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Traffic Engineering (TE) in Wide-Area Networks (WANSs)

[SWAN, SIGCOMM 2013] [B4, SIGCOMM 2013]
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Classic Traffic Engineering Model
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Wait, how can we know the upcoming demands? Predict them!
[SWAN, SIGCOMM 2013] [B4, SIGCOMM 2013]
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Normalized Traffic
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A Tale of Two Traffic Patterns
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Drawbacks of Demand-Prediction-Based TE
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DOTE: Direct Optimization for Traffic Engineering
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1. The learning objective is the end-to-end optimization objective!
DM History 2. Invoke a DNN instead of solving an LP.
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DOTE’s Offline Training
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DOTE’s Offline Training

 Training is a stochastic gradient descent (SGD) process:

O Uniformly sample m sequences of k+1 DMs (Dy, ..., D;_;) from an empirical
dataset of past realized DMs.

< > O Update the DNN’s parameters (link weights):
1

0=60—a— z VoL(D{, mwg(D{-1, -, Di_y))

m
/ i € sample l \

step size TE objective DNN output
(splitting ratios)

 Ourrealization is simple, efficient, and seems broadly applicable in TE.



Intuition for DOTE’s offline training

Each of nodes A and B can send traffic to node D via its direct
link or through C. All link capacities are 1.

At the beginning of each time epoch, traffic splitting ratios
must be determined for each source-destination pair.




Intuition for DOTE’s offline training

Suppose A and B’s demands are drawn (i.i.d) from a fixed probability

distribution: (g g) with probability 7, (E g) with probability %2

The TE system has no a priori knowledge of this distribution!

Goal: minimize the maximum-link-utilization (MLU), i.e., maxfe
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Intuition for DOTE’s offline training

Observation: the expected maximum-link-utilization
(MLU) is convex in the splitting ratios!

Gradient descent reaches the optimum
(no explicit demand prediction required)
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Intuition for DOTE’s offline training

But wait, how can we estimate the expected MLU gradient?
O The system does not know the distribution over demands!
O Hence, the expected MLU function is also not known

Observation: Can compute MLU gradient for any past demand
realization

Averaging over gradients = approximates expected MLU gradient



Intuition for DOTE’s offline training

SN lw

. ope . . 5
Consider a specific demand realization: demand,, = - and demand,, =

The MLU as a function of the splitting ratios for this demand realization can be
expressed in closed form:

5 5 5 5
max{Z Wap,7 (1 = Wyp) + - (1 — Wpgp),-Wpp}

The (sub)gradient of the MLU for this demand realization can thus be computed




Generalizing from the toy example

DOTE extends to arbitrary network topologies, tunnel choices,
and distributions over traffic demands.

DOTE addresses temporal patterns in traffic by harnessing the

power of deep learning.
O Gradient descent is now used to optimize the DNN link weights

o
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Extending DOTE to other optimization objectives

What about optimization objectives other than MLU?
O Maximizing total flow
O Maximizing concurrent flow

DOTE’s output now also specifies a “rate cap” for each
communicating pair.

By normalizing the rate caps, DOTE avoids violating link capacities.

Key challenge: the induced function is not concave! Gradient Ascent




Extending DOTE to other optimization objectives

* We prove that for any specific demand realization, the resulting TE
performance function is quasiconcave.
O (Normalized) gradient ascent reaches the optimum [Nesterov 84]

X

A quasiconcave, but not convace, function



We prove that for any specific demand realization, the resulting TE
performance function is quasiconcave.
O (Normalized) gradient descent reaches the optimum [Nesterov 84]

We prove that quasiconcavity also holds when averaging across
demand realizations.
O The sum of quasiconcave functions need not be quasiconcave!

This implies that (normalized) stochastic gradient descent also
converges to the optimum [Hazan — Levy — Shalev-Shwartz, NeurIPS 2015]




* We extensively evaluate DOTE using empirical data.

 QOur empirical evaluation spans
O different network topologies (10s-100s of nodes)

O 0(10%) production demand matrices (abilene, GEANT, 2 MSFT WANS)
O several tunneling schemes (shortest-paths, edge-disjoint, SMORE)
O different flow optimization objectives

(maximizing flow, maximizing concurrent-flow, minimizing MLU)



Demand prediction
[Hong et al., SIGCOMM 13] [Jain et al., SIGCOMM 13] [Kumar et al., NSDI 18] [Kumar
et al., SOSR 18] ...

Oblivious routing [Appelgate-Cohen., SIGCOMM 03]

Hybrid approaches:
COPE [wang et al., siccomMm 06], SMORE [Kumar et al., NSDI 18]

Reinforcement learning [valadarsky et al., HotNets 17]

Omniscient oracle with perfect knowledge of future demands



Minimizing Maximum Link Utilization

|| #Nodes ‘ +#Edges | Length ‘ Granularity
Abilene 11 14 4.5months 5 min.
GEANT 23 37 4 months 15 min.
PWAN O(100) O(100) | O(1) months minutes
PWANpc 0O(10) 0(10) O(1) months minutes

DOTE closely approximates the
(infeasible) omniscient oracle

Bigger improvement on WANs with
more variable demands
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Minimizing Maximum Link Utilization

DOTE outperforms other TE

approaches in terms of TE quality
- COPE could not scale to PWAN

99th 90th 75th median
DOTE +-32% +-22% +18% +9%
Demand Prediction || +201% | +52% | +32% +18%
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Maximizing Total Flow Carried
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(normalized) Max Link Utilization
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Performance under link failures (for PWAN)
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FA DM Pred is demand-prediction-based TE with perfectly knows future failures

DOTE outperforms “FA DM Pred”.

Takeaway: Demand variability has more effect than network failures
(up to a certain number of failures)




DOTE also improves runtimes!

Online Lat. (s)

WAN DOTE LP #nodes  #edges
Abilene 0.0005 0.02 11 14
PWAN pe 0.003 0.05 0O(10) O(10)
Geant 0.002 0.04 23 37
PWAN 0.2 1 O(100) 0O(100)
KDL 2 30 754 895




More results on TE quality
o Additional tunnel selection schemes
o Additional performance metrics

Robustness to noisy traffic
o Different topologies, levels of noise

Robustness to natural traffic drift
o Different topologies, tunnel selection schemes, and performance metrics

More results on resiliency to link failures
o Different topologies, tunnel selection schemes, and performance metrics
Comparison of demand-prediction methods for TE

More results on runtimes
o Additional benchmarks (oblivious routing, COPE)



DOTE is novel approach to WAN TE: directly optimizing
TE configurations (subsumes demand prediction)

A simple learning method that extends to multiple TE
objectives

DOTE’s TE quality improves over the state-of-the-art,
closely approximating the omniscient oracle

DOTE also significantly improves online runtimes for TE.



Future Research

Learning tunnels?
Learning to cope with failures?
Incorporating the network topology into the DNN?

Accelerating (offline and online) runtimes?

Thank you!

Paper: https://www.usenix.org/system/files/nsdi23-perry.pdf
Code: https://github.com/PredWanTE/DOTE



https://www.usenix.org/system/files/nsdi23-perry.pdf
https://github.com/PredWanTE/DOTE
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