement and VID’s Correctness properties
guarantee that (i) all correct nodes will retrieve the same set
of blocks for each epoch, and (ii) they will download the
same content for each block. Now consider the additional
blocks committed by inter-node linking. As discussed in
§4.3, correct nodes determine these blocks based on identical
information (V arrays) included in the blocks delivered by
BA. Hence they all retrieve and deliver the same set of blocks
(Lemma D.2). Also, all correct nodes use the same sorting
criteria (BA-delivered blocks sorted by node index, followed
by inter-node-linked blocks sorted by epoch number and
node index), so they deliver blocks in the same order.
Validity (Theorems D.5, D.6). Define “correct transactions”
as ones submitted by correct clients to correct nodes (servers).
We want to prove every correct transaction is eventually
delivered (executed). This involves two parts: (i) correct
nodes do not hang, so that every correct transaction eventually
gets proposed in some correct block (Theorem D.5); (ii) all

5If a particular Retrieve returns string “BAD_UPLOADER” or the
block is ill formatted, we use array [∞,∞,...,∞] as the observation.

correct blocks eventually get delivered (Theorem D.6).
For part (i), note that all BAs eventually Output, since in

every epoch at least N− f BAs will Output(1) (Lemma D.3),
and then all correct nodes will Input(0) to the remaining BAs
and drive them to termination. Further, all blocks selected by
BA or inter-node linking are guaranteed to be successfully
dispersed, so Retrieve for them will eventually finish. By
BA’s Validity property, a BA only produces Output(1) when
some correct node has Input(1), which can only happen if
that node sees the corresponding VID Complete. Also, as
explained in §4.3, inter-node linking only selects blocks that
at least one correct node observes to have finished dispersal
(Lemma D.4). By the Availability property of VID (§3.1), all
these blocks are available for retrieval. For part (ii), note that
all correct blocks eventually finish VID (Termination prop-
erty). The inter-node linking protocol will therefore eventually
identify all such blocks to have completed dispersal (Lemma
D.4) and deliver them (if not already delivered by BA).

4.5 Practical Considerations

Running multiple epochs in parallel. In DispersedLedger,
nodes perform dispersal sequentially, proceeding to the
dispersal phase for the next epoch as soon as the dispersal
for the current epoch has completed (all BA instances have
Output). On the other hand, the retrieval phase of each epoch
runs asynchronously at all nodes. To prevent slow nodes from
stalling the progress of fast nodes, it is important that they
participate in dispersal at as high a rate as possible, using only
remaining bandwidth for retrieval. This effectively requires
prioritizing dispersal traffic over retrieval traffic when there is
a network bottleneck. Furthermore, a node can retrieve blocks
from multiple epochs in parallel (e.g., to increase network uti-
lization), but it must always deliver (execute) blocks in a serial
order. Ideally, we want to fully utilize the network but pri-
oritize traffic for earlier epochs over later epochs to minimize
delivery latency. Mechanisms to enforce prioritization among
different types of messages are implementation-specific (§5).
Constantly-slow nodes. Since DispersedLedger decouples
the progress of fast and slow nodes, a natural question is:
what if some nodes are constantly slow and do not have a
chance to catch up? The possibility of some nodes constantly
lagging behind is a common concern for BFT protocols. A
BFT protocol cannot afford to wait for the slowest servers,
because they could be Byzantine servers trying to stall
the system [20]. Therefore the slow servers (specifically
the f slowest servers) can be left behind, unable to catch
up. Essentially, there is a tension between accommodating
servers that are correct but slow, and preventing Byzantine
nodes from influencing the system.

DispersedLedger expands this issue beyond the f slowest
servers. We discuss two simple mitigations. First, the system
designer could mandate a minimum average bandwidth
per node such that all correct nodes can support the target
system throughput over a certain timescale T . Every node

500    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



must support the required bandwidth over time T but can
experience lower bandwidth temporarily without stalling
other nodes. Second, correct nodes could simply stop
proposing blocks when too far behind, e.g., if their retrieval
is more than P epochs behind the current epoch (P = 1 is
the same as HoneyBadger). If enough nodes fall behind
and stop proposing, it automatically slows down the system.
A designer can choose parameters T or P to navigate the
tradeoff between bandwidth variations impacting system
throughput and how far behind nodes can get.
Spam transactions. In DispersedLedger, nodes do not check
the validity of blocks they propose, deferring this check to
the retrieval phase. This creates the possibility of malicious
servers or clients spamming the system with invalid blocks.

Server-sent spam cannot be filtered even in conventional
BFT protocols, because by the time other servers download
the spam blocks, they have already wasted bandwidth.
Similarly, HoneyBadger must perform BA (and incur its
compute and bandwidth cost) regardless of the validity of
the block, because by design, all BAs must eventually finish
for the protocol to make progress [31]. Therefore, server-sent
spam harms DispersedLedger and HoneyBadger equally.
Fortunately, server-sent spam is bounded by the fraction of
Byzantine servers ( f/N).

On the other hand, client-sent spam is not a major
concern in consortium blockchains (§2.1). In consortium
blockchains, the organization is responsible for its clients, and
a non-Byzantine organization would not spam the system.6

For these reasons, some BFT protocols targeting consortium
blockchains such as HyperLedger Fabric [2] forgo transaction
filtering prior to broadcast for efficiency and privacy gains.

In more open settings, where clients are free to contact
any server, spamming is a concern. A simple modification
to the DispersedLedger protocol enables the same level of
spam filtering as HoneyBadger. Correct nodes simply stop
proposing new transactions when they are lagging behind
in retrieval. Instead, they propose an empty block (with no
transactions) to participate in the current epoch. In this way,
correct nodes only propose transactions when they can verify
them. Empty blocks still incur some overhead, so a natural
question is: what is the performance impact of these empty
blocks? Our results show that it is minor and this variant of
DispersedLedger, which we call “DL-Coupled”, retains most
of the performance benefits (§6.2).

