
Towards Domain-Specific Network Transport for
Distributed DNN Training

Hao Wang1, Han Tian1, Jingrong Chen2, Xinchen Wan1, Jiachen Xia1,
Gaoxiong Zeng1, Wei Bai3*, Junchen Jiang4, Yong Wang1, Kai Chen1

1

1iSING Lab, Hong Kong University of Science and Technology
2Duke University, 3Microsoft, 4University of Chicago

21st USENIX Symposium on Networked Systems Design and Implementation (NSDI’24)

*Now with NVIDIA

DNN empowers a wide range of applications

2

Face Recognition Automatic Driving

ChatGPT DALL·E

Training DNN is time-consuming

3

Complicated models Huge amount of data

DNN model can be very
complicated, with tens to

hundreds of layers and millions
of neurons.

Dataset is huge, e.g.,
ImageNet contains more
than 14 million images.

Llama2 uses 2 trillion tokens
of pretraining data.

Model BERTBASE Llama2-70B
Training time 4 days, 16 x TPU v3 1.7M GPU hours, A100

https://arxiv.org/pdf/2307.09288.pdfhttps://arxiv.org/pdf/1810.04805.pdf

https://arxiv.org/pdf/2307.09288.pdf
https://arxiv.org/pdf/1810.04805.pdf

Accelerating DNN training via data parallelism

4

Ø Example of data parallelism of synchronous
SGD under the Parameter Server architecture

Ø Note that data parallelism is also widely
used in LLM training, e.g., Zero and FSDP.

https://arxiv.org/pdf/2304.11277.pdf

Dataset

���

Partit
ion dataset

FP

BP
���

���

���

�

�

�

�
Worker Parameter

Server

Average
Gradients

FSDP workflow

https://arxiv.org/pdf/2304.11277.pdf

The speedup of data parallelism: a close look

5

AlexNet
GoogleNet
Linear Speedup

 S
pe

ed
up

1
2
4
8
16
32
64
128

of GPUs
1 2 4 8 16 32 64 128

Ø Speedup with more GPUs: not always linear!

https://arxiv.org/pdf/1609.06870.pdf PyTorch FSDP: https://arxiv.org/pdf/2304.11277.pdf

Ø Root cause for failing to achieve linear
speedup: communication cost!

Near-linear speedup with
more GPUs within a server

Performance degrades when
crossing multiple servers

Communication becomes
the bottleneck!

T5-11B (LLM)

https://arxiv.org/pdf/1609.06870.pdf
https://arxiv.org/pdf/2304.11277.pdf

Application layer solution: reducing traffic volume

6

• Reduce communication bandwidth by
only sending important gradients

• Use gradient magnitude as a simple
heuristics for importance

• Only gradients larger than a threshold
are transmitted (e.g., top 0.1%)

ØGradient Sparsification ØGradient Quantization
• Obtain the min and max gradient values of

each layer

• Represent the gradients with low-precision
float (e.g., 32 bits -> 8 bits)

• The results are composed by an array
containing the quantized value, and the
min and max value

Reducing the number of
gradients transmitted

Reducing the precision of
gradients transmitted

Reducing traffic volume doesn’t eliminate the problem

7

Ø Lesson learned: in AI-centric Networking (AICN), tail latency is often
caused by the communication pattern, not only the traffic volume. This
calls for network transport solutions!

Average
Tail

 F
CT

(m
s)

1
10

Compression Ratio(%)
original 20 40 60 80

ResNet-18While average FCT improves effectively,
tail FCT remains high, due to packet

loss and retransmission timeout (RTO)

Gray failure: potential pitfalls of large-scale training

8

Ø Transport for AICN must be resilient to such gray failure.

Gray Failure: The Achilles’ Heel of Cloud-Scale Systems

• Fault-tolerance and reliability are
crucial for distributed training

• Gray failure refers to subtle and often
undetectable issues in data center

• A common example of gray failure is the
persistent and silent packet drops
experienced by a network device or link.

persistent and silent
packet drops

Observation 1: bounded-loss tolerance

9

Ø The DNN training process is bounded-loss tolerant: certain packet drops don’t affect
model convergence much!