5 Implementation
We implement DispersedLedger in 8,000 lines of Go. The
core protocol of DispersedLedger is modelled as 4 nested
IO automata: BA, VID, DLEpoch, and DL. BA implements the
binary agreement protocol proposed in [32]. VID implements
our verifiable information dispersal protocol AVID-M

6A Byzantine organization could of course spam, but this is the same
as the server-sent spamming scenario, in which DispersedLedger is no worse
than HoneyBadger.

described in §3.3. We use a pure-Go implementation of
Reed-Solomon code [36] for encoding and decoding blocks,
and an embedded key-value storage library [23] for storing
blocks and chunks. DLEpoch nests N instances of VID and BA
to implement one epoch of DispersedLedger (§4.2). Finally,
DL nests multiple instances of DLEpoch and the inter-node
linking logic (§4.3) to implement the full protocol.
Traffic prioritization. Prioritizing dispersal traffic over
retrieval is made complicated because nodes cannot be certain
of the bottleneck capacity for different messages and whether
they share a common bottleneck. For example, rate-limiting
the low-priority traffic may result in under-utilization of the
network. Similarly, simply enforcing prioritization between
each individual pair of nodes may lead to significant priority
inversion if two pairs of nodes share the same bottleneck. In
our implementation, we use a simple yet effective approach to
achieve prioritization in a work conserving manner (without
static rate limits) inspired by MulTcp [13]. For each pair
of nodes, we establish two connections, and we modify
the parameters of the congestion control algorithm of one
connection so that it behaves like T (T > 1) connections .
We then send high-priority traffic on this connection, and
low-priority traffic on the other (unmodified) connection. At
all bottlenecks, the less aggressive low-priority connection
will back off more often and yield to the more aggressive
high-priority connection. On average, a high-priority con-
nection receives T times more bandwidth than a competing
low-priority connection at the same bottleneck.7 Note that in
DispersedLedger, high-priority traffic consists of only a tiny
fraction of the total traffic that a node handles (1/20 to 1/10
in most cases as shown in §6.4), and its absolute bandwidth
is low. Therefore our approach will not cause congestion
to other applications competing at the same bottleneck. In
our system, we set T =30. We use QUIC as the underlying
transport protocol and modify the quic-go [12] library to
add the knob T for tuning the congestion control.

To prioritize retrieval traffic by epoch, we order retrieval
traffic on a per-connection basis by using separate QUIC
streams for different epochs. We modify the scheduler
quic-go [12] to always send the stream with the lowest
epoch number.
Rate control for block proposal. DispersedLedger requires
some degree of batching to amortize the fixed cost of BA and
VID. However, if unthrottled, nodes may propose blocks too
often and the resulting blocks could be very small, causing
low bandwidth efficiency. More importantly, since dispersal
traffic is given high priority, the system may use up all the
bandwidth proposing inefficient small blocks and leave no
bandwidth for block retrieval. To solve this problem, our
implementation employs a simple form of adaptive batch-
ing [29]. Specifically, we limit the block proposal rate using
Nagle’s algorithm [33]. A node only proposes a new block if

7Similar approaches have been used in other usecases to control
bandwidth sharing among competing flows [34].
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(i) a certain duration has passed since the last block was pro-
posed, or (ii) a certain amount of data has accumulated to be
proposed in the next block. In our implementation, we use 100
ms as the delay threshold, and 150 KB as the size threshold.
This setup works well for all of our evaluation experiments.

6 Evaluation
Our evaluation answers the following questions:
1. What is the throughput and the latency of DispersedLedger

in a realistic deployment?
2. Is DispersedLedger able to consistently achieve good

throughput regardless of network variations?
3. How does the system scale to more nodes?

We compare DispersedLedger (DL) with the original
HoneyBadger (HB) and our optimized version: HoneyBadger-
Link. HoneyBadger-Link (HB-Link) combines the inter-node
linking in DispersedLedger with HoneyBadger, so that every
epoch, all (instead of N−2 f ) honest blocks are guaranteed
to get into the ledger. We also experiment with DL-Coupled,
a variant of DispersedLedger where nodes only propose new
transactions when they are up-to-date with retrievals (§4.5).

6.1 Experimental Setup
We run our evaluation on AWS EC2. In our experiments,
every node is hosted by an EC2 c5d.4xlarge instance with
16 CPU cores, 16 GB of RAM, 400 GB of NVMe SSD, and
a 10 Gbps NIC. The nodes form a fully connected graph, i.e.
there is a link between every pair of nodes. We run our ex-
periments on two different scenarios. First, a geo-distributed
scenario, where we launch VMs at 16 major cities across the
globe, one at each city. We don’t throttle the network. This
scenario resembles the typical deployment of a consortium
blockchain. In addition, we measure the throughput of the
system on another testbed on Vultr (details are in Appendix
A.2). Second, a controlled scenario, where we start VMs
in one datacenter and apply artificial delay and bandwidth
throttling at each node using Mahimahi [35]. Specifically, we
add a one-way propagation delay of 100 ms between each
pair of nodes to mimic the typical latency between distant
major cities [38], and model the ingress and egress bandwidth
variation of each node as independent Gauss-Markov
processes (more details in §6.3). This controlled setup allows
us to precisely define the variation of the network condition
and enables fair, reproducible evaluations. Finally, to generate
the workload for the system, we start a thread on each node
that generates transactions in a Poisson arrival process.

6.2 Performance over the Internet
First, we measure the performance of DispersedLedger on our
geo-distributed testbed and compare it with HoneyBadger.
Throughput. To measure the throughput, we generate a high
load on each node to create an infinitely-backlogged system,
and report the rate of confirmed transactions at each node.
Because the internet bandwidth varies at different locations,
we expect the measured throughput to vary as well. Fig. 8

Figure 8: Throughput of each server running different
protocols on the geo-distributed setting.
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Figure 9: The amount of confirmed data over time when
running DispersedLedger and HoneyBadger with inter-node
linking on the geo-distributed testbed, plotted on the same scale.
Each line represents one server.

shows the results. DispersedLedger achieves on average
105% better throughput than HoneyBadger. To confirm that
our scheme is robust, we also run the experiment on another
testbed using a low-cost cloud vendor. Results in §A.2 show
that DispersedLedger significantly improves the throughput
in that setting as well.

DispersedLedger gets its throughput improvement mainly
for two reasons. First, inter-node linking ensures all blocks
that successfully finish VID get included in the ledger, so
no bandwidth is wasted. In comparison, in every epoch of
HoneyBadger at most f blocks may not get included in
the final ledger. The bandwidth used to broadcast them is
therefore wasted. As a result, inter-node linking provides
at most a factor of N/(N − f ) improvement in effective
throughput. To measure the gain in the real-world setting, we
modify HoneyBadger to include the same inter-node linking
technique and measure its throughput. Results in Fig. 8 show
that enabling inter-node linking provides a 45% improvement
in throughput on our geo-distributed testbed.