Resnet50

C
on

v.
 R

ou
nd

50

60

70

Random Data Loss Probability(%)
0 2 4 6 8 10

VGG19

C
on

v.
 R

ou
nd

46
48
50
52
54
56
58

Random Data Loss Probability(%)
0 2 4 6 8 10

Dataset Used: Caltech101

Convergence rounds (& model
quality) remain unaffected,

with 1-2% packet drops

Insight behind observation 1

10

Ø The learning direction doesn’t deviate much: With
bounded packet losses, the direction of the
gradient vector (or tensor) will not deviate much
from the original, steepest direction.

Ø The learning step size doesn’t change much: With
bounded packet losses, the step length of the
gradient vector remains similar.

Ø The SGD algorithm is robust to loss (self-healing):
SGD recalculates the learning objective function
towards the optimal at each step, noise caused by
loss in earlier iterations won’t be carried to latter
iterations, but instead can be fixed later!

DNN training with SGD

𝑤! 𝑤" …

Parameter Server

𝐸#[1/99 (𝑔" + 𝑔$…+𝑔!%%)] = 𝐸#[1/100(𝑔! + 𝑔" + 𝑔$…+ 𝑔!%%)]

No packet loss
With packet loss

Inspiration from observation 1

11

M
od

el
 q

ua
lit

y

Communication efficiency

UDP (or RDMA-UD):
Low communication overhead, but no
packet delivery guarantee at all,
leading to very bad model quality

TCP (or RDMA-RC):
Good model quality with 100%
reliability, but suffer from high
communication overhead (long
tail latency)

Better

MLT:
Cutting long tail latency with bounded-
loss tolerance, while maintaining good
model quality;
Resilient to gray failure in the network

Ø Reliability requirement for AICN

Observation 2: Different gradients have different impacts

12

Ø Losing different gradients may generate different impacts on model
convergence or quality!

ResNet50 on Cifar100

Back
Middle
Front

C
on

v.
 R

ou
nd

20

30

40

Random Data Loss Probability(%)
0 0.4 0.8 1.2 1.6

Layer-wise: back-layer
gradients are more

sensitive to loss

Large
Medium
Small

C
on

v.
 R

ou
nd

20

30

Random Data Loss Probability(%)
0 0.4 0.8 1.2 1.6 2.0

Magnitude-wise: larger
gradients are more

sensitive to loss

Insight behind magnitude-wise impact

13

Ø Magnitude-wise impact: larger gradients are less loss-tolerant than small gradients

• Larger gradient contains stronger correlation between the
extracted feature and the objective task than smaller
gradient does, more impact on model accuracy!

• Larger gradient indicates bigger learning step size, smaller
gradient indicates smaller step size, more impact on
convergence speed!

Learning step with larger
gradients

Learning step with smaller
gradients

Large
Medium
Small

C
o

n
v.

 R
o

u
n

d

20

30

Random Data Loss Probability(%)
0 0.4 0.8 1.2 1.6 2.0

Insight behind layer-wise impact

14

Ø Layer-wise impact: front-layer gradients are more loss-tolerant than back-layer
gradients

• Front layers extract simple, class-independent features
and can be trained from almost all samples, e.g., from
pre-training dataset, thus easier to learn!

• Back layers extract class-specific features (e.g., earrings)
and can be trained only from specific samples with certain
classes (e.g., women), thus much harder to learn!

Honglak Lee, NIPS’10

ObjectsObject partsCurves/edgesPixels
Back
Middle
Front

C
on

v.
 R

ou
nd

20

30

40

Random Data Loss Probability(%)
0 0.4 0.8 1.2 1.6

Inspiration from observation 2

15

Not all gradients are equal
in terms of the impacts on

model convergence and
training pipelining

When queue builds up

Prioritize front-layer gradients over
back-layer gradients, to speed up

training pipelining

Priority Queueing
(both at end-host and in network)

When buffer overflows

Selectively drop front-layer
gradients over back-layer gradients,

smaller gradients over larger
gradients, to maintain model

convergence/quality
Selective Dropping

Observation 3: Inter-packet order-independence

16

g11 g12 … g1m

g21 g22 … g2m

…

gnm gnm … gnm

… … …

g11 g12 … g1m

g21 g22 … g2m

…

gnm gnm … gnm

… … …

Tensor Packets
(Order-independent)