Second, confirmation throughput at different nodes are
decoupled, so temporary slowdown at one site will not affect
the whole system. Because the system is deployed across the
WAN, there are many factors that could cause the confirma-
tion throughput of a node to fluctuate: varying capacity at the
network bottleneck, latency jitters, or even behavior of the
congestion control algorithm. In HoneyBadger, the confirma-
tion progress of all but the f slowest nodes are coupled, so at
any time the whole system is only as fast as the f +1-slowest
node. DispersedLedger does not have this limitation. Fig. 9
shows an example: DispersedLedger allows each node to
always run at its own capacity. HoneyBadger couples the
performance of most servers together, so all servers can
only progress at the same, limited rate. In fact, notice that
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every node makes more progress with DispersedLedger
compared to HoneyBadger (with linking) over the 2 minutes
shown. The reason is that with HoneyBadger, different nodes
become the straggler (the ( f +1)th-slowest node) at different
time, stalling all other nodes. But with DispersedLedger, a
slow node whose bandwidth improves can accelerate and
make progress independently of others, making full use of
time periods when it has high bandwidth. Fig. 8 shows that
DispersedLedger achieves 41% better throughput compared
to HoneyBadger with linking due to this improvement.

Finally, DL-Coupled is 12% slower than DL on average,
but it still achieves 80% and 23% higher throughput on
average than HoneyBadger and HoneyBadger with linking.
Recall that DL-Coupled constrains nodes that can propose
new transactions to prevent spamming attacks. The result
shows that in open environments where spamming is a con-
cern, DL-Coupled can still provide significant performance
gains. In the rest of the evaluation, we focus on DL (without
spam mitigation) to investigate our idea in its purest form.
Latency. Confirmation latency is defined as the elapsed
time from a transaction entering the system to it being
delivered. Similar to the throughput, the confirmation latency
at different servers varies due to heterogeneity of the network
condition. Further, for a particular node, we only calculate
the latency of the transactions that this node itself generates,
i.e. local transactions. This is a somewhat artificial metric,
but it helps isolate the latency of each server in HoneyBadger
and makes the results easier to understand. In HoneyBadger,
a slow node only proposes a new epoch after it has confirmed
the previous epoch, so the rate it proposes is coupled with
the rate it confirms, i.e. it proposes 1 block after downloading
O(N) blocks. Due to this reason, an overloaded node does
not have the capacity to even propose all the transactions it
generates, and whatever transaction it proposes will be stale.
When these stale transactions get confirmed at a fast node,
the latency (especially the tail latency) at the fast nodes will
suffer. Note that DispersedLedger does not have this problem,
because all nodes, even overloaded ones, propose new
transactions at a rate limited only by the egress bandwidth.
In summary, choosing this metric is only advantageous to
HoneyBadger, so the experiment remains fair. In Appendix
§A.1, we provide further details and report the latency of all
servers calculated for both local only, and all transactions.

We run the system at different loads and report the latency
at each node. In Fig. 10, we focus on two datacenters:
Mumbai, which has limited internet connection, and Ohio,
which has good internet connection. We first look at the
median latency. At low load, both HoneyBadger and
DispersedLedger have similarly low median latency. But as
we increase the load from 6 MB/s to 15 MB/s, the median
latency of HoneyBadger increases almost linearly from
around 800 ms to 3000 ms. This is because in HoneyBadger,
proposing and confirming an epoch are done in lockstep. As
the load increases, the proposed block becomes larger and

Figure 10: The median latency of DispersedLedger (solid)
and HoneyBadger (dash) under different offered load. Error
bar shows the 5-th and the 95-th percentiles. Two locations
with good (Ohio) and limited (Mumbai) internet connection
are highlighted.

takes longer to confirm. This in turn causes more transactions
to be queued for the next block so the next proposed block
remains large. Actually, the batch (all blocks in an epoch)
size of HoneyBadger increases from 3.4 MB to 42.5 MB
(200 KB to 2.5 MB per block) as we increase the load from
6 MB/s to 15 MB/s. Note that the block size is not chosen by
us, but is naturally found by the system itself. In comparison,
the latency of DispersedLedger only increases by a bit when
the load increases, from 730 ms to 830 ms as we increase the
load from 2 MB/s to 23 MB/s. The batch size ranges between
0.85 MB to 11.9 MB (50 KB to 700 KB per block).

We now look at the tail latency, which is important for
service quality. At low load (6 MB/s), the 99-th percentile la-
tency of DispersedLedger is 1000 ms across all servers, while
that of HoneyBadger ranges from 1500 ms to 4500 ms. It sug-
gests that DispersedLedger is more stable. As we increase the
load, the tail (95-th percentile) latency of the Mumbai server
immediately goes up. This is because HoneyBadger does not
guarantee all honest blocks to be included in the ledger, and
slow nodes are more likely to see their blocks being dropped
from an epoch. When it happens, the node has to re-propose
the same block in the next epoch, causing significant delay to
the block. We note that the tail latency of the Ohio server goes
up as well. In comparison, the tail latency of DispersedLedger
at both Mumbai and Ohio stays low until very high load.

6.3 Controlled experiments
In this experiment, we run a series of tests in the controlled
setting to verify if DispersedLedger achieves its design goal:
achieving good throughput regardless of network variation.
We start 16 servers in one datacenter, and add an artificial one-
way propagation delay of 100 ms between each pair of servers
to emulate the WAN latency. We then generate synthetic
traces for each server that independently caps the ingress and
egress bandwidth of the server. For each set of traces, we mea-
sure the throughput of DispersedLedger and HoneyBadger.
Spatial variation. This is the situation where the bandwidth
varies across different nodes but stays the same over time. For
the i-th node (0≤ i<16), we set its bandwidth to constantly
be 10 + 0.5i MB/s. Fig. 11a shows that the throughput of
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(a) Spatial variation (b) Temporal variation

Figure 11: Throughput of HoneyBadger (HB), HoneyBadger
with linking (HB-Link), and DispersedLedger (DL) in the
controlled experiments. Error bars in (b) show the standard
deviation.

HoneyBadger (with or without linking) is capped at the
bandwidth of the fifth slowest server, and the bandwidth avail-
able at all faster servers are not utilized. In comparison, the
throughput of DispersedLedger at different servers are fully
decoupled. The achieved bandwidth is proportional to the
available bandwidth at each server. DispersedLedger achieves
this because it decouples block retrieval at different servers.
Temporal variation. We now look at the scenario where the
bandwidth varies over time, and show that DispersedLedger is
robust to network fluctuation. We model the bandwidth vari-
ation of each node as independent Gauss-Markov processes
with mean b, variance σ, and correlation between consecutive
samples α, and generate synthetic traces for each node by
sampling from the process every 1 second. Specifically, we
set b=10 MB/s, σ=5 MB/s, α=0.98 and generate a trace for
each server, i.e. the bandwidth of each server varies indepen-
dently but have the same distribution with mean bandwidth
10 MB/s. (We show an example of such trace in §A.3.) As a
comparison, we also run an experiment when the bandwidth
at each server does not fluctuate and stays at 10 MB/s. In our
implementation (for all protocols), a node notifies others when
it has decoded a block to stop sending more chunks. This opti-
mization is less effective when all nodes have exactly the same
fixed bandwidth because all chunks for a block will arrive at
roughly the same time. So in this particular experiment, we
disable this optimization to enable an apple-to-apple compar-
ison of the fixed and variable bandwidth scenarios. Fig. 11b
shows that as we introduce temporal variation of the network
bandwidth, the throughput of DispersedLedger stays the same.
This confirms that DispersedLedger is robust to network fluc-
tuation. Meanwhile, the throughput of HoneyBadger and Hon-
eyBadger with linking dropped by 20% and 25% respectively.

6.4 Scalability
In this experiment, we evaluate how DispersedLedger scales
to a large number of servers. As with many evaluations of BFT
protocols [31,39], we use cluster sizes ranging from 16 to 128.
Throughput. We first measure the system throughput at
different cluster size N. For this experiment, we start all
the servers in the same datacenter with a 100 ms one-way
propagation delay on each link and a 10 MB/s bandwidth
cap on each server. We also fix the block size to 500 KB

Figure 12: Throughput at
different cluster size and block
size. Error bars show the
standard deviation.

Figure 13: Fraction of disper-
sal traffic versus total traffic at
different scale and block size.

and 1 MB. Fig. 12 shows that the system throughput slightly
drops when N grows 8 times bigger from 16 nodes to 128
nodes. This is because the BA in the dispersal phase has
a per-node cost of O(N2). With a constant block size, the
messaging overhead takes a larger fraction as N increases.
We notice that increasing the block size helps amortize the
cost of VID and BA, and results in better system throughput.
Traffic for block dispersal. A metric core to the design of
DispersedLedger is the amount of data a node has to download
in order to participate in block dispersal, i.e. dispersal traffic.
More precisely, we are interested in the ratio of dispersal
traffic to the total traffic (dispersal plus retrieval). The lower
this ratio, the easier it is for slow nodes to keep up with block
dispersal, and the better DispersedLedger achieves its design
goal. Fig. 13 shows this ratio at different scales and block
sizes. First, we observe that increasing the block size brings
down the fraction of dispersal traffic. This is because a large
block size amortizes the fixed cost in VID and BA. Mean-
while, increasing the cluster size reduces the lower bound
on the fraction of dispersal traffic. This is because in the VID
phase, every node is responsible for an 1/(N−2 f ) slice of
each block, and increasing N brings down this fraction.

7 Conclusion
We presented DispersedLedger, a new asynchronous BFT
protocol that provides near-optimal throughput under
fluctuating network bandwidth. DispersedLedger is based
on a novel restructuring of BFT protocols that decouples
agreement from the bandwidth-intensive task of downloading
blocks. We implement a full system prototype and evaluate
DispersedLedger on two testbeds across the real internet and
a controlled setting with emulated network conditions. Our
results on a wide-area deployment across 16 major cities show
that DispersedLedger achieves 2× better throughput and 74%
lower latency compared to HoneyBadger. Our approach could
be applicable to other BFT protocols, and enables new ap-
plications where resilience to poor network condition is vital.
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A Supplements to the Evaluations
A.1 Latency metric
Here we justify counting only local transactions when cal-
culating the confirmation latency. As mentioned in §6.2, we
choose this metric to prevent overloaded servers from impact-
ing the latency (especially the tail latency) of non-overloaded
servers. Fig. 14 shows the latency of DispersedLedger and
HoneyBadger under two metrics: counting all transactions,
and counting only local transactions. Each system is running
near its capacity. We observe that the latency (both the
median and the tail) of DispersedLedger is the same under
the two metrics, so choosing to count only local transactions
in no way helps our protocol. For HoneyBadger, we observe
that by counting all transactions, the median latency of the
overloaded servers decreased. This is because the overloaded
servers cannot get their local transactions into the ledger (so
the local transactions have high latency), but can confirm
some transactions from other non-overloaded servers. The
median latency mostly represents these non-local transactions.
Still, these servers are overloaded, and the latency numbers
are meaningless because they will increase as system runs
for longer. So the latency metric does not matter for the
overloaded servers. Meanwhile, we observe that the tail
latency of HoneyBadger on non-overloaded servers worsens
a lot as we switch to counting all transactions. This is due to
the transactions proposed by the overloaded nodes, and is the
main reason that we choose to count only local transactions.
In summary, counting only local transactions for latency
calculation does not improve the latency of DispersedLedger,
but helps improve the tail latency of non-overloaded servers
in HoneyBadger, so choosing this metric is fair.

A.2 Throughput on another testbed over the internet
To further confirm that DispersedLedger improves the
throughput of BFT protocols when running over the internet,
we build another testbed on a low-cost cloud provider called
Vultr. We use the $80/mo plan with 6 CPU cores, 16 GB of
RAM, 320 GB of SSD, and an 1 Gbps NIC. At the moment of
the experiment, Vultr has 15 locations across the globe, and
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(a) DispersedLedger

(b) HoneyBadger

Figure 14: Confirmation latency of DispersedLedger and
HoneyBadger when counting all transactions (All Tx) or only
local transactions. Each system runs near its capacity (14.8
MB/s for HoneyBadger and 23.4 MB/s for DispersedLedger).
The error bar shows the 5-th and 95-th percentiles.

Figure 15: Throughput of each server running different
protocols on the Vultr testbed. HB stands for HoneyBadger,
HB-Link stands for HoneyBadger with inter-node linking, New
stands for DispersedLedger.

we run one server at each location and perform the same exper-
iment as in § 6.2. Fig. 15 shows the results. DispersedLedger
improves the throughput by at least 50% over HoneyBadger.