Tensor

gradients

tensorID
offset

Packet Tagging

tensorID
offset

tensorID
offset

gradients

gradients

gradients

Message

Serialize Deserialize

message Person {
required string name = 1;
required int32 id = 2;
optional string email = 3;

}

0101101…101101
Bit Stream 01011 101…1 01101

0101101…101101
Bit Stream

Person

Packet Stream
(Order needs to be maintained)

Traditional Network Apps

DNN Training

Ø One message multiple packets, thus packet ordering matters

Ø One packet multiple messages (gradients), thus inter-packets are order-free
Ø The traffic in DNN training is periodic and predictable.

(Known Size)

(pre-determined buffer)

Inspiration from observation 3

17

For DNN training, we can break the tradeoff: per-packet load
balancing without worrying about out-of-order issues!

Tradeoff for traditional
network applications

Per-flow ECMP:
coarse-grained, large flow
hash-collision, low efficiency

Per-packet load balancing:
fine-grained, but suffer from
reordering problems

Flowlet-based load balancing:
make a tradeoff in-between

MLT - Machine Learning Transport for AI-centric networking

18

Bounded-loss tolerance

Not all gradients are equal, in terms
of impacts on model convergence/

quality and training pipelining

Inter-packet order-independence

Optimizing training efficiency with gradient-
aware queueing and dropping

Cutting tail latency with bounded-loss tolerance

Enabling per-packet load balancing based on packet-
level order-independence

Ø To address the problem that cannot be
solved with application layer solutions

Ø To improve model convergence and speed
up training pipelining

Ø To maximize network utilization and
minimize hotspots

Ø Inspired by the previous observations, MLT performs the following
domain-specific communication optimization:

MLT design overview

19

Priority queueing &
selective dropping

Per-packet load
balancing

Bounded-loss tolerant
transmission

Leaf switch

Spine switch

First, data are spread onto
multi-path to minimize
hotspots, without worrying
about reordering issues

If congestion happens, switch will
perform priority queueing and
selective dropping, if needed, to
optimize training efficiency

Finally, a bounded-loss tolerant data
transmission is implemented to avoid
long tail latency!

Bounded-loss tolerant data transmission

20

MLT Rate ControlTCP Congestion Control
• Slow start (exponential)
• Timeout
• 3 dupACK and fast recovery

• Line rate start
• No timeout
• No need fast recovery
• Timely-like RTT-base CC

Much simpler

① flow finish notice

S R

② retransmit request
(or receive completed)

bound

send
buffer

recv
buffer

txrate = txrate·(1- β·(1-Thigh/rtt_new))
multiplicative decrease

rtt_new > Thigh

congestion
avoidance

rtt_diff = rtt_new – rtt_old
rtt_old = rtt_new

feedback(rtt_new)

line rate
start

L

txrate = LineRate

Feedback!

rtt_new > Thigh

txrate = txrate + α
additive increase

rtt_new < Tlow
rtt_diff < 0

rtt_diff = rtt_new – rtt_old
rtt_old = rtt_new

feedback(rtt_new)

Feedback!

retransmit request
retransmit missing segment

Gradient-aware priority queueing & selective dropping

21

Input

Output

Queue 1

Queue 2

Queue K

Queue 3

Priority levels

DNN models on
worker/server Queueing/dropping at switch

Gradients/parameters
high

low

Priority queueing to speed
up training pipelining:

front layers first

Gradient-aware priority queueing & selective dropping

22

Input

Output

Queue 1

Queue 2

Queue K

Queue 3

Priority levels

DNN models on
worker/server Queueing/dropping at switch

Gradients/parameters
high

low

Re-interpret ECN/RED for
selective dropping*:

selectively drop packets
with smaller gradients

ECN threshold

ECN threshold

ECN threshold

ECN threshold

Set 2-bit ECN at packet header:
Ø 00 for packets with small gradients
Ø 10 for packets with large gradients

Increased ECN marking
thresholds to try to drop front-

layer gradients first, while
keeping back-layer gradients

*Hu S., Chen K. et al, Aeolus: A
Building Block for Proactive Transport
in Datacenters, SIGCOMM 2020