A.3 Example trace of temporal variation

We provide in Fig. 16 an example of the synthetic bandwidth
trace we used in the temporal variation scenario in §6.3.

Figure 16: A bandwidth trace we used in the temporal
variation scenario.

B Correctness proof of AVID-M
Notations. We use the symbol “·” as placeholders in message
parameters to indicate “any”. For example, Chunk(r, ·, ·)
means “Chunk messages with the first parameter set to r and
the other two parameters set to any value”.

Lemma B.1. If a correct server sends Ready(r), then at
least one correct server has received N− f GotChunk(r).

Proof. A correct server broadcasts Ready(r) in two cases:
1. Having received N− f GotChunk(r) messages.
2. Having received f +1 Ready(r) messages.
If a correct server sends out Ready(r) for the aforementioned
reason 1, then this already satisfies the lemma we want to
prove. Now assume that a correct server sends Ready(r)
because it has received f +1 Ready(r) (the aforementioned
reason 2). Then there must exist a correct server which has
sent out Ready(r) because of the aforementioned reason 1.
Otherwise, there can be at most f Ready(r) messages (forged
by the f Byzantine servers), and no correct server will ever
send Ready(r) because of reason 2, which contradicts with
our assumption. So there exists a correct server that has re-
ceived N− f GotChunk(r), and this satisfies the lemma.

Theorem B.2 (Termination). If a correct client invokes
Disperse and no other client invokes Disperse on the
same instance of VID, then all correct servers eventually
Complete the dispersal.

Proof. A correct client sends correctly encoded chunks to all
servers. Let’s assume the Merkle root of the chunks is r, then
all correct servers eventually receive Chunk(r,·,·). Because
there is no other client invoking Disperse, it is impossible
for a server to receive Chunk(r′, ·, ·) for any r′ 6= r, and no
correct server will ever broadcast GotChunk(r′) for any r′ 6=r.
So each correct server will send out GotChunk(r). Eventually,
all correct servers will receive N− f GotChunk(r).

All correct servers will broadcast Ready(r) upon receiving
these N − f GotChunk(r) messages or they have already
sent Ready(r). A correct server will Complete upon
receiving 2 f + 1 Ready(r). We have shown that all N − f
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correct servers will eventually send Ready(r). Because
N− f ≥2 f +1, all correct servers will Complete.

Lemma B.3. If a correct server has sent out Ready(r), then
no correct server will ever send out Ready(r′) for any r′ 6=r.

Proof. Let’s assume for contradiction that two messages
Ready(r) and Ready(r′) (r 6= r′) have both been sent by
correct servers. By Lemma B.1, at least one correct server
has received N − f GotChunk(r), and at least one correct
server has received N− f GotChunk(r′) (r′ 6=r).

We obtain a contradiction by showing that the system
cannot generate N − f GotChunk(r) messages plus N − f
GotChunk(r′) messages for the two correct servers to receive.
Assume h GotChunk(r) messages come from correct servers,
h′ GotChunk(r′) come from correct servers, and there are β

Byzantine servers (β≤ f by the definition of f ). Then we have

h+β≥N− f

h′+β≥N− f .

A correct server do not broadcast both GotChunk(r) and
GotChunk(r′), while a Byzantine server is free to send
different GotChunk messages to different correct servers, so
we have

h+h′+β≤N.

These constraints imply

β≥N−2 f .

However, β≤ f , so we must have N ≤ 3 f . This contradicts
with our assumption of N ≥ 3 f + 1 in our security model
(§2.4), so it is impossible, and the assumption must not
hold.

Theorem B.4 (Agreement). If some correct server
Completes the dispersal, then all correct servers will
eventually Complete the dispersal.

Proof. A correct server Completes if and only if it has
received 2 f +1 Ready(r) messages. We want to prove that
in this situation, all correct servers will eventually send
a Ready(r), so that they will all receive at least 2 f + 1
Ready(r) messages needed to Complete.

We now assume a correct server has Completed after
receiving 2 f + 1 Ready(r). Out of these messages, at
least f + 1 must be broadcast from correct servers, so all
correct servers will eventually receive these Ready(r). A
correct server will send out Ready(r) upon receiving f +1
Ready(r), so all correct servers will do so upon receiving the
aforementioend f +1 Ready(r) messages.

Because all correct servers will send Ready(r), eventually
all correct servers will receive N − f Ready(r). Because
N− f ≥2 f +1, all of them will Complete.

Lemma B.5. If a correct server has Completed, then all
correct servers eventually set the variable ChunkRoot to the
same value.

Proof. A correct server uses ChunkRoot to store the root of
the chunks of the dispersed block, so we are essentially prov-
ing that all correct servers agree on this root. Assume that a
server Completes, then it must have received 2 f +1 Ready(r)
messages. We now prove that no correct server can ever re-
ceive 2 f +1 Ready(r′) messages for any r′ 6=r. Because a cor-
rect server has received 2 f +1 Ready(r), there must be f +1
correct servers who have broadcast Ready(r). By Lemma
B.3, no correct server will ever broadcast Ready(r′) for any
r′ 6=r, so a correct server can receive at most f Ready(r′) for
any r′ 6=r, which are forged by the f Byzantine servers.

By Theorem B.4, all correct servers eventually Complete,
so they must eventually receive 2 f + 1 Ready(r), and will
each set ChunkRoot=r.

Theorem B.6 (Availability). If a correct server has
Completed, and a correct client invokes Retrieve, it
eventually reconstructs some block B′.

Proof. The Retrieve routine returns at a correct client
as long as it can collect N − 2 f ReturnChunk(r,Ci, Pi)
messages with the same root r and valid proofs Pi. A correct
server sends ReturnChunk(MyRoot,MyChunk,MyProof) to
a client as long as it has MyRoot, MyChunk, MyProof, and
ChunkRoot set, and MyRoot = ChunkRoot. Here, a server
uses MyRoot to store the root of the chunk it has received, uses
MyChunk to store the chunk, and uses MyProof to store the
Merkle proof (Fig. 3). We now prove that if any correct server
Completes, at least N − 2 f correct servers will eventually
meet this condition and send ReturnChunk to the client.

Assume that a correct server has Completed the VID
instance with ChunkRoot set to r. Then, by Lemmas B.4,
B.5, all correct servers will eventually Complete and set
ChunkRoot= r. Also, this server must have received 2 f +1
Ready(r) messages, out of which at least f +1 must come
from correct servers. According to Lemma B.1, at least one
correct server has received N − f GotChunk(r). At least
N − 2 f GotChunk(r) messages must come from correct
servers, so they each must have MyChunk, MyProof set, and
have set MyRoot=r.

We have proved that at least N− 2 f correct servers will
send ReturnChunk(r,Ci, Pi) messages. For each message
sent by the i-th server (which is correct), Pi must be a valid
proof showing Ci is the i-th chunk under root r, because the
server has validated this proof. So the client will eventually
obtain the N−2 f chunks needed to reconstruct a block.

Lemma B.7. Any two correct clients finishing Retrieve

have their variable ChunkRoot set to the same value.

Proof. A client uses variable ChunkRoot to store the root
of the N−2 f chunks it uses to reconstruct the block (Fig. 4),
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so we are essentially proving that any two correct clients will
use chunks under the same root when executing Retrieve.
Let’s assume for contradiction that two correct clients finish
Retrieve, but have set ChunkRoot to r and r′ respectively
(r 6= r′). This implies that one client has received at least
N − 2 f ReturnChunk(r, ·, ·) messages, and the other has
received N − 2 f ReturnChunk(r′, ·, ·) messages. Out of
these messages, at least N−3 f ReturnChunk(r,·,·) and at
least N− 3 f ReturnChunk(r′,·,·) are from correct servers
(because N ≥ 3 f + 1 by our security assumptions in §2.4).
Since a correct server ensures MyRoot=ChunkRoot and uses
MyRoot as the first parameter of ReturnChunk messages,
there must exist some correct server with ChunkRoot set
to r, and some correct server with ChunkRoot set to r′.
Also, since a correct server only sends ReturnChunk when
it has Completed, there must be some server which has
Completed. This contradicts with Lemma B.5, which states
that all correct servers must have ChunkRoot set to the same
value. The assumption must not hold.

Extra notations. To introduce the following lemma, we
need to define a few extra notations. Let Encode(B) be the
encoding result of a block B in the form of an array of N
chunks. Let Decode(C) be the decoding result (a block) of an
array of N−2 f chunks. Let MerkleRoot(C) be the Merkle
root of an array of chunks.

Lemma B.8. For any array of N chunks C, exactly one of
the following is true:
1. For any two subsets D1, D2 of N − 2 f chunks in C,

Decode(D1)=Decode(D2).
2. For any subset D of N − 2 f chunks in C,

MerkleRoot(Encode(Decode(D))) 6=MerkleRoot(C).

Proof. We are proving that a set of chunks C is either:
1. Correctly encoded (consistent), so any subset of N−2 f

chunks in C decode into the same block.
2. Or, no matter which subset of N−2 f chunks in C are used

for decoding, a correct client can re-encode the decoded
block, compute the Merkle root over the encoding result,
and find it to be different from the Merkle root of C, and
thus detect an encoding error.
Case 1: Consistent encoding. Assume for any subset D of

N−2 f chunks in C, Decode(D)=B. We now want to prove
that MerkleRoot(Encode(Decode(D)))=MerkleRoot(C).
By our assumption, Encode(Decode(D)) = Encode(B),
so we only need to show C = Encode(B). This is clearly
true by the definition of erasure code: the Encode function
encodes B into a set of N chunks, of which any subset of
N − 2 f chunks will decode into B. C already satisfies this
property, and the Encode process is deterministic, so it must
be Encode(B)=C, and the lemma is satisfied in this case.

Case 2: Inconsistent encoding. Assume there ex-
ist two subsets D1, D2 of N − 2 f chunks in C, and
Decode(D1) 6= Decode(D2). Let Decode(D1) = B1

and Decode(D2) = B2 where B1 6= B2. We want to
prove that for any subset D of N − 2 f chunks in C,
MerkleRoot(Encode(Decode(D))) 6=MerkleRoot(C).

We prove it by showing there does not exist any block
B such that C = Encode(B). That is, C is not a consistent
encoding result of any block. Assume for contradiction that
there exists B′ such that C = Encode(B′). Because D1 is a
subset of N−2 f chunks in C and Decode(D1)=B1, it must
be B1=B′, otherwise the semantic of erasure code is broken.
For the same reason B2 = B′, so B1 = B2. However it con-
tradicts with B1 6=B2, so the assumption must not hold, and
there does not exist any block B such that C=Encode(B).

We now prove that MerkleRoot(Encode(Decode(D))) 6=
MerkleRoot(C) for any subset D of N − 2 f
chunks in C. Assume for contradiction that
MerkleRoot(Encode(Decode(D))) = MerkleRoot(C),
then it must be that C=Encode(Decode(D)) because Merkle
root is a secure summary of the chunks. This contradicts with
the result we have just proved: there does not exist any block
B such that C=Encode(B). So the assumption cannot hold,
and the lemma is satisfied in this case.

Theorem B.9 (Correctness). If a correct server has
Completed, then correct clients always reconstruct the same
block B′ by invoking Retrieve. Also, if a correct client
initiated the dispersal by invoking Disperse(B) and no
other client invokes Disperse, then B=B′.

Proof. We first prove the first half of the theorem: any two
correct clients always return the same data upon finishing
Retrieve. By Lemma B.7, any two clients will set their
ChunkRoot to the same value. Note that a client sets
ChunkRoot to the root of the chunks it uses for decoding.
This implies that any two correct clients will use subsets
from the same set of chunks. By Lemma B.8, either:
1. They both decode and obtain the same block B′.
2. Or, they each compute MerkleRoot(Encode()) on the

decoded block and both get a result that is different from
ChunkRoot.

In the first situation, both clients will return B′. In the
second situation, they both return the block containing string
“BAD_UPLOADER”. In either case, they return the same
block.

We then prove the second half of the theorem. Assume
a correct client has initiated Disperse(B) and no other
client invokes Disperse. By Theorem B.6, any correct
client invoking Retrieve will obtain some block B′.
We now prove that B′ = B. Assume for contradiction
that B′ 6= B. Then the client must have received N − 2 f
ReturnChunk(MerkleRoot(Encode(B′)),·,·) messages. At
least one of them must come from a correct server because
N−2 f > f , so at least one correct server have ChunkRoot

set to MerkleRoot(Encode(B′)). However, because there
is only invocation of Disperse(B), all correct servers
must have set ChunkRoot to MerkleRoot(Encode(B)).
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Phase 1. Dispersal at the i-th server
1. For 1≤ j ≤ N, let V e

i [ j] be the largest epoch number
t such that VID1

j ,VID2
j ,...,VIDt

j have Completed.
2. Let Be

i be the block to disperse (propose) for epoch e. Be
i

contains two parts: transactions T e
i and observation V e

i .
3. Invoke Disperse(Be

i ) on VIDe
i as a client.