Implementation and testbed setting

23

Kernel TCPVMA Library

Bounded Loss Transmission

Data packet Control signal

MLT

Socket

Packet Manipulation (Tx Path)

Packet
Tagging

Send(tensor) Recv(&tensor)

ML Framework MXNet PyTorch TensorFlow

Middleware BytePS/Horovod/Specific Adapter

Packet Manipulation (Rx Path)

VMA Library

Data packet

Tensor
Partitioning Rate ControlTransmission

Control
Tensor

Construction
Packet

Untaggin
g

Experiment Setting:
• Testbed: 8x GPU servers each with 8x 3090 GPUs, 4 Mellanox SN2100

switches.
• Topology: 2x3 Spine-Leaf*, 100Gbps
• Models: ResNet50, VGG16, GoogleNet, Transformer, T5
• Comparison Target: vanilla ML frameworks, BytePS
*Each leaf switch has two 100Gbps links connecting to the spine switch, thus
logically we have two spine switches.

Speedup under different DNN models (Tensorflow, PS)

24

ResNet50 VGG16

GoogleNet

Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

of Workers
8 16 32 64

Baseline
BytePS
MLT

1e3

Sp
ee

d
(im

ag
es

/s
ec

)

0

5

10

15

of Workers
8 16 32 64

Baseline
BytePS
MLT

1e2

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

of Workers
8 16 32 64

Baseline
BytePS
MLT

1e1

Sp
ee

d
(q

ue
st

io
ns

/s
ec

)
0

1

2

3

of Workers
8 16 32 64

Transformer

MLT achieves 14.1% - 62.2% improvement
compared to BytePS!

Speedup under different ML frameworks

25

VGG16 MXNet

Transformer MXNet

VCG16 Pytorch

Transformer Pytorch

Baseline
BytePS
MLT

1e2

Sp
ee

d
(im

ag
es

/s
ec

)

0
1
2
3
4
5
6
7

of Workers
8 16 32 64

Baseline
BytePS
MLT

1e2

Sp
ee

d
(im

ag
es

/s
ec

)

0

1

2

3

4

5

of Workers
8 16 32 64

Baseline
BytePS
MLT

1e1

Sp
ee

d
(q

ue
st

io
ns

/s
ec

)

0

1

2

3

4

5

of Workers
8 16 32 64

Baseline
BytePS
MLT

1e1

Sp
ee

d
(q

ue
st

io
ns

/s
ec

)
0

1

2

3

of Workers
8 16 32 64

MLT achieves 12.0% - 56.6% improvement
compared to BytePS!

Network performance in larger-scale simulations

26Setting: topology 144 node leaf-spine, bandwidth 100Gbps, #servers/#workers 1/3

ResNet50
Avg FCT

ResNet50
Tail FCT

GoogleNet
Avg FCT

GoogleNet
Tail FCT

MLT
DCTCP
PIAS
NDP
pFabric

FC
T/

m
s

1

2

3

4

of Workers
36 72 108 144

MLT
DCTCP
PIAS
NDP
pFabric

FC
T/

m
s

0
200

400
600

of Workers
36 72 108 144

MLT
DCTCP
PIAS
NDP
pFabric

FC
T/

m
s

1

2

3

4

of Workers
36 72 108 144

MLT
DCTCP
PIAS
NDP
pFabric

FC
T/

m
s

0
200

400
600

of Workers
36 72 108 144

MLT achieves up to 43.5% lower avg FCT and
91.7% lower tail FCT compared to pFabric!

Conclusion

27

Ø MLT (Machine Learning Transport for AI-centric networking)
exploits domain-specific properties of deep learning to optimize
communication for distributed DNN training!

Ø MLT made three key observations:
• Bounded-loss tolerance
• Different gradients generate different impacts
• Inter-packet order-independence

Ø MLT conceived three main ideas:
• Cutting tail latency via bounded-loss tolerant data transmission
• Improving training efficiency through gradient-aware priority

queueing and selective dropping
• Maximizing network utilization by enabling per-packet load

balancing due on inter-packet order-independence

Thank you!
For Q&A, please contact

hwangdv@connect.ust.hk