• Upon Complete of VIDe
j (1≤ j ≤ N), if we have not

invoked Input on BAe
j, invoke Input(1) on BAe

j.
• Upon Output(1) of least N− f BA instances, invoke
Input(0) on all remaining BA instances on which we
have not invoked Input.

• Upon Output of all BA instances,
1. Let local variable Se

i ⊂{1...N} be the indices of all
BA instances that Output(1). That is, j ∈ S if and
only if BAe

j has Output(1) at the i-th server.
2. Move to retrieval phase.

Phase 2. Retrieval
1. For all j∈Se

i , invoke Retrieve on VIDe
j to download

full block Be
j
′. Decompose Be

j
′ into transactions T e

j
′

and observation V e
j
′. Let V e

j
′ = [∞,∞, ... ,∞] if Be

j
′ is

ill-formatted.
2. Deliver {T e

j
′| j∈Se

i } (sorted by increasing indices). Set
Delivered[e][ j]=1 (initially 0) for all j∈Se

i .
3. For 1≤ j ≤ n, let Ee

i [ j] be the ( f +1)th-largest value
among {V e

k
′[ j]|k∈Se

i }.
4. For all 1 ≤ j ≤ N, for all 1 ≤ d ≤ Ee

i [ j], check
if Delivered[d][ j] = 0. If so, invoke Retrieve

on VIDd
j to download full block Bd

j
′, and set

Delivered[d][ j]=1 (initially 0).
5. Deliver all blocks downloaded in step 4 (sorted by

increasing epoch number and node index).

Figure 17: Algorithm for DispersedLedger with inter-node
linking. The blue color indicates the changes from the
single-epoch algorithm.

So MerkleRoot(Encode(B)) = MerkleRoot(Encode(B′))
This contradicts with our assumption, so the assumption must
not hold, and B=B′.

C Specification of the full DispersedLedger
protocol with Inter-node Linking

Figure 17 describes how to modify the single-epoch protocol
to use inter-node linking. Blue color highlights the parts are
added compared to the single-epoch protocol.

D Correctness proof of DispersedLedger
Notations. Let H (H⊂{1,2,...,N}) be the set of the indices
of correct nodes. That is, i ∈ H if and only if the i-th node
is correct. In our proof, we use the variables in the full
algorithm defined in Fig. 17. We also use “phase x, step y”
to refer to specific steps in Fig. 17.

Lemma D.1. For any epoch e, any i∈H, and any 1≤ j≤N,
if j∈Se

i then VIDe
i has Completed at some correct node.

Proof. By the definition of Se
i (phase 1, step 3), j∈Se

i if and
only if BAe

j has Output(1) at the i-th node. By the Validity
property of BA (§4.1), BAe

j Output(1) at a correct node
implies that at least one correct node has invoked Input(1)
on BAe

j, which only happens when that node sees VIDe
j

Complete (phase 1, step 3).

Lemma D.2. For any epoch e, any i, j ∈ H, Se
i = Se

j and
Ee

i =Ee
j .

Proof. By the definition of Se
i (phase 1, step 3), k∈Se

i if and
only if BAe

k has Output(1) at the i-th node. By the Agree-
ment property of BA (§4.1), BAe

k will eventually Output(1)
at the j-th node. So k∈Se

i if and only if k∈Se
j, and Se

i =Se
j.

We now prove Ee
i = Ee

j . The i-th node (which is correct)
starts the computation of Ee

i by invoking Retrieve on all
VIDs in {VIDe

k|k ∈ Se
i }. These Retrieves are guaranteed

to finish by Lemma D.1 and the Availability property of
VID (Theorem B.6). The node then extracts the observations
{V e

k
′|k∈Se

i } from the downloaded blocks. Note that the j-th
node will download the same set of observations. This is
because Se

i =Se
j, and the VID Correctness property (Theorem

B.9) guarantees the j-th node will obtain the same blocks
when invoking Retrieve on {VIDe

k|k∈Se
j}.

To combine the observations into the estimation, the i-th
node runs phase 2, step 3. This process is deterministic, with
Ee

i being a function of the observations {V e
k
′|k ∈ Se

i } and
parameter f . Because we have just proved the j-th node will
obtain the same set of estimations, and by our security model
f is a protocol parameter known to all nodes (§2.4), the j-th
node will get the same results.

Lemma D.3. For any epoch e, and any i∈H, |Se
i | ≥N− f .

That is, Se
i contains at least N− f indices.

Proof. By the definition of Se
i (phase 1, step 3), this

lemma essentially states that at least N − f BAs among
{BAe

1,BAe
2,...,BAe

N} will Output(1) at the i-th node.
Assume for contradiction that |Se

i |<N− f . By Lemma D.2,
|Se

j|<N− f for all j∈H, i.e., less than N− f BAs eventually
Output(1) at every correct node. We now consider the
possible outcomes of the remaining BA instances, which do
not eventually Output(1).

One possibility is some of them Output(0). According
to phase 1, step 3, correct nodes will not invoke Input(0) on
any BA instance unless N− f BA instances have Output(1).
By our assumption, less than N− f BA Output(1), so the
latter is not happening and no correct nodes will Input(0)
on any BA instance. By the Validity property of BA (§4.1),
no BA instance can Output(0).

We have showed that the remaining BAs cannot Output(0),
so it must be that all of them never terminate. We will prove
it is also impossible. Assume for contradication that all BAs
that do not Output(1) never terminate. By our assumption,
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less than N− f BAs Output(1), so there must exist k ∈ H
such that BAe

k never terminates. By the Termination property
of VID (Theorem B.2), VIDe

k eventually Completes on all
correct nodes. According to phase 1, step 3, because not all
BAs will terminate, all correct nodes will stay at this step.
All correct nodes will Input(1) to BAe

k upon seeing VIDe
k

Complete. By the Termination and Validity properties of BA
(§4.1), BAe

k will terminate and Output(1), which conflicts
with our assumption.

We have showed there is no valid outcome for the
remaining BA instances, so our assumption cannot hold,
and at least N− f BA instances eventually Output(1) at all
correct nodes.

Lemma D.4. For any epoch e, any i∈H, and any 1≤ j≤N,
there exist p,q∈H such that V e

p [ j]≤Ee
i [ j]≤V e

q [ j].

Proof. The lemma states that if the i-th node (which is cor-
rect) computes the estimation Ee

i [ j] for the j-th node, then the
estimation is lower- and upper-bounded by the observations
V e

p [ j] and V e
q [ j] of two correct nodes (with indices p and q).

That is, the estimation is not too high or too low.
Now assume for contradication that for some 1≤ j≤ N,

for all p ∈H, V e
p [ j]> Ee

i [ j]. That is, the estimation for j is
not lower bounded by the observations made by any correct
node. According to phase 2, step 3, the i-th node sets Ee

i [ j] to
the ( f +1)th-largest value among {V e

k
′[ j]|k∈ Se

i }. Here, V e
k
′

is the observation of the k-th node downloaded by invoking
Retrieve on VIDe

k. By Lemma D.1 and VID Availability
property (Theorem B.6), the Retrieves will eventually
finish.

By our assumption, for all p∈H∩Se
i , V e

p [ j]>Ee
i [ j]. By the

VID Correctness property (Theorem B.9), the observations
of correct nodes will be correctly downloaded. That is,
V e

k
′ =V e

k for all k ∈H. So for all p∈H∩Se
i , V e

p
′[ j]> Ee

i [ j].
By Lemma D.3, |Se

i |≥N− f , so |H∩Se
i |≥N−2 f . So there

are at least N−2 f values in {V e
k
′[ j]|k∈ Se

i } that are greater
than Ee

i [ j]. However, Ee
i [ j] is the ( f + 1)th-largest value

among {V e
k
′[ j]|k ∈ Se

i }, so there can be at most f values in
{V e

k
′[ j]|k ∈ Se

i } that are greater than Ee
i [ j]. Because N > 3 f

(§2.4), N−2 f > f , so the two conclusions are in conflict, and
the assumption cannot hold.

We can similarly prove it is impossible that for some
1≤ j≤N, for all q∈H, V e

q [ j]<Ee
i [ j].

Theorem D.5 (DispersedLedger is well-defined). For any
epoch e, any i∈H, the i-th node eventually finishes epoch e.

Proof. This lemma states that correct nodes will never be
stuck in any epoch e, so that our algorithm is well-defined.
To prove that, we go through Fig. 17 line by line and prove
each step will eventually finish.

Phase 1, steps 1–2. These are local computation and will
finish instantly.

Phase 1, step 3. This step finishes as soon as all BA
instances in that epoch Output. By Lemma D.3, all correct

nodes eventually see at least N− f BA instances Output(1).
At that point, each correct node will invoke Input(0) into
all BAs on which it has not invoked Input. This ensures that
all correct nodes eventually invoke Input on all BAs. By the
Termination property of BA (§4.1), all BAs will eventually
Output on all correct nodes, which ensures this step will
finish.

Phase 2, step 1. This step finishes as soon as Retrieves
on {VIDe

j| j∈Se
i } finish. By Lemma D.1, {VIDe

j| j∈Se
i } will

Complete on all correct nodes. Then by VID Availability
property (Theorem B.6), the Retrieves will finish.

Phase 2, steps 2–3. These are local computation and will
finish instantly.

Phase 2, step 4. This step will finish if for all 1≤ j≤N,
for all 1≤d≤Ee

i [ j], Retrieve of VIDd
j finishes. By Lemma

D.4, there exists q∈H such that V e
q [ j]≥Ee

i [ j], and the q-th
node (which is correct) reports that VIDt

j has Completed for
all 1≤ t≤V e

q [ j]. By VID Availability property (Theorem B.6),
the Retrieves will eventually finish, so this step will finish.

Phase 2, steps 5. This is local computation and will finish
instantly.

Theorem D.6 (Validity). All blocks proposed by correct
nodes are eventually delivered by all correct nodes.

Proof. Assume the i-th node (which is correct) proposes
block Be

i in epoch e. The i-th node invokes Disperse(Be
i )

on VIDe
i . By VID Termination property (Theorem B.2),

eventually all correct nodes will see VIDe
i Complete. So

there must exist an epoch t where for all j∈H, V t
j [i]≥e. That

is, in epoch t, all correct nodes report that the i-th node has
at least dispersed into VID1

i to VIDe
i . By Lemma D.4, for all

j∈H, Et
j[i]≥e. According to phase 2, steps 4–5, all correct

nodes either have already delivered Be
i in previous epochs,

or will deliver Be
i in epoch t.

Theorem D.7 (Agreement and Total Order). Two correct
nodes deliver the same sequence of blocks.

Proof. Let i, j∈H. We prove this theorem by induction on the
number of epochs the i-th and the j-th nodes have finished. In
other words, we prove that for any t≥0, the i-th and the j-th
nodes deliver the same sequence of blocks in the first t epochs.

Initial (t = 0). Both nodes have not delivered any block.
So the hypothesis clearly holds in this situation.

Induction step. Assume our hypothesis holds for t=e−1
(e ≥ 1). We now prove the hypothesis holds for t = e. We
first show the two nodes commit the same sequence of blocks
with BA. By Lemma D.2, Se

i = Se
j and Ee

i = Ee
j . According

to phase 2, step 1, both nodes will invoke Retrieve on the
same set of VIDs. By VID Correctness property (Theorem
B.9), they will get the same set of blocks and deliver them
in the same order in phase 2, step 2.

We now show the two nodes commit the same sequence of
blocks with inter-node linking. The local variable Delivered
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stores whether a node has delivered a block (phase 2, steps 2,
4). By the induction hypothesis, the two nodes have delivered
the same sequence of blocks prior to epoch e, so the variable
Delivered is the same on the two nodes. By Lemma D.2,
Ee

i = Ee
j . So the two nodes will invoke Retrieve on the

same set of VIDs in phase 2, step 4 and get the same set
of blocks. Both nodes sort the blocks deterministically and
deliver them in the same order in phase 2, step 5.

We have proved that the i-th and the j-th nodes deliver
the same sequence of blocks in epoch e. By our induction
hypothesis, they deliver the same sequence until epoch e−1.
So they deliver the same sequence in the first e epochs. This
completes the induction.
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